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Purpose: This study aimed to investigate the value of a machine learning-based

magnetic resonance imaging (MRI) radiomics model in predicting the risk of

recurrence within 1 year following an acute ischemic stroke (AIS).

Methods: The MRI and clinical data of 612 patients diagnosed with AIS at

the Second Affiliated Hospital of Nanchang University from March 1, 2019,

to March 5, 2021, were obtained. The patients were divided into recurrence

and non-recurrence groups according to whether they had a recurrent stroke

within 1 year after discharge. Randomized splitting was used to divide the

data into training and validation sets using a ratio of 7:3. Two radiologists

used the 3D-slicer software to label the lesions on brain diffusion-weighted

(DWI) MRI sequences. Radiomics features were extracted from the annotated

images using the pyradiomics software package, and the features were filtered

using the Least Absolute Shrinkage and Selection Operator (LASSO) regression

analysis. Four machine learning algorithms, logistic regression (LR), Support

Vector Classification (SVC), LightGBM, and Random forest (RF), were used to

construct a recurrence prediction model. For each algorithm, three models were

constructed based on the MRI radiomics features, clinical features, and combined

MRI radiomics and clinical features. The sensitivity, specificity, and area under the

receiver operating characteristic (ROC) curve (AUC) were used to compare the

predictive efficacy of the models.

Results: Twenty features were selected from 1,037 radiomics features extracted

from DWI images. The LightGBM model based on data with three different

features achieved the best prediction accuracy from all 4 models in the

validation set. The LightGBM model based solely on radiomics features achieved

a sensitivity, specificity, and AUC of 0.65, 0.671, and 0.647, respectively, and

the model based on clinical data achieved a sensitivity, specificity, and AUC

of 0.7, 0.799, 0.735, respectively. The sensitivity, specificity, and AUC of the
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LightGBM model base on both radiomics and clinical features achieved the

best performance with a sensitivity, specificity, and AUC of 0.85, 0.805,

0.789, respectively.

Conclusion: The ischemic stroke recurrence prediction model based on

LightGBM achieved the best prediction of recurrence within 1 year following an

AIS. The combination of MRI radiomics features and clinical data improved the

prediction performance of the model.

KEYWORDS

machine learning, radiomics, ischemic stroke, recurrence prediction, diffusion-weighted
imaging

1. Introduction

Stroke is a major chronic non-communicable disease that poses
a serious health risk to the population. The disease is characterized
by high morbidity, disability, mortality, recurrence, and economic
burden. According to the global burden of disease (GBD), the
lifetime risk of stroke in China is 39.3% for people over 25 years
of age (Feigin et al., 2018). The 1-year recurrence rate after the
first stroke ranges between 9.8–23.0% (Hobeanu et al., 2022; Li
et al., 2022). Patients who experience a recurrent stroke are six
times more likely to have another stroke in 10 years (Hardie et al.,
2004). Recurrent strokes have a high rate of mortality and disability
(Hankey et al., 2002). The disability rate of recurrent stroke patients
is 8.49 times higher when compared with that of first stroke patients
(Cucchiara et al., 2020). As a result, there is a need to predict the
risk of recurrent strokes to improve the patient’s quality of life and
reduce the mortality rate.

Currently, AIS are diagnosed using computed tomography
(CT) and MRI (Phipps and Cronin, 2020). MRI sequences such as
DWI and fluid-attenuated inversion recovery (FLAIR) are highly
sensitive for the detection of ischemic strokes (Powers et al., 2019).
Studies have shown that MRI may have an important role in
predicting recurrence after the first AIS (Kauw et al., 2018; Jing
et al., 2021; Fote et al., 2022). However, the manual evaluation
of MRI images is subjective and does not fully observe all the
underlying information in the image. Radiomics is increasingly
being used to transform medical images into high-throughput
quantitative features. These features could be used to predict
treatment outcomes of various diseases (van Griethuysen et al.,
2017), including the risk of recurrence following an AIS (Su et al.,
2020). Nevertheless, it is important to acknowledge that apart
from radiomics features, several clinical factors may also have an
important role in the treatment outcomes of an AIS. Machine
learning could be used to combine the radiomics features with
high-risk clinical factors to develop predictive models for the
development of recurrence following an AIS. Mainly because of the
wide range of applications of machine learning in healthcare, there
have been studies using machine learning algorithms for stroke
diagnosis and prognosis prediction and they have shown very good
performance (Heo et al., 2019; Murray et al., 2020).

