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The nucleon-induced deuteron breakup reaction is studied within the Faddeev
approach at incoming nucleon laboratory energies of 135 and 200 MeV. The chiral
semilocal momentum-space (SMS) potential developed up to N4LO+,
supplemented by the N2LO three-nucleon interaction, is used. Our
investigation is focused on the determination of theoretical uncertainties in a
predicted cross section related to its dependence on the value of the cutoff
parameter of the regulator. We also compare predictions based on the complete
N2LO potential with those based on the two-nucleon force upgraded to the N4LO+

order and augmented with the N2LO three-nucleon force. In addition, we study the
three-nucleon forceeffectspredictedby thismodel of interaction.Our systematic study
covers the entire kinematically allowed phase space; however, our main results are
obtainedwhen additional restrictions onenergies and cross section values are imposed.
In such a case, we observe that the dependenceof the differential cross sections on the
regulator cutoff is moderate at 135MeV and much stronger at 200MeV. For the latter
energy, it can amount to up to 45% in specific kinematic configurations. Taking into
account termsbeyond,N2LO in a two-body interaction changes the cross sectionup to
20% (27%) atE=135(200) MeV. The inclusionof the three-nucleon force leads toeffects
of approximately 27% at both energies. We illustrate these dependencies with a few
examples of the exclusive cross section as a function of the arc length of the S-curve.
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1 Introduction

The precise determination of the nature of interactions between nucleons is a long-
standing problem of nuclear physics. H. Yukawa’s meson exchange theory in 1935 was the
catalyst for the first attempts to solve this problem [1]. Over time, it was understood that
nuclear forces are residual interactions stemming from those between quarks and gluons,
and therefore, the theory of nuclear forces, dealing with nucleons and mesons, should
have an effective character. This idea was further developed by S. Weinberg, who in
seminal papers [2, 3] showed how to derive nuclear interactions from the effective chiral
Lagrangian. This gave a new impetus to the development of the modern theory of nuclear
forces and current operators. Soon after the pioneering work by S. Weinberg, C. Ordóñez,
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et al. presented the first applications of the proposed formalism to
nucleon–nucleon scattering using time-ordered perturbation
theory [4]. These important steps laid the foundations on
which D. R. Entem and R. Machleidt [5], and later E.
Epelbaum, W. Glöckle, and Ulf-G. Meißner [6–8] built the
chiral effective field theory (EFT) of nuclear forces, developing
the first generation of the chiral two-nucleon (NN) interactions up
to N3LO. The N3LO NN potential of [8] provided a good
description of the NN data, but it was clear that to obtain
results of quality that surpass the predictions of non-chiral
phenomenological models, such as the AV18 [9] or CD-Bonn
[10] potentials, it was necessary to take into account contributions
from higher orders in the chiral expansion.

A number of attempts have been made to improve various
aspects of these chiral interactions, resulting in the development of
new potentials by several groups, for example, [11–14]. These
interactions differ from the first generation of chiral NN
potentials and each other in many ways, including but not
limited to different regularization approaches, fitting
strategies, values of the pion-nucleon low-energy constants
(LECs), and treatment of the Δ(1232) degrees of freedom. In
[12, 14, 15], the chiral EFT expansion for NN potentials was
pushed to the fifth order of the chiral expansion (N4LO). The
N4LO potentials of [12, 14] benefit from using the most reliable
determination of the pion-nucleon LECs by matching the chiral
perturbation theory to the solution of the Roy–Steiner equation
at the subthreshold kinematic point [16]. The latest version of
the potentials developed by the Bochum group [12] employs
semi-local momentum-space (SMS) regularization, which
reduces the amount of cutoff artifacts. At the highest order
considered, N4LO+, the four N5LO contact interactions in
F-waves are taken into account. These additional contact
terms are needed from a partial wave analysis point of view
to describe certain very precise proton–proton scattering data at
intermediate and higher energies. The same N5LO contact
interactions are also included in the N4LO version of the
non-locally regularized potentials in [14]. Finally, the SMS
potentials of [12] have been updated in [17] to take into
account isospin-breaking interactions up to N4LO.

The leading contributions of the three-nucleon force (3NF) at
N2LO were derived using the chiral EFT [18, 19]. In [20–22], the
sub-leading 3NF contributions were worked out using dimensional
regularization in the calculation of loop integrals. The first
application of the leading chiral 3NF to Nd scattering is shown
in [19], while the first results for the triton using the non-locally
regularized N3LO 3NF are presented in [23], based on the previous
generation of NN chiral potentials [8]. An efficient algorithm for
performing partial wave decomposition of the 3NF was developed
in [24]. Notably, while the expressions for the 3NF are available for
N4LO [20, 21, 25–28] (except for one topology), their application
to few- and many-nucleon systems requires additional effort.
Specifically, it was shown that the use of dimensional
regularization in the derivation of the 3NF in combination with
cutoff regulators in the Schrödinger equation leads to inconsistent
results that violate chiral symmetry [29, 30]. Consequently, the
3NF and current operators beyond N2LO need to be rederived
using a symmetry-preserving cutoff regularization consistent with
the SMS NN potentials of [12, 17].

