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Identifying the subcellular localization of a protein within a cell is often an essential
step in understanding its function. The main objective of this report was to
determine the presence of the P2X7 receptor (P2X7R) in healthy human cells
of skeletal system, specifically osteoblasts (OBs), chondrocytes (Chs) and
intervertebral disc (IVD) cells. This receptor is a member of the ATP-gated ion
channel family, known to be a main sensor of extracellular ATP, the prototype of
the danger signal released at sites of tissue damage, and a ubiquitous player in
inflammation and cancer, including bone and cartilaginous tissues. Despite
overwhelming data supporting a role in immune cell responses and tumor
growth and progression, a complete picture of the pathophysiological
functions of P2X7R, especially when expressed by non-immune cells, is
lacking. Here we show that human wild-type P2X7R (P2X7A) was expressed in
different samples of human osteoblasts, chondrocytes and intervertebral disc
cells. By fluorescence microscopy (LM) and immunogold transmission electron
microscopy we localized P2X7R not only in the canonical sites (plasmamembrane
and cytoplasm), but also in the nucleus of all the 3 cell types, especially IVD cells
and OBs. P2X7R mitochondrial immunoreactivity was predominantly detected in
OBs and IVD cells, but not in Chs. Evidence of subcellular localization of P2X7R
may help to i. understand the participation of P2X7R in as yet unidentified signaling
pathways in the joint and bone microenvironment, ii. identify pathologies
associated with P2X7R mislocalization and iii. design specific targeted therapies.
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Introduction

It is well known that function and stability of intracellular proteins are critically
determined by their subcellular localization. Each cell compartment offers different
biochemical environments, is exposed to different mechanical triggers and allows
interaction with different partners, which altogether contribute to a fine-tuned
mechanism of control of intracellular protein localization (Bauer et al., 2015).

A broad variety of biological functions, including protein secretion, cell growth and
repair, intracellular signal propagation, establishment of organelle contact, energy

OPEN ACCESS

EDITED BY

Venkaiah Betapudi,
United States Department of Health and
Human Services, United States

REVIEWED BY

Ronald Sluyter,
University of Wollongong, Australia
Claudio Bucolo,
University of Catania, Italy
Mireia Martin-Satue,
University of Barcelona, Spain

*CORRESPONDENCE

Francesco Di Virgilio,
fdv@unife.it

Roberta Piva,
piv@unife.it

RECEIVED 06 March 2023
ACCEPTED 19 April 2023
PUBLISHED 04 May 2023

CITATION

Penolazzi L, Notarangelo MP,
Lambertini E, Vultaggio-Poma V,
Tarantini M, Di Virgilio F and Piva R (2023),
Unorthodox localization of P2X7 receptor
in subcellular compartments of skeletal
system cells.
Front. Cell Dev. Biol. 11:1180774.
doi: 10.3389/fcell.2023.1180774

COPYRIGHT

© 2023 Penolazzi, Notarangelo,
Lambertini, Vultaggio-Poma, Tarantini, Di
Virgilio and Piva. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Brief Research Report
PUBLISHED 04 May 2023
DOI 10.3389/fcell.2023.1180774

https://www.frontiersin.org/articles/10.3389/fcell.2023.1180774/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1180774/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1180774/full
https://www.frontiersin.org/articles/10.3389/fcell.2023.1180774/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2023.1180774&domain=pdf&date_stamp=2023-05-04
mailto:fdv@unife.it
mailto:fdv@unife.it
mailto:piv@unife.it
mailto:piv@unife.it
https://doi.org/10.3389/fcell.2023.1180774
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2023.1180774


