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The investigation of functional brain networks (FBNs) using task-based functional

magnetic resonance imaging (tfMRI) has gained significant attention in the field

of neuroimaging. Despite the availability of several methods for constructing

FBNs, including traditional methods like GLM and deep learning methods

such as spatiotemporal self-attention mechanism (STAAE), these methods have

design and training limitations. Specifically, they do not consider the intrinsic

characteristics of fMRI data, such as the possibility that the same signal value

at different time points could represent different brain states and meanings.

Furthermore, they overlook prior knowledge, such as task designs, during training.

This study aims to overcome these limitations and develop a more efficient model

by drawing inspiration from techniques in the field of natural language processing

(NLP). The proposed model, called the Multi-head Attention-based Masked

Sequence Model (MAMSM), uses a multi-headed attention mechanism and mask

training approach to learn different states corresponding to the same voxel values.

Additionally, it combines cosine similarity and task design curves to construct a

novel loss function. The MAMSM was applied to seven task state datasets from the

Human Connectome Project (HCP) tfMRI dataset. Experimental results showed

that the features acquired by the MAMSM model exhibit a Pearson correlation

coefficient with the task design curves above 0.95 on average. Moreover, the

model can extract more meaningful networks beyond the known task-related

brain networks. The experimental results demonstrated that MAMSM has great

potential in advancing the understanding of functional brain networks.

KEYWORDS

masked sequence modeling, multi-head attention, functional brain networks, feature
selection, task fMRI

1. Introduction

Research into the function of the human brain has garnered significant attention and
has been a popular field of study for several decades. One pivotal research direction in this
field is the mapping of functional brain networks (FBNs), which has become a useful way to
study the working mechanisms of the brain. By providing insight into the underlying neural
mechanisms of such networks, FBNs hold the potential to unravel the working of the brain
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(Power et al., 2010; Park and Friston, 2013; Sporns and Betzel, 2016;
Jiang et al., 2021), as well as the pathogenesis of several diseases
(Canario et al., 2021). Therefore, exploring FBNs is crucial for
comprehending the complex dynamics of the brain and can offer an
avenue for further understanding the neural processes underlying
different functions.

In traditional methods, generalized linear models (GLM)
(Beckmann et al., 2003; Barch et al., 2013), independent component
analysis (ICA) (McKeown, 2000; Beckmann et al., 2005; Calhoun
and Adali, 2012), and sparse dictionary learning (SDL) (Lv et al.,
2014; Ge et al., 2016; Lee et al., 2016; Zhang et al., 2016; Shen et al.,
2017; Zhang et al., 2018) have been utilized to construct functional
brain networks. Moreover, other machine learning techniques have
been effectively applied to fMRI data analysis, such as support
vector machines (SVM) (LaConte et al., 2005; Mourao-Miranda
et al., 2006) for fMRI analysis and classification, and principal
component analysis (PCA) (Thirion and Faugeras, 2003; Smith
et al., 2014) for fMRI data dimensionality reduction. With the
advancement of deep learning technology, numerous deep learning
models have been applied to fMRI data analysis and functional
brain network construction. For instance, Huang et al. (2017)
proposed a deep convolutional autoencoder (DCAE) to extract
hierarchical features from fMRI data; Zhao et al. (2018) proposed
a spatiotemporal convolutional neural network (ST-CNN) to learn
temporal and spatial information from fMRI data simultaneously;
Qiang et al. (2020) proposed a spatiotemporal self-attention
mechanism (STAAE) (Dong et al., 2020b) for brain functional
network modeling and ADHD disease classification. Additionally,
Qiang et al. (2020) proposed a residual autoencoder (RESAE)
(Dong et al., 2020a) for constructing task related functional brain
networks. Jiang et al. (2023) introduce a Spatio-Temporal Attention
4D Convolutional Neural Network (STA-4DCNN) model to
characterize individualized spatio-temporal patterns of FBNs. Yan
et al. (2022) proposed a Multi-Head Guided Attention Graph
Neural Network (Multi-Head GAGNN) to simultaneously model
both spatial and temporal patterns of holistic functional brain
networks. Experimental results have indicated that deep learning
methods are effective in fMRI data modeling and brain network
construction tasks, which demonstrate the significant advantages
of deep learning models.

