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The cis-lunar periodic orbit exhibits some unique dynamic characteristics. Among
them is the distant retrograde orbit, which has long-term stability and is one of the
ideal candidate deployment orbits for cis-lunar space stations and deep-space
exploration transfer stations. Orbiting, rendezvous, and docking are among the
flight operations involved in space station on-orbit construction, material supply,
spacecraft monitoring, and other tasks. Suitable initial conditions can be created
for these operations by shortening the relative distance between spacecraft
through phasing. In this study, the characteristics of a two-impulse phasing
orbit on a distant retrograde orbit (DRO) are summarized, and its phasing
ability is globally analyzed. Based on these analyses, a phasing optimization
problem was presented and solved. Using DRO’s dynamic characteristics, a
DRO multi-impulse phasing rolling solution method is presented. For accuracy
purposes, the orbit determination error is also considered in this method. The
simulation analysis was performed using the circular restricted three-body
problem (CR3BP) dynamic model and the ephemeris model. Compared with
the results of two-impulse phasing, this method reduces the offset of the end
position of the DRO phasing orbit from hundreds to tens of kilometers. This result
satisfies the relative distance requirements for subsequent spacecraft operations.
The total pulse requirement of this phasingmethod for the twomodels was within
a reasonable and feasible range.
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1 Introduction

With the development of astronautical technology and willingness of various countries
to develop cis-lunar space resources, cis-lunar space utilization has increasingly attracted
attention. In 2018, Queqiao, the relay satellite of the Chinese Chang’e-4, was launched
successfully and injected into cis-lunar L2 orbit. This satellite was used to provide relay
communication services for the Chang’e-4 landing on the far side of the Moon. Queqiao is
the first special relay communication satellite outside the Earth’s orbit (Gao et al., 2019).
NASA’s Artemis program plans to deploy lunar space stations, named LOP-G, around the
Moon in 2024. Compared with near-Earth space stations, Earth-Moon space stations have
many incomparable advantages. Research, including planetary science, astrophysics, Earth
observation, solar physics, basic space biology, human health, and behavior, will be
conducted using LOP-G (Fuller et al., 2021). The Lunar Pathfinder was developed by
the Surrey Satellite Technology (Giordano et al., 2021). It was the first commercial lunar
orbiter to provide high-performance, competitively priced Earth-Moon communication
services. After the success of this mission, more lunar satellites will be launched to form a
lunar GPS.
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The cis-lunar periodic orbits exhibit unique dynamic
characteristics. Distant retrograde orbits (DROs) have long-term
stability (Bezrouk and Parker, 2014). This implies that the spacecraft
deployed on a DRO requires only a small number of pulses for orbit
maintenance. In addition, the DRO’s orbit amplitude is large;
therefore, the entire cis-lunar space is visible to this orbit (Peng
et al., 2018). Hence, the DRO is suitable as the parking orbit of a cis-
lunar space station or deep-space exploration transfer station.
Research on DRO applications has also been conducted.
Murakami and Yamanaka (2015) introduced a DRO rendezvous
program from two perspectives: orbit and launch window design.
NASA proposed an asteroid redirect mission (Gates et al., 2015a;
Gates et al., 2015b) that captures the asteroid and saves it on the
DRO; subsequently, manned spacecraft from low-Earth orbit
rendezvous with asteroids to carry out related scientific missions.
Smitherman and Griffin (2014) analyzed the concept of the
habitation module in deep-space exploration. The deployment of
the habitation module on the DRO can support lunar missions,
extend the duration of manned missions, and provide full lunar
surface accessibility.

Spacecraft rendezvous and docking not only play an important
role in traditional space missions but also are one of the key
technologies to perform cis-lunar space missions. For example,
the flight processes of missions such as the cis-lunar space
station on-orbit assembly (Liu et al., 2019), material supply, and
spacecraft monitoring (Corpino and Stesina, 2020), all include
rendezvous and docking. Rendezvous and docking technologies
have achieved extensive theoretical research and practical
verification results in two-body space environments such as
international space station missions in LEO and Apollo missions
in LLO. However, research on cis-lunar three-body environments
has only emerged in the last decade. The applications of natural
dynamical structures of periodic orbits have been widely discussed.
McCarthy and Howell (2021) investigated applications in eclipse
avoidance and transfer design by utilizing quasi-periodic orbits and
their related hyperbolic manifolds in the lunar region. Bolliger
(2019) examined transfers between the Near-Rectilinear Halo
Orbit (NRHO), and periodic orbits termed the “butterfly” family.
Invariant manifolds of periodic orbits were used to design transfers
in cislunar space, such as transfers from a super-Geostationary
Transfer Orbit (sGTO) to NRHOs (Singh et al., 2021a; Singh
et al., 2021c), and a Lunar Polar Orbit (Singh et al., 2021b). For
a far-range rendezvous, Murakami et al. (2015) and Schulte et al.
(2020) studied the impulsive maneuver method, and Lizy-Destrez
et al. (2019) studied the manifold splicing method. Blazquez et al.
(2018) and Blazquez et al. (2020) proposed that the natural drift of
ephemeris NRHO relative to the reference orbit can be used to
achieve far-range rendezvous and docking.

In the rendezvous stage, the navigation mode of the spacecraft
changes from absolute navigation, which depends on the ground
station, to relative navigation, which depends on the radar and
optical cameras on board. Relative navigation has certain
requirements regarding the relative distance between two
spacecraft. Considering this requirement, a natural question is
how to create suitable initial relative distance conditions for the
DRO’s rendezvous and docking. Phasing can solve this problem.
The latter can be classified into two patterns: phasing in the same
orbit (Bucchioni and Innocenti, 2021) and phasing in different

orbits (Sato et al., 2015; Chen and Ma, 2017; Qi and de Ruiter,
2020). The second one refers to a spacecraft departing from
another orbit to its target phase on which the target spacecraft
parks. Phasing in the same orbit indicates that the spacecraft is in
the same orbit before phasing. If the phase in which the spacecraft
enters after orbit transfer is not accurate, the final phase of
phasing on different orbits is not suitable, or the rendezvous
operation fails, the phasing on the same orbit needs to be
performed again, which highlights the importance of the co-
orbit phasing technology. In recent years, co-orbit phasing on
the three-body periodic orbit around the cis-lunar space has been
studied. To address the need for halo orbit navigation satellite
deployment and on-orbit fuel refueling, Qi and de Ruiter (2020)
analyzed two-impulse phasing on the halo orbit. For the
maximum impulse maneuver constraint, a two-impulse phasing
orbit optimization problem was proposed to achieve a maximum
phase change., A frog-leaping phasing strategy is proposed when
the phase difference changes significantly. This strategy enables
multiple revisits of the halo orbit and is therefore suitable for
fueling tasks. Motivated by the positioning using the Earth-Moon
Halo Orbit Experimental Beacons (PHOEBE) project, Chen and
Ma (2017) studied a phasing method using the invariable
manifolds of NRHO to deploy the CubeSat target
configuration. Fossà et al. (2022) designed a three-impulse co-
orbit phasing method that used unstable and stable manifolds.
This method was compared with two-impulse transfer phasing
from the Halo parking orbit to the NRHO. Therefore, it can be
concluded that the phasing costs of these two methods are
equivalent. Sato’s research results show that when the phase
difference between spacecraft on a Halo orbit is large, phasing
using an invariant manifold can save fuel (Sato et al., 2015). Few
phasing studies have considered these errors. Davis et al. (2020)
analyzed and found that in the case of solar radiation light
pressure, navigation error, and maneuvering error, the practical
orbit of the spacecraft deviates from the NRHO baseline orbit and
enters the Earth’s shadow area. This destroys the eclipse-free
nature of the baseline orbit. Phase control was added to the orbit
maintenance algorithm to adjust the time required for the
spacecraft to pass through the perilune. This improved
algorithm ensures eclipse-free characteristics of the baseline
orbit. In Davis’s study, the goal of the phase control was orbit
maintenance, which requires small pulses.

