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Remission of social behavior
impairment by oral
administration of a precursor of
NAD in CD157, but not in CD38,
knockout mice

Maria Gerasimenko and Haruhiro Higashida*

Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental
Development, Kanazawa University, Kanazawa, Japan
Nicotinamide adenine dinucleotide (NAD) is a substrate of adenosine

diphosphate (ADP)-ribosyl cyclase and is catalyzed to cyclic ADP-ribose

(cADPR) by CD38 and/or CD157. cADPR, a Ca2+ mobilizing second messenger,

is critical in releasing oxytocin from the hypothalamus into the brain. Although

NAD precursors effectively play a role in neurodegenerative disorders, muscular

dystrophy, and senescence, the beneficial effects of elevating NAD by NAD

precursor supplementation on brain function, especially social interaction, and

whether CD38 is required in this response, has not been intensely studied. Here,

we report that oral gavage administration of nicotinamide riboside, a perspective

NAD precursor with high bioavailability, for 12 days did not show any suppressive

or increasing effects on sociability (mouse’s interest in social targets compared to

non-social targets) in both CD157KO and CD38KOmale mice models in a three-

chamber test. CD157KO and CD38KO mice displayed no social preference (that

is, more interest towards a novel mouse than a familiar one) behavior. This defect

was rescued after oral gavage administration of nicotinamide riboside for 12 days

in CD157KO mice, but not in CD38KO mice. Social memory was not observed in

CD157KO and CD38KO mice; subsequently, nicotinamide riboside

administration had no effect on social memory. Together with the results that

nicotinamide riboside had essentially no or little effect on body weight during

treatment in CD157KO mice, nicotinamide riboside is less harmful and has

beneficial effect on defects in recovery from social behavioral, for which CD38

is required in mice.
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1 Introduction

Prosocial behavior is important for humans and in the human

diverse society (1–3), and humans naturally possess social cognition

and memory ability at different levels (4, 5). Social cognition is a

behavior that covers aspects of information about one’s self and

others within their social groups (4, 6). Alternatively, social

recognition is an ability to discriminate familiar and unfamiliar

social objects and to interact between them, which is processed as

social memory. Therefore, such abilities are required for living in a

society to learn members’ identities, to maintain groups between

friendly individuals or at the working places, and for interpersonal

communication. In our society, we need to acquire social skills to

make social decisions (2, 3).

In experimental neurosciences, social recognition is usually

defined as an interest towards novel social objects (social

motivation), and social memory is defined as a decrease in

investigative behaviors toward re-exposed (and thus have

become) familiar conspecifics (7, 8). Among the various

neurotransmitters involved in social recognition, oxytocin is

reported to be involved in social interaction, social recognition,

and memory in the social brain (9). Disruption of the oxytocin

system leads to impaired social recognition and mutual interactions

in humans with psychiatric disorders, such as autism spectrum

disorders (ASDs) or schizophrenia (10–12). Defects in the oxytocin

system is involved in anxiety-, depression-, avoidance-, and

hyperactivity-like behaviors, which are useful psychiatric disorder

models (13, 14). For the past 20 years, studies have shown that

CD38 and CD157 are critical molecules in prosocial behavior (9,

14–28), as described below.

Oxytocin is synthesized in neurons in the paraventricular

nucleus and supraoptic nucleus of the hypothalamus, and

secreted somato-dendritically from oxytocin-producing neurons

into the brain. It plays the role of a neuromodulator (24, 29, 30).

CD38 is a cell-surface antigen with adenosine diphosphate (ADP)-

ribosyl cyclase activity, which catalyzes cyclic ADP-ribose (cADPR)

from nicotinamide adenine dinucleotide (NAD) (31, 32). cADPR

functions as a second messenger to trigger Ca2+ mobilization from

endoplasmic Ca2+ pools (31, 33). In the hypothalamus, cADPR

elevates intracellular free Ca2+ concentrations and subsequently

releases oxytocin from oxytocinergic neurons (24). The linkage

between this signaling cascade and social behavior was, for the first

time, shown in Cd38 knockout (CD38KO) mice, in which social

memory and recognition or parental nurturing behavior were

disrupted mainly owing to reduced oxytocin secretion (27). The

importance of CD38 and oxytocin in social memory was further

confirmed by local re-expression of human CD38 in the

hypothalamus by CD38-containing lentivirus infection or simple

subcutaneous supply of oxytocin in CD38 KO mice, in which social

behavioral impairment was rescued (28).

