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By virtue of the rapid development of ocean observation technologies, tens of

petabytes of data archives have been recorded, among which, the largest portion

are those derived from the orbital satellites, embodying the character of ocean

surface. Nevertheless, the insufficiency of information below the subsurface

restricts the utilization of these data and the understanding of ocean dynamics.

To circumvent these difficulties, we present the spatially three-dimensional

reconstruction of ocean hydrographic profiles at depth based on the satellites

and in-situ measurement data. In this manuscript, long short-term memory

network (LSTM) and Gaussian process regression (GPR) methods are invoked to

predict the temperature and salinity profiles in the northwest Pacific Ocean, and

to improve computational and storage efficiency, the proper orthogonal

decomposition (POD) method is subtly incorporated into these two models.

LSTM and GPR show satisfactory results, with the root mean square error (RMSE)

of temperature is less than 1.45, and the RMSE of salinity is less than 0.19. The

incorporation of the POD method substantially accelerates efficiency,

particularly in the LSTM model, which improves 7.5-fold without significant

accuracy loss. The sensitivity of different sea surface parameters on the

reconstructed profiles reveals that sea surface height anomaly and latitude

significantly influence the reconstruction of temperature anomaly (TA) and

salinity anomaly (SA) profiles. Besides, sea surface salinity and sea surface

temperature anomalies can improve the model's estimation ability for the

upper TAs and SAs, respectively. The contribution of monthly climatology to

temperature and salinity profile estimation is also explored in this paper. It is

shown that adding monthly mean climatology to the input of the model can

achieve more accurate estimates.

KEYWORDS

Argo, satellite observation, data reconstruction, reduced-order model, long short-term
memory network, Gaussian process regression
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1 Introduction

Ocean is an integral part of the global climate system and plays a

crucial role in regulating climate change and balancing the Earth’s

energy (Su et al., 2018). Knowledge of the vertical distribution of

ocean temperature and salinity is significant for exploring the

complex dynamical processes and ecosystems within the ocean

(Rao and Sivakumar, 2003; Wilson and Coles, 2005; de Boyer

Montégut et al., 2007; Helber et al., 2010; Meehl et al., 2011; Qin

et al., 2015). However, the currently accumulated vertical temperature

and salinity data is far from sufficient, and the problem of sparseness

and discontinuity of the observed data due to the limitation of the

number of observation points has severely limited the study of ocean

processes and mechanisms (Klemas and Yan, 2014; Liu, 2016).

Although the rapid development of satellite remote sensing

technology has made it possible to provide more and more high-

resolution, multi-scale and long-term continuous observation data,

these data are limited to the ocean’s surface. They cannot provide

spatial and temporal continuous information on the subsurface

structure of the ocean (Ali et al., 2004; Wu et al., 2012; Bao et al.,

2018). One fact is that the sea surface state is closely related to the

subsurface features. According to the laws of ocean dynamics, many

deep dynamic processes still generate signals at the sea surface, which

satellite sensors can capture (Fiedler, 1988). Therefore, various

underwater temperature and salinity reconstruction methods

combining in situ observation data and satellite remote sensing

data have been developed over the years.

One typical approach to reconstructing the internal structure

from sea surface information is based on dynamics. Assimilation of

observational data in numerical simulations (Ghil and Malanotte-

Rizzoli, 1991; Troccoli and Haines, 1999; Vossepoel and Behringer,

2000; Carrassi et al., 2018; Moore et al., 2019) is a typical dynamics

approach to inverse ocean subsurface information. However, this

often requires many computing resources, and uncertainties in the

initial and forced fields make the estimation accuracy impossible to

guarantee (Robinson and Lermusiaux, 2000). Using a simplified

dynamical framework can improve computational efficiency to

some extent. Held et al. (Isern-Fontanet et al., 2006) proposes a

method based on surface quasi-geostrophic (SQG) (Held et al.,

1995) that derives subsurface density from sea surface density, sea

surface height, and historical buoyancy frequency profiles. Further,

Lapeyre and Klein (Lapeyre and Klein, 2006) developed an effective

SQG (eSQG), assuming that the ocean interior’s potential vorticity

(PV) is correlated with the surface density. eSQG was shown to be

effective in improving subsurface flow field reconstructions (Isern-

Fontanet et al., 2008; Qiu et al., 2016). Based on SQG, Wang et al.

(Liu et al., 2017) proposed the internal + SQG (isQG) method,

which superimposes the SQG mode with the positive and first

oblique pressure modes to achieve subsurface density

reconstruction by solving the surface quasi-geostrophic equation

and the internal equation. The method’s effectiveness has been

verified in different studies (Liu et al., 2014; Liu et al., 2017).

However, due to the simplified model, some complex dynamical

processes in the ocean are neglected (Liu et al., 2019; Meng and Yan,

2022), and the methods based on SQG can directly invert the

density field, which will introduce additional errors when
Frontiers in Marine Science 02
reconstructing the temperature and salinity fields (Chen

et al., 2020).