Model predictive control (MPC) is an optimal control algorithm
based on prediction models. The algorithm has been widely applied
in fields such as petrochemical industries, electric power, aerospace,
transportation, and robotics (Qin and Badgwell, 2003; Holkar and
Waghmare, 2010; Mayne, 2014). The rolling horizon optimization
and feedback correction included in MPC can effectively solve
optimal control problems with multiple uncertain factors
(Camacho and Alba, 2013). Rolling optimization has the same
relative form of performance indicators at each sampling time,
but the time interval included is different. Optimization is not
completed at one time but is repeatedly performed online, which
is the meaning of rolling. Due to the existence of uncertainties such
as model errors and environmental disturbances, online repeated
optimization strategies can be robust against these uncertain factors.
This study is partially inspired by the strength of the rolling
optimization strategy and proposes a multi-impulse phasing
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rolling solution method. This method continuously updates the
control from the updated orbit state, thus reducing the impact of
uncertain factors on the deviation of the phasing orbit’s terminal
position. The difference is that rolling optimization has a finite
optimization time domain at each sampling time, while the multi-
pulse phasing rolling solution method includes the time domain
from the current time to the terminal time.

The DRO have a wide application in the future. This was the
demand-driven task in this study. Space missions around a DRO
cannot be completed without phasing technology. This is the
technical demand considered in this study. Based on these two
requirements, it is considered that the tracking and target
spacecrafts are both on the same DRO, and then the co-orbit
phasing operation is emphatically studied. DRO does not have
stable/unstable manifolds; therefore, the existing low-cost
phasing scheme using manifolds is not applicable. Modeling,
orbit determination, and maneuvering errors are inevitable;
therefore, it is necessary to address these errors. This is the
feasibility requirement of this study. In this study, the
returnability of free trajectories departing from the DRO is
summarized. The characteristics of the two-impulse phasing
orbit in the DRO are summarized, and its phasing ability is
globally analyzed. These analyses included the effects of the flight
time, initial phase of the spacecraft, and phase difference on the
total required impulse. The results showed that, bounded by one
orbital period, the phasing impulse decreased rapidly and then
decreased slowly with an increase in flight time. This indicates
that the ability to reduce the phasing impulse by increasing flight
time is limited. Given the time of flight, the adjustable range of
the phase difference increases linearly with an increase in the
maximum impulse constraint. Based on these analyses, an
optimization problem for phasing was designed and solved.
Considering the orbit determination error, a multi-impulse
phasing rolling solution method was proposed. The simulation
results demonstrate that this method can effectively reduce the
accumulation of orbit errors. In addition to the ideal model, this
method applies to the ephemeris model, which indicates that it
has practical significance.

This study is divided into six sections. The first section
introduces the background of phasing in the cis-lunar space and
the research status of phasing in the DRO. The second introduces
the dynamics model and reference DRO. A mathematical model of
the phasing problem is presented in Section 3. The characteristics of
the phasing orbit on the DRO are discussed in the fourth section. A
phasing optimization problem is also presented and solved. Section
five gives the multi-impulse phasing rolling solution method,
simulation results, and analysis. The final section concludes this
paper.

2 Dynamical model

2.1 Orbital reference frames

The earth-centered inertial (ECI) coordinate frame and Moon
center rotation (MCR) frame are defined in this section. They are
shown in Figure 1.

The ECI is centered at the Earth’s center of mass. The Earth’s
mean equatorial plane is the reference plane. The x-axis is aligned
with a vernal equinox. The z-axis is aligned with the normal
direction of the reference plane. The y-axis is perpendicular to
the x- and z-axes, forming a right-handed Cartesian coordinate
system.

The MCR is centered at the Moon’s center of mass. The x-axis
points toward the center of mass of the Earth. The z-axis points in
the direction of the angular momentum of the Moon with respect to
the Earth. The y-, x-, and z-axes form a right-handed Cartesian
coordinate system.

2.2 CR3BP model

In the circular restricted three-body problem (CR3BP), it is
assumed that the spacecraft is affected only by the gravity of the
Earth and Moon, with massesmE,mM. The mass of the spacecraft is
so small that it can be ignored. Furthermore, let us suppose that the
two central bodies move in circles around a common centroid. In the
frame MCR, the dimensionless dynamic equations of the spacecraft
were obtained. The spacecraft state is written as
x � [rT, vT]T � [x, y, z, vx, vy, vz]T, and the equations of motion
of the spacecraft are given by Franzini and Innocenti (2019).

_x � f x( ) �

vx

vy

vz

2vy + x − μ
x

r3ms

− 1 − μ( ) x − 1

r3es
+ 1( )

−2vx + y − μ
y

r3ms

− 1 − μ( ) y

r3es

−μ z

r3ms

− 1 − μ( ) z

r3es

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

In which, μ = mM/(mE + mM) is the mass parameter of the earth-
moon system, x, y, and z are the position components, res, rms present
the distances between spacecraft, Earth, and Moon respectively:

rms �
���������������
xs − 1( )2 + y2

s + z2s

√
, res �

����������
x2
s + y2

s + z2s

√
(2)

2.3 Ephemeris model

In an Earth-centered inertial system, the dynamic equations of a
spacecraft relative to the Earth are as follows:

€rei � €Ri − €Re � −∑n−1
k�1

μk
rpki
rpki

3 −∑n−2
k�1

μk
rpke
rpke

3

� −μe
rei
rei

3 −∑n−2
k�1

μk
rpki
rpki

3 +
rpke
rpke

3( ) (3)

where n is the number of celestial bodies of the solar system, μk is the
mass parameter of the kth celestial body, subscript pk presents the
kth celestial body, subscript e presents the Earth, and subscript i
presents the spacecraft.
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2.4 DRO baseline orbit

The DRO family is illustrated in Figure 2. Among these, a DRO
with a period of approximately 14.7 days, equivalent to one-half of
theMoon’s synodic period, is at a moderate distance from theMoon,
making it easy to travel to the Moon, Earth, and even deep spaces.
This orbit is denoted as a 2:1 lunar synodic resonant DRO, which
indicates that two periods of this orbit are completed for one lunar
synodic period. It is beneficial for mitigating long eclipses
(McCarthy and Howell, 2021). Therefore, this orbit can be used
as a parking orbit for the cis-lunar space station. This orbit was
selected as the baseline orbit in this study.

