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A survey and perspective on
neuromorphic continual learning
systems
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NVM and Neuromorphic Hardware Research Group, Department of Electrical Engineering, Indian

Institute of Technology Delhi, New Delhi, India

With the advent of low-power neuromorphic computing systems, new

possibilities have emerged for deployment in various sectors, like healthcare and

transport, that require intelligent autonomous applications. These applications

require reliable low-power solutions for sequentially adapting to new relevant

data without loss of learning. Neuromorphic systems are inherently inspired

by biological neural networks that have the potential to o�er an e�cient

solution toward the feat of continual learning. With increasing attention in this

area, we present a first comprehensive review of state-of-the-art neuromorphic

continual learning (NCL) paradigms. The significance of our study is multi-fold.

We summarize the recent progress and propose a plausible roadmap for

developing end-to-endNCL systems.We also attempt to identify the gap between

research and the real-world deployment of NCL systems in multiple applications.

We do so by assessing the recent contributions in neuromorphic continual

learning at multiple levels—applications, algorithms, architectures, and hardware.

We discuss the relevance of NCL systems and draw out application-specific

requisites. We analyze the biological underpinnings that are used for acquiring

high-level performance. At the hardware level, we assess the ability of the

current neuromorphic platforms and emerging nano-device-based architectures

to support these algorithms in the presence of several constraints. Further,

we propose refinements to continual learning metrics for applying them to

NCL systems. Finally, the review identifies gaps and possible solutions that

are not yet focused upon for deploying application-specific NCL systems in

real-life scenarios.

KEYWORDS

neuromorphic algorithm, hardware, lifelong learning, incremental learning, in-memory

computing, digital architectures, continual learning

1. Introduction

Multiple intricate challenges are emerging as the world is moving toward incorporating

automation in several sectors like transport and healthcare. In most of these applications,

the task is to deal with incrementally available data in an uncontrolled environment. While

neural networks today have enabled some automation, they are trained in a controlled

environment with a pre-determined and limited sample set with interleaved classes. With

on-chip learning, there is a scope to periodically train the network with changing data in

deployed systems. However, when trained for a new class, these networks lose the previously

trained information, a phenomenon termed catastrophic forgetting (McCloskey and Cohen,

1989). Much research, hence, has gone into designing systems for learning continually

while averting catastrophic forgetting, with most of the approaches deeply inspired by

biological neural networks (Parisi et al., 2019). While this is true pan-machine learning,
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neuromorphic approaches deserve special attention due to their

inherent closeness with biological neural networks. With recent

attention growing slowly in this direction, there is a need

to systematically review the current state-of-the-art to identify

the gaps between implementation and deployment in real-

world applications. This study presents the first comprehensive

review of neuromorphic algorithms, hardware architectures,

and emerging nano-device-based solutions specifically targeting

continual learning. The attempt is to identify the critical

constituents of high-performing end-to-end solutions and propose

a plausible roadmap for developing neuromorphic systems for

continual learning.

The article is organized as follows. We discuss the significance

of NCL systems for real-world applications in Section 2. In this

study, we also draw out the requirements of these applications in

the context of continual learning systems. In Section 3, we discuss

fundamental aspects of biological systems paramount to continual

learning. The hardware implementations of studies covered in this

section are further discussed in Section 4. Multiple hardware-level

considerations are also discussed, such as imbalanced workflow

and the need for excessive reconfigurability at the hardware level.

Both digital and emerging nano-device based architectures for NCL

systems are covered. In Section 5, we propose modifications to

the continual learning metric for the analysis of NCL systems.

Finally, in Section 6, we propose a plausible roadmap for further

development of the NCL systems based on our analysis of the

current literature.

2. Applications of NCL systems

While NCL systems are relevant for various applications, in

this section, we specifically focus on examples of (i) healthcare and

(ii) mobility.

2.1. Healthcare

Spiking neural network approaches are being actively

researched for healthcare applications as they promise low-power

implementation critical for the application (Donati et al., 2018,

2019; Vasquez Tieck et al., 2019; Bezugam et al., 2022). Considering

diagnostics of medical images, the significance of continual

learning grows due to differences in imaging parameters and

physiological changes in the data (Hofmanninger et al., 2020;

Amrollahi et al., 2022). Implementation of spiking neural networks

is also seen in prosthetic applications though adaptation to

highly variant physiological signals such as EEG and EMG is not

shown in these implementations (Mukhopadhyay et al., 2018; Ma

et al., 2020). Some implementations use an online-unsupervised

engine to generate labels for training a semi-supervised STDP-

based neural network for signal processing of physiological data

(Mukhopadhyay et al., 2021), yet the approach does not account for

lost information once it retrains on new data, making adaptation

slow and repetitive. Recent studies have proposed continual

learning systems for wearable devices (Leite and Xiao, 2022). Leite

and Xiao (2022) designed a dynamically expanding neural network

for human activity recognition. As the subjects change, the network

is required to adapt to the new style without forgetting that of

the previous subject. Such applications could heavily benefit from

neuromorphic approaches given the low-power computational

requisite for wearable devices (Covi et al., 2021).