metabolism and spatial organization of metabolic gradients, involve
protein movement across different cell compartments (Itzhak et al.,
2016; Mogre et al., 2020). Changing the location of a protein can
modify its activity, which will modulate its functions and affect its
fate. At the same time, subcellular mis-localization of certain
proteins is correlated with the onset of specific human
pathologies, and may be a hallmark of disease (Andrejew et al.,
2020; Kumar and Lapierre, 2021; Yousefi et al., 2021). Surprisingly,
analysis of changes of subcellular protein localization is currently
much under investigated compared to the mere study of their
expression levels. For some proteins, more than others,
investigation of the subcellular localization under different
pathophysiological conditions may represent a real challenge.
This is the case of the P2X7 receptor (P2X7R), an ATP-gated
plasma membrane ion channel (Adinolfi et al., 2005). Upon
activation by extracellular ATP (eATP), the P2X7R generates a
non-selective channel permeable to mono- and di-valent cations
(Na+, Ca2+ influx, and K+ efflux) (Di Virgilio et al., 2018a).
Depending on its activation state, P2X7R can either drive cell
survival and proliferation, or induce cell death (Lara et al., 2020).
The prolonged activation of P2X7R by high levels of eATP over an
extended time period can lead to the formation of a macropore
allowing transmembrane fluxes of molecules up to 900 Da,
promoting plasma membrane depolarization, and ultimately cell
death (Di Virgilio et al., 2018b). No doubt, cytotoxicity is the more
widely accepted function associated to the P2X7R. Over the last
years however, it has also become clear that this receptor is one of the
most potent activators of the NLRP3 inflammasome, and therefore a
strong promoter of inflammation in different areas including joint,
lung and eye (Di Virgilio et al., 2017; Platania et al., 2022). Finally, a
role in cancer has also been proposed (Lara et al., 2020). Data on the
participation of the P2X7R in pathophysiological responses outside
the immune system are fewer and less conclusive. We recently
described the involvement of the P2X7R in the inflammatory
response in intervertebral discs, thus highlighting the need of a
more thorough investigation of P2X7R localization and function in
cells originating from bone and cartilage (Penolazzi et al., 2022).
During this investigation, we realized that in this tissue the P2X7R
might be present in non-canonical subcellular localizations.

To date, a rigorous investigation of P2X7R subcellular
distribution is still hampered by the lack of highly specific anti-
P2X7R antibodies and by the need of well controlled protocols to
obtain highly purified subcellular fractions.

Nevertheless, a detailed “subcellular anatomy” of the P2X7R is
strongly needed, also in view of the many P2X7R-associated
responses that may not directly (or entirely) depend on its
channel function, such as changes in plasma membrane lipid
symmetry, microparticle shedding, activation of lipases, kinases,
and transcription factors, as well as cytokine release and apoptosis
(Sluyter, 2017). These many functions might also depend on the
peculiar intracellular architecture of this receptor characterized by
the presence of a globular domain (the “ballast”) (McCarthy et al.,
2019) that accounts for 40% of the entire receptor protein and is
responsible for many of the responses typically associated to the
P2X7R. More than 50 different putatively P2X7R interacting
proteins have been identified so far, but this is at present at the
best speculative and additional signal transduction systems besides
ion fluxes remain to be defined (Costa-Junior et al., 2011; Kopp et al.,

2019). This is mainly due to limited data on the organization and
structure of the P2X7R C-terminal tail, post-translational
modifications, and spatial organization (subcellular
compartmentalization, co-localization or sequestration) of P2X7R
and its interaction partners. Importantly, once we know what
compartment a protein is in, it is easier to narrow down what it
might be doing.

