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Abstract: Oyster and scallop cultures have high growth rates in the Korean aquaculture industry. 

However, their production is declining because of the manual selection of polychaete-adherent oysters 

and scallops. In this study, an artificial intelligence model for automatic selection of polychaetes was 

developed using Microsoft Azure Custom Vision to improve the productivity of oysters and scallops. 

A camera booth was built to capture images of oysters and scallops from various angles. Polychaetes 

in the images were tagged. Transfer learning available with Custom Vision was performed on the 

acquired images. By repeating the training and evaluation, the number of training images was 

increased by analyzing the precision, recall, and mean average precision using the Compact [S1] and 

General [A1] domains of Custom Vision. This paper presents the artificial intelligence model 

developed for the automatic selection of polychaete-adherent oysters and scallops as well as the 

optimal model development method using Microsoft Azure Custom Vision. 
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1. Introduction 

The aquaculture industry has been one of the fastest-growing food production sectors in recent 

decades. In particular, oyster farming has the fourth highest proportion of production in the South Korean 

aquaculture industry, accounting for approximately 8% of the total and approximately 73% of the 
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shellfish aquaculture industry. In addition, scallop farming has the highest growth rate in the aquaculture 

industry, and its production in 2021 increased by approximately 10% compared to that in 2020 [1,2]. 

This study was conducted on oysters, which account for the largest proportion of the shellfish farming 

industry in Korea, and on scallops, which present a clear growth rate.  

Although shellfish farming has been showing an overall growth, the following factors can hinder 

it. First, shellfish farming, such as oyster and scallop farming, requires significant manual labor [3]. A 

typical example is the selection operation. The most harmful infestation in oyster and scallop farming 

is that of polychaetes, which attach to oysters and scallops and create perforations. Polychaetes damage 

the commercial value of oysters and scallops and cause their death. In addition, excreta from 

polychaetes are one of the main causes of contamination in aquaculture farms, causing numerous 

shellfish deaths [4−6]. Therefore, a screening process for oysters and scallops with polychaetes is 

essential, and it is typically performed by manual visual inspection. Consequently, quality selection is 

nonuniform, and the production volume varies depending on the number and skill level of the workers. 

The second factor is the decline in the fishing population. The fisherman population in South Korea 

was approximately 159,000 in 2020, a decrease of approximately 39% compared to that in 2011. 

Moreover, the proportion of the fisherman population aged 65 or older was approximately 36% total 

fisherman population in 2020, suggesting that aging is progressing. Consequently, the available 

manpower for the aquaculture industry has been decreasing. 

The high dependence on manual labor and the reduction in labor force have been consequently 

decreasing the production in the oyster and scallop farming industries. Moreover, increase in individual 

labor costs and unit price may be caused by the decrease in the number of workers, which may lead to 

a further decrease in the demand. This poses a threat to the sustainability of these industries. 

To solve this problem, simultaneously increasing productivity and sustainability is necessary by 

adopting an efficient production strategy [7]. As the aquaculture industry requires automation, the 

demand for artificial intelligence-based equipment is very high [8]. However, artificial intelligence 

technologies, such as machine learning, which can maximize industrial efficiency, are inappropriately 

utilized in the aquaculture industry [9]. Artificial intelligence and computer vision techniques are 

being studied for application to various aquaculture fields. Representatively, size classification for 

various fish and shellfish [10,11], seedling collection technique [12], gender classification [10,13], fish 

quality assessment [14], shell removal [15], behavioral pattern analysis [16,17], external feature 

extraction [10,18−21], and number of individuals [22] are being investigated. In this study, polychaetes, 

whose infestation is problematic in oyster and scallop farming in South Korea, were selected 

automatically using computer vision. For this purpose, an artificial intelligence model was developed 

utilizing the Microsoft Azure Custom Vision.  

2. Methodology 

This study aimed to develop an artificial intelligence model for the selection of oysters and 

scallops using Custom Vision from Microsoft Azure Cognitive Services. The research process is shown 

in Figure 1. A built camera booth is used to collect oyster and scallop object images, which are 

uploaded to Microsoft Azure Custom Vision. Machine learning is performed after labeling polychaetes 

in the uploaded images using the object recognition functionality of Custom Vision with a bounding 

box. The learned model determines the optimal hyperparameters by K-fold cross-validation to prevent 

overfitting, and a primary performance evaluation is performed using Custom Vision. 
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The trained model is published, and a secondary performance evaluation is performed based on 

the precision, recall, and mean average precision (mAP) on the images not used during training by 

loading these images in a prediction application. The prediction application was self-developed test 

software. Custom Vision is based on transfer learning, and accurate discrimination is possible even 

with a small amount of data; therefore, the model can be rapidly developed. 

