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Abstract: 3D human pose estimation is a hot topic in the field of computer vision. It provides data 
support for tasks such as pose recognition, human tracking and action recognition. Therefore, it is 
widely applied in the fields of advanced human-computer interaction, intelligent monitoring and so on. 
Estimating 3D human pose from a single 2D image is an ill-posed problem and is likely to cause low 
prediction accuracy, due to the problems of self-occlusion and depth ambiguity. This paper developed 
two types of human kinematics to improve the estimation accuracy. First, taking the 2D human body 
skeleton sequence obtained by the 2D human body pose detector as input, a temporal convolutional 
network is proposed to develop the movement periodicity in temporal domain. Second, geometrical 
prior knowledge is introduced into the model to constrain the estimated pose to fit the general 
kinematics knowledge. The experiments are tested on Human3.6M and MPII (Max Planck Institut 
Informatik) Human Pose (MPI-INF-3DHP) datasets, and the proposed model shows better 
generalization ability compared with the baseline and the state-of-the-art models. 
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1. Introduction 

Human pose estimation is a key technology in the field of computer vision. Its output is the basis 
of down-stream tasks such as action recognition, visual tracking and action analysis. The early work 
in human pose estimation was mainly limited to a 2D plane, and the goal is to get the body joints’ 2D 
coordinates from 2D images or videos. In recent years, 3D body pose estimation has become 
popular because it provides more accurate data with depth information. 3D pose estimation can be 
categorized into three types, according to the input: from a monocular image [1–4], from multi-
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camera images [5–6] and from a depth image [7–9]. Monocular 3D human pose estimation is the 
most popular, and it is widely used in applications such as virtual reality, intelligent video analysis 
and human-computer interaction. 

At present, there are two main branches for monocular 3D human pose estimation. One is the so-
called two-stage method, which first estimates the 2D human pose and then lifts it to a 3D human pose. 
An example is the weakly supervised model [10]. The other is the end-to-end 3D human pose 
estimation method, which predicts the 3D human pose directly from images or videos. Examples are 
the adversarial learning method [11], the self-supervised approach [12] and the famous Transformer [13]. 
Because the human pose shows spatial correlation, some work tried to extract skeleton features in the 
spatial domain. Liu et al. [14] employed graph networks with weight sharing to do 3D pose estimation. 
The stacked graph hourglass model [15] tried to capture multi-scale spatial correlation. With the goal 
of capturing both the spatial and temporal correlation of a human pose, Zhang et al. [16] proposed a 
spatial-temporal encoder to learn spatial-temporal correlations. In comparison with the two-stage 
model, the end-to-end model regresses the 3D pose directly from the 2D image, which provides the 
model with rich information. However, it usually requires the support of large-scale human pose 
datasets. The 2D pose datasets includes Leeds Sports Pose Dataset (LSP) [17], Frames Labeled In 
Cinema (FLIC) [18], Max Planck Institut Informatik (MPII) [19] and Microsoft COCO: Common 
Objects in Context (MSCOCO) [20]. The 3D pose datasets include HumanEva [21], MPI-INF-3DHP and 
human 3.6M [22]. For 3D human poses, it is a very challenging task to obtain large-scale labels. 
Therefore, most of the existing data are collected in the laboratory using motion capture systems (such 
as human 3.6M), and the backgrounds are relatively simple and very limited in number. Due to these 
limitations, the end-to-end methods usually perform better in some specific scenarios but cannot 
generalize well to applications in natural scenes. In order to improve the model’s generalizability, 
Gholami et. al. [23] proposed adapting the training data to the test dataset, such as camera viewpoint, 
position, human actions and body size. 

The two-stage model estimates the 3D pose by two steps. It first gets a 2D pose by a 2D detector, 
and then regresses the 3D pose from the 2D. Obviously, the two-stage model will heavily rely on the 
2D detector; however, the 2D pose datasets are more sufficient than 3D and contain much in-the-wild 
data. Thus, the 2D detector will be trained by more diverse data, and the two-stage model can be 
expected to show better generalizability. In addition, the two-stage model also has an advantage of low 
complexity. Therefore, in this paper, we adopt it to predict the 3D human pose with the 2D human 
skeleton as input. 

The main contributions of this work include the following: 
1) We design a multi-stage supervision temporal convolution network to capture human dynamics 

by temporal continuity constraints. In addition, the network is trained in a multi-stage supervision 
manner to improve the model. 

