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Sensory systems appear to learn to transform incoming sensory information

into perceptual representations, or “objects,” that can inform and guide behavior

with minimal explicit supervision. Here, we propose that the auditory system

can achieve this goal by using time as a supervisor, i.e., by learning features

of a stimulus that are temporally regular. We will show that this procedure

generates a feature space su�cient to support fundamental computations

of auditory perception. In detail, we consider the problem of discriminating

between instances of a prototypical class of natural auditory objects, i.e., rhesus

macaque vocalizations. We test discrimination in two ethologically relevant

tasks: discrimination in a cluttered acoustic background and generalization to

discriminate between novel exemplars. We show that an algorithm that learns

these temporally regular features a�ords better or equivalent discrimination

and generalization than conventional feature-selection algorithms, i.e., principal

component analysis and independent component analysis. Our findings suggest

that the slow temporal features of auditory stimuli may be su�cient for parsing

auditory scenes and that the auditory brain could utilize these slowly changing

temporal features.
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Hearing animals parse their auditory world into distinct perceptual representations (i.e.,

auditory objects.) that inform and guide behavior. To do so, the auditory system learns

to group stimuli with similar spectrotemporal properties into one perceptual object, while

simultaneously segregating stimuli with different properties into a different object or objects

(Bregman, 1990; Lewicki, 2002; Griffiths and Warren, 2004; Shinn-Cunningham, 2008;

Shamma et al., 2011; Bizley and Cohen, 2013; Krishnan et al., 2014). This learning task is

complicated because natural objects can have the same identity despite large variations in

physical properties, e.g., their location (Shinn-Cunningham et al., 2005; Van Wanrooij and

Van Opstal, 2005; Populin, 2006; McDermott and Simoncelli, 2011; Ahveninen et al., 2014);

they are often encountered in complex, cluttered environments, e.g., noisy rooms filled with
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speakers (Haykin and Chen, 2005; Bee and Micheyl, 2008;

McDermott, 2009; Bee, 2015; Shinn-Cunningham et al., 2017;

Shukla et al., 2022); and it is often necessary to generalize to novel

objects, e.g., the speech of new acquaintances whose voices have

different timbres, accents, and pitches (Griffiths and Warren, 2004;

Wright and Zhang, 2009; Bizley and Cohen, 2013). Despite these

challenges, the auditory system appears to learn this stimulus-to-

object transformation with minimal explicit supervision.

Intuitively, objects are entities composed of correlated

components that change together, so that the whole retains its

coherence and identity, even in the presence of other variations

(DiCarlo et al., 2012). If natural objects are defined in this way,

it should be possible to learn and discriminate between them

based on temporal cues including: (1) coincidence between the

components, (2) continuity in the components, and (3) continuity

in the correlations between components. That is, the temporal

regularities of an object should define its identity.

This notion that an object is defined by its temporal properties

is consistent with our current interpretation of the Gestalt

principles underlying auditory scene analysis (Bregman, 1990;

Darwin, 1997). One of these principles suggests how temporal

sequences of stimuli are assigned to common sources or objects. For

example, although we hear the sound that occurs when someone

steps on the ground, we bind the temporal series of such sounds

into “footsteps.” Likewise, we can segregate footsteps of someone

running in sneakers from someone strolling in wooden clogs,

based not only differences in their frequency structure but also

on temporal properties like the relative timing between each step.

Such Gestalt principles (Bregman, 1990; Darwin, 1997) provide

important intuitions for what defines an auditory object and how

the auditory system may discriminate between objects. However,

they do not provide a unified computational principle that explains

how such temporal information could actually be learned and

utilized for discrimination by the auditory system. Here, we seek

to provide such a computational understanding.

We use rhesus macaque vocalizations as prototypical natural

auditory objects (Ghazanfar and Santos, 2004) because their

acoustic structure is similar to that seen in human speech, bird

song, and other animal vocalizations (Singh and Theunissen,

2003; Cohen et al., 2007). We replicate previous results showing

these vocalizations are defined by having temporally continuous

components. We then expand on these results by showing

this structure extends to the continuity of correlations between

components and that this structure is significantly less present or

virtually absent for other classes of stimuli.

Next, we use Slow Feature Analysis (SFA), a temporal learning

algorithm originally used to study vision (Wiskott and Sejnowski,

2002), to infer auditory features from four different acoustic

classes of macaque vocalizations as well as control stimuli. For

our purposes, SFA serves as a convenient method for extracting

linear and nonlinear features (Sprekeler and Wiskott, 2008) that

summarizes the most temporally continuous components and

correlations between components of auditory stimuli, respectively.

Finally, we train linear support vector machine (SVM)

classifiers to separate vocalizations in low-dimensional

subspaces of the learned SFA feature space. Our SFA-based

classifiers outperform Principal Component Analysis (PCA) and

Independent Component Analysis (ICA)-based classifiers, which

have no explicit notion temporal regularity but instead respectively

assume that the most variable features or the features that generate

the most statistically independent outputs are informative about

object identity. We confirm consistency with our hypothesis: our

classifiers perform at chance on white noise, and at intermediate

levels on applause, an auditory texture (McDermott and Simoncelli,

2011; McDermott et al., 2013) generated by the superposition of

claps. These results also hold after addition of clutter to the training

and test sets, showing that SFA-based classifiers can solve the

“cocktail party problem.” Finally, our classifiers generalize to novel

exemplars of all four vocalization classes.

Our results suggest that time can supervise the learning

of natural auditory objects. That is, auditory features capturing

the most temporally continuous components and correlations

of auditory stimuli may suffice for parsing auditory scenes,

implying that the brain could be tuned to these slowly changing

temporal features.

1. Results

1.1. Temporal regularity in natural auditory
stimuli

We propose that auditory objects are fundamentally defined

by temporal regularity, specifically through the continuity of

components of the acoustic signal and of correlations between

these components (Figure 1A). Thus, we first tested whether these

continuities and correlations can be seen directly in auditory

stimuli. To do so, we had to select between two broad categories of

natural auditory stimuli: acoustic events, such as vocalizations, and

textures, such as rain (Griffiths and Warren, 2004; McDermott and

Simoncelli, 2011; Bizley and Cohen, 2013; McDermott et al., 2013).

We focused on acoustic events, exemplified by rhesus macaque

vocalizations, because of their ethological relevance (Ghazanfar and

Santos, 2004), prototypical structure (Singh and Theunissen, 2003;

Cohen et al., 2007), and links to previous work on neural correlates

of auditory perception (Cohen et al., 2007; Shinn-Cunningham,

2008; Bizley and Cohen, 2013). By contrast, textures appear to be

defined by longer-time scale/time averaged statistics (McDermott

and Simoncelli, 2011; McDermott et al., 2013), and thus it is

possible the brain processes them differently than acoustic events.

We first characterized the data by computing the spectrograms

(Figure 1B) of four different acoustic classes of rhesus vocalizations

(i.e., Coos, Harmonic Arches, Shrill Barks, and Grunts) and

three auditory textures (McDermott and Simoncelli, 2011) (clutter

composed of superpositions of vocalizations, applause and white

noise); seeMethods - Auditory Stimuli for details. The vocalizations

visibly show structure in the frequency domain, i.e., coincidences

in which frequencies are present, that appear to vary continuously

over time. Although these vocalizations appear, at first glance,

to have similar structures, previous work has shown that there

are significant quantitative differences between these classes

(Ghazanfar and Santos, 2004; Christison-Lagay et al., 2014).

By contrast, the applause and white noise spectrograms appear

unstructured and temporally discontinuous to the eye, with clutter

showing some limited structure.
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FIGURE 1

Coincidence, continuity – spectrograms and modulation spectra of auditory stimuli. (A) Far left. An auditory stimulus (schematized as a set of parallel

curved lines) as heard by the auditory system (schematized by the cartoon cochlea). Left. Coincident onset of three frequency bands that

compromise an auditory stimulus. Near Right. Coincident onset and stable persistence of three frequencies that compromise an auditory stimulus.