Studies that have so far investigated P2X7R subcellular
localization are few. To date, there is evidence suggesting the
presence of the P2X7R in the endoplasmic reticulum, lysosomes,
and phagosomes and in the mitochondria (Gonnord et al., 2009; Qu
and Dubyak, 2009; Sarti et al., 2021). Some of this localization is
obvious, due to P2X7R assembly, trafficking to the plasma
membrane or proteolytic degradation processes (Barth et al.,
2007; Robinson and Murrel-Lagnado, 2013). However, P2X7R
localization at the phagosome (Gu and Wiley, 2018) or at
mitochondria-associated-membranes (MAMs) (Missiroli et al.,
2023) might have a wider pathophysiological meaning in the
context of inflammation. Only one paper describes the presence
of the P2X7R on the nuclear membrane (Atkinson et al., 2002). Most
data on the intracellular localization of the P2X7R derive from
experiments in various cell lines, animal models, or immune cells,
neurons, glia cells and cancer cells. Although P2X7R expression has
been demonstrated in bone cells (osteocytes, osteoclasts, and
osteoblasts) (Jørgensen et al., 2002; Agrawal and Gartland, 2015;
Dong et al., 2020) and chondrocytes (Tanigawa et al., 2018; Li et al.,
2021), the subcellular localization of this receptor in these cells has
never been thoroughly investigated. We have previously
demonstrated that P2X7R is expressed in primary cultures of
both human osteoblasts from bone tissue (Bergamin et al., 2021)
and chondrocyte-like cells of the intervertebral disc, the major
fibrocartilaginous joint between two vertebrae in the spine
(Penolazzi et al., 2022). In the present study, we focused on
mapping P2X7R subcellular localization in these cells. Ex vivo
human primary osteoblasts (OBs), chondrocytes (Chs) and
intervertebral disc (IVD) cells from surgical biopsies were used as
experimental model. Our data show that the human wild-type full
length P2X7R (P2X7A) was expressed in different samples of human
osteoblasts, chondrocytes and intervertebral disc cells. Through
fluorescence microscopy (LM) and immunogold transmission
electron microscopy we localized P2X7R not only in the
canonical sites (plasma membrane and cytoplasm), but also in
the nucleus of all the 3 cell types, in particular IVD cells and
OBs. Mitochondrial P2X7R immunoreactivity was predominantly
detected in OBs and in IVD cells, but not in Chs.

Materials and methods

Cell isolation and cultures

Human samples were collected after written informed consent
provided by the participants and approval of the Ethics Committee
of the University of Ferrara and S. Anna Hospital (protocol no.
160998). IVD cells were isolated from human lumbar disc tissues of
patients undergoing spinal surgery for herniation and subjected to
mild digestion (1 mg/mL type IV collagenase, 5 h, 37 °C) as
previously described (Penolazzi et al., 2018). Human osteoblasts
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(hOBs) were obtained from vertebral lamina discarded during spinal
surgery: bone chips were minced into smaller pieces, plated in T-25
culture flasks as previously reported (Lambertini et al., 2017).
Human chondrocytes (Chs) were isolated from cartilage of nasal
septum after septoplasty surgery procedures (Angelozzi et al., 2017):
cartilage fragments were minced into small pieces and rapidly
incubated with type IV Collagenase, 16 h, 37 °C (Sigma-Aldrich).

Cells (OBs, IVD cells, and Chs) that were released from the
dissected tissue were cultured in standard medium (50% DMEM
(Dulbecco’s Modified Eagle Medium) high-glucose/50% DMEM F-
12/10% fetal calf serum) (cat. ECB7501L, ECB7502L, Euroclone S.
p.A. Milan, Italy) supplemented with antibiotics (penicillin 100 mg/
mL and streptomycin 10 mg/mL), at 37 °C in a humidified
atmosphere of 5% CO2. The cells were then expanded until
confluent (passage zero, P0), harvested and used for the
experiments here described (passage 2 to passage 4). The
morphology and phenotypic characterization of the cells used is
reported in the Supplementary Figure S1.

P2X7R negative HEK293 (wild type) and HEK293 stably
expressing P2X7A (namely, HEK293-P2X7A) were grown in
standard culture medium as above reported (Adinolfi et al., 2010).

See Supplementary Material for detailed information on
methodologies.

Western blotting

Total cell lysates were prepared in lysis buffer (50 mM Tris-HCl,
pH 7.8, 1% NP-40, 150 mM NaCl, 0.5% SDC (Sodium
Deoxycholate), 0.1% SDS (Sodium Dodecyl Sulfate) and 1 mM
NaF) supplemented with protease inhibitors (Sigma-Aldrich).
Proteins were quantified using the Bradford protein assay (Bio-
Rad Laboratories, Inc., CA, United States) (Bradford, 1976). Thirty
micrograms of protein were resolved on NuPAGE Bis-Tris Gel 4%–
12% gels (cat. NP0326BOX, Life Technologies), transferred to
nitrocellulose membranes and incubated over night at 4 °C with
the following primary antibodies: anti-P2X7R C-terminal (cat. APR-
004, rabbit anti-human, Alomone labs, Jerusalem, Israel; dilution 1:
300 in 2.5% NFDM, Non-Fat Dry Milk); anti-P2X7R extracellular
loop (cat. P9122, rabbit anti-human, Sigma Aldrich; dilution 1:
300 in 2.5% NFDM); anti-actin antibody (cat. A1978, mouse anti-
human, Sigma Aldrich, dilution 1:1000 in 5% NFDM).
Nitrocellulose membranes were incubated with the corresponding
HRP (Horseradish Peroxidase)-conjugated secondary antibodies (1:
3000 dilution in 5% NFDM): goat anti-rabbit (cat. A16096, Life
Technologies); goat anti-mouse (cat. 62–6520, Life Technologies).

