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ABSTRACT

Machine learning (ML) is used to build a new computationally efficient data-driven dynamical model for single-phase and complex multi-
component particle–liquid turbulent flows in a stirred vessel. By feeding short-term trajectories of flow phases or components acquired
experimentally for a given flow condition via a positron emission particle tracking (PEPT) technique, the ML model learns primary flow
dynamics from the input driver data and predicts new long-term trajectories pertaining to new flow conditions. The model performance is
evaluated over a wide range of flow conditions by comparing ML-predicted flow fields with extensive long-term experimental PEPT data.
The ML model predicts the local velocities and spatial distribution of each flow phase and component to a high degree of accuracy, including
conditions of impeller speeds, particle loadings and sizes within and without the range of the input driver datasets. A new flow analysis and
modeling strategy is thus developed, whereby only short-term experiments (or alternatively high-fidelity simulations) covering a few typical
flow situations are sufficient to enable the prediction of complex multiphase flows, significantly reducing experimental and/or simulation
costs.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0142198

I. INTRODUCTION

Machine learning (ML) is an extremely powerful data-driven
technique, which automatically builds a certain mathematic model
using supplied sample data to make decisions and predictions without
being explicitly programmed. It has achieved advances in a diverse
range of applications, such as climatology, fluid turbulence, finance,
robotics, and neuroscience.1–3 ML is especially useful for complex
dynamical systems whose characteristics of nonlinearity, multiscale,
high-dimensionality, and dynamics often limit the use of conventional
methods to understand, predict, design, and control them. ML strate-
gies offer an agile and modular modeling framework that can solve
specific issues based purely on input data.4 For example, ML recently
played an important role in better understanding how COVID-19
spread, thus helping to inform the fight against the pandemic world-
wide.5,6 Although data-driven ML has achieved significant success in a
number of fields, this is still a growing science and there is a need to
explore and develop new strategies to widen and improve its applica-
bility to science and engineering.

Mixing flows in mechanically agitated vessels are a typical
example of a dynamical system in the study of multiphase fluid
mechanics, where the blending of different phases and/or phase
components produces a complex dynamic flow behavior. The
main objective is to rapidly reduce the inhomogeneity of phase,
temperature, and concentration, thus, speeding up mixture pro-
duction and ensuring good product physical mixing and/or
enhancing chemical reaction.7,8 The selection of a suitable system
for a specific mixing application should consider a number of fac-
tors including the vessel geometry, impeller type, fluid properties
and operating conditions since the resulting mixing flow pattern is
a complex function of these parameters.9 Thus, understanding the
complex flow dynamics involved is key to the successful design,
operation and optimization of these devices and processes.
Conventionally, the prediction of complex flow dynamics is
achieved by establishing mechanistic models based on the
underlying knowledge of physico-chemical phenomena or simplistic
empirical models.10 However, the high complexity of such flow systems
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often poses challenges for creating accurate models, and numerical solu-
tions may not always be practicable due to extensive computation costs.

Fortunately, the ever increasing availability of high-fidelity exper-
imental and numerical data has opened up new routes for modeling
complex flows and, in this respect, data-driven ML methods have
attracted significant attention in recent years. One of the main topics
of interest is using ML to analyze fluid dynamics phenomena with
reduced-order modeling, which projects dynamical methods in
reduced form and improves computational efficiency on high-
dimensional data. Hasegawa et al.11 used a convolutional neural net-
work autoencoder to extract the evolution of laminar bluff body wakes,
which took advantage of the low-dimensional feature of the latent
space and captured hidden wakes around a body of an arbitrary shape.
Another promising topic is closure modeling or establishing physically
informed models that improve the speed or accuracy of conventional
computational fluid dynamics (CFD) models. For example, Ling
et al.12 applied ML to identify and model the Reynolds stress tensor
discrepancies between the Reynolds averaged Navier–Stokes (RANS)
model and high-fidelity simulations. Hou et al.13 used neural networks
to predict flow properties and detect flow disturbances in dynamical
systems, and Zhai et al.14 developed a semi-physics-informed neural
network to predict the micro-bubble dynamics in bubbly flows.

Moreover, ML was applied to flow pattern identification, sensor place-
ment, and flow control,15 and an adaptive sensing and control strategy
was developed to arrange the sensor placement for obtaining maximal
information.16 Rabault et al.17 used artificial neural networks to dis-
cover control strategies for active flow control.

More recently, a number of other data-driven theoretical meth-
odologies based on high-fidelity driver data have also been reported,
but have not been widely used to model and analyze engineering fluid
flows, including Lagrangian stochastic modeling (LSM), Lagrangian
recurrence tracking and Lagrangian coherent structure detection.18–20

Sheikh et al.20,21 developed a data-driven Lagrangian stochastic model
(LSM) to simulate single-phase and particle–liquid flows in stirred ves-
sels, which was driven by experimental local velocity measurements in
conjunction with decorrelation statistics. LSM has also been used to
model geophysical ocean flows for underwater vehicles,22 to predict
the mixing and transport of pollutants in water or atmosphere,23,24

and to study solar wind turbulence and turbulent combustion.25,26

Recently, we successfully developed a ML modeling framework
to reconstruct the turbulent flow fields of single-phase and two-phase
flows in a stirred vessel. The strategy relied on feeding a very short-
term Lagrangian trajectory of the phase concerned experimentally
determined by a positron emission particle tracking (PEPT)