Although the methods mentioned above have shown promising
results, there are still certain limitations that need to be addressed.
Firstly, the current design and parameterization of models do not
fully account for the characteristics of fMRI data. For instance,
the same signal value at different time points may have different
meanings depending on the task or state, and thus, it is crucial
to exploit this information for improving model performance.
Secondly, the model training process disregards some prior
knowledge, such as task design curves, which could potentially
enhance the efficacy and efficiency of the model. These limitations
underscore the need for more advanced techniques that can
tackle these challenges and improve the accuracy and applicability
of fMRI analysis.

Recent research has revealed the exceptional capabilities
of Transformer models (Vaswani et al., 2017) in tasks such
as text analysis and prediction. One of key mechanisms of
transformer is to use multi-head attention to do the processing
of sequence data. By leveraging multi-head attention mechanisms,
the distinctive semantics of a single word in different language

contexts can be analyzed. For instance, the term “apple” could
signify either a fruit or a mobile phone brand in various language
contexts. Given the similarity between fMRI time series and text
sequences, multi-head attention mechanisms can be employed
to extract features from fMRI data. Furthermore, the growing
popularity of the masked language modeling (MLM) training
method in the Bert model (Devlin et al., 2018) suggests that
masking-based training techniques are remarkably effective at
capturing contextual information. Since there are similarities
between fMRI time series and sentences, the multi-head attention
mechanism and mask training method can be extended to fMRI
feature extraction.

So, this manuscript proposed a novel model called the Multi-
head Attention-based Masked Sequence Model (MAMSM) which
utilizes a multi-head attention mechanism to scrutinize different
states of voxel signals at various locations while also implementing
the Masked Sequence Model (MSM) method to analyze and
process the fMRI time series. Furthermore, MAMSM employs both
randomly discrete and continuous masks in the masking operation
to enhance the model’s learning capacity and training effectiveness.
In addition to that, this study leverages prior knowledge of the task
design curves and cosine similarity to construct a new loss function,
resulting in improved outcomes in model training.

In order to demonstrate the effectiveness of our proposed
model, we utilized data from the Human Connectome Project
(HCP) (Van Essen et al., 2013) and analyzed the seven task-
state datasets of 10 individuals using both individual and group
average approaches. To evaluate the performance of our model, we
compared it with the SDL and STAAE methods. The experimental
results indicate that the FBNs extracted by our proposed model
outperformed those extracted by the other methods across various
task datasets. Notably, our model also detected several brain
networks that were distinct from the task-state-corresponding
FBNs, and we subsequently identified some networks as similar
to the known resting-state brain networks. Specifically, our
experimental results demonstrate that our model is highly effective
in extracting features from a small amount of data, which is
particularly important in the context of brain imaging research
where data acquisition is often difficult, costly, and resource-
intensive. A brief version of the study has been published as a
conference paper in the MICCAI 2022 (He M. et al., 2022).

2. Materials and methods

2.1. Overview

As shown in Figure 1, the proposed method consists of three
main steps: (1) four-dimensional fMRI data is pre-processed and
mapped to two-dimensional space; (2) the pre-processed two-
dimensional fMRI time series is input into the MAMSM, composed
of multiple headed attention mechanisms, and trained with a mask-
based approach; (3) all the latent features extracted from the pre-
training are input into the feature selection layer, which are trained
with a loss function by leveraging the prior task designs. Finally,
the features output by the encoder of the feature selection layer
are regressed by lasso and mapped back to the original brain space,
resulting in the visualization of FBNs.
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FIGURE 1

The framework of MAMSM (A) preprocessing, which involves mapping all subjects’ tfMRI data to 2D space; (B) masking and embedding operations
of time-series data; (C) pre-training of the model, consisting of three layers of transformer encoders; (D) further training is performed using the
feature selection layer, and the obtained features are used to map FBNs.

TABLE 1 Summary of used datasets.