The DRO’s phase is defined as follows.

θ � 2π
t − t0
TDRO

(4)

where t0 is the time the DRO intersects the positive x-axis, and this
intersection is the zero-phase point. t represents the moment at
which the spacecraft travels along DRO to the phase θ. TDRO is the
orbital period of the DRO.

The phase difference of spacecraft is given by

Δθ � θc − θt (5)
in which subscripts c and t represent chaser spacecraft and target
spacecraft, respectively.

On DRO, the values of orbit state at time t are given by the
mapping function of phase θ: x = g(θ).

We use the DRO trajectory under the CR3BP model as the
initial guess; and construct a continuous four-loop counterpart
(about 2 months) under the ephemeris model. The ephemeris-
DRO still maintains the basic shape as that of the CR3BP-DRO.
The orbital period of the ephemeris-DRO is defined as the
averaged period. The DRO phase diagrams in the CR3BP and
ephemeris models are shown in Figure 3. The initial epoch of the
DRO in the ephemeris model was 2030/1/1 00:00:00. It is
noteworthy to mention that the ephemeris DRO is not a closed
orbit; therefore, the orbit states corresponding to the 0° and 360°

phases are different.

3 Phasing problem statement

It is assumed that two spacecraft with an initial phase difference
travel in the DRO. The chaser executes impulse several times,
arriving at the same phase and time as the target spacecraft. This
process is called multi-impulse DRO phasing. A general
mathematical description of the multi-impulse phasing problem
is presented in this section. Two-pulse phasing is a special case of
multi-pulse phasing.

The initial phase angle of target is θt. The initial phase target of
chaser is θc. The phase difference is Δθ = θc–θt. The orbit times
corresponding to θt and θc are tt, and tc. The phase angle of
rendezvous point is θr. The corresponding orbital time is tr.
Because the target flies freely, the time of flight of phasing TOF
can be determined by the phase parameters of the target:

Δt � tr − tt � θr − θt
2π

TDRO � θr − θc + Δθ
2π

TDRO (6)

Notably, the phase units in Eqs 4, 6 are radians. If the phase θ is
in degrees, then the term “2π” in these two equations should be
replaced by “360°”.

FIGURE 1
Earth-centered inertial frame and Moon-centered rotation frame.

FIGURE 2
DRO family (Moon centered Moon–Earth rotation system).
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The number of impulses was assumed to beN. The phasing orbit
is divided into N−1 arcs using N discrete points. The flight time was
decomposed intoN−1 segments. The departure and arrival times are
t1 = tt and tN = tr. The corresponding times of the discrete points are

ti � t1 + i − 1
N − 1

Δt, i � 1,/, N

The multi-impulse phasing problem is stated as follows:
Given the phasing input parameters θc, θt (or Δθ), θr, find the

departure pulse, the positions, and pulses of splicing points, so that
the position constraints of splicing points and rendezvous point are
satisfied.

Considering [rti; vti] as the initial value, the trajectory between
[ti, ti+1] is obtained by solving Eq. 1. For convenience, the terminal
state of this trajectory is denoted by:

r−ti+1 ; v
−
ti+1[ ] � φ rti , vti, ti; ti+1( )

where φ is a symbol of flow, which represents the orbit state obtained
by integrating from an initial value for a time interval.

The multi-impulse phasing problem can be expressed using the
formula in Table 1 (Zhao et al., 2016).

Constraints:

r−tk ; v
−
tk

[ ] � φ rk−1, vk−1, tk−1; tk( ), k � 2, ..., N (7)
rk � r−tk , vk � v−tk + Δvk, k � 2, ..., N (8)

The unsolved variables consist of N pulses: Δvk, k � 1, ..., N and
N-2 patching points: rk, k � 2, ..., N − 1. The number of constraints
is 6N-6.

The two-impulse phasing problem is a special case of the multi-
pulse phasing problem. When N = 2, the preceding equations

represent a two-pulse phasing problem. The unsolved variables
are Δv1, and Δv2.

The phasing orbit was close to the DRO baseline orbit, and the
points in the DRO were chosen as the initial estimates for the
patching points. The points on the two-pulse phasing orbit can also
be chosen as the initial values when solving the multi-impulse
phasing problem.

4 Characters of phasing orbit on DRO

The phasing characteristics of the DRO were mainly analyzed
from two aspects. First, the evolution characteristics of the free orbit
from any point in the DRO are analyzed, and several definitions of
returnability are provided. Subsequently, the characteristics of the
DRO phasing orbit are studied using a two-impulse phasing
method. The effects of time of flight, initial/final phase, and
phase difference on fuel cost were analyzed. Finally, a phasing
optimization problem is proposed and solved based on the above
analysis results.

4.1 Returning capability after departing
from DRO

Taking two-impulse phasing as an example, the returning
capability after departing from the DRO is studied in this section.

4.1.1 Definition of returning capability
Given departure phase θ1 and velocity Δv1, the free flight

trajectory is calculated. The orbit state of departure phase is

FIGURE 3
The definition of DRO (2:1) phase. (A) CR3BP model, (B) ephemeris model.

TABLE 1 Multi-impulse phasing model.

The 1st segment The kth segment k = 2, . . . , N-2 The (N-1)th segment

initial state x1 � xc + [0,Δv1]T x+k � x−k + [0,Δvk]T x+N−1 � x−N−1 + [0,ΔvN−1]T

temporal interval [t1 , t2] [tk, tk+1] [tN−1 , tr]

terminal matching state x−2 � [rt2 , vt2]T x−k+1 � [rtk+1 , vtk+1]T xr � [rN; vN]
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denoted as: x1 = [r1; v1] = g (θ1). The initial value of free trajectory is
[r1; v1+Δv1].

The intersection point of the free trajectory and DRO is denoted
as x2, then the phase angle of this point is θ2 = g-1 (x2), where, g

-1 ()
indicates the inverse function of g (). The calculation method of
intersection points refers to the program uploaded by Canós, which
computes the locations where a curve self-intersects itself in a fast
and robust way (Canós, 2006).

More than one intersection point may exist between the free
trajectory and the DRO. At the intersection point, the spacecraft
can return the DRO by maneuver Δv2. The magnitude of the
maneuver is the difference between the orbital velocity of the DRO
and that of the free-flight trajectory. Therefore, the intersection
point is called a returnable point. In this study, only the
intersection point with the minimum velocity difference was
discussed.

For analysis purposes, the direction of the departure velocity Δv1
is defined as the angle between v1 and Δv1, written as α. The span of
α is [0, 2π).

Three indices are given to measure the returning capability and
are summarized in Table 2.

4.1.2 Simulation and analysis
The magnitude of Δv1 = 5 m/s is taken as an example. The

returning capability of the free-flight trajectory departing from the
DRO was analyzed. 200 directions of departure velocity and
200 departure phases were uniformly selected; that is, n = o =
200. The free-flight time in this study was selected as two orbital
periods. The distribution of the phase θ2 and speed difference Δv2 of
returning points are shown in Figure 4.