Statistical methods are also widely used to reconstruct the three-

dimensional structural field of the ocean. In earlier studies, linear

regression (Willis et al., 2003; Nardelli and Santoleri, 2004;

Guinehut et al., 2012) and least squares regression (Carnes et al.,

1990; Carnes et al., 1994) were used to estimate deep ocean

information. Besides, methods based on empirical orthogonal

functions (EOF) (Maes et al., 2000; Meinen and Watts, 2000;

Buongiorno Nardelli and Santoleri, 2005; Yan et al., 2020) are

widely used to reconstruct the subsurface vertical structure. These

methods use EOF to decompose the ocean vertical state vector,

retain a few major modes, and then use least-squares regression or

variational method (Fujii and Kamachi, 2003a; Fujii and Kamachi,

2003b) to solve for the objective function controlled by the sea

surface information and the major modes. With the development of

artificial intelligence techniques and machine learning methods, an

increasing number of studies are focusing on the potential of

machine learning methods in three-dimensional temperature and

salinity field reconstruction. These methods can effectively mine the

intrinsic patterns between data and estimate the structure of

physical quantities in the ocean interior from sea surface

parameters. Currently, self-organization mapping (Wu et al.,

2012; Chen et al., 2018), support vector machine regression (Su

et al., 2015; Li et al., 2017), random forest (Su et al., 2018), and

neural network-based methods (Ali et al., 2004; Ballabrera-Poy

et al., 2009; Bao et al., 2018; Lu et al., 2019; Buongiorno Nardelli,

2020; Su et al., 2020; Su et al., 2021) have been applied to estimate

three-dimensional thermohaline fields. The results show that the

machine learning methods can achieve better reconstruction

based on a large amount of observation data and have

strong generalizability.

In this context, this paper applies several different regression

methods to estimate the subsurface temperature anomaly (TA) and

subsurface salinity anomaly (SA). The first method used is Gaussian

process regression (GPR) (Williams and Rasmussen, 1995;

Rasmussen and Williams, 2005), an effective tool widely used in

complex real-world problems (Stein, 1999; Forrester et al., 2008;

Nguyen and Peraire, 2016). GPR is flexible enough to obtain

estimates of unknown quantities using simple matrix operations

and often achieves reliable accuracy on small data sets. More

critically, it can effectively measure the uncertainty in the

prediction because it gives the distribution of the predicted values

(Rasmussen and Williams, 2005). The second one is the long short-

term memory network (LSTM) (Hochreiter and Schmidhuber,

1997), a deep learning algorithm that can learn long-time

dependencies (Sak et al., 2014; Wan et al., 2018; Yeo and Melnyk,

2019). However, training LSTM is often computationally expensive

(Masuko, 2017), which is more fully reflected in ocean applications

with ”big data” characteristics. Therefore, to reduce the training

time and save storage costs, we further propose LSTM-POD and

GPR-POD to predict the vertical distribution of TA and SA by

introducing POD (Liang et al., 2002), a widely used tool for reduced

order modeling (Lucia et al., 2004; Quarteroni et al., 2015).

Specifically, POD can achieve simplification and dimensionality

reduction of the dataset by identifying the few main modes that
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represent the three-dimensional temperature and salinity fields with

relative precision. And then the TA and SA profiles can be

approximated as linear combinations of these modes, we only

need to learn the relationship between the coefficients and the

input parameters by LSTM and GPR, which greatly simplifies the

regression model. Therefore, the first goal of this paper is to explore

the reconstruction accuracy of different models and the degree of

improvement of the POD on computational efficiency. The

reliability and computational efficiency of the proposed methods

is verified by calculating the root mean square error (RMSE)

between the estimated TA and SA profiles and the Argo

thermohaline anomaly profiles, as well as comparing the CPU

time of different methods. In addition, we point out that it is only

necessary to interpolate the modes about the depth, and the linear

combination of the interpolated modes according to the predicted

coefficients can be used to obtain TA and SA estimates for

any depth.

In particular, the effects of different parameters on TA and SA

estimates are also investigated by comparing the prediction

accuracy of models with various input parameters and calculating

the correlation coefficients between input parameters and the

temperature and salinity anomalies. In addition, this paper

evaluates the potential application of climatology in temperature

and salinity reconstruction using different combinations of

temperature and salinity climatology data.

This paper is organized as follows. The study area and the data

we used are presented in Section 2. Section 3 gives an overview of

the methodology used in this paper. Section 4 is devoted to the

description of the results, we draw conclusions in section 5.
2 Data

The goal of this paper is to reconstruct the three-

dimensional thermohaline structure of the Northwest Pacific

Ocean (95° W-135° W, 5° S-45° N) for the period 2011-2021.

The sources of ocean observations used in this study are: Argo

data, satellite sea surface temperature (SST), satellite sea surface

salinity (SSS), and sea surface height anomaly (SSHA), which

are described below. The climatology of the World Ocean Atlas

2018 (WOA18), used as the monthly mean of climatology is

also presented.
2.1 Argo data

The Argo profiles are obtained from Global Sea Ocean Argo

Scatter Dataset (V3.0) (Liu et al., 2021) provided by the China Argo

Real-time Data Center (ftp://ftp.argo.org.cn/pub/ARGO/global/).

