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Vascular endothelial growth factor (VEGF) signals cell survival, cell migration,
osteogenesis, cell proliferation, angiogenesis, and vascular permeability by
binding to VEGF receptor 2 (VEGFR-2). Osteosarcoma is the most common
primary bone cancer, majorly affects young adults. Activation of VEGFR-2
signaling is a therapeutic target for osteosarcoma. The present study aimed to
evaluate the potency of stylopine in regulation of the VEGFR-2 signaling pathway
and its anti-tumour effect human MG-63 osteosarcoma cells. The in silico study
on benzylisoquinoline alkaloids was carried out for analyzing and shortlisting of
compounds using a virtual screening, Lipinski’s rule, bioavailability graphical
RADAR plot, pharmacokinetics, toxicity, and molecular docking studies. Among
the benzylisoquinoline alkaloids, stylopine was selected and subjected to in-vitro
studies against human MG-63 osteosarcoma cells. Various experiments such as
MTT assay, EtBr/AO staining, mitochondrial membrane potential assessment,
transwell migration assay, gene expression analysis by a quantitative real time
polymerase chain reaction (qRT-PCR) method, SDS-PAGE followed by
immunoblotting were performed to evaluate its anti-tumour effect as
compared to standard axitinib. The MTT assay indicates that stylopine inhibits
cell proliferation in MG-63 cells. Similarly, as confirmed by the EtBr/Ao staining
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method, the MMP assay indicates that stylopine induces mitochondrial membrane
damage and apoptosis as compared to axitinib. Moreover, stylopine inhibits the
VEGF-165 induced MG-63 cell migration by a trans-well migration assay. The
immunoblotting and qRT-PCR analysis showed that stylopine inhibits the VEGF-
165 induced VEGFR2 expression in MG-63 cells. It is concluded that stylopine has
potential to regulate VEGFR2 and can inhibit osteosarcoma cells to offer a newdrug
candidate for the treatment of bone cancer in future.
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GRAPHICAL ABSTRACT

1 Introduction

Osteosarcoma is a tumour which is malignant in nature and
affects all bones, especially the long bones in humans. It tends to
mature in the later part of adulthood, showing a bimodal
distribution (Moore and Luu, 2014). It is the most prevalent type
of bone tumour in children and adolescents (Eaton et al., 2021). It is
derived from a primitive osteoblast mesenchymal cell and is the
most common primary bone malignancy. The yearly incidence of
osteosarcoma in all ethnicities and genders is 4.0 (for the age groups
0–14 years) and 5.0 for the age groups 0–19 years for every million
individuals (Ottaviani and Jaffe, 2009). Osteosarcoma is primarily a
skeletal malignant tumour that primarily affects the long bones,
where sarcoma cells create immature bone or osteoid tissue.
Osteosarcoma is primarily classified clinically into two stages:
localised and metastatic. Localized osteosarcoma is a type of
cancer that only affects the bone and the tissues around it. Based
on the viability of physically removing the tumour, it can then be
divided into resectable and non-resectable stages. The metastatic
stage of osteosarcoma indicates that the disease has progressed from
the primary location to other organ sites, making treatment more
challenging (Sadykova et al., 2020). It can be classified into subtypes
based on the characteristics of the tumour and the major stromal

differentiation (osteoblastic, fibroblastic, chondroblastic, small-cell,
telangiectatic high-grade surface, and extraskeletal) (Sadykova et al.,
2020). Clinically, the disease’s development is marked primarily by
local discomfort and swelling, with occasional joint dysfunction
(Zhao et al., 2021).

To date, current treatment involves immune-based targeted
therapies, suppressing metastasis (Gill and Gorlick, 2021),
neoadjuvant and adjuvant chemotherapy (Lugano et al.,
2020), multi-agent chemotherapeutic approach with/without
an aggressive surgical resection of all disease sites (Chou
et al., 2008). However, these treatments are not without
adverse effects, and most often produce sub-maximal effects.
Hence, treatment of osteosarcoma remains to be explored, with
the ideal treatment having the highest efficacy while conferring
minimal side effects.

Angiogenesis is an essential hallmark of osteosarcoma by
impacting tumour growth and its metastasis potential.
Angiogenesis is often triggered by capillaries and is essential for
tumour growth, maintenance, and metastasis. Several cellular
pathways can cause blood vessel development in malignancies.
New capillaries formation can be initiated from parental vessels
(Belayneh et al., 2021). Vascular Endothelial Growth Factor (VEGF),
a significant factor in angiogenesis, mainly acts on the endothelial
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cells (Assi et al., 2021) (Figure 1). Endothelial cells are generally
quiescent, but pro-angiogenic substances such as VEGF can
encourage them to sprout and initiate angiogenesis (Belayneh
et al., 2021). VEGF signaling inhibition stops cell growth and
initiates apoptosis in osteosarcoma. Vascular endothelial growth
factor receptor 2 (VEGFR-2) and programmed death-ligand 1 (PD-
L1) are expressed in approximately 64.5% and 35.5% of
osteosarcoma cases respectively. They were also correlated with
the PD-L1 and VEGFR2 expression in osteosarcoma when both
posed a negative impact on the survival of osteosarcoma cells (Alper,
2020; Zheng et al., 2020; Assi et al., 2021). In this present study,
racemic form of Stylopine was subjected for various assays. Many
studies were reported using (−) Stylopine to elicit different
pharmacological effect. In the current study, KEGG database was
used for target selection. In VEGF (Vascular endothelial growth
factor) signalling pathway, vascular endothelial growth factor
receptor 2 (VEGFR2), a tyrosine kinase receptor, is stimulated by
the sensitisation of ligand VEGF and causes the downstream
signalling cascade mechanism intracellularly with the regulation
of the various pathways including calcium, MAPK, arachidonic acid
metabolism, focal adhesion turnover, actin reorganization, and
PI3K-Akt, thereby leads to proliferation, migration, permeability,
survival and angiogenesis of bone cells (Czarnecka et al., 2020).
Thus, VEGFR2 was selected based on the consideration of its
controlling of multiple effects on target cells. The racemic form
of Stylopine (R,S-Stylopine), a benzyliisoquinoline alkaloid, was
used for evaluating the anti-cancer effect on MG-63 cells in
cellular, gene and protein levels of expression (Zheng et al.,

