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Abstract: The bottleneck model has been widely used in the past fifty years to analyze the morning 
commute. To reduce the complexity of analysis, most previous studies adopted discontinuous 
scheduling preference (DSP). However, this handling destroys the continuity in departure rate and 
differentiability in travel time and cumulative departures. This paper considers an exponential 
scheduling preference (ESP), which supposes the unit schedule delay cost for commuters exponentially 
changes with time. With this scheduling preference, we analytically derive solutions and economic 
properties of user equilibrium and social optimum in the bottleneck model. The first-best, time-varying 
toll and the optimal single-step toll scheme with ESP are also studied. Results indicate that ESP 
eliminates the discontinuity in departure rate and non-differentiability in travel time and cumulative 
departures, which makes the process of morning commute smooth. The ignorance of ESP will lead to 
underestimation in the queueing time and bias in travel behavior analysis and policymaking.  

Keywords: the bottleneck model; traffic congestion; exponential scheduling preference; user 
equilibrium; social optimum 
 

1. Introduction 

Traffic congestion in the morning rush hour is a crucial issue for many metropolitan cities and 
impedes the development of urban society and economy. To alleviate this problem, lots of research 
has been done from perspectives of congestion behavior in commute [1–4] or tolling strategies [5,6], 
where the classical bottleneck model is widely used. The bottleneck model is first proposed by Vickrey [7] 
and provides a convenient and tractable way to describe the queueing during rush hour [8]. Therefore, 
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this model has been extended in vast specific research directions such as travel demand [9–11], variable 
bottleneck capacity [12–14] and the incentive scheme [15,16] in recent decades.  

In the bottleneck model, commuters are assumed to minimize the trip cost by making a trade-off 
between the schedule delay cost and travel time cost. This trade-off is essentially influenced by 
commuters’ scheduling preferences. To capture commuting behavior, researchers have proposed 
several scheduling preference forms based on different assumptions. Among all research, the 
piecewise formulation developed by Vickrey [7] and Small [17] is the most popular one, where the 
unit costs for travel time and schedule delay time are constant and piecewise constant respectively. 
This scheduling preference is also referred to as 𝛼 − 𝛽 − 𝛾 preference in Knockaert et al. [18] and 
discontinuous scheduling preference (DSP) in Li and Huang [19]. However, though DSP simplifies 
the algebra in analyzing travel behavior, results given by Li and Huang [19] have shown that it breaks 
the continuity of departure rate in the user equilibrium (UE). Furthermore, DSP essentially assumes 
the marginal utilities of travel time and schedule delay early or late time are both independent of time. 
This is inconsistent with our practical experience and our intuitions. Empirical studies also have shown 
the marginal utilities of time ( MUT ) at origin ( H ) and destination ( W ) will change with time [20–22]. 
Thus, the DSP assumption may not capture the realistic characteristics in morning commute and leads 
to bias in travel behavior analysis and traffic policymaking. 

To solve the above problems, other kinds of scheduling preferences are considered in research. 
Vickrey [20] has proposed a departure time choice model, where the marginal utilities of time at origin 
and destination relative to the time in commuting are linear functions of time. The popular DSP 
assumption exactly is a particular situation of this formulation. Tseng and Verhoef [21] developed it 
with a scheduling model which allows the marginal utilities to nonlinearly change with time, and 
Jenelius et al. [22] further extended this formulation to a two-trip chain. Hjorth et al. [23] have 
considered four different marginal utility formulations and estimated them with real data. Based on 
this study, Li and Huang [19] proposed a continuous scheduling preference (CSP). Then, they analyzed 
the travel behavior of commuters and the properties of the UE flow pattern in the single-entry traffic 
corridor model with CSP. Li and Huang [24] also investigated the UE and social optimum (SO) states 
in the bathtub model with CSP. Besides CSP, Hendrickson and Plank [25] developed and estimated 
the quadratic penalty functions for the schedule delay time. Engelson et al. [26] further proposed a 
constant-exponential formulation, where the marginal utilities of time at origin and destination 
relative to the time in commuting are constant and exponential functions respectively. Hjorth et al. [23] 
also adopted this kind of utility formulation and estimated the scheduling model based on real data 
from Stockholm. 

Congestion tolling is a travel demand management policy that aims at alleviating traffic 
congestion in the rush hour by adjusting traffic demand. Based on the bottleneck model and various 
kinds of scheduling preferences, congestion tolling strategies are also widely discussed. With an 
activity-based bottleneck model which considers the linear marginal activity utility (equivalent to the 
linear-linear utility formulation), Li et al. [27] studied the efficiency of step tolling strategies and their 
influence on the departure time choice behavior under homogeneous and heterogeneous commuters. 
Li and Zhang [28] also proposed a bottleneck model with the two-mode setting and time-varying 
scheduling preferences, and investigated the influence of congestion tolling on travel mode and 
departure time choice behaviors. From the perspective of changing unit schedule delay cost, Zhu et 
al. [29] developed a bottleneck model with CSP and analyzed commuters’ departure time choice 
equilibrium. The following parts of their research focused on the congestion tolling schemes, designed 
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the first-best and second-best tolling strategies and obtained the closed-form solutions for time-varying 
toll schemes, single-step toll scheme and multi-step toll scheme.  