2) We impose that the model is to be consistent with general human pose dynamic knowledge and 
introduce human body pose geometry to the network training step, so as to improve the model generality. 
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2. Related works 

The task of 3D pose estimation is more challenging than 2D pose estimation, because it needs to 
regress relative depth between body joints, which suffers from severe ambiguity. 

For the two-stage 3D pose estimation models, Martinez et. al. [24] designed a simple multi-layer 
network and regressed the 3D pose from the 2D pose skeleton. At first, this work analyzed the reasons 
for low accuracy in 3D pose estimation, and determined two aspects: the low accuracy of the 2D 
estimation, and the mapping from 2D to 3D. In fact, the 2D detector has achieved very high 
performance, so this paper focused on estimating the 3D pose from the 2D. Therefore, at second, they 
designed a very simple and lightweight network, and achieved good performance. Their work 
demonstrated the effectiveness of the two-stage model. 

Based on Martinez’s work, Fang et al. [25] extended it by a pose semantic network to code joints’ 
dependency and correlations. Because recurrent neural network is good at learning temporal 
correlations, it was also introduced in Martinez’s model. Hossian and Little [26] used Long short-term 
memory (LSTM) to capture the temporal continuity and achieved accuracy improvement. However, 
this model cannot deal with long-term sequential data, because it will lead to the gradient vanishing 
and gradient explosion problems. 

Temporal convolution networks provide a new way to capture temporal continuity, so they are 
also used in the field of pose estimation. WaveNet [27] proved the convolution model’s advantages in 
capturing temporal information. WaveNet is constructed by 1D convolution, and it can prevent the 
problems of gradient vanishing and gradient explosion. In addition, it is of high efficiency, because it 
can process temporal data in parallel. Based on this model, Pavllo et. al. [28] designed a temporal 
convolution model to estimate 3D body pose. This model generates the 2D pose sequence first by the 
2D detector and then estimates the 3D pose. In comparison with WaveNet, the temporal convolution 
model is advantaged in learning the implicit kinematics knowledge. Instead of estimating 3D human 
pose from monocular images, videos can provide temporal information to improve accuracy and 
robustness. Several works [29–31] utilized spatial-temporal relationships and constraints such as 
bone-length and left-right symmetry to improve performance. In this paper, we employed the temporal 
convolution model and improved it in two ways: First, we design a multi-stage supervision model to 
further explore the periodic motion pattern; second, we introduce the prior geometry knowledge to 
generalize the model. 

The performance of data-driven model is limited by the dataset, so prior knowledge is imposed 
to the deep models in many computer vision fields [32–34]. With the goal of decreasing depth 
ambiguity, some work tried to introduce human geometric knowledge into the 3D pose estimation 
model. Belagiannis et. al. [35] imposed kinematic constraints on the translation and rotation between 
body parts in the 3D pictorial model, and the symmetric body parts are constrained not to collide with 
each other. Ronchi et. al. [36] imposed limb length loss and measured the difference in length between 
the predicted limb and the predefined reference length. In fact, we can develop many kinematic 
constraints, such as limb lengths, limb length proportions, joint angles, occlusion constraints, 
appearance constraints and temporal smoothness constraints. Kinematics is crucial prior 
knowledge for the deep models, and it constrains the model predictions to be reasonable when 
measured by body geometry. 
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3. Periodical temporal convolution network with multi-stage supervision 

In the temporal domain, human movement always shows continuity according to human 
kinematics. If we can capture the temporal continuity, it will provide important information for the 3D 
pose estimation model. In this paper, we employed the temporal convolution network to model the 
periodical human kinematics. 

The model structure is shown in Figure 1. The network takes a 2D human pose sequence of 
size 243 34 (17 joints’ 2D pose coordinates, and 243 is the sequence length) as input. The input 
sequence is passed through four same consecutive modules, which are composed of a 1D convolution 
with 3 convolution kernels and 1024 output channels, batch normalization layer, Rectified Linear Unit 
(ReLu) and dropout. Each module is added by a residual connection, as shown in the upper part of 
Figure 1. The dimension of the input data is directly reduced through a specific slice function (Slice), 
and the results are added to the output data of the module. The channel number is 1024 in the module. 
Each module contains two different convolution layers. The first convolution layer applies extended 
convolution, which is mainly used to extract data features. The kernel size is 3, and the expansion rate 
is 3 (3d3 in the figure). With the increase of modules, the kernel size is fixed, but the expansion rate 
increases exponentially. As shown in this figure, the expansion rate of the second module is 9, while it 
is 27 for the third and 81 for the last. Different from the first convolution layer, the kernel size for the 
second one is 1, which is used to increase the depth of the network and improve the nonlinearity. At 
the end of the network, a convolution layer is applied to output 3D human posture. 