Far Right. Continuously varying correlations between the frequency components of an auditory stimulus. (B) Left. An example spectrogram from four

di�erent classes of rhesus vocalization, vocalization clutter (see Methods - Auditory Stimuli for more details), applause, and white noise. Each

spectrogram displays ∼1 second of time with the stimulus centered in time for clarity. Color represents the amount of energy at each

time-frequency point with warmer colors showing points with the most energy and cooler colors showing the least energy. Right. An alternative way

to represent the content of a spectrogram is to decompose it into a weighted sum of its spectral- and temporal-modulation rates. The

spectral-modulation rate reflects how fast the spectrogram changes at any instant of time, whereas the temporal-modulation reflects how fast the

spectrum changes over time. For example, if a spectrogram had only spectral modulation but no temporal modulation, it would be represented as a

point on the ordinate of this spectral-temporal space and have a spectrogram like that shown in the upper left. In contrast, if a spectrogram had only

temporal modulation but no spectral modulation, it would be represented as a point on the abscissa of the spectral-temporal space and have a

spectrogram like that shown in the lower right. The other two spectrograms are examples of those that have both spectral- and

temporal-modulations. Color represents represent the amount of energy at each time-frequency point. (C) Top Row. Average spectrotemporal

modulation spectra for coos, harmonic arches, grunts, barks, vocalization clutter, applause, and white noise. Bottom Row. Same plot as above but

now for the frequency-correlation matrix. Regions in red have the most energy, whereas those in light blue have the least energy. In each spectrum,

the black line represents the average spectral power as a function of temporal modulation. Modulation spectra are calculated according to previous

procedures (Singh and Theunissen, 2003; Cohen et al., 2007). For each vocalization class and applause, the average spectra is calculated over all

exemplars of that class within our library. For clutter and white noise, 100 examples were generated and the average spectra is calculated over all 100

examples (see Methods - Auditory Stimuli for more details).

To quantify these observations, we computed each

vocalization’s modulation power spectrum by taking the

Fourier transform of its spectrogram (Singh and Theunissen,

2003) (Figure 1C, Top). Consistent with previous studies of

bird calls, human speech, and macaque vocalizations (Singh

and Theunissen, 2003; Cohen et al., 2007), the vocalizations

in our dataset are characterized by high power at low

spectral and temporal modulation frequencies (Figure 1C,

Top), indicating the presence of continuous structure in the

acoustic frequencies and slow variation of this structure.

This concentration of power at low modulation frequencies

declines for applause, is absent in white noise, and appears

to somewhat remain in vocalization “clutter” [a random

superposition of 20 vocalizations, analogous to the din in

social environments (McDermott, 2009; Schneider and Woolley,

2013)].
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To test whether vocalizations also show continuity of

correlations, we conducted a novel analysis in which we quantified

the spectrotemporal modulation of the matrix of instantaneous

pairwise correlations between all frequencies (Figure 1C, Bottom).

In detail, we organized the upper triangular part of the correlation

matrix as a time-varying vector and computed its modulation

spectrum. We found that for vocalizations and somewhat for

applause, the modulation spectra of pairwise correlations is

concentrated at low temporal modulation frequencies. In contrast,

there was less concentration for clutter and no such concentration

for white noise.

To quantify this concentration of power at lower temporal

modulations, we next calculated the kurtosis of the distribution

of temporal modulations [solid black lines (Figure 1C)] for each

stimulus category. Kurtosis is the fourth moment of a statistical

distribution and is related to the “peakedness” of a distribution:

larger kurtosis values indicate a more peaked distribution, whereas

smaller kurtosis values indicate flatter distributions (see Methods

- Kurtosis Score Heuristic for more details). For intuition about

differences in kurtosis, the ratio between a Laplace distribution,

which is heavily peaked, and a standard Gaussian is 2. Next, we

calculated the ratio between the kurtosis of each stimulus category

and white noise for each set of distributions (that is across each row

of Figure 1C). We refer to this ratio as the “kurtosis score.”

For the modulation spectra of the stimuli (Figure 1C, Top),

we found that all of the vocalizations and the clutter had kurtosis

scores above 1.5. By contrast, applause had a score ∼1, indicating

its kurtosis was essentially that of white noise: Coo - 2.35,Harmonic

Arch - 1.73, Grunt - 1.66, Shrill Bark - 1.53, Clutter - 1.87,

Applause - 1.04. For the modulation spectra of the correlations

between frequencies of the stimuli (Figure 1C, Bottom) all of the

vocalizations and the applause had kurtosis scores above 2.0 and

that clutter had the lowest magnitude kurtosis score: Coo - 2.82,

Harmonic Arch - 2.12,Grunt - 6.30, Shrill Bark - 5.43, Clutter - 1.71,

Applause - 2.58.

Together, these results are consistent with our observation in

representative spectrograms of our stimuli and offer an interesting

reinterpretation of previous findings about the modulation spectra

of vocalizations (Singh and Theunissen, 2003).

The magnitude of the kurtosis score for the modulation spectra

of stimuli relates to the presence of slow varying, continuous

structure in the acoustic frequencies of a stimulus category. The

Coo vocalization class which appeared to have the most continuous

spectrogram also had the highest magnitude kurtosis score. The

kurtosis scores of the other vocalizations also match this trend, with

more staccato/discontinuous seeming vocalizations having lower

scores but still differing strongly (>1.5) from white noise. Clutter

appears to inherit continuity from its composite vocalizations

that themselves show continuity; indeed, the kurtosis score for

clutter is quite close to the average of the scores of the four

other vocal classes (Clutter - 1.87 vs. average across four vocal

classes - 1.82). Though it is likely that this score would decrease

if the number of vocalizations used to construct the clutter was

increased. By contrast, applause, which by definition is composed of

discontinuous hand claps and has the most discontinuous seeming

spectrogram, has negligible difference in continuity from white

noise.

The magnitude of the kurtosis score for the modulation spectra

of instantaneous pairwise correlations between all frequencies

relates to the presence of slow varying, continuous correlation

structure in the acoustic frequencies of a stimulus category.

Matching our intuition from examining their spectrograms, where

there are clear correlation patterns between frequencies, all

vocalizations show a large difference (>2) from white noise. It may

at first seem paradoxical that Grunt and Shrill Bark vocalization

class have the highest magnitude kurtosis scores for continuity of

correlations, but is sensible upon further consideration. Both these

vocalization classes are spectrally broadband rather harmonic; that

is, they show even power across a broad range of frequencies rather

than varied power over a limited set of frequencies. Such broadband

spectral structure leads to consistent correlation patterns between a

broad range frequencies and in turn the observed result. This same

logic applies in the case of applause, since it is composed of the

superposition of hand claps which are also broadband spectrally.

Thus applause has high kurtosis for the continuity of correlations

even though it has low kurtosis for the continuity of the signal itself,

thus making it less “object-like” than the vocalizations.

Our novel analysis of the modulation spectra of correlations,

therefore, also offers a reinterpretation of the findings presented

in Singh and Theunissen (2003). In brief, this work identifies

two types of vocalizations in terms of their spectral structure

and temporal regularity: (1) vocalizations with harmonic spectral

structure and high temporal regularity (low temporal modulation)

and (2) vocalizations with broadband spectral structure and low

temporal regularity (higher temporal modulation). Our analysis

indicates instead that both types of vocalizations show temporal

regularity. The second type of vocalization simply shows stronger

temporal regularity in the continuity of correlations than in the

continuity of components.

Taken together, these findings are consistent with our proposal

that auditory objects, and vocalizations in particular, are defined

by temporal regularity—i.e., through the continuity of components

of auditory stimuli and of correlations between these components.