However, most above research focus on the perspective of commuters’ utility functions. Few 
studies are from the perspective of the time-varying schedule delay cost function. This ignores the 
economic analysis of congestion behaviors and tolling strategies in the morning commute, especially 
for the constant-exponential formulation. With this formulation, the schedule delay cost function will 
exponentially change with time such that herein we refer to it as the exponential scheduling preference 
(ESP). As suggested by Hjorth et al. [23] and Engelson et al. [26], the constant-exponential formulation 
is a more general formulation than the constant-affine formulation (exactly equivalent to the CSP 
assumption). Even if the most appropriate scheduling specification and corresponding measure is still 
an empirical matter [23], ESP assumption probably is more flexible to be adapted to data from stated 
preference surveys and describes the time-varying process of the unit schedule delay cost in more 
detail [26]. For another, according to the conclusions of Xiao et al. [30], the ESP assumption may be 
more reasonable than the DSP assumption in economic analysis since this preference yields unbiased 
benefit estimates of travel time reliability improvements for the rush hour. Therefore, we adopt the 
ESP assumption in this paper. Li and Huang [19] and Zhu et al. [29] have shown that CSP significantly 
influences the travel behavior of commuters and the efficiency of traffic policies, but how ESP 
influences congestion behavior and tolling strategies in a specific traffic model has not been 
investigated by studies. To further explore this problem, this paper develops an ESP bottleneck model 
and discusses congestion behaviors and tolling strategies in the morning commute under this model. 
Also, the ESP bottleneck model is compared with the DSP bottleneck model to show the difference. 
The main contributions of this paper are as follows. 

Firstly, we formulate a bottleneck model with ESP assumption, which perfectly eliminates the 
non-differentiability and discontinuity in the equilibrium departure rate function of the classical 
bottleneck model. The smooth departure pattern avoids the abrupt change in the equilibrium departure 
rate and may be more reasonable to capture the commuting behavior. Secondly, we have investigated 
the congestion behavior and the economic properties of commuters’ travel behavior in morning 
commute with the proposed ESP bottleneck model. The equilibrium travel time, departure pattern and 
corresponding scheduling cost of commuters are analytically derived. Also, the critical clock times in 
the ESP bottleneck model are given. Thirdly, we have studied the congestion toll scheme, including 
the first-best, time-varying toll scheme and the optimal single-step toll scheme, based on ESP. We have 
also found ESP significantly influences the congestion toll scheme. The imposition of the proposed 
toll schemes provides references for better transportation management.  

The following parts are organized as follows: Section 2 gives the settings of the basic bottleneck 
model and proposes the unit cost function for ESP. Section 3 and Section 4 respectively analyze the 
travel behavior and economic properties of commuters in UE and SO states. Section 5 investigates the 
optimal single-step toll scheme. Section 6 conducts several numerical studies to illustrate the properties 
of the ESP bottleneck model and compares it to the DSP bottleneck model. Section 7 gives conclusions 
and future research directions.  
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2. Bottleneck model with ESP 

2.1. The basic bottleneck model 

In the morning rush hour, we consider 𝑁 commuters traveling from home to the workplace 
through a bottleneck, as shown in Figure 1. The bottleneck has a fixed capacity 𝑠. If the arrival rate at 
the bottleneck exceeds the capacity, queueing will appear. As the capacity of the bottleneck is limited, 
not all commuters can arrive at the workplace on time, so they will endure the schedule delay penalty 
beyond the travel time cost. To minimize the trip cost, commuters trade off between the travel time 
cost and schedule delay cost by choosing the departure time. The following settings are adopted to 
simplify the analysis.  

1) Commuters are homogeneous and have identical desired arrival time 𝑡∗. 
2) Only the travel time in the bottleneck is considered. The free-flow travel time from home to 

the workplace is ignored.  

 

Figure 1. Schematic diagram of morning commute problem with a single-entry bottleneck. 

Let 𝑇(𝑡) and 𝐷(𝑡) be the travel time and length of the queue for commuters departing from 
home at time t , respectively. Thus, the travel time from home to the workplace can be described as  

 𝑇(𝑡) = 𝑇 + 𝑇 (𝑡), (1) 

where 𝑇  and 𝑇 (𝑡) denote the fixed and variable components of travel time, representing the 
free-flow travel time and queuing time at the bottleneck, respectively.  

Without loss of generality, the free-flow travel time is ignored in following parts, as we state 
above. Therefore, the travel time is equivalent to the queueing time, which can be expressed as  

 𝑇(𝑡) = 𝑇 (𝑡) = ( ). (2) 

Denote 𝐶(𝑡) as the trip cost for the commuter departing at time 𝑡. For each commuter, the trip 
cost consists the travel time cost and the schedule delay cost. The travel time cost is directly 
proportional to travel time, while the schedule delay early or late cost is relevant to the delay time and 
scheduling preference function. For commuters, the trip cost equals 

 𝐶(𝑡) = 𝛼𝑇(𝑡) + 𝛽(𝑢)𝑑𝑢∗ ( ) ,    𝑡 + 𝑇(𝑡) ≤ 𝑡∗𝛼𝑇(𝑡) + 𝛽(𝑢)𝑑𝑢,    𝑡 + 𝑇(𝑡) ≥ 𝑡∗( )∗ , (3) 

where 𝛼 is the constant unit travel time cost, 𝛽(𝑢) is the cost for unit schedule delay time, and 𝑡∗ 



1069 

Electronic Research Archive  Volume 31, Issue 2, 1065–1088. 

denotes the desired arrival time for commuters. In next subsection, we will investigate the unit schedule 
delay cost for ESP.  

