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In this work, we address the problemof detecting anomalies in a certain laboratory
automation setting. At first, we collect video images of liquid transfer in automated
laboratory experiments. We mimic the real-world challenges of developing an
anomaly detectionmodel by considering two points. First, the size of the collected
dataset is set to be relatively small compared to large-scale video datasets.
Second, the dataset has a class imbalance problem where the majority of the
collected videos are from abnormal events. Consequently, the existing learning-
based video anomaly detection methods do not perform well. To this end, we
develop a practical human-engineered feature extraction method to detect
anomalies from the liquid transfer video images. Our simple yet effective
method outperforms state-of-the-art anomaly detection methods with a
notable margin. In particular, the proposed method provides 19% and 76%
average improvement in AUC and Equal Error Rate, respectively. Our method
also quantifies the anomalies and provides significant benefits for deployment in
the real-world experimental setting.
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1 Introduction

Laboratory automation is the integration of machine learning, computer vision, and
robotics to automate one aspect or the entire process of a laboratory setting including
protocols relying on reagents, tools, and instrument manipulations. With the advent of
computation capabilities and artificial intelligence in the last decade, automation has seen a
meteoric rise in its applications in laboratories especially as a substitute for repetitive or risky
tasks (Felder et al., 1990). The integration of automated components in laboratories is
motivated by the necessity of high precision output, reproducibility of experiments,
minimized risk/exposure to human operators, and subsequent minimized cost of
production through the elimination of manual labor (Bogue, 2012; Holland and Davies,
2020). Proper management of laboratory automation is a stringent requirement in the testing
and production process (Saboe, 1995; Holland and Davies, 2020) where defects and failures
of the automation component have far-reaching consequences. A significant part of the
process is the operators’ abilities to detect these anomalous activities and to intercede when
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needed. Therefore, anomaly detection in the autonomous laboratory
setting plays a pivotal role in ensuring the system’s reliability and
safety (Gupta et al., 2018).

Anomaly detection refers to data pattern detection that deviates
significantly from the majority of data samples. Pang et al. (2022),
Chandola et al. (2009) and Chalapathy and Chawla (2019) state
various applications of anomaly detection algorithms ranging from
fraud detection, intruder detection, and traffic monitoring to
medical anomaly, sensor anomaly, and robotics behavior
anomaly. All of these applications range from a variety of data
mediums among which automatic anomaly detection in video data
has long been a prevalent problem and has drawn a lot of attention
from both the research world and industry (Saligrama and Chen,
2012; Zhao et al., 2017; Hao et al., 2022). Live video streams can be
used to automatically infer situations of interest by extracting
appropriate information from frames (Bebis et al., 2016) and are
important in the laboratory setting as a medium for anomaly
detection.

The task of liquid transfer in the context of laboratory experiments
has profound importance. The mixing of multiple reagents, transfer to
and from source and destination containers, and proper handling of the
final solution are only some of the applications. Quantitative analysis of
such tasks requires proper liquid handling. Automation of such
processes enables parallel execution and feedback on a larger scale.
This study is based on a novel dataset containing video data from an
automated laboratory setting which depicts the automated transfer of
liquid reagents via several pipettes from one container to another. This
is a repetitive and rudimentary task in the context of biochemical
laboratory experiments where precise measurements of the transferred
content are required for proper qualitative and quantitative analysis
(Betz et al., 2011). Thus, automation of this activity reserves a very
important role in the experimentation process but requires
complementary detection algorithms to identify anomalous events.

The dataset contains several such anomalous events where the
transfer of liquid fails due to different kinds of pipette malfunctions.
Additionally, few normal sequences are present where the entire reagent
transfer process is executed without any error. Several challenging cases
of this dataset are the different types of anomalies introduced and the
color variations of the reagents. Furthermore, the dataset provides a
limited number of data samples of each type, and consequently, the
number of normal sequences is far outnumbered by the combined data
of different anomaly sequences. Our work endeavors to find an
appropriate solution in order to subvert these challenging cases
while limiting the scope of the anomalies related to the task of
colored liquid transfer.

Existing anomaly detection solutions have some limitations in
the context of this automated laboratory dataset. Adam et al. (2008)
and Cheng et al. (2015) employ statistical modeling using features
such as optical flows for anomaly detection. But these methods are
not generalized enough to be used in the liquid transfer scenario. For
example, the optical flow information extracted from the video
frames is ineffectual as there are dynamic elements in addition to the
region of interest. Deep learning methods are widely popular and
have been successfully used for anomaly detection in various
settings. These methods include object detection and tracking
using trajectory-based methods (Coşar et al., 2016),
Convolutional Neural Networks (CNNs) for representation
learning (Andrews et al., 2016), and reconstruction methods

using Auto-Encoders (Zhao et al., 2017), etc. As these methods
automatically extract image features from examples, they require a
large number of training samples and a balanced dataset to be
properly trained and generalized to all potential scenarios (Alom
et al., 2019). The dataset presented here has a class imbalance
problem as the normal sequence samples are very few compared
to the abnormal sequence samples. Furthermore, the overall number
of video samples in the dataset is insufficient for training supervised
deep learning methods with reliable cross validation (Fang et al.,
2021). Thus, the application of existing supervised deep learning
methods in the procured automated reagent transfer dataset is
limited. In recognition of these constraints, we instead focus on
human-engineered feature extraction methodologies based on
observations and assumptions to extract features from the
available dataset for the use of machine learning methods to
detect anomalies.