CD157 (originally found as BST-1) (34) is a sister molecule of

CD38 and is expressed in neuroprogenitor or neurolineage cells in the

subventricular zone of the fetal brain (21). The functional role of
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CD157 on oxytocin’s reaction is nearly identical to that of CD38.

CD157 produces cADPR at one third of the CD38’s catalyzing level but

with almost no nicotinic acid adenine dinucleotide phosphate

producing ability, differing from CD38. Thus, various functions of

CD157 seem to be mediated by not only cADPR with respect to Ca2+

homeostasis, but also by migrating powers with homophilic binding on

the cell surface or adhesive properties associated with integrin (35).

Though the phenotypes of Cd157 knockout (CD157KO) and CD38KO

mice in social behavior are largely similar, CD157 invokes multiple

circuits to control anxiety- and depression-like behaviors (14, 20, 21).

Nicotinamide riboside, a NAD precursor, is converted to

nicotinamide mononucleotide through nicotinamide riboside

kinase 1. Subsequently, nicotinamide mononucleotide is

converted to NAD by the action of nicotinamide mononucleotide

adenylyl transferase. Nicotinamide riboside kinase 1 and

nicotinamide riboside kinase 2 genes are utilized in a de novo

fashion (36–39). Evidence shows that nicotinamide riboside

supplementation in humans increases intracellular NAD

concentrations and subsequently improves NAD-dependent

activities in the cell by increasing silent mating-type information

through nicotinamide riboside kinase 2-dependent gene silencing,

and longevity via nicotinamide riboside kinase 1-dependent NAD

synthesis (39, 40). Thus, it is possible that the exogenous application

of nicotinamide riboside can promote the biosynthesis of NAD via

nicotinamide mononucleotide. Subsequently, NAD is degraded to

cADPR and nicotinamide by poly(ADP-ribose) polymerases

(PARPS) and CD38, respectively. cADPR helps produce the

beneficial effects of NAD (41). The most fundamental use of

NAD precursor molecules, nicotinic acid and nicotinamide

mononucleotide, is the prevention of pellagra. Similar to nicotinic

acid and nicotinamide mononucleotide, nicotinamide riboside is a

natural product found in milk (38), which is incorporated into the

intracellular NAD pool (42–44), and thus can be used as a general

supplement, potentially for people who have adverse reactions to

nicotinic acid or nicotinamide mononucleotide. However, more

significantly, the specific utilization of nicotinamide riboside by

neurons may provide qualitative advantages over niacin in

promoting function in the central and peripheral nervous

systems. Nicotinamide riboside has been already used as a

supplement or therapeutic agent to elevate or maintain cellular

NAD contents because of increase in CD38 in aged subjects (45, 46).

Nicotinamide riboside is beneficial for treating social

impairments in young and aged people, some of which are based

on impairments of oxytocin and/or oxytocin release (17); however,

this finding is less reported. To assess this question, we previously

investigated the role of orally applied nicotinamide riboside (gavage

route) for 12 days on impaired social behaviors in CD157KO mice.

We re-examined the effects of gavage administration of

nicotinamide riboside in CD157KO mice by using a single

protocol (17). Furthermore, we studied the effect of nicotinamide

riboside in CD38KO mice. These comparative results clarified the

functional roles of CD157 and CD38 as neuromodulators, rather

than immune factors in diseases including cancer (36, 47).
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2 Methods

2.1 Animals

CD157KO (Cd157-/-/Cd38+/+ of the C57BL/6 genetic

background) and CD38KO (Cd157+/+/Cd38-/- of the ICR genetic

background) mice were created as described previously (28, 34, 48,

49), and were kindly provided by Ishihara and Okamoto,

respectively. The mice were maintained by crossbreeding

homozygous mutant mice. Slc : ICR (CD-1) outbred male mice (8

weeks old, 25–30 g body weight) and C57BL6/N (8 weeks old, 23–27

g body weight) mice were obtained from Japan SLC Inc.

