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Cervical cancer (CC), the fourth most prevalent type of cancer among women
worldwide, is associatedwith high rates ofmorbidity andmortality. Due to the long
period of latency in CC,most patients are already in themiddle to late stages when
initially diagnosed, which greatly reduces the clinical cure rate and quality of
survival, thus resulting in poor outcomes. In recent years, with continuous
exploration in the fields of bioinformatics and molecules, it has been found
that ncRNAs, including miRNAs and lncRNAs, without the ability to translate
proteins are capable of activating or inhibiting certain signaling pathways by
targeting and modulating the level of expression of proteins involved in these
signaling pathways. ncRNAs play important roles in assisting with diagnosis, drug
administration, and prediction of prognosis during CC progression. As an entry
point, the mechanisms of interaction between miRNAs, lncRNAs, and signaling
pathways have long been a focus in basic research relating to CC, and numerous
experimental studies have confirmed the close relationship of miRNAs, lncRNAs,
and signaling pathways with CC development. Against this background, we
summarize the latest advances in the involvement of lncRNA- and miRNA-
related signaling pathways in the development of CC to provide guidance for
CC treatment.
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1 Introduction

Cervical cancer (CC), as the fourth most common type of cancer worldwide in women,
represents a serious threat to the health of the female reproductive system. In particular, the
incidence and mortality of CC are significantly higher in developing countries than in
developed countries (Bray et al., 2018; Cohen et al., 2019). Squamous cell carcinoma is the
most prevalent among all histological types, comprising approximately 70% of cases,
followed by adenocarcinoma at 20% (Small et al., 2017). Human papillomavirus (HPV)
infection is the main cause of the development of CC. It has been noted that more than 70%
of CC cases worldwide are caused by HPV types 16 and 18 (Cubie, 2013). HPV is a small,
double-stranded, closed-loop DNA virus whose genome contains three functional regions (a
protein-coding region, a late protein-coding region, and a non-coding region), of which
E6 and E7, which belong to the protein-coding region, are the predominant oncogenic
proteins (Oyouni, 2023). E6- and E7-induced alterations in transcriptional regulation lead to
genomic instability, thereby distinguishing the cellular transformation process from
productive viral infection, a process that represents an important subsequent step in
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malignancy (Snijders et al., 2006). Constitutive expression of E6/
E7 immortalizes primary epithelial cells and promotes tumor
formation in vivo (Yang and Al-Hendy, 2022). E6 also mediates
binding to p53 via E6-related proteins, thereby promoting
ubiquitinated degradation of p53 and malignant cellular
progression. E7 binds to cell cycle protein-dependent kinase
inhibitors, leading to loss of cell cycle control (Oyouni, 2023).
Although HPV screening and vaccination have greatly reduced
the prevalence of CC (Zur Hausen, 2002; Canfell, 2019; Zhang
and Batur, 2019), CC survival rates remain unsatisfactory at present,
because most patients with cervical cancer are diagnosed at an
advanced stage or a stage at which distant lymph node metastases
are present (Dong et al., 2018). Therefore, it is particularly important
to identify early diagnostic and prognostic biomarkers of CC. With
the development of genome sequencing technologies, including
high-throughput microarrays and single-cell sequencing, the role
of non-coding RNAs (ncRNAs) in physiological processes and in
disease progression has been in focus (Koffler-Brill et al., 2023).
Recent studies have confirmed that aberrant expression of long non-
coding RNAs (lncRNAs) is an essential factor in the development of
CC, thus endowing lncRNAs with the potential to be used as the
latest diagnostic biomarker for CC (Dastmalchi et al., 2022). In fact,
the role of lncRNAs in CC has already been fruitfully investigated.
Gibb et al. analyzed 16 long serial analyses of gene expression
(L-SAGE) libraries composed of cervical specimens and also
identified the expression profile of 1,056 lncRNAs in the human
cervix, thus presenting the first lncRNA expression profile of the
cervix (Gibb et al., 2012). More importantly, it was further
determined that changes in lncRNA expression do occur in
cervical intraepithelial lesions, indicating aberrant expression in
early tumors (Gibb et al., 2012). lncRNAs and microRNAs
(miRNAs) belong to the class of ncRNAs, which can interfere
with tumorigenesis, tumor invasion, and metastasis by regulating
epigenetic, transcriptional, and post-transcriptional processes, cell
proliferation and differentiation, apoptosis, and autophagy (Bravo-
Vázquez et al., 2023). Currently, the interplay of lncRNA and
miRNA with tumor-related signaling pathways is a hotspot in
the diagnosis and treatment of tumors of the reproductive system
(Lai et al., 2022; Ma et al., 2022). Here, we review the mechanisms of
lncRNA- and miRNA-related signaling pathways in CC.

2 Mechanisms relating to lncRNAs
in CC

2.1 Biological functions of lncRNAs

lncRNAs, as RNA molecules with transcripts longer than
200 nucleotides, cannot be translated into functional proteins;
they are characterized by low expression, high stability, and poor
interspecies conservation, and were initially considered to be too
“noisy” for genomic transcription due to their inability to encode
protein information molecules (Mattick and Rinn, 2015; Chi
et al., 2019; Liu et al., 2021a; Zangouei et al., 2023). With the
advent of deep genomics studies, lncRNAs were found to be
involved in diverse biological processes, such as cell
differentiation and growth, and to play a vital role in multiple
reproductive diseases (Elsayed et al., 2020). The biological