In the meantime, exploratory studies on the role of higher-order
short-range 3NF terms in the 3N continuum have been carried out
[31–33], showing very promising results. These terms were, in
particular, found to be important for solving the nucleon-
analyzing power puzzle at low energies [31, 33]. However,
complete calculations beyond the NN system are currently only
available at N2LO. In particular, the application of the SMS NN force
along with the N2LO 3NF regularized in the same way to 3N
scattering observables and high- and medium-mass nuclei has
been carried out [34]. For more details on the aforementioned
applications and related topics, see the review articles [29, 30, 35,
36] and the references therein. In [37], the discussion of a
simultaneous determination of the free parameters entering the
NN and 3N forces can be found.

The functional form of the regulator and the choice of the
cutoff values have attracted considerable attention in the
community, both in connection with conceptual issues related
to a proper renormalization of the Schrödinger equation in chiral
EFT and in the context of an efficient treatment of the nuclear
many-body problem. For a collection of different views on these
and related topics, see [38] and the references therein. The most
recent SMS potentials developed by the Bochum group in [12, 17]
are available for the cutoff values in the range of Λ = 400 −
550 MeV, with Λ = 450 MeV giving the best description of the NN
data. Smaller cutoff values were shown in [12] to introduce
significant cutoff artifacts and degrade the description of NN
scattering data. On the other hand, cutoff values larger than
Λ = 550 MeV were found to lead to spurious deeply bound
states, resulting in strongly non-perturbative interactions that
are difficult to apply beyond the NN system. Clearly, the
calculated observables show some residual dependence on the
regulator value, which can be used to perform a posteriori
consistency checks by confronting it with the estimated
truncation uncertainty [39–41] (see [32, 34, 42] for some
examples).

While in [43] we showed examples of our predictions for
differential cross sections, for the nucleon analyzing power
AY(N), and for the deuteron analyzing power AXX at a few
chosen kinematic configurations, in this work we present more
systematic studies. Therefore, we performed a search over the whole
kinematically available phase space at two reaction energies: E =
135 MeV and E = 200 MeV. This phase space is spanned by five
independent kinematic variables, which can be chosen as four angles
defining the directions of the momenta of two outgoing nucleons
and the energy of one of the nucleons. Our study allows us to identify
regions where predictions based on different cutoff values differ
substantially.

This approach can also be applied to other features of the
potential. In the following, in addition to the cutoff dependence,
we also examine how the predictions change with the chiral order
and discuss the role played by the three-nucleon force. Performing
calculations at two energies (135 and 200 MeV) gives additional
information on how the quality of predictions based on the chiral
SMS potential depends on the reaction energy. This, in turn, allows
us to specify the applicability range of the chiral expansion.

Of particular interest is the possible existence of kinematic
configurations for which the observables show an enhanced
dependence on the chiral order or the sensitivity to the value of
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the regulator. Such configurations provide an opportunity to test the
theory by comparing theoretical predictions with experimental data
and validating the estimated truncation uncertainties. Thus, in this
work, we not only show the uncertainties associated with the cutoff
values and the chiral order but also give details of the most
interesting configurations. This establishes a guide for
experimental groups interested in the nucleon-induced deuteron
breakup process.

Our article is organized as follows. In the next section, we discuss
the formalism used to obtain the breakup observables. Section 3
covers the results for the differential cross section, first for E =
200 MeV and then for E = 135 MeV. We summarize the
aforementioned results in Section 4.

2 Formalism

The framework of the Faddeev equation has proven to be a
precise method for solving the 3N problem with all realistic
interactions, including the chiral ones. Since we are working in
momentum space, the SMS interaction can be immediately
incorporated into our codes. In the following, we provide the
most fundamental steps of our approach (for details, see, e.g.,
[44–46]).

In this approach, the Faddeev equation for an auxiliary state,
T|ψ〉, plays a key role. It reads

T|ψ〉 � tP|ψ〉 + tPG0T|ψ〉 + 1 + tG0( )V 1( )
4 1 + P( )|ψ〉

+ 1 + tG0( )V 1( )
4 1 + P( )T|ψ〉, (1)

where the initial state |ψ〉consists of a deuteron and the relative
momentum eigenstate of the projectile neutron, V(1)

4 is part of a 3N
force that is symmetric under an exchange of particles 2 and 3, P is a
permutation operator that takes into account the identity of the
nucleons, and G0 is the free 3N propagator. The 2N t-matrix is, for a
given 2N interaction V, a solution of the Lippmann–Schwinger
equation,

t � V + V ~G0t, (2)
where ~G0 is the 2N free propagator. Once Eq. 1 is solved, the
transition amplitude U0 to the final three-body scattering state |ψ′〉
is calculated as

〈ψ′|U0|ψ〉 � 〈ψ′| 1 + P( )T|ψ〉 (3)
and used to find observables [45].