As shown in the left picture of Figure 4, the asymmetric
characteristics of the free-flight trajectory departing the DRO can
be seen. On the one hand, for any target phase of the DRO, a (θ1, α)
combination can be found whose corresponding free trajectory
returns this target phase. This indicates the global returnability of
the target phase of the DRO. On the other hand, there are four blank
areas which mean that not all the free trajectories from the departing
phase θ1 can return DRO which highlights the non-global
returnability of the DRO departure phase. In addition, these
blank points do not completely represent unreturnable. When
the time of flight is extended to a certain value, some free
trajectories corresponding to the blank area return to the DRO.
This implies that the blank area will narrow. As shown in the right
picture of Figure 4, when the initial phase was near 100° or 300°

(i.e., near the apolune), and the direction of departure pulse was near
100° or 300°, the velocity difference of the reachable point reaches its
peak. This is probably because the velocity of the DRO near the
apolune is relatively small, and the same pulse causes a greater
change in the orbital state. Therefore, the speed difference was
relatively large when the trajectory returned to DRO.

Intuitively, overall return probability γ is the proportion of the
non-blank area in the distribution graph. When the magnitudes of
the departure velocities were 2.5 m/s, 5 m/s, 10 m/s, 15 m/s, and
20 m/s, the overall return probabilities were 0.9288, 0.9246, 0.9206,
0.9142, and 0.9044, respectively. A larger value means that, under
the simulation conditions, the probability of a spacecraft departing
from the DRO and then returning to the DRO is high.

The returnable characteristics of free-flight trajectories departing
from different phases of the DRO are shown on the top of Figure 5.
Unaffected by the direction of the departure velocity, the departure

TABLE 2 Returning capability indexes.

Index Definition State

overall return probability γ = m/(n*o) Given the magnitude of Δv1, and time of flight, the ratio of the trajectories in set (θ1 , α) that can return DRO. In which,
m indicates the total of the trajectories that can return DRO. n indicates the number of trajectories departing from
phase θ1. o indicates the number of samples of θ1

return probability about departure
phase

η(θ1) = q/n q indicates the number of trajectories that depart from phase θ1 and can return DRO.

return probability about target phase λ(θ2) = p/m p is the number of trajectories that can return phase θ2

FIGURE 4
Distribution of phases and velocity differences at the reachable points (Δv1 = 5 m/s).
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phases in which almost 100% can return DRO aremainly distributed in
two regions: [0°, 80°] and [230°, 260°], and the velocity difference of the
corresponding return point was relatively small. When the phase in
these regions is selected as the phasing start point (initial pulse
application point), the phasing orbit has high fault tolerance for the
pulse direction, high safety, and a small escape risk.

The return probability of the target phase and mean arriving
pulse (velocity differences of the reentry points) are shown on the
bottom of Figure 5. It was found that the phases with the highest
return frequency were near the perilune of the DRO, and the
corresponding velocity difference was larger. This indicates that
under free-flight conditions, the collision risk near the perilune is
higher. In addition, the larger the departure pulse, the larger the
velocity difference in the arriving point. Significantly, departure
phases and directions of departure velocity are uniformly sampled,
while the corresponding free flight trajectories return to all phases of
DRO unevenly. This is why λ fluctuates rapidly and also illustrates
the complexity of orbits in cislunar space.

4.2 Two-impulse phasing

In this study, the effects of the initial phase, phase difference, and
time of flight on the total pulse required for phasing were mainly

considered in the analysis of the phasing capability of the DRO. A
simple two-impulse phasing method is adopted. The two-impulse
phasing model is shown in Section 3 and solved via a standard
Newton iteration routine.

4.2.1 Effect of time of flight on phasing Δv
To analyze the effect of time of flight, the parameter Δt of the

two-impulse phasing problem proposed in Section 3 is also taken as
an unknown. In other words, the initial phase θt of target, initial
phase θc of chaser, and initial phase difference Δθ are given, then the
foresaid two-impulse phasing problem is solved. The phase angle of
the rendezvous point is determined using Eq. 6. The parameters to
be solved are Δv1, Δv2, and Δt.

The initial values of the departure velocity and flight time were
given randomly. The value ranges of both were 0–100 m/s, and
0.2–2.5TDRO respectively. The target’s initial phase angles
considered were 0°, 90°, 180°, 270° respectively. Initial phase
differences are −90°, 90°, 180°. Therefore, there are 12 cases in
total. For each case, the initial values were randomly assigned
500 times, and the two-impulse phasing problem was solved.
Convergent solutions were recorded (solutions with excessive
pulses were excluded). The minimum pulse solutions for each
case are listed in Table 3. The corresponding flight times were
greater than one TDRO.

For instance, the simulation results were analyzed when the
initial phase of the chaser was 90° behind. The results are shown
in Figure 6. In this figure, 0°–270° indicates that the initial phase
angles of the target and chaser were 0° and 270°, respectively.
Overall, the convergent solutions are concentrated on a curve
descending along the x-axis. It indicates that the required Δv
decreases with the increasing time of flight of phasing. When the
flight time is more than one orbital period (right part of the
convergent solutions figure), the convergent solutions are
distributed on many curves, indicating that there are multiple
solutions. Because of the existence of multiple solutions, if the
initial value is not appropriate, the magnitude of the maneuver
of the solution to the phasing problem is too large. This implies
that the two-impulse phasing problem is sensitive to the initial
value. The phasing orbits corresponding to the minimum pulse
solutions inside the reference DRO are shown on the right side of
Figure 6. On the left side of Figure 6, the curve where the
minimum pulse solution is located is denoted as curve a. The
phasing orbits corresponding to the points on curve a were also
located inside the reference DRO. The phasing orbits
corresponding to the points on the other curve were located
outside and away from the reference DRO. Overall, increasing
flight time can reduce the required pulse phasing. Thus, when
the phasing maneuver is too large to violate the impulse
constraint, a multiple-revolution phasing strategy can be
adopted.

4.2.2 Effect of initial phase and phase difference on
phasing Δv

The initial phase θt of target, initial phase θc of chaser, initial
phase difference Δθ, and time of flight Δt are given, then the two-
impulse phasing problem of Section 3 is solved. The phase angle of
the rendezvous point is determined using Eq. 6. The parameters to
be solved are Δv1, Δv2.

FIGURE 5
(A) Return probability of departure phase and mean arrival pulse,
(B) the return probability of target phase and mean arrival pulse.
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The simulation parameters are as follows: The time of flight of the
phasing was fixed at one orbit period. The range of the initial phase
difference is [−90°, 90°]. The range of the initial phase of target θt is [0°,
360°]. Because the time of flight is short, the case where the absolute
phase difference is greater than 90 °is temporarily not considered.

The simulation results are presented in Figure 7. When the
phase of the target was near 0°, 180°, and 360° (the ridge in the figure)
at the initial time of phasing process, that is near the perilune, the
required phasing pulse was relatively large.When the phase was near
90° and 270° (the saddle of the mountain in the figure), that is, near
the apolune, the phasing pulse was small. The reason behind this
may be that the velocity at the apolune of the DRO is small, so the
velocity difference between the spacecraft is also small when the
spacecraft moves to the apolune. From the perspective of reducing
fuel consumption, the apolune is a more suitable target for phasing.
Therefore, when there is a need for phasing, if the time requirement
is relatively loose, the phasing operation can be performed after the
spacecrafts move to the apolune.