In this study, the number of images to obtain the optimal performance was determined. This was 

based on comparing the primary and secondary evaluation results according to the change in the 

number of training images, using Custom Vision to establish a model for polychaete recognition on 

oysters and scallops. The additionally constructed model was evaluated in terms of the performance 

index by domain change in Custom Vision. 

 

Figure 1. Research process. 

2.1. Image collection of oyster and scallop objects using camera booth 

Figure 2 shows an image of the interior of the camera booth. Three cameras are installed at angles 

of 180, 45, and 90°, respectively. Figure 3 shows an image of an oyster captured from the 90 position. 

The approximate size of this oyster is estimated using grids. Each grid has dimensions of 5 × 5 mm2 . 

The grids act like a ruler to estimate the sizes of oysters and scallops with bare eyes. 

 

Figure 2. Inside of camera booth. 
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Figure 3. Image of oyster with grids. 

For object recognition learning, images of oysters and scallops were captured using the camera booth, 

and a total of six images taken at 180, 45, and 90 from front and rear per oyster or scallop. Figures 4 and 5 

show these images of an oyster and a scallop, respectively. 

 

Figure 4. Six images of oyster with grids. 

 

Figure 5. Six images of scallop. 
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Figures 6 and 7 show images of oysters and scallops, respectively, without and with attached polychaetes. 

The polychaetes in the images resemble white worms. 

 

Figure 6. Images of oysters without and with attached polychaetes. 

 

Figure 7. Images of scallop without and with attached polychaetes. 

2.2. Machine learning with Microsoft Azure Custom Vision 

2.2.1. Custom Vision 

Custom Vision is an AI model development service among Microsoft Azure Cognitive Services, and it 

specializes in visual analysis. It categorizes stored images and defines tags within the images in conjunction 

with Microsoft Azure. It also uses transfer learning to recognize key differences between images and 

optimizes them to identify tagged objects rapidly. Transfer learning introduces a neural network structure that 

is trained in a specific field without modification, freezes the upper layer, and fine-tunes a part of the lower 

layer. In this process, the weights and biases derived from the upper layer are imported without modifications; 

however, they are readjusted to fit and apply to the new input data from the lower layer [23]. Therefore, fast 

and accurate learning results can be obtained by using a small amount of data during image recognition and 

classification. The layer located above the fine-tuned lower layer has a convolutional neural network (CNN) 

structure, which is used for labeling and learning [24]. Figure 8 shows an example CNN structure composed 

of three types of layers. Convolution layers, which are the first type, divide a two-dimensional picture into 

several small pictures and extract a feature map. The second type, i.e., subsampling layers extract the feature 

map to show the convolution feature map more simply and characteristically. The extracted feature values 
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are input into a multidimensional vector. The third type, i.e., fully connected layers, classify the features by 

matrix operations in space. 

 

Figure 8. CNN structure for deep learning-based image recognition training. 

Custom Vision in Microsoft Azure Cognitive Services, which specializes in visual analysis, could 

simplify the development process required for training and model creation in this study. 

2.2.2. Image tagging 

Figures 9 and 10 show examples of uploaded shellfish images. In Custom Vision, information is saved 

by tagging one or more objects per uploaded image, as shown in Figure 11. A bounding box is constructed 

around a tagged object, and the recognition probability is predicted by comparing this constructed bounding 

box with that of the detected object. Accordingly, it continuously learns and extracts features of a photo such 

that the features become invariant. 

 

Figure 9. Image data of oysters. 
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Figure 10. Image data of scallops. 

 

Figure 11. Oyster (left) and scallop (right) object detection. 

2.2.3. Learning environment and conditions 

Table 1 provides the details of the learning environments and conditions used in this study. Custom 

Vision is used as the learning environment, and it selects the learning type and domain to train the optimized 

model for a desired result. Project types in Custom Vision include classification and object detection, and in 

this study, the latter is used to identify polychaetes on oysters and scallops. The targets are polychaetes, and 

two types of learning are advanced and quick training. Advanced training is used when high accuracy is 

required, and because the computing time is long, it is used for final deployment in terms of time and cost. 

Quick training works well with many good samples and is a mode optimized for computing speed; therefore, 

it is mainly used when evaluating and improving models. In this study, to derive the optimal number of 

learning pictures, quick training is performed. 



1698 

Electronic Research Archive  Volume 31, Issue 3, 1691−1710. 