Therefore in this study, we aimed to use DWI radiomics and
clinical features to develop different machine-learning algorithms
for predicting recurrence within 1 year following an AIS. The

optimal predictive model could be used to facilitate the early
diagnosis and treatment of AIS and hence improve survival while
reducing the disease burden on the patients, carers, and society.

2. Materials and methods

2.1. Study population

This study was evaluated and granted by the Medical Research
Ethics Committee of the Second Affiliated Hospital of Nanchang
University (2018-05). Patients with MRI-diagnosed AIS were
recruited from the Second Affiliated Hospital of Nanchang
University from March 1, 2019, to March 5, 2021. All patients
aged between 18–85 years who had DWI imaging within 48 h
of admission for AIS and a National Institute of Health stroke
scale (NIHSS) score of 15 or less were included in the study.
Cancer patients and those with severe cardiac, pulmonary, and
hepatic system diseases were excluded. In addition, the patients
with major artifacts on the DWI were also excluded. A total of 612
patients were eventually included, all were followed up for 1 year to
track whether the patients experienced a recurrence of stroke. The
patients were divided into training and validation sets using a 7:3
randomized grouping ratio.

2.2. Data collection

2.2.1. Relevant clinical data of the patients
The patient’s demographic characteristics (age and gender),

history of previous diseases (e.g., hypertension, diabetes, atrial
fibrillation, stroke, and ischemic heart disease), and alcohol and
smoking history were extracted from the clinical medical records.
In addition, the physical examination data (height, weight, and
blood pressure) and laboratory test results (routine blood, liver
function, kidney function, and coagulation function) were also
extracted. Finally, the DWIs and the recurrence outcome variable
within 1 year after hospital discharge were also collected.

2.2.2. MRI image acquisition
All patients underwent a DWI brain imaging within 48 h of

admission. All images were acquired on a GE 3.0 T MRI scanner,
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using a repetition time (TR) of 4,090 ms, an echo time (TE) of
98 ms, a flip angle of 180◦, a scan field of view of 230 mm × 230 mm,
a matrix of 192 × 192, 20 layers of a thickness of 6 mm and
layer spacing of 1.3 mm, a b-value of 0, 1,000 s/mm2, and a
duration of 30 s.

2.2.3. Radiomics feature extraction
Two radiologists with 5 years of experience used the 3D slicer

software (Version 4.13.0)1 to annotate the ischemic lesions on the
DWI, respectively. The MDice, MIOU, and Hausdorff metrics were
used to verify the consistency of the annotations. The consistency
of the annotated volumes was evaluated using the Bland–Altman
method and the intraclass correlation coefficient (ICC). If the ICC
was less than 0.75, a third imaging specialist with a senior title
was asked to label and verify the annotation. Subsequently, the
first-order, morphological, and texture radiomics features were
extracted from the annotated DWI images using the Pyradiomics
package (van Griethuysen et al., 2017). The first-order and texture
features were extracted from the original image, Gaussian Laplace
filtered image (sigma = 1.0, 2.0, 3.0), and the wavelet-transformed
image. For the wavelet-transformed images, all combinations of
high-pass (H) and low-pass (L) filters were applied in all three
dimensions, including LLH, LHL, LHH, HLL, HLH, HHL, HHL,
HHH, LLL, with a group distance of 10.

The Pearson intergroup correlation coefficient was used for
feature redundancy analysis. Features with correlation coefficients
greater than 0.9 were excluded. The optimal radiomics features for
the prediction of AIS were screened using LASSO regression with
10-fold cross-validation.

2.3. Construction and validation of the
prediction model

Four machine learning algorithm models, including LR, SVC,
LightGBM, and RF, were used to develop the prediction model
for recurrent AIS. For each algorithm, three prediction models
were constructed using the radiomics features, the clinical features,
and the radiomics features combined with the clinical features.
Training model using 10-fold cross-validation. The sensitivity,
specificity, receiver operating characteristic (ROC) curve, and area
under the curve (AUC) were used to compare the performance
of the models. The clinical application value of the prediction
models was evaluated using a calibration curve and a decision
curve analysis (DCA).

2.4. Statistical analysis

The statistical package for social science (SPSS) software
version 22.0 was used to analyze the data. The categorical data
were summarized as frequency (%), and Fisher’s exact test was
used to evaluate the differences between the recurrent AIS group
and the non-recurrent AIS group. The continuous data were tested
for normality using Kolmogorov–Smirnov test. The normally
distributed data were summarized as mean ± standard deviation

1 https://www.slicer.org

(x ± S), and the differences between the two groups were compared
using the t-test. Conversely, the non-normally distributed data
were described using median and upper and lower quartiles [M
(P25, P75)], and comparisons between groups were made using the
Mann–Whitney U test. For all statistical tests, a p-value below 0.05
was deemed statistically significant.