2020). Hence, VEGFR-2 was chosen for investigation in the
present study due to its high influence.

Since benzylisoquinoline alkaloids (BIA) have well-established
anti-cancer activities and are available from various sources
(Menendez-Perdomo and Facchini, 2018; Singh et al., 2019;
Courdavault et al., 2020). Among that, stylopine has the potential
for further investigation to test against humanMG-63 osteosarcoma
cells using in-vitro methods.

2 Materials and methods

2.1 In silico analysis of benzylisoquinoline
(BIA) alkaloids

2.1.1 Virtual screening
The 193 BIAs and axitinib (standard) ligands from BIAdb and

PubChem databases respectively, were sketched and optimized
using ChemDraw and Chem3D 16.0 Professional software. The
selected human target protein (PDB ID: 4AG8) was the crystal
structure of VEGFR2 kinase domain in complex with axitinib (AG-
01373) (X-ray diffraction; resolution of 1.95 Å) (Yin et al., 2005). It
was retrieved from RCSB Protein Data Bank (PDB) database and
was optimized by deleting the hetero-atoms and water molecules.
PyRx Python Prescription 0.8 tool was used for the virtual screening
of test compounds and the standard against 4AG8. The Vina search
space centers were 20.192, 23.739, 29.743 while the dimensions were
52.353, 51.130, 56.288 Å (Perez et al., 2012; Kostine et al., 2016;

FIGURE 1
Metastatic dissemination of bone cancer through vascular endothelial growth factor (VEGF). VEGFR is a key angiogenic factor that promotes
endothelial cell proliferation and consequently enhances vascular endothelial permeability. In patients with osteosarcoma, serum VEGF levels can serve
as a predictive biomarker, with high VEGF expression correlatedwith a poor prognosis. Abbreviations: RANKL; Receptor activator of nuclear factor kappa-
B ligand; IGF-1, Insulin-like growth factor 1; TGF-beta, Transforming growth factor beta; PDGFRβ, Platelet derived growth factor receptor beta.
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Paydas et al., 2016). Shreevatsa et al., 2021 predicted that orientin
has better binding affinity towards NAD(P)H:quinone acceptor
oxidoreductase-1 (NQO1) for anticancer activity using PyRx
virtual screening tool (Shreevatsa et al., 2021). Vázquez-Jiménez
et al., 2022 conducted ligand-based virtual screening using PyRx tool
for predicting binding affinity of various benzimidazoles targeting as
triosephosphate isomerase inhibitor (Vázquez-Jiménez et al., 2022).

2.1.2 Lipinski’s analysis
The shortlisted benzylisoquinoline alkaloids were subjected to filters

like Lipinski’s rule analysis (Molinspiration cheminformatics web-tool).

2.1.3 ADMET analysis
ADMET (PreADMET web-tool) prediction and bioavailability

graphical RADAR plot (Swiss ADME web-tool) were used.

2.1.4 Molecular docking
An autoDock 4.2.6 software was employed for flexible docking

(Lamarckian Genetic Algorithm approach with 2.5 million energy
evaluations) and the binding interpretation was visualized. The
modelled residues were Leu840, Val848, Lys868, Glu885, Glu917,
Gly922, His1026, Leu1035, Asp1046 and Phe1047(Perez et al., 2012;
Kostine et al., 2016; Paydas et al., 2016).

2.2 In-vitro analysis of stylopine on MG-63
cells

2.2.1 Cell culture and treatment
MG-63 cells (Human Osteosarcoma cells) were purchased from

NCCS, Pune, India. The cells were cultured in Dulbecco’s Modified
Eagle Medium (DMEM), supplemented with 10% fetal bovine

serum (FBS), 100 μg/ml of Streptomycin and Penicillin each.
They were maintained at 37°C under 5% carbon-dioxide.