Table 1. Learning environment. 

Platform Custom Vision 

Project Type Object Detection 

Target Polychaeta (on oysters and scallops) 

Training Type Quick Training 

Domain in Custom Vision is selectively used according to the learning object and the desired outcome. 

Table 2 summarizes the aims of different object recognition models as defined by Microsoft according to the 

domain. In this study, the Compact [S1] domain was selected assuming that it was mounted on an edge device, 

and the general General [A1] domain was used for performance comparison. 

Table 2. Domain types for object recognition models. 

Domain Description 

General 
Use extensively when a suitable domain is unavailable or there is ambiguity in 

choosing the domain. 

General [A1] 

Similar to General, but requires a longer computing time, and the mAP 

fluctuates with an error of 1% on the same training data. More complex, used 

when accuracy is required. 

Logo Optimized for finding brand logos in images 

Products on 

shelves 
Optimized for detecting and sorting products on shelves 

Compact domain 
Optimized for constraints of real-time object detection on edge devices 

(requires a postprocessing logic) 

Compact domain 

[S1] 

Optimized for constraints of real-time object detection on edge devices (no 

postprocessing logic is required) 

Table 3 defines the test types as Compact_CV, Compact_SW, General_CV, and General_SW according 

to the domain and the test method. Compact_CV and General_CV are evaluated by K-fold cross-validation, 

and Compact_SW and General_SW are evaluated by loading published models into self-developed software. 

Table 3. Test types. 

Test Type Domain 

Compact [S1] General [A1] 

Test Method K-fold cross-validation Compact_CV General_CV 

Model published with  

software 
Compact_SW General_SW 

Learning conditions are divided according to the number of learning images, which is a variable, 

and in this study, the number of learned images to obtain the optimal mAP according to the number of 

learning images was 50, which is the minimum number recommended by Microsoft. In the case of the 

Compact [S1]. domain, 41 conditions were configured and used to train up to 1050 images in 

increments of 25. In the case of the General [A1] domain for performance comparison, 50–300 images 
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were trained in increments of 25 considering the learning time and amount of use, whereas 300–1000 

images were trained in increments of 100. The evaluation condition was evaluated by designating 100 

pictures that were not used during learning and loading them into the self-developed software. The 

evaluation condition was applied only to Compact_SW and General_SW. 

2.3. Performance evaluation 

The performance evaluation was performed twice, which are called primary and secondary performance 

evaluations. The primary performance evaluation involved applying K-fold cross-validation to Microsoft 

Azure Custom Vision, and it was defined as the first test. The secondary performance evaluation published 

the model trained in Custom Vision, called it from the prediction application, output the prediction 

performance, and defined it as the second test. 

2.3.1. Primary performance evaluation by K-fold cross-validation 

 

Figure 12. Example of first test output. 
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In the first test, K-fold cross-validation was used, which is a method for preventing overfitting and for 

self-performance evaluation in the learning process. The K-fold cross-validation results were obtained in the 

process of learning the model in Custom Vision. The number of groups is set according to the K value of K-

fold cross-validation, and in Custom Vision, the K value was defined as 5. In detail, the uploaded data for 

learning were divided into five groups; K-1–4 were used for learning, and K-5 was used for hyperparameter 

tuning and performance evaluation. K-fold cross-validation prevents overfitting of the learned data by 

adjusting the thresholds for outliers and low-contribution values by a hyperparameter tuning process. 

Therefore, the object detection performance is similar for learned and new unlearned data, and the first test 

results output in terms of the precision, recall, and mAP are shown in Figure 12. 

2.3.2. Secondary performance evaluation using published model 

The second test called the published model from the prediction application and evaluated the 

model based on the prediction performance. In detail, the values as shown in Figure 13(a) are set, and 

the prediction key, prediction Id, prediction name, and endpoint of the model published in the 

prediction application are input. 

       

(a) Prediction application setting     (b) Prediction results 

Figure 13. Example of second test setup and output. 

2.3.3. Performance evaluation indicators 

In this study, precision, recall, and mAP were used as the model performance evaluation indicators. 

mAP is a useful evaluation indicator for measuring the accuracy of object recognition, and it can be 

obtained by drawing a precision–recall curve. 

Based on the confusion matrix provided in Table 4, the precision and recall are as follows. 

Precision is the ratio of True_Positive to those classified as True_Positive and False_Positive by the 

trained model. Recall is the percentage predicted as True_Positive among those classified as 

True_Positive and False_Negative by the trained model. Type I error is a false positive in precision, 

whereas Type II error is a false negative in recall. Therefore, precision and recall can be expressed as 

in Eqs (1) and (2), respectively. 
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Table 4. Confusion matrix. 

