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1. Introduction

Denote the real number set and the integer set by R and Z, respectively. For any a,b € Z witha < b,
define Z(a, b): ={a,a + 1,--- ,b}. In this paper, we focus on multiple nontrivial periodic solutions of
the following second-order partial difference equation:

A [p(n=1,m) (aqu(n — 1,m))"] + 2; [r(n,m = 1) (Au(n,m — 1))7]
+ g(n, m)(u(n,m))" + f ((n,m), u(n,m)) = 0, nmez,

(1.1)

where Aju(n, m) = u(n+ 1, m)—u(n, m) and Au(n, m) = u(n,m+1)—u(n,m). f((n,m),u) : Z>xR — R
is continuous with respect to u. Given integers 71,7, > 0, for any n,m € Z, let nonzero sequences
{p(n,m)}, {r(n,m)} and {g(n, m)} satisfy

pn+Ti,m)=pn,m)=pn,m+T,)>0, rim+Ti,m)=r(n,m)=rn,m+1T,) >0,

qn+Ty,m)=qn,m)=qgn,m+7T,)<0,
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and
f((n+T,m,u)=f((n,m),u)=f(n,m+T,),u), Y((n,m),u) € 7> X R.

Let 7 be the ratio of odd positive integers such that (—1)7 = —1. If a solution u = {u(n, m)} satisfies
u(n + Ty,m) = u(n,m) = u(n,m + T,) for any n,m € Z, we call u a (T, T,)-periodic solution. To help
with understanding if a solution u is (T, T,)-periodic, we give an example as a remark.

Remark 1.1. Consider (1.1) with T, = T, = 2. Suppose (1.1) possesses four solutions, denoted by

up = (Uyy, Upn, U3, Uia), uy = (Uay, Upa, Un3, Ung),

uz = (Uz1, Uzo, U33, Uza), Uy = (Ua1, Usn, Ua3, Usa).

If they are (2,2)-periodic, that is, u(n + 2,m) = u(n,m) = u(n,m + 2), n,m = 1,2, then

Uz = U = U3 = Uss, Uzp = Uip = U4 = U34,
Ug) = U] = U3 = Uy3, Ugy = Upp = U4 = Usg.
Actually, uy = uz and u, = uy. Therefore, uy;; = uj3 and u;, = uy4 ensure that the solution

uy = (uyy, Upn, Uy, Uy4) is (2, 2)-periodic.

In socio-economic activities and natural science research, we often encounter variables similar to
time . Meanwhile, one can often only observe or record values of these variables in discrete cases.
Solving this problem is inseparable from difference equations. During past decades, difference equa-
tions have been used extensively [1,2], and scholars have studied difference equations in many ways, in-
cluding period solutions, boundary value problems, homoclinic solutions, heteroclinic solutions [3—-8]
and so on. It is worth mentioning that Guo and Yu [3] made critical point theory an effective tool
to discuss periodic solutions by constructing a new variational structure for the first time. In [9], by
critical point theory, Cai and Yu studied the existence of solutions to the following equation:

A (pn(A-xn—l)n) + QHXZ = f(n, -xn)’ nez. (12)

Obviously, Eq (1.2), involving only one independent variable, is a special case of (1.1). It has been
studied by many authors, and certain conclusions [10-12] have been yielded.

On the other side, as modern technology advances rapidly, the use of mathematical modeling to
solve problems is not only becoming more and more frequent, but also there are more and more factors
needing to be considered. As a result, partial difference equations, containing multiple independent
integer variables, have widespread applications in image processing, life sciences, quantum mechanics,
and other fields [13] and capture great interest of many scholars. For example, [14—16] obtain multiple
results on discrete Kirchhoff problems, and [17-20] concern second order partial difference equations
via Morse theory. Very recently, [21] investigated periodic solutions of the equation

A p(n =1, m)au(n — 1,m)] + 2y [r(n,m — D) ayu(n,m — 1)] + f ((n, m), u(n, m)) =0, (1.3)

via critical point theory. Clearly, letting n = 1, (1.1) is just (1.3), and (1.1) is more general than (1.3).
Moreover, via critical point theory, [22,23] deal with the existence of multiple solutions for a partial
discrete Dirichlet boundary value problem with mean curvature operator and homoclinic solutions for
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a differential inclusion system involving the p(f)-Laplacian, respectively. In view of the abovemen-
tioned results, we find that critical point theory serves as a robust method for studying both differential
equations and difference equations. Therefore, motivated by the above obtained results, we intend to
study periodic solutions to (1.1) by critical point theory. We also provide numerical stimulations to
illustrate applications of our theoretical results. Our results generalize some results in [9] and [21].
The resulting problem engages two major difficulties: First, to estimate relations between norms, we
need to transfer (1.1) into an equivalent form to compute its eigenvalues. Another difficulty we must
overcome is verifying the link geometry and certifying boundedness of the Palais-Smale sequence.

