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Abstract: In real life, there are a lot of uncertainties in engineering structure design, and the potential 

uncertainties will have an important impact on the structural performance responses. Therefore, it is 

of great significance to consider the uncertainty in the initial stage of structural design to improve 

product performance. The consensus can be reached that the mechanical structure obtained by the 

reliability and robustness design optimization method considering uncertainty not only has low failure 

risk but also has highly stable performance. As a large mechanical system, the uncertainty design 

optimization of key vehicle structural performances is particularly important. This survey mainly 

discusses the current situation of the uncertain design optimization framework of automobile structures, 

and successively summarizes the uncertain design optimization of key automobile structures, 

uncertainty analysis methods, and multi-objective iterative optimization models. The uncertainty 

analysis method in the design optimization framework needs to consider the existing limited 

knowledge and limited test data. The importance of the interval model as a non-probabilistic model in 

the uncertainty analysis and optimization process is discussed. However, it should be noted that the 

interval model ignores the actual uncertainty distribution rule, which makes the design scheme still 

have some limitations. With the further improvement of design requirements, the efficiency, accuracy, 

and calculation cost of the entire design optimization framework of automobile structures need to be 

further improved iteratively. This survey will provide useful theoretical guidance for engineers and 

researchers in the automotive engineering field at the early stage of product development. 
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1. Introduction 

Optimization technology has always been an important means of decision-making for mechanical 

components and systems, playing an important role in improving performance objectives [1–4]. In the 

actual mechanical structure design, there are inevitable uncertainties in the structural design parameters 

and the external environment. The parameters related to each structure and the input of the external 

environment inevitably have uncertainties, including size parameters, material parameters, loads, 

highly nonlinear working conditions, etc. [5–7]. Ignoring the existence of uncertain factors, it is easy 

to cause huge differences in the performance response of the designed mechanical structures under 

very small input fluctuations. In serious cases, mechanical structures will directly cause failures, 

posing a threat to human life safety [8–16]. The failure source of automobile structures needs to 

consider the uncertainty factors inevitably. In our life, although the accident is sudden, the mechanical 

structure failure is not sudden. The failure of automobile structures largely comes from the 

accumulation of early uncertain factors, which is a typical evolution phenomenon of uncertainty from 

“quantity” to “quality” [17,18]. According to relevant reports, NASA has investigated the causes of 

structural failures in spacecraft and found that at least 21.4% of component failures in spacecraft 

structures are caused by uncertainties in the external environment, and 30.3% of component failures 

are caused by uncertainties in design and processing [19]. Therefore, to further reduce automobile 

structural accidents caused by uncertain factors and design more reliable or robust products, it is 

necessary to develop an uncertain design optimization method for automobile structures under the 

premise of comprehensive consideration of different structural performances. To more vividly describe 

the uncertainty propagation of automobile structures in the development stage, Figure 1 shows the 

uncertainty transmission of automobile structures from theoretical design to actual manufacturing. 

Figure 1 shows the uncertainty propagation of the calculation input, the model uncertainty, the 

manufacturing process uncertainty, and the output performance response that may exist in the 

automobile structure design framework. Relevant research shows that the uncertainties in mechanical 

structure design mainly include three types [20–22]: (Ⅰ) The uncertainty of design variables and other 

design parameters related to structural performance response, which mainly includes the uncertainty 

of design variables and related design parameters caused by structural design size [23], material 

characteristics [24], load changes [25], measurement and manufacturing installation errors [25], etc. 

(Ⅱ) The inherent uncertainty in different theoretical models, which mainly includes the uncertainty 

caused by the conversion from the actual engineering model to the mathematical model and from the 

mathematical model to the computer simulation model [26]. It must be noted that in the process of 

converting the physical model of the actual project into a specific mathematical model, all nonlinear 

relationships in the physical model cannot be represented by an accurate mathematical model, and 

when using a variety of different simplified models for computer analysis and calculation, the final 

results of the computer output will also be inaccurate. (Ⅲ) The uncertainty of relevant numerical 

models, mainly includes the influence of underestimation of errors in some numerical values and errors 

in the calculation of mathematical equations in the process of uncertainty modeling under actual 

conditions [21]. 
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Figure 1. Schematic diagram of uncertainty propagation during automobile structure design. 

According to different forms of uncertainty, the uncertainty representation methods can be 

roughly classified into random uncertainty and cognitive uncertainty [27–30]. Among them, the 

random uncertainty problem is generally used to describe the accidental factors of the physical system 

itself. This kind of uncertainty is usually caused by the randomness of the input data. At present, 

probability statistics is one of the best methods to describe this kind of uncertainty. In addition, 

cognitive uncertainty is caused by incomplete knowledge or incomplete information acquisition, and 

non-probabilistic analysis methods are commonly used to represent cognitive uncertainty. To a certain 

extent, based on different actual situations, cognitive uncertainty can be eliminated. As shown in 

Figure 2, the uncertainty forms are divided into random uncertainty and cognitive uncertainty, in which 

the cognitive uncertainty is mainly based on the existing knowledge system of humans to make design 

decisions on the uncertainty model. 