This suggests that an algorithm that learns features which capture

these temporal regularities could support auditory perception. In

the next sections, we test our prediction that an unsupervised

temporal learning algorithm, SFA, can learn such features and

that these features can support two fundamental computations of

perception: discrimination and generalization.

1.2. Learning temporal regularities

Next, we asked whether the identities of auditory objects

can be learned just from temporal cues of continuity and the

continuity of correlations. To this end, we first passed stimuli

through a simple cochlear model (N = 42 gammatone spectral

filters followed by a temporal filter, normalized to have zero mean

and unit variance, see Methods - Simple Cochlear Model). We

assembled these filter responses into an auditory response vector

Ex(t) = {x0(t), x1(t), x2(t) · · · xN(t)} where x0(t) = 1 and xi(t) for

i > 0 equals the ith cochlear filter response. We then applied

Slow Feature Analysis (SFA) (Wiskott and Sejnowski, 2002), a

method for extracting temporally continuous features from data. It
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FIGURE 2

Schematic of one instance of the analysis procedure. A set of auditory stimuli are first passed through a simplified cochlear model consisting of a

stage of spectral filtering followed by a temporal filtering stage (see Methods–Simple Cochlear Model for more details). The output of this cochlear

model is then analyzed by one of three algorithms: PCA, ICA, linear SFA (lSFA), or quadratic SFA (qSFA). The “top” five features for each selected

algorithm (or three features in the case of ICA) are then used to generate a feature space. See text insert in figure for a summary of what each

algorithm is optimized to find, and thus what “top” means for each algorithm. Finally, test stimuli were projected into the selected algorithm’s feature

space, and we trained and tested a linear support vector machine (SVM) classifier using a 30-fold cross-validation procedure. The goal of the

classifier was to find a hyperplane that correctly separated the projected data points from one stimulus from the projected data points of a second

stimulus. Except for the analysis on generalization, test stimuli and training stimuli were the same. Because this procedure was repeated for each set

of stimuli, there was not any learning transferred between sets. See Methods–Discriminating between vocalizations for more details.

is worth noting SFA was originally developed for use with visual

inputs Wiskott and Sejnowski (2002), suggesting that temporal

regularity potentially might have a generally important role in

sensory processing (see Discussion).

In the general formulation of SFA, consider M features fi(Ex(t))

(i = 1 · · ·M) computed instantaneously from an input signal.

The set of features F = {f1, f2, · · · fM} is constrained to belong to

a function class appropriate to the problem. If M < N, we are

performing dimensionality reduction of the stimulus, and if M >

N, we are performing an expansive projection, such as themaps to a

higher dimension that facilitate classification in the Support Vector

Machine.

SFA selects the most temporally continuous set of features by

minimizing the expected value of the square of the time derivative

1i = 〈(dfi/dt)
2〉t , which is termed “slowness,” over the specified

function class. Here, the expectation value 〈·〉t indicates a time-

averaged quantity. To eliminate the trivial constant solution fi = c,

the features are constrained to have zero mean and unit variance:

〈fi〉t = 0 and 〈f 2i 〉t = 1. Likewise, to ensure that the each fi encodes

a different feature, we require the features to be uncorrelated, i.e.,

〈fifj〉t = 0 for i 6= j, and in ascending order of slowness (1i ≤ 1j

if i < j). It is important to note that the fi are instantaneous

functions of time and that no temporal filtering is involved. Because

of this, the fi can only be “slow” if the input contains slowly

varying information that can be instantaneously extracted, such as

object identity. Taken together, these equations yield the following

optimization problem:

argmin
fi

(1i = 〈(dfi/dt)
2〉t)

constrained by:

〈fi〉t = 0 (zero mean)

〈f 2i 〉t = 1 (unit variance)

〈fifj〉t = 0 (decorrelation)

where:

fi =∈ F and F = {f1(Ex(t)), f2(Ex(t)), · · · fM(Ex(t))}

Note that in the general formulation of SFA, there is no

restriction on the class of functions used for the set F (Wiskott and

Sejnowski, 2002) In practice, however, F is often restricted to either

linear functions of the original input or a linear weighting of a non-

linear transformation of the original input (Sprekeler and Wiskott,

2008) that is:

F = WEx(t) or F = Wg(Ex(t))

where g(Ex(t)) is the function for the non-linear transform. The

latter can be seen as equivalent to implementing the well-known

“kernel trick” (Roweis and Ghahramani, 1999; James et al., 2013)

to solve the SFA optimization problem. That is, it can be easier

to find solutions to an optimization problem by first non-linearly

transforming the data and then looking for a linear solution in

the new non-linear space than directly solving the non-linear

optimization problem in the original data space. Alternatively, as

we will next discuss, we can select the function class for F based on

some prediction about the structure present input signals.

In our application of SFA, the input signal is the instantaneous

auditory stimulus and is described as anN-dimensional vector, and

superposition of auditory stimuli is described by addition of their

acoustic vectors. With this in mind, we can think of an auditory

feature as a direction Ew in the acoustic vector space, and define

objects as coincident superpositions of such features. Then, we can

decompose the stimulus into features via the projections Li(t) =

Ewi · Ex(t) =
∑

j wijxj(t). SFA conducted with this set of linear

features EL = {L1(t), L2(t), · · · } chooses weight vectors Ewi to give

the most temporally continuous projections of stimuli. The zero
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mean condition on SFA features says that 〈Li〉t = 0, which implies

that wio = −
∑N

j=1 wij〈xj〉t , effectively implementing a mean

subtraction. This leads to a 42 dimensional linear feature space,

the same dimensionality as the input auditory signal. According

to our hypothesis, we should be able to train a classifier to detect

the presence of auditory-object classes based on the coincident

presence of such temporally continuous linear SFA (lSFA) features

(schematic in Figure 2).

Because we also hypothesized that objects are partly defined by

continuity of change in the correlations between components, we

want a function class on which SFA can act to extract quantities

related to such slowly changing correlations. To this end, consider

that the pairwise correlation between the linear features are Cij =

〈LiLj〉t =
∑

k,l wikwjl〈xkxl〉t . All of these correlations are linear

combinations of the pairwise correlations in the auditory stimulus

Dkl = 〈xi(t)xj(t)〉t . This suggests that we should apply SFA to the

nonlinear function space of quadratic polynomials in the acoustic

signal. In other words, we use quadratic features of the form:

Qi(t) = ExTViEx where Ex
T is the transpose of Ex and Vi is a symmetric

weight matrix associated to feature Qi. Counting the independent

components of the weight matrix leads to an 903 dimensional

feature space. Because x0(t) = 1 in our conventions, the Qi are

linear combinations of both linear and quadratic monomials in

the auditory-filter responses, and also include a constant that can

be used to implement the mean subtraction required for SFA.

Quadratic SFA (qSFA) then selects the weight matrices Vi to extract

the most slowly changing quadratic features of the stimulus.

Because an auditory object can vary in its amplitude (perceived

as changes in volume or timbre) (Chi et al., 1999; Elliott and

Theunissen, 2009), as well as its presentation speed (Arnal et al.,

2015), without changing its identity, it is important to consider

whether learning temporal regularity via SFA would be inherently

invariant to such identity-preserving changes. Indeed, SFA is

invariant to amplitude rescaling (Turner and Sahani, 2007). This

invariance means that SFA can learn the same features and have

the same projection onto these features, independent of whether

an auditory object has global changes in amplitude (e.g., the same

vocalization but louder) or local changes in amplitude (e.g. the same

vocalization but with a different timbre due to increased/decreased

power in a particular frequency). Similarly, when the presentation

rate of an auditory object is sped up or slowed down without

changes to its frequency content, SFA will learn the same features

and have the same projection onto these features (up to a scale

factor). In contrast, SFA would not be invariant to speed changes

that induce frequency content changes (usually perceived as pitch

shifting and an identity change). That is, SFA would be invariant to

the naturalistic changes in the speed of a speaker’s speech but would

not be invariant to artificially speeding up or slowing down this

speaker without also performing pitch correction. In sum, learning

temporal regularities via SFA is generally invariant to rescaling

the amplitude auditory objects but only invariant to the temporal

rescaling of auditory objects with constraints on the amount of

change to frequency content.