In this study, we introduce an anomaly detection algorithm for
the automated laboratory setting. Due to the limitations of deep
learning approaches in the context of the dataset, we employ
custom-made feature extraction methods to develop these
algorithms. The algorithm is based on pipette region detection
and self-comparison of video frame sequence to quantitatively
identify deviation. This is designed specifically for the dataset
scenario and overcomes sample size constraints due to the
engineered feature extraction property. The algorithm
successfully detects all types of colored reagent transfer anomalies
present in the dataset. Additionally, extra samples created through
manual segmentation from the video data frames are used to extend
the dataset reliably.

The layout of this paper is as follows: Section 2 presents a literature
review, Section 3 discusses the dataset and its challenges in depth,
Section 4 describes the proposed methodologies, Section 5 analyses the
results and finally the conclusion is presented in Section 6.

2 Related works

Anomaly detection has been developed extensively for a wide
range of applications. According to Chalapathy and Chawla (2019),
this includes but is not limited to fraud detection, industrial damage
detection, medical anomaly detection, video surveillance, etc
(Sánchez et al., 2009; Jiang et al., 2011; Arroyo et al., 2015;
Maeda et al., 2018; Caruccio et al., 2019; Nawaratne et al., 2019;
Wan et al., 2022). Hence, the automatic detection of such anomalies
is a popular topic among researchers. In our work, we will focus on
detecting anomalies from a video. Though directions explored by
researchers to solve such problems are very diversified, the
methodologies can be clustered into two major subgroups.
Subsection 2.1 illustrates examples from classical hand-crafted
feature-based approaches and subsection 2.2 describes some of
the modern deep learning-based approaches against this problem.

2.1 Classical methods

In the cases where we don’t have access to large labeled data,
opting for hand-crafted features and statistical models have been
preferred by researchers. Adam et al. (2008) uses monitors in fixed
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locations around the whole frame and extracts some local feature
metrics from them. These features are then used to make a decision.
In another work, crowd behavior dynamics are extracted by a social
force model (Helbing and Molnar, 1995) and used as the indication
factor of anomalies by Mehran et al. (2009). Cheng et al. (2015)
extracts interest points from a frame and merges points from
different times with Gaussian process regression. These merged
points are then compared with samples of an anomalous incident to
infer the situation. Pan et al. (2022) proposes a symplectic relevance
matrix machine (SRMM) that uses probabilistic models and
geometric theory for failure classification.

One important drawback of these types of methods is that these
approaches depend on hand-crafted features and losses their
generality when a new situation arrives.

2.2 Deep learning based methods

Deep learning models, specifically convolutional neural
networks are currently used to achieve state-of-the-art
performance in a wide range of computer vision problems. This
includes image classification (Foret et al., 2020; Brock et al., 2021),
object detection (Wang et al., 2022c; Wang et al., 2022a), instance
segmentation (Mohan and Valada, 2021; Qiao et al., 2021) etc.

For solving anomaly detection problems, trajectory-based
methods (Piciarelli et al., 2008; Coşar et al., 2016) have been
proposed as a solution. These methods include two parts. Firstly,
the methods detect the objects of interest and secondly, track their
trajectory across frames. Deviation in action from normal activities

is marked as an anomaly. The performance of this type of procedure
depends on both detection and tracking accuracy in this scenario.

A CNN feature extractor can reduce high-dimensional video
data into low-dimensional and compact feature vectors and
dictionaries. Afterward, these can be passed through some simple
classifiers to make a decision (Andrews et al., 2016; Ali et al., 2020; Li
et al., 2020; Wang X. et al., 2022).

Reconstruction models represent another deep learning
approach that is popular in the detection of anomalous events. In
this scenario, a model learns normal patterns while trying to
reconstruct frames of normal videos. During inference when an
anomalous frame is encountered, the model will generate high
reconstruction loss which can clearly indicate the presence of an
anomaly. This method has also been supported by many research
works (An and Cho, 2015; Zhao et al., 2017; Zenati et al., 2018). One-
Class Classification is slightly similar to the reconstruction-based
method. The abundance of normal data often leads to using only
normal samples while training, thus making the problem into one
class classification instead of a binary classification task. Chalapathy
et al. (2018) uses this type of solution to address anomaly detection.