See Supplementary Material for detailed information on
methodologies.

Immunofluorescence and confocal analysis

Cells (2 × 104) were seeded on glass coverslips put into 24 well
plates and fixed in 4% paraformaldehyde for 2 min at 37 °C. After
washes, the cells were permeabilized using 0.05% Triton X-100 and
then blocked with 2% BSA (Bovine Serum Albumin)/0.05% Triton
X-100/PBS (Phosphate Buffered Solution). After that, cells were
incubated overnight at 4 °C with the primary antibodies: anti-P2X7R

(cat. P8232, C-ter 576–595, rabbit anti-human, 1:100 dilution; Sigma
Aldrich) and anti-TOM20 (cat. WH0009804M1, mouse anti human
1:100, Sigma Aldrich). P2X7R blocking peptide (cat. AB5246, Merck
KGaA, Darmstadt, Germany) was added to the primary antibody at
a 1:1 ratio (Supplementary Figure S2). Appropriate isotype-matched
AlexaFluor-conjugated secondary antibodies (diluted 1:1000) were
then used (cat. A11008, goat anti-rabbit 488, and cat. A-11003, goat
anti-mouse 546, Life Technologies, CA, United States). The
coverslips were mounted with ProLong Gold Antifade with DAPI
(4′,6-diamidino-2-phenylindole) (cat. P36935, Life Technologies),
and immunofluorescence analysis was performed with a confocal
laser scanner microscope (Olympus FV3000) equipped with
a ×63 oil objective. After background correction, the Mander’s
and Pearson’s coefficient for colocalization were analyzed using
the JACOP plugin of the open-source Fiji software (http://fiji.sc/
Fiji).

Immunogold labeling and electron
microscopy

Cells (2 × 106) were harvested by trypsinization. The cell
suspension was fixed in 2% paraformaldehyde/PBS for 1 h,
permeabilized with 0.1% Triton X-100 and blocked with PBS/2%
BSA (Tao-Cheng et al., 2021). Cells were labelled over night with
anti-P2X7R (cat. P8232, C-ter 576–595, rabbit anti-human, 1:
20 dilution; Sigma Aldrich) or an equivalent amount of rabbit
IgG (Cat. 2729, Cell Signaling Technology, MA, United States),
reported as negative control (see Supplementary Figure S3); samples
were then incubated with Protein A- 20 nm Colloidal Gold Labeled
(cat. P6855, Sigma Aldrich). Finally, cells were fixed in
glutaraldehyde 2.5% phosphate buffer and osmium tetroxide 2%,
dehydrated and araldite embedded (Sigma-Aldrich). The ultra-thin
sections of a selected area were contrasted with uranyl acetate lead
citrate, and observed with a Zeiss EM910 transmission electron
microscope (ZEISS, Jena, Germany). Images were captured using an
Olympus Megaview III digital camera (Olympus Co., Tokyo, Japan).
For each cell type the mean percentage of gold particles distribution
was quantified (n = 50 random areas) from the extracellular
membrane, cytoplasm, nucleus, and mitochondria. Gold particles
were manually counted using ImageJ software (http://fiji.sc/Fiji).

Statistical analysis

All graphs displayed were produced with GraphPad software 8.0
(GraphPad Software Inc., San Diego CA, United States). All the
results were expressed as means ± SD from triplicate measurements
performed in at least 3 independent experiments.