functions of lncRNAs are largely determined by their location
in cells. Specifically, lncRNAs located in the nucleus can regulate
epigenetic gene expression by recruiting chromatin remodeling
and modification complexes to target promoters to promote or
repress their transcription in cis or trans regulation (Yap et al.,
2010; Holdt et al., 2013); they can act as decoys for specific
chromatin-modifying factors to limit the binding ability of
transcription factors to DNA-binding sites (Jain et al., 2016);
and they can also serve as transcriptional regulators through
binding DNA or DNA-binding domains (Kino et al., 2010). In
contrast, lncRNAs located in the cytoplasm are involved in post-
transcriptional regulation through their influence on the stability
of mRNAs (Kumar et al., 2014). lncRNAs can also act as
translation factors participating in the regulation of
translation in the cytoplasm; additionally, a novel androgen
receptor (AR) translation regulator, lncRNA LBCS, can
directly interact with hnRNPK to inhibit AR translation by
forming a complex with hnRNPK and AR mRNA (Gu et al.,
2019). In addition to their direct impact on gene regulation,
lncRNAs can serve as natural miRNA “sponges” that release
miRNAs from their target genes (Kopp and Mendell, 2018). The
multiple roles of lncRNAs are depicted in Figure 1.

Currently, modern medical research based on the mechanism
underlying the involvement of lncRNA in CC development mainly
focuses on several aspects.

Regulation of autophagic flux. Autophagy is a key biological
phenomenon to that aids in the maintenance of cellular
homeostasis, with the help of lysosomal degradation, which
involves many key factors, including lncRNAs (Jiang and
Mizushima, 2014; Bonam et al., 2020). Microtubule-associated
protein 1A/1B light chain 3 (MAP1LC3), which is central to the
autophagic process, functions as a core that is primarily involved
in the formation of autophagic vesicles and is sheared at its
carboxyl terminus by autophagy-associated genes (ATG)
4 immediately after synthesis to form LC3-I (Maruyama and
Noda, 2017; Bonam et al., 2020). It is then activated by APG7L/
ATG7, transferred to ATG3, and coupled to
phosphatidylethanolamine (PE) to form the membrane-bound
form LC3-II (Maruyama and Noda, 2017; Bonam et al., 2020).
LC3-II has several functions during autophagy, such as
elongation, barrier membrane sealing, and cargo recognition
(Maruyama and Noda, 2017). Therefore, LC3-I and LC3-II in
autophagosomes have become molecular markers for the
occurrence of autophagy: the amount of LC3-II is
proportional to the degree of autophagic flux, while the LC3-
II/LC3-I ratio reflects the level of autophagy (Bonam et al., 2020).
For example, lncRNA-IGFBP4, as an oncogene and a tumor
suppressor in lung, prostate, breast, and other cancers, has
been found to participate in autophagic response by
interacting with c-Myc and to indirectly inhibit autophagy in
HeLa cells of CC origin based on the observation of LC3 puncta
formed in GFP-LC3 in engineered HeLa cell lines (Zhang et al.,
2022a).

Regulation of the cell cycle. He et al. (2021) found that lncRNA
DLEU2 can inhibit the Notch signaling pathway by suppressing
p53 expression and can ultimately promote cell proliferation in CC
cells, suggesting that lncRNA-DLEU2 is involved in CC
development through facilitation of the cell cycle.
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Regulation of epithelial–mesenchymal transition (EMT) and
immune evasion. Liao et al. (2022) demonstrated that an lncRNA
known as lymph node metastasis-associated suppressor (LNMAS)
suppresses TWIST1-mediated EMT and STC1-dependent immune
evasion by weakening the HMGB1–BRG1 interaction, thereby
suppressing CC cell growth; this provides an indication of
potential therapeutic targets for CC.

Regulation of angiogenesis. Lei and Mou (2020) delivered
taurine upregulated gene 1 (TUG1) as an exosome from two CC
cell lines (HeLa and CaSki) into human umbilical vein endothelial
cells (HUVECs) and found that TUG1 enhanced the proliferation of
vascular and endothelial cells by stimulating the ecto-expression of
angiogenesis-related genes, including vascular endothelial growth
factor (VEGF-A), matrix metallopeptidase 9 (MMP-9),
transforming growth factor-β (TGF-β), interleukin (IL-8), and
basic fibroblast growth factor (bFGF); this may serve as an early
biomarker for CC.

The mechanisms underlying the role of lncRNA in CC
development are depicted in Figure 2.

2.2 The role of lncRNAs in CC diagnosis and
prognosis

Early and effective diagnosis is very important for the
treatment prospects of all cancers. It has been demonstrated
that lncRNAs are vital in controlling nuclear structure and
transcription in the nucleus and in modulating stability and
translation, which are regarded as potential diagnostic
biomarkers for cancer metastasis (Chi et al., 2019; Yao et al.,
2019). CC is one of the most common gynecological cancers and
is mostly diagnosed at late stages due to deficiencies in screening
strategies for this form of cancer. Therefore, it is essential to
develop a comprehensive understanding of the potential