2.2. Schedule delay cost for ESP 

Let 𝛽(𝑢) represent the unit schedule delay cost at time 𝑢, where 𝑢 = 𝑡 + 𝑇(𝑡) is the arrival 
time of commuters departing at time 𝑡. In addition, we use 𝑆𝐷𝐶(𝑡) to denote the schedule delay 
cost for commuters departing at time 𝑡. The unit schedule delay cost 𝛽(𝑢) for ESP (as shown in 
Figure 2(b)) is defined as follows 

 𝛽(𝑢) = −𝑝[𝑒 ( ∗) − 1] ,    𝑢 < 𝑡∗𝑝[𝑒 ( ∗) − 1]   ,    𝑢 ≥ 𝑡∗ , (4a) 

 𝑆𝐷𝐶(𝑡) = 𝑝 (𝑒 ( ( ) ∗) − 1) + 𝑡∗ − 𝑡 − 𝑇(𝑡) , (4b) 
where 𝑝 > 0 and 𝜂 > 0 should hold. The physical meanings of parameters 𝑝 and 𝜂  represent 
commuters’ sensitivities to the schedule delay cost and schedule delay time, respectively. Equation (4a) 
is equivalent to the constant-exponential scheduling formulation in Hjorth et al. [23] and Engelson 
et al. [26].  

For comparison, we plot the general trend of 𝛽(𝑢) with DSP (a) and ESP (b) respectively in 
Figure 2, where the light gray area denotes the schedule delay early cost of commuters arriving at 𝑡  
and the dark gray area denotes the schedule delay late cost of commuters arriving at 𝑡 .  

 

Figure 2. The unit schedule delay time cost, 𝛽(𝑢), with DSP (a) and ESP (b). 

According to the general trend of 𝛽(𝑢) in Figure 2(b), some properties of ESP can be found:  
1) With ESP, the unit schedule delay cost exponentially changes with time. In addition, the change 

rate of the unit schedule delay cost is also related to time, which describes the changing process of the 
unit schedule delay cost in more detail.  

2) ESP naturally makes the unit schedule delay cost for arriving late change more rapidly than 
that for arriving early. Thus, commuters will pay more for unit late time than that for unit early time, 
which is supported by the empirical research in Small [17].  
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3) The unit schedule delay cost monotonically decreases before the desired arrival time 𝑡∗ and 
monotonically increases after that time. In addition, the cost naturally becomes zero at the desired 
arrival time 𝑡∗, which is consistent with reality.  

The above properties illustrate ESP maintains the main characteristics of the classical bottleneck 
model while possessing the merits of realism by considering the continuous change of unit schedule 
delay cost. Next, we will explore the influence of ESP on the morning commute and investigate 
commuters’ departure time choices based on the ESP bottleneck model.  

3. User equilibrium 

3.1. Congestion behavior analysis 

Suppose the choices of commuters in the morning commute are rational. The UE condition 
requires each commuter has identical trip cost so that they have no motivation to alter the departure 
time. From the above condition, we can have the following inferences:  

1) Commuters have identical trip cost in UE state.  
2) The bottleneck will be fully utilized during the morning rush hour in UE state, all commuters 

except the first and the last will experience congestion.  

3) The duration of morning rush hour is  in UE state. 

From Eqs (3) and (4a), we know  

 𝐶(𝑡) = 𝛼𝑇(𝑡) + 𝑝 (𝑒 ( ( ) ∗) − 1) + 𝑡∗ − 𝑡 − 𝑇(𝑡) . (5) 

Let 𝑡  and 𝑡  denote the departure time for the first and the last commuters respectively, and 𝑡OT denotes the departure time of the commuter arriving at the workplace punctually. For the three 
time points, relationships between the departure time, travel time and arrival time follows 

 𝑡 + 𝑇(𝑡 ) = 𝑡 , (6a) 

 𝑡OT + 𝑇(𝑡OT) = 𝑡∗, (6b) 

 𝑡 + 𝑇(𝑡 ) = 𝑡 . (6c) 

We normalize time so that the first commuter departs at 𝑡 = 0. At the end of this section, we 
will show the expression of 𝑡  when 𝑡∗ is given. According to Eq (5) and 𝑇(𝑡 ) = 0, we know the 
first commuter’s trip cost is 

 𝐶(𝑡 ) = 𝑝 (𝑒 ∗ − 1) + 𝑡∗ . (7) 

The UE condition indicates commuters will experience the identical trip cost and no one could lower 
the trip cost by departing earlier or later if the system reaches equilibrium. We can combine Eqs (5) 
and (7), and then solve for 𝑇(𝑡), which is the travel time for commuters departing at 𝑡. It follows 

 𝑇(𝑡) = − ( ) + ∗( ), (8) 
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where 𝑓(𝑡) = Lambert 𝑊 0, ⋅ 𝑒𝑥𝑝 ⋅ (𝑝𝑒 ∗ + 𝛼𝜂𝑡) − 𝜂𝑡∗  . The function Lambert 𝑊(𝑘, 𝑥) represents the solution 𝑤 for equation 𝑤𝑒 = 𝑥, here actually is the solution for 𝑓(𝑡)𝑒 ( ) = ⋅ 𝑒𝑥𝑝 ⋅ (𝑝𝑒 ∗ + 𝛼𝜂𝑡) − 𝜂𝑡∗ . In Figure 3, we have depicted the schematic 

diagram of travel time in UE state.  