2.2. Smart mobility

Future smart vehicles require hefty cognition tasks, such as

pathfinding, multi-vehicle tracking, and odometry system. All

these tasks can benefit from neuromorphic continual learning

algorithms for incrementally assessing and deciding in real-life

situations (Chen et al., 2018, 2020). For example, changing the

model of vehicles in multi-vehicle tracking on highways requires

algorithms that can learn incrementally without catastrophically

forgetting older models. Kim et al. (2022) utilized continual

learning to provide the cognitive ability to the license plate

detection system for accurate detection when the background of

the image changes, while sequentially identifying and processing

the numbers. Considering visual odometry, neuromorphic vision

sensors have been designed (Zhu et al., 2019), utilizing the

inherent enhanced edge detection capability of neuromorphic

systems. Visual odometry has also evidently benefitted from

continual learning approaches for deployment in drastically

different environments (Vödisch et al., 2023).

From the above discussion, the significance of NCL systems

is evident. Along with that, key requirements of a continual

learning system can be drawn out. Functionally, the system should

autonomously be able to adapt to new classes without forgetting

older learned information, evident in the above applications.

Hence, the system should be algorithmically robust to catastrophic

forgetting. The system should also be reconfigurable in terms of

network parameters such as synaptic weights, along with on-chip

learning capabilities for adapting to new relevant data.

3. Plausible biological evidence
relevant for NCL systems

Various studies in neuroscience have proposed fundamental

aspects that enable the mammalian brain to learn continually.

Most of them deal with encoding and retrieval methodologies

of episodic memories. Keen interest is shown in these aspects

by various implementations for adopting them in artificial

neural networks (ANNs), yet very few have discussed the area

comprehensively to identify missing cues in the vast domain of

neuroscience. The discussion has been in the context of non-

neuromorphic approaches, as given by Parisi et al. (2019) and

Hadsell et al. (2020). We present a first analysis of these traits

with the intent of adopting them into neuromorphic systems while

identifying components that make a system resilient to catastrophic

forgetting. Several schools of thought behind episodic memory

encoding and retrieval are mentioned in the following sub-sections.

The discussion also highlights the ability of the neuromorphic

algorithms to self-adaptively identify the change in the input to

avoid catastrophic forgetting.
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3.1. Complementary learning system

McClelland et al. (1995) and McClelland (2013) focused on

the role of the hippocampus and neocortex in continual learning,

where the hippocampus was shown to adapt rapidly to the

incoming data at a faster pace and the neocortex was shown to

store important information at a slower pace. The neo-cortical

neurons are able to extract structure from gathered experience that

helps it to recreate the encoding for previously encountered stimuli.

Such a setup is termed as Complementary Learning System (CLS),

explained in detail by McClelland et al. (1995).

Muńoz-Martín et al. (2019) emulated a complementary

learning system in a hybrid supervised-unsupervised network

where the pre-trained supervised feature identifier is analogous to

the neo-cortical function of identification of structural information

from the sequential input. This feature identification enables

the reconstruction of unique encoding of the network when

old inputs are shown to the network. New untrained classes

are identified by the unsupervised STDP-WTA network that is

fed by the feature map to learn the new input class. This is

analogous to the hippocampal system that adapts to the new input

while also recognizing previous inputs with the help of structural

accumulation in the neocortex. However, the implementation

utilizes pre-known labels for the training of feature identifier.

This enables the system to achieve high accuracy (93% for

untrained classes) but constraints the application to previously

known dataset-label combinations for feature identification. The

authors ensure that the feature map encodes all features uniquely

by covering all possibilities within the seven untrained classes. This,

however, may not be an option for continual learning agents as they

may encounter input stimuli with features not previously seen. The

algorithmmust have the ability to identify new unseen information

from older ones to be able to deal with such data.

3.2. Hebbian plasticity–homeostatic
stability balance

Much attention is also given to Hebbian plasticity - stability

balance owing to the dual-fold requirement of adapting to new

data, implemented by Hebbian plasticity, while simultaneously

retaining important information, implemented by homeostatic

stability (Abraham and Robins, 2005). Multiple methodologies can

lead to Hebbian plasticity- stability balance such as collusion of

compensatory processes on multiple timescales, as shown by Zenke

and Gerstner (2017). While small delays lead to higher activity and

faster adaptations of weights to incoming data, large delays and

refractory periods lead to lesser spiking activity and preservation

of weights in the presence of local learning rules such as spike time

dependent plasticity (STDP).

3.2.1. Three-factor learning
Various studies suggest the role of third-factor agents, also

called neuromodulators, that directly or indirectly affect plasticity,

hence contributing to plasticity-stability balance (Bailey et al., 2000;

Lisman et al., 2011; Gerstner et al., 2018). In the context of spiking

neural networks, a global function changes the hyper-parameters

of the network, such as the learning rate or decay rate of neurons,

to achieve the balance when new data arrives. Recent studies have

also intrigued interest in the role of hetero-synaptic plasticity that

inspires global-local learning algorithms for continual and lifelong

learning, as shown by Wu et al. (2022).

Wu et al. (2022) showcased a hybrid local-global meta-learning

rule where modulation of weights and network parameters is

done in two separate optimization levels, allowing tweaking of

the network as required. Interestingly, the global learning rule

updates sparse connections for learning task-specific information,

whereas other connections are updated by local update rules to

learn information common between the tasks. Hyper-parameters

are updated after the update of synaptic weights. Considering

deployment in autonomous systems, as most global optimization

techniques use supervised training, the deployment gets limited

to only trained tasks in a well-controlled environment, without

automating the state of the neural network, whether to train or

infer, as the change in the task is not automatically detected.