We solve Eq. 1 in the momentum space partial wave scheme.We
work with the |p, q, α〉 states, with p � | �p| and q � | �q| being the
magnitudes of the relative Jacobi momenta �p and �q. Furthermore, α
represents a set of discrete quantum numbers for the 3N system in
the jI-coupling

α � l, s( )j; λ,
1
2

( )I; j, I( )JMJ; t
1
2

( )TMT( ). (4)

Here, l, s, j, and t denote the orbital angular momentum, total spin,
total angular momentum, and total isospin of the 2–3 subsystem,
respectively. Furthermore, λ and I are the orbital and total angular
momenta of spectator nucleon 1, with respect to the center of mass of
the 2–3 subsystem. Finally, J, MJ, T, and MT are the total angular

momentum of the 3N system, its projection on the quantization axis,
the total 3N isospin, and its projection, respectively.

We solve Eq. 1 by generating its Neumann series and summing it
up by using the Pade method [45]. For the results presented here, we
use all partial waves with j ≤ 5 and J≤ 25

2 , including the three-nucleon
interaction up to J � 7

2. More details about our numerical
performance are shown in [45].

The unambiguous definition of the kinematic configuration of
three free nucleons requires a priori knowledge of nine kinematic
variables, which can be reduced to five using the conservation laws.
We follow a common choice and use four angular variables: θ1, ϕ1,
θ2, and ϕ2 to define the directions of the momenta of nucleons 1 and
2. As the fifth variable, we chose the position on the S-curve, that is,
curves located in the E1–E2 plane and defined by kinematically
allowed (E1 and E2) pairs. The possible positions of the S-curve in
the E1–E2 plane and a convention for the location of its starting point
(S = 0) are discussed, e.g., in [45]. Some points on the curve
correspond to particularly interesting kinematic configurations.
The final-state interaction (FSI) configuration is the one in which
the momenta of two nucleons are equal, leading to vanishing relative
energy. This makes the cross section for this configuration sensitive
to the 1S0 interaction, which results in an enhancement of the cross
section referred to as the FSI peaks. The QFS configuration, in which
one of the nucleons serves as a spectator particle, is also noteworthy.
The quasi-free scattering mechanism also increases the cross section;
however, here different partial waves contribute.

In the following section, we show the results of our search over the
entire kinematically available phase space for the nucleon-deuteron
breakup process. We use the same grid for θ1, θ2, and ϕ2 values taken
in the range [2.5°, 177.5°] and with a step of 5°, assuming that ϕ1 = 0 since
the unpolarized observables only depend on ϕ12 = ϕ1 − ϕ2. For the
energies studied here, the S-curve length is typically in the range of
50–200MeV. We have checked that the observables are accurately
described when we use a step of 0.5MeV along each S-curve.

3 Results for the differential cross
section

3.1 E = 200MeV: Cutoff dependence

To study the dependence of our predictions on the regulator
value Λ, we choose the five-fold differential cross sections
( d5σ
dΩ1dΩ2dS

)400 and ( d5σ
dΩ1dΩ2dS

)550 obtained with Λ = 400 MeV and
Λ = 550 MeV, respectively. Having them at our disposal, we
construct (ϕ1 = 0°)

δ400−550 θ1, θ2, ϕ2, S( ) ≡
d5σ

dΩ1dΩ2dS
( )400 − d5σ

dΩ1dΩ2dS
( )550

1
2

d5σ
dΩ1dΩ2dS
( )400 + d5σ

dΩ1dΩ2dS
( )550( )

(5)

and then, for given θ1 and θ2, we find its maximum over the
remaining variables

Δ400−550 ≡ Δ400−550 θ1, θ2( ) ≡ max
ϕ2 ,S{ } δ

400−550 θ1, θ2, ϕ2, S( ). (6)

Here and in the following, the calculations are performed with the
NN interaction at the highest available order, that is, at N4LO+,
supplemented by the 3NF at N2LO.
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The resulting Δ400−550 at E = 200 MeV is shown in Figure 1A. The
white area shows the kinematically forbidden region. The symmetry
with respect to the diagonal, as shown in Figure 1, reflects the fact
that two nucleons (1 and 2) are indistinguishable. Some small
deviations from symmetry seen in the figure are due to the finite
grid of points on the S-curves used in the calculations. When
interpreting the results obtained for Δ400−550, it is important to
keep in mind that the differences have already been maximized
with respect to the not explicitly shown kinematic variables ϕ2 and S.
This implies that the actual residual cutoff dependence of the
calculated cross sections, encoded in the quantity δ400−550, is on
average much smaller than the deviations shown in Figure 1 for
Δ400−550. The same comment applies to the results shown for the
dependence on the chiral order and the effects of the 3NF.