TABLE 3 Minimum pulse solutions.

Initial phase of target [deg] Initial phase of chaser [deg] Δv m/s Time of flight TDRO

the chaser is 90° ahead

0 90 48.9573 1.7861

90 180 39.2873 1.9044

180 270 43.5673 1.8958

270 0 39.3395 1.7020

the chaser is 90° behind

0 270 57.9164 1.6159

90 0 55.8255 1.2480

180 90 52.4071 1.6045

270 180 56.6372 1.2686

phase difference is 180°

0 180 105.3543 1.8532

90 270 92.5697 2.0516

180 0 120.7140 1.0479

270 90 108.8941 2.0091

FIGURE 6
Results when the chaser is 90° behind. (A) Δv vs. TOF (the dots represent the convergent solutions. The triangles represent the solutions with Δvmin),
(B) the phasing trajectory of minimum pulse solution.

FIGURE 7
Δv vs. phase difference and initial phase (Δt = 1TDRO).
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Among the simulation results, the initial phase differences
conforming to the condition that the total phasing pulse was less
than 50 m/s were found. The maximum and minimum initial phase
differences are 45° and −64° respectively, which means that the range
of adjustable phase difference is [−64°, 45°]. When the initial phase
difference is outside this range, the phasing mission cannot be
completed using a single two-impulse phasing under a pulse
constraint. The maximum adjustable phase differences under
different pulse constraints were obtained using the same method.
The results are shown on the left side of Figure 8. It is found that the
adjustable initial phase difference increases linearly with the increase
of the maximum pulse constraint.

The time of flight was added to the 1.5 TDRO. The range of the
initial phase difference was [−180°, 180°]. The other simulation
parameters remained constant. The maximum adjustable phase
differences under different pulse constraints were obtained using
the samemethod. The results are shown on the right side of Figure 8.
The adjustable initial phase difference also increased linearly with an
increase in the maximum pulse constraint.

4.3 Phasing optimization problem

When a phasing mission is provided, the initial phasing
difference is generally known, whereas the initial/final phases and
flight time of the phasing orbit are optional. The discussion in the
previous section guides the selection of the initial phasing
parameters. The returning capability analysis results provide a
better value range for the starting point phase of the phasing
orbit. Based on the results of the target phase returning
characteristics and phasing capability analyses, for the purpose of
safety and fuel economy, the final point of the phasing orbit should
be selected near the apolune.

Next, a phasing optimization problem is presented and solved. The
input parameter of this phasing problem is the phase difference Δθ,
which is positivewhen the chaser is ahead. The optimization parameters
are the initial phase of phasing orbit θc, final phase θr, themagnitudeΔv1
and direction β of impulsive maneuver. The β is the angle between
impulsive maneuver and x-axis. The range of β is [−180°, 180°]. The
optimization objective was to minimize the total fuel cost. The final

position error should be as small as possible to satisfy the endpoint
position constraint. The time of flight was determined using Eq. 4. The
optimization problem can be stated as follows:

min
θc ,θr ,Δv0,β

f � Δvtot| | + k × xtf ,err

∣∣∣∣ ∣∣∣∣
subject to θc ∈ 0°, 80°[ ]

θr ∈ 260°, 280°[ ]
Δv0 ≤ 100m/s
β ∈ −180°, 180°[ ]

(9)

where Δvtot is the total fuel cost. xtf,err represents the position error, k
is the weighting coefficient, which is related to the balance between
minimizing Δvtot and minimizing xtf,err. In this study, k is taken to be
2. According to the phasing capability analysis, increasing flight time
can reduce fuel costs. Because the initial/final phase range is limited,
time of flight can only be added by multiples of TDRO. Note that, to
improve the convergence property, k is 10 under these
circumstances.

The optimization problem is solved by genetic algorithm; though
other global optimization algorithms such as particle swarm
optimization or differential evolution algorithm may be also
applicable (Zhu et al., 2020). As shown in Formula 9, the position
error constraint is converted into a part of the objective function to
achieve faster convergence. Taking phase differences of 5°, 10°, 20°, and
30° as examples, numerical examples are provided. The original
optimization results and the results that Δt is added with one orbital
period are shown in Table 4. This indicates that when time of flight
increases, the total fuel cost decreases significantly.

5 Phasing with multiple impulsive
maneuver

In actual flight missions, the spacecraft’s trajectory is affected by
various uncertain factors, such as orbit determination errors. The orbital
period of a DRO is long and the terminal orbital errors will be larger
because of the long duration of all types of error propagation. As shown
in Figure 9, the accumulation of the orbit determination error over time
leads to the endpoint of the two-impulse phasing orbit deviating from
the reference trajectory. Terminal orbit errors of the phasing trajectory
lead to an excessive relative distance between spacecraft, which may not

FIGURE 8
The phasing capability under the maximum pulse constraint. (A) Δt = 1TDRO, (B) Δt = 1.5TDRO.
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meet the initial state requirements for rendezvous and docking
missions.

Consider the two-impulse phasing orbit as a reference,
given the initial values of the splicing points. Thus, the
actual phasing trajectory obtained using the multi-impulse
phasing method is close to the two-impulse phasing
trajectory. This guarantees that the phasing trajectory
remains near the DRO. To reduce the influence of uncertain
factors on the terminal orbit precision of the phasing trajectory,
the rolling optimization strategy of model predictive control
was used in this study, and a multi-impulse phasing rolling
solution method was proposed. This method was verified using
both CR3BP and ephemeris models.

5.1 Multi-impulse phasing rolling solution
method

As stated above, orbit phasing on DRO has a fairly long flight
time. The terminal error is susceptible to various types of errors.
Thus, several middle correction maneuvers can be applied in course
when new orbit state is available. In the multi-impulse phasing
process, the spacecraft flies freely for a period after the

TABLE 4 Results of the phasing optimization problem.

TOF Δθ [deg] θc [deg] θr [deg] Δv1 [m/s] B [deg] Δvtot [m/s]

Δt 5 0.0030 277.9531 9.7291 1.6679 12.5572

10 4.9995 270.1615 22.2 −0.3378 23.8894

20 5.0274 278.4071 41.0513 0.3595 53.3263

30 0.0323 279.6022 56.7897 3.3774 67.0955

Δt + TDRO 10 74.9232 260.0124 2.6486 −163.7818 5.6153

20 42.9913 260.0961 8.0481 −179.9972 14.7348

30 79.9986 279.8859 8.0373 −165.1479 16.0764

FIGURE 9
Terminal position distribution of two-impulse phasing orbit. (A)
small orbit determination error, (B) large orbit determination error.

FIGURE 10
Diagram of multi-impulse phasing rolling solving method.

Frontiers in Astronomy and Space Sciences frontiersin.org10

Fu et al. 10.3389/fspas.2023.1177573

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2023.1177573


implementation of the first phasing maneuver. The phasing
impulses are then solved again according to the new orbit
determination state. A new maneuver was then implemented.
These steps are repeated until the phasing operation is complete.
This method is called the multi-impulse phasing rolling solution
method because it updates the orbit state of the spacecraft several
times and continuously calculates the phasing maneuver.