 

Figure 3. The travel time, 𝑇(𝑡), with ESP in UE state.  

Let 𝑟(𝑡) denote the departure rate of commuters at time 𝑡. The length of the queue 𝐷(𝑡) in 
equilibrium state follows  

 𝐷(𝑡) = 𝑟(𝑢)𝑑𝑢 − 𝑠(𝑡 − 𝑡 ). (9) 

Take the first-order derivative of Eq (9) to time 𝑡, we can have the dynamic change process of 
the queue length. It should be  

 ( ) = 𝑟(𝑡) − 𝑠,    for 𝐷(𝑡) > 0. (10) 

From Eq (2), we know ( ) = ⋅ ( ) . Then with Eqs (8) and (10), we can solve for the 

expression of 𝑟(𝑡) in equilibrium state. It follows 

 𝑟(𝑡) = ( )[ ( ) ], (11) 

where 𝑓(𝑡) = Lambert 𝑊 0, ⋅ 𝑒𝑥𝑝 ⋅ (𝑝𝑒 ∗ + 𝛼𝜂𝑡) − 𝜂𝑡∗  . The schematic diagram of 

equilibrium departure rate is depicted in Figure 4.  
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Figure 4. The departure rate, 𝑟(𝑡), with ESP in UE state.  

Let 𝑄(𝑡) and 𝐴(𝑡) denote the cumulative arrivals at the workplace and cumulative departures 
from home at time 𝑡 respectively. From above deductions, we can express 𝑄(𝑡) and 𝐴(𝑡) as  

 𝑄(𝑡) = 𝑠𝑡, (12a) 

 𝐴(𝑡) = 𝑟(𝑡)𝑑𝑡 = 𝑠(𝑇(𝑡) + 𝑡). (12b) 

 

Figure 5. The cumulative arrivals and departures curves, 𝐴(𝑡) and 𝑄(𝑡), with ESP in UE state.  

The cumulative arrivals and departures curves as functions of time 𝑡 with ESP are plotted in 
Figure 5. The queue length and the travel time (queuing time at the bottleneck) are also depicted in 
Figure 5, which are the vertical and horizontal distances between the two cumulative curves.  

3.2. Properties of the UE solution 

We have known the relationships between the start time 𝑡  and end time 𝑡  of the morning rush 
hour as 
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 𝑡 − 𝑡 = , (13a) 

 𝐶(𝑡 ) = 𝐶(𝑡 ). (13b) 

With the assumption of 𝑡 = 0, we can express the desired arrival time 𝑡∗ from Eqs (13a) 
and (13b) as  

 𝑡∗ = 𝑙𝑛 (𝑒 − 1) . (14) 

It is easy to find that 𝑡∗ will be endogenous when 𝑡  is given. However, a more general situation 
is with a given value of 𝑡∗, while 𝑡  needs to be obtained. This situation will not change the qualitative 
analysis results and the expressions of 𝑡  and 𝑡  when 𝑡∗ is given can also be deduced as  

 𝑡 = 𝑡∗ + 𝑙𝑛 ( ) , (15a) 

 𝑡 = 𝑡∗ + + 𝑙𝑛 ( ) . (15b) 

From Eq (15a), we can find that the start time of the morning rush hour 𝑡  merely depends on 𝜂 
while 𝑝 will not influence 𝑡 . Based on this finding, we can derive the following properties.  

Proposition 1. The start time of the morning rush hour 𝑡  monotonically decreases with 𝜂 and 
is independent of 𝑝.  

Proposition 2. The total early arrivals strictly monotonically increase with 𝜂 while the total late 
arrivals strictly monotonically decrease with 𝜂.  

The proofs of Proposition 1 and Proposition 2 are given in Appendix. Proposition 1 and 
Proposition 2 indicate the value of the parameter 𝜂 determines both the start time of the morning 
rush hour 𝑡  and the percentage of the total early arrivals. This means 𝜂 is a crucial parameter in 
ESP, which influences the travel behavior of commuters in the morning rush hour. In ESP, the physical 
meanings of parameters 𝑝 and 𝜂 represent commuters’ sensitivities to the schedule delay cost and 
schedule delay time, respectively. We can find that increasing sensitivity to the schedule delay time 
for commuters will lead to an earlier start time of the morning rush hour, which is consistent with 
realism. However, the sensitivity to the schedule delay cost merely influences the trip cost, while the 
travel behavior pattern of commuters will not be influenced.  