We observe that Δ400−550 is spread over the range (−0.440, 0.260),
so the two regulator values can yield predictions that diverge by
more than 30%. In the majority of the available area in the (θ1 and
θ2) subspace Δ400−550 ∈ (−30% − 5%), the maximal Δ400−550 values are
concentrated at small θ1 and θ2 angles. It is interesting to note that
the lowest Δ400−550 values also occur at relatively small polar angles.
The particular configurations with extreme Δ400−550 in these regions
are related to the FSI.

Among the configurations leading to Δ400−550 shown in
Figure 1A, there are very likely some with very small cross
sections, which can result in large Δ400−550. Such configurations
are not of interest when planning feasible measurements. Thus,
in Figure 1B, we show the sameΔ400−550 but after imposing additional
conditions on the cross sections: ( d5σ

dΩ1dΩ2dS
)400 > 0.01 [mb

sr−2 MeV−1] and ( d5σ
dΩ1dΩ2dS

)550 > 0.01 [mb sr−2 MeV−1] and on the
energies: E1 > 10 MeV and E2 > 10 MeV. Notably, these conditions
remove many configurations, producing more white space in the
graph, and Δ400−550 decreases on average. While the spread of the
Δ400−550 variation remains nearly unchanged, the distribution of the
Δ400−550 values changes, resulting in, on average, smaller in
magnitude values of Δ400−550. In particular, the configurations
with |Δ400−550| ≥ 0.289 occupy less than 1% of the θ1–θ2 phase
space shown.

To display the full information on the specific configurations
leading to the Δ400−550 values shown in Figure 1B, Figure 2 shows the
corresponding energy E1 and the relative azimuthal angle ϕ12, which
by our choice of ϕ1 = 0° is equivalent to ϕ2, as functions of the polar
angles θ1 and θ2. The analogous figure not shown for E2 is a mirror
image of that for E1 with respect to the diagonal θ1 = θ2. In most
cases, E1 takes on small (below approximately 30 MeV) or large
(above approximately 160 MeV) values, and only in about a quarter
of configurations, do the largest Δ400−550 occur at intermediate E1
energies. The ϕ12 angles corresponding to the most pronounced
Δ400−550 are usually above approximately 130°; however, for some
combinations (θ1 and θ2), the smallest ϕ12 is preferred.

Figure 3 shows the differential cross section d5σ
dΩ1dΩ2dS

as a function
of the arc-length S for three configurations thatmaximizeΔ400−550 at one
S point. The left panel shows a configuration where both θi are small
(θ1 = 12.5° and θ2 = 7.5°), while the central panel shows the case where
θ1 = θ2 = 27.5°. For the first configuration, themaximal δ400−550(θ1, θ2, ϕ2,
S) occurs in the maximum of the FSI peak at S ≈ 134MeV. In this case,
the softer interaction yields a larger cross section. On the contrary, in
the case of the configuration shown in Figure 3B, predictions based on
the SMS potential with Λ = 400MeV are smaller around S = 111MeV
than those with the cutoff Λ = 550MeV. Finally, in Figure 3C, we give
an example of the configuration from a different position in the θ1 − θ2
plane, namely, for large θ1 and small θ2. Here, again, the cross section
resulting from the interaction atΛ = 400MeV exceeds the one obtained
atΛ = 550MeV, leading to δ400−550(172.5°, 2.5°, 177.5°, 92 MeV) = 0.128.

3.2 E = 200MeV: Changes with the chiral
order

Similar to the previously defined Δ400−550, we also studied

ΔN2LO−N4LO+ ≡ ΔN2LO−N4LO+ θ1, θ2( ) ≡ max
ϕ2 ,S{ } δ

N2LO−N4LO+ θ1, θ2, ϕ2, S( )
(7)

with

FIGURE 1
Δ400−550 in the incoming nucleon lab. Kinetic energy Elab = 200 MeV. (A) shows predictions based on all the configurations studied, while for (B),
additional thresholds for the energies of the detected neutrons and themagnitude of the cross sections have been imposed: E1 > 10 MeV and E2 > 10 MeV,
( d5σ
dΩ1dΩ2dS

)400 >0.01 [mb sr−2 MeV−1], and ( d5σ
dΩ1dΩ2dS

)550 >0.01 [mb sr−2 MeV−1].
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δN2LO−N4LO+ θ1, θ2,ϕ2, S( ) ≡
d5σ

dΩ1dΩ2dS
( )N2LO − d5σ

dΩ1dΩ2dS
( )N4LO+

1
2

d5σ
dΩ1dΩ2dS
( )N2LO + d5σ

dΩ1dΩ2dS
( )N4LO+( ))

(8)

and where ( d5σ
dΩ1dΩ2dS

)N2LO ( ( d5σ
dΩ1dΩ2dS

)N4LO+) are the differential

cross sections obtained with the NN force at N2LO (N4LO+)

supplemented in both cases by the 3NF at N2LO. The regulator

value Λ = 450 MeV is used. The free parameters of the 3NF, cD and

FIGURE 2
Values of nucleon 1 energy E1 (left) and the azimuthal angle ϕ2 (right) in the θ1–θ2 plane corresponding to the kinematic configurations from the right
panel of Figure 1.