A process diagram of this method is shown in Figure 10. The
steps are as follows:

0) The state at the initial time is the initial state of the chaser;
1) The initial state is used as the input, the two-impulse phasing

trajectory is taken as a reference, then solve the N-impulse
phasing problem and obtain the pulse sequence: Δvk, k =
1, . . . ,N;

2) Implement the first maneuver;
3) Update the orbit determination state of chaser at t2, take this

value as the new initial state of chaser. Update N = N-1;
4) Return to step 1;
5) Repeat the above steps until N = 1.

These multi-impulse phasing methods are feasible under both
the CR3BP and ephemeris models.

5.2 Phasing orbit evolution with orbit
determination error

In this section, the phasing trajectory evolution under an orbit
determination error is analyzed using a Monte Carlo (MC)
simulation. The number of simulations is set to 500. The
uncertainty factors considered in this study are the two types of
orbit determination errors that are listed in Table 5 (Liu et al., 2021).
Every time the first maneuver was implemented, an orbit
determination error was added to the initial state of the chaser.
The phasing orbit without considering the orbit-determination error
is called the nominal phasing orbit, and the pulse is called the
nominal pulse.

The case with a phase difference of 5° in Table 4 was used as an
example to verify the multi-impulse phasing method. That is, θc is
0.0030°, θr is 277.9531°. The considered phase difference is only 5°;
thus, it belongs to the tiny phasing category.

To provide a quantitative analysis of the orbit state errors, the
end-position deviation of the phasing orbit is defined as follows: The
error ellipse of the terminal position deviation distribution of MC
simulation is projected onto the coordinate axis, then the half of the
projection on the x and y directions are the position deviation,
denoted as δx, δy. Thus, the total error of the phasing orbit is.

δ �
������
δ2x + δ2y

√

5.2.1 Simulation results under CR3BP model
We considered five-impulse phasing as a numerical example.

The two-impulse phasing optimal solution in Section 4.3 is used as
the initial value, and the corresponding phasing orbit is used as the
initial reference orbit. A nominal five-impulse phasing orbit was
obtained, as shown in Figure 11. The phasing orbit remains near the
DRO. Next, when the orbit determination error was considered, the
required impulse and terminal position distribution of the phasing
orbit with different numbers of impulsive maneuvers were analyzed.

The pulses of the multi-impulse phasing are listed in Table 6.
Compared to 12.5572 m/s two-impulse phasing, the total pulse of
the multi-impulse phasing increased slightly. In addition, the total
pulse required by the rolling-solving method was close to the
nominal pulse of multi-impulse phasing. A smaller number of
pulses is required in Case 1 than in Case 2. In the case of a
small orbit determination error (Case 1), the terminal position
errors δ of 2/3/4/5 impulse phasing orbit are 323 km, 69 km,
31 km, and 21 km. In the case of a large orbit determination
error (Case 2), the 2/3/4/5 impulse phasing orbit errors δ are
661 km, 149 km, 77 km, and 51 km. With an increase in the
pulse number, the position deviations decreased, which satisfied
the requirement of the final relative distance between the spacecraft.

5.2.2 Simulation results under ephemeris model
It is noteworthy to say that the ephemeris dynamical model is

constructed in the inertial frame, while the DRO phase is defined in
the rotation frame. In addition, the orbital state in the ephemeris
model is related to the epoch. Therefore, special attention should be
paid to the epoch and coordinate transformation when selecting the
initial value to ensure that the phasing trajectory is close to the DRO
reference orbit. Otherwise, the phasing trajectory is deviated from
the reference orbit, increasing the phasing pulse.

The five-impulse nominal phasing trajectory under the
ephemeris model without considering errors is shown in Figure 12.

TABLE 5 Two types of orbit determination errors.

Value

Case1: small error position accuracy 0.5 km, velocity accuracy 0.05 m/s

Case2: large error position accuracy 10 km, velocity accuracy 0.1 m/s

FIGURE 11
Five-impulse nominal phasing orbit.
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The pulses of multi-impulse phasing under the ephemeris model
are listed in Table 7. The impulse required for two-impulse phasing
under the ephemeris model was 13.6400 m/s, compared to that of

the CR3BP model which was 12.5572 m/s. With an increase in the
number of phasing impulses, the total impulse also increased.
Compared with the results of the CR3BP model, the total
impulse of the multi-impulse phasing under ephemeris was
slightly larger and may be related to the selection of the initial
value. In the case of small orbit determination error (Case 1), the
terminal position errors δ of 2/3/4/5 impulse phasing orbit are
350 km, 71 km, 30 km, and 23 km. In the case of large orbit
determination error (Case 2), the terminal position errors δ of 2/
3/4/5 impulse phasing orbit are 739 km, 178 km, 70 km, and 53 km.
Similarly, as the number of phasing impulses increased, the terminal
position deviation of the phasing trajectory decreased.

6 Conclusion

A mathematical model of the phasing problem is presented in
this study. The phasing characteristicsof the DRO were analyzed
mainly from two aspects. First, from the perspective of returnability,
the propagation characteristics of a free-flight orbit departing from
the DRO were analyzed. Subsequently, the characteristics of the
DRO phasing orbit were studied using the two-impulse phasing
method. The effects of time of flight, initial/final phase, and phase
difference on fuel cost were analyzed. A phasing optimization
problem was proposed and solved based on the above analysis

TABLE 6 Pulse statistical result of the multi-impulse phasing. (Value 1 means the results in case 1, value 2 means the results in case 2).

Serial
number

3-Impulse 4-Impulse 5-Impulse

Nominal
[m/s]

Mean
value
1 [m/s]

Mean
value
2 [m/s]

Nominal
[m/s]

Mean
value
1 [m/s]

Mean
value
2 [m/s]

Nominal
[m/s]

Mean
value
1 [m/s]

Mean
value
2 [m/s]

1 9.7260 9.7260 9.7260 9.7312 9.7312 9.7312 9.7347 9.7347 9.7347

2 0.0577 0.1089 0.1983 0.0175 0.0584 0.1237 0.0145 0.0430 0.1086

3 2.9558 2.9556 2.9502 0.0713 0.1255 0.2289 0.0161 0.0577 0.1213

4 - - - 2.9347 2.9318 2.9348 0.0822 0.1233 0.2403

5 - - - - - - 2.9161 2.9112 2.9111

Total 12.7395 12.7904 12.8745 12.7547 12.8470 13.0186 12.7636 12.8700 13.1160

TABLE 7 The pulse statistical result of the multi-impulse phasing under ephemeris model. (Value 1 means the results in case 1, value 2 means the results in case 2).