2.2.2 MTT assay
MTT assay is used routinely as a benchmark for the

development of novel anticancer drugs and it considered as a
gold standard assay. MTT assay is regarded as the first example
of a tetrazolium salt used in multi-well viability reductase-based
assays for adherent mammalian. MTT assay is among the easiest
cytotoxicity assays to perform. When using MTT salts, the formazan
formed is water-insoluble, precipitates into cells and should be
extracted with organic solvents. The end point of cell
proliferation was determined by metabolic activity through MTT.
This assay is well-characterized, simple to use, and referenced to this
day in the literature (Tolosa et al., 2015).

The MTT reagent can pass through the cell membrane as
well as the mitochondrial inner membrane of viable cells
presumably due to its positive charge as well as its lipophilic
structure and is reduced to formazan by metabolically active
cells. ntracellular reduction of MTT can be mediated by
oxidoreductase and dehydrogenase enzymes and electron
donors (mainly NAD(P)H) at different stages of the glycolytic
pathways to the mitochondrial electron transport chain. The
location of formazan formation and its intracellular
transportation has remained controversial. While the role of
mitochondria in MTT reduction has been a justification for the
common application of the assay to measure mitochondrial
activity, biochemical and microscopic studies have located
formazan in various intracellular organelles. Intracellular
formazan granules have been observed in the nucleus,
microsomes, endoplasmic reticulum, plasma membranes, and
cytosolic lipid droplets. These observations suggest that the
MTT assay is more than a mere representation of
mitochondrial activity (Ghasemi et al., 2021).

Bahuguna et al. (2017) reported that MTT assay for cytotoxicity
evaluation has many advantages in especially its effectiveness and
simplicity, which make it more suitable to assess the anti-cancer
potential of any test samples at preliminary levels (Bahuguna et al.,
2017). Zhang et al. (2021) demonstrated the cytotoxic effect of
dieckol in human osteosarcoma MG-63 cells using MTT assay
(Zhang et al., 2021). Liu et al. (2015) revealed that the
combination of ZD6474 and celecoxib had a stronger

TABLE 1 Gene primer sequences used for qRT-PCR analysis.

Target gene Primer sequence used

Human VEGFR2 3′-CTGGGAATCCCCCTCCACAG-5′

5′- GCGGATAGTGAGGTTCCGGT-3′

Human GAPDH 3′-TGACTTCAACAGCGACACCCA-5′

5′-CACCCTGTTGCTGTAGCCAAA-3′

FIGURE 2
(A) Two-dimensional (2D) structure of stylopine; (B) Bioavailability graphical RADAR plot of stylopine using SwissADME web-based tool.
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antiproliferative effect in human osteosarcoma cells (MG-63)
through MTT assay (Liu et al., 2015).

To evaluate the cytotoxicity, MG-63 cells (1×105 cells/ml)
were treated with 0.5, 1, 5, 10 and 50 µM of compounds (test and
standard) in triplicates. After 24 h of incubation, each well was
treated with 20 µl of MTT (5 mg/ml) and was incubated until
purple-colored precipitates were visible (2–4 h). A Thermo
Fisher Scientific microplate reader was used to measure the
absorbance at 570 nm for the IC50 values, which were used
for further assays (Dahlin et al., 1970; Renema et al., 2016;
Rosario et al., 2017).

2.2.3 EtBr/AO staining
To assess the mechanism of cell death, approximately 5 × 105

cells/ml were treated with both compounds (test and standard).
After incubation, 50 µl of acridine orange (1 mg/ml) and ethidium
bromide were added. The solution was evaluated within an hour
using a fluorescence filter (Cornélio et al., 2011).

2.2.4 JC-10 staining
Approximately 5,000–20,000 cells/well were treated with

the two compounds (test and standard). The cells were
incubated with 100 μl/well JC-10 dye loading solution and an

FIGURE 3
Binding interactions involved in the docked complex of (A) stylopine (test compound) (B) axitinib (standard compound) with human VEGFR2 kinase
domain (PDB ID: 4AG8) using an AutoDock 4.2.6 software.

FIGURE 4
MTT assay findings using MG-63 cells. (A) Optical density (OD) value of stylopine-treated cells; (B) the percentage cell viability of stylopine-treated
cells; (C) OD value of standard axitinib-treated cells (D) the percentage cell viability of axitinib-treated cells.
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assay buffer B. The solution was kept protected from any light.
Fluorescence was measured at 490/525 nm and 540/590 nm
(Ashraf et al., 2020).

2.2.5 Transwell migration assay
The effect of the compounds on cell invasion was assessed

using Transwell chambers (8 µm pore size, Corning,

United States of America), from the lower chamber. The cells
were placed on the microporous membrane. After incubation,
the non-invasive cells on the upper surface were removed, while
the invasive cells on the lower chamber were fixed (75% ethanol)
and stained (0.5% crystal violet). The results were presented as
images of the invading cells (Dahlin et al., 1970; Renema et al.,
2016; Rosario et al., 2017).

FIGURE 5
Bio-imaging of control and different concentrations of stylopine-treated MG-63 cells by MTT assay (Magnification - ×10).