Many standard feature-selection algorithms do not pay any

explicit attention to temporal regularity. For example, a Principal

Component Analysis (PCA) of our data focuses on linear

combinations of the cochlear outputs that have the largest variance,

whereas Independent Component Analysis (ICA) finds linear

combinations of the cochlear outputs that maximize the statistical

independence of the resulting output signal. Thus, these two

analyses can function as algorithmic controls - ensuring that the

slow features found by SFA are not equivalent to or redundant

with the features found by these “non-temporal” algorithms.

Accordingly, we generate and test additional feature spaces using

PCA and ICA. We then trained linear support vector machine

(SVM) classifiers to separate our four vocalization classes and three

auditory textures on the basis of the features extracted by linear

SFA, quadratic SFA, PCA, and ICA (Figure 2).

1.3. Auditory discrimination from temporal
regularities

Our premise is that temporally continuous features can provide

a good low-dimensional representation of object identity. To test

this, we constructed a learning task for discriminating between

any two exemplar macaque vocalizations, i.e., a vocalization

pair (see details in Methods–iscriminating between vocalizations).

Vocalization pairs were sampled uniformly from our four classes.

Thus, the pair consisted of either the same or different vocalization

classes (e.g., coo-coo or coo-grunt), whereas the individuals

producing the vocalization pair could also be the same or different.

This task design mirrors our intuition listening to a conversation:

two words said by the same speaker are different auditory objects

just as the same word said by two different speakers are different

auditory objects.

We used qSFA on 20 unique pairs to extract the k slowest

features for each pair and then projected the pair into the low-

dimensional space defined by these features. In this way, over its

time course, each stimulus generated a data cloud in the feature

space. We trained a linear SVM on 75% of this data to separate the

two vocalizations and tested with the remaining 25% (see Methods

for details of cross-validation). This procedure tests whether qSFA

with k slowest features is capable of supporting learning of

auditory object discrimination. Indeed, we found that classification

performance was already significantly above chance, i.e., 50%, with

a single feature (Figure 3A). Confidence intervals do not include

50%). With just 7 − 10 slowest features out of the 903 dimensions

of our qSFA feature space, classification accuracy reached about

97% with diminishing returns for the addition of further features

(Figure 3A). Thus, in subsequent analyses, we restricted ourselves

to the first 5 slowest SFA features as performance was consistently

above 95%.

Following convention from the source-separation literature

(Roweis and Ghahramani, 1999; Roweis, 2000), we used 3 features

for ICA under the assumption that there would be a maximum of 3

sources - one for each vocalization and one for the background.We

did not notice a qualitatively significant difference when we used 5

ICA features (data not shown).

Next, we compared the discrimination performance of

classifiers trained on feature spaces derived from PCA, ICA, lSFA,

and qSFA. To better sample from our library of vocalization

pairs, we utilized 100 pairs instead of 20 pairs; otherwise, we

followed the same procedure. With 5 features (or 3 for ICA),

median classifier accuracy was 85.2%, 78.9% 94.7%, 98.8% for
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PCA, ICA, lSFA, and qSFA respectively. All of these values were

above chance because their 95% confidence interval (CI) on their

median values (PCA: 84.2% - 87.6%, ICA: 76.4% - 80.5%,lSFA:

92.2% - 95.5%, qSFA: 98.3% - 99.3 %) did not include 50%, which

is chance level in this case.. This high classification accuracy was

seen across all vocalization classes and was equivalent whether we

conducted within- (e.g., two different coo exemplars) or across-

(e.g., a coo exemplar and a grunt exemplar) vocalization classes

(data not shown). Thus, across all cases discrimination based on

SFA, which selects temporally continuous features, outperformed

discrimination based on PCA or ICA, which select non-temporal

features. Mann-Whitney U test for all algorithms: p < 10−6 H0:

classifier accuracy between each algorithm pair was equal.

The SFA projection to a slow feature space cannot add

information about vocalization identity that is not already present

in the data, but it could reduce the information. To get a partial

estimate of discrimination performance upper bound assuming a

linear decoder, we trained a linear SVM directly on the 42 channel

output of the cochlear model.

This classifier had high accuracy and low variance (Figure 3B,

second from right; median accuracy: 99.3%; 95 % CI: 98.9% -

99.5%). This upper bound was significantly higher than PCA, ICA,

and lSFA (Mann-Whitney U test for all algorithms: p < 10−18,

H0: classifier accuracy between algorithms was equal) (Figure 3B).

However, the classifier based on qSFA had similar accuracy and

variance as the upper bound: neither measure showed a statistically

significant difference and both algorithms had overlapping CIs

(Figure 3B). This suggests that qSFA has extracted essentially

all the linearly decodable information pertinent to vocalization

discrimination in its five slowest features.

As a control analysis, we randomly selected 5 channels of

the cochlear model and applied the SVM to these channels;

these random 5 channels were redrawn for each vocalization pair.

This formulation serves as an alternative null model to chance

performance and tests whether the features selected by quadratic

SFA could have been found trivially. We found that all algorithms

all out-performed this null model (Figure 3B) (Mann-Whitney U

test for all algorithms: p < 10−5, H0: classifier accuracy was less

than or equal to the null model classifier). Further, lSFA and qSFA,

but not PCA and ICA, had lower variance in the classification

performance than this null model. (Levene comparison of variance

for each algorithm lSFA and qSFA respectively: p < 0.01, p <

10−14, H0: classifier variance in accuracy was equal to null model

classifier variance). These results confirm that that the slow features

that SFA extracts for temporal continuity are nontrivial.

Finally, we tested whether the specific correlation structure

seen in the vocalizations (Figure 1) drove the excellent performance

of the SFA-based classifier or whether the performance would

be achieved for any set of auditory stimuli. To this end, we

repeated the above analyses with qSFA, but instead of using

vocalizations, we used exemplars of applause and tokens of white

noise (Figures 3C, D, respectively). Performance for qSFA applied

to applause was still fairly high, but its variability was much

higher than the analogous performance for the vocalizations.

For white noise tokens, classification performance for qSFA was

substantially less than it was for vocalizations. Together, these

findings are consistent with the notion that qSFA captures the

“slow” correlations within a vocalization (Figure 3C) but struggles

to capture informative structure when such correlations are not

inherently present in the auditory stimulus.

Overall, we found that a low-dimensional feature space

consisting of temporal continuous components and correlations of

auditory stimuli supports excellent performance in learning of a

discrimination task.

1.4. Discrimination in clutter

Auditory events often occur in the presence of background

clutter, such as a din of other events. For example, consider the

“cocktail party problem” in which the listener seeks to discriminate

vocalizations against a background of other conspecific chatter

(Haykin and Chen, 2005; Bee and Micheyl, 2008; McDermott,

2009; Bee, 2015; Shinn-Cunningham et al., 2017; Shukla et al.,

2022). Thus, we tested whether learning features from continuity of

components and correlations support auditory discrimination even

in such cluttered environments.

To this end, we modified our vocalization-pair discrimination

paradigm to include background noise in two ways: (1) in the

training data, to test whether the algorithms still find useful

features in the presence of clutter, and (2) in the test stimuli, to

test the robustness of the learned features to novel clutter. We

generated background clutter by summing a random ensemble

of vocalizations and systematically varied the signal-to-noise

ratio (SNR) between the training or test vocalizations and this

background clutter. SNR as the log of the ratio of the average power

of the vocalization pair and background clutter (details in Methods

- Discriminating between vocalizations embedded in background

clutter). In applying SFA and PCA, we kept the five slowest or most

variable features, respectively, and compared the results, as in the

previous section, to: (a) a bound determined by applying an SVM

to all 42 cochlear output channels and (b) a null model in which we

trained an SVM on five random cochlear output channels.