 

Figure 2. Classification of main types of uncertainties. 
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For complex vehicle structures, obtaining random uncertain information often requires a lot of 

test costs and simulation costs. Therefore, as an alternative uncertainty analysis model that does not 

require too much statistical data, the uncertainty analysis method with cognitive uncertainty is favored 

by more and more researchers and has a better engineering application prospect [31]. Cognitive 

uncertainty can be described mainly by fuzzy uncertainty [32], interval uncertainty [33], etc. Fuzzy 

uncertainty is an extension of fuzzy set theory, among which the fuzzy set theory was proposed by 

Professor Zadeh in his study [34]. When fuzzy sets are used to describe uncertain information, fuzzy 

sets can be regarded as sets with fuzzy boundaries. Each fuzzy set corresponds to a membership 

function distributed between 0 and 1 to indicate the possibility that elements belong to a set [35]. 

Inevitably, fuzzy uncertainty modeling needs to consider the selection of an appropriate membership 

function, and often how selecting an appropriate membership function requires certain experience or 

certain sufficient data information. Therefore, the nature of fuzzy uncertainty also limits its further 

engineering application development. For interval models, even if they are limited by test conditions 

or the data samples lack information about a probability distribution or membership function, they can 

still carry out uncertainty analysis according to the wrapping boundary of limited data. The interval 

model is developed based on the theory of interval numbers, which was proposed by Professor Moore 

in his literature [36]. The interval uncertainty analysis model is a method that uses the concept of 

“focusing on boundary information” to describe the uncertainty information. The model does not care 

about the specific distribution of uncertain data, but only about the upper and lower boundaries of its 

uncertainty value, which can realize the structural uncertainty analysis and design optimization of 

imprecise probability distribution under the condition of few samples [37]. As long as the uncertainty 

information in the vehicle structure design can be effectively described, no matter which uncertainty 

analysis method can be used. However, the design optimization of automobile structures needs to 

consider the actual data conditions and design costs. Therefore, how to carry out efficient design 

optimization considering uncertainties is also worth studying. 

In this survey, some research related to uncertainty design optimization for automobile structures 

is discussed. Section 2 describes the uncertainty design optimization framework. In Section 3, relative 

uncertainty analysis methods are introduced. Section 4 describes some main multi-objective iterative 

optimization models for structural design. Finally, Section 5 presents the principal conclusions. 

2. Uncertainty design optimization framework 

The design optimization of automobile structures is one of the main means to improve 

lightweight and mechanical properties. In recent years, some research on single-objective, multi-

objective, and multidisciplinary optimization of automobile structures has been carried out 

successively [38–50]. The conventional uncertainty optimization framework is mainly composed of 

nested optimization design parts, that is, the uncertainty analysis problem is regarded as an internal 

optimization problem, and the acquisition of the optimal scheme is regarded as an external 

optimization problem, as shown in Figure 3. The purpose of internal optimization is the uncertainty 

analysis module, which is mainly used to evaluate the propagation of uncertainty and feed it back to 

the external optimization route. Nested optimization requires multiple iterations and adding an 

additional optimization solver will lead to low computational efficiency. Therefore, some studies that 

can be used for reference have implemented the decoupling of uncertainty analysis to solve structural 

design problems with various uncertainties [51,52]. 
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Figure 3. Nested uncertainty design optimization framework. 

2.1. Design optimization considering single uncertainty factor 

To improve the structural performance of automobile parts to resist the risk caused by uncertain 

factors, many researchers have gradually realized the importance of uncertain design optimization of 

automobile structures [53–59]. A lot of work in the field of design optimization considering a single 

uncertainty factor for automotive structures was carried out, as shown in Figure 4. 

Lightweight has always been the eternal theme of automobile design, in which structural 

optimization is one of the main means of automobile lightweight [60–62]. For example, to obtain a 

more reliable car door design, Fang et al. [63] proposed a door design optimization framework based 

on multi-objective reliability. This optimization framework uses approximate model technology to 

replace expensive finite element simulation and combines descriptive sampling technology with Monte 

Carlo simulation technology. The results show that the proposed optimization framework can generate 

a well-distributed Pareto boundary of reliable solutions, and it is recommended to select the best from 

the relatively insensitive regions. Niu et al. [64] proposed a hybrid multi-objective uncertainty design 

optimization method to make an appropriate trade-off between the lightweight and fatigue durability 

of the truck cab. They found that uncertainty may lead to unstable or even useless optimization design, 

which may be more serious in uncertain optimization. By using the Taguchi technology, according to 

the validation simulation model for the fatigue test, the interval of design variables can be refined, and 

subsequent optimization can be carried out. Sun et al. [65] proposed a multi-objective discrete 

uncertainty optimization algorithm (MODRO) framework for vehicle crash design. The multi-criteria 

decision model in the MODRO program is mainly composed of grey relational analysis (GRA) and 

principal component analysis (PCA), which convert multiple conflicting objectives into a unified cost 

function. Moreover, the continuous Taguchi method is used for iterative optimization, which avoids 

the limitation that the traditional Taguchi method cannot handle a large number of design variables and 

design levels. The results show that the algorithm can achieve an optimal design in a quite effective 

way due to its integration with the multi-criteria decision model. In addition, it is found that the optimal 

value is close to the corresponding Pareto front generated by other methods (such as non-dominated 

sorting genetic algorithm II). 
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Figure 4. Design optimization considering single uncertainty factor. (a) [63], (b) [64], (c) 

[65], (d) [66], (e) [67], (f) [68], (g) [69], (h) [70], (i) [71], (j) [72]. 