This dataset collects more than 2.3 million temperature and

salinity depth profiles observed by over 15,000 automated

profiling buoys deployed in the global ocean by international

Argo member countries during July 2000 through June 2020.

Data inside the region of 95° W-135° W and 5° S-45° N for the

period 2011-2021 are considered here. Profiles with depths

exceeding 700 m are selected, and the profiles are interpolated
Frontiers in Marine Science 03
through a spline into the same 71 vertical levels extending from the

surface (5 m) to 705 m (vertical step is 10 m).
2.2 Satellite SST data

The SST data of this study are created by the OSTIA

(Operational SST and Ice Analysis) system, using re-processed

ESA SST CCI, C3S EUMETSAT and REMSS satellite data and in

situ data from the HadIOD dataset, distributed through the

Copernicus Marine Environment Monitoring Service (CMEMS,

http://marine.copernicus.eu/services-portfolio/access-to-products/,

product_id = SST_GLO_SST_L4_REP_OBSERVATIONS_

010_011). This product provides daily maps of the SST and SST

uncertainty on a global regular grid at 0.05° resolution, which are

stored using the netCDF format using the Group for High

Resolution SST specification.
2.3 Satellite SSS data

The SSS data is a Level 4 products on a 0.25 degree spatial

and 4-day temporal grid produced by the International Pacific

Research Center (IPRC) at the University of Hawaii at Manoa

in collaboration with the Santa Rosa Remote Sensing System

(RSS) in California in conjunction with observations from

NASA’s Aquarius/SAC-D and Soil Moisture Active (SMAP)

satellite missions. The product is a continuous, consistent

multi-satellite SSS data obtained by optimal interpolation

with a 7-day decorrelation time scale (Melnichenko et al.,

2016). Their mean root mean squared difference from

globally synchronized in situ data is about 0.19 psu and the

product bias is about zero.
2.4 Satellite SSHA data

The altimeter sea level anomalies with daily and 0.25°×0.25°

resolutions are provided by Sea Level TAC (Thematic Assembly

Centre, https://resources.marine.copernicus.eu/product-detail/

SEALEVEL_GLO_PHY_L4_MY_008_047/DATA-ACCESS). The

data produced in the frame of this TAC are generated by the

processing system including data from all altimeter Copernicus

missions (Sentinel-6A, Sentinel-3A/B) and other collaborative or

opportunity missions (e.g.: Jason-3, Saral[-DP]/AltiKa, Cryosat-2,

OSTM/Jason-2, Jason-1, Topex/Poseidon, Envisat, GFO, ERS-1/2,

Haiyang-2A/B/C).
2.5 Climatology data

The climate data used in this study are fromWorld Ocean Atlas

2018 (Boyer et al., 2018) (https://www.ncei.noaa.gov/products/

world-ocean-atlas), which is provided by the National

Oceanographic Data Center (now the National Centers for

Environmental Information - NCEI)(Boyer et al., 2018) (https://
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www.ncei.noaa.gov/products/world-ocean-atlas). The atlas is an

objectively analyzed, quality-controlled collection of temperature,

salinity, oxygen, phosphate, silicate, and nitrate averages based on

profile data from the World Ocean Database and distributed online

by NCEI. Monthly climatology fields of temperature and salinity at

standard depth levels at a spatial resolution of 0.25°×0.25° were used

in this study and interpolated by cubic spline onto regularly spaced

vertical grids (10 m apart).

Note that all satellite data and climatology data are interpolated

to the same spatial distribution as the Argo observations by bilinear

interpolation in the present study. And anomalies are defined as the

observation data (SST,SSS,Argo) subtracted by the monthly

WOA18 data.
3 Method

3.1 Gaussian process regression

In this section, GPR is used to estimate the vertical profiles of TA

and SA. The SAs and TAs in each level are considered as a collection

of some random variables and obey a joint Gaussian distribution,

defined as y = f (x) + ϵ, where x is input vector of predicted

parameters, which are sea surface temperature anomaly (SSTA),

sea surface salinity anomaly (SSSA), sea surface height anomaly

(SSHA), longitude (LON), latitude(LAT) and the day of the year

projected on a circle (JULD). The prior distribution of f (x) is

assumed to be a GP given by f (x) ∼ GP(0, k (x, x)), and k is the

semi-positive definite kernel. ϵ ∼ GP(0, c2) denotes the Gaussian

noise term, here c is the standard deviation. Based on the historical

Argo profiles and remote sensing data, we can collect n TA

observations or SA observations at depth z to form the observation

set y = fy1, y2,…, yng. Corresponding to each observation, we have

also collected a set of input parameters Xg = ½x1 ∣ x2j… jxn� ∈ Rd�n,

h e r e xi = (SSTAi, SSSAi, SSHAi, LONi, LATi, Then the pr io r

distribution of y can be given as:

yjXg ∼ N (0,Ky),  Ky = Cov½y ∣Xg� = k (Xg,Xg) + c2In : (1)
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GPR estimates the posterior distribution of an unknown quantity

under the assumptions of a Gaussian process and the likelihood of a

normal distribution. Specifically, from the above assumptions, it is

known that the joint probability distribution of the estimated value f*
at the new input parameter x* and the existing observation y is a joint

normal distribution of the following form:

y

f*

" #
∼ N 0,

Ky K*

KT
* K**

2
4

3
5

0
@

1
A, (2)

where K* = k (Xg , x*), K** = k (x*, x*). Combining the prior

assumption and the likelihood, the posterior distribution of f* can

be derived from the maximum likelihood method (Williams and

Rasmussen, 1995),

f* ∣ x*,Xg , y ∼ GP(m*,C*),

m* = KT
*K

−1
y y,  C* = K** − KT

*K
−1
y K* :