When clutter was added only to the training set, classification

was poor at the lowest SNR, but still above chance, i.e., 50%, for

all algorithms (Figure 4A). CIs do not include chance performance

levels, 50%). Indeed, even at relatively low values of SNR (e.g., -2),

performance was both above chance, i.e., 50%, and above the null

model for all algorithms (Mann-Whitney U test for all algorithms:

p < 10−5, H0: classifier accuracy was less than or equal to null

model classifier). As SNR increased, classification performance

increased in all cases but plateaued at a median accuracy of ∼ 85%

for PCA (Figure 4A, top), and at ∼ 93% for lSFA (Figure 4A,

middle). ICA and qSFA, however, did not plateau and reached their

highest accuracy at the highest two SNRs (Figure 4A, bottom). lSFA

and qSFA had the similar average accuracy across the tested SNRs

(Average with standard error of the mean for each algorithm across

all SNRs: PCA 78.0 ± 0.454%, ICA 68.7 ± 0.389%, lSFA 83.3 ±

0.528%, qSFA 82.2 ± 0.519%). These results clearly demonstrate

that SFA can learn objects embedded in cluttered backgrounds and

surpasses PCA and ICA. Interestingly, it seems that temporally

continuous linear features, used by lSFA and included in qSFA, are

sufficient for robust performance already at low SNRs. But, as the

SNR increases, the quadratic features, which are only utilized by
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FIGURE 3

Classifier performance for PCA-, ICA-, lSFA-, and qSFA-based classifiers on discrimination. (A) Classifier performance of qSFA-based classifier as a

function of the number of features for 20 pairs of vocalizations. Black dotes indicate mean performance and error bars indicate the 95% confidence

interval. (B) Violin plot of PCA-, ICA-, lSFA-, and qSFA-based classifiers and linear classifiers applied directly to the data classification performance for

100 unique pairs of vocalizations. The central dot indicates median performance, whereas the whiskers indicate the interquartile range. (C) Violin plot

of qSFA-based classifiers and linear classifiers applied directly to the data classification performance for 10 unique pairs of di�erent applause tokens.

(D) Same as (C) but for 100 unique pairs of di�erent tokens of white noise. The PCA-, lSFA-, and qSFA-based classifiers as well as the null linear model

use five features. The ICA-based classifier uses three features. The linear upper bound model uses the full feature space from the output of the

cochlear model. See Methods - Discriminating between vocalizations for further details.

qSFA, lead to near-perfect performance at high SNR values and

match the upper bound determined by the SVM applied to the

complete cochlear model output.

We obtained relatively similar results when clutter was

added only to the test set (Figure 4B). At the lowest SNR,

classification was well above chance, i.e., 50%, for each algorithm

(CIs do not include chance performance levels, 50%), and as

SNR increased, classification performance increased in all cases

(Spearman correlation for each algorithm: PCA 0.45, ICA .14, lSFA

0.63, and qSFA 0.65, for all algorithms p < 10−7, H0: Spearman

correlation coefficient is equal to zero).

Again, SFA outperformed PCA and ICA, and whereas lSFA was

more effective at the low SNRs (average and standard error of the

mean of each algorithm across all SNRs: PCA 77.5 ± 0.376%, ICA

76.7± 0.340% lSFA 82.6± 0.420%, qSFA 73.7± 0.504%), at higher

SNR values, qSFA matched the upper-bound performance bound

set by the SVM acting on all 42 outputs of the cochlear model.

Finally, we examined classifier performance in our learning

task when vocalizations were embedded in persistent but changing

clutter, i.e., with different training and testing clutter. This

approximates the conditions of listening in a crowded restaurant

or party (i.e., the cocktail-party problem). Thus, we repeated the

above analysis with different clutter tokens of varying SNR in both

training and test sets (Figure 5). At low levels of testing SNR (−7

though −1), performance was above chance, i.e., 50%, for each

algorithm and generally equivalent across algorithms. At higher

levels of testing SNR (0 through 3), we found that linear SFA

had the best average performance across training and test SNRs

(Average with standard error of the mean of each algorithm: PCA

77.6 ± 0.178%, ICA 69.8 ± 0.290%, lSFA 82.6 ± 0.255%, qSFA

78.8± 0.241%).

Interestingly, qSFA shows declining performance when the

training and test SNRs are mismatched. This is not surprising when

the training SNR is large whereas the test SNR is low, because any

learning algorithm will be challenged by this scenario. However,

quadratic SFA also performs less well if the training SNR is low

whereas the test SNR is high. This outcome was initially surprising

but may be occurring because at low SNR, a learner without

supervision cannot actually identify the target object. Elements of

the clutter may, in fact, appear equally salient or may coincidentally

overlap with the continuous correlations of the target vocalizations.

In the latter case, the clutter effectively energetically masks

(Woolley et al., 2005; Bee and Micheyl, 2008; Shinn-Cunningham,

2008) the information in the quadratic features. In natural audition,

the listener has access to many other cues, e.g., visual cues from

the sound source or vocalizing individual, the relative motion of

background objects, etc., that likely serve to disambiguate the object

of interest. Likewise, auditory learners in natural environments

will generally have access to multiple examples of the same object

in different background clutter, again providing information for
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FIGURE 4

PCA-, ICA-, linear SFA-, and quadratic SFA- based classifier performance with clutter in the training set and testing set. (A) PCA-based, ICA-, lSFA-

and qSFA- based classifier performance as a function of the signal-to-noise ratio (SNR) between the training vocalizations and the background in the

training set. Blue dots indicate median performance. Error bars indicate the 95% confidence interval. Red dots and error bars indicate the median

performance and 95% confidence intervals for the linear upper bound (UB) and linear null model (Null); for these linear decoders, classifier

performance was calculated only at the highest SNR. (B) The same as in (A) but as a function of the SNR between testing vocalizations and

background clutter in the testing set. As in previous analyses, PCA-, lSFA-, and qSFA-based classifiers as well as the null linear model use five features.

The ICA-based classifier used three features. The linear upper bound model uses the full feature space from the output of the cochlear model. All

these analyses were performed on 100 unique pairs of vocalizations.

identifying the learning target. It will be interesting to extend our

learning paradigm to investigate these directions in the future.

1.5. Generalization to novel exemplars

Animals can generalize to novel exemplars of a particular

stimulus category (Griffiths and Warren, 2004; Wright and Zhang,

2009; Bizley and Cohen, 2013). For example, when we meet a new

group of people at a conference, we can recognize and discriminate

between the various utterances of “hello” of different individuals

despite the novelty of their accents, pitch, and timbre. To

approximate this scenario, we used a hold-out training procedure

to test whether our PCA- and SFA-based classifiers could generalize

to novel exemplars. Briefly, we had 19 unique exemplars from

each vocalization class. Next, as a function of vocalization class, we

generated 20 unique test pairs of vocalizations (i.e., 20 pairs of coos,

20 pairs of grunts, etc.). The remaining 17 vocalizations served as a

training set. For each test pair within a vocalization class, we applied

PCA or SFA to the remaining 17 exemplars to generate a feature set.

As in previous sections, we kept the five slowest or most variable

features for PCA or SFA. Next, like before, we projected the test

pair into the feature space defined by these five features and trained

a linear SVM classifer to separate the two vocalizations (see details

in Methods - Generalization to novel vocalization exemplars). In

other words, we first learned a feature set that applied broadly to a

vocalization classes (as opposed to a particular pair in the class) and

then used this set to perform discrimination of a novel pair that did

not contribute to generating the features.