(Hamamatsu, Japan) through a local distributor (Sankyo

Laboratory Service Corporation, Toyama, Japan) and used as

controls for CD38KO and CD157KO mice, respectively. Half of

the offspring of wild-type mice and all KO mice were bred in our

laboratory colony, weaned at 21–32 days of age, and housed in

same-sex groups offive sibling pairs in one cage in the animal center

under standard conditions (24°C; 12/12-h light/dark cycle, with

lights on at 8:45 a.m.) with food and water ad libitum. After pretest

and during the test each mouse was housed in individual cage.

All animal experiments were carried out in accordance with the

Fundamental Guidelines for Proper Conduct of Animal Experiment

and Related Activities in Academic Research Institutions under the

jurisdiction of the Ministry of Education, Culture, Sports, Science

and Technology of Japan and approved by the Committee on

Animal Experimentation of Kanazawa University Graduate

School of Medical Sciences.
2.2 Animal treatment

Nicotinamide riboside was supplied by Brenner from

ChromaDex, Irvine, CA, USA. Male mice were gavage

administered with nicotinamide riboside in a dose of 13 mg in a

50 ml solution, or the equivalent volume of physiological saline

(PBS) as placebo control (17). Mice were treated daily at around 3-5

p.m. for 12 days.
2.3 Social behavior test in
three-chamber boxes

The sociability, social preference, and social memory were

tested using a three-chamber box to assess whether subject mice

tended to spend time with mice in different chambers, as described

previously (50) (Supplementary Figure 1).

2.3.1 Habituation
Test mice were first habituated for 5 min in an empty three-

chamber box.

2.3.2 Sociability
Sociability was examined in a 5-min interval by the duration for

which an experimental naive male mouse stayed in either a left
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chamber with a non-social target (usually a 50-ml conical plastic

tube) or in the right chamber with a male mouse in a small metal

mesh cage. Usually, the mouse stays longer with the target mouse

due to its prosocial nature.
2.3.3 Social preference
At the end of the 5-min sociability test, these subject and target

mice were immediately tested in a third 5-min session to quantitate

the preference to spend time with a new unfamiliar mouse (Stranger

2; an experiment naïve male) placed in the wire cage (in the right

chamber), replacing the plastic tube in the previous 5-min session.

The test mouse had a choice to stay with either the first (already

investigated, now familiar mouse; Stranger 1) or the novel

unfamiliar mouse (Stranger 2). The mice usually interact more

with the unfamiliar mouse.
2.3.4 Social memory
At the end of the 5-min social preference test, the mouse

(Stranger 1) in the previous stage was utilized in another (fourth)

5-min session to quantitate social memory after 30 min. It was

examined if the test subject spent more time with a second new

stranger (Stranger 3; an experiment naïve male) than Stranger 1 to

test for short-term social memory after posing the 30-min

separation. Stranger 3 was placed in the wire cage (in the right

chamber) that had been occupied by Stranger 2 during the previous

5-min session, and after 30 min separation. The test mouse had a

choice between the first, already-investigated, now-most familiar

mouse (Stranger 1) and the novel unfamiliar mouse (Stranger 3).

The trial was recorded for 5 min using the ANY-maze video

system, as described previously (14, 17). Latency to enter (defined

by all four paws entering), time spent, entries, and distance travelled

in the light chamber were recorded. Experiments were repeated

thrice on one day after treatment for 12 days.
2.4 Statistical analysis

The data are expressed as the means ± standard error of mean.

The comparisons were evaluated using Student’s t-test and One-

way or Two-way ANOVA, followed by post-hoc Bonferroni test. In

all analyses, P < 0.05 indicated statistical significance.
3 Results

3.1 On CD157 knockout mice

Adult male C57BL6/N wild-type and CD157KO mice treated

with saline or 13 mg nicotinamide riboside (approximately 350-400

mg/kg of body weight) for 12 days did not demonstrate any

apparent changes in coordinated movement dysfunction (data not

shown). The body weight gain during gavage had no or little

difference between treatments with saline and nicotinamide

riboside (Figures 1A, B).
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3.2 Social interaction in the three-chamber
box test in CD157KO mice