H W D Time points Voxels Training subjects

Motor 46 55 46 284 28,546 10

Emotion 46 55 46 176 28,546 10

Gambling 46 55 46 253 28,546 10

Language 46 55 46 316 28,546 10

Relational 46 55 46 232 28,546 10

Social 46 55 46 274 28,546 10

WM 46 55 46 405 28,546 10

2.2. Materials and pre-processing

The dataset from the Human Connectome Project Q3 was
used in this work, which is publicly available on the website.1

We selected randomly the 10 subjects from HCP dataset. To
evaluate the temporal features and spatial features obtained by
the MAMSM, we chose 24 task designs from seven tasks. The
corresponding hemodynamic response function (HRF) responses,
which are the convolution of the task paradigm and HRF function,
are utilized as temporal templates and the group-wise functional
brain networks (FBNs) derived from the GLM are utilized as
spatial templates (Güçlü and Van Gerven, 2017). For the sake of
description, 24 distinct symbols were used to represent each of
the selected task designs. For emotion task, E1 is for emotional
faces, and E2 is for simple shapes. For gambling task, G1 is for
punishment over baseline, and G2 is for reward over baseline. For
language task, L1 is for math over story, and L2 is for story over
math. For social task, S1 is for social over baseline, and S2 is for

1 https://db.humanconnectome.org

random over baseline. For relational task, R1 is for match over
baseline, and R2 is for relational over baseline. For motor task,
M1-M6 are for cue, left foot movement, left hand movement, right
foot movement, right hand movement, and tongue movement,
respectively. For working memory task, W1-W8 are for the 2-
back and 0-back task events of body parts, places, faces, and
tools, respectively.

The parameters of data collection used in this text is as
follows: a 90 × 104 matrix, 220 mm FOV, 72 slices, TR = 0.72 s,
TE = 33.1 ms, Flip angle = 52◦, BW = 2,290 Hz/Px, in-
plane FOV = 208 mm × 180 mm. For the tfMRI data,
the pre-processing operations included skull stripping, motion
correction, slice timing correction, spatial smoothing, global drift
removal (high pass filtering) and registration to MNI space.
Table 1 provides an overview of the pre-processed task functional
magnetic resonance imaging (tfMRI) datasets used in this study.
After pre-processing of the tfMRI data, the four-dimensional
tfMRI data was transformed into a two-dimensional matrix
by using Nilearn tools (available at https://nilearn.github.io/)
and the MNI-152 mask. Data for each time point comprised
28,546 voxels.
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TABLE 2 The results of training with different mask operations.

Mask strategies Training loss Predict loss

Discrete 0.043 4.73

Continuous 0.047 4.739

Discrete and continuous 0.04 4.719

2.3. MAMSM

2.3.1. MSM
In recent years, Masked Language Modeling (MLM) and

Masked Image Modeling (MIM) approaches have been widely
employed in Natural Language Processing (NLP) (Devlin et al.,
2018; Chung et al., 2021; Sinha et al., 2021) and Computer Vision
(CV) (Zhou et al., 2021; He K. et al., 2022; Tong et al., 2022;
Xie et al., 2022) due to their demonstrated efficacy in extracting
contextual information through mask training. This work utilized
Masked Sequence Modeling (MSM) to process fMRI sequence data.
MSM is a self-supervised training method in which a portion of
the tokens in the sequence are replaced with [mask] symbols and
the remaining tokens and location information are used to predict
the tokens replaced with [mask]. This training method allows the
model to learn more about the relationships between contexts.

In the BERT model proposed by Devlin et al. (2018), the [CLS]
(Classification Token) serves to create a compact representation of
the entire input sequence. This condensed representation can be
used for tasks such as text classification and similarity computation.
Specifically, for each input fMRI time series, the proposed model
is designed to generate a vector representation for each input. By
adding the special [CLS] tag at the beginning of the sequence, this
vector representation of the tag serves as a summary of the entire
sequence, compressing and integrating the information from the
entire input. As a result, the [CLS] tag provides a comprehensive
representation for subsequent feature extraction and similarity
calculation processes.