FIGURE 6
Bio-imaging of control and different concentrations of axitinib-treated MG-63 cells as confirmed by the MTT assay (Magnification - ×10).
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2.2.6 qRT-PCR method
Total RNA isolation was performed through TRIZOL method

according to the manufacturer’s instruction. The samples were then
centrifuged via a diethylpyrocarbonate DEPC-treated centrifuge
tube at 5,000 rpm for 10 min to obtain the cell pellet. To the cell
pellet (1 × 107 cells), 700 µl of TRIZOL was added to allow cell lysis.
The lysate was collected into 1.5 ml tubes and was vigorously
pipetted out. Then, 300 µl of chloroform was added. The solution
was vigorously mixed for 5 min at room temperature.

The aqueous layer was separated by centrifugation at
12,000 rpm for 20 min at 4°C. The aqueous layer was then
collected into a fresh 1.5 ml tube. RNA was later precipitated by
the addition of isopropanol (700 µl). The precipitated RNA was
pelleted by centrifugation at 12,000 rpm for 20 min at 4°C. The pellet
was then washed with 70% ethanol. Finally, the air-dried RNA pellet
was dissolved into double distilled autoclaved water (30 µl) and
stored at −80°C until subsequent use. The quantity and quality of the
isolated RNA was estimated by Labman UV Vis Spectrometer on a
1.5% agarose gel.

DNase was added, in case of DNA contamination with the RNA
preparation. The reaction volume was set to 20 µl with 1U of DNase.
The solution was incubated at 37°C for 30–45 min. Subsequently,
20 µM of 2 µl ethylene glycol tetra-acetic acid (EGTA) was added.
The solution was incubated at 66 °C for 10 min. Then, sodium

acetate (1/10 V) and absolute ethanol (2V) were added, and the
solution was incubated at −20°C for 60 min. The step was followed
by a centrifugation step at 12,000 rpm for 20 min at 4°C, where the
supernatant was discarded. Finally, the pellet was washed with
500 µl of 75% ethanol. The air-dried pellets were dissolved in
20 µl of double autoclaved Milli-Q grade water and was stored
until next use.

Total RNA was converted to cDNA by using a reaction
mixture containing a reverse transcriptase (MMLV). The
cDNA synthesis was conducted at 25°C (10 min) followed by
37°C (120 min). Denaturation of cDNA and RNA hybrid and
reverse transcriptase inactivation were conducted at 85°C for
2 min. The yielded cDNA was then used as a template for
detecting metastasis. Then, a qRT-PCR was conducted by
using a Power Syber Green kit (Applied Biosystems, CA,
United States) in ABI StepOne Plus (Applied Biosystems, CA,
United States). The expression of the selected genes (Primer
sequence) was assessed by qRT-PCR using the relative
quantification (2̂-ΔΔCT) method (Table 1). Expression was
normalized using the endogenous control (GAPDH) while
control cells were used as the calibrator.

An initial melting temperature of 94°C for 15 min, followed by
40 cycles of 95°C for 10 s was used. The annealing temperature was
set at 52°C for 15 s while extension was set for 72°C (20 s). The real

FIGURE 8
Indexes of early, late apoptosis and necrosis of control and treated MG-63 cells by EtBr/AO staining method; ****p < 0.0001, statistically significant
data by a two-way ANOVA.

FIGURE 7
Fluorescence-based cell death assessment of human osteosarcoma MG-63 cyto-imaging by EtBr/AO staining. Green, red, yellowish green,
yellowish orange, and orange red-colored cells indicate live, dead, early apoptotic, late apoptotic, and necrotic cells respectively.

Frontiers in Pharmacology frontiersin.org07

Velayutham et al. 10.3389/fphar.2023.1150270

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1150270


time data was captured at the end of each extension stage. The step
was followed by the melting curve analysis as per the default
temperature profile of the Thermal cycler (Dahlin et al., 1970;
Renema et al., 2016; Rosario et al., 2017).

2.2.7 Western blotting
The cells were washed twice with an ice-cold phosphate buffer

saline (PBS) by centrifugation at 2000 rpm for 5 min at 4°C. Briefly,

PBS was aspirated and then ice-cold radioimmunoprecipitation
assay buffer (RIPA) buffer was added (1 × 106 cells/100 µl). The
solution was subjected to a constant agitation for 30 min at 4°C.
Repeated pipetting was conducted to shear the DNA to reduce
sample viscosity. The solution was spinned at 10,000 rpm for 10 min
at 4°C, before being pre-cooled, and centrifuged. The supernatant
was collected and was stored at −20°C until further use. The protein
concentration was calculated by using a Bradford assay. Protein

FIGURE 9
Fluorescence based bio-imaging assessment of disruption in the mitochondrial membrane of MG-63 cells by JC-10 staining method. Green, red,
merged green and red filtered fluorescence images are designated as A, B and C, respectively, whereas D represents the bright field image.

FIGURE 10
Representation ofmigratedMG-63 cells using an invertedmicroscope based on transwell migration assay. (A) negative control, (B) cells treatedwith
VEGF-165 only, (C) cells treated with VEGF-165 with stylopine, and (D) cells treated with axitinib.
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sample (50–100 µg) was taken and SDS sample loading dye was
added (1:2). The sample was boiled further at 95°C for 5 min. Equal
amounts of protein was loaded into the wells. The gel was ran at 50 V
for 5 min. Finally, the voltage was increased to 100 V and the run
was stopped after an hour.