 

Figure 1. Temporal convolutional network structure based on multi-stage supervision. 

In order to avoid the gradient vanishing problem, we add residual connection to enhance the 
gradient propagation. As shown in Figure 1, we add multi-level residual connection to supervise the 
network in multiple stages. In the process of forward propagation, multi-level residual connection 
enables shallow features to be directly propagated to the upper layer. The features of the shallow layer 
are combined with high-level features as input to the next layer. Combining features at different levels 
helps to reduce network degradation and improve network generalization performance. In the process 
of back propagation, the gradient can be transmitted to the lower layer faster without too much 
intermediate weight matrix transformation, so it can effectively alleviate gradient vanishing. The time-
series convolution network based on multi-stage supervision makes the feature information more 
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smoothly spread in the forward and backward directions, so the network has better optimization 
performance, which will further improve the model accuracy. 

The input is the joints’ 2D coordinates of the consecutive frames 𝑥 𝑥 ∈ 𝑅 , and the model 
will output the joints’ 3D coordinate estimations (𝑦 ,𝑦 ∈ 𝑅 ). The loss function is defined as the 
Euclidean distance between the estimated 3D pose and the ground-truth (𝑦 ,𝑦 ∈ 𝑅 ): 

 𝐿 ∑ ‖𝑦 𝑦 ‖ (1) 

in which N is the batch size and is set to be 1024 in our case. We use gradient descent to optimize the 
model and exponential decay to update the learning rate. The learning rate is set to be 0.001, and the 
decay rate is 0.95. 

4. Geometry constraints 

Relying on joints’ coordinates only tends to cause ambiguity when restoring 3D coordinates from 
2D. Therefore, the geometric prior knowledge of human kinematics is introduced in this part. We 
employed the distance 𝐿   between the ground-truth coordinates and the estimated joints’ 
coordinates after translation, rotation and scale transformation. 

 𝐿 ∑ ‖𝑇 𝑦 𝑦 ‖  (2)
 

where 𝑇 is the transformation operation. In addition, we also introduced the geometry consistency as 
constraints, including bone length symmetry and proportions. The skeleton of a normal human body 
is symmetrical: for example, the bone length of the left shoulder is the same as that of the right shoulder. 

The bone length symmetry constraint: 

 𝐿 ∑
| |

∑ 𝑙 𝑙∈   (3) 

The bones connecting human joints are divided into four groups 𝑆 𝑆 , 𝑆 , 𝑆 , 𝑆 . 
𝑆  includes left and right upper arms and left and right lower arms. 𝑆 includes the left and right 
thighs and the left and right calves. 𝑆  contains the left shoulder bone and the right shoulder 
bone, and 𝑆 contains the left hip bone and the right hip bone. 𝑙  is the length of the selected bone. 
The length of the bone at the symmetrical position is obtained through the 𝑠𝑦𝑚 function. For example, 
if 𝑙  is the right thigh, 𝑙  will be the left thigh. 𝑙  controls the bone length by calculating 

the error of each group of bones and constrains the bone length at symmetrical positions. 
The bone length proportions constraint: 

 𝐿 ∑
| |

∑ 𝑟∈   (4) 

 𝑟
| |

∑ ∈   (5) 

The bones are also grouped into four groups
 
𝑅 𝑅 ,𝑅 ,𝑅 ,𝑅  . 𝑙   is the bone 

length, 𝑙  is its corresponding mean length in its datasets. The proportion 𝑙 /𝑙  should be consistent 
in the same group. 𝑟  is the mean proportion in group 𝑖. 
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The constraints and the accuracy loss are integrated as the final loss: 

 𝐿 𝜆 𝐿 𝜆 𝐿 𝜆 𝐿 𝜆 𝐿   (6) 

in which 𝜆 , 𝜆 , 𝜆 , 𝜆  are the weights of each constraint. 