Based on the above methods, Lei et al. [66] developed a structure optimization framework for the 

front end of the vehicle which is affected by the flexible pedestrian leg impactor with upper body mass 

by modeling the flexible pedestrian leg impactor and the flexible pedestrian leg impactor with upper-

body mass. The optimization framework is used to develop a fuzzy multi-attribute decision-making 

model by combining the ranking preference of ideal solution similarity with the fuzzy method. The 

optimization results show that compared with the structure impacted by the flexible pedestrian leg 

impactor, the vehicle front-end structure impacted by the flexible pedestrian leg impactor with upper 

body mass needs higher stiffness of the tibia contact area, but the stiffness of the knee and femur 

contact area is lower. This research provides automotive engineers with new insights into the front 

structure design based on injury biomechanics from the perspective of road safety. Lü et al. [67] 

proposed an optimization framework for brake noise suppression of vehicle disc brake systems 

considering the structural size uncertainty. The parameters such as friction coefficient, material 

properties, and thickness of worn parts are regarded as uncertain parameters. The stability analysis of 

the brake system in the squeal is studied, and the stability of the brake system is studied by using the 
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complex eigenvalue analysis (CEA) method. The response surface method (RSM) is used to approximate 

the implicit relationship between the unstable modes and the system parameters. Finally, the disc brake 

system is optimized by using the genetic algorithm. The results show that the use of a harder back plate 

can reduce the tendency of brake squeal, and the optimization framework can effectively improve the 

stability of the disc brake system for vehicles with uncertain parameters. Wu et al. [68] proposed a 

suspension system design optimization framework considering the uncertainty of hard point position. 

This framework mainly explores the performance response of the structure, including camber, caster, 

kingpin inclination, and toe angle. By establishing a high-order response surface model with the zero 

point of the Chebyshev polynomial as the sampling point, the kinematics model is best approximated. 

The optimization results show that the suspension motion performance has been greatly improved 

compared with the initial conditions, and the optimization framework could have been applied to more 

complex mechanical systems. In addition, Jamali et al. [69] designed a Pareto optimal design 

framework for solving ten conflicting objective functions by combining a multi-objective uniform 

diversity genetic algorithm with Monte Carlo simulation technology to achieve the optimal design for 

the uncertainty of the vehicle vibration model in reality. In this study, the uncertainty is represented by 

a probability model and compared with the design obtained by using the deterministic method. The 

results show that the effect of uncertainty on the performance index can be obtained by using the 

optimal design of the vehicle vibration model considering uncertainty. Gu et al. [70] used the support 

vector regression (SVR) model to approximate the response between design variables and targets and 

introduced a hybrid kernel function (HKF) to overcome the shortcomings of the SVR single kernel 

function. At the same time, the particle swarm optimization (PSO) algorithm was used to optimize the 

parameters of the HKF-SVR model, and non-dominant sequencing genetic algorithm II (NSGA-II) 

and Monte Carlo simulation (MCS) were combined to carry out uncertain design for the safety of 

automobile structures. The results show that, compared with the initial design, this method not only 

improves the crashworthiness and light-weight of the vehicle but also improves the reliability and 

robustness of the design indexes. Liu et al. [71] used the modified Manson Coffin formula as the 

fatigue life calculation formula of the spot welding structure. Considering the uncertainty of the 

welding gun falling point in the process, they took the position coordinate of the welding point as the 

uncertainty variable. Through the optimization design of the welding point coordinate, they obtained 

the welding point coordinate with the maximum fatigue life of the structure, providing a calculation 

tool for the analysis and optimal design of the fatigue life limit of the spot-welding structure in 

engineering practice. The optimal design frame not only improves the fatigue life of the structure but 

also gives the fluctuation range of the fatigue life of the structure, which is conducive to improving the 

fatigue performance of the spot-welding structure. In the industry, automobile manufacturers and 

suppliers must find the best design solution for the safety bar subsystem to meet their conflicting 

requirements on functional performance and environmental impact. In view of the design problem of 

automobile bumper, Farkas et al. [72] considered the influence of parameter uncertainty and 

established an integrated method of mechanical structure multi-attribute design engineering to design 

and optimize the crashworthiness of vehicle bumper subsystem. Among them, the special platform for 

the automatic multidisciplinary design optimization process is realized by using the OPTIMUS 

software platform. 