The gel was placed in a 1X transfer buffer for 10–15 min. The
transfer sandwich was assembled to ensure that there were no air
bubbles trapped in the sandwich. The blot was on the cathode while
the gel was on the anode. The cassette was placed in the transfer tank

that was set in an ice block in the tank before being further
transferred at 100 V for 120 min. The blot was rinsed in water
and was stained with ponceau-S solution and the transfer quality
was checked. The ponceau-S stain was rinsed with three washes of
PBS with tween (PBST). The solution was blocked with 5% skim
milk in PBST at room temperature for 1 h. Subsequently, the
solution was subjected to an overnight incubation in a primary
antibody solution against the target protein at 4°C. The blot was
rinsed further 3–5 times for 5 min with PBST. Finally, the solution

FIGURE 11
Gene expression plot for the target VEGFR2 representing a fold variation (log 10 relative quantification) vs sample on MG-63 cells. The values of fold
variations are 0 (control), 1.09 (induction), 0.4 (standard), and −0.07 (test).

FIGURE 12
Target protein expression on MG-63 cells using SDS-PAGE followed by immune-blotting and DAB staining.
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was incubated in a horseradish peroxidase (HRP)-conjugated
secondary antibody solution for 1 h at room temperature. The
blot was rinsed (3–5 times) with PBST.

Subsequently, 3, 3′-diaminobenzidine (DAB) and hydrogen
peroxide solution (1:1) was dissolved in PBS. The mixture was
slowly added to the blot. The stained protein band expression was
captured as an image using a digital camera (Dahlin et al., 1970;
Renema et al., 2016; Rosario et al., 2017).

3 Results and discussion

3.1 In-silico analysis of benzylisoquinoline
(BIA) alkaloids

3.1.1 Virtual screening
Virtual screening of benzylisoquinoline alkaloids against human

VEGRF2 kinase domain (PDB ID: 4AG8) using a PyRx tool yielded the
binding affinity of all the 193 compounds and that of the standard
axitinib. The binding energy (kcal/mol) of 1-methoxyberberium,
acetylcorynoline, actinodaphine, adiantifoline, aknadicine, alpinine,
alamarine, alangicine, alangimarine, allocryptopine, alpha-
erythroidine, amurensine, ancistrocladine, angoline, ankorine,
anolobine, anonaine, armepavine, asimilobine-2-O-glucoside,
aromoline, atheroline, atropine, beberine, berbamine, backebergine,
berberal, berberine, berberine chloride, beta-erythroidine, bicuculline,
bianfugedine, bisnordihydrotoxiferine, boldine, bracteoline,
bulbocapnine, caffeine, canadine, capaurine, caryachine, C-curarine,
cephaelin, cephalotaxine, cepharanthine, chelirubine, coclaurine,
codeine, colchicine, columbamine, coptisine, corpaine, corydaline,
crebanine, cularicine, cularidine, cularimine, cularine, cycleanine,
daphnandrine, daphnoline, dauricine, daurisoline, dehydrocorydalin,
dehyrocrebanine, dehydrostephanine, demecolcine, dicentrine,
dihydrosanguinarine, DL-laudanine, drotaverin, emetamine, emetine,
erysonine, erysotrine, erythratidine, eschscholtzidine, fagaridine,
fagaronine, fetidine, fugapavine, fumaricine, gigantine, glaucine,

glaziovine, gyrocarpine, hasubanonine, heliamine, hernandezine,
higenamine, homochelidonine, homotrilobin, hydrastine, ipecoside,
isococculidine, isocorydine, isocorypalmine, isoteolin, isothebaine,
isotrilobine-N-2-oxide, jatrorrhizine, laudanosine, laurifine,
laurifoline chloride, laurolitsine, laurotetanine, liriodenine,
longifolonine, lophocerine, lophophorine, lysicamine, macarpine,
macoline, magnoflorine, menisperine, metocurine, morphine,
nandazurine, nantenine, narcein, narcotoline, neferine, neopine,
nitidine, n-methylnandigerine, nordicentrine, norlaureline,
norstephalagine, nuciferine, obaberine, oblongine, ochotensine,
ocoteine, oliveroline, O-methylbulbocapnine, opium, oxoaporphine,
oxoglaucine, oxophoebine, oxopurpureine, oxyacanthine, palmatine,
papaveraldine, papaverine, perfumine, pellotine, pessoine,
phaeanthrine, phellodendrine, pilocercine, polycarpine, predicentrine,
pronuciferine, protopine, psychotrine, pukateine, puterine, reticuline,
rhoeadine (R)-N-methylcoclaurine, rodiasine, roemerine, rugosinone,
salsoline, salutaridine, sanguinarine, scopolamine, sinomenine,
spinosine, (s)-scoulerine, stepharine, stepholidine, stylopine,
tetrahydrocolumbamine, tetrahydropalmatine, tetrandrine,
thalcimine, thalicarpine, thalicberine, thalicminine, thalicsimidine,
thalidasine, thalifaberidine, thaliporphine, thalmidine, thalmine,
thebaine, tiliacorine, toxiferine, trilobine, tubocurarine, ukrain,
xylopine, xylopinine, zijinlongine, and standard axitinib
were −7.7, −8.2, −8.8, −8.7, −7.5, −8.2, −8.9, −8.6, −8.5, −8.1, −7, −7.5,
−7.4, −7.7, −7.5, −7.9, −7.9, −7, −8, −8.5, −8.3, −7.5, −9.4, −8.4, −6.3,
−8.7, −8.3, −7.8, −6.8, −9, −8.5, −9.9, −7.9, −7.9, −8.1, −5.6, −9.5,
−7.9, −7.5, −9.6, −8.2, −7.7, −9.9, −9.7, −7.7, −7.7, −7.1, −8, −9.5, −8.6,
−8.2, −8.3, −8.6, −8.3, −8, −8.2, −8.5, −9, −9, −9.8, −9.2, −7.6, −8.1, −7.9,
−6.8, −8.8, −9.4, −7.6, −8.6, −8.4, −8.2, −7.1, −7.3, −7.3, −7.5, −9, −8.7,
−9.4, −8, −7.9, −6.4, −7.8, −7.8, −8.8, −6.9, −6.5, −8.7, −9.4, −9, −6.9,
−8.1, −7.3, −9.2, −7.9, −8.1, −7.9, −7.9, −8.8, −8.8, −7.8, −9.2, −7.8,
−8.2, −8.3, −8.3, −7.9, −6.5, −7.1, −7.9, −9.1, −7.6, −7.6, −7, −8.7, −7.6,
−8.7, −8.8, −8.3, −7.6, −7.8, −7.9, −9.1, −7.7, −8, −7.9, −8.4, −7.9,
−7.6, −7.4, −7.7, −8.8, −8.2, −8.8, −7.2, −8.3, −8.3, −7.7, −8.3, −9.3, −8,
−7.5, −7.3, −8, −6.3, −9.4, −8.7, −8.5, −6.5, −8.2, −8.2, −7.9, −8, −8.9,
−7.9, −7.9, −8.8, −8.1, −7.1, −8.8, −7.9, −7.5, −6.5, −8.8, −9.5, −7.3,