molecular mechanisms in CC in order to explore potential
therapeutic targets and improve the prognosis of CC patients
(Thankachan et al., 2021). For example, MIR210HG and
ABHD11-AS1 are two lncRNAs found to be upregulated in
CC. Wang et al. (2020) identified MIR210HG as one of the
most upregulated lncRNAs in CC by analyzing GEO array
data and found that the level of expression of MIR210HG is
associated with the clinical characteristics and prognosis of
advanced CC. In addition, a loss-of-function assay revealed
that downregulation of MIR210HG suppresses tumor cell
proliferation, invasion, and metastasis in CC (Wang et al.,
2020). Hu et al. found that the hypoxia-induced lncRNA
MIR210HG was overexpressed in CSCC tissues and regulated
by HPV type 16 E6 and E7 via hypoxia-inducible factor 1α (HIF-
1α); through further functional assays, they also showed that
MIR210HG promotes CSCC cell proliferation, migration, and
invasion in vitro under both normoxic and hypoxic conditions
(Hu et al., 2022a). ABHD11-AS1, an important promoter in
human malignancies, is located at 7q11.23 and is known as
the long intergenic non-coding RNA 35 (LINC00035) and
Williams–Beuren syndrome chromosome region 26
(WBSCR26) RNA gene. A number of studies in recent years
have shown that ABHD11-AS1 is a potential biomarker for early
diagnosis of CC (Golla et al., 2022). Zhu et al. (2022) observed
increased lncRNA ABHD11-AS1 and decreased miR-1254 in the
serum of CC patients compared with healthy controls, suggesting
that dysregulation of ABHD11-AS1 and miR-1254 is involved in
CC progression. Further investigation of the corresponding
mechanisms revealed a regulatory correlation between lncRNA
ABHD11-AS1 and miR-1254. Silencing of lncRNA ABHD11-
AS1 was found to promote miR-1254 expression, while
overexpression of lncRNA ABHD11-AS1 was found to inhibit
miR-1254 expression. Therefore, the authors speculated that
lncRNA ABHD11-AS1 affects CC cell viability through

FIGURE 1
The five different mechanisms of lncRNAs are summarized in the figure and can be expressed as follows:① Recruitment of chromatin modifiers;②
RNA decoy; ③ translation inhibition; ④ RNP component; ⑤ microRNA sponge.
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regulation of miR-1254, suggesting that lncRNA ABHD11-AS1
may serve as a new therapeutic target for CC treatment. Yang
et al. (2022a) evaluated the expression of LAMTOR5-AS1 in
cervical cancer tissues and cells by polymerase chain reaction
(PCR). The effect of LAMTOR5-AS1 on proliferation, migration,
and invasion of CC cells was also verified by cell counting kit-8
(CCK-8) and transwell assays. Moreover, luciferase reporter gene
assay indicated that LAMTOR5-AS1 inhibits CC proliferation via
a sponge effect on miR-210–3p, and a negative correlation was
observed between LAMTOR5-AS1 and miR-210–3p (Yang et al.,
2022a), supporting LAMTOR5-AS1 as a biomarker for CC. Hou
et al. (2020) observed that MAGI2-AS3 exerted a sponge effect on
miR-233 in order to upregulate EPB41L3 after transfecting
MAGI2-AS3, thereby promoting the invasion and migration of
CSCC cells. Finally, in a recent study, Chai et al. (2022) found
that MAGI2-AS3 expression is negatively linked with miR-15b in
cervical cancer tissues and that miR-15b partially reverses the
promoting effect of MAGI2-AS3 on HeLa cell viability and
invasion. Luciferase reporter assay revealed that miR-15b
directly binds to the 3′ UTR of CCNE1 and that upregulation
of miR-15b inhibits CCNE1 expression in HeLa cells. Meanwhile,
overexpression and downregulation of MAGI2-AS3 could

enhance and suppress CCNE1 expression, respectively.
Therefore, it could be inferred that MAGI2-AS3 suppresses
CC growth and invasion through the miR-15b/
CCNE1 pathway, and MA-GI2-AS3 can be considered an
effective target for CC diagnosis.

The above-described studies suggest that lncRNAs can be used
as important diagnostic biomarkers for CC, but further evidence is
still required to support this view. In the following sections, we
divide CC-related lncRNAs into two categories (pro-tumor
lncRNAs and anti-tumor lncRNAs); we summarize their
biological functions and mechanisms in Table 1 and Table 2.

3 MiRNA interference with CC
development

3.1 Mechanisms for miRNAs

miRNAs are a group of small, single-stranded ncRNAs with
19–23 nucleotides (Li et al., 2018). Most miRNAs bind imperfectly
complementary to the 3′ untranslated region (3′UTR) of their target
mRNA, resulting in translational repression or degradation of the

FIGURE 2
Mechanisms of lncRNAs and miRNAs in CC development. lncRNAs and miRNAs jointly regulate the cell cycle, EMT, and angiogenesis. Regulation of
autophagy is the domain of lncRNAs; regulation of apoptosis is one of the functions ofmiRNAs. Several specific lncRNAs andmiRNAs have been shown to
be involved in different mechanisms underlying these functions, such as DLEU2, TUG1, miR-122, miR-129–5p, and miR-146.
Note: Notch, neurogenic locus notch homolog protein; EMT, epithelial–mesenchymal transition; LNMAS, lymph node metastasis-associated
suppressor; STC1, stanniocalcin 1; TWIST1, twist family bHLH transcription factor 1; HUVECs, human umbilical vein endothelial cells; VEGF-A, vascular
endothelial growth factor; MMP-9, matrix metallopeptidase 9; TGF-β, transforming growth factor-β; IL-8, interleukin-8; 3′-UTR, 3′-untranslated regions;
MGAT3, mannoside acetylglucosaminyltransferase 3; ZIC2, zinc finger of the cerebellum protein 2; Th17, T helper cell 17; NF-κB, nuclear factor
kappa-light-chain-enhancer of activated B cells; TRAF6, tumor necrosis factor receptor-associated factor-6; lncRNA-IGFBP4, lncRNA insulin-like
growth factor-binding protein 4; lncRNA-DLEU2, lncRNA deleted in lymphocytic leukemia 2; HMGB1-BRG1, high-mobility group protein 1-brahma-
related genes 1; TUG1, taurine upregulated gene 1.
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TABLE 1 Ectopic expression of oncogenic lncRNAs in CC.