FIG. 1. PEPT experimental setup and
computational grid for Lagrangian data
analysis: (a) stirred vessel; (b) illustration
of PEPT measurement and determined
long-term trajectory; and (c) grid of equal-
volume cells used for Lagrangian data
analysis and method of calculation of local
velocity and phase concentration.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 053301 (2023); doi: 10.1063/5.0142198 35, 053301-2

VC Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0142198/17178985/053301_1_5.0142198.pdf

https://scitation.org/journal/phf


technique.27 The method proved very efficient in producing the corre-
sponding long-term Lagrangian trajectory of the particular phase, hav-
ing the same statistical features learned from the short driver dataset
input, which greatly reduces the experimental costs and/or numerical
costs needed for complex flow simulations. This work represents
another branch of ML applications in fluid dynamics, i.e., flow field
and parameter estimation via machine learning from limited data
input.

In this study, we extend the capability of the ML framework to
predict the flow developed under conditions different to those under
which the limited sets of driver data are experimentally acquired. In
addition to different conditions of single-phase flow, the strategy is
also extended to complex two-phase multicomponent particle–liquid
flows. The framework strategy is borrowed from the Reynolds averag-
ing concept, where the instantaneous flow field is approximated by a
mean flow field coupled with a Gaussian distributed fluctuation. The
mean flow field is predicted by a k-nearest neighbors (KNN) regressor,
which is trained by the driver Lagrangian trajectories data, and the
fluctuation is produced by a Gaussian noise generator with the same
statistical pattern corresponding to the driver flow conditions.
Extensive experimental PEPT data are used to validate the ML frame-
work including the local velocity field and spatial distribution of each
flow phase and component involved.

II. EXPERIMENTAL AND TURBULENT DYNAMIC
ANALYSIS
A. Mixing apparatus

Single-phase and complex particle–liquid mixing experiments
were conducted in a stirred vessel of standard configuration with
diameter T¼ 288mm (radius R¼ 0.5T), fitted with four wall baffles of
width 0.1T and filled to a height H¼T. The vessel was agitated by a
down-pumping six-blade 45� pitched-turbine (PBTD) of diameter

D¼ 0.5T, blade height 0.1T, and off-bottom clearance 0.25T, as
depicted in Fig. 1(a). In single-phase flow tests, the vessel was filled
with NaCl solution (density 1150 kg/m3). Agitation speeds ranged
from 60 to 540 rpm, corresponding to a fully turbulent regime, i.e.,
impeller Reynolds number Reimp � 24� 103. In particle–liquid flow
experiments, two different types of ballotini suspensions (density
2485 kg/m3) were used, i.e., monodisperse and polydisperse. The sus-
pending medium was an aqueous NaCl solution. The monodisperse
suspensions were studied at mean solid mass loadings of Cm¼ 5 and
20wt. %, and agitated at impeller speeds ranging from the minimum
speed for particle suspension Njs up to 2Njs. The polydisperse suspen-
sions consisted of five particle sizes of equal mass fraction and overall
mean solid mass loadings of Cm¼ 5, 10, 20, and 40wt. % and were agi-
tated at an impeller speed corresponding to Njs. In each case, the Njs

speed was experimentally determined based on the well-known
Zwietering criterion.28 The conditions of the experiments conducted
are summarized in Table I.

B. PEPTmeasurements

PEPT allows noninvasive imaging of opaque flows in opaque
devices by using a representative positron-emitting particle tracer to
track the three-dimensional (3D) motion of each phase.29 In a typical
PEPT experiment, a radiolabelled tracer is introduced in the flow and
its movement is recorded, providing a long-term Lagrangian trajec-
tory, as shown in Fig. 1(b). The liquid phase was tracked using a
�600lm neutrally buoyant resin particle tracer (note that NaCl was
added to water to match the density of the resin tracer). Each compo-
nent of the particle phase was individually tracked using a representa-
tive glass bead tracer taken from the particle fraction considered.
Being able to visualize opaque flows in 3D with a comparable accuracy
to leading optical techniques, such as particle image velocimetry

TABLE I. Experimental flow conditions.

Flow system Cm (wt. %) Cv (vol. %) d (mm) T (mm) N (rpm) Reimp (�105)

Single-phase � � � � � � � � � 288 60 0.24
288 100 0.40
288 150 0.60
288 260 1.03
288 330 1.31
288 400 1.59
288 500 1.98
288 540 2.13

Monodisperse particle–liquid 5 2.5 3 288 360 (Njs) 1.43
5 2.5 288 540 (1.5Njs) 2.13
5 2.5 288 720 (2Njs) 2.84
20 10.4 288 490 (Njs) 1.94
20 10.4 288 613 (1.25Njs) 2.42
20 10.4 288 735 (1.5Njs) 2.91

Polydisperse particle–liquid 5 2.5 1.1, 1.7, 2.1, 2.7, 3.1
(equal mass fraction¼Cm/5)