FIGURE 13
Future perspective of thermoresponsive hydrogel embedded liposomal stylopine for the management of osteosarcoma. Abbreviations: VEGFR2;
Vascular endothelial growth factor receptor two.

Frontiers in Pharmacology frontiersin.org10

Velayutham et al. 10.3389/fphar.2023.1150270

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1150270


−7.6, −9.4, −8.1, −7.5, −7.7, −10.9, −7.8, −8, −9.4, −8, −8.6, −8.5, −8.2,
−8.3, −8.5, −8.5, −8.8, −8, −8.4, −8.9, −9.6, −9.6, −9, −9.3, −8.3,
−7.9, −7.5, −7.7, and −9.7 kcal/mol, respectively.

From the 193 compounds, three alkaloidal compounds 44/
Chelirubine (−9.7 kcal/mol), 60/Dauricine (−9.8 kcal/mol), and
171/stylopine (−10.9 kcal/mol) were shortlisted for comparison
with the binding affinity of standard axitinib (−9.7 kcal/mol).

3.1.2 Lipinski’s analysis of chelirubine, dauricine,
and stylopine

Lipinski’s rule analysis of the selected three compounds through
Molinspiration tool yielded miLogP reading of 0.78, TPSA of 50.05,
natoms of 27, molecular weight (MW) of 362.36, nON of 6, nOHNH
of 0, nviolations of 0, nrotb of 1, and volume of 305.06 for compound
chelirubine; miLogP of 5.98, topological polar surface area (TPSA)
of 72.87, natoms of 46, MW of 624.78, nON of 8, nOHNH of 1,
nviolations of 2, nrotb of 10, and volume of 588.93 for compound
dauricine; miLogP of 3.04, TPSA of 40.17, natoms of 24, MW of
323.35, nON of 5, nOHNH of 0, nviolations of 0, nrotb of 0, and
volume of 278.45 for stylopine.

3.1.3 Absorption, distribution, metabolism,
excretion (ADMET) analysis of chelirubine,
dauricine, and stylopine

PreADMET tool was used to predict the toxicity and
pharmacokinetic properties of the three selected compounds. The
results are indicated within brackets in the order of chelirubine,
dauricine, stylopine next to each parameter evaluated. Under
toxicity prediction, parameters like algae at (0.0832,285,
0.00148,914, 0.0391,758), Ames_test (mutagen, non-mutagen,
mutagen), Carcino_Mouse (negative, negative, negative),
Carcino_Rat (positive, positive, negative), daphnia_at (0.108,198,
0.00377,309, 0.0954,573), hERG_inibition (medium_risk, medium_
risk, low_risk), medaka_at (0.0259,675, 4.68229e-005, 0.0148,898),
minnow_at (0.0523,462, 0.000175,359, 0.0206,951), TA100_10RLI
(negative, negative, negative), TA100_NA (negative, negative,
negative), TA1535_10RLI (negative, negative, negative), and
TA1535_NA (negative, negative, negative) were evaluated.