Before the mask processing process, the fMRI data was
normalized to a range of (0, 1). After normalization, we retained
three decimal places for the values, resulting in a maximum of
1,001 distinct values (from 0, 0.001, 0.002, . . . to 1) for the whole-
brain signals. In the subsequent model training process, we treat

these 1,001 different values as 1,001 classes, simplifying the model
training process into a multi-classification problem. That is, if we
want to predict the value of fMRI signals at a certain time point,
we converted it into categories with a total of 1,001 values for
classification. The prediction range of the model is also within these
1,001 classes of values. When predicting the value of a masked
position, the model only needs to determine the class to which
it belongs. To facilitate the prediction of token values, a multi-
classification task was employed, where in a cross-entropy loss
function was utilized to compute the error between the model’s
predicted value and the actual value. As shown below, where yi
is the true probability distribution, ŷi is the predicted probability
distribution, and n is the number of categories:

CE
(
yi, ŷi

)
= −

n∑
i = 1

yilog (̂yi)

In the mask processing process, for each fMRI sequence input,
a certain proportion of positions on the fMRI time series will
be randomly covered, with the original signal values replaced by
[mask]. Here, taking the tfMRI sequence of Motor task as an
example, we selected roughly 10% time points as mask locations
for each input with the length of 284 time steps, as illustrated
in Figure 1B. After the Mask operation was performed, the pre-
training stage in the proposed model employed an unsupervised
training process to predict the token values of the masked locations,
as shown in Figure 1C.

In order to enhance the learning capability of the model
and achieve optimal training outcomes, this study employs a
combination of continuous and discrete masking techniques.
When using only discrete masking, the model may be able to
predict the values of the masked regions through simple methods
such as averaging the values of its previous and subsequent time
steps. This may lead to the model failing to learn deeper features.
To avoid this issue, we designed more sophisticated methods of
masking, such as continuous mask, etc., Table 2 presents the
outcomes of the training with different masking modes, where 90%
of the voxels in the same subject are allocated for the training set,
10% for the test set, and the same training parameters are utilized.
We adopt a uniform sampling strategy for voxel selection, wherein
every ten voxels, the first nine are assigned to the training set, and
the last one is designated for the testing set. By comparing the

FIGURE 2

(A) The frame of self-attention. (B) The frame of multi-head attention. (C) The frame of feature selection layer.
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FIGURE 3

The training errors by using three different loss functions. (A) Error variation by using Losscos. (B) Error variation by using Lossmse. (C) Error variation by
using Losstask .

minimum loss on the training set and the test set, it can be seen
that the combination of the two mask operations can achieve better
results.

2.3.2. Multi transformer encoder layers
The Transformer model is a sophisticated deep neural network

that is based on an attention mechanism, originally introduced
by Vaswani et al. (2017) for machine translation. The model
is structured according to the seq2seq paradigm and comprises
two primary components: an encoder that encodes the input
sequence and a decoder that generates the output sequence. Unlike
traditional Recurrent Neural Network (RNN) models (Hochreiter
and Schmidhuber, 1997; Schuster and Paliwal, 1997; Graves et al.,
2005; Cho et al., 2014), the transformer model utilizes multi-
head attention mechanism for computation. This mechanism can
represent information from multiple semantic spaces, capturing
different meanings of the same words in different contexts, similar
to the same signal values in fMRI data may represent different states
and meanings.

Therefore, in this manuscript, each fMRI sequence is embedded
and masked as the input of the transformer encoder, and then the
input is linearly transformed to obtain three matrices, namely Q
(Query), K (Key) and V (Value). Subsequently, Q and K are dot-
multiplied and then normalized by dividing by

√
dk to stabilize the

gradient. Subsequently, a softmax operation was used to obtain the
attention score, which represents the importance of each position
of the fMRI sequence, and then multiplied by V to obtain the
output of self-attention, as shown in Figure 2A. Eventually, the
output of multiple self-attentions is superimposed as the output of
multi-headed attention, as shown in Figure 2B. The formulae of
self-attention and multi-head attention can be expressed as follows,
where headi denotes the i-th self-attention mechanism.

MultiHead (Q,K,V) = Concat
(
head1, , headn

)
WO

headi = Attention(Q,K,V)

Attention (Q,K,V) = softmax(
QKT
√
dk

)V

Upon completion of the pre-training of the model, the attention
score was extracted as a feature matrix, which represents the
weights at various time points within an fMRI time series. After

the model pre-training was completed, the attention scores were
extracted as the features representing the weights of each time
point in the fMRI time series. We use the sliding average operation
to smooth the attention scores, and then use the average results
as latent features of the pre-trained model. We set the size
of the sliding average window to 10 and the step size of the
sliding window is 1.