lncRNA Expression Types of CC tissues or cell lines
studied

Biological function Mechanism Reference

HOXA-AS3 Up 132 patients (low-expression group tissue
and high-expression group tissue)

Promotes proliferation,
metastasis, and invasion of CC

Negatively regulates CC development
by sponging miR-29a-3p

Xu et al.
(2022a)

LINC00511 Up 53 patients (CC tissue and adjacent
normal tissue)

Promotes proliferation,
metastasis, and invasion of CC
cells

Targets miR-497–5p and upregulates
MAPK1 expression

Lu et al. (2022)

LINC01287 Up 80 CC tissue samples and adjacent
normal tissue samples

Promotes proliferation of CC
cells, colony formation,
migration, and apoptosis

Positively regulates SERP1 expression
by sponging miR-513a-5p

Hu et al.
(2022b)

HIF1A-AS2 Up CC tissue and non-cancerous cervical
tissue; cells (CaSki, SiHa, HeLa, and
C33A)

Promotes CC cell proliferation,
migration, and invasion; inhibits
CC cell apoptosis

Mediated by HPV16 E6; regulation of
cell apoptosis via the P53/caspase 9/
caspase 3 axis

Guan et al.
(2022a)

LINC00649 Up 127 patients (low-expression group tissue
and high-expression group tissue)

Promotes CC cell proliferation
abilities, migration capacity, and
invasive power

Aggravates CC progression by
targeting miR-216a-3p

Si et al. (2022)

SCIRT Up 34 tumor tissue samples and 34 tumor-
adjacent tissue samples

Promotes the proliferative,
migratory, and invasive
properties of CC cells

Upregulates MMP-2/MMP-9 Guan et al.
(2022b)

UCA1a Up Human CC cell line HeLa Promotes CC proliferation Increases PKM2 protein level by
binding to PKM2 protein and
enhancing its stability

Yu et al. (2022)

LOXL1-AS1 Up 50 paired CC tissue and non-cancerous
tissue samples; cells (HeLa, CaSki, C33A,
SiHa, and Ect1/E6E7)

Promotes CC cell proliferation,
migration, invasion, and
angiogenesis

Sponges miR-526b-5p and regulates
LYPLA1

Zhang et al.
(2022b)

LINC00707 Up Cells (H8, SiHa, HeLa, CaSki, and C-33A) Promotes proliferation of CC cells
while inhibiting apoptosis

Sponges miR-374c-5p and
upregulates SDC4 expression

(Fang, Guo,
Zheng, Li)

OIP5-AS1 Up 50 patients (CC tissue and adjacent
normal tissue); cells (End1/E6E7, HeLa,
CaSki, SiHa, and ME-180)

Promotes CC cell migration,
invasion, and EMT

Suppresses miR-147a expression and
activates the IGF1R pathway

Zhang et al.
(2022c)

LOC100130075 Up Cells (SiHa, HeLa, CaSki, C-33A, and H8) Promotes CC progression Positively correlates with MDM2 and
binds to E2F1 for activation of
MDM2

Xu et al.
(2022b)

FLVCR1-AS1 Up Cells (C-4-I, C-33A, SiHa, HeLa, and
Ect1/E6E7)

Promotes proliferation,
migration, and invasion of CC
cells; inhibits apoptosis.

Sponges miR-381–3p and targets
MAGT1

Zhang et al.
(2022d)

40 patients (CC tumor tissue, adjacent
normal tissue, and serum samples); cells
(HUCEC, HeLa, CaSki, C-33A, and AV3)

Promotes proliferation and
migration, invasion, and EMT of
CC cells; inhibits apoptosis

Competitive binding to miR-23a-5p
and promotion of expression of
SLC7A11

Zhou et al.
(2022)

TABLE 2 Ectopic expression of anti-tumor lncRNAs in CC.

lncRNA Expression Types of CC tissues or cell lines
studied

Biological function Mechanism Reference

LAMTOR5-
AS1

Down 120 patients (CC tumor tissue and adjacent
normal tissue); cells (HeLa, HCE1, CaSki,
SiHa, and H8)

Suppresses proliferation,
migration, and invasion of CC
cells

Negatively regulates expression of
miR-210–3p

Yang et al.
(2022a)

PTENP1 Down 88 CC tissue samples and matched non-
tumor tissue samples; cells (C33A, HeLa,
ME-180 and SiHa, and NC104)

Suppresses CC cell growth,
motility, and EMT

Acts as a decoy for miR-27a-3p to
upregulate EGR1 expression

Wu et al.
(2022)

FAM13A-
AS1

Down 30 patients (CC tumor tissue and adjacent
normal tissue); cells (HeLa, SiHa, and
HUCEC)

Suppresses CC cell
proliferation, apoptosis,
invasion, and migration

Negatively regulates expression of
miRNA-205–3p and promotes
expression of DDI2

Qiu et al.
(2022)

PGM5-AS1 Down 29 patients (CC tissue and adjacent normal
tissue); cells (HeLa, CaSki, and HaCaT)

Suppresses CC cell
proliferation, migration, and
invasion

Sponges miR-4284 to upregulate DCN
expression

Wang et al.
(2022a)
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mRNA (Smolarz et al., 2022; Kargutkar et al., 2023). The mechanism
by which miRNA takes effect is through inhibition of translation
assembly: miRNA competes with eIF4E at the m7G cap site of the
mRNA, while promoting deadenylation, decapping, and
degradation of the mRNA through recruitment of the PAN2-
PAN3 complex, the CCR-NOT complex, and exoribonuclease 1
(XRN1) (Kargutkar et al., 2023).