Overall, all classifiers except for ICA generalized significantly

above chance, i.e., 50%, across all vocalization classes (Figure 1;

Mann-Whitney U-test for each algorithms for each class: p <

10−8; H0: classifier accuracy was less than or equal to chance

performance of 50%). Median performance was relatively similar

between classifiers for each vocalization class, except for ICA which
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FIGURE 5

PCA-, ICA-, linear SFA-, and quadratic SFA-based classifier performance with clutter in the training and test set. Top. Low testing signal-to-noise

ratio (SNR) conditions. Bottom. High SNR conditions (A) PCA classifier performance as a function of both training and testing SNR. Dots indicate

median performance for PCA. Error bars indicate the 95% confidence interval. Colors indicate the level of the SNR in the test set (see legend). (B–D)

Same but for ICA- lSFA- and qSFA-based classifiers, respectively. As in previous analyses, PCA-, lSFA-, and qSFA-based classifiers used five features

and ICA-based classifiers used three. All these analyses were performed on 100 unique pairs of vocalizations.

had generally poor performance (median and interquartile range

for each vocalization and algorithm: Coo - PCA: 92.9%, 9.35%; ICA:

53.0%, 8.16%; lSFA: 94.6%, 10.4%; qSFA: 92.1%, 9.85% Harmonic

Arch - PCA: 68.9%, 9.19 %; ICA: 54.0%, 7.54%; lSFA: 70.9%, 15.0%;

qSFA: 75.1%, 11.9%Grunt - PCA: 68.3%, 9.32%; ICA: 52.6%, 5.05%;

lSFA: 80.0 %, 17.4 %, qSFA: 74.0%, 17.7% Shrill Bark - PCA: 69.6%,

9.40%; ICA: 52.7%, 4.66%; lSFA: 76.2%, 15.7%; qSFA: 67.3%, 7.74%.

Unlike previous analyses, median performance and variance

varied between vocalization classes for all classifiers. Specifically,

all of the algorithms performed better on coos than on the other

three classes (Kruskal-Wallis test on average performance for each

vocal class: p < 10−6; H0: classifier accuracy was equal across all

vocal classes; post-hoc Mann-Whitney U test for coo vs each other

vocal class: p < 10−8; H0: classifier accuracy was equal between

coo and other vocal class). This result indicates that, at least for

comparisons between PCA-and SFA-based algorithms, within class

generalization performance is more sensitive to the statistics of the

class than to the classification algorithm. Overall, the above-chance

performance for generalization indicates that SFA-based algorithms

are able to generalize to novel exemplars, a critical computation in

auditory perception.

Performance in this discrimination task is generally lower

than in the tasks studied in the previous sections. The source

of this difference may lie in the nature of the slowest features

captured by SFA in this case. In the previous learning examples,

we used SFA to extract features specific to a particular pair

of vocalizations. In this section, SFA is extracting features that

generally characterize a larger ensemble of vocalizations. Extracting

these general regularities may result in features that “average out”

discriminatory differences between specific pairs of vocalizations,

lowering classifier performance. The effect will depend on the

particular temporal statistics of each vocalization class. Indeed,

previous work has reported higher variability between coos as

compared to other vocalization classes (Christison-Lagay et al.,

2014), perhaps explaining the higher discrimination performance

for the coo class. It is possible that the discriminatory differences

that are absent in the five slowest features that we used may be

present in the next fastest features of SFA. If this is the case,

increasing the number of features used will rapidly boost classifier

performance. In effect, we are proposing a temporal feature

hierarchy whereby a small number of slow features emphasizing the

continuity of components and their correlations of auditory stimuli

suffices to broadly support auditory object discrimination, whereas

a set of progressively faster features supports finer separation

between objects - a hypothesis that can be tested in future work.

2. Discussion

Our results showed that a low-dimensional feature space that

selects the temporally continuous components and correlations of

auditory stimuli can support the basic computations of auditory

perception. We used SFA to generate such feature spaces and

found that these spaces were able to capture sufficient intra- and

inter-class variance of rhesus macaque vocalizations to support

discrimination within and between classes. These results were

robust to naturalistic clutter within the training and/or testing sets.

Furthermore, SFA-based classifiers generalized to novel exemplars

within a vocalization class, although more study is required to

understand details of which features capture the fine within-class

details needed for discrimination, and how many such features

we need for high accuracy. Together, these findings suggest that

the brain could use temporal continuity and the continuity of

correlations of auditory stimuli to learn the identities of auditory

objects (Figure 6).

Can such temporal learning be implemented by neural circuits?

Several lines of research suggest that this may be possible. First,

previous work has shown that neurons can leverage spike-timing

dependent plasticity (STDP) with Hebbian learning to learn the

slow features favored by SFA in an unsupervised manner (Sprekeler

et al., 2007). Further work even identified a specific STDP kernel,

i.e., a function that identifies how plasticity changes as a function

of the relative spike times of the pre- and post-synaptic neurons,

that would learn the slow features of auditory stimuli in real time

(Bellec et al., 2016). Second, because the slow features of SFA can be
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FIGURE 6

PCA-, ICA-, linear SFA-, and quadratic SFA-based classifier performance tested on novel pairs of vocalizations (A) PCA-based classifier performance

as a function vocalization class. Dots indicate median performance for each vocalization class for PCA, whereas the whiskers indicate the

interquartile range. (B–D) Same but for ICA-, lSFA- and qSFA-based classifiers, respectively. As in previous analyses, PCA-, lSFA-, and qSFA-based

classifiers all use five features while ICA used three features. These analyses were conducted on 20 novel pairs of vocalizations for each of the four

vocalization classes. See Methods-Generalization to novel vocalization exemplars for more details on training and testing sets.

implemented as an equivalent set of low-pass filters, this particular

temporal learning algorithm can also be implemented in a neural

circuit whose low-pass filter properties are similar to the ones

learned by STDP (Sprekeler et al., 2007).

Alternatively, a temporal learning algorithm of this kind

could instead be implemented through the modulation transfer

functions (MTFs) of auditory neurons. Previous studies have

shown auditory-cortex and forebrain neurons are tuned for

particular spectrotemporal modulations, which can be quantified

through their MTF (Escabı and Schreiner, 2002; Singh and

Theunissen, 2003; Hsu et al., 2004;Woolley et al., 2005; Cohen et al.,

2007; Elliott and Theunissen, 2009; Flinker et al., 2019). Because

the temporally continuous features of auditory stimuli are spectral

patterns of increasing temporal modulation, i.e., the slowest feature

reflects spectral patterns at the lowest temporal modulation and

each faster feature reflects patterns at higher temporal modulations,

a neuron’s MTF could be reinterpreted as an implementation of an

SFA-like computations. In this interpretation, different ensembles

of downstream neurons could learn to respond to particular

combinations of upstream neurons with similar MTFs. Each

downstream neuron then captures a particular feature found by

SFA, and the ensemble as a whole would creates a SFA-like feature

space that could be used to support perception.

The literature of MTFs presents further interesting connections

to our results. Work relating MTFs to human speech intelligibility

has shown that selective filtering of low temporal modulations

dramatically impairs speech comprehension (Elliott and

Theunissen, 2009). This result aligns exactly with our predictions.

Studies in songbirds have shown MTFs that cover the full range

of temporal modulations of natural auditory stimuli including

conspecific song, speech, and environmental sounds (Woolley

et al., 2005). This range matches what is needed for our suggested

implementation of temporal learning in its SFA form through

MTFs. However, the majority of songbird neurons actually shows

a preference for moderate temporal modulation rather than the

low temporal modulations that dominate these natural stimuli

(Figure 1). This seems surprising because the efficient coding

principle (Barlow, 2001; Lewicki, 2002; Burr and Laughlin,

2020) would appear to suggest that the neural population should

concentrate encoding resources on the more prevalent slow

temporal modulations. The explanation may lie in our finding

that a few slow features, i.e., combinations of MTFs dominated

by slow modulations, suffice for good performance on basic

discrimination tasks. This implies that relatively few neurons

are needed to efficiently encode the spectral patterns seen at

the lowest temporal modulations. More neurons could then be

deployed to encode moderate temporal modulations, which may

better support fine discrimination, e.g. between two coos or two

grunts. Indeed, Woolley et al. argue that encoding moderate

temporal modulations may aid in the disambiguation of birdsongs

as the difference between song temporal modulation spectra is

maximal at intermediate modulation rates (Woolley et al., 2005).