2.3.3. Feature selection layer
Here we propose a novel loss function, Losstask, for the training

of a feature selection layer in autoencoders, as illustrated in
Figure 2C. By combining mean squared loss function (Lossmse)
and cosine similarity loss function (Losscos), this loss function is
more conducive to the task of tfMRI data compared to the other
methods (Dong et al., 2020b; Qiang et al., 2020), which often focus
solely on reconstruction error such as MSE, disregarding the latent
feature distribution and the relationship with the task curves, both
of which are indispensable to characterize fMRI time series. The
latent feature matrix obtained from pre-training serves as the input
for the encoder, which, after training, produces the final feature
matrix as its output. Through this process, the feature selection
layer also facilitates the reduction of dimensionality of the latent
feature matrix, thus contributing to more efficient and effective
features. The Losstask function is formulated as the combination of
Losscos and Lossmse and we experimentally chose the value of k to 1
in this work, as follows:

Lossmse = MSE =
1
n

m∑
i = 1

wi(yi−̂yi)2

Losscos = li = 1−cos
(
xi, yi

)
Losstask = loss (mse)+k ∗ loss(cos)

The actual value yi and the predicted value ŷi are compared
by calculating the cosine similarity between the n sequences of the

TABLE 3 The final training errors of three different loss functions.

Losscos Lossmse Losstask

Cos-error 0.0074 1.0632 0.0067

Mse-error 0.2955 0.0022 0.0022

The bold values represent the minimum values of each row.

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1183145
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1183145 April 27, 2023 Time: 14:36 # 6

He et al. 10.3389/fnins.2023.1183145

FIGURE 4

Comparison of features and task designs. The blue curves represent
the task designs, the red curves depict the features.

featurexi and the n task design curves yi, and the cosine similarity
calculation formula is:

cos
(
xi, yi

)
=

∑n
i = 1 (xi × yi)√∑n

i = 1 (xi)2 ×
√∑n

i = 1 (yi)2

Mse-error is the MSE reconstruction error of the decoder
output and the original data; Cos-error is the cosine similarity error
between the n sequences of the encoder output feature and n task
design curves. To demonstrate the effectiveness of the proposed
new loss function, an ablation experiment was conducted using the
same data and parameters. The model was trained using Losscos,
Losstask, and Lossmse, respectively. As illustrated in Figure 3, when
Losstask was used, the convergence rate was faster and more stable
than when only Losscos or Lossmse was used. Quantitatively, Table 3
shows that when Losstask was employed, the final Cos-error and
Mse-error were lower.

2.3.4. Mapping FBNs
To obtain the spatial distribution of the functional network,

lasso regression is applied to the feature matrix and the original
two-dimensional input data to get the sparse coefficient matrix,
which represents the spatial distribution of the functional network
The calculation formula of LASSO regression (Pedregosa et al.,
2011) is as follows:

min
w

1
2T
‖ Z−XW ‖22+λ‖W ‖1

Z is the original 2D input data, T represents the total number
of time points, X is the feature matrix, and W is the regressed
sparse coefficient matrix. The coefficient matrix W, which captures
the spatial distribution information of the underlying functional
network, was then mapped back to the original 3D brain image
space, the result was finally visualized as FBNs.

3. Results

The work reports its findings in terms of two primary
dimensions: temporal and spatial features. To evaluate temporal
features, the final feature matrix was utilized to obtain partial task-
related features, which were subsequently evaluated for similarity
with the task design curves. Spatial features were assessed by
computing the similarity between the derived FBNs and the
templates derived from the GLM. Besides task-related FBNs, we
also identified additional FBNs, including those resting-state FBNs.

TABLE 4 Pearson correlation coefficient between the features and the task designs.