The above research mainly focuses on the optimization design of key automobile structures 

considering a single uncertainty factor, focusing on the influence of the manufacturing process and 

other uncertainties on design parameters. All research results can provide a more reasonable solution 
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than deterministic optimization to resist potential uncertain disturbances. 

2.2. Design optimization considering multiple uncertainty factors 

The research on uncertainty design optimization of automobile structures in the above research 

mainly focuses on a single uncertain factor. In fact, there are still many uncertain factors to be 

considered in the initial design stage of automobile structures. Therefore, a lot of work in the field of 

design optimization considering multiple uncertainty factors for automotive structures was carried out, 

as shown in Figure 5. 

In the past, researchers usually use the probability constraint of single failure mode to study the 

optimization of vehicle structural crashworthiness design based on uncertainty, which often has 

limitations. Therefore, Acar et al. [73] analyzed the influence of uncertainty under different failure 

modes and developed the uncertain crashworthiness design optimization for automobile structures. 

This method mainly considered the uncertainty of material properties and the error of finite element 

analysis. The proposed method can provide a reasonable tradeoff scheme under a variety of uncertain 

factors. Zhao et al. [74] developed the uncertain continuum structure topology optimization method 

based on the variable density method and carried out the uncertain topology optimization for the 

suspension control arm of a vehicle. In this method, the uncertainty decoupling strategy is developed, 

and the uncertainty fluctuations of material parameters and load parameters are considered. The results 

show that, compared with the deterministic topology optimization, the uncertain topology optimization 

method can meet the design requirements of economy and security to the maximum extent, and has 

better engineering applicability. 

Since suspension system components are prone to failure under low cycle strain fatigue conditions, 

Grujicic et al. [75] developed an uncertainty optimization method for suspension system components 

of high-mobility multipurpose wheeled vehicles. In this method, the uncertainties of material 

properties, component shape and size caused by material processing and component manufacturing, 

as well as their effects on the main performance indicators of components, are considered. At the same 

time, the research results also demonstrate that it is necessary to consider a variety of potential 

uncertainties when realizing the performance indicators of key structural components for vehicle 

structures with complex systems. Rais-Rohani et al. [76] developed a framework for the optimization 

of vehicle structure shape and size under vehicle crash conditions, and examined the impact of different 

design constraints and related uncertainties on the performance and efficiency of optimization design 

indicators. By studying the material and geometric characteristics of the components, an alternative 

model is established for the intrusion distance and peak acceleration response at different vehicle 

locations. The research shows that the obtained solution provides insights into the influence of 

uncertainty in the optimization design of vehicle structures, and the optimization results are verified 

by the finite element simulation of vehicle crash scenes. Xu et al. [77] considered the manufacturing 

dimensions, materials and load input requirements of the planetary gear train as uncertain factors, and 

carried out the structural optimization design of the distributed electric drive motor reducer. In this 

optimization framework, the volume and transmission efficiency of the planetary gear train is 

considered optimization goals. The proposed optimization framework can meet the actual needs better 

than the deterministic optimization scheme under different uncertainties and has a higher ability to 

resist failure risk. The stamping process and geometric shape may transmit uncertainty to the assembly 

stage in the manufacturing stage, which may lead to uncertainty in vehicle structure performance 
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response. The uncertainty of material properties, process parameters and final geometry can be 

propagated from the forming stage to the implementation stage of performance response in an 

uncertain environment. Therefore, Sun et al. [78] developed a multi-objective uncertain design 

optimization method for double-cap thin-walled structures to find the optimal design scheme. The 

optimization results show that the proposed method not only significantly improves the formability 

and crashworthiness but also improves the reliability of the Pareto solution. Gao et al. [79] developed 

a nondeterministic topology optimization framework for the layer direction of multi-fiber reinforced 

plastics (FRP) materials (such as carbon fiber reinforced plastics and glass fiber reinforced plastics 

composites) when the load size and direction are both uncertain factors. The optimization framework 

is developed based on discrete material optimization (DMO) technology. Four material design 

examples have been used to verify the effectiveness of this method, and the method has been applied 

to the design of battery suspension points of electric vehicles. The topology optimization results show 

that when the load fluctuates, composite structures with appropriate ply directions have more stable 

performance indicators. Mierlo et al. [80] developed a design optimization method for vehicles under 

uncertain boundary conditions in the crash simulation process. This method considers the uncertainty 

of the unknown mechanical response of adjacent structures inside the vehicle and verifies the 

applicability of the method through a crash optimization case of a rectangular energy-absorbing box. 

 

Figure 5. Design optimization considering single uncertainty. (a) [73], (b) [74], (c) [75], 

(d) [76], (e)[77]; (f) [78], (g) [79], (h) [80]. 
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The main uncertain factors are usually ignored in the conventional deterministic optimization of 

automobile structure design optimization, and the structural parameters, external environment and 

performance response are all regarded as deterministic values. It can be predicted that such methods 

can obtain nominally good performance indicators at the initial stage of design but cannot overcome 

the objective impact of actual uncertainty [81–84]. A complete structural design optimization process 

includes the specific physical system model to the mathematical model, and then to the optimization 

algorithm. The whole structural design optimization process has more or fewer uncertainty problems. 