For the rest of this paper, we organize in the following way. In Section 2, we give a variational
structure and look for the corresponding functional to (1.1). Moreover, some definitions and lemmas
are recalled. Our main results and detailed proofs are provided in Section 3. Finally, Section 4 presents
three examples to demonstrate the application of our main results.

2. Preliminaries and notations

In this section, we establish the corresponding variational framework to (1.1) and state some pre-
liminaries and notations to make preparation for our main results.
Write

u:( Jeee ,I/t(l,1),”(2,1),”(3,1),"' Teee ,u(1,2),u(2,2),u(3,2),~~- ;...)’

and let
S ={u={uln,mllun,m)eR, n,meZ}

be a vector space which is composed of all u = {u(n, m)}, ,cz. Define
E={u={unm}eSun+T,m =un,m)=unm+7T,), n,méeZZ}

as a subset of S. Define an inner product (-, -) on E as

T, T»
(u,v) = Z Z u(n, m)v(n, m), Yu,v e E.
n=1 m=1
Then, the induced norm || - || is
T, T, 3
= (Z D lutn, m>|2] . VueE.
n=1 m=1

Clearly, the dimension of the Hilbert space E is T|T,-dimensional. Thus, E is homeomorphic to
RT} Tz'

For s > 1, define another norm || - ||; on E as
T, T, 5
lal, = [Z > |u<n,m>|5] . VuekE.
n=1 m=1
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Then, ||u|l, = ||u||, and for 8 > 1 + 1 there exist constants C, > C; > 0, C, > C3 > 0 such that
Cillull < flullysr < Collull,  Csllull < |lullp < Cylluell, YueE. (2.1)

Moreover, there holds

T T . T n+l
DTl mP < (T Ty (szm m)l”“) .

n=1 m=1 n=1 m=1

Then,

1

. T, T» T, T» +1
(T T>) 5 (Z D lutn, m)|2) [Z D lun, m)|"“) ,

n=1 m=1 n=1 m=1

which means that we can choose C = (T, Tz)*%.
Consider a functional / : E — R in the following form:

T, T,
1) :n+1 Z Z pn—1,m) (ayun — 1,m)™ + r(n,m — 1) (Au(n, m — 1))

! - 22)
—q(n, m)(u(n,m)"™ | = 3" " F (n,m), u(n,m),
n=1 m=1

where F ((n,m), u) = fou f ((n,m), s)ds. Since f((-,-),u) is continuous with respect to u, it follows that
I € C'(E,R). Moreover, for any u € E, using the periodic condition, direct computation yields

ol

=p(n—1,m)(au(n—1,m))" — p(n,m) (A u(n,m))" + r(n — 1, m) (Au(n,m — 1))"
ou(n, m)

- r(n, m) (AZM(na m))’] - q(na m)(”(”v m))'] - f ((l’l, m)’ l/t(l’l, m))
== a1 [p(n = 1m)(au(n — 1,m))"] = 2a [r(n,m — 1)(2u(n,m — 1))"]
= q(n,m)(u(n,m))" = f ((n,m), u(n, m)).

Hence, u € E being a critical point for / is equivalent to

Ay p(n = 1,m) (aju(n — 1,m))"] + Ay [r(n,m — 1) (au(n, m — 1)"] + g(n, m)(u(n, m))"
+ f((n’ m)’ M(n’ m)) = 0, Vu S E,

which is just (1.1). Therefore, we transform the problem to find (7, T;)-periodic solutions to (1.1) to
the problem to seek critical points of / on E.
For convenience, write u € E as

u= (M(l,l), ’M(Tl’ 1),”(1,2), ’M(sz)’ 9”(1’T2), ’u(Tl,TZ))T9

where -T denotes the transpose of vector -. Let matrices A and B be defined by
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2 -1 0 0 -1

B 0 -1 2 -1 0 0

Az B B 0o -1 2 0 0

0 00 0 2
T1xTy,

By matrix theory, we find that the matrix B is semi-definite positive, and its eigenvalues are
2k
A =21 —cosT”), k=0,1,2,--- T — 1.