3.3. Economic properties 

Let 𝑇𝑇𝐶  denote the total trip cost in the traffic system, 𝑇𝑇𝑇𝐶  and 𝑇𝑆𝐷𝐶  denote the total 
travel time cost and total schedule delay cost respectively. With Eqs (7) and (14), the trip cost for the 
first commuter and 𝑇𝑇𝐶 for the system can be rewritten as 

 𝐶(𝑡 ) = 𝑝 𝑡∗ − + ( ) , (16a) 
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 𝑇𝑇𝐶 = 𝑁𝑝 𝑡∗ − + ( ) , (16b) 

where the subscript 𝑒 implies the UE state.  
We can express the total travel time as the area enclosed by the cumulative departure and arrival 

curves, as shown in Figure 5. Therefore, 𝑇𝑇𝑇𝐶 equals 𝛼 𝐴(𝑡) − 𝑄(𝑡) 𝑑𝑡, and then we have  

 𝑇𝑇𝑇𝐶 = 𝑠(𝛼 − 𝑝) ⋅ ( ) ( ) + ⋅ ( ∗)( ) , (17a) 

 𝑘 = Lambert 𝑊 0, ⋅ 𝑒𝑥𝑝 ⋅ ( ) ⋅ 𝑒 ∗ − 𝜂𝑡∗ , (17b) 

 𝑘 = Lambert 𝑊 0, ⋅ 𝑒𝑥𝑝 ⋅ 𝑒 ∗ − 𝜂𝑡∗ . (17c) 

With the relationship 𝑇𝑇𝐶 = 𝑇𝑇𝑇𝐶 + 𝑇𝑆𝐷𝐶, we can obtain 𝑇𝑆𝐷𝐶  as  

 𝑇𝑆𝐷𝐶 = 𝑁𝑝 𝑡∗ − + ( ) − 𝑇𝑇𝑇𝐶 . (18) 

In Figure 6, we have depicted 𝑇𝑇𝐶, 𝑇𝑇𝑇𝐶 and 𝑇𝑆𝐷𝐶 as functions of the total population in 
UE state to intuitively show the quantitative relationships among the three costs. It can be found from 
Figure 6 that 𝑇𝑇𝑇𝐶 is the main component of 𝑇𝑇𝐶, while the percentage of 𝑇𝑆𝐷𝐶 is relatively small.  

 

Figure 6. 𝑇𝑇𝐶, 𝑇𝑇𝑇𝐶 and 𝑇𝑆𝐷𝐶 as functions of total population with ESP in UE state. 

From Eqs (5) and (8) we can also plot the trip cost, the travel time cost and the schedule delay 
cost of commuters who depart from home at time 𝑡, as shown in Figure 7. The UE condition requires 
the trip cost must be identical so that there is a reverse tendency in the travel time cost and the schedule 
delay cost. This means that the closer the departure time of commuters to 𝑡OT, the higher his/her travel 
time is and the lower his/her schedule delay time is.  
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Figure 7. The trip cost, travel time cost and schedule delay cost for commuters with ESP in UE state. 

4. The social optimum 

4.1. The first-best, time-varying toll 

Compared with UE state, SO state entails minimization to 𝑇𝑇𝐶. In this model, the travel time is 
exactly the queuing time at the bottleneck, which is a pure deadweight loss as pointed by Arnott et al. [5]. 
Therefore, we have the following inferences:  

1) 𝑇𝑇𝑇𝐶 is eliminated in SO state.  
2) The schedule delay cost for the first and last commuters must be the same in SO state. 
The elimination of queueing at the bottleneck requires the cumulative departure curve to coincide 

with the cumulative arrival curve. From the second inference, the duration of the morning rush hour 
and the cumulative arrival curve must be identical in UE and SO states to minimize 𝑇𝑇𝐶. The above 
properties in SO state are shown in Figure 8.  

 

Figure 8. The cumulative arrival and departure curves, 𝐴(𝑡) and 𝑄(𝑡), with ESP in SO state. 
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In morning rush hour, SO assignment can use a toll scheme, which is referred to as the first-best, 
time-varying toll, to fully eliminate queueing at the bottleneck. With this time-dependent toll, all 
commuters will pay for the marginal cost caused by themselves in congestion, which is exactly the 
travel time cost they would entail in UE state. Let 𝜏(𝑢) denote the congestion toll for commuters 
arriving at time 𝑢 = 𝑡 + 𝑇(𝑡). Then, we can rewrite 𝐶(𝑡) with this toll scheme as  

 𝐶(𝑡) = 𝜏(𝑢) + 𝛽(𝑣)𝑑𝑣∗ ( ) , 𝑡 + 𝑇(𝑡) < 𝑡∗𝜏(𝑢) + 𝛽(𝑣)𝑑𝑣( )∗ , 𝑡 + 𝑇(𝑡) > 𝑡∗. (19) 

Since the first-best, time-varying toll scheme will make commuters have identical trip cost as that 
in UE state, which is given in Eq (16a). We can combine Eqs (16a) and (19) to have 𝐶(𝑡) = 𝐶(𝑡 ), and 
then solve for 𝜏(𝑢) directly. This toll scheme can be expressed as the following relationship, and we 
have also depicted it in Figure 9.  

 𝜏(𝑢) = 𝑝 𝑢 − ( ∗) + ( ) . (20) 

 

Figure 9. The first-best, time-varying toll, 𝜏(𝑢), with ESP in SO state. 