288 380 (Njs) 1.50
10 5.2 288 450 (Njs) 1.78
20 10.4 288 510 (Njs) 2.01
40 23.6 288 610 (Njs) 2.41
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(PIV)/laser Doppler velocimetry (LDV),30,31 gives the PEPT technique
a unique advantage. PEPT has been extensively used to study single
and multiphase flows in pipes and stirred vessels and more details can
be found in our earlier papers.18,19,21,29,32–37 Here, the Lagrangian tra-
jectories of the carrier fluid and the suspended particles were acquired
over a period of �40min, providing ample data to reliably study their
flow behaviour.33

C. Dynamic analysis of turbulent flow field

Three-dimensional (3D) trajectories were acquired for each indi-
vidual flow phase/component in the mechanically agitated vessel
described above, in the form of data arrays that consist of one tempo-
ral and three spatial coordinates (t, x, y, and z). After converting the
Cartesian coordinates to cylindrical coordinates, the local instanta-
neous velocity (v) of a given flow phase/component was estimated at
each location from the discrete-time derivation of its Lagrangian

trajectory. By applying a pre-defined cylindrical mesh with Nr � Nz �
Nh equal-volume cells, as illustrated in Fig. 1(c), the Eulerian (ensem-
ble-averaged) velocity field (v) was obtained by

v j ¼ 1
NL

XNL

i¼1

vi; (1)

where vi and v j are, respectively, the local instantaneous velocity at the
ith detected location of the trajectory and the mean velocity in the jth
cell of the mesh. NL is the total number of detected tracer locations in
the jth cell [Fig. 1(c)]. Then, the local fluctuating velocity component
(v0) at each location is

v0 ¼ v � v ¼ vr ; vz; vh½ � � vr ; vz; vh½ �; (2)

where vr ; vz; vh and vr ; vz; vh are the instantaneous and mean veloc-
ity components in the radial, axial and tangential directions, respec-
tively. Thus, a new Lagrangian data array containing the time,

FIG. 2. Global fluctuating velocity compo-
nents in single and two-phase flows
obtained from PEPT measurements over
a wide range of conditions fitted by a
Gaussian distribution: (a) typical distribu-
tion of radial, axial and tangential fluctuat-
ing velocity components (single-phase
flow, N¼ 330 rpm); (b) standard deviation
of fluctuating velocities in single-phase
flow; and (c) standard deviation of liquid
and solid fluctuating velocities in a typical
polydisperse particle–liquid flow.
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cylindrical coordinates, instantaneous and fluctuating velocity compo-
nents of each phase in the flow was generated, i.e., [t; r; z; h; vr ; vz;
vh; v0r ; v

0
z; v

0
h].

In order to extract the fluctuation characteristics of a turbulent
flow for feeding to the ML framework, the fluctuating velocity compo-
nents of each phase/component in the single and two-phase flows con-
sidered were statistically analyzed for all experimental conditions, as
depicted in Fig. 2(a), and their local distributions were all well repre-
sented by a Gaussian distribution with a zero mean value since most
of local instantaneous velocities are very close to the local mean veloc-
ity. As reported in previous works, the Gaussian nature of these

fluctuating velocity components is approximately invariant through-
out the whole flow field.38–40 Consequently, the global fluctuating
velocity components in the vessel were normalized and fitted by

v0i=vtip � N li; r
2
i

� �
; (3)

where vtip is the impeller tip velocity, and li and ri are, respectively,
the mean and standard deviation of the normalized fluctuating veloc-
ity component in the i-direction.

Comparing the standard deviation of fluctuating velocity compo-
nents in Fig. 2, an ascending order rh > rr > rz is observed in both

FIG. 3. Flowchart of ML model for Lagrangian trajectory construction in turbulent flow in a stirred vessel.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 053301 (2023); doi: 10.1063/5.0142198 35, 053301-5

VC Author(s) 2023

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0142198/17178985/053301_1_5.0142198.pdf

https://scitation.org/journal/phf


single and two-phase flows. The fact that the largest standard deviation
belongs to the tangential fluctuations is mainly because of the periodic
impeller motion and the vortex breaking effect of the wall-mounted
baffles. In single-phase flows, the standard deviation is not significantly
affected by the agitation speed over the range considered, as depicted
in Fig. 2(b), which indicates that the flows studied belong to the same
regime (i.e., fully turbulent). In a particle–liquid flow at a given condi-
tion, there is no significant difference in the fluctuation characteristics
between each individual phase, as shown in Fig. 2(c). Comparing
the standard deviation between different flow systems in Figs. 2(b) and
2(c), the fluctuations in two-phase flow are slightly greater than those
in single-phase flow, which is consistent with reports that adding large
solid particles results in an increase in the turbulence intensity of the
carrier phase.41–43 Hence, the statistical features of fluctuating velocity
components in similar flow regimes are close to each other, i.e., flows
of similar regimes possess a similar fluctuation pattern.

III. MACHINE-LEARNING MODELING FRAMEWORK

The proposed ML framework consists of three main modules, as
illustrated in Fig. 3: (a) driver Lagrangian data organization; (b) KNN
regressor training; and (c) Lagrangian trajectory construction. First,
the driver data which consists of short experimental Lagrangian trajec-
tories are analyzed and the extracted flow characteristics (i.e., instanta-
neous velocities and distribution of fluctuating velocities) are stored in

a database. Then, a KNN regressor is trained to learn the primary flow
pattern governing the flow field. By setting new flow conditions similar
to those of the driver data, a corresponding new long-term Lagrangian
trajectory is constructed by advancing a seed tracer throughout the
instantaneous velocity field that is approximated by the KNN-
predicted mean velocity coupled with a Gaussian fluctuation. The key
equations and parameters are presented and discussed in Secs. IIIA
and IIIB.