FIGURE 3
Differential cross sectionsmaximizing Δ400−550 at three selected kinematic configurations defined by (A) θ1 = 12.5°, θ2 = 7.5°, ϕ12 = 2.5°, (B) θ1 = 27.5°, θ2
= 27.5°, ϕ12 = 2.5°, and (C) θ1 = 172.5°, θ2 = 2.5°, ϕ12 = 177.5°. The dashed black (solid red) curve represents the N4LO+ results at Λ = 400(550) MeV.

FIGURE 4
ΔN2LO−N4LO+ in the incoming nucleon lab. Kinetic energy Elab = 200 MeV. (A) shows predictions based on all the configurations studied, while for (B),
additional thresholds for the energies of the detected neutrons and the magnitude of the cross sections have been imposed: E1 > 10 MeV, E2 > 10 MeV,
( d5σ
dΩ1dΩ2dS

)N2LO >0.01 [mb sr−2 MeV−1], and ( d5σ
dΩ1dΩ2dS

)N4LO+ >0.01 [mb sr−2 MeV−1].
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cE, were determined separately when the 3NF was combined with
the N2LO or N4LO+ NN force, in such a way that the 3H binding
energy [47] and the differential cross section for the neutron-
deuteron elastic scattering data [48] are properly described. The
definition (8) shows that both δN2LO−N4LO+(θ1, θ2, ϕ2, E1) and
subsequently ΔN2LO−N4LO+ carry partial information about the
convergence of the results to the chiral order.

Figure 4A shows that there are big differences between the
predictions based on both combinations of two- and three-nucleon
forces in the whole available kinematic area when no additional
constraints are imposed on the cross sections and nucleon energies.
ΔN2LO−N4LO+ varies in the range (−200%, 200%). The picture is not as
symmetric as in Figure 1A. This shows that in many cases, the
magnitude of ΔN2LO−N4LO+ depends on a very precise position on the
S-curve, which is understandable when we deal with small values of
the cross sections. In fact, once the additional conditions on the cross
sections and energies are applied, the symmetry is restored, as shown
in Figure 4B. The values of ΔN2LO−N4LO+ are now substantially smaller
and range approximately from −30%, 30%. The inclusion of the
higher chiral order contributions in the NN interaction decreases the
breakup cross section, which leads to positive ΔN2LO−N4LO+, in
configurations where one of the θi is small (below 20°) and the
second θj takes intermediate values in the range θi ∈ (60°, 120°). In
the other parts of the allowed θ1 and θ2 space, the negative
ΔN2LO−N4LO+ values prevail. Specifically, for one of the θi in the
range (30°, 60°) and another one in the range (30°, 90°),
ΔN2LO−N4LO+ takes the smallest values corresponding to
( d5σ
dΩ1dΩ2dS

)N4LO+ > ( d5σ
dΩ1dΩ2dS

)N2LO.
Figure 5 shows E1 and ϕ12 for configurations maximizing

ΔN2LO−N4LO+ for given θ1 and θ2. The picture is similar to that of
Figure 2—again, the energy of the first nucleon takes the largest
possible values, while the energy of the second nucleon remains
small. ϕ12 is above 150° for most of the configurations; however,
there are also configurations, clustered around the diagonal or
around a straight line intersecting the diagonal at θ1 = θ2 = 60°

with ϕ12 below 20°.
A few examples of d5σ

dΩ1dΩ2dS
with large |ΔN2LO−N4LO+| are shown in

Figure 6. In all the cases, a clear difference between N2LO + N2LO

and N4LO++N2LO predictions is observed in one of the maxima of
the cross section; however, for the configuration shown in the central
panel, the largest (negative) δN2LO−N4LO+(θ1, θ2, ϕ2, S) occurs at the
slope of the cross section around S = 160 MeV. A relatively large
spread of cross sections and the angles defining this configuration
make it, in our opinion, an encouraging case for experimental
efforts. In the future, it would be interesting to investigate the
origin of the enhanced sensitivity of these configurations to the
details of the nuclear Hamiltonian and to study the effects of the
isospin-breaking corrections to the NN force considered in ref. [17].