E1 E2 G1 G2 W1 W2 W3 W4 W5 W6 W7 W8 /

Attention-score 0.331 0.343 0.321 0.333 0.287 0.268 0.270 0.267 0.276 0.262 0.275 0.276 /

Average-result 0.851 0.894 0.792 0.792 0.813 0.799 0.870 0.804 0.845 0.845 0.789 0.856 /

Final-result 0.999 0.998 0.998 0.998 0.999 0.999 0.999 0.994 0.999 0.999 0.998 0.999 /

L1 L2 S1 S2 R1 R2 M1 M2 M3 M4 M5 M6 Ave

Attention-score 0.262 0.250 0.319 0.583 0.419 0.337 0.336 0.423 0.430 0.408 0.427 0.567 0.345

Average-result 0.737 0.785 0.796 0.916 0.880 0.889 0.451 0.903 0.913 0.880 0.873 0.961 0.831

Final-result 0.727 0.737 0.998 0.997 0.999 0.999 0.973 0.997 0.998 0.997 0.997 0.997 0.975
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FIGURE 5

Individual and group averaged FBNs.

3.1. Temporal features

The proposed model generated three different temporal
feature matrices, namely the intermediate “attention-score” feature,
which is obtained immediately after model pre-training; the

“average-result” feature, calculated by computing a sliding
average of the attention-score feature; and the “Final-result”
feature, obtained after training the feature selection layer. The
dimension of attention-score, average-result, and final-result
are [6∗28,546,t], [6∗28,546,t], and [256,t]. In this work, “t”
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FIGURE 6

(A) Some resting-state FBNs. (B) Other FBNs.

represents the length of the fMRI sequence’s time dimension
corresponding to different tasks, while “6” denotes the number
of attention heads we have set for the multi-head attention
mechanism. To evaluate the significance of the three kinds
of features selected in this study, a comparative analysis is
conducted between these features and the task design curves.
As illustrated in Figure 4, a graphical representation of the
three kinds of features and the correspondingly relevant task
design curves are presented. The blue curves represent the task
design curves and serve as the baseline, the red curves depict
the features.

Based on the results of the comparison, it is evident that the
attention-score and task curves display an obvious fitting trend,
with their highest peak approximately coinciding with the peak of
the task design curves. Furthermore, the application of a sliding
average filter results in an even higher similarity between the
average-result and task design curves. These outcomes provide
evidence that the latent features derived from the pre-training
module are both meaningful and interpretable.

In order to quantitatively compare the similarity between the
feature matrices and the task design curves, the Pearson correlation
coefficient was calculated in this work, the formula for the Pearson
correlation coefficient is presented below:

ρ (X,Y) =

∑n
i = 1 (Xi−µX)(Yi−µY)√∑n

i = 1 (Xi−µX)2
√∑n

i = 1 (Yi−µY)2

where X,Y are the features and task design curves, µX, µY are the
mean of the them andXi, Yi are the samples of them.

The Pearson correlation coefficient values serve as an indicator
of the strength of the correlation, with higher values indicating
stronger correlations. As shown in Table 4, all Pearson’s correlation
coefficients achieved statistical significance at the level of P < 0.05.
These results demonstrate that the features extracted by the
proposed pre-training model were significantly correlated with the
design curves. Specifically, the initially extracted attention-score
feature exhibited a certain degree of similarity with the task design
curves. With the application of the sliding average technique, the
Average-result feature approached the task design curves more.
Finally, the incorporation of a feature selection layer and a new loss
function as a guide led to the generation of the Final-result feature.
The Pearson correlation coefficient for the task design curves
was significantly improved from 0.831 to 0.975 as a result. These
findings underscore the importance of the pre-training model and
feature selection layer, and provide further support for the efficacy
and interpretability of the proposed model in this study.

3.2. Spatial features

3.2.1. Task FBNs
Following the feature selection process, the feature matrix was

remapped to the original 3D brain space for the visualization
of FBNs using lasso regression, as shown in Figure 5. This
figure displays a randomly selected individual FBN for 24 tasks
and group-averaged FBNs from 10 subjects. As demonstrated in
Figure 5, each task-related FBN can be accurately identified, and
the FBNs becomes even more pronounced after group averaging.

3.2.2. Other FBNs
Multi-head Attention-based Masked Sequence Model can not

only acquire the known activated networks, but also enable the
identification of other brain networks with specific patterns. In
this work, we also selected and displayed a part of them. After
comparison and analysis, we found some resting-state networks,
which were compared and displayed with the corresponding
resting-state brain network templates obtained by the ICA method,
as shown in Figure 6A. In addition, this manuscript also displays
other brain networks with certain patterns, as shown in Figure 6B.