3. Results

3.1. Baseline analysis of data

A total of 612 patients, including 337 males and 275 females,
were enrolled in this study. The average age of the patients was
63.9 ± 11.16 years. 67 (10.95%) patients were found to have had
a recurrence of stroke at the 1-year follow-up. Univariate analysis
showed that smoking history, ischemic heart disease history,
stroke history, alkaline phosphatase, creatinine, prothrombin time,
fibrinogen concentration, age, absolute neutrophil value, total
protein, albumin, white blood cell count, and international labeling
ratio were associated with stroke recurrence (P < 0.05), as shown
in Table 1. Comparison of full baseline data in Supplementary
Table 1.

3.2. Image annotation consistency test

The mean MDice, MIOU, and Hausdorff distances for the
annotations made by the two radiologists were 0.87, 0.77, and
4.36 mm, respectively. These results indicate a good agreement
between the observers. Figure 1 illustrates the Bland–Altman plot
for the volumes annotated by the two radiologists. The results of
the Bland–Altman plot show that the difference in the annotated
volume between the two observers ranged between +44.81 ml and
−43.10 ml. 96.7% (n = 592) of the cases. The delineated volume was
outside the limits of agreement (mean ± 1.96 SD) in 3.3% (n = 20)
of cases. The mean ICC between the lesion volumes annotated by
the two radiologists was 0.99 (95 CI: 0.99 to 1, p < 0.01), indicating
a good agreement.

3.3. Extraction and screening of
radiomics features

A total of 1,037 radiomics features were extracted, including
198 histogram features, 14 morphological factor features, and
825 texture features. The texture features included 264 grayscale
co-generation matrices (GLCM), 176 grayscale tour matrices
(GLRLM), 176 grayscale size region matrices (GLSZM), 154
grayscale dependence matrices (GLDM), and 55 neighborhood
grayscale difference matrices (NGTGM). The feature redundancy
analysis (Supplementary Figure 1) resulted in 112 radiomics
features. Figure 2 shows the final 20 features extracted by LASSO
regression.

The interpretation of the imaging histology features can be
retrieved from.2

2 https://pyradiomics.readthedocs.io/en/latest/index.html
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TABLE 1 Comparison of certain clinical characteristics between the recurrence group and the non-recurrence group.

Variable Non-recurrence group
(n = 545)

Recurrence group
(n = 67)

χ2/t/z p

Age M (Q25 , Q75) 63.499 (56, 72) 67.164 (56, 75) −2.554 0.011

Smoking history [n (%)] 3.868 0.049

Yes 344 (63.469) 34 (50.746)

No 201 (36.881) 33 (49.254)

Stroke history [n (%)] 5.646 0.017

Yes 110 (20.183) 22 (32.836)

No 435 (79.817) 45 (67.164)

Ischemic heart disease history [n (%)]

Yes 6 (1.101) 3 (4.478) 4.695 0.030

No 539 (98.899) 64 (95.522)

Alkaline phosphatase [mean (SD)] 90.149 (24.971) 97.386 (32.255) −2.157 0.031

Creatinine [mean (SD)] 77.621 (25.539) 89.11 (34.935) −2.591 0.012

Prothrombin time [mean (SD)] 11.292 (1.238) 11.675 (2.140) −2.161 0.031

Fibrinogen concentration [mean (SD)] 2.950 (0.846) 3.341 (1.221) −2.528 0.014

Absolute neutrophil count [mean (SD)] 4.856 (2.111) 5.654 (3.084) −2.045 0.044

Total protein [mean (SD)] 66.347 (5.109) 64.746 (5.257) 2.408 0.016

Albumin [mean (SD)] 37.864 (3.277) 36.660 (4.155) 2.270 0.026

White blood cell count [mean (SD)] 7.242 (2.350) 7.960 (3.207) −2.254 0.025

International standard rate [mean (SD)] 0.979 (0.109) 1.013 (0.192) −2.177 0.030

FIGURE 1

Bland–Altman plot comparing the differences in the volumes
annotated by the two radiologists. The y-axis represents the
difference (between radiologist A and radiologist B volumes), and
the x-axis, the mean of radiologist A and radiologist B. Middle solid
line and flanking dashed lines = means ± 1.96 standard deviation,
respectively.