(3)

The reconstruction of TA and SA profiles using GPR is carried

out in the python library (GPy, 2012), and the output is a vector

consisting of the TA profile and SA profile in series at the same

location. The kernel function chosen in this paper is the radial basis

function. The minimum and maximum of the input/output can be

utilized to scale the input/output to [0,1] to eliminate the magnitude

effect before the model is trained.

In summary, the derivation of the vertical structure of TA and SA

using GPR involves two processes: online and offline stages. In the offline

stage, historical observations are collected to build the corresponding

input/output training set, from which the GPR is trained to learn the

mapping of the input parameters to the TA and SA profiles. In the online

stage, the corresponding TA and SA profiles are estimated from the

already trained GPR for the new input parameters. The flowchart of TA

and SA estimation using the GPR is shown in Figure 1.
3.2 Long short-term memory network

LSTM is an extension of the traditional recurrent neural

network (RNN), which is mainly used to deal with the case of
FIGURE 1

Flowchart of salinity and temperature estimation using GPR.
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traditional RNN failure. It solves the problem of gradient

disappearance and gradient explosion of traditional RNNs to a

certain extent to learn long-term dependent information. Same as

general RNN, it also consists of a series of repeating cells with

sequential connections, but the structure of the cells is more

complex. Crucially, the LSTM adds a state vector updated over

time to the cells, which can selectively record the information of the

system and preserve the long-term state of the system. Each cell has

three inputs, the input xi of the network at the current time, the

output value hi−1 at the previous time, and the cell state Ci−1 at the

last time. The input variables are passed through three gates with

different functions, namely forget gate, input gate and output gate,

to forget and add information to the cell state Ci at the current

moment and update the output state hi at the current moment. The

structure of each cell is shown in Figure 2 (Hochreiter and

Schmidhuber, 1997), and the tasks of the different gates are

implemented using the following equations (Hochreiter and

Schmidhuber, 1996; Gers et al., 2000):

fi = s (Wf ½hi−1, xi� + bf ),

Ii = s (WI ½hi−1, xi� + bI),

~Ci = tanh  (WC½hi−1, xi� + bC),

Oi = s (WO½hi−1, xi� + bO),

Ci = fi*Ci−1 + Ii*~Ci,

hi = Oi* tanh  (Ci),

(4)

where s denotes the sigmoid activation function, Wf ,WI ,WC ,WO

are weight matrices, bf , bI , bC , bO are model biases, and * represents

dot product operation.

Referring to (Buongiorno Nardelli, 2020), we also use LSTM to

estimate the TA and SA profiles. TAs and SAs from different depths

are considered the output states of different cells. The input to each

cell is the same, a multivariate vector consisting of SSTA, SSSA,
Frontiers in Marine Science 05
SSHA, LON, LAT, and JULD corresponding to the current position.

The structure of the LSTM we used is the same as that in

(Buongiorno Nardelli, 2020), i.e., a 2-layer stacked network. Each

layer contains 35 hidden units, and the optimization algorithm is

Adam (Kingma and Ba, 2014). Similarly, we also use max−min

normalization to preprocess the data before the LSTM training.
3.3 Proper orthogonal decomposition

POD, which has a wide range of applications in various fields

(Liang et al., 2002; Pinnau, 2008; Chapelle et al., 2012; Singler,

2014), provides a means to obtain a low-dimensional description of

the system. This method extracts a small number of modes from

historical TA and SA profiles that can represent the main features of

the field, which simplifies and reduces the dimensionality of the

data. The temperature-salinity anomaly profiles at the same

location are placed in a multivariate matrix X

X =

T11 T12 … T1n

T21 T22 … T2n

… … … …

Tm1 Tm2 … Tmn

S11 S12 … S1n

S21 S21 … S2n

… … … …

Sm1 Sm2 … Smn

2
666666666666666664

3
777777777777777775

=
D
 ½u1ju2j… jun� ∈ R2m�n,

where m is the number of vertical levels, n is the number of vertical

profiles. In order to calculate the k modes, we only need to do the

singular value decomposition of X as follows:
FIGURE 2

Structure of single cell.
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X = USZT,

where U ∈ R2m�r and Z ∈ Rn�r are orthogonal matrices. The

matrix S = diag(s1,s2,…,sr) contains the singular value s1 ≥

s2 ≥ … ≥ sr , where r is the rank of X. The first k columns of U

are the k modes to be computed, which we denote as

Uk = U½:, 1 : k� =
L1

M1

…

…

Lk

Mk

" #
:

The dimensions of Li = ½L1i, L2i,…, Lmi�⊤ and Mi = ½M1i,M2i,

…,Mmi�⊤ is m� 1. Then the corresponding TA profile can be

represented by a linear combination of Li (i = 1, 2,…, k), and the SA

profile is represented by a linear combination of Mi (i = 1, 2,…, k),

where the unknown coefficients are shared. A common method for

solving the coefficients is to solve a linear system that is obtained by

equating the corresponding sea surface elements inthe

reconstructed anomaly profiles to sea surface observations. In this

case, k = 2 is required. To increase k, other physical quantities of the

ocean need to be added to X to impose constraints on the

combined coefficients.