A. Key equations

As described in Sec. II C, the dynamic analysis of the input driver
trajectories provides the local instantaneous velocities and the global
fluctuation distributions in each direction, which are combined with
the flow operating conditions used namely, the impeller rotational
speed (N), particle mass concentration (Cm) and particle size (d), and
organized into two parts in the database. Part-1 data are encoded in
the format [N;Cm; d; r; z; h; vr ; vz; vh] and used to train the KNN
regressor, while Part-2 data formatted as [N;Cm; d; lr ;rr ;lz;
rz; lh;rh] are used to feed the Gaussian noise generator.

In the KNN training process, normalization is first applied to
rescale the data into a unit scale to weaken the multiple features span-
ning effect caused by different units and magnitudes of features,
whereby all features [N;Cm; d; r; z; h] are normalized using their

FIG. 4. Sample case showing the effects of using one or more 5 min driver datasets corresponding to different agitation speeds, to predict the long-term 40min trajectory cor-
responding to N¼ 330 rpm: ML model predictions and PEPT measurement compared in single-phase flow.
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maximum value, i.e., N=Nmax, Cm=Cm�max, d=dmax, r=R, z=H, h=p,
and targets [vr ; vz; vh] are normalized by the impeller tip velocity, vtip.
The KNN training process is illustrated in Fig. 3(b). First, the data in
Part-1 are randomly split into a training dataset (85%) and a test data-
set (15%). A pipeline is then created to search for the best hyperpara-
meters for the KNN regressor using a GridSearchCV algorithm.44

During each step of the search, the performance of the trained KNN
regressor is independently validated by the tenfold cross-validation

technique,45 and the best KNN regressor is determined by searching
for the minimum of the root mean square error (RMSE). The test
dataset is then used to recheck the model performance. The trained
KNN regressor remembers the correspondence between normalized
features X and targets V , and stores the training data in a fast-
indexing structure. Given a new query instance Xi, the KNN regressor
rapidly indexes a number (k) of neighboring instances in the training
data and returns their weighted average as the target Vpred

i of the new
instance, as follows:

Vpred
i ¼ KNN Xið Þ ¼

Xk
j¼1

wij � V jð Þ; (4)

where V j is the target of the jth instance in the training data; wij is the
distance weight function that is the inverse of the feature distance Lp
between the query instance Xi and training instance Xj, thus

wij ¼ 1
Lp Xi;Xjð Þ ¼

Xn
l¼1

X lð Þ
i � X lð Þ

j

��� ���p
 !�1

p

; (5)

where p is a constant for different types of distance function and XðlÞ
j

is the lth dimensional feature of the jth instance. In this study, the
value of l is 6 which is the number of feature dimensions; the value of
p is set to 2 to correspond to the normalized Euclidean distance to cal-
culate the feature distance (Lp).

44

When the ML framework is applied to construct a trajectory for
a given phase/component in a new multiphase system operated under
a similar flow regime, the flow operating conditions ðN;Cm; dÞ and
the start location x ¼ ðr; z; hÞ of a virtual seed tracer should be set to
initialize the simulations. These initial data are then combined into a

FIG. 5. Illustration of particle–wall collision model.

FIG. 6. Azimuthally averaged axial and
radial profiles of total flow velocity: ML
model and PEPT compared in single-
phase flow; N¼ 330 rpm.
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new instance X that requests a mean velocity from the trained KNN
regressor and a fluctuation from the Gaussian noise generator. Thus,
the ML framework approximates the local instantaneous velocity field
by

vti ¼ vi
t þ v0i t ¼ vtip � KNN Xtð Þ þ N li; r2i

� �� �
; (6)

where vti , vi
t , and v0i t are, respectively, the instantaneous, mean, and

fluctuating velocities of the tracer in the ith direction at time t.

FIG. 7. Azimuthally averaged axial and
radial profiles of total flow velocity: ML
model and PEPT compared in single-
phase flow; N¼ 540 rpm.

FIG. 8. Mass continuity verification for
ML-modelled single-phase flows: (a) nor-
malized mean radial velocity averaged
over cylindrical envelope Sr; (b) normal-
ized mean axial velocity averaged over
horizontal surface Sz.
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Subsequently, the new location xtþdt , after time step dt, is updated by
advancing the seed tracer through the local velocity field in the whole
vessel volume, thus

xtþdt
i ¼ xti þ vti � dt; (7)

where xti is the tracer location in the ith direction at time t. Equations
(6) and (7) are iterated until the pre-set time length is reached. Thus,
the ML framework constructs a long-term flow trajectory for the
selected phase/component having characteristics closely similar to
those learned from the input driver data.