3.4. Construction and validation of
prediction models

The training and validation datasets consisted of 428 and 184
patients, respectively. In the validation set, the prediction accuracy

of the 4 machine learning models for the radiomics features,
clinical features, and the radiomics and clinical features combined
are summarized in Table 2. The ROC for all four models is
shown in Supplementary Figure 2. All four models achieved the
highest prediction accuracy on the combined radiomics and clinical
data, followed by the clinical and radiomics data. The LightGBM
model based on data with three different features achieved the
best prediction accuracy from all four models with a sensitivity,
specificity, and AUC of 0.85, 0.805, and 0.789, respectively. The
same model achieved a sensitivity of 0.7, a specificity of 0.799, and
an AUC of 0.735 on the clinical data and a sensitivity of 0.65, a
specificity of 0.671, and an AUC of 0.647 for the radiomics data.

The calibration curves showed that all four models had a high
calibration. The LightGBM model has the best discrimination. The
specific performance is shown in Figure 3. The decision curves
showed that all four machine learning models could improve
decision-making under different decision thresholds as the models
correctly predicted all AIS recurrences (Figure 4). However, the
LightGBM and SVC models achieved the best gains.

3.5. Analysis of influencing factors based
on the optimal model

The LightGBM algorithm achieved the best performance. The
top 20 influencing factors in the LightGBM model are shown
in Figure 5. Among these influencing factors, 10 were clinical
diagnostic indicators and included hemoglobin, large platelet ratio,
creatinine, white blood cell count, age, international standard ratio,
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FIGURE 2

The 20 radiomics features extracted by LASSO.

TABLE 2 Prediction results of the four models with different data sets.

Model Radiomics data Clinical treatment data Clinical treatment data with
radiomics data

Sensitivity Specificity AUC
(95% CI)

Sensitivity Specificity AUC
(95% CI)

Sensitivity Specificity AUC
(95% CI)

LR 0.55 0.646 0.613
(0.582, 0.639)

0.65 0.75 0.704
(0.663, 0.727)

0.8 0.768 0.764
(0.714, 0.783)

SVC 0.55 0.652 0.615
(0.579, 0.641)

0.65 0.774 0.711
(0.661, 0.735)

0.8 0.787 0.768
(0.743, 0.799)

LightGBM 0.65 0.671 0.647
(0.617, 0.689)

0.7 0.799 0.735
(0.724, 0.782)

0.85 0.805 0.789
(0.745, 0.814)

RF 0.6 0.652 0.622
(0.591, 0.656)

0.7 0.787 0.728
(0.691, 0.757)

0.8 0.793 0.772
(0.717, 0.811)

alkaline phosphatase, fibrinogen concentration, albumin, and mean
red blood cell volume. The other indicators included five first-order
radiomics features and five textural features.

4. Discussion

Recurrence following an AIS leads to poor survival and quality
of life. As a result, there is a need to develop models to predict
the onset of AIS and hence minimize the morbidity and mortality
of this disease. In this study, we developed four machine learning
algorithms (LR, SVC, RF, and LightGBM) to predict recurrence
following an AIS. Each algorithm was trained using clinical
treatment data, MRI radiomics data, and combined clinical and
MRI radiomics data.

The DWI sequence in MRI reflects the random Brownian
motion of water molecules in the tissue. AIS causes water molecules
to move from outside the cell to the inside of the cells. The
DWI signal increases as the extracellular water volume decreases
(Alegiani et al., 2019). Changes in DWI imaging can occur within

minutes following an AIS (He et al., 2021). Within the first 6 h after
the AIS onset, DWI is more sensitive in detecting the brain edema
caused by AIS than non-contrast computed tomography (NCCT)
(Nael et al., 2014). Therefore, for the development of this prediction
model, we decided to use radiomics features extracted from DWI
sequences.

Previous studies have extracted radiomics features from
FLAIR and ADC, which can significantly improve the predictive
performance of functional outcomes in AIS patients compared to
clinical features only (Quan et al., 2021). Ramos et al.’s (2022) study
found that combining imaging histology features and clinical data
using deep learning methods significantly improved prognostic
prediction for patients with AIS receiving reperfusion therapy. It
is consistent with the results of this study that the prediction model
using clinical with radiomics data has the best performance.

In our study, the LightGBM model achieved the best prediction
performance. LightGBM is a fast, distributed, high-performance
gradient-boosting framework based on a decision tree algorithm
(Ke et al., 2017). Compared with the LR, SVC, and RF models,
the LightGBM model fitted the data better. Light GBM mainly

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1110579
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1110579 April 27, 2023 Time: 14:34 # 6

Liu et al. 10.3389/fnins.2023.1110579

FIGURE 3

Calibration curve of four machine learning models.