There are possibly endless opportunities for using CNNs while
addressing a problem like anomaly detection in videos, but for
providing satisfactory results, these methods need a huge amount of
labeled data. In most real-life scenarios, there is a scarcity of large
volumes of such data which creates a bottleneck. This shortcoming
has been addressed by using unsupervised learning. The general
approach to this method uses a CNN feature extractor to extract
meaningful information or interesting regions. Afterward, some
clustering algorithm is used to cluster normal and anomaly

FIGURE 1
Example of liquid color augmentation. Here the original liquid color is cyan (A) and themanual segmentationmasks (B) are used to change the color
to violet (C).

FIGURE 2
Example of pipette augmentation. Here the 3rd, 5th, and 7th pipettes of the normal frame (A) are replaced with those of an abnormal one (B) to
produce a new abnormal frame (C).
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samples separately (Doshi and Yilmaz, 2020b; Li et al., 2021). Closely
related to this group of solutions are semi-supervised methods. Ruff
et al. (2019) and Demertzis et al. (2020) adopt semi-supervised
solutions for solving anomaly detection problems.

An approach to address data scarcity is zero-shot, one-shot, and
any-shot learning (Ravi and Larochelle, 2016; Snell et al., 2017; Sung
et al., 2018; Doshi and Yilmaz, 2020a; Lu et al., 2020; Rivera et al.,
2020). Generally, different types of augmentations are used in this
type of setting. Besides, these types of approaches require pretraining
and guiding the gradient of the model using a large amount of
labeled data from similar or related problems. In our case, the
volume of data is limited. Furthermore, the definition of the
anomaly is different between our dataset and the publicly
available large datasets. For this reason, the power of few-shot
learning or any-shot learning cannot be leveraged in our case.

Finally, after analyzing all the possibilities, we discard deep
learning based approaches. We have a limited amount of data,
which is not sufficient to make the CNNs learn the necessary feature
representation. On the other hand, we cannot depend solely on a
domain-related hand-crafted feature extraction method as it
provides poor generalization. For this reason, we use machine
learning based models and feed them with processed hand-
crafted features from a few past frames and the current frame.
The model then makes a decision on whether the current frame is
normal or anomalous.

3 Dataset

3.1 Content and challenges

The dataset contains 3 sets of videos with a total of 19 video clips
with a duration of approximately 10 s. The videos are captured using
the camera placed randomly at 30 cm-200 cm from the liquid
transfer device. Both the horizontal and vertical angles for the
camera viewpoint is selected randomly from 0-15°. These values
are selected empirically such that the resulting videos capture the
transfer procedure robustly while having sufficient distractors to
challenge the detection algorithm. In each video, the overall
environment remains constant except for two moving parts. The
first moving part is the table upon which there is a container of
liquid. There are two types of containers. The first one is a series of
glass trays containing a matrix of beakers. These beakers can either
contain a liquid or are empty. And the second type of container is a
plastic tub. The objective is to transfer the liquid from the source
container to the target container. The second moving part is a robot

end effector which contains a series of pipettes aligned in a row.
These pipettes act as the middleman in the transfer of liquid between
the containers. The effector can move both horizontally and
vertically. It moves horizontally to place itself above the correct
position of the source/target container and moves vertically to
interact with them. The interaction of pipettes with the container
is simply filling up the pipettes from the source container or
emptying the liquid from the pipettes into the target container.

The primary challenge is the limited size of the dataset. Overall,
19 videos are present; five videos without any kind of anomaly and
other videos containing bottom out and clogged tip anomalies.
Video-level normal and anomaly labels are available out of the
box. There are no readily available image-level labels, but are created
for experiments based on manual observation. Among anomaly
labels, a bottom-out anomaly occurs when the tip of the pipette is
fixed against the bottom of a beaker while aspirating, which creates a
vacuum and thus the pipette cannot function properly. Also, a
clogged tip anomaly can occur where tips of the pipettes are
completely or partially clogged and thus liquid cannot be
extracted into the pipette properly. Here in this study, we focus
on the anomaly cases that result in a change in the liquid level, and
consequently, reduce the effectiveness of the liquid transfer task.
Additional types of anomalies, such as the movement of the robot
end effector or unpredictable changes to the environment causing
mechanical and manual problems, are deferred to future works to
reduce the challenges of the research problem. Most of the current
studies into anomaly detection deal with supervised deep learning
methods but due to the limited amount of data samples, our
experiments show supervised deep learning under-performs in
this case. To address this shortcoming, we develop methods
using hand-crafted features.