Confusion Matrix 

Predicted 

Positive 

(Detection) 

Negative 

(Non-Detection) 

Actual 

Positive 

(Detection) 
True_Positive 

False_Negative 

(Type II error) 

Negative 

(Non-Detection) 

False_Positive 

(Type I error) 
True_Negative 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
       (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑢𝑟𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒_𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒_𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
        (2) 

A precision–recall curve can evaluate the detection performance based on the changes in the 

precision and recall values with the change in the threshold value. It is drawn as a two-dimensional 

graph, as shown in Figure 14(a), and its area is the average precision (AP), as shown in Figure14(b). 

 

(a) 

 

(b) 

Figure 14. (a) Precision–recall curve and (b) Average precision from precision–recall curve. 

The mAP is obtained by dividing the total number of APs of N object types by N, as expressed in 

Eq (3). By obtaining these two values, the performance of an object recognition algorithm can be 

quantitatively evaluated, and the mAP can be defined as the average of the detection target class. 

𝒎𝑨𝑷 =
𝟏

𝑵
∑ 𝑨𝑷𝒊
𝐧
𝐢=𝟏          (3) 

3. Results and discussion 

Images of individual oysters and scallops were used in the study. The minimum number of 

learning images in the Compact [S1] domain was 50 according to the recommended conditions of 
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Custom Vision, which was increased to 1050 in increments of 25, and a total of 41 conditions were 

studied. In the General [S1] domain, the number of learning pictures was increased from 50 to 300 in 

increments of 25, and learning was performed by increasing the number of images from 300 to 1000 

in increments of 100. The 100 test images that were not used for learning were only used in 

Compact_SW and General_SW. For performance evaluation, the Compact_CV and Compact_SW 

results were output as precision, recall, and mAP values under each condition in the Compact [S1] 

domain, and the General_CV and General_SW results were output as precision, recall, and mAP values 

for each condition in the General [S1] domain. For Compact_CV and General_CV, the K-fold cross-

validation (K = 5) provided by Custom Vision was used, and Compact_SW and General_SW were 

evaluated by inputting the model published in Custom Vision into the self-produced software.  

Figure 15(a)–(c) shows the precision, recall, and mAP results for each condition of oysters 

according to the number of learned pictures. Several spikes are observed in the graphs. In the case of the 

compact domain, more spikes are detected than in the general domain. Since the compact domain was 

developed for real-time discrimination, the size of the learning model is relatively small. As a result, the 

indicators of the model change sensitively according to the amount of learning. And the fewer the number 

of images, the more spikes appear. It appears that the smaller the number of images, the more sensitively 

the quality of the learned image appears. 

 

(a) 

Contined on next page 
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(b) 

 

(c) 

Figure 15. (a) Precision, (b) Recall, (c) and mAP vs. number of oyster images. 
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By oyster learning, in the precision results, Compact_CV shows large fluctuations with an average 

of 65.5% and a standard deviation of 14.6%, and a continuously declining performance. In contrast, 

Compact_SW maintains a consistently high performance with an average of 95.0% and a standard 

deviation of 1.7%. General_CV shows an average of 60.1% and a standard deviation of 16.6%, and 

General_SW achieves an average of 67.3% and a standard deviation of 9.0%. 

In the recall results, Compact_CV and Compact_SW learning in the Compact [S1] domain present 

consistently low performances with averages of 12.2 and 3.7% and standard deviations of 4.7 and 1.6%, 

respectively. General_CV and General_SW learning in the General [S1] domain show averages of 71.5 

and 69.6%, and standard deviations of 14.3, and 10.1%, respectively. Although the General [S1] 

domain has larger deviations than the Compact [S1] domain, it has a higher performance than the latter. 

Specifically, Type II error, which predicts that an individual with polychaetes does not have 

polychaetes, appears with a higher probability in Compact [S1] than in General [S1]. 

In the mAP results, Compact_CV and Compact_SW present averages of 16.5 and 5.1% and 

standard deviations of 7.6 and 2.4%, respectively. In contrast, General_CV and General_SW show 

averages of 70.1 and 60.1%, and standard deviations of 17.6 and 8.5%, respectively. Therefore, 

although General [S1] shows larger deviations than Compact [S1], the former has a higher accuracy. 

Characteristically, in both domains, the cross-validation performance significantly decreases 

significantly after learning of 500 images. In summary, as more images are learned, because of the 

complex shapes of oysters, the distinction between polychaetes and shell shapes becomes unclear, and 

the classification accuracy decreases. 