1

Then, 4, =0< A, <3<+ < Ay, and

2r
A =2(1 — cos —).
2 =2( cosTl)

Moreover, matrices A and B have the same eigenvalues 4; = 0 < A, < A3 < --- < Ay, and the

multiplicity of each eigenvalue A; of matrix A is T,. Direct computation gives

T, T» T T
lavutn = LmlP = 37 ) [Awln = 1Lm)P = 37 > (u(n.m) — u(n — 1,m))”
n=1 m=1 n=1 m=1
—Zju(nm) ZZZu(nm)u(n—lm)+zzzlu(n—1m)
n=1 m=1 n=1 m=1 n=1 m=1
:2iiu2(n,m)—2iiu(n,m)u(n—l,m)
n=1 m= n=1 m=1
:(Au,lu),l

and

18 u(n, m)|[* = 2 ZZ: [Au(n, m))? Z z(u(n + 1,m) — u(n, m))>*

nTll mTzl n= ;lm ;2 _—
= Z Z w(n+1,m) - ZZ Zu(n + 1, mu(n, m) + Z Z u?(n, m)
n=1 m=1 n=1 m=1 n=1 m=1
= 2i i u*(n,m) — 2i i u(n,m)u(n — 1, m)
n=1 m=1 n=1 m=1

= (Au,u) = ||aun — 1,m)|%.

Define an orthogonal matrix
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T] 2T1 @—1)T1+1
0 .- 0 0 0 .- 0 0 0o - 0
0 0 .- 0 1 0 .- 0 0 0o - 0
0 0 0 0 0 0 1 0 0| T,
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
P= .
0 0 .- 0 0 0 .- 0 0 1 ... 0| 27,
0 0 0 0 0 0 0| ¢1-1h+1
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 L7 rmxnits
such that

v=Pu=(u(l, 1), u(l,To);u2, 1), (2, Ta) - su(Ty, 1), -, u(T, To))

Then, the matrix P is a rearrangement transformation of u, and ||u||; = ||v||; for any s > O.
Similarly, given matrices C and D as

2 -1 0 0 -1
-1 2 -1 0 0 C 0
— C
c=| DL D= ,
0 0 0 2 -1 0
_1 O O _1 T1TrxTT>

TrXxT>,

it follows that eigenvalues of matrix C are u; = 0 < up <z <--- < ur,, and
2r
=2(1 - —).
po = 2(1 —cos Tz)

In the same manner, we have that eigenvalues of matrix D are also y; = 0 < pp < 3 < -+ < up,,
and each eigenvalue y,, 1 < k < T, is T-multiple. Further,

T, T,
lasu(n,m = DIF = > " [8qu(n,m = DI’ = (Dv,v),
n=1 m=1
and
T, T»
1aautn,m)|P = 3" " [sou(n,mI* = (Dv,v) = [|agu(n,m = DI,
n=1 m=1

Set W ={we€ E|lw={c},ce Rland Y = W*. Then, E = Y & W. Thus, for any u € Y, we have

Aol < Nlagu(n = 1,m)|> = ||8,u(n, m)|* = (Au, uy < Az, lull,

pllull’ = palVIP < llagu(n, m = DI = llaqu(n, m* = (Dv,v) < ur, IV = par, lull®.

(2.3)
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Thus, for any w € W, we get

law(n — 1, m)|[* = llayw(n, m)|* = (Aw,w) = 0,

2.4)
laow(n,m = D> = ||a;w(n, m|I* = (DPw, Pw) = 0.

In the following, we recall some definitions and lemmas which are useful to our main results.

Definition 2.1. Let I € C' (E,R). If any sequence {u} C E such that {I(u;)} is bounded and I’ (u;) — 0
as k — oo possesses a convergent subsequence, then I satisfies the Palais-Smale (P.S. for short)
condition.

Let B, denote an open ball whose center is 0 and radius is p in E. Let dB, stand for the boundary
of B,,. The following Lemmas 2.1-2.3 are main tools to prove our results, and we can refer to [24] for
detail.