3.3 E = 200MeV: 3NF effects

Finally, for the predictions at Λ = 450 MeV, we define
accordingly

δ3NF θ1, θ2, ϕ2, S( ) ≡
d5σ

dΩ1dΩ2dS
( )NN − d5σ

dΩ1dΩ2dS
( )NN+3NF

1
2

d5σ
dΩ1dΩ2dS
( )NN + d5σ

dΩ1dΩ2dS
( )NN+3NF( ))

(9)

and

Δ3NF ≡ Δ3NF θ1, θ2( ) ≡ max
ϕ2 ,S{ } δ

3NF θ1, θ2, ϕ2, S( ). (10)

In Eq. 9, the two cross sections are obtained at Λ = 450 MeV, with
the N4LO+ NN force alone or combined with the N2LO 3NF.

Our results for Δ3NF are shown in Figures 7, 8. The Δ3NF values
are in the range (−0.378, 0.386) without constraints on the cross
sections and energies and in the range (−0.270, 0.386) when these
restrictions are taken into account. Initially, in most of the θ1 − θ2
regions, Δ3NF is negative or close to zero. For almost half of the θ1 −
θ2 combinations, we observe the importance of the 3NF as Δ3NF is
in the range (−0.378, − 0.150). Only for both polar angles below
≈ 25° Δ3NF becomes positive. If configurations with small cross
sections and energies are neglected, we find in the most typical case
−0.14 < Δ3NF < − 0.07. The largest positive Δ3NF value occurs either
when both polar angles are small or when one of them is small and
the other one is very large. The distribution of nucleon energies in

FIGURE 5
Values of nucleon 1 energy E1 (left) and the azimuthal angle ϕ2 (right) in the θ1–θ2 plane corresponding to the kinematic configurations from the right
panel of Figure 4.
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the configurations contributing to Figure 7B reveals that the largest
|Δ3NF| is observed when one of the observed nucleons absorbs
nearly all of the kinetic energy, while the energy of the remaining

observed nucleon becomes close to the imposed threshold of
10 MeV. For most of the configurations, ϕ12 is large, and only
for configurations close to this diagonal θ1 = θ2 or close to the line

FIGURE 6
Differential cross sections at three selected kinematic configurations with maximal ΔN2LO−N4LO+ values. The dashed black (solid red) curve represents
predictions based on the N2LO (N4LO+) NN force supplemented in both cases by the N2LO 3NF. Λ = 450 MeV was used.

FIGURE 7
Δ3NF in the incoming nucleon lab. Kinetic energy Elab = 200 MeV. (A) shows predictions based on all the configurations studied, while for (B),
additional thresholds for the energies of the detected neutrons and the magnitude of the cross sections have been imposed: E1 > 10 MeV, E2 > 10 MeV,
( d5σ
dΩ1dΩ2dS

)400 >0.01 [mb sr−2 MeV−1], and ( d5σ
dΩ1dΩ2dS

)550 >0.01 [mb sr−2 MeV−1].

FIGURE 8
Values of nucleon 1 energy E1 (left) and the azimuthal angle ϕ2 (right) in the θ1–θ2 plane corresponding to the kinematic configurations from the right
panel of Figure 7.
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perpendicular to that diagonal at θ1 = 60°small relative azimuthal
angles are preferred.

Figure 9 shows the differential cross section at three
configurations selected from those that maximize Δ3NF. Figure 9A
shows a case where 3NF lowers the cross section by about 39% at S =
128 MeV. In the two remaining configurations, 3NF increases the
cross section by 22% at S = 71 MeV (Figure 9B) and by 23% at S =
187.5 MeV (Figure 9C).

This concludes our discussion of the cross section at E =
200 MeV, and in the remaining part of Section 3, we present
similar maps as above, but for the deuteron breakup reaction
induced by nucleons with a lower kinetic energy of E = 135 MeV.

3.4 E = 135MeV: Cutoff dependence

Figure 10 shows Δ400−550, both before and after implementing
the cutoff conditions on the energies E1 and E2 and the exclusive
cross sections, obtained with Λ = 400 MeV or Λ = 550 MeV. As in
the case of E = 200 MeV, the N4LO+ NN interaction is used,
complemented by the N2LO 3NF. We also maintain the same

thresholds for energies and the same cross sections as were used at
E = 200 MeV.

Initially, Δ400−550 varies between −24%, 17% but most often
remains in the (−12%, 4%) intervals. The interesting
configurations with Δ400−550 < −20% are typically those with one
of the θi below at approximately 30° and another θi in the (45°, 100°)
range. The maximal positive Δ400−550 occurs only in the part of the
θ1 − θ2 plane where both θi are small. After reducing the number of
allowed configurations by applying the threshold conditions, Δ400−550

is found in the (−19%, 12%) range. Maximal values, around
Δ400−550 = 10%, survive at both θi small. On the contrary, regions
with large negative Δ400−550 are significantly shrunk. In most of the
phase space, Δ400−550 belongs to (−10%, 0%). Comparing the
resulting picture and numbers with those at E = 200 MeV, there
is a significant increase in the magnitude of Δ400−550 when moving to
higher energies, on average by a factor of two. This is, of course,
perfectly in line with the expectations based on the fact that the
truncation uncertainty of the chiral EFT grows with energy.