Supervision molds the synaptic strength as required; no extra

computation of the importance of weights is required while

learning for the next task, but the approach supposedly demands

multiple accesses to weights and neuron states due to two levels

of algorithmic hierarchy, along with complex reconfiguration of

artificial synapses.

Other three-factor learning algorithms, such as those proposed

by Bohnstingl et al. (2019) and Stewart and Neftci (2022), emulate

bi-level optimization of parameters. In the former, the outer loop

algorithm responsible for the hyper-parameter update is cross-

entropy based, with a very long duration required for convergence.

The inner loop is implemented on neuromorphic hardware

proposed by Friedmann et al. (2017). Stewart and Neftci (2022)

utilized the surrogate gradient descent method, implemented on

Intel’s Loihi (Davies et al., 2018).

3.2.2. Adaptive threshold
Other traits like the adaptive threshold of neurons have also

been seen to work in coordination in maintaining the plasticity-

stability balance (Muńoz-Martín et al., 2020). The study by

Hammouamri et al. (2022) is based on continual learning using

threshold modulation. The implementation consists of two spiking

networks. The network responsible for classification has its output

neurons with the threshold determined by the other network,

trained on a family of tasks using an evolutionary algorithm with

population vectors equivalent to this network’s parameters. The

fitness function used for training the modulating network is the

net average of the accuracy of the classification of subsequent tasks.

The implementation is slow to converge owing to evolutionary

training and requires labels to determine classification accuracy for

several tasks.

3.3. Spatio-temporal sparsity

Another inherent factor in systems designed for continual

learning is the spatio-temporal sparsity of activity in the network
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when encoding for different information. This is required to

maintain independence between sub-networks encoding for old

and new information. Evidently, spatial sparsity is exhibited

in the brain, as shown by many studies that investigate

mechanisms behind storing episodic memories (Wixted et al.,

2014). For example, Wixted et al. (2018) showed that different

fractions of neurons in the hippocampus show strong reactions

corresponding to different words as stimuli. The remaining

large fraction of neurons shows reduced firing when exposed

to newer words, illustrating spatial sparsity shown by the brain

in encoding for different information. Many NCL algorithms,

such as those presented by Panda et al. (2018), Muńoz-Martín

et al. (2019), Allred and Roy (2020), Bianchi et al. (2020),

and Yuan et al. (2021) utilize the winner-take-all approach

at the outermost layer using excitatory-inhibitory connections

for creating spatio-temporal sparsity. Allred and Roy (2020)

also used non-uniform synapse modulation. Also, a fixed-

size single-layer network achieved high accuracy without using

supervised training. The approach utilizes competition created

by lateral inhibition that creates non-uniformity in the network

when exposed to a certain input, thus creating spatial sparsity.

The presence of novel input is identified using self-firing

dopaminergic neurons that otherwise remain inhibited. The

dopaminergic neuron then stimulates all other neurons, thus

making them rapidly adapt to new information. Other neurons

in the network are inhibited by lateral inhibition, thus storing

prior information.

3.4. Neurogenesis

Dynamically growing networks are inspired by neurogenesis,

which occurs in the adult mammalian brain for adapting to new

information (Kempermann et al., 2004).

Imam and Cleland (2020) used neurogenesis for lifelong

learning in combination with other biologically inspired

mechanisms implemented on Intel’s Loihi (Davies et al., 2018). The

study demonstrated lifelong learning while identifying odor from

high-dimensional noisy olfactory signals from chemosensor arrays.

A grow-when-required algorithm is implemented, introducing

new nodes when a new odor is encountered. It is essential to

note that the high performance of the algorithm is ensured by

multiple other mechanisms incorporated in the network, such as

neuromodulatory optimization of circuit properties and STDP-

based local learning rule. The implementation also utilizes sparse

excitatory and dense inhibitory networks that lead to the temporal

encoding of the information (Buzsáki and Wang, 2012). Wang

et al. (2014) presented another approach that utilizes temporal

coding to encode information while adding neurons to the hidden

layer as a new class arrives. Supervised STDP is proposed to train

synapses between the hidden layer and the output neuron. In

case all neurons delay in spiking when input is presented, a new

neuron is adaptively added. Neurons with activity timing lesser

than a set threshold are pruned. Hence, it inherently utilizes an

unsupervised mechanism for growing adaptive structure with high

classification accuracy on various datasets though not tested for

incremental learning by the authors. Zhang et al. (2022), on the

contrary, used the spiking activity of the neurons to determine

the neurons nearest to the input and grow the network if the

activity is found to be lesser than a threshold. The neurons and

synapses also got removed upon inactivity for a duration greater

than the threshold to regulate the network size, forgetting the

previous information.

Hajizada et al. (2022) realized a neural state machine

to determine the recruitment of new output neurons

depending on the activity of input and output layers. The

state machine is also responsible for deciding when to

update the weights of the network and whether a label

is to be requested. The network is implemented on Intel’s

Loihi.