5. Experimental results and analysis 

5.1. Dataset and metrics 

We tested our method on the Human3.6M and MPI-INF-3DHP datasets. The Human3.6M dataset 
contains 15 actions of 11 testers, with a total of 3.6 million video frames. For the task of 3D human 
pose estimation, there are mainly three standard evaluation protocols based on this dataset: Protocol 1 
(MPJPE) is the average joint position error in millimeters, which is the Euclidean distance between 
the predicted joint position and the real position. Protocol 2 (P-MPJPE) is the error after the predicted 
joint position is aligned with the real position after translation, rotation and retraction. Protocol 3 (N-
MPJPE) is the error after aligning the predicted joint position with the real position only after scaling. 
Among the three protocols, Protocol 1 (MPJPE) is the most widely used. However, for the method of 
predicting 3D human pose based on sequence, absolute position error cannot measure the smoothness 
of prediction over time. In order to evaluate this, Pavllo et al. [28] measured the joint velocity error 
(MPJVE), which is a time-based velocity motion measurement and the first-order derivative of 
MPJPE’s 3D pose error. For the Human 3.6M dataset, we employed the 17 joint skeletons, used 5 
testers (S1, S5, S6, S7, S8) for training and 2 testers (S9, S11) for testing and trained a general model 
for 15 actions. The MPI-INF-3DHP test set [37] provides images in three different scenarios: studio 
with a green screen (GS), studio without green screen (noGS) and outdoor scene (Out- door). We 
use this dataset to test the generalization ability of our model and use 3D-PCK and AUC as 
evaluation metrics. 

5.2. 3D pose estimation results based on ground-truth 2D data 

In this section, we employ the 2D ground-truth data (2D skeletons of 243 frames) as the input to the 
second stage. The channel number is set to be 1024. As shown in Tables 1–3, the proposed model with multi-
stage intermediate supervision achieved lower error when evaluated by all three protocols. 

Table 1. Protocol 1: reconstruction error (MPJPE). 

 Dir. Disc. Eat Greet Phone Photo Pose Purch. 
Pavllo et al. [28] 26.0 29.8 24.6 27.0 25.8 29.4 29.2 26.7 
Ours 25.7 29.2 25.1 27.0 25.8 30.4 28.7 25.9 
 Sit. SitD. Smoke Wait WalkD Walk WalkT Avg 
Pavllo et al. [28] 31.7 34.6 27.4 27.3 27.9 21.5 21.8 27.4 
Ours 30.7 35.0 27.2 26.8 27.7 21.4 22.6 27.3 
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Table 2. Protocol 2: reconstruction error (P-MPJPE). 

 Dir. Disc. Eat Greet Phone Photo Pose Purch. 
Pavllo et al. [28] 26.0 29.8 24.6 27.0 25.8 29.4 29.2 26.7 
Ours 25.7 29.2 25.1 27.0 25.8 30.4 28.7 25.9 
 Sit. SitD. Smoke Wait WalkD Walk WalkT Avg 
Pavllo et al. [28] 31.7 34.6 27.4 27.3 27.9 21.5 21.8 27.4 
Ours 30.7 35.0 27.2 26.8 27.7 21.4 22.6 27.3 

Table 1 shows the evaluation by Protocol 1 (MPJPE). The proposed method shows performance 
improvement on most actions, even for some relatively difficult actions, such as “sitting”, “sittingD”, 
and “Discussion”. Averagely, the error is reduced by about 1 mm, and the prediction accuracy is 
increased by 2.7%. Table 2 shows the evaluation by Protocol 2 (P-MPJPE). The proposed model 
achieved 0.1 mm error reduction and about 1 mm for the actions of “Sitting”. Table 3 is based on 
Protocol 3 (N-MPJPE), where the proposed model achieved about 0.7 mm error reduction and 
about 1.7 mm for the actions of “Sitting” and “Discussion”. The proposed model also achieved lower 
error in joint velocity, as shown in Table 4, which means better temporal smoothness. 

Table 3. Protocol 3: reconstruction error (N-MPJPE). 

 Dir. Disc. Eat Greet Phone Photo Pose Purch. 
Pavllo et al. [28] 36.0 39.1 31.4 35.6 33.5 38.0 40.5 34.7 
Ours 34.5 37.4 31.7 34.8 33.5 39.1 39.2 33.2 
 Sit. SitD. Smoke Wait WalkD Walk WalkT Avg 
Pavllo et al. [28] 41.8 41.4 34.9 36.8 34.5 26.4 27.1 35.5 
Ours 40.1 40.9 33.9 35.4 34.3 26.6 27.7 34.8 

Table 4. Velocity error over the generated 3D poses on Human 3.6M. 

 Dir. Disc. Eat Greet Phone Photo Pose Purch. 