The mechanism of cancer development has still not been fully
deciphered, but the imbalance of intracellular homeostasis
triggered by epigenetic changes is one of the currently
accepted mechanisms (Ge et al., 2022). Epigenetic changes
allow tumor cells to spread and subsequently to develop
distant metastasis (Su et al., 2022). Epigenetic factors and
miRNAs, as regulators of gene expression, interact with each
other to form an epigenetic miRNA regulatory circuit in order to
maintain normal physiological functions of the body; once this
regulatory circuit is disrupted, the risk of cancer is elevated (Sato
et al., 2011). Specifically, a particular set of miRNAs (defined as
epi-miRNAs) can indirectly affect the expression of tumor
suppressor genes by influencing epigenetic mechanism
effectors such as DNA methyltransferases, histone
deacetylases, and polyoma suppressor complex genes, which
are also controlled by epigenetic factors (Fabbri and Calin,
2010). Further information on the mechanism underlying the
occurrence of CC based on miRNAs has recently been obtained
(Sui et al., 2022). According to current findings, the mechanisms
of miRNAs in CC development include the following aspects.

Involvement in cell cycle regulation. Yang et al. (2022b)
conducted a bioinformatics analysis to identify the target gene of
miR-122 (RAD21) and found that overexpression of miR-122
induces cell cycle arrest and promotes apoptosis through
targeting of RAD21, thus participating in the pathological
development of CC.

Regulation of EMT. You et al. (2021) revealed that miR-663b can
directly target the 3′UTR of monoacylglycerol acyltransferase 3
(MGAT3) and can participate in the EMT regulatory process.

Regulation of angiogenesis. Wang et al. (2018) observed that
upregulation of miR-129–5p inhibits CC cell growth and
angiogenesis in naked mice through suppression of the Hedgehog
signaling pathway and negative targeting of ZIC2.

Regulation of apoptosis. Li et al. (2019a) observed that miR-146a
exerts an effect on regulation of Th17 cell differentiation, and further
studies have revealed that miR-146a enables its target gene
TRAF6 to regulate CC cell growth and apoptosis through the
NF-kB signaling pathway.

The mechanisms of miRNAs in relation to CC development are
illustrated in Figure 2.

3.2 The role of miRNAs in CC diagnosis and
prognosis

Given the challenges of CC in terms of its early concealment
and the lack of sufficient screening, the development of methods
enabling accurate diagnosis of CC at an early stage is valuable. A
plethora of studies involving miRNAs have focused on exploring
biomarkers for the diagnosis and prognosis of CC. Regarding
miRNAs for diagnostic and prognostic purposes, it is crucial to

clarify their specific effects on tumors and the ways in which
dysregulated miRNAs affect tumor progression (Bañuelos-
Villegas et al., 2021). miRNAs mainly act by targeting
transcripts of tumor factors or proto-oncogenes (Wang et al.,
2008). Therefore, miRNAs can be divided into oncogenic
miRNAs (oncomiRs) and tumor suppressor miRNAs (tsmiRs)
(Svoronos et al., 2016). OncomiR is usually highly expressed to
promote tumor progression and maintain tumor phenotype and
is mostly upregulated in cancer, whereas tsmiR is mainly used to
regulate cell proliferation and invasion and to promote apoptosis,
thereby suppressing tumorigenesis, and is mostly downregulated
in cancer (Ali Syeda et al., 2020). Multiple miRNAs have been
found to show aberrant expression in CC. For example, miR-92a
and miR-494 have been identified as being upregulated in CC
patients. Investigators have confirmed using ROC curves that
miR-92a-5p expression has high specificity and sensitivity at the
optimal threshold in the detection of both low-grade squamous
intraepithelial lesions (LSILs) and high-grade squamous
intraepithelial lesions (HSILs) (LSILs: 95% sensitivity, 87%
specificity; HSILs: 94% sensitivity, 87% specificity) (Azimi
et al., 2021). Wang et al. combined qRT-PCR, luciferase
assays, and rescue experiments to confirm that miR-92a,
which is significantly upregulated in CC tissues, is negatively
correlated with its downstream target gene PIK3RI (Wang et al.,
2021). Liu et al. found a negative relationship between the overall
survival of CC patients and miR-92a-3p, and observed that miR-
92a-3p is able to promote CC stem cell proliferation, invasion,
and cell cycle transition (Liu et al., 2021b). Another study found
that miR-494 is positively correlated with the survival time of CC
patients (Wen et al., 2022). When miR-494 was used to regulate
LETMD1 expression, the proliferation, differentiation, and
migration rates of HeLa cell lines increased slowly over
5 days, while the proportion of cancer cells decreased by 5%,
the proportion of macrophages increased by 2%, and the
proportion of dendritic cells increased by 3% after the
expression of LETMD1 (Wen et al., 2022). In an in vitro
experiment, Yang et al. found that downregulation of miR-494
expression inhibited CC cell proliferation and growth by
regulating the expression of target gene PTEN, suggesting a
potentially significant role of miR-494 in tumorigenesis and
the development of CC, and introducing a new perspective for
understanding of the molecular mechanisms underlying CC
progression (Yang et al., 2015).