Results and discussion

The expression of P2X7R was investigated by Western blotting
analysis. As shown in Figure 1A, the presence of the human wild-
type full length P2X7R (P2X7A) was detected in different samples of
human OBs, IVD cells and Chs. P2X7R-transfected HEK293 cells
and HEK293 cells (well-known not to express the P2X7R) were used
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as positive and negative control, respectively. Two different
antibodies were used, one raised against the extracellular loop
and the other against the intracellular C-terminal domain, as
described in the Materials and Methods section. We are well
aware that further analyzes will be needed to characterize the
presence of possible P2X7R splice variants (e.g., P2X7B) or single
nucleotide polymorphisms (SNPs) (Sluyter, 2017) in the different
cell populations examined. In any case, the P2X7A protein of the
expected size of approximately 75 KDa was identified here by the
two antibodies in all the 3 cell types. As reported in Supplementary
Figure S4, the same Western blotting analysis highlighted other
bands of different molecular weight which, being also present in
P2X7R negative HEK293 cells, are considered non-specific.

We then analyzed the 3 cell types by confocal microscopy. All
cell types were diffusely stained by the anti-C-terminus antibody,
with high intensity in the nucleus. Overall, the signal was higher in
OBs and IVD cells than in Chs (Figure 1B).

To analyze the P2X7R subcellular localization we
immunolocalized the P2X7R by either fluorescence microscopy
(LM) or immunogold transmission electron microscopy (TEM).
Given structural and functional changes observed during
osteogenic and chondrogenic differentiation in the
mitochondria and the nucleus (Li et al., 2017; Goelzer et al.,

2021), we focused on these two organelles. Mitochondrial P2X7R
localization was evaluated by co-labeling with the anti-P2X7R C-
tail antibody and an anti-TOM20 antibody (Translocase of the
Outer Membrane, a general import receptor that recognizes
mitochondrial targeting signals) (Yano et al., 2004). As
reported in Figure 2 A, immunofluorescence showed that
P2X7R co-localized with TOM20 both in OBs and IVD cells,
as revealed by Pearson’s and Manders’ overlap coefficient. On the
contrary, Chs showed a low co-localization index (PC < 0.3,
MC < 0.2), suggesting the absence of P2X7R in the mitochondria.

Co-labeling of cells with anti-P2X7R C-tail antibody and DAPI
for nuclear staining (Figure 2B) confirmed the presence of P2X7R in
the nucleus of all the cells examined.

High-resolution visualization of P2X7R distribution by TEM
revealed P2X7R immunoreactivity (red arrows in Figure 3) not only
in the canonical sites, i.e., plasma membrane and cytoplasm, but also
in the nucleus of all the 3 cell types, OBs, IVD cells, and Chs (Figures
3A,B,C). Nuclear P2X7R immunoreactivity appeared to be prevalent
in IVD cells, whereas mitochondrial P2X7R immunoreactivity
appears to be predominant in OBs. In the Chs P2X7R was
mainly localized in the plasma membrane and cytoplasm, very
little in the nucleus, and none in the mitochondria, in agreement
with data from immunofluorescence confocal microscopy.

FIGURE 1
Expression of P2X7R in human osteoblasts (OBs), IVD cells (IVD), and chondrocytes (Chs). (A) Representative Western blot analysis with anti-P2X7
extracellular loop and anti-P2X7 C-terminal antibodies; P2X7R stably transfected HEK293 cells (HEK293-P2X7A) and HEK293 wild-type (HEK293) were
used as positive and negative control respectively. β-actin was used as loading control. Number of cell samples: OBs = 6, IVD = 4, Chs = 3 (B)
Representative immunofluorescence and confocal microscopy analysis with anti-P2X7R C-terminal antibody. Scale bars = 10 μm.
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In control experiments, no gold labelling was seen in P2X7R
negative HEK293 cells (Figure 3D) nor in cells labelled with rabbit
IgG (Supplementary Figure S3). P2X7R immunoreactivity was
predominantly detected in the plasma membrane of P2X7R-
transfected HEK293 cells (Supplementary Figure S5).