4.2. Economic properties 

The above inferences indicate that 𝑇𝑇𝑇𝐶 is eliminated in SO state. The imposition of the best 
toll will result in a SO state that coincides with the UE state, which means 𝑇𝑆𝐷𝐶 in SO state will not 
change compared to that in UE state. Then we know 

 𝑇𝑇𝑇𝐶 = 0, (21a) 

 𝑇𝑆𝐷𝐶 = 𝑇𝑆𝐷𝐶 , (21b) 

where the subscript 𝑜 implies the SO state.  
Thus, according to the relationship 𝑇𝑇𝐶 = 𝑇𝑇𝑇𝐶 + 𝑇𝑆𝐷𝐶, we can obtain 𝑇𝑇𝐶 for the traffic 
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system in SO state as  

 𝑇𝑇𝐶 = 𝑇𝑆𝐷𝐶 = 𝑁𝑝 𝑡∗ − + ( ) − 𝑇𝑇𝑇𝐶 . (22) 

Although the trip cost for commuters in SO state with the above toll scheme is the same as that 
in UE state, the SO assignment brings a social saving on 𝑇𝑇𝑇𝐶. This means the pure deadweight loss 
caused by queueing at the bottleneck is transformed into the government’s toll revenue, which can be 
employed for improving transportation infrastructures.  

5. The optimal single-step toll 

The first-best, time-varying toll has an ideal property to eliminate the bottleneck queuing and 
reach the SO state. However, this time-dependent toll scheme is hard to implement in practice. 
Therefore, the step-toll strategies, especially the single-step toll, are widely used as an alternative to 
the time-dependent toll scheme to alleviate traffic congestion. This section aims to propose an optimal 
single-step toll scheme based on the ESP bottleneck model. 

Referring to the step-tolling strategies in Arnott et al. [5], the single-step toll is designed as a 
scheme that will charge a fixed toll for commuters who arrive at the bottleneck in a fixed period. 
Compared with the UE state, this scheme can lower 𝑇𝑇𝐶 to a certain extent and produce economic 
benefits. Let 𝜌 denote the fixed toll, 𝑡  and 𝑡  denote the start time and end times for the scheme 
respectively. Therefore, to obtain the optimal single-step toll, we should determine values of 𝜌, 𝑡  
and 𝑡  which can minimize 𝑇𝑇𝐶.  

 

Figure 10. The optimal single-step toll inscribed the first-best, time-varying toll in the ESP 
bottleneck model. 

As shown in Figure 10, the dark rectangular area and the area under the first-best, time-varying 
toll curve represent the travel time cost saved by the single-step toll scheme and 𝑇𝑇𝑇𝐶 respectively. 
Let 𝐹(𝑡 , 𝑡 ) denote the travel time cost saving and imposition of the optimal single-step toll should 
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maximize the travel time cost saving, which intuitively is equivalent to the maximization of the dark 
gray area. Thus, we can express the objective for the optimal single-step toll as maximizing 

 𝐹(𝑡 , 𝑡 ) = 𝜌𝑠(𝑡 − 𝑡 ). (23) 

To minimize the total travel time, the bottleneck capacity should not be wasted. Therefore, the 
fixed toll, toll start and end times must be jointly optimized to eliminate the travel time at 𝑡  and 𝑡  
(i.e., fixed toll should equal the congestion toll of the first-best, time-varying toll at the two times). In 
this situation, the trip cost for commuters who depart at the two times merely consists the schedule 
delay cost and congestion toll. We express the above relationships as  

 𝜌 = 𝜏(𝑡 ) = 𝜏(𝑡 ) = 𝑝 𝑡 − ( ∗) + ( ) , (24a) 

 𝐶(𝑡 ) = 𝑝 (𝑒 ( ∗) − 1) − 𝑡 + 𝑡∗ + 𝜌, (24b) 

 𝐶(𝑡 ) = 𝑝 (𝑒 ( ∗) − 1) − 𝑡 + 𝑡∗ + 𝜌. (24c) 

With the single-step toll scheme, the equilibrium trip cost is same as that in UE state. Combine 
Eqs (24b) and (24c), we can express the relationship between 𝑡  and 𝑡  as 

 𝑡 − 𝑡 = ⋅ . (25) 

Equation (25) indicates the travel time cost saving 𝐹(𝑡 , 𝑡 ) can be transformed into a function 
of the toll start time or the toll end time. Though it is difficult to solve Eq (25) for 𝑡   or 𝑡  
analytically, we can find optimal values of 𝑡  or 𝑡  via numerical methods. Then from Eqs (24) 
and (25), the corresponding 𝜌 and other time values of this toll scheme can be obtained.  

6. Numerical examples 

This section conducts numerical studies to demonstrate the properties of the proposed ESP 
bottleneck model. Each subsection also numerically compares ESP and DSP bottleneck models to 
intuitively show the difference between the two models. The results for the DSP bottleneck model can 
refer to Arnott et al. [5]. 