Another challenge of this dataset is to make the solution color-
invariant. As the liquids contained in the beakers can have various
characteristics, the solution has to be effective for a wide range of
liquid colors and shades. As methodologies based on hand-crafted
features or geometric analysis depend on various thresholding and
environment assumptions, these variations should provide a
challenge regarding the robustness of the methods. The most
challenging case is when the liquid is transparent. Here, the
difference between the background and the pipette contents
becomes almost indiscernible to the point that even a human eye
cannot identify whether the liquid is present in the pipette or not.
Only the transparent case remained unsolved in our
experimentation. We surmise that detecting transparent liquid is
not possible without major hardware modifications such as
enhanced lighting using external devices, hyper-spectral imaging
or other augmentations to the setup. We leave these experiments for
future endeavors and focus on the applicability of the current setup
for this study. Out of the 19 video clips, 13 contain colored liquids
and the rest contain transparent liquids which we refrained from
using in the experiments. Furthermore, the pipettes’ volume
capacity and liquid extraction speed are also some parameters
that can vary.

Additional difficulties are introduced in the case where the
container of liquid is a whole tub. When the pipettes are lowered
into the tub, it creates a ripple in the liquid of the container. This
ripple intersects the region of filled liquid in the pipettes. As a result,
the situation gets troublesome for handcrafted methods as

TABLE 1 Dataset information.

Video source Video class Sample count

Laboratory Normal 5

Clogged 3

Bottom Out 11

Segmentation Normal 3

Clogged 3
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additional noise is introduced. Furthermore, here the camera
position changes and the pipette region of interest is further
away from the camera. The further the camera is, the more noise
is introduced in the pipette region. The camera also sometimes auto-
focuses or can have slightly irregular movements which might result
in noisy frames.

3.2 Data processing and augmentation

The video dataset is converted to an image-level dataset by frame
extraction. The original video data has a frame rate of 30fps and each

frame has a height and width of 720 and 1280, respectively. As the
dataset contain only 19 video clips with limited variations of
anomalies, an augmented dataset containing more videos and
additional derived anomalous and normal cases will allow for
more robust experiments. Thus, an additional augmented dataset
is created using manual segmentation of the pipette shape and the
liquid content of both the pipettes and the beakers present in a
frame. By manipulating the pixels of the segmentation mask region,
the brightness, contrast, and color of the original frames are
modified to create new frame-level data as shown in Figure 1.
The liquid color can vary depending on the experiment being
performed in the laboratory but the dataset showcase some

FIGURE 3
Self Comparison Preprocessing step. An input frame is passed through a fine-tuned YOLOv5 algorithm which detects the pipette region of interest.
The detected boundary box values of each frame are used to detect the anchor frame and then the frame is cropped to the pipette region and passed on
to the self comparison step.

FIGURE 4
Self Comparison Method (single pipette view). Here, incoming frames are compared with the anchor frame to get the difference frames. The
morphological opening operation is applied to them before contour detection. The detected contours are further post-processed using prior
knowledge. The algorithm takes this output and extracts three types of features which is passed onto a predictor model for the final classification as an
anomaly or normal frame.
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variations of this case, namely, cyan, red, green and yellow. Hence,
such an augmentation is of paramount importance as this simulates
various liquid color characteristics and can be used in both training
and validation.

Another challenging aspect of the dataset is the case of pipettes
with clogged tips. Only a few examples of this case are given, where
some of the eight pipettes are clogged and cannot extract any liquid.
However, this anomaly can affect any pipette in any order and in any
number. That is why additional augmented data is created by
utilizing the segmentations of the pipette shapes. It can be used
to replace any segmentation of a normal case pipette with that of the
abnormal case as shown in Figure 2. This pipette augmentation
through segmentation is used to create abnormal case videos from
normal videos and vice versa. Furthermore, the same type of
augmentation is used on each frame of a single video in order to
ensure video-level consistency. Otherwise, performing
augmentation with different parameters on frames of a single
video will violate the expected characteristics of natural videos.

For the manual segmentation, every 10th frame from the frame
level dataset is considered. As the original dataset has a high frame
rate, many subsequent frames are ignored due to minuscule changes.
Furthermore, manual segmentation is a monotonous task, and
segmenting each and every frame will cost valuable resources.
Thus, only a subset of the relevant frame sequences is considered
during the augmentation phase. The summary of the entire dataset is
presented in Table 1.

4 Methods and materials

Our methodology is inspired by the following observations. The
anomaly scenarios can be detected more accurately during the liquid
transfer phase between the container and the pipettes. During this
phase, all the environmental elements remain static except the liquid
inside the pipettes, which is moving up or down. Here, we denote the
first frame of a video as p1 where a video has a total of N frames. By
taking the difference between a frame pt and subsequent ones pt+i
where i = 1, 2, ., N, this movement of liquid should be visible as it is
the only dynamic object between the frames. If the number of
detected liquid regions equals the number of pipettes and their
movement corresponds to that of a working pipette, then the video
can be classified as normal. Otherwise, the video is labeled as
anomalous. Furthermore, the group of pipettes is the only region
of interest that is a small part of the whole frame. In order to reduce
computational complexity and eliminate noise and artifacts from the
irrelevant space when comparing frames, we need a way to detect
and crop this region of interest. In the next section, we describe the
preprocessing developed to prepare the frames for the main
processing task.