Different from the above methods, in this paper, two methods,

GPR and LSTM, are utilized to learn the relationship from the sea

surface parameters to the coefficients. In particular, Uk is the

solution of the following minimization problem

min  
W ϵYk

X −  WWTX
�� ��2

F  , (5)

where Yk = fW ∈ R2m�k :WTW = Ikg, ‖ · ‖F is the Frobenius

norm, and the error is estimated as

X − UkU
T
kX

�� ��2
F   = o

r

i=k+1

s 2
i : (6)

From this, we can naturally compute the coefficient vector ai

= UT
k ui=

D ½a1
i ,a

2
i ,…,ak

i �⊤ corresponding to the h i s tor i ca l

temperature and salinity anomaly profile ui. And, we can

determine k by the following equation according to the

required accuracy
Frontiers in Marine Science 06
o
k

i=1
s2
i

o
r

i=1
s2
i

≥ 1 − d ; (7)

where d is user defined cut-off threshold. To retrieve the vertical

structure of TA and SA from the sea surface parameters, we collect

the input parameters xi corresponding to the obtained state vector

ui (i = 1, 2,…, n). Here xi is still a vector consisting of SSTA, SSSA,

SSHA, LON, LAT and JULD. Then based on the collected dataset

Dtr = f(x1,a1), (x2,a2),…, (xn,an)g, we can train GPR or LSTM to

build the mapping of input parameters x to coefficients a , then the

TA and SA are reconstructed as (Hesthaven et al., 2016; Guo and

Hesthaven, 2019)

T(x) =o
k

i=1
a i(x)Li,  S(x) =o

k

i=1
a i(x)Mi :

The corresponding flow chart is given in Figure 3.

Further, we point out that Li and Mi are actually functions of

depth z. To estimate the TA and SA at any depth z*, we use cubic

spline interpolation to interpolate Li andMi with respect to depth z

to obtain the corresponding interpolation functions ~Li(z) and ~Mi(z)

satisfying ~Li(zj) = Lji and ~Mi(zj) = Mji (i = 1, 2,…, k, j = 1, 2,…, ,m),

where zi (i = 1, 2,…,m) denotes the vertical levels, so that the TA and

SA at depth z* can be reconstructed as

T(z*, x) =o
k

i=1
a i(x)~Li(z*),  S(z*, x) =o

k

i=1
a i(x) ~Mi(z*):
4 Results

4.1 Comparison between different models

To evaluate the performance of different models, we randomly

selected 20% of the 11,374 Argo profiles as the test set and the

remaining 80% as the training set. Different models are then
FIGURE 3

Flowchart of salinity and temperature estimation using GPR-POD and LSTM-POD.
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employed to retrieve TA and SA profiles with the same inputs, i.e.,

SSTA, SSSA, SSHA, LON, LAT, and JULD. The RMSE between TA

and SA profiles obtained from these models and the Argo profiles is

calculated to evaluate the performance of the different methods. The

RMSE of the WOA is obtained by comparing the temperature and

salinity profiles obtained after interpolating the monthly mean of

the climatology of WOA18 with the Argo profiles. Let d=0.04% and

we choose k=14 modes, in fact, before performing the POD, we

similarly scaled the data between 0 and 1. Figure 4 shows the vertical

distribution of the RMSEs estimated by the different models. The

RMSEs of all proposed methods are smaller than the RMSE of the

WOA18, and a similar vertical structure can be seen in the different

models. The RMSEs are small at the sea surface but increase rapidly

with depth, decrease rapidly after reaching the maximum, and

stabilized. This may be related to the complex dynamical

processes in the ocean’s upper layers and the perturbations in the

mixed and thermocline layers, while the seawater is relatively stable

in the deeper layers. The RMSEs of temperature reach their

maximum at 105 - 115 m, and only near this depth (where the

temperature variation is relatively large), LSTM shows superior

performance in predicting TA profiles compared to other methods.

This suggests that LSTM may have greater potential for

approximating strongly nonlinear functions since, at depths

where temperature changes rapidly, the relationship between

temperature and depth is more complex and may have

stronger nonlinearity.

However, the performance of the four methods is comparable

from an overall perspective. The RMSEs of salinity reach their

maximum between 55 - 65 m. Although the four reconstruction

methods have comparable accuracy, GPR performs a little better

than LSTM in the reconstruction of upper salinity, which may arise

because the rate of change of the salinity profile is not as large as

that of the temperature profile, GPR can produce sufficiently

accurate approximations, while LSTM has a more complex

structure and numerous parameters, making them reliant on large

amounts of training data to obtain more accurate predictions. In
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addition, the POD combined with the regression methods does not

cause a large loss in the accuracy of the estimated profiles, which is

better reflected in the RMSEs of GPR and GPR-POD, as the RMSEs

of both are almost the same. The selected modes are sufficient to

characterize the vast majority of the temperature and salinity fields.