3.5. Controlled forgetting

Controlled forgetting is another aspect of biological systems

where the focus is to partially forget or weaken the activity

corresponding to older information by identifying redundant

weights. In neuroscience, Liu et al. (2022) came up with an

interesting notion of “reactivation,” suggesting that forgetting does

not lead to memory loss but only makes it difficult to gain

the information without presenting that stimulus to invoke the

memory again. Asymmetric local learning rules and excitatory

and inhibitory feedback connections can be exploited to emulate

controlled forgetting. Spiking neural networks developed by

Panda et al. (2018) and Allred and Roy (2020) have shown

to work excellently in identifying the network parts that could

be forgotten to accommodate new information. Panda et al.

(2018) developed a modified local learning mechanism that leaks

certain weights storing insignificant information while retaining

the ones storing old important information. This results in

forgetting insignificant data, making the network ready to learn

new tasks in a fixed network structure. This is similar to weight

regularization, except the identification of insignificant information

that occurs automatically. The leak time constant of the weight,

which can be considered as a local hyper-parameter, is modulated

based on pre and postsynaptic neuron activity instead of a

global error function. The authors argue that asynchronicity helps

the system to learn multiple patterns as only a few parts of

the network are active at any time due to their event-driven

nature, thus saving from computation overload. However, this

rule also requires providing previous samples in larger quantities

than later ones as the number of samples presented to the

network signifies the remembering ability of the network for

that class.

Figure 1 attempts to illustrate certain bio-inspired mechanisms

seen in several studies. The spiking neural network responds

to three different tasks presented to it sequentially. Box A

represents the activation of a sub-network when the network

encounters task 1 (Allred and Roy, 2020). Box B represents

neuromodulation that is based on the loss in the case of

supervised learning approaches (Wu et al., 2022). This affects

the synaptic strength (Stewart and Neftci, 2022) and even

hyper-parameters such as learning rate and neuron membrane

potential decay as in some studies (Wu et al., 2022). Box C
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FIGURE 1

Mechanisms in spiking neural networks for continual learning. The gray boxes represent the mechanisms that are listed in the table. The figure

illustrates a neural network that encounters inputs related to di�erent tasks 1, 2, and 3 sequentially.

FIGURE 2

Illustration of plausible cause-e�ect relationship for continual learning. The causes (event driven computation, excitatory, inhibitory connections,

adaptive threshold, etc.) may directly or indirectly contribute to the e�ects [spatio-temporal sparsity, complementary learning system (CLS),

controlled forgetting, plasticity - stability balance] that ultimately lead to continual learning.

represents an inhibitory connection between the output neurons

to emulate the winner-take-all approach so that classification

can happen (Muńoz-Martín et al., 2019). Box D represents

the recruitment of new output neurons to train on a new

task, previously not encountered by the network, as and when

it gets encountered (Zhang et al., 2022). Figure 2 attempts

to summarize this section by illustrating plausible algorithmic

constituents in spiking neural networks that may ultimately lead

to continual learning.

4. Hardware aspects of NCL systems

To discuss end-to-end solutions, analysis of hardware

implementation holds high significance. In the continual learning

scenario, critical aspects of spatio-temporal sparsity, increased

network parameters requiring updates, and multi-hierarchy weight

update rules pose more challenges than regular (non-continual)

spiking network implementations. Some aspects worthy of

consideration for hardware for NCL systems are as follows:
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1. Imbalanced data-flow: Spatio-temporal sparsity is a critical

aspect of continual learning that can cause imbalanced data-flow

and difficulty in the prediction of SNN workload. The challenge

of congestion of communication channels can thus arise along

with difficulty in adaptive resource scheduling and mapping for

on-the-fly implementation.

2. Increased independent network state variables: NCL

algorithms rely on multiple parameters and hyper-parameter

updates such as neuron threshold, decay rate variation,

and axonal delays. These algorithms also require updating

the membrane potential and synaptic weights as per the

updated hyper-parameters. These updates may lead to an

increase in memory access per timestep, consuming energy

and slowing processing. These updates may also require

highly reconfigurable in-memory computing paradigms with a

high-performing interface.

3. Support of different neuronal models and learning rules:

While various platforms are able to support different learning

rules, incorporating the programmability of a neuron

model directly affects the design of finite state machines

implementing the sequential neuron parameter updates. While

the incorporation of modules such as microcode functionality

that enable such programmability is progressing (Orchard et al.,

2021), there is still a long way to go to be able to achieve a

general architecture for highly programmable neuronal models

and update rules.

4. Multi-timestep neuronal parameter update: A constraint

of multi-timestep neuronal membrane potential update

for emulating LIF dynamic causes interference with

general dataflow scheduling for synaptic weight update in

simultaneously occurring local learning rules.

In the further sub-sections, we discuss hardware

implementations of NCL systems in the current literature.

We discuss how these implementations are able to mitigate or work

around the above issues. Two types of neuromorphic hardware

implementations are utilized by current NCL systems, namely,

digital neuromorphic architectures and custom nano-device-based

architectures. Both follow similar parallel distributed systems but

differ in the amount of near-memory and in-memory computation

supported. While the former supports high programmability,

the latter tailors the system for higher energy efficiency. Both

are compared on relevant parameters and are shown to support

different algorithms with differing strengths. Certain other

approaches are discussed that open up directions for further

development of hardware specifically for supporting continual

learning approaches.