6.1. Values of parameters 

To better show the influence of ESP, model parameters are set to make the equilibrium trip cost 
for commuters and the start time of the morning rush hour identical for both ESP and DSP bottleneck 
models. We adopt parameters in the DSP bottleneck model as Xiao et al. [13]: 𝛼 = 6.4 $/h, 𝛽 = 3.0 $/h, 𝛾 = 8.5 $/h and 𝑡∗ = 9: 00 am, 𝑁 = 6000 veh, 𝑠 = 3000 veh/h. In addition, the desired arrival 
time, the total number of commuters and the bottleneck capacity are assumed to be identical in ESP 
and DSP bottleneck models. According to the above conditions, the parameters 𝑝  and 𝜂 become 
endogenous and can be solved. With Eqs (15a) and (16a), we have 𝑝 = 3.6134 $/h, 𝜂 = 3.9736 ℎ . 
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6.2. User equilibrium 

Figure 11 depicts the departure rate curve in UE state with ESP and DSP bottleneck models. We 
can find from Figure 11 that the departure rate in the ESP bottleneck model monotonically decreases 
throughout the morning rush hour. The queue at the bottleneck develops if the departure rate is larger 
than the bottleneck capacity. This queue begins to dissipate until the departure rate reduces to the 
bottleneck capacity and will completely dissipate at the end of the morning rush hour. In addition, 
Figure 11 also shows the departure rate curve changes continuously in the ESP bottleneck model, while 
this curve has a discontinuity at the time that commuters can arrive at the workplace punctually in the 
DSP bottleneck model. This is because ESP has made the unit schedule delay cost exponentially 
change rather than discontinuously change with DSP. It could be more reasonable to introduce ESP to 
avoid the abrupt change in the equilibrium departure rate.  

 

Figure 11. The equilibrium departure rate curve with ESP and DSP bottleneck models. 

 

Figure 12. The equilibrium travel time curve with ESP and DSP bottleneck models. 
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Figure 13. The equilibrium cumulative arrivals & departures curve with ESP and DSP 
bottleneck models. 

Figures 12 and 13 respectively depict the travel time curve and the cumulative arrivals & 
departures curve in the UE state with ESP and DSP bottleneck models. It can be found from Figures 12 
and 13 that non-differential points on the travel time curve and the cumulative departure curve can be 
perfectly eliminated by ESP, which makes the process of leaving home smoother in the morning 
commute. Figures 12 and 13 also show that the curves of equilibrium travel time and cumulative 
departures in the DSP bottleneck model are always below those in the ESP bottleneck model when 
commuters’ trip cost and the morning rush hour are set to be identical in both two models. The above 
properties imply DSP underestimates the queueing time compared to ESP and most commuters will 
entail a higher travel time cost than in the DSP bottleneck model. The above two points imply that the 
travel behavior pattern of commuters in the morning rush hour is significantly influenced by the 
scheduling preferences, and the difference caused by ESP and other scheduling preferences should not 
be ignored. 

In ESP, the physical meanings of the parameters 𝑝 and 𝜂 represent commuters’ sensitivities to 
the schedule delay cost and schedule delay time, respectively. Figure 14 presents the influence of 𝑝 
and 𝜂 on the travel time of commuters in the ESP bottleneck model. When the values of 𝑝 and 𝜂 
grow larger, the travel time commuters will experience in the morning commute also becomes larger. 
In addition, Figure 14(a) shows that 𝑝 will merely influence the travel time and travel behavior pattern 
of commuters and will not change the start and end times of the morning rush hour. However, 𝜂 can 
influence both the travel time of commuters and the start and end times of the morning rush hour. As 
shown in Figure 14(b), the larger the value of 𝜂, the earlier the morning rush hour start time is. This 
implies that an increase of the value of 𝜂 will make commuters choose an earlier departure time to 
arrive at the workplace early as far as possible for avoiding the large schedule delay late cost. 
Another set of results when values of 𝑝 and 𝜂 become smaller can also be obtained with a similar 
analytical process.  
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Figure 14. The influence of parameters 𝑝 (a) and 𝜂 (b) on the travel time with ESP 
bottleneck model. 

6.3. The social optimum 

Figure 15 depicts the time-dependent toll in the SO state with ESP and DSP bottleneck models. 
The toll for the first and the last commuters departing from home in the morning rush hour equals zero 
since they impose no external cost on the other commuters. We can find that ESP makes this curve 
nonlinear, continuous and differentiable. However, at the time that commuters can arrive at the 
workplace punctually, this toll curve becomes piecewise-linear and non-differentiable with DSP. 
Furthermore, we can also see that the first-best, time-varying toll curve with ESP is always above that 
with DSP. This implies that DSP might underestimate the travel time in the morning commute. Thus, 
the significance of the first-best, time-varying toll scheme is underestimated and the imposition of this 
toll in practice will bring more benefits than those in previous studies.  
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Figure 15. The first-best, time-varying toll curve with ESP and DSP bottleneck models. 

 

 

Figure 16. 𝑇𝑇𝐶, 𝑇𝑇𝑇𝐶 and 𝑇𝑆𝐷𝐶 as functions of the total population with ESP (a) and 
DSP (b) bottleneck model. 
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We can describe the effect of the first-best, time-varying toll scheme as the proportion of the travel 
time cost it eliminates in 𝑇𝑇𝐶. Figure 16 depicts the structure of commuters’ trip cost in the UE state 
as a function of the total population with ESP and DSP bottleneck models. In the ESP bottleneck model, 
we can find 𝑇𝑇𝑇𝐶 is always larger than 𝑇𝑆𝐷𝐶 for any choice of total commuters, while those in the 
classical DSP bottleneck model (as in Arnott et al. [5]) are always equal. The first-best, time-varying 
toll has a property that can eliminate 𝑇𝑇𝑇𝐶 in UE assignment and doesn’t change 𝑇𝑆𝐷𝐶. Thus, with 
the given parameters we know the efficiency of the first-best, time-varying toll in the proposed ESP 
bottleneck model and classical DSP bottleneck model respectively are 61.91% and 50%. This further 
indicates the efficiency of the first-best, time-varying toll scheme is underestimated in the DSP 
bottleneck model and the imposition of this toll in practice will bring more benefits than previous 
studies show.  