The pattern of E1 for configurations leading to maximal
Δ400−550 at E = 135 MeV is similar to that at E = 200 MeV, as
shown in Figure 11. Of course, the lower reaction energy results in

FIGURE 9
Differential cross sectionsmaximizing Δ3NF at three selected kinematic configurations defined by (A) θ1 = 17.5°, θ2 = 17.5°, ϕ12 = 2.5°, (B) θ1 = 42.5°, θ2 =
42.5°, ϕ12 = 7.5°, and (C) θ1 = 42.5°, θ2 = 67.5°, ϕ12 = 177.5°. The dashed black curve represents predictions based on the N4LO+ NN force only. The red solid
curve stands for predictions based on the N4LO+ NN force supplemented by the N2LO 3NF. Λ = 450 MeV was used.

FIGURE 10
Δ400−550 in the incoming nucleon lab. Kinetic energy Elab = 135 MeV. The left panel shows predictions based on all the configurations studied, while
for the right panel, additional thresholds for the energies of the detected neutrons and the magnitude of the cross sections have been imposed: E1 >
10 MeV, E2 > 10 MeV, ( d5σ

dΩ1dΩ2dS
)400 >0.01 [mb sr−2 MeV−1], and ( d5σ

dΩ1dΩ2dS
)550 >0.01 [mb sr−2 MeV−1].
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lower final state nucleon energies, but again, in some θ1 − θ2
regions, we obtain combinations of small E1 and medium or large
E2 values, or vice versa, or both energies are about half of the
maximal available energy. The pattern for ϕ12 is even more similar
to that for E = 200 MeV—large relative angles dominate the
picture, and only for θ1 ≈ θ2)60° ϕ12 is small. These
similarities and the similar patterns shown in Figures 4B, 12B
suggest that the considered observables at these two energies may
exhibit sizeable correlations.

3.5 E = 135MeV: Changes with the chiral
order

Next, Figures 12, 13 show the analysis of ΔN2LO−N4LO+ and the
corresponding kinematic configurations maximizing it. Similar
to the case of E = 200 MeV, ΔN2LO−N4LO+ is huge: ΔN2LO−N4LO+ ∈

(−2.5, 2) for E = 135 MeV if no additional conditions are
imposed on the energies and the cross sections. For most of
θ1 − θ2 pairs, we find configurations where ΔN2LO−N4LO+ takes
values above 80%. Imposing the threshold conditions used here,
which limits the possible number of configurations, leads to a
much smaller ΔN2LO−N4LO+ between −20% and +15%. For a
significant part of the phase space, the N4LO+ NN force
increases the cross sections, which results in negative
ΔN2LO−N4LO+. Similar to the results at E = 200 MeV, the
highest values of ΔN2LO−N4LO+ appear at one of the small
azimuthal angles, below approximately 20°, and another one
in the range of (70°, 180°). Configurations with the largest
negative ΔN2LO−N4LO+ have at E = 135 MeV a slightly different
distribution than observed in Figure 4B—in addition to the
previously observed patterns, now also configurations with θ1 =
θ2 ∈ (20°, 30°) contribute. The full range for ΔN2LO−N4LO+ at E =
135 MeV is slightly narrower than that at E = 200 MeV.

FIGURE 11
Values of the nucleon 1 energy E1 (left) and the azimuthal angle ϕ2 (right) in the θ1–θ2 plane corresponding to the kinematic configurations from the
right panel of Figure 10.

FIGURE 12
ΔN2LO−N4LO+ in the incoming nucleon lab. Kinetic energy Elab = 135 MeV. (A) shows predictions based on all studied configurations, while for (B),
additional thresholds for the energies of the detected neutrons and the magnitude of the cross sections have been imposed: E1 > 10 MeV, E2 > 10 MeV,
( d5σ
dΩ1dΩ2dS

)400 >0.01 [mb sr−2 MeV−1], and ( d5σ
dΩ1dΩ2dS

)550 >0.01 [mb sr−2 MeV−1].

Frontiers in Physics frontiersin.org09

Skibiński et al. 10.3389/fphy.2023.1084040

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1084040


The distribution of nucleon energies at E = 135 MeV is again
reminiscent of that observed at E = 200 MeV, taking into account a
different absolute energy scale. More deviations are observed for ϕ12,
as shown in Figure 13B. At E = 135 MeV, the smallest ϕ12 survives
only in one of the two large regions observed for higher energies in
Figure 5. Also, for the smallest θ1 and θ2 medium values of ϕ12 are
now preferred instead of small ϕ12.