Pavllo et al. [28] 1.92 1.97 1.48 2.27 1.42 1.79 1.85 2.16 

Ours 1.92 1.94 1.45 2.24 1.39 1.75 1.80 2.11 

 Sit. SitD. Smoke Wait WalkD Walk WalkT Avg 

Pavllo et al. [28] 1.11 1.53 1.40 1.59 2.68 2.29 1.91 1.83 

Ours 1.07 1.49 1.37 1.56 2.64 2.27 1.90 1.79 

5.3. Results based estimated 2D Pose 

In order to test performance of regressing the 3D pose directly from the 2D image, we employed a 
Cascade Pyramid Network (CPN) [38] as the 2D detector in the two-stage model, and the predicted 2D 
skeletons’ sequence is input to the 3D estimator. Table 5 compares the proposed model with the state-of-the-
art models, where “U” is the model with multi-stage supervision, and “U+L” is the model with multi-stage 
supervision and geometry constraints. Our method achieved the best result on almost all the actions. For the 
actions “Phone” and “Photo”, our model performs worse than the baseline model. For these two actions, the 
kinematics feature is not as obvious as other actions in both spatial and temporal domain, especially for the 
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action “Phone,” so our model did not show advantages. For the action “Photo,” the “U+L” model performs 
better than “U” model, which means the geometry constraints are effective for this action.  

With predicted 2D pose as input, the model shows less accuracy than the model with ground-truth 2D 
pose as input. As shown in Table 5, the average prediction error is reduced by about 2.3%. In comparison, the 
“U+L” model shows better performance than the “U” model, and averagely achieved 0.8% improvement. 
The model with “U+L” achieved the lowest error on almost all the actions. We can see that the “U+L” model 
has the same number of parameters as the “U” model but better generalization ability. 

We applied the model trained on Human 3.6m to the MPI-INF-3DHP dataset, to test the model’s 
generalizability. Table 6 shows the results and comparison with the state-of-the-art models. Trained 
only on the Human 3.6M dataset, our model shows good generalizability, due to the general knowledge 
being data independent. 

Table 5. Comparison of experimental results under protocol 1 (MPJPE, bold: best, 
underline: second best) on Human3.6M. 

 Dir. Disc. Eat Greet Phone Photo Pose Purch. 
Martinez et al. [24] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 
Sun et al. [39] 52.8 54.8 54.2 54.3 61.8 67.2 53.1 53.6 
Fang et al. [25] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 
Pavlakos et al. [40] 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 
Yang et al. [41] 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 
Luvizon et al. [42] 49.2 51.6 47.6 50.5 51.8 60.3 48.5 51.7 
Hossain and Little [26] 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 
Lee et al. [43] 40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 
Pavllo et al. [28] 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 
Liu et al. [14] 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 
Xu and Takano [15] 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 
Ours (U) 44.6 46.5 43.0 45.4 48.4 57.3 43.9 43.7 
Ours (U+L) 44.3 46.1 42.5 45.2 48.4 56.0 43.9 43.5 
 Sit. SitD. Smoke Wait WalkD. Walk WalkT Avg. 
Martinez et al. [24] 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9 
Sun et al. [39] 71.7 86.7 61.5 53.4 61.6 47.1 53.4 59.1 
Fang et al. [25] 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4 
Pavlakos et al. [40] 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2 
Yang et al. [41] 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6 
Luvizon et al. [42] 61.5 70.9 53.7 48.9 57.9 44.4 48.9 53.2 
Hossain and Little [26] 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3 
Lee et al. [43] 55.8 73.9 54.1 55.6 58.2 43.3 43.3 52.8 
Pavllo et al. [28] 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8 
Liu et al. [14] 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.7 
Xu and Takano [15] 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9 
Ours (U) 56.6 64.3 47.0 43.9 49.2 32.7 33.7 46.7 
Ours (U+L) 56.7 64.6 45.6 43.6 48.9 32.6 33.7 46.4 
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Table. 6 Results on the MPI-INF-3DHP test set. 

 Training Data GS noGS Outdoor 
All 
(PCK) 

All 
(AUC) 

Martinez et al. [24] Human3.6M 49.8 42.5 31.2 42.5 17.0 
Zhou et al. [44] Human3.6M+MPII 75.6 71.3 80.3 75.3 38.0 
Xu and Takano [15] Human3.6M 81.5 81.7 75.2 80.1 45.8 
Ours (U) Human 3.6M 81.7 81.6 75.4 80.2 46.0 
Ours (U+L) Human3.6M 81.6 81.7 75.0 80.1 45.8 

5.4. Results visualization 

In addition to the above quantitative experimental results, we also visualize the 3D pose results for the 
Human3.6M dataset. Figure 2 shows the prediction effects of some actions, including eating, talking on the 
phone and smoking. It can be seen from the figure that the proposed model effectively restores the human 
pose in 3D space with a high prediction accuracy. 