6.4. The optimal single-step toll 

 

 

Figure 17. The optimal single-step toll scheme in ESP (a) and DSP (b) bottleneck model. 
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In the ESP bottleneck model, we can numerically obtain the optimal single-step toll scheme with 
the given parameters and the method in Section 5. Figure 17 depicts the optimal single-step toll strategy 
with ESP and DSP bottleneck models. We can find that ESP makes the start and end times of the 
optimal single-step toll later than those with DSP. In the ESP bottleneck model, the optimal single-step 
toll scheme begins at 8:28 am and finishes at 9:19 am while this scheme begins at 8:17 am and finishes 
at 9:15 am in the DSP bottleneck model. This means the scheme lasts for 51 minutes with ESP, which 
is 7 minutes shorter than that with DSP. However, the optimal toll is 3.326$ in ESP bottleneck model, 
which is much larger than the optimal toll of 2.303$ in the DSP bottleneck model. These results 
indicate DSP may overestimate the duration of the optimal toll and underestimate the value of the 
optimal toll.  

Besides, the total toll revenue in the ESP bottleneck model is 8382.52$ and in the DSP bottleneck 
model is 6655.44$. This result means DSP may underestimate the total toll revenue of the government. 
However, the efficiency of the optimal single-step toll scheme in the ESP bottleneck model is 51.62%, 
which is close to the efficiency of 50% in the DSP bottleneck model as the equilibrium costs for the 
two models under optimal single-step toll are different.  

7. Conclusions 

This paper formulates a bottleneck model with ESP assumption and fully investigates the 
influence of ESP on the travel behavior of commuters and congestion tolling schemes. ESP assumes 
that the unit schedule delay cost for early or late exponentially changes with time. With this scheduling 
preference, we analytically derive solutions and corresponding economic properties of UE and SO 
states based on the bottleneck model. The equilibrium travel time, departure pattern and corresponding 
scheduling cost of commuters are obtained. Also, the critical clock times in the ESP bottleneck model 
are given. Besides, the first-best, time-varying toll and the optimal single-step toll scheme with ESP 
are also studied to alleviate the traffic congestion in the morning rush hour. Finally, to show the 
properties of ESP, several numerical examples of the ESP bottleneck model are presented and 
compared with the DSP bottleneck model. 

In conclusion, ESP can transform commuters’ equilibrium travel time and cumulative departures 
functions from linear to nonlinear, and perfectly eliminate the non-differentiability in these two 
functions and discontinuity in the equilibrium departure rate function given by the bottleneck model. 
This makes the equilibrium travel behavior pattern of commuters smooth and indicates that the 
scheduling preference has a significant influence on commuters’ travel behavior pattern in the morning 
rush hour. In addition, the DSP bottleneck model also underestimated 𝑇𝑇𝑇𝐶 and efficiency of the 
first-best, time-varying toll scheme, which means the imposition of this toll in practice will bring more 
benefits than previous studies imply. However, the efficiency of the optimal single-step toll scheme is 
with little difference in both DSP and ESP bottleneck models. This paper assumes commuters in the 
morning commute are homogeneous, which means the unit costs of travel time and schedule delay are 
identical for all commuters. Thus, the introduction of heterogeneity in the bottleneck model is a 
significant future research direction to extend the ESP bottleneck model. Another valuable future 
research is to consider ESP with flow congestion models in a traffic corridor, which can better reflect 
the features of traffic congestion in practice.  
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Appendix 

A.1.  Proof of Proposition 1 

Proof. According to the expression of 𝑡∗ and the condition that parameters 𝑝 and 𝜂 satisfy 𝑝 > 0 
and 𝜂 > 0, the first-order derivatives of 𝑡∗ to 𝜂 and 𝑝 including their properties can be expressed 
as follows.  

 
∗ = 𝑙𝑛 ( ) + ( ) > 0, (A1) 

 
∗ = 0. (A2) 

 

Figure A1. The relationship between desired arrival time 𝑡∗ and the value of the parameter 𝜂. 

From 
∗ > 0  and 

∗ = 0 , we thus can easily obtain that the desired arrival time 𝑡∗ 

monotonically increases with 𝜂 and is independent of 𝑝. The relationship between 𝑡∗ and 𝜂 is also 
intuitively shown in Figure A1. Combine with Eq (15), we then can find that the increase of the desired 
arrival time 𝑡∗ will lead to a decrease for the start time of the morning rush hour 𝑡 . This completes 
the proof.  

A.2. Proof of Proposition 2 

Proof. In UE state, the bottleneck will be fully utilized and the arrival rates are 𝑠 throughout the 
morning rush hour. Thus, the total early arrivals and late arrivals can be expressed as follows.  

 Total early arrivals = 𝑠𝑡∗. (A3) 

 Total late arrivals = 𝑁 − 𝑠𝑡∗. (A4) 
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The above relationships indicate that the total early and late arrivals are merely depended on the 
desired arrival time 𝑡∗, which is monotonically increasing with respect to 𝜂 and independent of 𝑝. 
Thus, the total early and late arrivals will strictly monotonically increase and decrease concerning 𝜂 
respectively. This completes the proof.  
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