Lemma 2.1. (Mountain Pass Lemma [24]) Let X be a real Banach space and I € C'(X,R) satisfy the
P.S. condition. Moreover, 1(0) = 0. Suppose

(f1) there exist constants p, a > 0 such that I3, > a;

(f2) there exists e € X\B,, such that I(e) < 0.

Then, I admits a critical value ¢ > a given by

¢ = inf sup I(h(s))
hel sef0,1]

where
I'=1{h € C([0, 1], X)|h(0) = 0, h(1) = e}.

Lemma 2.2. (Linking theorem [24]) Let X = X; & X, be a real Banach space, where X, is a finite-
dimensional subspace of X. Suppose that I € C' (E,R) satisfies the P.S. condition. If

(f3) there exist constants p, a > 0 such that l\sp ~x, > a, and

(fa) there exist constants e € 0By N X5, Ry > p such that I|;p < 0, where Q = (BRO ﬁXl) &
{rel0 < r < Ry},

then I has a critical value ¢ > a, and

¢ = inf max I(h(u)),
hell MEQ

where
T={heC(0.X): g = id}.

Lemma 2.3. (Saddle point theorem [24]) Let X = X, @ X, be a real Banach space and X, # {0} be a
finite-dimensional subspace of X. Suppose I € C' (E,R) satisfies the P.S. condition. If

(fs) there exist constants o and p > 0 such that l\sp nx, < 0, and

(f6) there exist constants e € B, N X, w > o such that I|.,x, > w,

then I has a critical value ¢ > w, and

c= },rellf u£%§ 1 I(h(u)),

where
I ={heC(B,NX.X)lhlog,nx, = id}.
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3. Main results and proofs

For convenience, we give some notations first. Write Q := Z(1, T;) X Z(1, T»), and

Pmax = max p(n,m) > 0, Pmin = min_ p(n,m) > 0,
(n,m)eQ) (n,m)eQ)

’max = 1MNax r(n, m) >0, ’min = min r(n, l’l’l) > 0,
(n,m)eQ (n,m)eQ

dmax = Max q(l’l, m) < 0, dmin = min CI(”’ m) <0.
(n,m)eQd (n,m)eQ

To study (1.1), the following assumptions are needed:

(F;) lim f((n—’:)u) =0, Y((n,m),u) € QxR.

u—0 u

(F,) There exist constants a; > 0, a, > 0 and 8 > 7 + 1 such that
F((l’l, m), u) 2 allulﬁ —da, V((I’l, m)’ I/l) € QXR.

Remark 3.1. By (F»), we have

. F((n,m),u)
(F) lim ————=+00, VY((n,m),u) € QxR
|u]—+00 u77+1

Thus, (Fy) and (F}) mean that f((n,m),u) is superlinearly increasing at both 0 and oo.
Now, we are in the position to present our main results.

Theorem 3.1. Let (Fy) and (F,) hold. Moreover,
(@) forany (n,m) € Q, g(n,m) < 0.
Then, (1.1) possesses at least two nontrivial (T, T,)-periodic solutions.

T, T
Theorem 3.2. Suppose (F,) and (F») are satisfied. If Zl ﬁ F((n,m),u) > 0 and
n=1 m=1
(¢) qn,m) =0, Yn,m)eQ,
then (1.1) admits at least two nontrivial (T, T,)-periodic solutions.
Recall C; = (TITZ)_#IU, A =2(1 — cos ZT—’I’) and u, = 2(1 — cos %). We have the following.

Theorem 3.3. If (q) and
(F3)

n+1
I Ty

T, T ) 7 1 n+1
> (—q(n,m»[ZZf(n,m)] (C—1)

n=1 m=1 n=1 m=1

T, Ty n+1
sl pas]
< (pmmlz2 + Fmintdy” — qmax) [Z Z f(n, m)) , Y(n,m) € Q,

n=1 m=1

hold, then equation

A1 [p(l’l - l’m) (All/t(n - 1’m))7l] + AZ [r(n,m - 1) (AZM(n,m - 1))TI]

3.1
+ g(n,m) (u(n,m))" + f(n,m) = 0, n,meZzZ,

has at least a (T, T,)-periodic solution.
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Remark 3.2. In fact, (1.2) and (1.3) are special cases of (1.1). Consider (1.1) with r(n,m) = 0, and
(1.1) can be written in the form of (1.2). Meanwhile, if gq(n,m) = 0 and n = 1, then (1.1) changes to
(1.3). Moreover, our Theorems 3.1-3.3 are able to override Theorem 3.2 of [9], Theorem 3.1 of [21]
and Theorem 3.3 of [9]. Consequently, (1.1) is a generalization of both (1.2) and (1.3), and our results
are more universal.