In addition, miR-195 and miR-99a have been found to be
downregulated in CC patients. Jin et al. showed that miR-195 is
negatively correlated with BCDIN3D, as examined by qRT-PCR,
and that both are able to inhibit the ki67 protein, a biomarker of
CC cell proliferation (Jin et al., 2021). Sun et al. verified that miR-
195–5p can substantially lower the expression of PFKFB4 and
thus slow down the proliferation of CC cells (Sun and Jin, 2022).
Han et al. co-transfected the vectors expressing miR-99a and
IGFIR into cells and found that miR-99a can specifically inhibit
IGF1R expression, which in turn inhibits CC proliferation and
migration (Han, 2021). Similarly, Wang et al. found a negative
association between miR-99a-5p and RRAGD, and observed that
miR-99a-5p can enable its target gene RRAGD to induce
apoptosis and inhibit glycolysis in CC cells, representing a
potential therapeutic target in CC (Wang et al., 2022b). We
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summarize the roles of the most recently discovered pro-tumor
and anti-tumor miRNAs in CC in Table 3 and Table 4.

4 The mechanisms underlying
lncRNA–miRNA interactions in CC

lncRNAs and miRNAs interact with one other in the
development of CC via the following mechanisms.

lncRNA competes with miRNAs to complementarily bind
target mRNA with the help of the miRNA response element
(MRE) and enables release of the negative regulation of

target genes by miRNA to enhance its stability. Li et al.
found that miR-148a-3p negatively regulates c-Met by
binding to the 3′ UTR of c-Met, while small nuclear host gene
4 (SNHG4) exerts a protective effect on the target mRNA by
competitively binding miR-148a-3p to the 3′ UTR of c-Met (Li
et al., 2019b).

miRNAs can negatively regulate lncRNAs in a manner similar to
the mechanism of mRNAs, specifically by using the principle of base
complementation to recognize lncRNAs and reduce lncRNA
stability with the cooperation of RISC. Zhang et al. (2013) found
that miR-21 interacts with growth arrest-specific transcript 5
(GAS5) and regulates it in a manner similar to miRNA-mediated

TABLE 3 Ectopic expression of oncogenic miRNAs in CC.

miRNA Expression Types of CC tissues or cell lines
studied

Biological
function

Mechanism Reference

miR-1254 Up 30 paired cancerous and normal cervical
tissue samples; cells (Ect1/E6E7, HeLa, C33a,
SiHa, and CaSki)

Attenuates CC cell
invasion and
proliferation

Intercalates with CD36 messenger RNA and
modulates CD36

Zhang et al.
(2022e)

miR-3653 Up 136 patients (CC tissue and adjacent non-
cancerous tissue); cells (HaCaT, C33A, SiHa,
and HeLa)

Promotes CC
progression

Targets Zeb2 or ITGB1 Cui et al.
(2022)

miR-34a Up Cells (SiHa, HeLa, C33A, and HEK293T) Promotes CC
proliferation, invasion,
and migration

Suppresses viral E6 protein and destabilizes
overexpressed oncoprotein Cdt2

Singh et al.
(2022)

miR-
146a-5p

Up 30 patients (CC tissue and adjacent non-
cancerous tissue); cells (HEK293T, HeLa,
CaSki, SiHa, C33A, End1/E6E7, and
HcerEpic)

Promotes CC invasion,
EMT, and migration

Negatively regulates WWC2 and activates
Hippo-YAP signaling pathway

Wang et al.
(2022c)

miR-1323 Up Cells (HeLa, SiHa, CaSki, C33A, and End1/
E6E7)

Promotes CC
proliferation, migration,
and invasion

Targets PABPN1 to recruit IGF2BP1, thereby
further regulating GSK-3β and affecting the
Wnt/β-catenin signaling pathway.

Fang et al.
(2022)

TABLE 4 Ectopic expression of antitumor miRNAs in CC.

miRNA Expression Types of CC tissues or cell
lines studied

Biological function Mechanism Reference

miR-
195–5p

Down TCGA database Inhibits malignant
progression of CC cells

Decreases and restrains PFKFB4; tumor-
suppressive effect of miR-195–5p is partially
restored by overexpression of PFKFB4

Sun and Jin
(2022)

miR-
26a-5p

Down 15 patients (CC tissue and para-
carcinoma tissue samples); cells
(GH329, C33A, HeLa, and SiHa)

Inhibits CC proliferation,
migration, and invasion

Negatively correlates with HSDL2 and directly
targets HSDL2

Li et al. (2022a)

miR-
106b-5p

Down 80 patients (CC tissue and adjacent
tissue); cells (SiHa, C-33A, ME-180,
MS-751, HCC-94, HeLa, and HEK-
293 T)

Suppresses CC cell
proliferation, migration,
and invasion

Negatively regulates FGF and inhibits CC growth
and metastasis by downregulating
FGF4 expression

Lei et al. (2022)

miR-
423–3p

Down Cells (HeLa, CaSki, SiHa, and Ect1/
E6E7)

Suppresses CC cell
progression and tumor
growth

Regulates macrophage M2 polarization by
targeting CDK4 mRNA and inhibits
phosphorylation of STAT3 via CDK4 to silence
IL-6 expression

Yan et al. (2022)

miR-
218–5p

Down TCGA, GEO, and HPA databases Inhibits CC cell
migration, invasion, and
proliferation

Negatively regulates the target gene RUNX2 and
participates in positive modulation of CC cell
proliferation

Cruz-De la Rosa
et al. (2022)

miR-
331–3p

Down 98 patients (CC tissue and adjacent
tissue); cells (CaSki, C33A, HeLa, SiHa,
and HEK293T)

Inhibits CC cell growth
and malignant
progression

Inhibits the expression of DNMT3A by binding
to DNMT3A mRNA; DNMT3A promotes
LIMS2 methylation and reduces expression of
LIMS2

Yang et al.
(2022c)
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silencing of target mRNAs, which explains the ability of miR-21 to
target both tumor suppressor genes and the lncRNA GAS5.