4.1. Digital hardware platforms used by
NCL systems in the literature

In digital neuromorphic platforms, re-programmability is one

key aspect, along with parallel “cores” and local memory access to

obtain the benefit of energy efficiency. However, bottlenecks arrive

in two aspects. First, the neuro-core shared by various neurons

generally shares the same parameters, such as time constants for

membrane updates and threshold potentials. Second, the number

of fan-ins and fan-outs of one neuron is restricted due to the

localization of computation. Table 1 enumerates key aspects of

digital neuromorphic architectures as reported in the literature.

An algorithm such as three-factor learning, as proposed by

Stewart et al. (2020), has been implemented on Intel’s Loihi (Davies

et al., 2018). Neuro-cores provide the processing required for

neuronal and synaptic updates. The chip utilizes multiple cores

with parallel accessibility to 1 million neurons in one timestep per

core. Activity scheduling is done using a dedicated scheduler for

multiple spiking activities at the same timestep. The hierarchical

routing mechanism helps in dealing with the multi-chip mapping

of the implemented neural network. Multiple compartments are

used in the implementation to emulate the three-factor learning

rule using the learning engine provided by the cores. x86 cores

ensure the programmability of learning rules.

Hajizada et al. (2022) present another NCL algorithm

implemented on Loihi. It uses the local learning engine of the

processor for online continual learning as the learning is localized

to a single layer for object recognition.

Certain hardware implementations like Tianjic (Deng et al.,

2020) unify spiking and non-spiking network emulation, making

it easier to implement global functions for the three-factor-learning

scenario. Wu et al. (2022) have implemented the system on Tianjic

and utilized its many-core architecture.

Another implementation emulating the inner loop of three-

factor learning is HICANN (Friedmann et al., 2017) used by

Bohnstingl et al. (2019). The system utilizes a microprocessor

for executing learning rules and synaptic updates. This ensures

reconfigurability. The implementation is mixed-signal as the

neurons are emulated using analog circuits. The algorithm,

however, is tested for transfer learning in reinforcement learning

tasks and not for catastrophic forgetting. Certain aspects of

the architecture are elucidated in Table 1 for comparison with

other architectures.

Mikaitis et al. (2018) emulated the three-factor STDP learning

rule and dopaminergic neurons on SpiNNaker. The architecture

of SpiNNaker incorporates 18 ARM cores per chip, connected

via network on chip. This architecture thus allows flexibility

in the implementation of neurons, synapses, connections, and

learning rules while trading off power and resource utilization

(Stromatias et al., 2013). While the algorithm emulated is three-

factor STDP, the system, however, has not been tested on the

continual learning scenario.

Narayanan et al. (2020) designed a system that does

computation only when activity occurs by utilizing the same

resource. The activity is timestamped in the current layer

being executed. The same hardware is utilized for next-layer

computations. While it attempts to save computational resources,

it has a high databus requirement for retrieving the corresponding

weights for membrane potential update. It is also difficult to

implement connections within the same layer.

To reduce memory footprint, certain approaches utilize

approximations such as dyadic function (Karia et al., 2022).

Certain others simplify neuronal models by replacing inhibiting

neurons with lateral inhibitory connections to avoid complex

neuronal updates (Putra and Shafique, 2021). Putra and Shafique

(2021) proposed an algorithm to find spiking neuron models

that optimize energy consumption and memory footprint. The
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TABLE 1 Comparison of various neuromorphic platforms.

Features LOIHI TIANJIC HICANN SPINNAKER

Technology 14nm Finfet 28nm HLP CMOS 65nm CMOS 130nm CMOS

Number of parallel neurons

accessible per step

1K Extendable (Pei et al., 2019) 64 -

Event routing mechanism Mesh routing Reconfigurable LUT based,

adjacent multicast

Wired, with switches at

intersection

NOC

Communication protocol AER Non AER AER AER

Near memory computing

supported

Yes Yes Yes No

NCL algorithm implemented Surrogate gradient based

three factor

Hybrid global–local meta

learning rule

Inner loop of L2l

(reinforcement learning)

STDP, SRDP, custom

Weight storing device SRAM Locally stored in SRAM SRAM SDRAM, DTCM

Neuron models supported LIF, ADExp LIF, ANN AdExp, LIF (Schemmel et al.,

2010)

Point neuron, LIF, Izhekevich

Weight precision 9-bit 8-bit weights Analog 22 bits (Stromatias et al.,

2015)

The table attempts to provide insight on the architectural make-up of implementations.

approach however requires knowing the input samples to be

processed to make the memory-energy consumption estimate.

Another important factor is the parameter precision trade-off.

A higher resolution is required as the majority of weights take

values close to extremes. High bit width impacts memory print.

With low bit widths, accuracy of the algorithm is hugely affected. To

overcome this, Karia et al. (2022) have used dual fixed point formats

that incorporate both using a mode bit set high for representing

high precision and low for representing a high dynamic range. Li

et al. (2022) utilized a mixed precision scheme, with floating-point

representation for rapidly changing synaptic weights and binary

values for holding onto information as they do not go under much

effect upon activation.