FIGURE 4

Four machine learning models decision curve analysis.

includes a Histogram-based decision tree algorithm, Leaf-Wise
leaf growth strategy with depth restrictions, one-sided gradient
sampling, and direct support for category features. Finding less
accurate segmentation points using histogram discrete values may
affect the results. However, in the test results of the unused dataset,
the discretized segmentation points have little impact on the final
accuracy of the algorithm, and the resulting results are even slightly
better due to the fact that overfitting can be effectively prevented. In
this study, the data features are large, and the LightGBM model no
longer divides the data when dealing with high-dimensional data,
thus reducing the computational effort, and the prediction results
can be obtained quickly and efficiently using this algorithm for
stroke recurrence prediction.

The LightGBM algorithm identified 10 important radiomics
features for the prediction of recurrence in AIS. The imaging risk
factors showed that higher stroke voxel differences and higher voxel
kurtosis indicate a more severe disease and an increased risk of
developing recurrent AIS. In addition, a lower texture characteristic
skewness coefficient, lower HighGrayLevelZoneEmphasis, and
higher Gray Level Non-Uniformity also increased the risk of
recurrence.

Several clinical factors can influence the risk of developing
recurrence after an AIS. In this study, we found that platelet large
cell ratio (PLCR), smoking history, age, fibrinogen concentration,
hemoglobin, albumin, creatinine, white blood cell count, absolute
neutrophil value, and discharge the modified Rankin scale (mRS)
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FIGURE 5

LightGBM model feature importance diagram.

score as important risk factors for the development of recurrence.
Previous studies (Bergstrom et al., 2017; Felling et al., 2017; Wang
et al., 2018) also identified age and years of smoking as risk factors
for recurrence. Furthermore, studies have found (Mccabe et al.,
2021) that elevated fibrinogen levels can increase plasma viscosity
and promote platelet aggregation. Changes in the adhesion of
the body’s red blood cells and endothelial cells can also stimulate
the proliferation of smooth muscle cells, leading to endothelial
damage and an increased risk of recurrence. A retrospective cohort
study in Korea (Chang et al., 2020) showed that low hemoglobin
could increase the risk of AIS recurrence. A prospective cohort
study (Wu et al., 2021) that included white blood cell count and
neutrophil in the low-grade inflammation (LGI) score, and showed

that an increased LGI score was associated with an increased risk
of stroke recurrence. There is also study (Zhu et al., 2018) showing
that the coexistence of neutrophils and intracranial artery stenosis
is associated with an increased risk of stroke recurrence. Serum
albumin is a marker related to the patient’s nutritional status and
inflammation (Capes et al., 2001). The synthesis of albumin is
inhibited in malnourished patients (Pandian et al., 2011). Studies
have shown that the risk of AIS recurrence is reduced by 14.6%
for every 1 g/L increase in serum albumin levels (Chakraborty
et al., 2013). The blood creatinine reflects the degree of renal
impairment and can lead to increased blood pressure when renal
function decreases. AIS guidelines now support the inclusion
of blood creatinine levels in AIS recurrence prediction models
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(Meschia et al., 2014). Studies have also shown that the mRS score
at discharge is a risk factor and higher mRS scores represent a
more severe disease. Patients with mild ischemic stroke with high
mRS scores may require more stringent control of risk factors
after discharge. However, converse to previous studies, our findings
indicate that the lower the PLCR, the lower the risk of developing
stroke recurrence (Verma et al., 2020). Therefore additional studies
are recommended to validate this finding.

This study has some limitations that have to be acknowledged.
All the patients in this study were recruited from a single center,
potentially introducing selection bias. Therefore larger multicenter
studies are required to validate the model. The radiomics model
was trained on 2-dimensional (2D) images instead of volumetric
images. As a result, useful radiomics features between the 3D
layers may have been omitted. Previous studies have shown that
the 3D stereoscopic shape of AIS lesions could be used to predict
recurrence (Frindel et al., 2015). Future studies should make use of
3D images to train the model.

5. Conclusion

The LightGBM model based on radiomics features extracted
from DWI and clinical data achieved the best performance for
predicting recurrence following an AIS. This model could provide
a non-invasive tool for clinicians to assess the risk of recurrence
following an AIS and hence improve the monitoring of high-risk
patients. However, although this model was trained and validated
on a relatively large dataset, further multicenter studies are required
to validate the performance of this model.
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