We performed three types of social interaction tests with novel

social targets each time (that is, sociability, social preference, and

social memory). A target adult male mouse was placed in the left

chamber (Stranger 1) and a non-social target in the right chamber,

under which condition we could test sociability (mouse’s general
Frontiers in Immunology 04
interest towards social targets). Wild-type and CD157KO mice

interacted with the social target mouse (Stranger 1) significantly

longer than with non-social targets (two-tailed Student’s t-test, P <

0.0001 for both; Figures 2A, B). The result indicated that the typical

phenotype of the social mouse, called sociability, was not disrupted

even in CD157KO mice. This sociability phenotype in both

genotypes was not much affected by gavage treatment of saline

(placebo) or nicotinamide riboside (13 mg/mouse) daily for 12 days
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FIGURE 2

Nicotinamide riboside (NR) treatment has no apparent effect on sociability in C57BL6 (BL6) and CD157KO male mice in the three-chamber test.
Duration spent in the chamber with Stranger 1 mouse in a cage (Str1) or a non-social target (object) by wild-type (BL6; A) or CD157KO (B) mice.
(C, D) Duration spent in the chamber with Stranger 1 mouse in a cage (Str1) or a non-social target (object) by wild-type (BL6; C) or CD157KO
(D) mice, which were treated with gavage administration of saline (PL) or nicotinamide riboside (NR) for 12 days and then examined. Two-tailed
Student’s t-test, **P < 0.01, ***P < 0.001, ****P < 0.0001.
A B

FIGURE 1

Nicotinamide riboside (NR) treatment has no effect on mouse body weight. (A) Body weight of C57BL6 male mice, before (0 day) and after NR (13
mg/mouse) or placebo (PL) treatment for 12 days (PL: n = 6, unpaired t-test, t(10) = 0.3571, P = 0.7285; NR: n = 6, t(10) = 1.598, P = 0.1412).
(B) Body weight of CD157 KO mice before (0 day) and after NR or placebo (PL) treatment for 12 days (PL: n = 6, unpaired t-test, t(10) = 0.2399, P =
0.8152; NR: n = 6, unpaired t-test, t(10) = 0.4341, P = 0.6734).
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(Figures 2C, D; two-tailed Student’s t-test, P < 0.001), similar to

previously reported results (17).

The non-social target was replaced with the second new target

male mouse in the right chamber (Stranger 2) to examine social

novelty (social preference between familiar (Stranger 1) and new

unfamiliar (Stranger 2) mice; Supplementary Figure 1; Figure 3).

Figure 3A shows the time spent in the zone with Stranger 2 is

significantly longer for wild-type mice (two-tailed Student’s t-test, P

< 0.0001). Contrastingly, in CD157KO mice, the time spent in the

two zones are similar (Figure 3B). The result indicated that, unlike

in the wild-type mice, social preference to new social targets was

completely lost in CD157KO mice.

No social preference phenotype in CD157KO mice was changed

after gavage treatment with saline for 12 days (Figure 3D). In sharp

contrast, CD157KO mice treated with gavage nicotinamide riboside

(13 mg daily for 12 days) interacted much more frequently with

Stranger 2 compared with stranger 1 (Figure 3D); the time spent in

the area with Stranger 2 was significantly longer than that in the zone

with Stranger 1 (two-tailed Student’s t-test, P < 0.01). Wild type mice

treated with nicotinamide riboside or saline displayed significant

social preference (two-tailed Student’s t-test, P < 0.01; Figure 3C).

In the social memory stage, the Stranger 2 mouse was replaced

with a novel social stimulus (Stranger 3) (Supplementary Figure 1).

Next behavior tests were performed after 30 min, which allowed to

measure short-term memory in mice. Both genotypes of wild-type

and CD157KO mice lacked significant social memory, without any
Frontiers in Immunology 05
preference to stranger 3 compared to Stranger 1 (Figures 4A, B);

nicotinamide riboside did not affect this preference (Figures 4C, D).
3.3 On CD38 knockout mice

Finally, we examined the effects of nicotinamide riboside in

CD38KO mice to assess whether CD38 was necessary for the

recovery of social behavior defects. As done with the CD157KO

mice, social behavior was examined in the three-chamber box test.