4.2. Nano-Device-based emerging
architectures

Nano-Device-based emerging architectures focus on the in-

memory computation of network functions such as leaky integrate

and fire emulation as well as complex synaptic weight updates. The

approach promises higher energy efficiency as more computation is

incorporated into the memory module, removing data movement

requirements for processing (Kim et al., 2015; Luo and Yu,

2021). These implementations also have parallel implemented

“cores” (Jiang et al., 2019), but most of the presented studies

in the literature for NCL systems are highly custom-tailored for

the algorithm being implemented. For example, Muńoz-Martín

et al. (2019) implemented STDP-WTA network with phase change

memory devices as synaptic elements. The WTA functionality is

implemented using a transistor between pre and post-neuron. This

makes it difficult to implement any change in the algorithm once

the structure gets hardwired.

Furthermore, another device-specific implementation is done

by Yuan et al. (2021). In this study, authors have shown dynamically

expanding networks for incremental learning. The advantage

of the approach comes with seamless gate tunability offered

by a memtransistor which simplifies addressability in crossbar

arrays and efficiently enables tunable learning rules and bio-

realistic functions (Yan et al., 2022). While programming energy

is critical in these implementations, certain devices ensure low-

energy operation due to inherent programming conditions. In the

study presented by Chekol et al. (2021), the state is reversed as the

programming voltage reaches 0.2 V, with current leakage of less

than 10fA, where a memtransistor requires 30 V of programming

voltage (Yuan et al., 2021).

Apart from this, non-volatile devices present inherent

challenges of non-uniformity in cycle-to-cycle and device-to-

device variation. As an ingenious workaround, many studies

exploit the inefficacy of the devices for emulating algorithmic

components (Suri et al., 2013b; Kumar et al., 2016). For example,

Shaban et al. (2021) incorporated non-ideality in the algorithm

implementation where the approach is based on adaptive

thresholding. The threshold adaptively changes as the neuron

is exposed to a new task. The setup uses a custom circuit that

incorporates an OxRAM crossbar array for emulating the neuron

circuit. Muñoz-Martin et al. (2021) exploited the conductance drift

of the phase change memory (PCM) device for active forgetting.

The authors devise a neuron with internal homeostatic and plastic

regulation, inherently achieving stability-plasticity balance. They

incorporate these neurons in a hybrid supervised-unsupervised

network that resembles a complimentary learning system. The

network is designed for navigation tasks where the agent learns

from rewards and penalties during environment exploration.

Lim et al. (2021) showed that resistance drift observed in phase

change devices improves convergence as the resistance drifts in

the high-resistance state. Sparsification, pruning, and quantization
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FIGURE 3

Illustration of NCL algorithms supported by current architectures. (A) Illustrates the gap in the current literature on algorithm-hardware mapping.

Algorithms such as three factor learning have not yet been implemented using nano-device architectures. Controlled forgetting algorithms are not

yet implemented with digital platforms. Their accuracy is compared in (B).

are proposed at the algorithmic end to bridge the gap between

algorithmic requirements and hardware performance. Other

studies, such as the one presented by Suri et al. (2013a), have shown

drift resilience using in-memory architectural workarounds such

as differential synaptic cells to cancel out the effect of drift.

While nano-device-based architectures provide energy

efficiency, to the best of our knowledge, no NCL system emulating

three-factor learning has been presented in the literature.

Furthermore, while digital platforms provide a vast range of

algorithmic emulation, controlled forgetting is not evident in the

literature. Figure 3A illustrates the gap in algorithm-hardware

mapping, as discussed above. Figure 3B illustrates the performance

of these systems emulating respective algorithms, as reported in

the literature.

5. Performance evaluation metric for
NCL systems

Díaz-Rodríguez et al. (2018) proposed a metric, termed as

“CLscore” (Continual Learning Score) or “CLANNscore ” for the benefit

of the below discussion and analyzed artificial neural network

approaches for continual learning using this metric. To calculate

the CLANNscore , Díaz-Rodríguez et al. (2018) calculated the weighted

sum of several criteria that evaluate the performance of ANN

approaches. Some of the criteria can be adopted as-is for

assessing neuromorphic systems, namely “accuracy,” “backward

transfer,” and “model size efficiency.” But due to underlying

differences between ANN and SNN-based approaches, specifically

in the domain of learning rules and hardware implementation,

we propose the below-mentioned modifications for calculating

“CLSNNscore” for enabling assessment of NCL systems:

1. Computational Efficiency (CE): Díaz-Rodríguez et al.

(2018) proposed this criterion which calculates computational

efficiency using a number ofmultiply and accumulate operations

in forward and backward pass of the network to learn a task

using back-propagation. Most neuromorphic approaches utilize

local learning paradigms instead of back-propagation (Allred

and Roy, 2020; Wu et al., 2022). Such learning paradigms are

represented by a number of synaptic operations and membrane

potential updates in multiple studies (Davies et al., 2018; Deng

et al., 2020). Hence, we minorly modified the criteria as shown

below:

CE = min(1,

∑N
i=1

OPINF(Ti)
OPTRAIN (Ti)

N
), (1)

where OPINF(Ti) and OPTRAIN(Ti) are the number of

synaptic operations and membrane potential updates per

timestep for inference and training for the ith task, respectively.