B. Key parameters

To implement the ML framework, several key parameters should
be determined and used to simulate the new phase/component trajec-
tory of flow systems in stirred vessels. First and foremost is the mini-
mum amount of input Lagrangian driver data, which should include
tracer visits to most of the grid cells in the vessel domain, and which
serves as a benchmark for the flow pattern. Trial and error tests
showed that using a 5min trajectory was sufficient to achieve an excel-
lent agreement between ML-predicted flow fields and PEPT measure-
ments for the same flow condition.

The aim here is to use ML to predict long-term Lagrangian tra-
jectories pertaining to new flow conditions; hence, several short-term
trajectories from different flow conditions should be utilized to drive
the ML framework. For example, to predict the single-phase flow field
in a vessel agitated for any given value of N, different input driver data-
sets obtained at various agitation speeds should be used, and similarly
for other flow variables. A sample case is illustrated in Fig. 4. The three
velocity components and total velocity are computed from 40min

trajectories predicted by the ML approach for N¼ 330 rpm, using
driver datasets consisting of individual trajectories (5min each) corre-
sponding to: (i) one agitation speed (260 rpm); (ii) two agitation
speeds (260, 400 rpm); and (iii) four agitation speeds (150, 260, 400,
and 500 rpm). Comparison of results with PEPT measurements shows
that using a single 5min driver dataset corresponding to 260 rpm,
overall yields a good prediction of the velocity field at 330 rpm despite
some minor discrepancies throughout the vessel. However, feeding
more driver data corresponding to more agitation speeds clearly
enhances predictability, with no significant improvements being
obtained from four datasets compared to two, as depicted in Fig. 4.
Similar tests showed that this also applies to other flow variables, e.g.,
Cm or d.

Moreover, the quality of the driver datasets is also crucial since it
serves as a benchmark, i.e., a poor driver dataset (inaccurate experi-
mental data) would mislead the ML framework. Henceforth, for
optimum accuracy and computational efficiency, two datasets of
short-term Lagrangian trajectories will be used to drive the framework.
Furthermore, intensive tests showed that the prediction accuracy of
the three velocity components is totally reflected in the total velocity
and to avoid duplication of the information presented, therefore, only
the total velocity profiles will be presented in Sec. IV. It should be
noted, however, that the flow to be predicted should not pertain to a
hydrodynamic regime in terms of flow (e.g., turbulent) and particle
suspension (e.g., just-suspended) which is too dissimilar to the one
from which the driver data are obtained. In other words, extrapolation
from one hydrodynamic regime to a completely different one is not
currently possible.

The next key parameter is k in Eq. (4), which is the number of
instances in the training data used to predict a new instance,

FIG. 9. Azimuthally averaged axial and
radial profiles of total liquid phase velocity:
ML model and PEPT compared in monodis-
perse particle–liquid flow; Cm¼ 20wt. %
(Cv¼ 10.4 vol. %); N¼ 1.25Njs (613 rpm).
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determining the performance of the KNN regressor. Too large or too
small a k value will produce serious errors by under-fitting or over-
fitting the training data. In other words, as k increases, the ML frame-
work performance gradually improves to an optimum point beyond
which it starts deteriorating. In general, this optimum k value is auto-
matically determined by minimizing the KNN prediction error during
the training process [Fig. 3(b)].

During construction of the predicted Lagrangian trajectory, a
particle–wall collision model is also needed to avoid the particle tracer
wandering outside of the flow boundary, as depicted in Fig. 5. The
ratio of the tracer velocities before and after collision is defined as the
restitution coefficient, e

e ¼ v2j j
v1j j ; (8)

where v1 and v2 are the velocity vectors before and after the
particle–wall collision, respectively. The restitution coefficient nor-
mally ranges from 0 to 1, where 0 means a perfectly inelastic colli-
sion and 1 means a perfectly elastic collision. A sensitivity test for
the restitution coefficient showed that the ML framework predic-
tions are not very sensitive to the selected value,27 provided it is
not zero (perfectly inelastic collision) to avoid particles clustering
at the wall. Hence, a perfectly elastic collision (e ¼ 1) was assumed
in this work.

FIG. 10. Azimuthally averaged axial and
radial profiles of (a) total particle velocity
and (b) particle volume concentration: ML
model and PEPT compared in monodis-
perse particle–liquid flow; Cm¼ 20 wt. %
(Cv¼ 10.4 vol. %); N¼ 1.25Njs (613 rpm).
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IV. RESULTS AND DISCUSSION

The ML model was implemented using the Python language,
to predict long-term Lagrangian trajectories in single-phase and
complex multicomponent particle–liquid turbulent flows under a
range of conditions (N¼ 60–540 rpm and Cm ¼ 5–40 wt. %). The
typical computation time for predicting and constructing a 40min
ML trajectory with a typical 5ms time step was around 2 h, which
is orders of magnitude less than most conventional numerical sim-
ulations of turbulent flows. Note that the size of the time step does
not affect the accuracy of the results provided it is on the order of
milliseconds; 5ms was selected to match the time step of the acqui-
sition of the experimental PEPT data. For each application, the ML
framework was fed with short-term Lagrangian trajectory driver
datasets, as described above. To evaluate the framework, the azi-
muthally averaged profiles of local total velocity and solid phase
concentration predicted by ML were compared with the PEPT
measured long-term profiles. Comparison was performed axially
over four cylindrical envelopes spanning the vessel radius
(r¼ 0.30R–0.92R) and radially over six horizontal planes spanning
the height of the vessel (z¼ 0.05H–0.89H). Further validation was
conducted via verification of mass continuity for all ML modeling
cases.