These data suggest that P2X7R may be considered a protein with
multiple localizations. This is not so surprising considering that about a
half of all proteins are localized at multiple compartments, and that

there is a shared pool of proteins even among functionally unrelated
organelles as demonstrated by recent spatial proteomics approaches
(Thul et al., 2017). From the data present in the literature to date, it does
not appear that P2X7R is equipped with the typical sorting signals of
subcellular localizations (Kopp et al., 2019; Sarti et al., 2021). We
subjected the P2X7R sequence to computational analysis (Imai and
Nakai, 2020) to identify putative mitochondrial and nuclear localization
signals, but we found no canonical mitochondrial localization signals.

FIGURE 2
Subcellular localization of P2X7R by immunofluorescence and confocal microscopy in human osteoblasts (OBs), IVD cells (IVD), and chondrocytes
(Chs). (A) Mitochondrial P2X7R localization analysis. The cells were co-labeled with an anti-P2X7R C-terminal antibody (Alexafluor 488, green) and an
anti-TOM20 antibody (Alexafluor 546, red). Merge images represent an overlay of the two channels where co-localization is indicated by a color change
(yellow). Average Pearson’s and Mander’s co-localization coefficients (±SEM) were evaluated and reported in the graphs. Scale bars = 10 μm. (B)
Nuclear P2X7R localization analysis. The cells were co-labeled with an anti-P2X7R C-tail antibody (Alexafluor 488, green) and DAPI (nuclear staining,
blue). Co-localization of P2X7R with DAPI was assessed by Pearson’s and Mander’s coefficients (average ± SD). Scale bars = 10 μm.
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Most likely P2X7R is part of the 40% of mitochondrial proteins lacking
the sequence for subcellular localization (Bauer et al., 2015). It has been
in fact reported that mitochondrial proteins that are synthesized
without a cleavable presequence typically recognized by the
translocase of the outer membrane (TOM) receptors, may also enter
mitochondria via unusual pathways (Chacinska et al., 2009; Jackson
et al., 2021). On the contrary, and very interestingly, NLStradamus tool
(Nguyen Ba et al., 2009) revealed the presence of a nuclear localization
signal at Cter of P2X7R (578 - RKEFPK - 583).

It is conceivable that P2X7R uses some alternative pathways based on
molecular adaptors or protein scaffolds capable of modulating the
localization of the receptor and consequently its function, all aspects
that certainly deserve to be investigated in detail. It is important to
highlight these issues because the design of novel P2X7R-targeted
therapies will have to take them into account (Burnstock, 2006). The
unorthodox compartmentalization of P2X7R in cells of the skeletal
system might be functional to:

- A) modulate its activation state and stability
- B) promote its degradation, turnover or recycling via different
pathways

- C) integrate the P2X7R in different intracellular circuitries,
intracellular organelle exchange, or specific metabolic
pathways or intracellular second messenger systems (e.g.,
Ca2+ signals) (Di Virgilio et al., 2022)

- D) support non-canonical nuclear ATP-generating systems
(Wright et al., 2016)

- E) support nuclear mechano-transduction (Kong et al., 2021).

These tips might help to resolve many controversial aspects
regarding the role of P2X7R in the cartilage and bone tissues. A large
scientific literature has demonstrated that the protection of articular
cartilage and the maintenance of joint extracellular matrix
homeostasis, as well as the fine-tuning, initiation and termination
of balanced bone remodeling are strongly dependent on the

FIGURE 3
Subcellular localization of P2X7R by immunogold labeling. Human osteoblasts (A), IVD cells (B), chondrocytes (C) and HEK293 wild-type cells (D)
were subjected to pre-embedding immunogold staining. For each cell type the mean percentage of gold particles distribution was reported. Fifty areas
from the extracellular membrane (EM), cytoplasm (C), nucleus (N) and mitochondria (M) were randomly chosen, and gold particles were manually
counted using ImageJ software, and expressed as percent of total (±SD). Highmagnification boxes for each subcellular compartmentwere reported
below. Arrowheads = gold particles. Scale bars = 1 µm.
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purinergic signaling, but many aspects remain to be understood
(Corciulo and Cronstein, 2020; Bolamperti et al., 2022).
Importantly, the more we know about how mechanical signals
are transduced and regulate cell functioning, the better we can
understand the different behaviors of the cells present in the
joint and bone microenvironment. This knowledge might be of
great help for the design of novel therapies for osteoarticular
diseases.
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