3.3. Comparative experiments

To further evaluate the effectiveness of the proposed MAMSM,
it is compared with SDL (Lv et al., 2015)and STAAE (Dong et al.,
2020b). SDL is the traditional way to build FBNs. STAAE has been
proposed as a deep learning method recently. All three methods
are applied to the same dataset and their temporal and spatial
characteristics are compared in this section.

3.3.1. Comparison of temporal features
In this study, three different methods were employed for

comparison purposes. In order to ensure fairness in our
comparison analysis, we adopted the “average-result” features
instead of the “final result” features for comparison with the
features obtained from SDL and STAAE, as our proposed model
leveraged prior knowledge (task designs) to train the model in the
feature selection layer. Figure 7 displays the task design curves,
with the blue curves representing specific task design curves used
as comparison benchmarks and the red curves representing the
task-related features. Our qualitative and quantitative comparison
analysis aimed to assess the degree of correlation between these
two curves. For quantitative comparison, the Pearson correlation
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FIGURE 7

Comparison of features and task designs obtained by different
methods. The blue curves represent the task designs, the red curves
depict the features.

coefficient was employed to assess the similarity between the
extracted features and the task curves, as presented in Table 5. It
should be noted that Figure 7 shows the results of an individual.
Table 5 is the average result of ten individuals.

As shown in Figure 7, the correlation between the features
generated by MAMSM and the task design curves was found
to be significantly higher compared to that between the
features generated by SDL/STAAE and the task design curves.
Quantitatively, the results presented in Table 5 demonstrate
that the proposed MAMSM achieved a higher averaged Pearson
correlation coefficient (0.824) compared to that from SDL
(0.527) or STAAE (0.306). Overall, the results of our experiment
demonstrate the effectiveness of MAMSM for constructing FBNs
based on tfMRI.

In terms of individual-level performance, our results indicate
that the deep learning method STAAE performed slightly worse
than SDL and MAMSM. It is worth noting that according to the
description of the STAAE (Dong et al., 2020b), the method can
achieve better results when applied to larger datasets. However, the
inherent requirement of deep learning methods for large volumes
of data may limit their advantage over traditional methods in cases
where data availability is limited. Our proposed method, on the
other hand, demonstrates good performance on individual data,
suggesting that it can effectively learn temporal features from small
datasets.

3.3.2. Comparison of spatial features
In order to qualitatively compare the spatial features from the

three methods, this work applies SDL, STAAE, and MAMSM to the
same dataset and obtains the group averaged results, as shown in
Figure 8. The GLM templates were derived by summarizing a large
amount of individual data and were subsequently employed for the
purpose of comparing the performance of FBNs generated through
various methods. Our results demonstrate that the activation maps
obtained through MAMSM exhibit greater resemblance to the
GLM templates.

Quantitatively, we also used the spatial overlap rate as an
indicator to compare the FBNs from the three methods and the
GLM template. The spatial overlap rate can be used to compare
the similarity between two different networks, which is defined as
follows:

OR(N1,N2) =

∑n
i = 1 |Ni

1
∩ Ni

2
|∑n

i = 1 |Ni
1 ∪ Ni

2|

N1, N2 are the two brain networks to be compared, n is the
number of voxel points of the brain network. The spatial overlap

TABLE 5 Pearson correlation coefficient obtained by SDL, STAAE, and MAMSM.

E1 E2 G1 G2 W1 W2 W3 W4 W5 W6 W7 W8

SDL 0.631 0.624 0.483 0.515 0.390 0.356 0.395 0.443 0.419 0.369 0.453 0.379 /

STAAE 0.322 0.246 0.351 0.385 0.195 0.128 0.259 0.272 0.088 0.069 0.197 0.155 /

MAMSM 0.830 0.867 0.848 0.821 0.864 0.870 0.869 0.803 0.849 0.819 0.799 0.869 /

L1 L2 S1 S2 R1 R2 M1 M2 M3 M4 M5 M6 Ave

SDL 0.603 0.622 0.523 0.673 0.514 0.564 0.658 0.603 0.586 0.493 0.603 0.738 0.527

STAAE 0.606 0.619 0.302 0.651 0.440 0.422 0.429 0.218 0.203 0.189 0.226 0.383 0.306

MAMSM 0.760 0.777 0.812 0.835 0.863 0.868 0.500 0.836 0.862 0.838 0.850 0.875 0.824
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TABLE 6 The spatial overlap rate obtained by SDL, STAAE, and MAMSM.