 
(a) Eating 

 

(b) Phoning 

 
(c) Smoking 

Figure 2. The visualized prediction results of some typical action in the Human3.6M database. 
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6. Conclusions 

For 3D pose estimation, this paper proposed developing human kinematics in two ways. First, we 
employed the temporal convolution network to extract the temporal continuity and supervised by 
constructing multi-stage intermediate connections to alleviate gradient vanishing. Second, we 
introduced geometry constraints to improve the model generalizability. When tested on two public 
datasets, the proposed model showed comparable performance with the state-of-the-art models. 
Developing human kinematics is important information for a data-driven model. This paper presents 
a preliminary study, and developing more kinematics will provide the data-driven model with more 
effective prior knowledge, which is also our future work. 

Acknowledgments 

We would like to thank for the support by the Science and Technology Development Program of Jilin 
Province (20220101102JC) and Jilin Province Professional Degree Postgraduate Teaching Case 
Construction Project. 

Conflict of interest 

The authors declare there is no conflict of interest. 

References 

1. A. Agarwal, B. Triggs, Recovering 3D human pose from monocular images, IEEE Trans. Pattern 
Anal. Mach. Intell., 28 (2006), 44–58. https://doi.org/10.1109/tpami.2006.21 

2. J. Cho, M. Lee, S. Oh, Single image 3D human pose estimation using a procrustean normal 
distribution mixture model and model transformation, Comput. Vis. Image Und., 155 (2017), 150–
161. https://doi.org/10.1016/j.cviu.2016.11.002 

3. T. Alldieck, M. Kassubeck, B. Wandt, B. Rosenhahn, M. Magnor, Optical flow-based 3D human 
motion estimation from monocular video, in German Conference on Pattern Recognition, 10496 
(2017), 347–360. https://doi.org/10.1007/978-3-319-66709-6_28 

4. X. Zhou, M. Zhu, S. Leonardos, K. Derpanis, K. Daniilidis, Sparseness meets deepness: 3D human 
pose estimation from monocular video. in 2016 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), (2016), 4966–4975. https://doi.org/10.1109/CVPR.2016.537 

5. A. Shafaei, J. J. Little, Real-time human motion capture with multiple depth cameras, in 2016 13th 
Conference on Computer and Robot Vision (CRV), (2016), 24–31. 
https://doi.org/10.1109/CRV.2016.25 

6. D. Michel, C. Panagiotakis, A. A. Argyros, Tracking the articulated motion of the human body 
with two RGBD cameras, Mach. Vision Appl., 26 (2015), 41–54. https://doi.org/10.1007/s00138-
014-0651-0 

7. Y. Zhu, K. Fujimura, Bayesian 3D human body pose tracking from depth image sequences, in 
Asian Conference on Computer Vision, 5995 (2009), 267–278. https://doi.org/10.1007/978-3-642-
12304-7_26 



1495 

Electronic Research Archive  Volume 31, Issue 3, 1485–1497. 

8. X. Zheng, M. Fu, Y. Yang, N. Lv, 3D Human poses recognition using Kinect, in 2012 4th 
International Conference on Intelligent Human-Machine Systems and Cybernetics, (2012), 344–
347. https://doi.org/10.1109/IHMSC.2012.92 

9. Y. Guo, Z. Li, Z. Li, X. Du, S. Quan, Yi Xu, PoP-Net: Pose over parts network for multi-person 
3D pose estimation from a depth image, in 2022 IEEE/CVF Winter Conference on Applications 
of Computer Vision (WACV), (2022), 3917–3926. 
https://doi.org/10.1109/WACV51458.2022.00397 

10. X. Zhou, Q. Huang, X. Sun, X. Xue, Y. Wei, Towards 3D human pose estimation in the wild: A 
weakly-supervised approach, in 2017 IEEE International Conference on Computer Vision (ICCV), 
(2017), 398–407. https://doi.org/10.1109/ICCV.2017.51 

11. W. Yang, W. Ouyang, Xi. Wang, J. Ren, H. Li, X. Wang, 3D human pose estimation in the wild 
by adversarial learning, in 2018 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, (2018), 5255–5264. https://doi.org/10.1109/CVPR.2018.00551 