As a system assembly integrating a huge mechanical structure, it is particularly critical to consider the 

relevant uncertainties in the structural design of each component. 

3. Uncertainty analysis methods 

Due to the limitations of the manufacturing process, there are inevitable differences between 

the ideal design and the actual engineering parts. These differences come from uncertainties in the 

production process, and even small uncertainties may lead to large fluctuations in the output 

response [85–90]. It should be noted that the uncertainty response analysis is particularly important in 

the whole uncertainty design optimization framework of structures. Taking structural reliability design 

as an example, as shown in Figure 6, the optimization results without considering uncertainty are 

usually attached to the boundary of the constraint boundary. Once the design variables fluctuate slightly, 

their constraint function values are easily beyond the constraint boundary. Therefore, to further 

improve the reliability of the structure at the design constraint boundary, it is necessary to establish a 

structural optimization model considering uncertainty factors to reduce the risk of constraint failure. 

 

Figure 6. Deterministic and reliability design optimization results. 

In addition, taking the structural robustness design as an example, as shown in Figure 7, if the 

structural performance is optimized, it is easy to determine the optimal solution 𝑥2  through the 

conventional deterministic optimization algorithm. It is worth noting that once the design variables 

fluctuate slightly, the value of the performance response function will change significantly. Therefore, 

to reduce the high sensitivity dependence of the design response on the design variables, it is necessary 

to design a robust optimization model that considers uncertainties to improve the stability of the 
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performance response value, as shown the point 𝑥3 in Figure 7. Structural uncertainty analysis is the 

basis of structural uncertainty optimization. A complete uncertainty optimization process includes 

iterative updating in the optimization direction and uncertainty analysis of output response in each 

iteration step. 

 

Figure 7. Deterministic and robust design optimization. 

3.1. Analysis methods related to probabilistic models 

The influence analysis of uncertainty is an important subject in structural engineering design. 

When the uncertainty information is sufficient, researchers usually regard the uncertainty of model 

parameters and performance response as a probability model that can be described by random 

distribution parameters [91,92]. For example, Qiu et al. [93] analyzed the uncertainty of the proxy 

model and finite element numerical simulation model in structural optimization by using the sample 

statistical characteristics of data test design and established the uncertainty analysis model of multi-

cell thin-walled structure under load. Song et al. [94] proposed a theoretical method to analyze the sum 

of lognormal random variables using the effective numerical integration method for uncertainty 

analysis in probabilistic safety assessment. The uncertainty analysis method changes the variables from 

the relevant random variables with complex integration regions to independent random variables with 

unit hypercube integration regions to obtain effective numerical integration. The research shows that 

the uncertainty analysis method proposed by him provides an effective way to calculate the 

probabilistic safety assessment. In addition, to explore the problem of nuclear reactor safety analysis, 

Walton et al. [95] developed and demonstrated a random uncertainty analysis framework based on the 

random sampling of the benchmark universal fluoride-cooled high-temperature reactor core. The 

uncertainties mainly include manufacturing, nuclear data, operational process, etc. Du et al. [96] 

designed a sequential optimization and reliability assessment (SORA) method to improve the 

efficiency of uncertainty analysis of probabilistic models in structural optimization. Farland et al. [78] 

used the method of random probability to predict the changes in structural system performance and 

assess the risks caused by the randomness of model inputs (such as material properties, loads and 

boundary conditions). Lei et al. [97] proposed two probabilistic structural damage detection methods 

respectively to explain the potential uncertainty of structural parameters and external excitation. One 
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is the structural damage detection algorithm based on statistical moment combined with the sensitivity 

analysis of damage vector to uncertain parameters, and the other is the probabilistic structural damage 

detection method. It is based on the combination of structural damage detection using instantaneous 

moments and sensitivity analysis of damage vectors to uncertain parameters in each period of 

measuring response time history. Inevitably, probabilistic uncertainty models require a large number 

of test data samples, which is a great challenge for researchers who have limitations in their own test 

environment. 

3.2. Analysis methods related to non-probabilistic models 

To avoid the shortcomings of traditional probabilistic methods, some alternative uncertainty 

analysis methods, such as the fuzzy set model [98–100], the D-S evidence theory model[101–103], 

and the interval number model [104–106], are commonly used in the description of cognitive 

uncertainty and have been widely used to quantify uncertainty. Since the non-probabilistic model does 

not need to consider statistical information, it is more practical than the probability model in 

uncertainty analysis [107–110]. The interval model mainly considers the upper and lower bounds of 

uncertainty information, and the boundary of structural response is solved by the so-called interval 

analysis method. If we pay more attention to the boundary information of uncertainty, the unknown 

but bounded interval uncertainty model can be used as a better choice [111,112].  

Recently, a series of interval uncertainty analysis models have been proposed gradually [113,114]. 