A. Evaluation of ML model in single-phase flows

To evaluate the capability of the dynamical model to predict
the velocity field in single-phase flows, two short-term (5min) tra-
jectories measured by PEPT at N¼ 260 and 400 rpm were used as
input driver data. The flow fields corresponding to agitation speeds
of 330 rpm (interpolation within the range of input driver data,

MLsingle; 260rpmþ400rpm!330rpm) and 540 rpm (extrapolation outside
the range of input driver data, MLsingle; 260rpmþ400rpm!540rpm) were
then computed from the long-term (40min) trajectories predicted
by the ML model. Comparison of the ML-predicted and PEPT-
measured velocity fields is presented in Figs. 6 and 7, showing an
excellent agreement for both 330 and 540 rpm. Hence, the ML
model is capable of predicting flow both within and without the
range of impeller speeds pertaining to the supplied driver data.
More extensive validation was performed using PEPT measure-
ments in fully turbulent single-phase flows across a wide range of
agitation speeds (see Table I: N¼ 60–540 rpm). More results are
depicted in Fig. S1 in the supplementary material.

Mass continuity calculations were performed to verify the reli-
ability and accuracy of the ML-predicted flow data, i.e., the net mass
flux through any given closed surface S should be zero, thusX

S

qv � DS ffi 0; (9)

where q is the phase density. Note that the term v � DS is always zero
over the base and wall of the vessel. Therefore, the closed surface S can
be reduced to a cylindrical envelope Sr or a horizontal plane Sz, as
shown in Fig. 8, and the surface element DS is then replaced by DSr or
DSz . Using equal-volume cells [Fig. 1(c)], DSr or DSz for each cell is
constant, and the phase density is also constant. Hence, the left term
in Eq. (9) reduces to the average axial velocity over a horizontal
plane (i.e., vzh iSz ) or the average radial velocity over a cylindrical enve-
lope (i.e., vrh iSr ). Extensive tests of ML-predicted single-phase flows
show a very good verification of mass continuity, i.e., the average
velocities vzh iSz and vrh iSr are close to zero throughout the vessel, gen-
erally less than 2% of the impeller tip velocity vtip, as depicted in Fig. 8.

FIG. 11. Azimuthally averaged axial and
radial profiles of total liquid phase velocity:
ML model and PEPT compared in monodis-
perse particle–liquid flow; Cm¼ 20wt. %
(Cv¼ 10.4 vol. %); N¼ 1.5Njs (735 rpm).
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B. ML model evaluation in monodisperse
particle–liquid suspensions

The capability of the model to predict the flow field of monodis-
perse particle–liquid suspensions was assessed under different agita-
tion regimes (i.e., at the just-suspension speed Njs and at speeds above
it up to 2Njs). Thus, 5-min-long liquid and solid trajectories deter-
mined by PEPT at a certain agitation speed were used as input driver
data to simulate the flow field developed at higher speeds. For exam-
ple, predicting flow at 1.25Njs was implemented using the liquid and
solid PEPT trajectories developed at Njs as input driver data, which is

denoted by MLmono;Njs!1:25Njs . The azimuthally averaged profiles of
local total liquid and particle velocities predicted by ML for
N¼ 1.25Njs and Cm¼ 20wt. % are, respectively, compared in Figs. 9
and 10(a) with long-term PEPT measurements. Results show that the
ML-predicted velocities for both liquid and solid phases are generally
in very good agreement with the PEPT measurements.

The local solid concentration can be inferred from a long-term
Lagrangian trajectory of a trackable solid particle in a particle–liquid
flow using our previously established occupancy approach.33,35 The
local occupancy is defined as the ratio of the cumulative time Dt spent

FIG. 12. Azimuthally averaged axial and
radial profiles of (a) total particle velocity
and (b) particle volume concentration: ML
model and PEPT compared in monodis-
perse particle–liquid flow; Cm¼ 20 wt. %
(Cv¼ 10.4 vol. %); N¼ 1.5Njs (735 rpm).
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by particle tracer in a grid cell to the ergodic time tE , i.e., the experi-
mental runtime t1 divided by the number Nc of equal-volume cells in
the grid (tE ¼ t1=Nc). Thus, the local occupancy (OE) can be defined
as follows:

OE ¼ Dt
tE

: (10)

The local occupancy has been shown to be equal to the ratio of the
local volume particle concentration (c) and mean volume particle con-
centration in the whole vessel (Cv), that is

OE ¼ c
Cv

: (11)

Using the above approach, for a given suspension flow, the ML-
predicted and PEPT-measured local particle concentration fields
were inferred from their respective long-term Lagrangian trajecto-
ries. The theoretical and experimental axial and radial particle vol-
ume concentration profiles corresponding to the above case of
20 wt. % solids at 1.25Njs are displayed in Fig. 10(b). Overall, the
ML predictions are close to the experimental values except for
some discrepancies near the bottom corner. This is most likely due
to frequent particle–wall collisions resulting in more stochastic
and larger velocity fluctuations in this region, which are less well
approximated by the global Gaussian noise generator during the
ML trajectory simulation.