12. J. N. Kundu, S. Seth, P. Ym, V. Jampani, A. Chakraborty, R. V. Babu, Uncertainty-aware 
adaptation for self-supervised 3D human pose estimation, in 2022 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR), (2022), 20416–20427. 
https://doi.org/10.1109/CVPR52688.2022.01980 

13. C. Zheng, S. Zhu, M. Mendieta, T. Yang, C. Chen, Z. Ding, 3D human pose estimation with spatial 
and temporal transformers. in 2021 IEEE/CVF International Conference on Computer Vision 
(ICCV), (2021), 11636–11645. https://doi.org/10.1109/ICCV48922.2021.01145 

14. K. Liu, R. Ding, Z. Zou, L. Wang, W. Tang, A comprehensive study of weight sharing in graph 
networks for 3D human pose estimation, in European Conference on Computer Vision, (2020), 
318–334. https://doi.org/10.1007/978-3-030-58607-2_19 

15. T. Xu, W. Takano, Graph stacked hourglass networks for 3D human pose estimation, in 2021 
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2021), 16100–
16109. https://doi.org/10.1109/CVPR46437.2021.01584 

16. J. Zhang, Z. Tu, J. Yang, Y. Chen, J. Yuan, MixSTE: Seq2seq mixed spatio-temporal encoder for 
3D human pose estimation in video, in 2022 IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR), (2022), 13222–13232. 
https://doi.org/10.1109/CVPR52688.2022.01288 

17. L. Pishchulin, M. Andriluka, P. Gehler, B. Schiele, Strong appearance and expressive spatial 
models for human pose estimation, in 2013 IEEE International Conference on Computer Vision, 
(2013), 3487–349. https://doi.org/10.1109/ICCV.2013.433 

18. B. Sapp, B. Taskar, Modec: Multimodal decomposable models for human pose estimation, in 2013 
IEEE Conference on Computer Vision and Pattern Recognition, (2013), 3674–3681. 
https://doi.org/10.1109/CVPR.2013.471 

19. M. Andriluka, L. Pishchulin, P. Gehler, B. Schiele, 2D human pose estimation: new benchmark 
and state of the art analysis, in 2014 IEEE Conference on Computer Vision and Pattern 
Recognition, (2014), 3686–3693. https://doi.org/10.1109/CVPR.2014.471 

20. T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, et al., Microsoft COCO: Common 
objects in context, in European Conference on Computer Vision, (2014), 740–755. 
https://doi.org/10.1007/978-3-319-10602-1_48 



1496 

Electronic Research Archive  Volume 31, Issue 3, 1485–1497. 

21. L. Sigal, A. O. Balan, M. J. Black, HumanEva: Synchronized video and motion capture dataset 
and baseline algorithm for evaluation of articulated human motion, Int. J. Comput. Vision, 87 
(2010). https://doi.org/10.1007/s11263-009-0273-6 

22. Ionescu C., D. Papava, V. Olaru, C. Sminchisescu, Human3.6M: Large scale datasets and 
predictive methods for 3D human sensing in natural environments, IEEE Trans. Pattern Anal. 
Mach. Intell., 36 (2014), 1325–1339. https://doi.org/10.1109/TPAMI.2013.248 

23. M. Gholami, B. Wandt, H. Rhodin, R. Ward, Z. J. Wang, AdaptPose: Cross-dataset adaptation for 
3D human pose estimation by learnable motion generation, in 2022 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR), (2022), 13065–13075. 
https://doi.org/10.1109/CVPR52688.2022.01273 

24. J. Martinez, R. Hossain, J. Romero, J. J. Little, A simple yet effective baseline for 3D human pose 
estimation, in 2017 IEEE International Conference on Computer Vision (ICCV), (2017), 2659–
2668. https://doi.org/10.1109/ICCV.2017.288 

25. H. Fang, Y. Xu, W. Wang, X. Liu, S. Zhu, Learning pose grammar to encode human body 
configuration for 3D human pose estimation, in Proceedings of the AAAI Conference on Artificial 
Intelligence, 32 (2018), 6821–6828. https://doi.org/10.1609/aaai.v32i1.12270 

26. M. R. I. Hossain, J. J. Little, Exploiting temporal information for 3D pose estimation, in European 
Conference on Computer Vision, 11214 (2018), 69–86. https://doi.org/10.1007/978-3-030-01249-6_5 

27. A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, et al., WaveNet: A 
generative model for raw audio, preprint, arXiv:1609.03499. 