Serial
number

3-Impulse 4-Impulse 5-Impulse

Nominal
[m/s]

Mean
value
1 [m/s]

Mean
value
2 [m/s]

Nominal
[m/s]

Mean
value
1 [m/s]

Mean
value
2 [m/s]

Nominal
[m/s]

Mean
value
1 [m/s]

Mean
value
2 [m/s]

1 10.0327 10.0327 10.0327 10.0327 10.0327 10.0327 10.0327 10.0327 10.0327

2 0 0.0994 0.2118 0 0.0732 0.1921 0 0.0730 0.1884

3 3.6073 3.6056 3.6088 0 0.1369 0.3247 0 0.0895 0.2082

4 - - - 3.6073 3.6095 3.6107 0 0.0972 0.2421

5 - - - - - - 3.6073 3.6088 3.6150

Total 13.6400 13.7377 13.8533 13.6400 13.8522 14.1602 13.6400 13.9012 14.2864

FIGURE 12
Five-impulse nominal phasing trajectory under ephemeris
model.
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results. To mitigate the impacts of uncertain factors on the accuracy
of the endpoint state of the phasing orbit, a multi-impulse phasing
rolling solving method was proposed and verified using both the
CR3BP and ephemeris models. This method considers errors and
can also work effectively under the ephemeris model; thus, it has
practical application significance.

The conclusions of the analysis of the DRO phasing capacity
are as follows.1) The departure phases with the maximum DRO
return probability are mainly distributed in [0°, 80°] and [230°,
260°]. 2) Extending the time of flight can reduce the phasing
impulse; however, this reduction is limited. This is because the
decreasing trend of the phasing pulse slows down with an increase
in the TOF when the TOF is larger than 1.5 orbit period. 3) The
impulsive maneuver capability limits the range of the adjustable
phase difference, and the adjustable phase difference increases
linearly with the increase of the maximum impulse constraint. The
results of the multi-impulse phasing simulation are as follows: 1)
In the case of a larger orbit determination error, the spacecraft is at
risk of the terminal position deviation of the two-impulse phasing
trajectory exceeding the initial relative distance requirement for
the subsequent rendezvous operation. 2) The multi-impulse
phasing rolling solution method can reduce the terminal
position deviation of the phasing trajectory by reducing the
error accumulation time and updating the orbital information
several times. Compared to the two-impulse phasing method, the
multi-impulse phasing method can reduce the position deviation
from hundreds of kilometers to tens of kilometers, which meets the
relative distance requirement for subsequent rendezvous
operations. 3) In this study, two to five pulses are considered.
With an increase in the number of pulses, the total fuel cost
required for phasing increases slightly. Under the CR3BP model,
the maximum total fuel cost required for multi-impulse phasing
was approximately 13.1 m/s, whereas, under the ephemeris model,
the total required fuel cost was approximately 14.3 m/s, both were
within the acceptable pulse range. In addition, going from the
CR3BP to the ephemeris model, the total pulse did not increase
significantly.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

HF completed the theoretical research, method design, simulation,
and analysis, and writing and revision of the manuscript. HZ provided
research guidance and wrote and reviewed the paper. MWprovided the
initial state of the ephemeris DRO.

Funding

This study was supported by the Strategic Priority Research
Program of the Chinese Academy of Sciences (XDA30010200).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The handling editor YW declared a past co-authorship with one
of the authors HZ.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Bezrouk, C. J., and Parker, J. (2014). “Long duration stability of distant retrograde
orbits,” in AIAA/AAS astrodynamics specialist conference (San Diego, CA.

Blazquez, E., Beauregard, L., Lizy-Destrez, S., Ankersen, F., and Capolupo, F. (2020).
Rendezvous design in a cislunar near rectilinear Halo orbit. Aeronautical J. 124 (1276),
821–837. doi:10.1017/aer.2019.126

Blazquez, E., Beauregard, L., and Lizy-Destrez, S. (2018). “Safe natural far rendezvous
approaches for cislunar near rectilinear halo orbits in the ephemeris model,” in 7th
international conference on astrodynamics tools and techniques (ICATT)
(Oberpfaffenhofen, Germany.

Bolliger, M. J. (2019). Cislunar mission design: Transfers linking near rectilinear halo
orbits and the butterfly family. Purdue University Graduate School.

Bucchioni, G., and Innocenti, M. (2021). Phasing maneuver analysis from a low lunar
orbit to a near rectilinear halo orbit. Aerospace 8 (3), 70. doi:10.3390/aerospace8030070

Camacho, E. F., and Alba, C. B. (2013). Model predictive control. Springer science &
business media.

Canós, A. J. (2006). Fast and robust self-intersections [online]. MATLAB central file
exchange. Available: https://www.mathworks.com/matlabcentral/fileexchange/13351-
fast-and-robust-self-intersections [Accessed 2023].

Chen, H., and Ma, J. (2017). Phasing trajectories to deploy a constellation in a halo
orbit. J. Guid. Control, Dyn. 40 (10), 2662–2667. doi:10.2514/1.G002518

Corpino, S., and Stesina, F. (2020). Inspection of the cis-lunar station using multi-
purpose autonomous Cubesats. Acta Astronaut. 175, 591–605. doi:10.1016/j.actaastro.
2020.05.053

Davis, D. C., Khoury, F. S., Howell, K. C., and Sweeney, D. J. (2020). “Phase control
and eclipse avoidance in near rectilinear halo orbits,” in AAS guidance, navigation and
control conference (Breckenridge.

Fossà, A., Bucchioni, G., Blazquez, E., Canalias, E., Lizy-Destrez, S., Bertrand, R., et al.
(2022). Two and three impulses phasing strategy with a spacecraft orbiting on an
Earth–Moon NRHO. Acta Astronaut. 198, 669–679. doi:10.1016/j.actaastro.2022.
06.042

Franzini, G., and Innocenti, M. (2019). Relative motion dynamics in the restricted
three-body problem. J. Spacecr. Rockets 56 (5), 1322–1337. doi:10.2514/1.A34390

Fuller, S., Lehnhardt, E., Zaid, C., and Halloran, K. (2021). “Gateway program status
and overview,” in 72nd international astronautical congress.

Gao, Y. X., Ge, Y. M., Ma, L. X., Hu, Y. Q., and Chen, Y. X. (2019). Optimization
design of configuration and layout for Queqiao relay satellite. Adv. Astronautics Sci.
Technol. 2 (1-2), 33–38. doi:10.1007/s42423-019-00034-0

Gates, M., Muirhead, B., Naasz, B., McDonald, M., Mazanek, D., Stich, S., et al.
(2015a). “NASA’s Asteroid Redirect Mission concept development summary,” in
2015 IEEE aerospace conference. IEEE.

Frontiers in Astronomy and Space Sciences frontiersin.org13

Fu et al. 10.3389/fspas.2023.1177573

https://doi.org/10.1017/aer.2019.126
https://doi.org/10.3390/aerospace8030070
https://www.mathworks.com/matlabcentral/fileexchange/13351-fast-and-robust-self-intersections
https://www.mathworks.com/matlabcentral/fileexchange/13351-fast-and-robust-self-intersections
https://doi.org/10.2514/1.G002518
https://doi.org/10.1016/j.actaastro.2020.05.053
https://doi.org/10.1016/j.actaastro.2020.05.053
https://doi.org/10.1016/j.actaastro.2022.06.042
https://doi.org/10.1016/j.actaastro.2022.06.042
https://doi.org/10.2514/1.A34390
https://doi.org/10.1007/s42423-019-00034-0
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2023.1177573


Gates, M., Stich, S., McDonald, M., Muirhead, B., Mazanek, D., Abell, P., et al.
(2015b). The Asteroid Redirect Mission and sustainable human exploration. Acta
Astronaut. 111, 29–36. doi:10.1016/j.actaastro.2015.01.025

Giordano, P., Grenier, A., Zoccarato, P., Swinden, R., Trenta, D., Schoenemann, E.,
et al. (2021). “Orbit determination and time synchronisation in lunar orbit with GNSS-
Lunar Pathfinder experiment,” in IAC 2021 congress proceedings, 72nd international
astronautical congress.