Under pharmacokinetic prediction, parameters like BBB
(0.55219, 0.192,428, 0.0326,085), Buffer_solubility_mg/L
(0.230,166, 0.197,671, 2.16526), Caco2 (55.7346, 50.6098,
54.3514), CYP_2C19_inhibition (Inhibitor, Non, Non), CYP_
2C9_inhibition (Inhibitor, Inhibitor, Inhibitor), CYP_2D6_
inhibition (Inhibitor, Non, Inhibitor), CYP_2D6_substrate
(Substrate, Substrate, Substrate), CYP_3A4_inhibition (Inhibitor,
Inhibitor, Inhibitor), CYP_3A4_substrate (Substrate, Substrate,
Substrate), HIA (97.705,735, 97.508,797, 97.787,081), MDCK
(17.182, 0.0599,765, 53.1927), Pgp_inhibition (Inhibitor,
Inhibitor, Non), Plasma_Protein_Binding (63.964,295, 75.847,807,
79.604,608), Pure_water_solubility_mg_L (0.0234,203, 1.99174,
10.2783), Skin_Permeability (−4.57469, −2.72815, −4.45675),
SKlogD_value (0.897,530, 2.673,310, 1.557,810), SKlogP_value
(0.897,530, 5.802,230, 3.122,270), SKlogS_buffer
(−6.197,100, −6.501,180, −5.174,160), and SKlogS_pure
(−7.189,550, −5.497,890, −4.497,750) were evaluated.

Among the three tested compounds, stylopine was predicted as a
potential compound based on various parameters such as the
binding affinity, drug likeness analysis, pharmacokinetics, toxicity

and binding interactions, that have been generated for a set of
benzylisoquinoline alkaloids using various softwares/tool such as
PyRx, Molinspiration Cheminformatics, Swiss ADME, and
PreADMET. The selected test compound stylopine was subjected
to Swiss ADME web tool to generate its bioavailability graphical
RADAR plot (Figure 2). Hence, stylopine was chosen for further in
silico evaluation with human VEGFR2 kinase.

3.1.4 Molecular docking of stylopine with human
VEGFR2 kinase

Molecular docking results for the docked complex of the selected
test compound stylopine and standard axitinib with human
VEGFR2 kinase domain were evaluated using parameters like the
binding_energy (−10.1, −9.28 kcal/mol), ligand_efficiency
(−0.42, −0.33), inhib_constant (39.52 nM, 156.94 nM), intermol_
energy (−10.10, −10.77), vdw_hb_desolv_energy (−4.68, −3.42),
electrostatic_energy (0.20, −0.05), moving_ligand_fixed_receptor
(−5.62, −7.30), moving_ligand_moving_receptor (−4.48, −3.47),
total_internal (−18.32, −18.07), ligand_internal (0.00, 0.00),
torsional_energy (0.00, 1.49), unbound_energy (−18.32, −18.07),
cIRMS (0.00, 0.00), refRMS (51.14, 45.96), rseed1 (None, None),
and rseed2 (None, None) respectively using AutoDock
4.2.6 software (Figure 3).

The findings indicated that stylopine (−10.1 kcal/mol) has a
better binding affinity towards VEGFR2 kinase domain (PDB ID:
4AG8) when compared to the standard compound axitinib
(−9.28 kcal/mol). Hence, it was hypothesized that stylopine
(39.52 nM) is potent against VEGF receptor two when compared
to the standard axitinib (156.94 nM). Interestingly, two and one π-
cation interactions formed in the docked complexes stylopine-
Lysine 868 residue of VEGFR2 and Axitinib-Lysine 868 residue
of VEGFR2 respectively. There was no hydrogen bond formation.
There were also no π-π stacking interactions formed in the docked
complexes. Thus, the in silico molecular docking study predicts that
test ligand stylopine may be a potential compound as compared to
the standard axitinib against the human VEGFR2 tyrosine domain
(Rahman et al., 2021; Chabukswar et al., 2022). Hence, stylopine was
further investigated on MG-63 cells using in-vitro methods.

3.2 In-vitro analysis of stylopine on MG-63
cells

In-vitro cell line studies were performed to evaluate the effect of
stylopine on human Osteosarcoma MG-63 cells when compared
with the standard axitinib. MTT assay results indicated that the IC50

value of the test compound stylopine and standard axitinib were
0.987 µM and 2.107 µM respectively (Figures 4–6).

Ethidium bromide and acridine orange staining procedure
confirmed that treatment with 0.9871 µM stylopine induced the
MG63 cells to undergo apoptosis, while a higher concentration
(2.107 µM) was required for the standard axitinib (Figures 7, 8).

The findings from the JC-10 dye study showed that treatment
with 0.9871 µM stylopine disrupted the mitochondria when
compared to the 2.107 µM of standard axitinib-treated MG-63
cells (Figure 9).

Furthermore, the microscopic observations showed that
stylopine decreased the number of migrated MG-63 cells on both

Frontiers in Pharmacology frontiersin.org11

Velayutham et al. 10.3389/fphar.2023.1150270

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1150270


test and standard wells as compared to the positive and negative
controls. Based on the transwell invasion assay, we conclude that
stylopine can potentially reduce chemotaxis of human MG-63 cells
(Figure 10).

Gene expression analysis of VEGFR2 performed via a
quantitative real time polymerase chain reaction (qRT-PCR)
technique (double delta threshold cycle method) showed that
stylopine induced the downregulation of VEGFR2 gene
expression, whereas treatment with standard axitinib reduced the
gene expression on treated human osteosarcoma MG-63 cells.
Treatment with VEGF-165 led to the upregulation of
VEGFR2 gene when compared with control (Figure 11).