lncRNAs take the form of potential precursor miRNAs (pre-
miRNAs). lncRNAs are first cleaved by class 2 ribonuclease III
(Drosha enzyme) in the nucleus to form precursors of mRNAs.
Some genes produce lncRNAs and miRNAs at the same time, but
these miRNAs are immature and need to be processed by
endoribonuclease (Dicer) in the cytoplasm before eventually
transforming into mature miRNAs. Keniry et al. (2012)
suggested that lncRNA H19 produces miR-675 during the
dynamic regulation of RNA-binding protein (HuR) related to
stress response.

lncRNAs act as sponges for miRNA to inhibit the binding of
miRNAs to mRNAs and to facilitate the degradation of lncRNAs. Li
et al. found that the expression of lncRNA DSCAM-AS1 in cervical
cancer specimens was negatively correlated with miR-338–3p
expression, while upregulation of DSCAM-AS1 decreased miR-
338–3p expression in SiHa cells, which, in turn, promoted the
growth, cycle, and invasion of cervical cancer cells, suggesting
that lncRNA DSCAM-AS1 could sponge adsorption of miR-
338–3p and thus could play a pro-cancer role in cervical cancer
(Li et al., 2022b).

miRNAs can target DNAmethyltransferase (DNMT) to regulate
lncRNA expression levels. Chen et al. found that DNA methyl-
transferase 1 (DNMT1) is a target gene of miR-148a-3p and that it
can regulate level of expression of transcription factor-1 (UTF1) in
cervical cancer cells, while promoter hypermethylation is necessary
for the initiation of UTF1 expression (Chen et al., 2021).

The five distinct mechanisms underlying lncRNA–miRNA
interactions in CC are illustrated in Figure 3.

5 Important roles of lncRNA- and
miRNA-related signaling pathways
in CC

Although combination therapies are used with CC patients, their
overall therapeutic efficacy does not meet expectations. lncRNAs
and miRNAs play pro-tumor or anti-tumor roles by activating or
inhibiting certain pathways. Therefore, interfering with lncRNA-
and miRNA-related signaling pathways may provide a direction for
the development of further treatment for CC.

5.1 Phosphatidylinositol 3-kinase/protein
kinase B (PI3K/Akt) signaling pathway

5.1.1 Mechanism underlying the PI3K/Akt pathway
PI3K activation originates from various stimulating factors such

as VEGF, fibroblast growth factor (FGF), and insulin, which activate
receptor protein tyrosine kinase (RPTK), causing auto-
phosphorylation (Laddha and Kulkarni, 2019; Acosta-Martinez
and Cabail, 2022). The catalytic subunit p110 in the PI3K
structure catalyzes the formation of phosphatidylinositol
biphosphate (PIP2) on the plasma membrane to produce the
second messenger phosphatidylinositol trisphosphate (PIP3)

FIGURE 3
The five different mechanisms involving lncRNA–miRNA interactions in CC and their associated processes, with several specific examples that have
been shown to be involved in the different mechanisms.
Note: pri-miRNA, primary miRNA; pre-miRNA, precursor miRNA; RISC, RNA-induced silencing complex; 3′-UTR, 3′-untranslated regions; TRBP,
TAR RNA-binding protein; GAS5, growth arrest-specific transcript 5; DNMT1, DNA methyltransferase 1; UTF1, undifferentiated embryonic cell
transcription factor-1; SNHG4, small nuclear host gene 4; DSCAM-AS1, DSCAM antisense RNA 1.
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(Acosta-Martinez and Cabail, 2022). PIP3 transports Akt to the
plasma membrane to form a complex, thereby further activating Akt
for regulation of downstream target proteins in the form of an
activated or suppressed effect and thus regulating cancer cell
proliferation and apoptosis (Acosta-Martinez and Cabail, 2022).

5.1.2 lncRNA–miRNA interaction regulates CC
through the PI3K/Akt signaling pathway

The PI3K/Akt pathway can become involved in apoptosis,
proliferation, invasion, and migration. In recent years, numerous
studies have confirmed that abnormal activation of the PI3K/Akt
pathway is a significant mechanism in tumor pathogenesis,
including that of cervical cancer. Li et al. found that
KCNQ1OT1 upregulation increases SiHa viability but inhibits its
apoptosis; miR-1270 mimics lead to low viability and high apoptosis
in SiHa cells, while LOXL2 overexpression promotes SiHa cell
viability and reduces apoptosis (Jiang et al., 2022). LOXL2, the
target of miR-1270, positively interacts with KCNQ1OT1 but has a
negative interaction with miR-1270 (Jiang et al., 2022). Additionally,
lncRNA KCNQ1OT1 activates the PI3k/Akt pathway by sponging
miR-1270 to alter the expression of the target gene LOXL2, thereby
initiating apoptosis and promoting the development of CC (Jiang
et al., 2022). Finally, it has previously been reported that high
expression of LINC00673 could act as a “miRNA sponge” in its
effect on miR-126–5p, thereby enhancing PTEN protein expression
and activating the PI3K/Akt signaling pathway to promote CC cell
proliferation (Shi et al., 2020).

5.2 Wnt/β-catenin signaling pathway

5.2.1 Mechanism of the Wnt/β-catenin pathway
Wnt ligands are secreted glycoproteins that recognize and bind to

the corresponding membrane protein receptor, which leads to β-
catenin accumulation, thereby avoiding phosphorylation by glycogen
synthase kinase-3β (GSK-3β) (Hadi et al., 2020; Hayat et al., 2022). The
non-phosphorylated β-catenin can avoid degradation and
ubiquitination by the intracytoplasmic damage complex and can
thus gradually accumulate in the cytoplasm and translocate to the
nucleus (Nalli et al., 2022). Subsequently, non-phosphorylated β-
catenin in the nucleus binds to the transcription factor T-cell factor/
lymph enhancer factor (TCF/LEF) to activate the downstream cellular
myelocytomatosis viral oncogene (c-Myc), leading to cancer cell
proliferation and differentiation (Zhang and Wang, 2020; Nalli
et al., 2022). This indicates that the β-catenin-TCF/LEF complex is
key in activation of the Wnt/β-catenin pathway.