4.1 Preprocessing step

In order to detect the group of pipettes, the YOLOv5 object
detection algorithm (Jocher et al., 2022) is employed. YOLOv5 is a
one-stage detection algorithm that uses CSPDarknet53 with a
Spatial Pyramid Pooling layer as the backbone, a Path
Aggregation Network as the neck and a head from the original

YOLO algorithm (Redmon et al., 2016). The algorithm outputs
boundary box information of detected objects from a frame. The
pipette region boundary boxes of selected frames from the original
and augmented dataset are manually labeled and used for training,
validation, and testing. The default parameters of the official
YOLOv5 implementation (release v6.1) are used to fine-tune the
model for 200 epochs. Here, as the model is already pretrained on
the COCO dataset (Lin et al., 2014), the detection of the pipette
region is a much easier task compared to anomaly detection which is
evident by the fine-tuning results. The mean average precision score
(map @ 0.5-0.95) of validation and testing is 0.916 and 0.928,
respectively.

The trained model is used to detect the pipette region from
an incoming video stream. The region of interest is only useful
when the pipettes are on top of the liquid container and have
started interacting with the liquid. We call this frame the anchor
frame pa. In order to identify this frame, the y-axis values of the
detected boundary box from the model are extracted and
compared. When the detected boundary box has moved
downwards in the video stream and has stayed like that for
10+ frames, then the pa frame is detected. The subsequent
frames are cropped to the detected boundary box size and
considered as the region of interest (RoI) for the next
step. To account for noise and environmental changes, the
boundary boxes from the algorithm are made 10% bigger.
The preprocessing step is visualized in Figure 3.

4.2 Self-comparison step

After the preprocessing step, the incoming RoIs are compared
with the detected anchor frame pa. The difference between the
frames reveal the change of the pipette contents as time goes on
which is used to classify the video as normal or as an anomaly. Let
this difference frame be called Δp. Environmental disturbances such
as sudden irregular movements of the camera or the ripples of the
liquid in the container during the transfer process can cause noise
and artifacts in Δp. To alleviate this problem, morphological
operations are applied before further processing. For this task,
the opening operation is used which is a sequence of erosion and
dilation operations (Raid et al., 2014). The erosion operation uses a
structuring element for reducing boundary shapes contained in the
input image whereas the dilation operation is used to expand these
shapes. By sequentially applying these operations, small noisy
objects from the foreground of an image can be removed (Soille,
1999).

Most of the noise and artifacts from Δp are stripped away after
applying the opening morphological operation. Then contours are
detected from the cleaned RoI which point to the boundary of each
liquid movement. This process is showcased in Figure 4. The size of
the contours is supposed to increase on the y-axis if the pipettes are
working correctly and the liquid is being successfully extracted.
These contours are further filtered using prior knowledge about the
environment and RoI. Firstly, the number of pipettes, n(p) is known
beforehand, and thus the total number of contours should be the
same. The detected contours are sorted by area and the largest n(p)
contours are further processed. Secondly, each contour must have a
minimum height to width ratio as its shape must conform to that of
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the pipette. Thirdly, these contours must always have vertical growth
as that would mean the liquid level is rising in the pipette. All
the relevant contours are filtered using these post-processes and
tracked.

4.3 Median width denoising

Due to noise present in the difference frame Δp, some of the
detected and post-processed contours’ widths might have some

TABLE 2 AUC score (in percentage) comparison of different machine learning models over different history lengths. History length refers to how many previous
frames’ pipette features are used; e.g., history-13 means that previous 13 frames’ features are used alongside the current frame features. The bold values show
best performance for each history. The underlined values show the best performance for each model.

Models No history History-3 History-5 History-7 History-9 History-11 History-13 History-15

Logistic Regression 90.23 85.21 86.40 87.73 89.62 90.79 91.10 91.00

Support Vector Classifier 87.99 81.51 81.09 89.66 91.62 93.46 94.74 94.64

Gaussian Naive Bayes 80.66 73.12 73.71 75.41 77.48 79.29 80.82 82.73

Multinomial Naive Bayes 84.21 81.29 80.24 80.95 81.96 83.41 84.31 86.23

KNeighbors 87.68 84.41 83.21 83.80 83.25 83.10 81.16 82.27

RandomForest 89.56 84.73 85.73 84.06 83.41 86.06 87.02 84.97

LightGBM 86.38 83.14 82.66 84.61 83.88 85.24 80.71 77.82

XGBoost 85.67 83.27 86.96 87.63 84.59 84.60 83.14 85.64

TABLE 3 EER score (in percentage) comparison of different machine learning models over different history lengths. History length refers to how many previous
frame’s pipette features are used; e.g., history-13 means that previous 13 frames’ features are used alongside the current frame features. The bold values show
best performance for each history. The underlined values show the best performance for each model.