Before stating proofs of Theorems 3.1-3.3, we need to prove the compactness of [ first.
Lemma 3.1. Assume (F,) holds. Then, I satisfies the P.S. condition on E.
Proof. Assume that for any {u;} C E there exists a constant M > 0 such that
[I(up) < M and I'(u) >0, as k— +oo.

As E is a finite-dimensional space, we only need to prove that {u;} is bounded. By (F>), we have

-M <I(u;)
T, T,
2:pm—Lmmem—LmW”+ﬂmm—D@mMmm—qu
) T, T» I, T
Z Z g(n,m)Gu(n, )™ = 3" " F((n, m), w(n, m))
n=1 m=1 n=1 m=1
T T, Ty
<L S brtn = L Lo e N (o m = 1) G2
n+ n=1 m=1 n+ n=1 m=1
q ) T, T, T T,
~ riml Z Z(”k(”a m)"! - a Z Z lue(n, m)F + a;T, T,
n=1 m=1 n=1 m=1
max rmax min
=2 sy = L)} + g (nm = DI = T2 ]

- al””k”ﬂ +a T T;.

Moreover, due to (2.1) and (2.3), it follows that

n+l
Iau(n = 1Lm)ll) < CT llau(n = 1,m"™" < C3F A7 ™"

+1 +1 1 +1 Al 1
182w, m = DT < CT ™ agug(n,m = DI < CF g lael™ (3.3)
+1 +1 1
el < o7 ™ Noaelty > CF el P

Therefore, combining (3.2) with (3.3), it yields that

r]+1

n+1 n+l 5 n+1
Pmax 2 T 1 rdeC2 /JT 1 dmin 2 1
-M < _—' ™ + ——— ™" = ——— [l
+1 n+1 n+1
— a G5 P + ax Ty T
That is,
n+1 s =
5 C2 pmax/lTl tr max,uT2 ~ {min .
a1 C [l - luel™ < axTiT> + M. (3.4)

n+1
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Since § > n + 1, (3.4) ensures that {¢#;} C E is a bounded sequence. Consequently, / satisfies the
P.S. condition, and the proof is finished.

Proof of Theorem 3.1 By Lemma 3.1, [ satisfies the P.S. condition on E. In the following, we
verify conditions (fi) and (f>) of Lemma 2.1 to complete the proof.
In fact, from (F), it follows that

F((n,m), u)

m
u—0 yrtl

=0, VY({n,m) eQ.
Then, there is a p > 0 such that

Wmmwsﬁﬁﬁwﬂvmmdlmmp

Hence, for any u € E with ||u|| < p, we obtain

n+1

Qmax n+1 Gmax n+1 Gmax n+1 qmaxcl +1
I(u) > — =— ——||u|™". 3.5
(u) || ull,y + 2 + 1)||M||,7+1 20 + 1)|| 1 2 2+ 1)|| ull (3.5)
q n+1
Take a = —% p"! > 0, and then (3.5) ensures /(u)|sz, > a > 0. Thus, (f;) of Lemma 2.1 is
n

fulfilled.
Given w € E with ||lw|| = 1 and @ > 0, we have

T, T
I(aw) % Z Z pln—1,m) (arew(n = 1,m)™" + r(n,m = 1)(as0w(n,m - 1))
T

T T T
1
S Z q(n, m)(aw(n,m)"™" = > X" F((n,m), aw(n, m))
n=1 m=1 n=1 m=1
pmax n+1 an+]rmax n+l len” ”n+1

lAarw(n, m— 1)

ST”AI(/‘)(” -1 m)||,7+1 n+l n+1
- alafﬁlelﬁ +a T, T,
n+1 n+1 n+1
@ praxC
—J%LMMWLMW+ 7 llasw(n,m+ DI
+ +
a/”“q CU+1
- + - alaﬁCg + a2T1T2
n

n+l n+l
n+1 n+l 75 n+1 n+l 73 n+1
" pmaxCy A @ Gy Hr, ot 1 gminC)