To further measure the uncertainty of the estimates of GPR-based

methods, Figure 5 shows the standard deviation of the posterior

distribution of the GPR and GPR-POD predictions. We can see that

both methods display similar distribution patterns, with

comparable uncertainty estimates at most points, but the

uncertainty of the model prediction is higher at the western

boundary of the region, which can be attributed to the limited

training data available in this region. This also shows a drawback of

the GPR-based approach, which is better suited for interpolated

predictions rather than extrapolation. Notably, the predictions of

GPR-POD exhibit higher levels of uncertainty, despite comparable

RMSEs between GPR-POD and GPR. This discrepancy may be

attributed to the fact that more information is available in the

training data for GPR, making it more confident in its predictions.

Considering the inhomogeneity and sparsity of spatio-temporal

distribution of thermohaline data, all the thermohaline

relationships in the test set are drawn in the same graph

(Figure 6), the purpose of which is to compare the predictions of

different models, in which the different colors of points are to better

distinguish the differences between points. The main distribution

structure of T-S graph reconstructed by all methods is similar to

that of Argo field, but the distribution range of points is more

concentrated than that of Argo field. From the T-S graphs, it can be

observed that the reconstructed results are generally weaker for the

points with larger absolute values of salinity anomalies. To better

visualize the predicted distribution of temperature and salinity

anomalies, a histogram of the number of salinity anomalies in

different intervals is displayed at the top of the T-S graph, and a

histogram of temperature anomalies is displayed on the right side of

the T-S graph. The histogram of salinity anomalies reveals that the

distribution of LSTM-POD is more consistent with that of Argo,
A B

FIGURE 4

Estimated RMSEs of different models. (A) RMSEs of estimated temperature. (B) RMSEs of estimated salinity.
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while LSTM underestimates the number of points of salinity

anomalies in the interval [-0.5,0], which is overestimated by GPR

and GPR-POD. The histograms of temperature anomalies from

different models indicate that all four methods overestimate the

number of temperature anomalies in the interval [0,2.5], but their

overall distribution is very similar to that of Argo. In conclusion, the

reconstructed methods can predict the main distribution structure

of the T-S graph. Although there are slight differences in the

distribution range and there may be problems of underestimating

the thermohaline state, the performance of the proposed

reconstructed methods is generally satisfactory. Furthermore,

Figure 7 displays the scatter plots of the LSTM estimated and

Argo’s temperature and salinity anomalies at a depth of 105 m. This

depth is significantly impacted by the variation of the upper mixed

layer, and the RMSE estimated for temperature and salinity at

this depth is also large. The results indicate that the overall
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discrepancy between them is minimal, as the LSTM prediction

preserves the fundamental characteristics of the temperature and

salinity anomalies, and its pattern (positive or negative) is

accurately reconstructed.

To further compare the improvement of POD on the

computational efficiency of different models, we compare the

running times of different models. The CPU times of LSTM and

LSTM-POD are 11216 s and 1488 s, respectively, computed using a

laptop with 4 Intel(R) Core(TM) i7-6770 CPU @ 3.40GHz and 8G

Memory. Since GPR requires higher memory for matrix operations,

GPR and GPR-POD are run using a single node with a single core in

Tianhe-2, which adopts an Intel Xeon E5-2692 v2 CPU @ 2.20GHz

and 64GB Memory. Furthermore, the running times of GPR and

GPR-POD are 891 s and 788 s, respectively. We can see that the

training time of LSTM can be significantly reduced by combining

POD, as LSTM takes 7.5 times longer than LSTM-POD. However,
A B C

D E

FIGURE 6

T-S graph and histogram of temperature and salinity anomalies for different models. (A) T-S graph for Agro (left and bottom), histogram of the
number of salinity anomalies in different intervals for Agro (top), histogram of the number of temperature anomalies in different intervals for Agro
(right). Panels (B-E) are the same as panels (A), respectively, except for (B) LSTM, for (C) GPR, for (D) LSTM-POD and for (E) GPR-POD.
A B

FIGURE 5

Uncertainty estimation of (A) GPR and (B) GPR-POD.
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this reduction is not apparent in GPR, this is attributed to the fact

that the computational complexity of GPR-POD is Ο(kn3), while

the computational complexity of GPR is Ο(2mn3). In this case,

n=9099,k=14,m=71, the improvement in training time is

insignificant when the number of training samples is much larger

than the number of output dimensions.
4.2 Sensitivity of different parameters
in GPR-POD