Models No history History-3 History-5 History-7 History-9 History-11 History-13 History-15

Logistic Regression 21.19 26.04 23.73 20.92 17.17 13.07 14.01 15.67

Support Vector Classifier 17.31 23.14 21.07 13.51 12.53 9.61 6.06 7.50

Gaussian Naive Bayes 26.08 28.85 28.30 26.66 24.47 22.50 20.80 19.08

Multinomial Naive Bayes 27.35 26.21 27.11 24.92 23.98 22.95 20.87 19.46

KNeighbors 12.82 22.71 22.17 20.18 20.48 20.93 21.65 18.86

RandomForest 15.95 19.53 19.80 19.22 19.77 19.37 20.24 22.73

LightGBM 23.35 25.36 23.82 21.42 25.10 21.90 28.75 26.92

XGBoost 21.14 20.59 19.55 17.84 22.66 20.55 19.33 18.72

FIGURE 5
Comparison of AUC scores between different ML methods. Logistic Regression, SVC, GaussianNB, MultinomialNB and XGB show gradual
improvement over their baseline score when history is introduced. Here SVC scores the most with an AUC of 94.74% in the history-13 setting.
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discrepancy with the pipettes’. In order to alleviate this deviation, the
prior knowledge that the width of all the pipettes is the same is used.
As most of the noise is stripped away due to the aforementioned

operations, most of the contours portray accurate width information
of the pipettes. That is why the median of all the detected contours’
widths can be a good estimate of the actual width and is used instead

FIGURE 6
Comparison of Equal Error rate scores between different MLmethods. Logistic Regression, SVC, GaussianNB, MultinomialNB and XGB show gradual
improvement over their baseline EER score when history is introduced, similar to the AUC score scenario in Figure 5. Here, SVC has the least EER of 6.06%
in the history-13 setting, making it the best performing model.

FIGURE 7
ROC Curve comparison between our developed method and existing anomaly detection models.
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of the original ones. The algorithm outputs the bounding boxes of
the contours with the width set as this median value. Thus, the width
discrepancy can be avoided and denoised using median width.

4.4 Features for learning

We extract three types of features from the previous step and
pass into a final predictor in order to detect soft scores for
anomaly detection. The first type is the boundary box
information of the contours for each detected pipette for each
frame. The boxes can also give approximate information on how
much a pipette has been filled with a liquid. The height and width
of a detected contour box gives its area, areacontour. Furthermore,
the original pipette area, areapipette, can be estimated
approximately by taking the original RoI bounding box’s
height and a width and comparing it with the number of
pipettes. By taking the ratio of the square root values of
areacontour and areapipette, we can get an approximation of how
much a pipette is filled which is the second type of feature we
extract. This feature contains notable information to deduce
whether a pipette is working properly or not and thus this
feature is also taken into consideration. Nevertheless, the
previous information provides an incomplete picture of the
current state of the pipette if only the current frame is being
considered. In order to provide temporal context to the current
pipette’s state, previous frame pipette information or some form
of history is also needed. Hence, the detected boundary boxes and
ratio information of previous frames are also utilized as the third
type of feature for the final prediction stage. Finally, the predictor
model outputs a probabilistic score on whether the current frame
features constitute a normal or an anomalous event. Later on in
Section 5.1, we conduct ablation studies on the type of the final
predictor and demonstrate that Support Vector Classifier (SVC)
provides the best performance for this task.

5 Experiments

In order to quantify the performance of the proposed method
and compare with other methodologies, we compute ROC curve

and use Area Under the Curve (AUC) and Equal Error Rate (EER)
metrics. Here in Section 5.1, we provide comparison of
results from different machine learning classifiers. Afterward,
in Section 5.2, we compare the best performing predictor in
our model with other baselines for video anomaly
detection including deep learning methods. Finally, the effect
of different components of our methods are discussed in
Section 5.3.

5.1 Comparison of different machine
learning classifiers

We evaluate the performance of different machine learning
models to identify the one that provides the best prediction, given
the features extracted via the self comparison method in Section
4.4. We compare the performance among different methods and
also evaluate the impact of providing previous n frames
information along with the current frame, a setting we define
as history. A complete ablation study of AUC scores on different
history lengths for different machine learning models are given in
Table 2 and the same is given for EER scores in Table 3. The bold
values correspond to best performing model for each history and
the underlined values show the best performance for each of the
models. When there is no history, i.e., only the current frame
history is present, Logistic Regression scores the most in terms of
AUC with a score of 90.23% where Support Vector Classifier
(SVC) scores 87.99%. In terms of no-history EER, KNeighbors
has the best score of 12.82% where SVC scores 17.31%. When
history length of 3 is added, the scores of all the models fall, which
may point to insufficient temporal context. This explains why as
more history or temporal context is added, five of the eight tested
models show improvement over their initial no-history AUC
score and six of the eight models show improvement in terms of
EER. Figure 5 contains the barplots of the AUC scores; Figure 6
shows the barplots of EER (Equal Error Rate) scores and they
both paint a similar picture in regards to the models
performances. The methods KNeighbors and RandomForest
show no improvement in both metrics when any amount of
history is added which may point to their inability to capture
the additional context provided by previous frame information.
XGBoost shows improvement up-to history-7 and then the
score decreases signifying that there might be an optimal
history length for each of the models. The SVC model has the
overall best score when history length of 13 is applied, with an
AUC of 94.74% which is 7% more than its no-history AUC and
an EER of 6.06% which is 64.99% better than its no history
EER. Though SVC is outperformed by Logistic Regression in
terms of AUC and KNeightbors in terms of EER in the no history
case, it manages to surpass their scores comfortably when history
is applied. Furthermore, the SVC model scores the best across
these 2 metrics among all the classifiers apart from the no-history,
history-3 and history-5 cases. Thus, adding history frame
information helps performance by providing historical context
and the SVC method consistently provides the best score as more
context is given. Due to these two observations, the SVC classifier
in addition to a history length of 13, is chosen as the predictor for
the final pipeline.