+ —alaBC/; +a T1T,
n+1 n+1 n+1

— — 00 as a — +oo,

)

which means that there exists @ > p large enough such that I(uy) < 0, where uy = aw € E\B,.
Moreover, 1(0) = 0. Thus, Lemma 2.1 guarantees that there is a critical value ¢ > a > 0. Assume # is
a critical point, namely, /(i#) = ¢ and I’(i1) = 0
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In the following, we look for another critical point & for 1. By (3.4), we get

n+1 n+l

+1 5 5=
Cg (Pmax/lTT t+r max,uTz - qmin)

1) < 17" = ay CE Nl + ax Ty T,

n+1

which indicates I is bounded from above. Denote the supremum of {/(#)},cg bY Cmax, and then it € E
and I(it) = cmax. Obviously, &t # 0. If i # i, the proof is finished. Else, ¢ = cjax. Lemma 2.1 means
that

¢ = inf sup I(h(?)),
hel tef0,1]

where
I'={h e C([0, 1], E)|h(0) = 0, h(1) = ugp}.

Hence, for any & € T, cpax = n%gul(] I(h(?)). In view of I(h(t)) being continuous with respect to f,

1(0) < 0 and I(uy) < 0O, it follows that there exists a t, € (0, 1) such that I(h(ty))) = cmax. Choose
hy, hy such that {h;(0)|r € (0, D} N {h(0)|t € (0,1)} = 0, and then there exist 71,7, € (0, 1) such that
I(hi(t1)) = I(hy(t;)) = cmax- Thus, we obtain two different critical points u; = h(t;) and u, = hy(1,).
Consequently, there exist at least two nontrivial critical points which correspond to the critical value
Cmax- This completes the proof.

Proof of Theorem 3.2 Let W = {w € E|lw = {c},c € R}, Y = W', and then E = W& Y. By (F)),
there exist some p > 0 and u € B, such that

n+l

pmin/lz2 + rmm,u Cn+]
207+ DHCI!

F((n,m),u) <

Then, for every u € (0B,) N Y, one obtains

i ml n+1
2 2
| (pmin/lz + Tminidy )Cl
n+

p 1 rml
szﬁ“me—uwm} = llagun, m = DI - T el
2
zl L +1
D n+1 s (pmin/lz2 + Fminidy” )C?
min A _ 1’ n+l1 + mmn™ 1 A m— 1 n+l _ n+1
hr 1 la1u(n — 1, m)| 1 lAzu(n, m — 1)| 2+ D) [luel|
n+1 7]+1 nt+l n+l
(pmin/lz2 + Fminfly’ )CTIH (pmin/lz2 + Tminidy” )C?H
> ual 7 — e
n+1 2n+ 1)
/lnzl + 7 k2 cr!
pmln 2 mmﬂZ 1 "
= 2+ 1) [Juel "
(pmin/]»;£I + rmm,ulz) C717+1p77+1
B 207+ 1)
(3.6)

ntl 1+l n+l 1
2 2 +
(pmin/lZ + Tminidy ) C1 p'l

Seta =
= 201+ 1)

, and then (3.6) implies I(u) > a, u € (0B,) N'Y. Thus, (f3) of

Lemma 2.2 is valid.
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Lete € 9By NY, and for every w € W and s € R, set u = se + w. From (2.4) together with (F3), it
follows that Ayw = Aow =0, |le|| = 1, and

I(u) =I(se +w)

T T
1
= 1 Z Z [p(n — 1, m)(Ase(n — 1,m))77+1 +r(n,m— 1)(Ayse(n,m — 1))'7”]
n n=1 m=1
T, T
= > D F(n,m), (se + wy(n, m)).
n=1 m=1
ST D s ST
S letn = LI+ — 5 ase(nm = DI,

T, T»

—-a Z Z |se(n, m) + w(n, m)P + a, T, T,

n=1 m=1

Sn+1p ) CTI+1 77+lr ) n+1
=2 |lae(n - Lm)|I"" + ————2— ||laze(n,m — )|
n+1 n+1
- a]C§||se +wlf + a1\ T
ST]+1CTI+] n+1 n+1
i i w
S (Prustrs + sty ) = aiCllself = a CHIwlf + ax T, T
STI+1CTI+1 n+1 n+1
i i i
= (s, ] ) = i + i T
Write
S'7+1CT]Jr1 n+l ntl
" i e
gi1(s) = FTSH (Pmax/lﬁ + FaxHy, )— a0y, (1) = —a,Cir? + T\ T

Then, both g(s) and g,(7) are bounded from above. Moreover, 8 > n + 1 leads to lim g;(s) = —oc0
§—+00
and lim g,(7) = —oo. Thus, there exists a positive constant Ry > p such that /() < 0 holds for any
T—+00
uedQandQ = (BRO Al W) @ {se|l0 < s < Rp}.