CD38KO mice displayed the sociability phenotype, similar to the

wild-type ICR mice (Figures 5A, B). This sociability in CD38KO

mice was unaffected by gavage administration of saline (Student’s t-

test P < 0.0001) or treatment with nicotinamide riboside (Student’s

t-test P < 0.0001; Figures 5C, D).

Unlike the wild-type mice (Figure 6A; Student’s t-test P <

0.0001), CD38KO displayed no or little social preference

(Figure 6B; Student’s t-test P = 0.055). Such social preference was

unaffectedly observed in wild-type mice under treatment with saline

as well as with nicotinamide riboside (Student’s t-test P < 0.0001;

Figure 6C). CD38KO mice treated with gavage administration of

nicotinamide riboside (13 mg/day) for 12 days showed a complete

lack of social preference (two-tailed Student’s t-test, P > 0.05;

Figure 6D). Unexpectedly, significance in social preference was

observed in CD38KO mice treated with saline gavage (Figure 6D;

two-tailed Student’s t-test, P < 0.01). The reasons for why such
A B

DC

FIGURE 3

Nicotinamide riboside (NR) treatment corrects social preference deficit in CD157KO mice. Duration spent in the chamber with the familiar mouse in
a cage (Str1) or a novel mouse (Str2) by wild-type (BL6; A, C) or CD157KO (B, D) mice. Mice were treated with gavage administration of saline (PL) or
nicotinamide riboside (NR) for 12 days (C, D) or were without any treatment (A, B). Two-tailed Student’s t-test, *P < 0.05, **P < 0.01. ns, not significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1166609
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gerasimenko and Higashida 10.3389/fimmu.2023.1166609
A B

DC

FIGURE 4

Wild-type C57BL6 (BL6) and C157KO mice show absence of social memory and no or little effect of nicotinamide riboside (NR) treatment. Duration
spent in the chamber with the familiar mouse in a cage (Str1) or a novel mouse (Str3) by wild-type (BL6; A, C) or CD157KO (B, D) mice. Mice were
treated with gavage administration of saline (PL) or NR for 12 days (C, D) or were without any treatment (A, B).
A B

DC

FIGURE 5

Nicotinamide riboside (NR) treatment has no apparent effect on sociability in wild-type (ICR) and CD38KO male mice in the three-chamber test.
Duration spent in the chamber with a novel mouse in a cage (Str1) or a non-social target (object) by ICR (A, C) or CD38KO (B, D) mice. Mice were
treated with gavage administration of saline (PL) or NR for 12 days (C, D) or were without any treatment (A, B), and then were examined for
sociability behavior. Two-tailed Student’s t-test, ****P < 0.0001.
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unexpected result was obtained are not clear, but one reason may

reside on the handling effect of mice during gavage, because

handling animals sometimes causes undesirable results is well

reported (51). Note that, although some activities in the central

zone were lower in CD38KO mice, probably because of moving

around other places due to hyperactive features (24, 28), CD38KO

mice displayed the sociability.

Social short-term memory which was performed with the 30-

min separation between trials was observed in wild-type ICR mice

(Figure 7A; two-tailed Student’s t-test, P < 0.001). CD38KO mice

were not able to distinguish between Stranger 1 and Stranger 3 in

this test (Figure 7B). Interestingly, nicotinamide riboside-treated

ICR and CD38KO mice showed a lack of social memory (Two-

tailed Student’s t-test, P > 0.05; Figures 7C, D), unlike those treated

with saline.
4 Discussion

The results showed that CD157KO and CD38KO mice

displayed sociability (mouse’s motivation to engage with social
Frontiers in Immunology 07
(mouse) targets compared to non-social targets), which is an