3.6 E = 135MeV: 3NF effects

The effects of the 3N interaction at E = 135 MeV are shown in
Figure 14. With no additional constraints on energies and cross
sections, we find |Δ3NF| up to 30%. Actions of the 3NF are possible in
both directions —there are configurations where the three-body
potential decreases the cross section (positive Δ3NF) or where the
cross section is increased (negativeΔ3NF). The first configurations are
those with θ1 and θ2 below ≈ 30° but above 5°. In the other dominant

part of the θ1 − θ2 plane, Δ3NF is negative and in many cases remains
below −10%. This does not change much when only cross sections
above 0.01 [mb sr−2 MeV−1] and energies above 10 MeV are
considered. Nearly, for all the allowed configurations contributing
to Figure 14 Δ3NF < − 5%. The largest 3NF effects are clustered
around the line parallel to the diagonal in θ1 = θ2 ≈ 60°. Δ3NF above
+10% requires both θi small. Comparing the results in Figure 14 with
those in Figure 7, we observe that the maximal 3NF effects change
slightly between E = 135 MeV and E = 200 MeV but are on average
larger at higher energies.

The pattern of nucleon energies at which Δ3NF is minimized
shows that two detected nucleons have intermediate energies in the
approximate range of 30 − 70 MeV, as shown in Figure 15. The large
ϕ12 dominates almost all the configurations examined. The only
exceptions are some of the configurations on the diagonal θ1 = θ2
including those yielding the largest positive Δ3NF. The medium
nucleon’s energies and large relative azimuthal angles again
provide good opportunities for measurements.

FIGURE 13
Values of nucleon 1 energy E1 (A) and the azimuthal angle ϕ2 (B) in the θ1–θ2 plane corresponding to the kinematic configurations from the right panel
of Figure 12.

FIGURE 14
Δ3NF at the incoming nucleon lab. Kinetic energy Elab = 135 MeV. The left panel shows predictions based on all the configurations studied, while for
the right panel, additional thresholds for the energies of the detected neutrons and themagnitude of the cross sections have been imposed: E1 > 10 MeV,
E2 > 10 MeV, ( d5σ

dΩ1dΩ2dS
)400 >0.01 [mb sr−2 MeV−1], and ( d5σ

dΩ1dΩ2dS
)550 >0.01 [mb sr−2 MeV−1].
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4 Conclusions

Recent progress in the derivation of nuclear forces from the
chiral effective field theory has reduced substantially uncertainties in
model predictions. The inclusion of higher-order terms of the chiral
expansion in the NN interaction significantly improves the
description of the NN data and extends the energy range in
which chiral forces can be reliably applied. However, some
questions remain. In this article, we address the problem of the
regulator’s dependence on nucleon-deuteron predictions. More
precisely, we use the SMS interaction [12] up to N4LO+ and
supplement it with the N2LO three-nucleon interaction [34],
which is fully consistent with the SMS NN force up to this order.
Within this interaction model, we study the exclusive cross section
for the nucleon-deuteron breakup process at two energies of the
incoming nucleon: E = 135 MeV and E = 200 MeV. We do not
restrict ourselves to selected final kinematic configurations, but
perform a systematic search over the whole kinematically allowed
phase space, defining dense grids of momenta directions and
energies of two outgoing nucleons. This yields a total of 363 =
46656 combinations of (θ1, θ2, and ϕ12), and for each of them, we
have on average approximately 100 grid points on the S-curve; thus,
the total number of studied configurations amounts to five million.
Having such a rich set of predictions, we present them in the form of
maps in θ1 − θ2 planes, identifying the configurations for which there
are the largest differences between cross sections based on different
cutoff values. Keeping in mind that such maps can serve as a guide
for experimental studies, we impose additional conditions on the
magnitudes of the cross sections and energies of the detected
nucleons. We find that at E = 200(135) MeV, the cutoff
dependence can spread the resulting predictions significantly.
The most significant effects appear for configurations that appear
to be relatively easily accessible experimentally. The maps included
in the article allow one to unambiguously read out all the details of
such configurations. The observed cutoff variations should be tamed
by adding 3NFs of order N4LO. It is well known that additional 3N
contact interactions appear in this order [25, 26]. The configurations

with the largest cutoff dependence will be good candidates to
determine the corresponding low energy constants.

A similar approach allowed us to investigate the sensitivity of the cross
sections to upgrading the two-body interaction fromN2LO toN4LO+.We
observed that the inclusion of higher-order terms in the NN interaction is
necessary at the relatively high energies studied here, as it changes the
cross section by up to approximately 20% (27%) at E = 135(200)MeV.
Finally, we observed that the inclusion of the three-nucleon interaction
leads to effects of up to 27% at both energies studied.

The present work focuses on the configurations that show the
highest sensitivity to different features of the nuclear Hamiltonian.
The differences between the predictions we have found exceed
typical experimental uncertainties achievable today. Thus,
measurements of the cross section in the configurations discussed
here may help to further constrain the chiral nuclear forces. It would
also be interesting to confront the observed residual dependence of
the breakup observables on the cutoff values and the EFT expansion
order with the estimated truncation errors.
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