TABLE 4 AUC and EER Score comparison of best-performing machine learning
model with existing anomaly detection methods of different kinds. 3D ResNet-
50 scored the best among existing deep learning methods. Our developed
method with a SVC predictor outperforms all across both metrics.

Method AUC EER

Registration Based Few-Shot Anomaly Detection 52.37 47.38

Deep Multiple Instance Learning 62.04 43.01

Decoupled Spatio-Temporal Jigsaw Puzzle 62.30 37.66

ResNet-50 77.16 26.29

ResNet-50 with history-15 75.00 26.77

3D ResNet-50 79.55 25.26

Support Vector Classifier with history-13 94.74 6.06
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5.2 Comparison with different methods

We compare our developed method with existing
methodologies proving our method’s effectiveness for this
dataset. As the dataset does not contain an adequate number
of labeled data, we experiment with a few-shot learning method
(Huang et al., 2022). This method uses image registration as a
proxy task to learn the distribution of non-anomaly samples
during training time and was pretrained on MVTec
(Bergmann et al., 2019) dataset. The AUC score for this
method is 52.37%, and the EER is the largest among the tested
methods. This performance can be attributed to the huge
difference in characteristics between the pretraining dataset
and our dataset. Furthermore, as the dataset contains ideo-
level labels, we use the deep multiple instance ranking
framework (Sultani et al., 2018) method to get a detection
baseline score. This method performs slightly better than the
Few Shot Learning method, but still the method cannot give a

usable score due to its dependency on high number of training
samples. Moreover, to test a baseline self-supervised method for
this task, we adopt the video anomaly detection paper (Wang G.
et al., 2022), which tries to detect anomalies by solving decoupled
spatio-temporal jigsaw puzzles. A model pretrained on the
Shanghai Tech dataset is used but it results in an AUC score
of 62.30%, which maybe be due to the characteristic differences
between the datasets.

Finally, we try frame-level binary classification with ResNet
architectures (He et al., 2016). The default setting uses a single
frame as input with three channels (RGB). To make this a fair
comparison with the machine learning methods, the cropped
outputs of the preprocessed steps are used. This yields an AUC of
77.16% and an EER of 26.29% which is the best among all the
previous methods. Similar to the machine learning comparisons,
we try incorporating previous frame information with the input
by stacking the previous 15 consecutive frames along with the
current frame on the channel dimension. But here, the AUC score

FIGURE 8
Effect of morphological operation. The first row depicts the case when sudden camera movement caused noise to appear in Δp. The second row
shows what happens when water ripples in the tray effect the contour detection. Both are resolved using the opening operation.

FIGURE 9
Effect of post-processing operation. In both cases, there are small noisy contours with abnormal height by width ratios which are discarded after
post-processing using prior knowledge.
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drop about 3%–75%. This score can be attributed to the fact that
as we are incorporating the previous 15 frames our training
dataset should also be increased 15X to maintain the same rate
of information. Furthermore, 2D convolutions cannot preserve
the temporal context of the frame stack which can decrease the
score. This provides the rationale for further experimentation
with 3D convolutions via 3D Resnet using the previous settings.
Here the AUC score is 79.55%, which is an improvement of 3%
compared to the 2D Resnet score, showing that the 3D version
can gain some temporal contextual information.

Our developed methodology beat all the experiments by a
large margin. The 3D Resnet model performs the best among all

the deep learning methods with an AUC score of 79.55% and an
EER of 25.26%. On the other hand, our method has an AUC of
94.74% and an EER of 6.06% which is a 19% AUC and 76% EER
improvement. Thus, our developed method provides the most
reliable outputs among all the existing methodologies. A
comparison between the stated methods with our developed
method is presented in Table 4. Additionally, the ROC Curve
comparison between the methods is shown graphically in
Figure 7.