Notice that Lemma 3.1 shows [ satisfies the P.S. condition on E. Therefore, Lemma 2.2 ensures
that / admits a critical value ¢ > a, and

c= }lrellfritagx I(h(w)), T ={heC(Q.E): hlo =id}.

Take & € E to be a critical point which corresponds to ¢, that is, I(it) = c¢. By (3.4), I is bounded

from above. Hence, there will be a it € E such that

1(it) = cmax = sup I(u).
ucekE

Then, & and @& are nontrivial (7, T,)-periodic solutions of (1.1). If &# # i, then Theorem 3.2 holds.
Otherwise, it = it, and then ¢ = ¢, that is,

sup I(u) = inf sup I(h(u)).

uek € ued
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Choose h = id, and we get sup I() = cmax. Consider —e € 0B, N Y. With the arbitrariness of e, it
ueQ
follows that there is an R; > p such that I|5p, < 0, where Q; = (BR] N W) @ {—se|0 < s < R{}. In the
same way, by Lemma 2.2, I possesses a new critical value ¢’ > a > 0, and

= inf max /(h(u)), T = {neC(01.E): hlgg, = id}.

hell u€Q1

If ¢’ # cmax, then this proof is done. If ¢’ = ¢y, then for any h € I', we have max I(h(u)) = cpax.

ueQ)
Specifically, take & = id, and then max I(#) = cmax. Since Ilgp < 0, Ilsp, < 0 and cppx > 0, the
ueQ;
maximum value of / is given at a point inside Q and Q, respectively. In addition, Q N Q; € W, and

for every w € W, we have
T, T

100) = = > ) F((n.m), win,m)) < 0.
n=1 m=1
Therefore, a point &t which is different from & must exist in £ such that I(it) = ¢’ = cpax. In summary,
if ¢ < cmax, then (1.1) admits at least two nontrivial (7, T,)-periodic solutions; if ¢ = cpax, then (1.1)
admits an infinite number of nontrivial (T, T;)-periodic solutions. This completes the proof.
Proof of Theorem 3.3 Similar to (2.2), the variational functional associated to (3.1) is expressed by

T, T»
i) = Z Z p(n = 1,m) (Au(n — 1,m))™ + r(n,m — 1) (aqu(n, m — 1))™!
r=tm=l _— (3.7)
—q(n,m) (n, )™ | = 3" 3" fon,myutn, m.
n=1 m=1

In the following, we utilize Lemma 2.3 to finish the proof. To begin with, it is to show that [ meets
the P.S. condition on E. Suppose {u;} C E, and there is a constant M > 0 such that

() < M, ) =0, k— +oo.

Since the dimension of E is T T», it is necessary for us to show {i;} is bounded in E. In view of
(3.7) and the oddness of 7, there holds

W2 ) > -—— Z Z g, m) (g (n, m)"™! - Z Z £, du(n, m)

n=1 m=1 n=1 m=1

. T» T, T
> Iy 17} - (Z > P m)) (Z > n, m)) (3.8)

n=1 m=1 n=1 m=1
n+1 T, T,
gmaxC .
> = ™ | ) D fm) ol
n n=1 m=1

Recall n + 1 > 1, and then (3.8) implies that {u;} is bounded in E. Therefore, [ satisfies the P.S.
condition on E.
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Next, we show (f5) and (f;) of Lemma 2.3 are met. For any w = (z,--- ,z)7 € W, one has

T, Ty T, T,
Iw) = Z q(n,m)z7"" — Z Z f(n,mz.
n=1 m=1 n=1 m=1
Take

I S m) %

SIS f o m)|
: = Iwll = YT\ T
U S qm P AR ST gnm)
Then o
o= 1 |20, 20, fnm)] |
T s s g m)]’
Thus,

n+l

IA(”) EN o n [221 Z,Z;,z:l f(n, m)]T

+1
T s 5 gnm)]
which means that (fs) of Lemma 2.3 holds.
For y € Y, one has

, YueoB,NW,

==

pmm V'min 1 Gmax
) 2 2 i r = Ll B llaynm = DI = < bl
T, T» %
- [ZZfz(n, m)] Iyl
n=1 m=1
T]+] nt+l n+1
2>

T, T,
] T [ (ZZf (n, m)) ol

n=1 m=1
T T 5 =
2
g (BB Lem) T ()
n+1 el ntl 7
(pmln/l22 + 7m]n/—122 - qmax)

9

and the last inequality is obtained by minimization with respect to |[y||. Set

n+1

U (ZZI:I >, m))W (cl.)%]

T+l w1 o) P
(pmin/lz2 + 7minﬂ22 - Qmax)

Together with (F3), this yields that

Iw)>wy>0, Yuel.