2. Sample Storage Size efficiency (SSS): While many ANN-

based approaches utilize a memory replay-based mechanism,

neuromorphic approaches have been shown to avert this

mechanism (Muńoz-Martín et al., 2019; Allred and Roy, 2020;

Yuan et al., 2021). However, multiple approaches depend on pre-

trained sub-network in NCL systems to achieve high accuracy

(Muńoz-Martín et al., 2019; Bianchi et al., 2020; Hammouamri

et al., 2022; Stewart and Neftci, 2022). The pre-trained sub-

network stores prior information in the form of learned weights

while it is trained offline on pre-known stimulus. Hence, we

propose to consider memory utilization by pre-trained sub-

network as given below:

SSS = 1−min(1,
Mpretrained

Mtotal
), (2)
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TABLE 2 Benchmarking of NCL systems on the basis of average test accuracy, energy per SOP, and CLSNN
score

.

Type Work Task Hardware Average Test
Accuracy

Energy Per
SOP (pJ)

CL
SNN
score

C
L
S Muńoz-Martín et al.

(2019)

Image Classification

(MNIST)

Nano-device Based

(PCM)

93% 1* 0.60

Bianchi et al. (2020) Image Classification

(MNIST)

FPGA 97% - 0.49

T
F
L

Wu et al. (2022) Image Classification

(MNIST)

Tianjic 86.3% 1.5 0.75

D
E
N Imam and Cleland

(2020)

Odour Classification

(Vergara et al., 2013)

Loihi 92% 105.3 0.73

Zhang et al. (2022) Image Classification

(MNIST)

Nano-Device Based

(Perovskite Nickelate)

85% 0.002 0.67

C
F Yuan et al. (2021) Image Classification

(MNIST)

Nano-Device Based

(MoS_2)

92% 1.06×106 0.65

CLS, complementary learning system; TFL, three-factor learning; DEN, dynamically expanding networks; CF, controlled forgetting. *Bianchi et al. (2019).

where Mpretrained is the number of neurons and synapses of

the pre-trained sub-network and Mtotal is the total number of

neurons and synapses in the complete network.

3. Energy Efficiency (EE): We propose energy efficiency as an

additional criterion for the calculation of CLSNNscore. It attempts

to highlight the energy efficiency of multiple neuromorphic

hardware architectures emulating NCL algorithms over a

conventional computing platform such as CPU, emulating SNN.

The calculation of the criteria is given below:

EE = 1−min(1,
ENCL

ECPU
), (3)

where ENCL is the energy consumption per timestep by the

neuromorphic hardware while emulating the NCL algorithm

and ECPU is energy consumed per timestep by the CPU,

emulating a two-layer, fully connected SNN, as reported by

Parker et al. (2022), who also benchmarked the energy efficiency

of neuromorphic platform against the reported CPU platform.

The metric, CLSNNscore, is calculated using the weighted sum of the

above criteria:

CLSNNscore =

∑
wi × Ci, (4)

where Ci ∈ (accuracy, backward knowledge transfer, model size

efficiency, sample storage size efficiency, computational efficiency,

and energy efficiency) and wi =
1
#C

Table 2 elucidates CLSNNscore of the studies discussed in Sections 3

and 4. The studies are also assessed based on pre-existing metrics

such as energy per SOP and average test accuracy. Analysis of

NCL systems based on average test accuracy alone showcases

studies such as the one proposed by Bianchi et al. (2020) to be

efficient on singular tasks. This metric however cannot provide

a measure of catastrophic forgetting in the network and energy

efficiency (Díaz-Rodríguez et al., 2018). Analysis of studies based

on Energy per SOP highlights studies such as Zhang et al.

(2022). However, the metric of Energy per SOP alone may not

quantify catastrophic forgetting and computational efficiency of the

implementations in continual learning tasks. The analysis of studies

using the modified metric, CLSNNscore, on the contrary, assesses the

performance of NCL systems in multiple aspects simultaneously

and highlights studies such as Imam and Cleland (2020), Wu

et al. (2022), and Zhang et al. (2022). These studies perform

well in terms of multiple criteria, such as backward transfer of

knowledge and energy consumption during re-training of the

network. Adaptation of bio-inspired mechanisms in an intricate

manner is seen in studies such as Imam and Cleland (2020) that

may help the network achieve computational efficiency along with

high performance in continual learning tasks. For example, Imam

and Cleland (2020) utilized temporal encoding using excitatory-

inhibitory networks and dynamically expanded the network when

required by the task.

Wu et al. (2022) synergistically incorporated both local and

global learning. Implementation on hybrid ANN-SNN emulator

(Deng et al., 2020) ensures low-energy consumption along with

efficient emulation. Zhang et al. (2022) emulated a grow-when-

required scheme, implemented using Perovskite Nickelate, with

very low programming energy. Figure 4 elucidates the performance

of different studies in different criteria of the metric. More area

signifies better overall performance. The calculation of energy for

each task is given in Table 3. This estimation is done for the

calculation of energy efficiency criteria in Section 5.

6. Discussion

This section discusses the roadmap for further development of

NCL systems. The research and co-optimization are discussed at

all abstraction levels. Finally, the conclusion summarizes the key

takeaways from the study.