essential characteristic of mice, and gavage administration of

nicotinamide riboside had no significant effects on their

sociability. We also demonstrated that social preference (social

novelty to new social targets) was disrupted in both CD157KO

and CD38KO mice, and gavage administration of nicotinamide

riboside daily for 12 days ameliorated social preference defects only

in CD157KO mice, but not in CD38KO mice. Social memory

(preference to novel mice rather than already familiar mice) was

displayed in wild-type (ICR strain) mice. This behavior,

unfortunately, disappeared after nicotinamide riboside gavage

administration. Social memory was not observed in CD38KO

(genetic background of the ICR strain) and no social memory was

affected by either treatment with saline or nicotinamide riboside. In

the current study, the effect of nicotinamide riboside on social

memory in CD157KO mice was not investigated, because C57BL6

wild-type mice did not display social memory. Of particular

interests, it will be expected to get more sharp results on effects of

decreases in NAD concentrations and supplementation effects of

nicotinamide riboside at the tissues and behavior levels in double

knockout mice which delete both CD157 and CD38 genes in future.
A B

DC

FIGURE 6

Effects of nicotinamide riboside (NR) or saline (PL) treatment on social preference behavior in wild-type (ICR) or CD38KO mice. Duration spent in the
chamber with the familiar mouse in a cage (Str1) or a novel mouse (Str2) by wild-type (A, C) or CD38KO (B, D) male mice. Mice were treated with
gavage administration of saline (PL) or NR for 12 days (C, D) or were without any treatment (A, B). Two-tailed Student’s t-test, **P < 0.01,
****P < 0.0001. ns, not significant.
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Here, apart from confirming the beneficial effects of nicotinamide

riboside on social behavior defects in CD157 KO mice, but we also

tested its effect on body weight. No apparent effect on body weight

was observed during the 12 days of gavage administration.

Application of nicotinamide riboside had similar effect as saline in

some cases. Such results are important, as they suggest no or little risk

by nicotinamide on animal health and fewer side effects.

Nicotinamide riboside is a prospective NAD precursor with

high bioavailability (52). Nicotinamide riboside does not

demonstrate sirtuin (SIRT) inhibition as a backside effect, unlike

nicotinamide (53, 54). Moreover, unlike nicotinamide

mononucleotide, nicotinamide riboside can be freely transported

across the cell membrane. NAD is synthesized from tryptophan in

the de novo pathway, as well as from the vitamin precursors,

nicotinic acid, nicotinamide mononucleotide, and nicotinamide

riboside, in a salvage pathway (38, 39, 55). Thus, it is likely that

the exogenous application of nicotinamide riboside nay increase the

biosynthesis of NAD through the production of nicotinamide

mononucleotide in the first step (Figure 8) (40, 41, 56). In terms

of elevation of mouse liver NAD, it has been reported that

nicotinamide riboside is more efficiently orally bioavailable
Frontiers in Immunology 08
compared with nicotinamide mononucleotide and nicotinic acid,

validating nicotinamide riboside as the favored NAD precursor

(52). CD38 catalyzes the pathway of biosynthesis from

nicotinamide riboside. Therefore, in agreement to this, the

current results are reasonable; CD38 is critical in the recovery of

social behavior defects.

NAD concentration increases in the cortex or hypothalamus and

oxytocin release to the cerebrospinal fluid by nicotinamide riboside

were confirmed in CD157KO mice (17). Although not examined in

CD38KO supplemented with nicotinamide riboside, it is highly likely

that NAD increase may occur in CD38KO mice as well, because the

salvage synthesizing pathway is not disrupted in either KO mice

(Figure 8). However, in CD38KOmice, the CD38-dependent cADPR

system existed in ICR wild-type mice is greatly disrupted, which is

why beneficial effects were observed in CD157KO mice but not in

CD38KO mice. Existence of CD38 is critical for social behavior, as

previously demonstrated (9, 15, 21, 28, 57).

A decrease in volume of the amygdala, an important constituent

of the “social brain,” might be caused by a loss of CD157 in the

neural stem cells during the developmental stages (14, 21). The

behavioral impairments in CD157KO mice were rescued by
A B

DC

FIGURE 7

Social memory behavior in wild-type (ICR) and CD38KO mice and no or little effect of nicotinamide riboside (NR) treatment. Duration spent in the
chamber with the familiar mouse in a cage (Str1) or a novel mouse (Str3) by ICR (A, C) or CD38KO (B, D) mice. Mice were treated with gavage
administration of saline (PL) or NR for 12 days (C, D) or were without any treatment (A, B). Note that social memory behavior was observed in ICR
mice (A, C) but was not affected by NR treatment (C). Two-tailed Student’s t-test, *P < 0.05.
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oxytocin, likely because oxytocin directly targets the intracellular

signaling networks in the social brain downstream of CD157, which

might be independent of CD38; its downstream signaling networks

are indicated in Figure 8. Of course, to completely conclude needs to

wait until actual measuring of oxytocin release in CD38KO mice

treated with nicotinamide riboside. The above observation,

however, suggests that oxytocin can be used for the treatment of

social avoidance in psychological disorders. Furthermore, whether

the results obtained here with mice are applicable to human

behavioral recovery is of interest, especially since there have been

reports of the impact of nicotinamide riboside on the effectiveness

of oxytocin for treating impaired social interaction in cases of ASD.