28. D. Pavllo, C. Feichtenhofer, D. Grangier, M. Auli, 3D human pose estimation in video with 
temporal convolutions and semi-supervised training, in 2019 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR), (2019), 7745–7754. 
https://doi.org/10.1109/CVPR.2019.00794 

29. R. Dabral, A. Mundhada, U. Kusupati, S. Afaque, A. Sharma, A. Jain, Learning 3D human pose 
from structure and motion, in European Conference on Computer Vision, (2018), 679–696. 
https://doi.org/10.1007/978-3-030-01240-3_41 

30. Y. Cai, L. Ge, J. Liu, J. Cai, T. Cham, J. Yuan, et al., Exploiting spatial-temporal relationships for 
3D pose estimation via graph convolutional networks, in 2019 IEEE/CVF International 
Conference on Computer Vision (ICCV), (2019), 2272–2281. 
https://doi.org/10.1109/ICCV.2019.00236 

31. Z. Li, X. Wang, F. Wang, P. Jiang, On boosting single-frame 3D human pose estimation via 
monocular videos, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 
(2019), 2192–2201. https://doi.org/10.1109/ICCV.2019.00228 

32. Z. Cui, T. Song, Y. Wang, Q. Ji, Knowledge augmented deep neural networks for joint facial 
expression and action unit recognition, in Proceedings of the 34th International Conference on 
Neural Information Processing Systems, (2020), 14338–14349. 

33. Q. Chen, B. Zhong, Q. Liang, Q. Deng, X. Li, Teacher-student knowledge distillation for real-
time correlation tracking, Neurocomputing, 500 (2022), 537–546. 
https://doi.org/10.1016/j.neucom.2022.05.064 

34. X. Sun, X. Zhang, L. Cao, Y. Wu, F. Huang, R. Ji, Exploring language prior for mode-sensitive 
visual attention modeling, in Proceedings of the 28th ACM International Conference on 
Multimedia, (2020), 4199–4207, https://doi.org/10.1145/3394171.3414008 



1497 

Electronic Research Archive  Volume 31, Issue 3, 1485–1497. 

35. V. Belagiannis, S. Amin, M. Andriluka, B. Schiele, N. Navab, S. Ilic, 3D pictorial structures 
revisited: Multiple human pose estimation, IEEE Trans. Pattern Anal. Mach. Intell., 38 (2016). 
https://doi.org/10.1109/TPAMI.2015.2509986 

36. M. R. Ronchi, O. M. Aodha, R. Eng, P. Perona, It’s all relative: Monocular 3D human pose 
estimation from weakly supervised data, preprint, arXiv:1805.06880. 

37. D. Mehta, H. Rhodin, D. Casas, P. Fua, O. Sotnychenko, W. Xu, et al., Monocular 3D human pose 
estimation in the wild using improved CNN supervision, in 2017 International Conference on 3D 
Vision (3DV), (2017), 506–516. https://doi.org/10.1109/3DV.2017.00064 

38. Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, J. Sun, Cascaded pyramid network for multi-person 
pose estimation. in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 
(2018), 7103–7112. https://doi.org/10.1109/CVPR.2018.00742 

39. X. Sun, J. Shang, S. Liang, Y. Wei, Compositional human pose regression, in 2017 IEEE 
International Conference on Computer Vision (ICCV), (2017), 2621–2630. 
https://doi.org/10.1109/ICCV.2017.284 

40. G. Pavlakos, X. Zhou, K. Daniilidis, Ordinal depth supervision for 3D human pose estimation, in 
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2018), 7307–7316. 
https://doi.org/10.1109/CVPR.2018.00763 

41. W. Yang, W. Ouyang, X. Wang, J. Ren, H. Li, X. Wang, 3D human pose estimation in the wild 
by adversarial learning, in 2018 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, (2018), 5255–5264. https://doi.org/10.1109/CVPR.2018.00551 

42. D. C. Luvizon, D. Picard, H. Tabia, 2D/3D pose estimation and action recognition using multitask 
deep learning, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 
(2018), 5137–5146. https://doi.org/10.1109/CVPR.2018.00539 

43. K. Lee, I. Lee, S. Lee, Propagating lstm: 3D pose estimation based on joint interdependency, in 
European Conference on Computer Vision, 11211 (2018), 119–135. https://doi.org/10.1007/978-
3-030-01234-2_8 

44. K. Zhou, X. Han, N. Jiang, K. Jia, J. Lu, Hemlets pose: Learning part-centric heatmap triplets for 
accurate 3d human pose estimation. in 2019 IEEE/CVF International Conference on Computer 
Vision (ICCV), 2019, 2344–2353. 

©2023 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