Figure 16 shows the results of Compact_CV, Compact_SW, General_CV, and General_SW for 

scallops according to the number of learned pictures. Figure 16(a)–(c) presents the precision, recall, and 

mAP, respectively. 

 

(a) 

Contined on next page 
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(b) 

 

(c) 

Figure 16. (a) Precision, (b) Recall, (c) mAP vs. number of scallop images. 
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As a result of learning the scallop images, in the precision results, Compact_CV shows an average 

of 78.9% and a standard deviation of 13.8%; however, its performance remains relatively constant 

after 300 images are learned. Compact_SW maintains a consistently high performance, with an 

average of 94.8% and a standard deviation of 2.6%. General_CV achieves a consistent performance 

with an average of 68.4% and standard deviation of 5.8%, and General_SW shows an average of 77.0% 

and a standard deviation of 4.1%. 

In the recall results, Compact_CV and Compact_SW on learning in the Compact [S1] domain 

show averages of 31.7 and 29.4% and standard deviations of 8.2 and 11.1%, respectively, and the 

accuracy of Compact [S1] gradually increases. General_CV and General_SW learning in the General 

[A1] domain achieve averages of 87.9 and 88.3% and standard deviation of 5.8 and 4.1% respectively. 

In the General [A1] domain, the deviations are smaller and the performances are higher than in the 

Compact[S1] domain. Thus, the Type II error is observed, similar to in the case of oysters, and Compact 

[S1] has a higher probability than General [A1]. However, differently, in the case of scallops, the 

accuracy of the Compact [S1] domain gradually increases. 

In the mAP results, Compact_CV and Compact_SW show averages of 43.6 and 34.5% and 

standard deviations of 5.9 and 11.8%, respectively. In both domains, the increase in accuracy is 

relatively large before the number of training images reaches 300; however, after 300 images are 

learned, a constant performance is observed. 

Thus, identification of polychaetes in the scallop images was clearer than in the oyster images; 

therefore, after learning 300 images, the increase in accuracy in case of scallops is not large, instead it 

gradually increases. In the case of oysters, where the identification of polychaetes in the images is 

unclear, the performance increases until 500 images are learned, following which the performance 

significantly decreases. Therefore, for images whose discrimination is unclear, if the appropriate 

number of learning images is exceeded, the classification boundary becomes vague; therefore, 

appropriately selecting this number is necessary. To appropriately select it, a suitable experimental 

method is required, which is related to the model development cost. In this study, the General [A1] 

domain, which used in the most general scenarios, and the Compact [S1] domain, which is a simplified 

domain, were used, and the learning time and cost were compared. When learning lesser than 1000 

images, on average, approximately 15 min and 45 min per learning point were required for the 

Compact [S1] and General [A1] domains, respectively, under the same conditions. Converting these 

into fees, Compact [S1] required $ 2.5 and General [A1] $ 7.5 per learning point. Accordingly, to 

minimize the program development cost, it is appropriate to find an appropriate learning value using 

the Compact [S1] domain and make detailed adjustments using the General [A1] domain. 

4. Conclusions 

This study was conducted to alleviate the high proportion of manual labor required in the selection 

of good products, which is a factors hindering the productivity of the oyster and scallop farming 

industries in South Korea. Using Microsoft Azure Custom Vision, an artificial intelligence model was 

built for the automatic selection of polychaetes on oysters and scallops. Learning and evaluation were 

repeatedly performed according to the increase in the number of training images for both the Compact 

[S1] and General [A1] domain. The results showed that the performance on oysters with complex 

shapes decreased and difficulties in identifying polychaetes increased as the number of training images 

increased. However, in case of scallops, which are relatively easy to discriminate and have simple 



1707 

Electronic Research Archive  Volume 31, Issue 3, 1691−1710. 

shapes, these domains maintained their performance after a certain number of performance 

improvements. To improve the detection performance using Custom Vision, delicate labeling is 

required for images of relatively complex shapes. Therefore, to minimize the development cost, finding 

a section where the performance change is not large by maximizing the Compact [S1] domain is 

necessary. the development cost is anticipated to be relatively minimized if the General [A1] domain 

is used for development in the section where the performance change is relatively constant for the 

Compact [S1] domain. 

The polychaete identification model developed in this study for oysters and scallops can alleviate 

the manual dependence during quality selection. It is expected to contribute to the improvement of 

productivity in the oyster and scallop farming industries. This study is also expected serve as a 

reference for performance improvement and cost reduction using Microsoft Azure Custom Vision. 
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