Holkar, K., and Waghmare, L. M. (2010). An overview of model predictive control.
Int. J. control automation 3 (4), 47–63.

Liu, H. W., Li, W. J., Tian, B. Y., Ding, J. F., Zeng, F. M., Wang, Y. B., et al. (2019).
Development and application of modular deep-space probe based on on-orbit assembly
and maintenance. J. deep space Explor. 6 (6), 595–602. doi:10.15982/j.issn.2095-7777.
2019.06.011

Liu, S., Yan, J., Cao, J., Ye, M., Li, X., Li, F., et al. (2021). Review of the precise orbit
determination for Chinese lunar exploration projects. Wiley Online Library.

Lizy-Destrez, S., Beauregard, L., Blazquez, E., Campolo, A., Manglativi, S., and Quet,
V. (2019). Rendezvous strategies in the vicinity of Earth-Moon Lagrangian points.
Front. Astronomy Space Sci. 5, 45. doi:10.3389/fspas.2018.00045

Mayne, D. Q. (2014). Model predictive control: Recent developments and future
promise. Automatica 50 (12), 2967–2986. doi:10.1016/j.automatica.2014.10.128

McCarthy, B. P., and Howell, K. C. (2021). Leveraging quasi-periodic orbits for
trajectory design in cislunar space. Astrodynamics 5 (2), 139–165. doi:10.1007/s42064-
020-0094-5

Murakami, N., Ueda, S., Ikenaga, T., Maeda, M., Yamamoto, T., and Ikeda, H. (2015).
“Practical rendezvous scenario for transportation missions to cis-lunar station in Earth-
Moon L2 halo orbit,” in Proceedings of the 25th international symposium on space flight
dynamics (ISSFD) (Munich.

Murakami, N., and Yamanaka, K. (2015). “Trajectory design for rendezvous in lunar
distant retrograde orbit,” in 2015 IEEE aerospace conference. IEEE.

Peng, C., Wen, C. X., and Gao, Y. (2018). DRO and HEO(3:1/2:1) resonant orbits in
cislunar space calculated by continuation and their stability analysis.Manned Spacefl. 24
(6), 703–718. doi:10.16329/j.cnki.zrht.2018.06.001

Qi, Y., and de Ruiter, A. (2020). Achievable halo phasing with short-range trajectories.
J. Guid. Control, Dyn. 43 (5), 928–938. doi:10.2514/1.G004751

Qin, S. J., and Badgwell, T. A. (2003). A survey of industrial model predictive control
technology. Control Eng. Pract. 11 (7), 733–764. doi:10.1016/s0967-0661(02)00186-7

Sato, Y., Kitamura, K., and Shima, T. (2015). Spacecraft rendezvous utilizing invariant
manifolds for a halo orbit. Trans. Jpn. Soc. Aeronautical Space Sci. 58 (5), 261–269.
doi:10.2322/tjsass.58.261

Schulte, P. Z., Spehar, P. T., and Woffinden, D. C. (2020). “GN&C sequencing for
Orion rendezvous, proximity operations, and docking,” in Annual AAS guidance,
navigation and control conference.

Singh, S., Junkins, J., Anderson, B., and Taheri, E. (2021a). Eclipse-conscious transfer
to lunar gateway using ephemeris-driven terminal coast arcs. J. Guid. Control, Dyn. 44
(11), 1972–1988. doi:10.2514/1.g005920

Singh, S. K., Anderson, B. D., Taheri, E., and Junkins, J. L. (2021b). Exploiting
manifolds of L1 halo orbits for end-to-end Earth–Moon low-thrust trajectory design.
Acta Astronaut. 183, 255–272. doi:10.1016/j.actaastro.2021.03.017

Singh, S. K., Anderson, B. D., Taheri, E., and Junkins, J. L. (2021c). Low-Thrust transfers to
southern $$L_2$$ near-rectilinear halo orbits facilitated by invariant manifolds. J. Optim.
Theory Appl. 191 (2-3), 517–544. doi:10.1007/s10957-021-01898-9

Smitherman, D. V., and Griffin, B. N. (2014). “Habitat concepts for deep space
exploration,” in AIAA space 2014 conference and exposition.

Zhao, Y. S., Shi, P., and Zhang, C. (2016). Deep space flight dynamics. Beijing: China
Astronautic Publishing House.

Zhu, X., Zhang, H., and Gao, Y. (2020). Correlations between the scaling factor and
fitness values in differential evolution. IEEE Access 8, 32100–32120. doi:10.1109/access.
2020.2973460

Frontiers in Astronomy and Space Sciences frontiersin.org14

Fu et al. 10.3389/fspas.2023.1177573

https://doi.org/10.1016/j.actaastro.2015.01.025
https://doi.org/10.15982/j.issn.2095-7777.2019.06.011
https://doi.org/10.15982/j.issn.2095-7777.2019.06.011
https://doi.org/10.3389/fspas.2018.00045
https://doi.org/10.1016/j.automatica.2014.10.128
https://doi.org/10.1007/s42064-020-0094-5
https://doi.org/10.1007/s42064-020-0094-5
https://doi.org/10.16329/j.cnki.zrht.2018.06.001
https://doi.org/10.2514/1.G004751
https://doi.org/10.1016/s0967-0661(02)00186-7
https://doi.org/10.2322/tjsass.58.261
https://doi.org/10.2514/1.g005920
https://doi.org/10.1016/j.actaastro.2021.03.017
https://doi.org/10.1007/s10957-021-01898-9
https://doi.org/10.1109/access.2020.2973460
https://doi.org/10.1109/access.2020.2973460
https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2023.1177573

	Phasing analysis on DRO with impulsive maneuver
	1 Introduction
	2 Dynamical model
	2.1 Orbital reference frames
	2.2 CR3BP model
	2.3 Ephemeris model
	2.4 DRO baseline orbit

	3 Phasing problem statement
	4 Characters of phasing orbit on DRO
	4.1 Returning capability after departing from DRO
	4.1.1 Definition of returning capability
	4.1.2 Simulation and analysis

	4.2 Two-impulse phasing
	4.2.1 Effect of time of flight on phasing Δv
	4.2.2 Effect of initial phase and phase difference on phasing Δv

	4.3 Phasing optimization problem

	5 Phasing with multiple impulsive maneuver
	5.1 Multi-impulse phasing rolling solution method
	5.2 Phasing orbit evolution with orbit determination error
	5.2.1 Simulation results under CR3BP model
	5.2.2 Simulation results under ephemeris model


	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