For example, Zhao et al. [115] proposed an effective analysis method by using an interval process 

model to find the response boundary of the vibration system under time-varying uncertainty, 

considering the external excitation and the inherent uncertainty in the system parameters. Their 

research results were verified by the corresponding MCS technology and were further applied to lunar 

soil coring. In addition, Wang et al. [116] developed an interval non-probabilistic reliability method to 

quantify the safety of active vibration systems based on the performance of PID controllers. Moreover, 

the sub-interval model is used to obtain the response with large uncertainty, and the research results 

are successfully applied to the analysis of a discrete mass spring damper system. In some studies, the 

MCS method applicable to random probability uncertainty analysis can be used to calculate the upper 

and lower bounds of uncertain response, that is, the upper and lower bounds of uncertain response can 

be predicted by random sampling technology [117,118]. It can be predicted that MCS can gradually 

converge to an accurate interval by increasing the calculation samples in the uncertainty space. 

However, since the relationship between the upper and lower bound numerical accuracy of interval 

response and the number of samples calculated by MCS is random, it usually requires a large number 

of MCS calls to converge. There is no doubt that MCS inherits the characteristics of the probabilistic 

model, which requires a large amount of calculation. Therefore, MCS is not suitable for solving the 

interval uncertainty analysis problems in practical projects, and more effective alternative methods 

need to be studied. Therefore, some scholars introduced the auxiliary optimization algorithm to solve 

the interval model. For example, Li et al. [119] developed an interval uncertainty analysis by using the 

adaptive Kriging method, and applied Sequential Quadratic Programming as an internal optimization 

solver to search the upper and lower bounds of structural performance response. In addition, since the 

biological heuristic algorithm provides superior global optimization capability based on natural 

biological behavior, the interval limit of structural response can be calculated by optimization [120]. 

For example, considering the intergenerational mapping genetic algorithm (IP-GA) combined with 
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micro genetic algorithm (IP-GA) and alternate mapping (IP) operators have good global convergence 

performance [121]. Jiang et al. [122] used IP-GA as the optimization operator in each iteration step to 

seek the optimal value of the response surface in the uncertainty interval, to obtain the upper and lower 

bounds of the interval uncertainty of the structural response. Cheng et al. [123] proposed a direct 

interval optimization algorithm for a reliability model combining GA and Kriging, which avoids 

complex transformation of multiple indirect models and can effectively calculate the solution of 

interval response. It is undeniable that the intelligent evolutionary algorithm has significant advantages 

in searching for the global optimal solution. However, because its accuracy is closely related to the 

number of iterations, it often costs a lot of computing costs to obtain an accurate solution set. Therefore, 

the intelligent evolutionary algorithm has obvious limitations for the uncertainty analysis of some 

complex engineering problems. In addition, another improved response uncertainty analysis method is 

the interval vertex method (IVM). It is found that IVM has high applicability in solving interval linear 

problems, but it is still challenging for highly nonlinear complex engineering problems [124–126]. 

Compared with the optimization strategy of an intelligent evolutionary algorithm, IVM can quickly 

find the value of the uncertainty boundary under the premise of meeting the accuracy requirements. 

For example, Qiu et al. [127,128] gave a mathematical proof of the vertex solution theorem and applied 

it to interval response analysis for calculating unknown but bounded parameters. By expressing the 

static response analysis problem of the structure in the form of linear interval equations, where the 

coefficient matrix and the right term are interval matrices and interval vectors respectively, and then 

using Kramer's rule to solve the linear interval equations, the upper and lower bounds of the interval 

solution set can be quickly found. Unfortunately, IVM is mainly applicable to monotone mathematical 

models, which may cause large errors in complex nonlinear problems. The Taylor expansion 

approximation method has also aroused the interest of researchers for uncertainty analysis. In many 

existing studies, on the premise of meeting the accuracy requirements, the Taylor series usually only 

needs to retain the first or second-order Taylor series term to quickly quantify the uncertainty. For 

example, Qiu et al. [129,130] proposed an interval perturbation method to characterize uncertainty, and 

the Taylor series was used to expand interval matrices and interval vectors. In addition, Qiu et al. [131] 

studied the performance response of uncertain nonlinear vibration systems, and estimated the interval 

range of nonlinear dynamic response using the mathematical interval method based on the second-

order Taylor series expansion. In nonlinear systems without expressions, it is difficult to obtain 

derivative information directly by traditional auxiliary methods, which hinders the expandability of 

Taylor approximate expressions. 

In the actual project, due to the lack of cognition of complete information of uncertainty, there 

may be multiple mixed uncertainties in structural response analysis. The factors of cognitive 

uncertainty can be represented by a simplified interval model, and the information of random 

uncertainties that have been mastered can continue to be regarded as random probability models with 

specific distribution types. As for the response analysis method of mixed uncertain structures with 

interval probability. Different uncertain response analysis methods can be used for different specific 

structural objects according to design requirements [132–135], as shown in Figure 8. When the input 

of design variables are interval variables and probability variables respectively, the uncertainty of 

structural performance response presents a probability distribution with a boundary effect. The random 

response value contains interval information and the mean value of the random response changes 

within an interval. Uncertainty response analysis is a crucial step in the process of uncertain design 

optimization. A conventional single type of uncertainty optimization process needs to analyze the 
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uncertainty in each iterative calculation process, while for multiple mixed uncertainty optimization 

problems, multiple nested uncertainty analysis is required, which significantly increases the calculation 

cost in the optimization process. Therefore, it is necessary to further develop a mixed uncertainty 

representation model for design optimization problems. 