To test the sensitivity of the estimated TA and SA to different

input parameters, we compare GPR-POD estimates with different

training inputs. Figure 8. shows the RMSEs of temperature with

various inputs, and as well as the correlation between test input

parameters, the correlation between test input parameters, and test

TA profiles , and the correlation between test input parameters and

test SA profiles. By observing the RMSEs of temperature, we can

find that the RMSE of the model without SSHA in the input is large

at all depths, which indicates that SSHA plays a vital role in ocean

motion and processes. In fact, changes in the subsurface layer may

give rise to changes in SSH resulting from the interaction of several

factors, such as heat exchange, internal thermal expansion, and

ocean circulation. A rise in sea temperature leads to an increase in

SSH, while a decrease in sea temperature leads to a reduction in

SSH. The correlation coefficients between SSHA and TA profiles

also affirm the excellent association between SSHA and TA.
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Notably, the correlation coefficient between SSHA and TA is the

highest among all input parameters except SSTA. In addition, SSH

changes under the influence of wave and wind shear. Incorporating

SSHA into the model input can provide more information for

predicting TA. Latitude, longitude, and time all improve the TA

profile reconstruction to different degrees, showing that geographic

and temporal information is helpful in predicting TA. In particular,

incorporating latitude data yields a more substantial reduction in

RMSE than incorporating longitude data, suggesting that latitude

has a greater impact on TA reconstruction. This is because the

discrepancy in solar radiation across different latitudes results in

significant variations in sea temperature in the north-south

direction. Therefore, latitude information is essential to improve

the performance of subsurface reconstruction. Furthermore, the

correlation between latitude and TA profiles is higher compared to

that between longitude and TA profiles, highlighting the

importance of considering latitude when predicting TA. The

model without SSTA in the input has the largest RMSE in the

upper layer (<100 m ), but when the depth is greater than 100 m,

there is almost no difference between the model without SSTA and

GPR-POD ( all parameters as input). This suggests that SSTA data

mainly improve the reconstruction of upper layer TA, while deeper

temperature variations are difficult to be interpreted from satellite

measurements. In addition to the fact that SSSA has no significant

relationship with ocean interior temperature, which can also be

verified by observing the correlation between SSSA and TA profiles.

Similar results can be observed in the RMSEs of salinity, where
A B

C D

FIGURE 7

TAs and SAs of different models at 105 m. (A) LSTM-estimated TAs. (B) Argo TAs. (C) LSTM-estimated SAs. (D) Argo SAs.
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adding both latitude and SSHA data reduces the RMSEs of salinity

at all depths. The relationship between ocean salinity and

temperature on density is a fundamental aspect that affects

changes in SSH, causing SSHA and SA profiles to have some

correlation. Latitude also influences changes in ocean salinity as a

result of a combination of factors, including precipitation,

evaporation, and mixing of water masses. Consequently,

incorporating latitude and SSHA into the prediction of subsurface

salinity can significantly improve model accuracy. SSSA data play

an important role in the reconstruction of upper ocean SA profiles,

while they do not help much in the reconstruction of deep SA

profiles, and the correlation between SSSA and SA gradually

decreased with increasing depth. The RMSEs of several other

models show that longitude, time, and SSTA have somewhat

limited improvements on the models, where longitude and time

can reduce the maximum of salinity RMSE, while SSTA has no

significant improvement on the reconstruction of SA profiles.
4.3 The performance of climatology on
three-dimensional salinity and temperature
fields reconstruction

To test the influence of climatology on the temperature and

salinity reconstruction models, we considered three different inputs

and outputs for LSTM and GPR. The inputs are 1) X: SSTA, SSSA,

SSHA, LAT, LON, JULD; 2) X-Without-WOA: SST, SSS, SSHA,

LAT, LON, JULD, and 3) X-WOA: SST, SSS, SSHA, LAT, LON,

JULD, SS (climatology), ST (climatology) and the outputs are 1) X:

STA, SSA; 2) X-Without-WOA: SS, ST, and 3) X-WOA: SS, ST. The

RMSEs estimated by different models are shown in Figure 9.

Observing the RMSEs of the two regression models with various

inputs and outputs, we can find a similar behavior, especially when

the temperature at depths of less than 100 m and the salinity at

depths of less than 200 m, training the models with the temperature

and salinity anomaly fields can significantly improve the prediction
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accuracy than directly using temperature and salinity as the input

and output of the model. This is because the seasonal variation

signal disappears after calculating the anomaly field using the

monthly mean of climatology, thus making the SS and SA easier

to predict. On the other hand, incorporating monthly temperature

and salinity climatology fields into the model input gives the most

accurate estimates. Climatological information added to the input

can effectively reduce the impact of the sea surface parameter errors.

In summary, seasonal variations in seawater temperature and

salinity play a crucial role in oceanic processes. The information

provided by seasonal variations in temperature and salinity can help

us better estimate temperature and salinity structure within

the ocean.