5.2.2 lncRNA–miRNA interaction regulates CC
through the Wnt/β-catenin signaling pathway

Family with sequence similarity 201 member A (FAM201A)
enhances cell viability, migration, and invasion in CC in vivo. Wang
et al. found that high expression of FAM201A can upregulate
FLOT1 expression through sponging of miR-1271–5p, which in
turn activates the Wnt/β-catenin pathway to promote CC
progression and metastasis (Wang et al., 2022d). Furthermore,
Niu et al. demonstrated that AXIN2, a target gene of miR-
205–5p, negatively regulates activation of the Wnt/β-catenin
pathway (Chen et al., 2021; Niu et al., 2021). DKK1 and β-

catenin are markers of the Wnt/β-catenin pathway. Low
expression of HNRN-PU-AS1 and high expression of miR-
205–5p can promote β-catenin expression and inhibit
DDK1 expression, thereby activating the Wnt/β-catenin pathway.
Moreover, high expression of AXIN2 inhibits activation of the Wnt/
β-catenin pathway, thereby suppressing cell proliferation and
promoting apoptosis in CC (Niu et al., 2021).

5.3 Mitogen-activated protein kinase/
extracellular signal-regulated kinase (MEK/
ERK) signaling pathway

5.3.1 Mechanism of the MEK/ERK signaling
pathway

MEK1/2 and ERK1/2 (referred to asMEK and ERK) are two highly
conserved and functionally similar heterodimers. MEK1/2 has very
narrow substrate specificity and catalyzes the phosphorylation of
tyrosine and threonine residues on the TEY motif of ERK1/2
(Barbosa et al., 2021). ERK1/2 is regarded as a typical mitogen-
activated protein kinase (MAPK) involved in signal transduction
and transcriptional regulation, which can activate nuclear and
cytosolic targets and participate in negative feedback loops (Wu
et al., 2020). ERK1/2 has broad substrate specificity and is the only
known downstream target of MEK1/2 (Barbosa et al., 2021). The
interaction mechanism of ERK kinases in mediating the downstream
targets of MEK activation contributes to the functional operation of the
MEK/ERK pathway (Degirmenci et al., 2020).

5.3.2 lncRNA–miRNA interaction regulates CC
through the MEK/ERK signaling pathway

The MEK/ERK signaling pathway is involved in regulating the
physiological and pathophysiological processes of CC; specifically,
inhibition of MEK induces the inactivation of ERK1/2, thereby
reducing tumor cell proliferation and promoting apoptosis. Guo
et al. detected significantly elevated expression of SNHG20 in CC via
qRT-PCR assay and found that overexpression of miR-140–5p, a
downstream target of SNHG20, inhibits MEK/ERK signaling, which,
in turn, suppresses the proliferation and invasive ability of CC cells
(Guo et al., 2018). In an in vivo experiment, Zhang et al. observed
that LOXL1-AS1 downregulation inhibits tumor growth, metastasis,
and proliferation of CC cells (Zhang et al., 2022f). Further
investigation of the mechanism revealed that LOXL1-AS1 can
regulate expression of the target gene ENC1 by sponging miR-
423–5p. In addition, knockdown of ENC1 was found to inhibit
activation of the ERK/MEK pathway based on measurements of the
corresponding protein levels. Consequently, the authors concluded
that the LOXL1-AS1/miR-423–5p/ENC1 axis accelerates CC
development through the MEK/ERK signaling pathway,
introduction a new direction of study in terms of the molecular
basis of CC (Zhang et al., 2022f).

6 Summary

In summary, ncRNAs can exert an effect on CC development
through a variety of molecular mechanisms. Significant progress
has been made in the study of lncRNAs and miRNAs, mainly
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focusing on regulation of cell cycle, EMT, and angiogenesis by
lncRNAs and miRNAs, among other aspects. In the future, we
should continue to explore the mechanisms of lncRNAs and
miRNAs in the development of CC, focusing on the results of
current research. In particular, we need to clarify the effects of
lncRNA–miRNA interactions on the mechanisms underlying CC
development and establish further evidence relating to their
potential role in early diagnosis of CC. However, the role of
lncRNAs and miRNAs in signaling pathways related to CC also
needs to be further explored. Numerous studies have shown that
lncRNAs and miRNAs are closely related to tumor-related
signaling pathways and can be used as target genes to induce
the activation and transduction of certain signaling pathways.
For example, PI3K/Akt, Wnt/β-catenin, and MEK/ERK signaling
pathways can play a role in the processes of CC cell growth,
proliferation, and metastasis. The normal operation of signaling
pathways relies on a sophisticated network and the functioning of
each tiny link. If there is a disruption in one of the links, a change
in signaling pathways can occur, which will result in the
alteration of oncogenes and anti-tumor genes, promoting
cancer infiltration and metastasis. Risk factors, together with
the regulation of intercellular signaling pathways, affect tumor
growth by enabling evasion of immune system surveillance and
clearance, inducing EMT, angiogenesis, and regulation of the cell
cycle. Currently, due to the inadequacy of screening and long
period of latency associated with CC, it is necessary to strengthen
research on lncRNAs and miRNAs and the signaling pathways
associated with them in order to achieve major improvements in
the diagnosis and treatment of CC.
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