Similarly, the flow field of the 20wt. % case was predicted by the
ML model at a higher speed of 1.5Njs using the liquid and solid PEPT
trajectories developed at Njs as input driver data, and is denoted by
MLmono;Njs!1:5Njs . Comparison of the obtained local total liquid veloc-
ity, particle velocity, and particle volume concentration distribution

with experiments is depicted in Figs. 11 and 12. Results show that the
ML predictions are overall in good agreement with PEPT measure-
ments, although the deviations of particle volume concentration near
the bottom corner observed for the case of MLmono;Njs!1:25Njs are now
slightly larger.

Attempts to predict the flow field at the even higher speed of
2Njs based on driver data obtained at Njs failed for 20 wt. % as well
as other concentrations, providing a particle volume concentration
with a significant overestimation in the bottom half of the vessel
and a significant underestimation in the upper half. This may be
attributed to the large difference in the hydrodynamic regime
approaching complete suspension homogeneity at 2Njs compared
to the just-suspended regime at Njs. In other words, the ML model
is unable to predict flow in a regime that is too remote from the
regime of the input driver data. However, using input driver data
based on particle–liquid flow developed at Njs, the ML model is
able to predict with good accuracy flows developed at agitation
speeds up to 1.5Njs, which corresponds to a large difference
(>threefold) in power input.

Further tests were conducted using driver data that are more
diverse, i.e., acquired at two different impeller speeds, for example, at
Njs and 2Njs. For example, comparing the results in
MLmono;Njsþ2Njs!1:5Njs (Fig. S2 in the supplementary material) and
MLmono;Njs!1:5Njs (Fig. 12), shows that the former case provides
improved predictions especially near the bottom of the vessel. It fur-
ther demonstrates that accuracy and reliability of the ML model are
improved with a larger and more diverse amount of input driver data,
provided the particle–liquid flow regime is not too dissimilar to that of
the input driver data. Mass continuity was also verified for all the
above cases, as shown in Fig. S3.

FIG. 13. Azimuthally averaged axial and
radial profiles of total liquid phase velocity:
ML model and PEPT compared in polydis-
perse particle–liquid flow; Cm¼ 20 wt. %
(Cv¼ 10.4 vol. %); N¼Njs (510 rpm).
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C. Evaluation of MLmodel evaluation in polydisperse
particle–liquid suspensions

The capability of the proposed ML approach to predict the multi-
component particle–liquid flow field developed at the just-suspension
regime (N¼Njs) was assessed under varying conditions of solid load-
ing. Thus, 5-min PEPT-determined trajectories of all individual com-
ponents corresponding to two different particle concentrations
were used as input driver data to simulate the flow developed at a dif-
ferent particle concentration. For example, the interpolation case of
predicting flow at 20wt. % solid loading, which is denoted by

MLpoly; 5wt:%þ40wt:%! 20wt:%, was implemented using PEPT trajectories
of all components from 5 and 40wt. % suspensions as input driver
data. Comparison of the ML-predicted and PEPT-measured liquid
velocity field is presented in Fig. 13, showing excellent agreement.
Sample validation results of the velocity field and particle distribution
are exhibited in Figs. 14 and 15, for two particle size fractions, 1.1 and
3.1mm. Results for the other particle size fractions (1.7, 2.2, 2.7mm)
are presented in Figs. S4–S6 in the supplementary material. Again, the
predictions are overall very good. Mass continuity was verified by all
the flow components, and the results are summarized in Fig. S7,

FIG. 14. Azimuthally averaged axial and
radial profiles of (a) total particle velocity
and (b) particle volume concentration: ML
model and PEPT compared in polydis-
perse particle–liquid flow; Cm¼ 20 wt. %
(Cv¼ 10.4 vol. %); d¼ 1.1 mm; N¼Njs
(510 rpm).
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showing close-to-zero average velocities vzh iSz and vrh iSr , generally
less than 0.02vtip.

Other tests including interpolation as well as extrapolation cases
were conducted using polydisperse suspensions of different solid load-
ings, 5, 10, and 40wt. %, denoted by MLpoly; 10wt:%þ20wt:%! 5wt:%,
MLpoly; 5wt:%þ40wt:%! 10wt:%, and MLpoly; 10wt:%þ20wt:%! 40wt:%. Sample
results of an extrapolation case at 40wt. % are depicted in Fig. S8 in
the supplementary material. Overall, a high degree of model predict-
ability was achieved. In conclusion, the ML framework is capable of

very good predictions within and without the range of solid loading
concentrations used to provide driver data for the model.

Furthermore, the ability to predict the flow field of a given parti-
cle size fraction using input driver data pertaining to other size frac-
tions was investigated in the just-suspension regime (N¼Njs). For
example, the interpolation case of predicting the flow field of 2.2mm
particles at 40wt. % suspensions, which is denoted by
MLpoly; 1:1mmþ3:1mm! 2:2mm, was implemented using 5min PEPT tra-
jectories of 1.1 and 3.1mm particles as input driver data, as depicted

FIG. 15. Azimuthally averaged axial and
radial profiles of (a) total particle velocity
and (b) particle volume concentration: ML
model and PEPT compared in polydis-
perse particle–liquid flow; Cm¼ 20 wt. %
(Cv¼ 10.4 vol. %); d¼ 3.1 mm; N¼Njs
(510 rpm).
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in Fig. 16. Other extrapolation cases, MLpoly; 1:7mmþ2:2mm! 1:1mm and
MLpoly; 1:7mmþ2:2mm! 3:1mm, and sample results for 1.1mm are pre-
sented in Fig. S9 in the supplementary material. In all cases, results
show that the ML predictions are overall very good. The mass continu-
ity was also verified for all investigated cases, as shown in Fig. S10.