Comparing LSTM and GPR with the same input and output, it

can be found that the accuracy of GPR with temperature and

salinity climatology as input is higher than that of LSTM. This is

due to the inclusion of monthly climate fields of temperature and

salinity in the input, which makes the model less complex. Similar

to the findings in Section 4.1, GPR can provide more accurate

predictions when the amount of training data is not abundant. In

contrast, the performance of GPR without considering climatology

is the worst, expressly, by up to 20% (∼245 m) over the GPR-WOA

estimate. When only sea surface parameters are included in the

input without climatology as an aid, it leads to a more complex

relationship between the input and output in the model. The LSTM,

on the other hand, can better approximate the strongly nonlinear

function, so the GPR-Without-WOA does not perform as well as

the LSTM-Without-WOA.
4.4 Estimation of temperature and salinity
using continuous remote sensing data
from SSHA and SSTA

Since the SSS data is the 4-day temporal grid, in order to make

full use of the other daily satellite and in situ observations, we use
A B C

FIGURE 8

(A) RMSEs of temperature from models with different sea surface inputs. (B) RMSEs of salinity from models with different sea surface inputs. (C) heat
map of correlation coefficients.
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the SSTA, SSHA, LAT, LON, and JULD as model inputs in this

section to train the LSTM model (named LSTM-Daily) to estimate

the TA and SA profiles. Thus, there are 45,031 Argo observation

profiles available, and again, 80% are randomly selected as the

training set, and the remaining 20% are used to test the model’s

performance. The RMSEs of the temperature and salinity estimated

by LSTM-Daily are shown in Figure 10, respectively, besides the

RMSE reduction rate of LSTM relative to climatological estimates

also shown in Figure 10. It is clear that the RMSE of the estimated

TA profiles is reduced by 20%−70% compared to climatology. By

increasing the training data size, a more accurate reconstruction of

the temperature profiles can be obtained. On the other hand, the

prediction accuracy decreases for salinity at depths less than 100

due to the lack of SSS information, which again validates the

importance of SSSA for SA reconstruction at a depth of less than

100 m. However, when the depth is greater than 100 m, as the effect
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of SSSA data disappears, higher accuracy SA estimation can be

achieved again due to increased training data size.
5 Discussion

This paper applies several methods to estimate the TA and SA

profiles from sea surface parameters, namely LSTM, GPR, LSTM-

POD, and GPR-POD. LSTM and GPR directly train the model with

TAs and SAs at different depths as the output. At the same time,

LSTM-POD and GPR-POD combine LSTM, GPR respectively, with

POD, which can downscale the data, and it assumes that only a

small number of modes are needed to represent the main features of

the temperature and salinity anomaly fields. Thus, only the model

needs to be trained to estimate the coefficients, i.e., the output of the

model is the reduced coefficients corresponding to the temperature-
A B C D

FIGURE 10

The RMSEs of estimated temperature and salinity, and the reduction of RMSE for LSTM reconstructed profiles relative to climatological profiles. (A)
RMSEs of estimated temperature. (B) RMSEs of estimated salinity. (C) The reduction of temperature’s RMSE. (D) The reduction of salinity’s RMSE.
A B

FIGURE 9

The RMSEs of temperature and salinity from models with different inputs and outputs. (A) RMSEs of estimated temperature. (B) RMSEs of estimated
salinity.
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salinity anomaly profiles, which greatly simplifies the regression

model. In addition, using the predicted coefficients, a linear

combination of the interpolated modes can estimate TA and SA

at any depth. We selected Argo observations and satellite remote

sensing data for the Northwest Pacific Ocean in 2011-2021 for

training and testing. The accuracy and reliability of the proposed

methods are evaluated by calculating the RMSEs of the estimated

profiles, and the results show that these methods can accurately

derive the TA and SA profiles, and the introduction of POD greatly

saves time and storage costs without additional loss of accuracy,

especially for LSTM.

In order to determine the relative importance of different input

parameters to the temperature and salinity reconstruction, we evaluate

the results of several models with different inputs, in addition to which

correlations between different parameters and TA and SA profiles are

calculated. The results show that the most significant improvements

can be obtained by including SSHA and latitude. On the other hand,

SSTA and SSSA play an important role in the TA and SA

reconstruction in the upper layers (>100 m), but this role decreases

with increasing depth. In addition, by using the temperature and

salinity monthly climatological fields, especially when added to the

input of the regression model, fairly good profile predictions can be

obtained, both for LSTM and GPR. This suggests that the introduction

of climatology can effectively reduce the effect of sea surface errors and

provide more information to the regression model, thus effectively

improving the accuracy and robustness of the model. This also

inspires us to explore multiple satellite measurements further to

improve the reliability of the estimates in the future.

In general, the proposed methods can be effectively used for

reconstructing temperature and salinity profiles, particularly when

monthly climatology of temperature and salinity is included as an

input to the GPR. The techniques presented in this article for

estimating subsurface temperature and salinity do not require any

prior knowledge or assumptions and are highly versatile and

generalized. These models can accurately predict new subsurface

temperature and salinity values as long as it is well-trained. It is

expected that the proposed methods can be beneficial for the

detection of the thermal structure of the ocean interior in marine

science and climate change research, as well as for more precise

analysis of temperature and salinity changes. However, it is

important to note that, unlike dynamic-based reconstruction

methods, the proposed methods are solely based on data and lack

of physical interpretation, which may be a limitation in the

development of artificial intelligence approaches to oceanography.

With the rapid advancement of ocean modeling capability,

observation technology and artificial intelligence, it is a promising

direction to effectively combine the advantages of a dynamics-based

approach and data-driven approach in future work, enhance the

ability of model prediction and physical interpretation, and

establish a deep learning model based on physical information.
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