All the aforementioned results are produced for the colored
liquid transfer task. When we incorporate the examples of
transparent liquids, the SVC model AUC score drops to 77%

FIGURE 10
Results of different video frames with each pipette filled percentage shown in a table below each video frame. The first column contains normal
videos as the number of detected contours is equal to the number of pipettes and over 50% of each pipette is filled with liquid. The 2nd column features
anomaly cases where the number of detected contours didn’t match the number of pipettes.
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and the Resnet AUC score drops below 50%. In the event the
liquid is transparent, the self-comparison method cannot
correctly capture the contrast between the liquid filled pipette
and the empty pipette. Thus, the output features of this method
become very noisy and the SVC model’s predictions become
skewed towards anomaly even in the presence of a normal
example. Furthermore, only one normal sample of transparent
liquid transfer event is present and thus there cannot be an
effective cross validation for this special case which is one of
the main reasons deep learning methods are ineffective here.
Consequently, the difficult problem of transparent liquid transfer
remains unsolved in our case, where data scarcity and imbalance
played a big role in the outcome.

5.3 Output result analysis

Here, we compare the effect of some components of the
developed method. Mainly the results of excluding and
incorporating the opening operation and post-processing
operations in the developed methodology are discussed. Then,
the output of the self-comparison method is shown which is used
to output the filled percentage of liquid in the pipettes as auxiliary
information.

5.3.1 Effect of opening operation

The opening morphological operation protects against noise
and makes the solution robust against rapid irrelevant
environmental change. For example, the camera viewing the
pipettes can sometimes shake or lose focus, and it then
immediately re-adjusts. But the frames which show this
instantaneous change have the difference frame Δp filled with
irrelevant artifacts. The opening operation removes this noise
from the frame and stabilizes Δp. This case is shown in the top
row of Figure 8.

Another example of noise reduction through this operation
is the case showcased in the bottom row of Figure 8. Here, the
tray is filled with liquid and the pipettes extract the contents
directly from it. This can cause a ripple effect due to the
movement of the liquid which is visible in Δp. But this
information is irrelevant to the pipette contours and causes
additional noise. The opening operation once again gets rid of
this noise and outputs only the relevant portion of Δp before
contour detection.

5.3.2 Effect of prior knowledge post-process

The post-processing operations utilize prior knowledge to
filter the detected contours and output only the relevant ones.
The opening operation cannot remove all possible noise and
artifacts and thus post processing plays a huge role in
identifying the useful contours. As the prior knowledge
during this step will remain constant throughout the life
cycle of the experiments, it can be used to effectively extract
the contours best matching with the pipettes. The images in

Figure 9 show how the unprocessed images have few noisy
contour boxes with a comparatively negligible area or whose
width is greater than the height. These objects are also
irrelevant to the pipette liquid shape and are filtered out to
compute the final contours which are then reshaped using
median width denoising. Then, relevant information like the
number of contours and pipette filled percentage is used to
identify whether the video frames represent a normal procedure
or not.

5.3.3 Final output

The method is able to successfully differentiate between the
normal and anomalous videos in the dataset which have colored
liquids. Figure 10 shows the decisive Δp frames and the
extracted contours of some of the video cases. The
approximate pipette-filled percentage using area ratio
approximation is also shown below each final contour
output. The first column of the figure contains normal
examples where the number of pipettes equals the number of
contours detected and more than 50% of each pipette is filled
up. In the second column, examples containing anomaly are
shown. In Anomaly Video 1, only a single pipette is detected and
it isn’t filled up to even 50%. Thus, it is classified as an anomaly.
In Anomaly Video 2, all the pipettes have more than 50% filled
up. However, the total number of contours did not match the
total number of pipettes. Therefore, this frame is classified as an
anomaly. In these cases, we consider 50% as the minimum level
for which a pipette is considered as an anomaly. But this
threshold value should be different based on the experiment
environment specifications like the camera-setup distance and
the task requirements. Thus, this value should be tuned based on
the desired false acceptance rate of the algorithm and also the
provisions of the target task.

6 Conclusion

Automatic anomaly detection can undoubtedly save hours of
human labor and is much needed in automated laboratory
procedures where anomalies could result in faulty conjectures
or failed experiments. If an anomaly can be correctly detected
in this scenario, steps to alert, diagnose, and auto-correct the
procedure can be initiated. Here, we presented a novel dataset for
video anomaly detection in laboratory setups with the task of
liquid transfer. The dataset introduces several challenges, such as
limited number of samples, ripples in the liquid container, and
varying environmental conditions.

Because of data scarcity and variable environmental
conditions, conventional deep learning models cannot provide
a satisfactory result. As a result, we presented a feature-based
method to address the several challenges that might occur in
such scenarios. The proposed method is color-invariant and
provides high accuracy despite the aforementioned challenges.
Several experiments and ablation studies confirm the
effectiveness of the proposed method. In particular, the
proposed method surpasses the state-of-the-art methods of
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anomaly detection by 19% and achieves 94.74% AUC in
detecting anomalous events.
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