V. CONCLUSIONS

We have successfully developed and validated a computationally
efficient machine learning framework for predicting single-phase and
complex two-phase multicomponent turbulent flows in stirred vessels.

Using a very small amount of Lagrangian driver trajectories, the pro-
posed ML model learns the primary flow dynamics from the driver
data and efficiently produces new long-term trajectories of the flow
components corresponding to new flow conditions. Evaluation was
conducted by comparing the long-term ML-predicted trajectories and
long-term PEPT-measured trajectories using the local flow character-
istics inferred, namely, local flow component velocities, and concentra-
tion distribution. The overall excellent agreement obtained confirmed
the accuracy and reliability of the presented ML model for predicting,
such complex flows under a wide range of conditions. Thus, accurate

FIG. 16. Azimuthally averaged axial and
radial profiles of (a) total particle velocity
and (b) particle volume concentration: ML
model and PEPT compared in polydis-
perse particle–liquid flow; Cm¼ 40 wt. %
(Cv¼ 23.6 vol. %); d¼ 2.2 mm; N¼Njs
(610 rpm).
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ML predictions can be achieved within and without the respective
range of the supplied driver data for (i) different impeller speeds, pro-
vided the hydrodynamic flow regime is not dissimilar to the one corre-
sponding to the driver data; (ii) for different solid loading
concentrations; and (iii) for different particle size fractions.

The proposed ML framework provides a new flow analysis and
modeling strategy, whereby only short-term experiments (or alterna-
tively high-fidelity simulations) covering a few typical flow situations
are sufficient to enable the prediction of complex multiphase flows,
significantly reducing experimental and/or simulation costs. The ML
technique is applicable to other impeller configurations provided that
driver data are available for the particular impeller configuration con-
sidered. However, using driver data from one impeller configuration
to predict the performance of another impeller configuration is gener-
ally not possible because of the large differences in flow patterns. For
example, our investigations showed that data pertaining to a down-
pumping PBT could not be used to drive the ML model to predict the
performance of an up-pumping PBT.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional validation results
of the proposed machine-learning framework.
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NOMENCLATURE

Symbols

c Local volume solid concentration (%)
Cm Mean solid mass concentration (%)
Cv Mean solid volume concentration (%)

D Impeller diameter (m)
d Solid particle diameter (mm)
dt Time step of machine learning trajectory (s)
e Restitution coefficients (-)
H Height of the fluid in vessel (m)
k Number of neighbors used in KNN regressor (-)
Lp Distance between two samples in feature space (-)
N Impeller rotational speed (rpm)
Nc Number of equal-volume cells of cylindrical mesh

system (-)
Njs Minimal impeller rotational speeds for just suspen-

sion (rpm)
NL Number of detected locations in a cell (-)

Nr ;Nz; Nh Number of cells in three directions of cylindrical
mesh system (-)

N l; r2ð Þ Gaussian distribution with mean value l and stan-
dard derivation r (-)

OE Local occupancy (-)
R Vessel radius (m)
r Radial cylindrical coordinate (m)

Reimp Impeller Reynolds number (-)
T Vessel diameter (m)
t Time (s)
tE Ergodic time (s)
t1 Total runtime of Lagrangian trajectory (s)
V Targets of training sample (-)
v Lagrangian velocity (m/s)
v0 Fluctuating velocity (m/s)
v Mean velocity (m/s)

vtip Impeller tip velocity (m/s)
vrh iSr Averaged radial velocity over a cylindrical envelope

(m/s)
vzh iSz Averaged axial velocity over a horizontal plane (m/s)

vh; vr ; vz Lagrangian velocity components (m/s)
v0h; v

0
r ; v

0
z Fluctuating velocity components (m/s)

v1, v2 Velocities before and after collision (m/s)
Vpred New predicted targets (-)

w Weight function of KNN regressor (-)
x 3D space location of tracer (m)

x, y, z Cartesian coordinates (m)
Xi; Xj ith query instance and jth training instance (-)

XðlÞ
i ; XðlÞ

j lth dimensional feature of ith instance and jth
instance (-)

Dt Cumulative time of tracer spent in each cell (s)

Greek symbols

h Azimuthal coordinates of cylindrical system (rad)
l Mean normalized fluctuating velocity (-)
q Phase density (kg/m3)
r Standard deviation of normalized fluctuating velocity (-)

Abbreviations

CFD Computational fluid dynamics
KNN k-nearest neighbors
LDV Laser Doppler velocimetry
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ML Machine learning
PBT Six-blade 45� pitched-turbine

PBTD Down-pumping PBT
PEPT Positron emission particle tracking
PIV Particle image velocimetry

RANS Reynolds-averaged Navier–Stokes
3D Three-dimensional
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