 

Figure 8. Schematic diagram of mixed uncertainty. 

4. Multi-objective iterative optimization models 

4.1. Probabilistic uncertainty optimization models 

Inevitably, performance optimization in specific vehicle structure design often involves multiple 

objectives optimization, and sometimes some performance objectives are conflicting [136–141]. 

Therefore, it is necessary to carry out multi-objective uncertain design optimization of structures. For 

the multi-objective optimization of the probabilistic uncertainty model, Su et al. [142] proposed an 

uncertain multi-objective optimization method for truss optimization design to improve the robustness 

of truss structures when uncertainties in materials and loads are considered. Liu et al. [143] proposed 

an effective decoupling strategy to transform the initial three-layer nested uncertain multi-objective 

optimization model into a two-layer nested optimization problem, and then used IP-GA and micro 

multi-objective genetic algorithm as the inner and outer optimization operators to solve the multi-

objective uncertain optimization problem. Vo-Duy et al. [144] developed an effective coupling method 

to solve the multi-objective uncertain optimization problem of truss structures, in which probabilistic 

constraints are considered as approximate deterministic constraints to minimize the weight and 

displacement of the truss. Lobato et al. [145] considered reliability and robustness in structural design 

at the same time obtained reliability indexes by using probability models and established a reliability-

based robust design optimization (RBRDO) model that meets reliability. Wang et al. [146] carried out 
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multidisciplinary and multi-objective uncertainty design optimization for dynamic and static 

performance and structural lightweight of vehicle structures. Considering the uncertainty reliability 

optimization results of product design and production process, product stability can be guaranteed. Yin 

et al. [147] established a multi-objective uncertainty optimization model by combining Kriging, multi-

objective particle swarm optimization (MOPSO) algorithm, “k-sigma” robust design theory and MCS 

method, designed the absorption characteristics of foam-filled thin-wall and compared with the Pareto 

front obtained by the traditional multi-objective deterministic optimization algorithm, the uncertainty 

optimization results are more reliable than the deterministic optimization results. Khakhali et al. [148] 

used a neural network model and MCS technology to establish a multi-objective robust design 

optimization model considering the probability uncertainty of the material and geometric parameters of 

the front S-beam of the car body. The optimization results can obtain a more robust Pareto design scheme. 

4.2. Non-probabilistic optimization models 

Most of the above works use the parameters related to probability to establish an uncertain design 

optimization model. Considering the complexity of uncertain factors, Ebenuwa et al. [149] calculated 

the expected value of the membership function based on the fuzzy output variable, and proposed a 

fuzzy-based multi-objective design optimization method for the optimization analysis of buried 

pipelines. Fuzzy set theory and multi-objective optimization algorithms are used to consider the 

variability related to uncertain parameters to ensure that the impact of pipeline structure on uncertainty 

has acceptable performance. It is difficult to obtain the accurate probability distribution and membership 

function of fuzzy sets in practical projects [150]. Therefore, multi-objective optimization based on the 

non-probabilistic interval uncertainty model is gradually applied to engineering structure design. For 

example, Liu et al. [151] used the nonlinear interval number programming method to convert each 

uncertain objective function in the multi-objective optimization problem into a deterministic single 

objective optimization problem, and used the constraint penalty function to re-establish the deterministic 

multi-objective unconstrained optimization problem. Xie et al. [152] proposed an efficient sequence 

multi-objective optimization (MORO) method based on the support vector machine (SVM) to consider 

interval uncertainty. Chagraoui et al. [153] proposed a new method of robust multidisciplinary design 

optimization (MDO) problem for multi-objective optimization of structures with frequency, mass, and 

displacement indicators. The multi-objective optimization framework decomposes the optimization 

problem into two structural layers to solve the robust optimization problem of complex Y-shaped 

stiffened plate structures with interval uncertainty. Li et al. [154] regarded the lightweight and safety of 

thin-walled beams as a multidisciplinary multi-objective optimization problem, taking into account the 

interval uncertainty of design parameters. In the optimization process, the uncertain optimization 

problem is transformed into a conventional deterministic optimization problem using the interval 

number programming method. Zhang et al. [155] developed a new effective design optimization 

method with high computational efficiency because of the uncertainty problems in structural design 

optimization. In the optimization process, the manufacturing tolerance of each dimension of the 

structure is defined as the regional limit of the design variables, and the physical planning is used in 

the multi-objective optimization problem, thus avoiding the problem of providing weights without 

physical significance for the traditional evaluation methods. Li et al. [82] proposed a multi-objective 

optimization framework based on the interval uncertainty model to design the passive safety problem 

of vehicle structures, in which the uncertainty of the main structural parameters of vehicles is described 
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by interval models. Considering lightweight and safety performance, structural weight and peak 

acceleration are selected as targets, and occupant distance is considered as a constraint. Finally, the 

uncertain optimization problem is transformed into the classical deterministic multi-objective 

optimization problem by the interval number transformation method, which effectively solves the 

uncertain optimization problem of vehicle crashworthiness. 