6.1. Road ahead for NCL systems

There are certain cues in biological systems not yet adapted for

continual learning applications. Such approaches include dendritic

computation (Stöckel and Eliasmith, 2021) and context-dependent

gating (Tsuda et al., 2020). Studies such as those proposed by
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FIGURE 4

Radar plot for di�erent studies. Four studies with di�erent hardware platforms and NCL algorithms are plotted. The studies show di�ering strengths

in di�erent criteria. Numbers are mentioned against each study in the graph for identification.

TABLE 3 Estimating energy consumption of the system.

Work Energy
consumption (mJ)

Remarks

Muńoz-Martín

et al. (2019)

1.7 Training power (Bianchi

et al., 2020)× Timestep (s)

(Muńoz-Martín et al., 2019)

Bianchi et al.

(2020)

18.5 Training power (Bianchi

et al., 2020)× Timestep

(s) (Muńoz-Martín et al.,

2019)

Wu et al. (2022) 3.46 Reported energy per inference

(latency = 1 timestep)

Imam and

Cleland (2020)

0.00215 Reported energy per inference

/ timesteps per inference

Zhang et al.

(2022)

0.000004 Estimated programming

energy per device× estimated

devices programmed per

timestep

Yuan et al.

(2021)

714.6 Estimated programming

energy per device× estimated

devices programmed per

timestep

The estimation is based on different component values reported in each study, with the

method of calculations provided in the remark section of the table.

Liang and Indiveri (2019) and Yang et al. (2021) are based on

hierarchical context-dependent gating but have not been tested

against continual learning tasks.

From the algorithmic viewpoint, complementary learning

system-based algorithms currently lack in adaptively identifying

a structure in an ensemble of items fed to the neuromorphic

system to emulate neo-cortical function. In three-factor learning,

algorithms do not identify sub-networks responsible for encoding

important information for previous tasks. Hence, while Hebbian

plasticity-stability balance is maintained, while simultaneous

spatio-temporal sparsity is not, possibly causing the utilization of

larger network sizes.

In most algorithms, winner-take-all learning is implemented

using supposedly delicately balanced excitatory and inhibitory

connections. Fault tolerance in critical stages can make the

excitatory and inhibitory circuits enter a non-desirable state,

possibly stepping away from continual learning. Designing should

be done while also covering the undesirable states that should

converge to idle states. Very few implementations utilize time-

based coding schemes that can save on resources. The possibility

of initiating faster dynamics for the network adapting to newer

information while tuning the remaining network to a slow setting

to avoid change in synaptic weights in local learning scenarios has

not been investigated well.

Algorithms used for predicting network activity for effective

hardware resource mapping and scheduling have to be developed

further at a low computational cost. They also have to be

dynamic in their predictions with changing network activity in

the continual learning scenario. Many resource mapping and

scheduling techniques are built for spiking convolutional networks.

There is a need to design techniques for balancing workloads

for continual learning algorithms. Most resource mapping and

workload predicting algorithms today may not be taking continual

learning workloads into consideration and are not continually

adaptive (Song et al., 2022). Chen et al. (2022) have attempted

to mitigate workload imbalance by dividing channels into

subgroups of equal workload, where workload has been calculated

proportionally to weights. These algorithms have not yet been

tested on continual learning workloads. Another approach can

be distributing the workload based on differing time constants

throughout the network that emulates fast and slow adaptation

to data. Another method to map the resources can be to assign

specific processing elements to modules that identify as and when

new information arrives and map the remaining resources to the
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FIGURE 5

Roadmap for NCL Systems. The figure illustrates plausible directions that can be taken at multiple abstraction levels to develop NCL systems for

deployment in real-world applications.

active sub-network accordingly, which is not yet implemented in

the literature.

Population-based neural mapping techniques also need to be

tailored such that they can incorporate variable resetting thresholds

and other important parameters for continual learning. Xiang et al.

(2017) proposed an approach in this direction, which is yet to be

tested on continual learning workloads. Another drawback appears

to arise from the extra processing space that the algorithm takes to

constantly reduce the spurious weight updates for saving energy.

At the device level, while in-memory computation is lucrative,

it can lead to large and power-consuming peripheral circuitry,

repeated across the cores for multi-core architecture, along with

complicated and algorithm-specific circuit design. Functionally, in

the context of continual learning, studies presented by Muńoz-

Martín et al. (2020) and Shaban et al. (2021) have paved the way

for an efficient implementation of adaptive threshold incorporation

within devices, proven to be beneficial for continual learning

(Hammouamri et al., 2022), but implementation for continual

learning tasks is yet to be seen at the device level for these

algorithms. Similarly, studies presented by Muliukov et al. (2022)

have integrated self-organizing map functionality on ReRAM and

FeFets but have not yet tested the implementation on continual

learning tasks. Moreover, ensuring reconfigurable logic mapping

by the NCL hardware for implementing various algorithms is

important. The development of hybrid architectures is arguably

necessary to incorporate system-level nuances of in-memory

computing modules for end-to-end deployment.

Figure 5 illustrates a summary of a plausible roadmap for

further development of NCL systems.

6.2. Conclusion

In this review, we discussed mechanisms for neuromorphic

continual learning based on algorithms present in current

literature. We discussed important hardware considerations

and workaround to support NCL algorithms. We analyzed

different studies based on the modified metric for continual

learning systems. We identified the neuromorphic approaches

utilized by works functioning well on this metric. We

also identified research gaps throughout the analysis and

proposed a roadmap for further development of NCL

systems.
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