The MG 63 cells were activated with VEGF-165 ligand followed
by treatment with the IC50 concentrations of stylopine and axitinib.
Their responses to VEGFR2 (Y1214) were evaluated using a sodium
dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE),
followed by an immune-blotting technique. The results showed
that VEGF-165 induced phosphorylation of VEGFR2 protein and
the expression of total VEGFR2 protein in MG-63 cells. Treatment
with stylopine (0.9871 µM) significantly 1) inhibited the
phosphorylation of VEGFR2 and 2) reduced the expression of
total VEGFR2 as compared to the standard axitinib drug
(2.107 µM). Taken together, these results showed that stylopine
can inhibit VEGF-165 induced VEGFR2 expression in MG-63
cells (Figure 12). Hence, stylopine causes an inactivation of
downstream signaling molecules in VEGFR2 signaling pathway
which contributes to the pathogenesis of osteosarcoma (Wang
et al., 2019; Kumar et al., 2021).

Wang et al. (2019) revealed that anlotinib acts as
VEGFR2 antagonist on MG-63 cells thereby inhibits the growth
of osteosarcoma, angiogenesis and metastasis (Wang et al., 2019).
Lee et al. (2018) betrayed that suppression of bone tumor growth by
cabozantinib collectively inhibited VEGFR2 and c-Met in
osteoblasts with the association of reduced tumor-induced
osteolysis (Lee et al., 2018). Liu et al. (2017) reported that
apatinib as a highly selective VEGFR2 antagonist which, has a
promising antitumoral effect by the growth inhibition of
osteosarcoma cells in vitro and in vivo through apoptosis, cell
cycle arrest, and autophagy (Liu et al., 2017). Zhang et al. (2021)
evaluated that the effective inhibition of dieckol in the PI3K/AKT/
mTOR signaling on the MG-63 cells (Zhang et al., 2021).

4 Conclusion

In the present study, computer-aided drug design approach
involved in a successful screening process of selected chemical
library containing 193 benzylisoquinoline alkaloids. The
phytoalkaloid stylopine was predicted as a better compound with
the consideration of parameters such as binding affinity, drug
likeness analysis, pharmacokinetics, toxicity and binding
interactions, which were generated for set of benzylisoquinoline
alkaloids using various softwares/tool such as PyRx, Molinspiration
Cheminformatics, Swiss ADME, PreADMET and AutoDock 4.2.6.
Further, the in vitro characterization of stylopine in comparison
with standard Axitinib were carried out in MG-63 cells. The MTT
results showed that the stylopine could inhibit the proliferation of
MG-63 cells than the standard Axitinib. Further, the effect of test

compound stylopine on the expression of VEGFR2 gene and protein
expression was evaluated by RT-PCR and Immunoblotting analysis
in MG-63 cells. The results showed that the activation with VEGF-
165 ligand induced the expression of VEGFR2 gene and induced the
phosphorylation of VEGFR2 protein, Whereas, stylopine inhibited
VEGF-165 ligand induced the expression of VEGFR2 protein and
gene expression. The cellular mechanism of stylopine was studied
using MMP assay, ETBr/AO staining and transwell migration assay
in comparison with standard Axitinib. The results showed that the
stylopine caused the mitochondial membrane damage (MMP assay)
and leads to apoptosis (EtBr/AO) and inhibited the cell migration
(Transwell migration) in MG-63 cells. In summary, our findings
indicated that stylopine has an anticancer activity by inhibiting the
expression of VEGFR2 gene and inducing apoptosis in MG-63 cells.
In future, the preclinical and clinical studies of stylopine need to be
conducted to develop stylopine as a potential drug for bone cancer
treatment.

5 Future prospects

Future research on optimising stylopine delivery can also be
done to ensure optimal concentrations at the biological target site
and decrease the frequency of high drug dosages, which could
elevate the risk of systemic toxicity. The use of nanocarriers to load
bioactive compounds has garnered the interest of researchers,
particularly the usage of certain polymers to accomplish smart
delivery, such as pH-sensitive (Fan et al., 2019; Andrade et al.,
2021), thermoresponsive (Carreño et al., 2021; Ma and Yan, 2021;
Rafael et al., 2021), and many more. The deposition of
thermoresponsive hydrogels is thought to be one of the
determining factors in enhancing the delivery and efficacy of
any therapeutic agents, as earlier studies of such formulations
have shown them to be effective against cancer. As a result, we
proposed using injectable thermoresponsive hydrogels that can be
deployed in liquid form and then changed to form a depot for the
controlled release of stylopine to target osteosarcomas. Liposomes
in the formulation, on the other hand, may increase the quantity of
stylopine delivered directly into cancer cells by receptor-mediated
endocytosis (Alshehri et al., 2018; Xiang et al., 2018), interfering
with VEGFR2 protein expression as well as triggered apoptosis.
Despite our expectation that the formulation will yield positive
outcomes, extensive research into the behaviour of such
formulations is required before progressing to clinical trials
(Figure 13).
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