Together, current results suggest nicotinamide riboside is possibly

an alternative substitute of oxytocin as a clinical usage (15, 18).

Nicotinamide riboside could be used as a general supplement,

potentially for people who have adverse reactions to nicotinic acid

or nicotinamide mononucleotide (52). In the brain, the tissue

activity of NAD synthesis by nicotinic acid is very low, because

nicotinic acid is not suitably recruited with supplement

administration (58). Nicotinamide riboside has already been

demonstrated as a favorable supplement or therapeutic agent to

elevate or maintain cellular NAD contents (39, 42–44). Recently, a

study demonstrated an increased consumption of NAD due to

increased CD38 in aged subjects and, thus, proposed that inhibition

of CD38 or increase in NAD might lead to the longer life span (45,
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46). Furthermore, with respect to CD38 inhibition, it would be nice

to analyze the area of the big sample of myeloma patients (ranging

over thousands) treated with anti-CD38 antibodies: At the moment

there are only two approved antibodies, one with total blocking

NADase activity (59–61) and a second with partial inhibition of

ADP-ribosyl cyclase activity of human CD38 (62, 63).

NAD is an abundant biomolecule and participates in multiple

vital processes such as ATP synthesis, redox homeostasis, and

signaling pathways (39). These effects can be explained by the

enhancement of energy metabolism and activation of SIRT, for

which NAD is a co-factor, and by the influence on mTOR pathway

regulation (64). NAD as a substrate in ADP-ribosyl cyclase reactions

could be a crucial component for oxytocin release induced by

nicotinamide riboside. This pathway of elevating of NAD contents

may enhance nicotinamide riboside-induced oxytocin release and,

thus, influence social behavior. Recent findings suggest that hyper-

activation of mTOR may play a crucial role in ASD (65, 66),

predicting mTOR as a potential target in ASD therapy. On the

other hand, SIRT utilizes NAD as a co-factor and can lead to mTOR

pathway inhibition (64). For this, there is evidence that cADP-ribose

acts as an endogenous inhibitor of mTOR (67).

In summary, we demonstrated that CD157 and/or CD38 are

essential for social behavior. This implies that CD157 and CD38

possess a critical function in the nervous system; they play a role in

neuromodulation via NAD metabolism, rather than entero-immune
FIGURE 8

A simplified scheme for possible NAD catabolism from nicotinamide riboside (NR) and metabolism from NAD to cyclic ADP-ribose (cADPR) in wild-
type (WT), CD38KO, and CD157KO mice. This is a reciprocal pathway from NR supplementation to NAD and nicotinamide (Nam) via nicotinamide
mononucleotide (NMN) catalyzed by CD157, CD73 nicotinamide riboside kinases (NRKs), CD38, and nicotinamide mononucleotide adenylyl
transferase (NMNATs); NAD is metabolized to Nam, ADP-ribose (ADPR), and cADPR. cADPR production is greatly reduced in CD38KO mice, but less
affected in CD157KO mice, which induces different levels of oxytocin release. Social behaviors consist of sociability, social preference, and social
memory. Different levels of oxytocin release elicit different levels of impairment of three subclasses of social behaviors. Note that impaired social
preference is recovered in CD157KO, but not in CD38KO mice. It is noted that NAD concentration increase in the brain after nicotinamide riboside
was confirmed in CD157KO mice (17), but not examined in CD38KO supplemented with nicotinamide riboside.
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regulation (68). Together with benefits in mouse brain tissues induced

by supplementation of nicotinamide riboside (17), the current results

indicate potential therapeutic applications of nicotinamide riboside in

ASD patients, as proposed by Cercillieux et al. (39).
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