Future work should test this hypothesis computationally, e.g.,

by thoroughly quantifying the effect of adding more features of

intermediate temporal frequency in the generalization study of Sec.

E for each vocalization class.

In our clutter results, we found that linear SFA generally

outperformed quadratic SFA despite the fact that the quadratic

features led to the best performance in the absence of clutter.

Because linear SFA constructs features from temporally continuous

stimulus components, whereas quadratic SFA additionally includes

temporally continuous correlations, we attribute the difference

in clutter performance to the selective use of linear features

by the former. This suggests that the continuity of correlations

between frequencies provides a useful signal about auditory stimuli

that is masked or otherwise degraded in high-clutter situations.

Thus, if the brain is using coincidence and continuity to learn

to discriminate object identities, our results suggest that in

the presence of clutter, neurons should increase sensitivity to

the temporal continuity of stimulus components relative to the

continuity of correlations. This idea could be tested experimentally

by calculating and comparing the first- and second-, order

spectrotemporal receptive fields (STRFs) in the auditory cortex

while varying the amount of clutter. A first-order STRF computes

the reverse correlation between the neural output and the stimulus

(Escabı and Schreiner, 2002). A second-order STRF computes the

reverse correlation between the output and the same quadratic

expansion of the stimulus that appeared in qSFA. STRFs uantify

the likelihood that a particular pattern in the stimulus generates a

spike. Thus, if our hypothesis is correct, the second-order STRFs of

neurons should become less predictive and/or the first-order STRFs

of neurons should be come more predictive of neural response in

the presence of clutter.

An important feature of auditory objects is their ability to be

combined hierarchically over a range of timescales (Arnal et al.,

2015). For example, we are sensitive to the faster changes of
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intonation that delineate a speaker’s different words as well as

the slower changes such as the speaker’s location or identity. We

can also combine syllables to generate words which can then be

combined to form sentences which can further be combined to

form conversations.

Can a network using temporal learning handle these multiple

timescales? Indeed, previous work has shown that an artificial

neural network can be constructed that applies SFA hierarchically–

that is, each layer of the network learns the slow features present

in the previous layer’s outputs - and can learn allocentric (world

centered) representations of space from visual inputs (Schönfeld

and Wiskott, 2015). It is thus reasonable to suggest that the

auditory system could have a similar computational organization

and that the differences in neural-response timescales seen across

the cortex is reflective of such a network construction (Higgins

et al., 2017; Runyan et al., 2017; Li and Wang, 2022), Future

computational and experimental work can test whether hierarchical

SFAworks for natural auditory objects and whether the distribution

of neural timescales observed across the auditory system aligns with

predictions from such a hierarchical SFA network.

At what level of the auditory system would we expect this

kind of temporal learning to be implemented? Although neural

activity in the auditory nerve (Klump and Okanoya, 1991; Gleich

and Klump, 1995; Delgutte et al., 1998) and all parts of the central

auditory pathway (Woolley et al., 2005; Elliott and Theunissen,

2009) are modulated by the spectrotemporal modulation properties

of an auditory stimulus, we hypothesize that this temporal learning

is implemented in cortex for two reasons. First, to accurately

calculate the most temporally regular features, a system needs high-

temporal-resolution representations of incoming signals. Early

stages of the auditory system show robust phase locking with

stimuli (De Ribaupierre et al., 1980; Liu et al., 2006; Joris

and Verschooten, 2013) which would provide the needed high-

temporal-resolution. Further an estimate of source location, likely

an important piece of information for discriminating natural

auditory objects (Middlebrooks and Green, 1991; Dobreva et al.,

2011) appears to be calculated in these earlier stages (Chase

and Young, 2008). Thus, it seems reasonable to suggest that the

auditory system “waits” until it has collected all this high-temporal-

resolution information as inputs to the cortex before performing

the proposed temporal regularity computations. Second, as stated

above, natural auditory objects tend to have information on many

timescales Arnal et al. (2015). It is therefore likely that a hierarchy of

timescales is needed to process natural auditory objects, and there

aremultiple lines of evidence suggesting that the cortex is capable of

implementing just such a hierarchy (Ulanovsky et al., 2004; David

and Shamma, 2013; Higgins et al., 2017; Runyan et al., 2017; Li and

Wang, 2022).

More broadly, our results add to the growing body of literature

suggesting that temporal continuity may play an important role

in object recognition across sensory systems. SFA was originally

formulated for use with visual stimuli (Wiskott and Sejnowski,

2002), but our works shows the idea of slowness and temporal

continuity at the heart of SFA readily generalizes to auditory

stimuli. Recent work has shown how temporal continuity can play

a role in spatial navigation (Schönfeld and Wiskott, 2015; Uria

et al., 2022) and even may play a role in odor discrimination in

rodents (Bathellier et al., 2008). It will be interesting to develop a

more general theory for the role of temporal continuity in sensory

processing. Perhaps temporal continuity can help solve the binding

problem for multi-modal sensory objects with time/temporal

regularity being used as the common axis or basis to combine

information coming from multiple modalities.

3. Materials and methods

3.1. Auditory stimuli

We obtained rhesus vocalizations from a prerecorded library

(Hauser, 1998) and limited our analysis to four ethnologically

defined acoustic classes (Ghazanfar and Santos, 2004; Christison-

Lagay and Cohen, 2018)—coos, grunts, shrill barks, and harmonic

arches. We chose these classes because they had the most unique

exemplars, and thus we could generate the most training data

for them. This library encompasses a substantial fraction of the

natural variability inherent in rhesus vocalizations (Christison-

Lagay et al., 2014), although it is not a complete sampling.

Vocalizations were recorded at 50 kHz. To make background

“clutter,” we superposed 20 randomly selected coos, grunts, shrill

barks, or harmonic arches. Each token of clutter was three seconds

long and the starting position of each vocalization in the clutter

was randomly selected. Starting positions were always selected

so that the entire vocalization was present within the clutter.

Finally, each token of clutter was amplitude regularized to remove

artificial peaks and troughs in the signal that could have biased

classifier performance results; see Methods - Discriminating in

background clutter. Random tokens of clutter were spot checked

by the research team to ensure quality. We generated white

noise bursts with the wgn function from MATLAB 2020B’s

Communications toolbox. 500-ms bursts were generated at a

sampling rate of 50 kHz at a power of −20 dBW (set by

choosing −20 for the power parameter of wgn). Applause

exemplars were downloaded from Dr. Joshua McDermott’s

website: https://mcdermottlab.mit.edu/downloads.html. Because

these exemplars had a sampling rate of 20 kHz, we upsampled

them to 50 kHz.

3.2. Kurtosis score heuristic

Kurtosis quantifies the “peakedness” of a distribution,

as the fourth moment of the distribution of p(x) (Cornish

and Fisher, 1938). Because our distributions appear to satisfy

both the unimodality and symmetry constraints for kurtosis

(DeCarlo, 1997), this measure is appropriate to use in our

analyses.

To compute the kurtosis of our stimulus categories, we first

calculated the average power at each temporal modulation (−80

to 80 Hz) across all spectral modulations (black line in Figure 1C)

and normalized the distribution so that its sum was one. This step

generated an temporal-modulation empirical probability density

function for each stimulus category and for each modulation

spectra. We then used the kurtosis function from MATLAB to
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calculate the kurtosis for each stimulus:

k1 =
1
n

∑N
n=1(xi − x̄)4

( 1n
∑N

n=1(xi − x̄)2)2
,

where n is the number of data points, xi is the ith data point, and

x̄ is the mean of the data. Because MATLAB’s implementation does

not follow the convention of other implementations (i.e., it does not

subtract three from the above formula), our kurtosis values are> 0.