Generally, the uncertainty optimization model is transformed into a conventional deterministic 

multi-objective optimization problem by calculating the interval possibility degree. Cheng et al. [156] 

proposed a multi-objective uncertainty optimization framework combining interval model analysis and 

radial basis function, and verified the feasibility of this method by designing a press slider considering 

uncertain material properties. Feng et al. [157] used Chebyshev polynomials to model a complex 

nonlinear suspension system with interval uncertainty, and regarded the characteristics of the 

suspension bushing as design variables and uncertain parameters to optimize the K&C characteristics 

of the suspension. The optimization process adopts a double cycle nested optimization process, in 

which the inner cycle is the boundary of the calculation interval design function, and the outer cycle 

is actually to optimize the K&C characteristic target of the suspension. Li et al. [158] proposed an 

interval multi-objective optimization model based on the nonlinear interval analysis method, and 

applied this method to the optimization of ten truss structures and commercial vehicle frames. In this 

optimization process, the nonlinear interval optimization problem is transformed into the conventional 

deterministic optimization problem by using the interval possibility theory. Finally, the transformed 

deterministic multi-objective problem is calculated by using the genetic algorithm. Xie et al. [159] 

developed a multi-objective uncertainty optimization model by designing a tolerance index to describe 

the overall interval uncertainty for all design variables. Meanwhile, the probability degree of the 

interval is used to express the reliability of the constraint function under uncertainty. 

It should be noted that most of the current multi-objective optimization models are designed with 

non-dominated strategies. The common practice is to convert the initial uncertain optimization 

framework to the conventional deterministic optimization framework by using the mathematical 

programming designed by researchers and applying the conventional iterative intelligent evolutionary 

algorithm as the solver to obtain the final Pareto solution set. In the process of the non-preference 

multi-objective optimization, the non-dominated updating strategy in its iterative optimization 

algorithm is still regarded as a deterministic problem in essence, and this kind of method is easy to 

lose the uncertain information in the iterative process of non-preference multi-objective optimization. 

5. Conclusions 

This survey discusses the current situation of the uncertain design optimization framework of 

automobile structures and summarizes the uncertain design optimization of key automobile structures, 

uncertainty analysis methods and multi-objective iterative optimization models. It can be found that 

although current uncertainty analysis and design optimization methods have been well developed and 

applied in the initial design of different automobile structures, there are still some points that need to 

be improved, mainly in the following aspects: 

(1) For these interval models represented by non-probabilistic models, the main parameters in the 

current interval model are mostly derived from the given conditions, lacking the design optimization 

of the interval model parameters themselves, which reduces the diverse demand of structural design 

schemes. In addition, for the problem of structural performance response analysis with interval 
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uncertainty, most models with explicit functions or simple computational frames can be analyzed using 

conventional perturbation methods, but the application of perturbation methods is limited due to the 

lack of derivative information for some complex or non-explicit engineering structures. Due to the 

completeness and inconsistency of uncertainty information, mixed uncertainty is inevitably prone to 

occur in the process of structural analysis or design optimization, and there are still deficiencies in the 

analysis and design optimization of mixed uncertainty. 

(2) There are many highly nonlinear problems in automobile structure problems, such as collision, 

so it is a common method to improve the structural design framework by using the auxiliary agent 

model. However, in the uncertainty analysis and design optimization problems based on the auxiliary 

approximate agent model, it is usually assumed that the approximate agent model and its numerical 

simulation model are correct. However, the error between the approximate substitute model and the 

numerical simulation noise is an inherent problem that is difficult to eliminate, which will lead to the 

final solution obtained by auxiliary approximate substitute model optimization not being easy to meet 

the actual design requirements. 

(3) Most of the current multi-objective optimization models are designed using non-dominated 

strategies. Therefore, multi-objective uncertain optimization usually uses the mathematical 

programming designed by researchers and the traditional iterative intelligent evolutionary algorithm 

as the solver to convert the initial uncertain optimization framework to the traditional deterministic 

optimization framework to obtain the final Pareto solution set. Taking interval uncertain multi-

objective optimization as an example, the nominal deterministic value or interval midpoint value is 

taken as the objective function response in the optimization model, and the multi-objective design 

optimization is carried out by using the conventional optimization algorithm as the solver. It should be 

noted that for the non-biased multi-objective optimization problem of heuristic algorithm design if the 

uncertainty of target performance is not considered, the feasible solution is easy to lose the uncertainty 

information in the non-dominated operation. 
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