So, (fs) of Lemma 2.3 holds by taking e = 0. Thus, all conditions of Lemma 2.3 are satisfied, and

(3.1) admits at least a (T';, T»)-periodic solution

Electronic Research Archive
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4. Examples

Finally, we give three examples to demonstrate the validity of our results. Let
E ={u={un,m)} e Sumn+2,m) =un,m) =un,m+2), nmeZl,2)).

Example 4.1. Take n = 3. Consider Eq (1.1) with p(n,m) > 0, r(n,m) > 0 and g(n,m) < 0 for any
n,m € 7Z, and
f(n,m),u) =64, n,meZ, ueck.

Then,
F((n,m), u) = ub, nmeZ, uclR.

Obviously, f((n,m),u) satisfies all conditions of Theorem 3.1. Then, (1.1) with f((n,m),u) = 6u’
admits at least two nontrivial (T, T»)-periodic solutions.

Specially, let p(n,m) = r(n,m) = 1, gqn,m) = =2 and Ty = T, = 2, and then (1.1) can be rewritten
in the form of

Ar(au(n = 1,m))* + ax(2ou(n,m — 1)) = 2(u(n, m))* + 6(u(n, m))° = 0. 4.1)

Using MATLAB, we find that (4.1) has at least two nontrivial solutions u, = {u;(n,m)} € E and
ur = {uy(n,m)} € E, where

= (V3,=V3, V3,-V3), = (=V3, V3,-V3, V3).

By Remark 1.1, uy and u, are two different nontrivial (2, 2)-periodic solutions to (4.1).

Example 4.2. For every n,m € 7Z, consider (1.1) with p(n,m) > 0, r(n,m) > 0 and g(n,m) = 0. Set
n =3, and
f((n,m),u) = 61°, n,me€Z,u€R.

Then, all conditions of Theorem 3.2 are satisfied, and (1.1) has at least two nontrivial (T, T,)-

periodic solutions.
Take p(n,m) = r(n,m) = 1 and T, = T, = 2, and then (1.1) becomes

Af(au(n = 1,m))* + Ay(squ(n, m — 1)) + 6(u(n, m))’ = 0. (4.2)
Utilizing MATLAB, (4.2) has at least two nontrivial solutions

2v6 26 2v6 _2x/6) _(_2\/6 2V6 26 2\/6)
3 33 37 "mTUT3mT3oTT3oT3

up = (

From Remark 1.1, (4.2) has at least two different nontrivial (2,2)-periodic solutions u, and u,.

Example 4.3. Set T\ = T, = 2, n = 3 and f(n,m) = 2. Consider (3.1) with p(n,m) = 1, r(n,m) = 1
and g(n,m) = =2. Clearly, p(n,m), r(n,m), g(n,m) and f(n,m) are all (2,2)-periodic, and (3.1) is in
the following form:

Ar(au(n = 1,m)? + ax(au(n,m — 1)) = 2(u(n, m))* +2 = 0. (4.3)

Electronic Research Archive Volume 31, Issue 3, 1596-1612.
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Obviously, we only need to verify (F3). Simple calculation gives

n+l

T, T, T, T, T 1 1
DD (—at,m) (Z > P, m)] (a) =8x 16> x 4 = 8192,

n=1 m=1 n=1 m=1

n+l n+l r T2 7]+1
(pmmﬂ? + VYminkly" — qmax) (Z Z f(n, m)] = (4% + 4% + 2) x 8* = 139264 > 2048.

n=1 m=1

Thus, Theorem 3.3 ensures that (4.3) possesses at least one nontrivial (2, 2)-periodic solution. By
MATLAB and Remark 1.1, (4.3) admits at least a (2, 2)-periodic solution

wl,H)=1, u@, D=1, u(l,2)=1, u2,2)=1.
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