To account for any issues from sampling, we set the bias correction

flag for the kurtosis function to zero, indicating that MATLAB

should account for sampling bias using the following equation:

k0 =
n− 1

(n− 2)(n− 3)
((n+ 1)k1 − 3(n− 1))+ 3 ,

where k1 is the uncorrected kurtosis from the first equation. After

calculating the kurtosis of our stimuli categories, we simply took

the ratio of the kurtosis of a stimulus category over white noise as

our “kurtosis score.”

3.3. Simple cochlear model

We implemented a simple cochlear model to ensure that the

inputs to our algorithms approximated the structure of inputs to

the auditory system. This model consisted of two stages of filters:

42 gammatone spectral filters followed by a temporal filter that was

inspired by previous work (Zhang et al., 2001; Lewicki, 2002; Tabibi

et al., 2017). Each of the 42 filter outputs (42 spectral × 1 temporal

filters) was normalized to have zero mean and unit variance.

The gammatone filters were implemented using the

GammatoneFilterbank function from the python module

pyfilterbank.gammatone (see Program Language and Code

Availability for more details on accessing code). These gammatone

filters had center frequencies between 22.9 Hz to 20208 Hz, which

covered the range of rhesus hearing. The temporal filter was

implemented as a difference of two kernels of the form:

g(n) = a nm e−bn, (1)

in which n is in units of samples and a, b, and m are parameters.

The temporal filter was created by taking the difference between g1
and g2 with the following parameters: g1: a = 1.5, b = 0.04, and

m = 2; and g2: a = 1, b = 0.036, and m = 2. This parameter

set accounted for some key aspects of cochlear temporal processing

(Lyon et al., 2010; Tabibi et al., 2017). Each filter output was

normalized to have zero mean and unit standard deviation. Next,

these normalized filter outputs underwent PCA, linear SFA, or

quadratic SFA.

3.4. Discriminating between vocalizations

We tested the ability of the each algorithm to discriminate

between pairs of vocalizations in a learning task. Vocalization pairs

could be from the same (e.g., two grunts) or different (e.g., a

grunt and a coo) vocalization classes. The order of the vocalization

pair was selected randomly and a silent gap (duration: 5 - 50%

of the duration of the first vocalization) occurred between the

vocalizations to ensure that the vocalization did not overlap in time.

Each vocalization in the pair was only presented once.

We then applied our selected algorithm (i.e., PCA, ICA, or an

SFA variant) to the vocalization pair and extracted the “top” five

features of the algorithm. In the case of ICA only three features

were since our stimuli had, at the most, three underlying sources -

two different vocalizations and the background noise. Top features

for the SFA algorithms are the top five slowest features (ı.e., those

with the smallest eigenvalues). The top features for PCA are the top

five features that explain the most variance in the data (i.e., those

with the largest eigenvalues). For all algorithms, the top five features

were found using singular value decomposition SVD because of the

greater numeric stability of SVD for solving generalized eigenvalue

problems.

Next, the same pair of vocalizations was projected into the

feature spaced defined by these five features. This projection

generates a data cloud where each point in the cloud is a moment of

one of the vocalization, thus we end upwith a number of data points

equal to the sum of the number of samples of each vocalization

within the pair. We then trained a linear SVM classifier on a

randomly selected 75% of the data points and tested performance

on the held out 25%. To ensure performance was not an artifact

of the particular 75% of the data that we randomly selected, we

ran a 30-fold cross validation procedure. We designed the cross-

validation procedure to guarantee that each vocalization in a pair

was as evenly represented in the training and testing split as

possible, accounting for inherent differences in the duration of the

vocalizations. To account for any fluctuations in performance not

accounted for by the k-fold cross validation, we repeated the above

procedure five times and took the average performance across these

five repeats. A new instantiation of PCA, ICA, or an SFA variant was

used for each of these five repeats so learning was not transferred

across repeats. Note that this is unsupervised learning because

the selected algorithm, i.e., PCA, ICA, or SFA, only receives one

presentation of the vocal pair and that the feature space generated

was not modified or otherwise informed by the classifier.

This entire procedure was performed for each unique

vocalization pair: 20 pairs in the first analysis of classification

performance as a function of the number of features of quadratic

SFA and 100 pairs in the second analysis of classification

performance as a function of the feature-space algorithm.

To establish an upper bound on performance we repeated the

above analysis but applied the linear SVM directly to all 42 outputs

of the cochlear model. For the null model, we randomly selected

five outputs of the cochlear model to use as inputs to the SVM. The

training and testing procedures for the SVMwere otherwise exactly

the same as it was for PCA, ICA, lSFA, and qSFA.

We utilized the same procedure for the analyses of applause and

white noise by just replacing vocalization pairs with the indicated

stimulus. White noise was generated as described in Methods -

Auditory stimuli. We generated 100 unique pairs of white-noise

tokens. Our library of applause exemplars was more limited so we

generated 10 pairs of applause exemplars.
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3.5. Discriminating in background clutter

To test discrimination performance in background clutter, we

created clutter tokens by superimposing 20 randomly selected

vocalizations that did not include the test pair. Because we

minimized the amplitude troughs of this mixture following

(Schneider and Woolley, 2013), we reduced the possibility that

classifier performance was merely due to test pairs that happen

to occur at the time of an amplitude trough of the clutter.

A test vocalization pair was generated as described in the

previous Methods section and then randomly embedded into this

background clutter. We then conducted the learning procedure

described above while varying the signal-to-noise-ratio (SNR)

between the test vocalization pair and the background clutter. SNR

was defined as the log of the ratio between the average powers of

the test vocalization pair and was varied from −7 (essentially no

signal) to 3 (essentially no background clutter). Because we used a

new instantiation of PCA, ICA, or or SFA at each SNR level, there

was not any transfer learning.We utilized the same cross-validation

and repeats procedure described in the previous methods section.

3.6. Generalization to novel vocalization
exemplars

We tested the ability of each algorithm to generalize to

novel vocalizations using a holdout training procedure for each

vocalization class. We took 19 exemplars from each vocalization

class, and randomly created 20 pairs of vocalizations from these

19 exemplars. We then created unique training sets for each pair

comprised of the 17 other vocalization, i.e., the vocalizations not

contained in the test pair. The training sets were generated the same

way as in previous sections which only utilized pairs, but with more

exemplars. In other words, vocalizations were concatenated in time

with a random order of exemplars and a random gap duration

between each exemplar. Each algorithm was trained on the unique

training set for a particular pair. As with the previous analyses only

the top five features were kept. The test pair was then projected

into this learned feature space. Finally we applied a linear SVM

to the projected test pair to determine their linearly separability

in this feature space and then followed the same cross-validation

procedure as in previous analyses. As before, the whole process

was repeated five times for each pair to average over performance

fluctuations not accounted for in the cross-validation procedure.

We calculated the average performance across these five repeats

and analyzed performance as a function of vocalization class and

algorithm. This entire procedure was performed for 20 unique pairs

of vocalizations for each of the four vocalization classes. As before,

a new instantiation of the algorithm was generated for each pair so

there was not any transfer learning.

3.7. Programming languages and code
availability

Code for stimulus generation was written in MATLAB 2019A

and 2020B. The PCA and SFA algorithms and figure generation

were written in Python 3.7. ICA was implemented using the

sklearn.decomposition.FastICA function. All code is

publicly available via the Cohen lab Github repository:https://

github.com/CohenAuditoryLab/TemporalRegularity_RWD2023.

For python code, we made efforts to include links to all requisite

modules in the ReadMe file and/or include the module in the

provided repository. Please contact the corresponding author at

ron.w.ditullio@gmail.com with any questions regarding the

code.
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