E1 E2 G1 G2 W1 W2 W3 W4 W5 W6 W7 W8

SDL 0.150 0.102 0.231 0.200 0.231 0.236 0.266 0.236 0.203 0.225 0.226 0.262 /

STAAE 0.188 0.234 0.265 0.210 0.186 0.247 0.209 0.172 0.200 0.263 0.241 0.200 /

MAMSM 0.221 0.171 0.321 0.320 0.274 0.262 0.302 0.288 0.213 0.307 0.256 0.293 /

L1 L2 S1 S2 R1 R2 M1 M2 M3 M4 M5 M6 Ave

SDL 0.209 0.177 0.272 0.273 0.244 0.201 0.133 0.146 0.122 0.143 0.146 0.206 0.202

STAAE 0.210 0.265 0.161 0.199 0.205 0.206 0.302 0.293 0.257 0.272 0.273 0.293 0.231

MAMSM 0.305 0.272 0.352 0.374 0.374 0.258 0.343 0.345 0.299 0.297 0.314 0.322 0.295

The bold values represent the maximum values of each column.

FIGURE 8

Comparison of FBNs obtained from SDL, STAAE, and MAMSM.
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rate of the FBNs obtained from each method and GLM templates
are shown in Table 6. We can see that the average OR value (0.295)
of the brain network obtained by MAMSM is larger than that of
STAAE (0.231) and SDL (0.202), which proves that the MAMSM
proposed in this manuscript is superior to STAAE and SDL.

4. Discussion and conclusion

In this study, the multi-head attention mechanism and mask
training method were applied to the analysis of tfMRI data, and
a new loss function was constructed by task design curves for the
mapping of functional brain networks. The multi-head attention
mechanism helps the model better understand the situation where
the same signal value in tfMRI signals may represent different
states. Meanwhile, a mask training method was adopted to learn
the relationship between the contexts of input sequences, and
by combining a continuous mask and a discrete mask, deeper-
level features were learned. The experimental results demonstrated
that these techniques can improve the model’s performance. By
analyzing the comparison results of the intermediate features
(attention-score, average-result) outputted from the model and
the task design curves, it can be seen that the proposed model
can better understand the tfMRI signals and the derived features
are interpretable. The attention-score extracted after the model
was trained represented the weight scores of different locations
in each tfMRI sequence. The region with the highest score in the
attention-score bears close resemblance to the area with the most
significant alteration in the task design curves. The average-result
obtained by simply sliding the attention-score achieved higher
similarity with the task design curves than the results obtained
by other methods.

We also leveraged prior knowledge (Task designs) to guide
the model to learn the more efficient features, the task designs
were introduced to build a new loss function which optimizes
the model by cosine similarity error and MSE error. By analyzing
the results, we found that this new loss function can improve the
performance of the model. Other methods usually ignored the
prior knowledge in their model, and experimental results show that
MAMSM achieves better results than other methods when using
the new loss function.

The experimental results show that the proposed method can
achieve better generalization performance on smaller sample size,
compared to other deep learning methods which require large
amounts of data to achieve better results, such as STAAE (Dong
et al., 2020b), ResAE (Dong et al., 2020a), Dvae (Qiang et al., 2020)
and so on. Due to the characteristics of medical image data, such
as high confidentiality and small sample size, the method proposed
in this manuscript can have better development prospects in the
future.

It is important to note that this study has certain limitations.
Firstly, the relatively small size of the dataset employed may
introduce noise when aggregating across groups, potentially
impacting the outcomes of the brain network analyses.
Furthermore, the present methodology places greater emphasis
on temporal features of tfMRI data, and future investigations may
benefit from incorporating a combination of convolutional neural
network (CNN) models (Ronneberger et al., 2015; Liu et al., 2022)

and visual transformer (VIT) models (Dosovitskiy et al., 2020; Liu
et al., 2021) to extract spatial features, which may achieve better
results. Additionally, the precise functional significance of some
brain networks identified in the results is not fully understood at
present, and hence, further research is warranted to explore the
functional areas and meanings attributed to these networks.
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