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Abstract. We investigate the Coulomb blockade in quantum dots asymmetrically

coupled to the leads for an arbitrary voltage bias focusing on the regime where electrons

do not thermalise during their dwell time in the dot. By solving the quantum kinetic

equation, we show that the current-voltage characteristics are crucially dependent on

the ratio of the Fermi energy to charging energy on the dot. In the standard regime

when the Fermi energy is large, there is a Coulomb staircase which is practically the

same as in the thermalised regime. In the opposite case of the large charging energy, we

identify a new regime in which only one step is left in the staircase, and we anticipate

experimental confirmation of this finding.
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1. Introduction

The phenomenon of the Coulomb blockade in quantum dots has been a longstanding

topic of interest and many aspects of it have been studied (see [1, 2, 3] for reviews).

It arises due to the strong Coulomb interaction resulting in a large charging energy,

Ec = e2/C, that must be overcome in order to add an additional electron onto the dot

of capacitance C. This leads to a number of notable physical results such as peaks in the

conductance as a function of gate voltage [4, 5, 6] and a staircase in the dependence of

current on the bias voltage (I-V characteristics) that has become known as the Coulomb

staircase [4, 7, 8].

The conventional approach to the Coulomb blockade is based on the master

equation [5, 7, 9, 10], although other approaches have also been successful. For example,

the Ambegaokar-Eckern-Schön (AES) action [11] has been used to study relaxation

dynamics on a quantum dot [12], although this method cannot be utilised in all regimes

[13]. The non-equilibrium Green’s function approach has been used to highlight the

relation between the Coulomb blockade and the zero-bias anomaly [14, 15, 16, 17], as

well as to calculate the tunnelling density of states of a Coulomb-blockaded quantum

dot near equilibrium [14, 18].

The master equation approach to the Coulomb staircase assumes instantaneous

thermalisation of the tunnelling electrons with those already on the dot. This is justified

when the quasiparticle decay rate due to the electron-electron interaction, γ, is much

larger than the tunnelling rates to the (left and right) leads, ΓL,R, so that the time spent

by the extra electrons on the dot is sufficient for their full thermalisation.

In this paper we consider the regime where one can neglect thermalisation,

γ ≪ Γ, (1)

otherwise keeping the separation of energy scales characteristic for the classical Coulomb

blockade [3]:

Γ ≪ ∆ ≪ T ≪ Ec, (2)

where ∆ is the typical energy level spacing and T is the temperature. The regime

(1) is important, in particular, when electrons in the dot experience localisation in the

Fock space [19] (the precursor for many-body localisation [20]) and is easily reachable in

metallic quantum dots with a large dimensionless conductance g. Previously, analytical

calculations for this regime have been performed only in the linear response limit [6],

while numerical calculations for an arbitrary bias voltage [21] have been limited to the

experimentally important regime [22] of a large number of electrons in the dot when

εF ≫ Ec with εF being the electron Fermi energy on the dot. The opposite limit of

considerable experimental and theoretical interest is that of a few electrons on the dot,

where the lowest energy levels make a strong impact on the observables (see [23] for a

review), and the fine structure of the Coulomb staircase is resolved [24].

Here we consider a quantum dot in the absence of thermalisation with strong

asymmetry in the coupling to the leads (typically assumed in considerations of the
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thermalised regime [4, 7, 8, 10]) for both large and small ratio εF/Ec. We use the

quantum kinetic equation to develop a full analytical solution for the Coulomb staircase

for N ≫ 1 at any voltage eV and complement it with a numerical solution for N . 10.

The solution crucially depends on the ratio εF/Ec. For εF ≫Ec, the absence

of thermalisation does not play a significant role and the Coulomb staircase remains

practically the same as in the thermalised regime [4, 7, 8, 10], with an equilibrium

established with the most strongly coupled lead.

However, for εF≪Ec we show that the staircase practically vanishes. Instead,

assuming the traditional anisotropy in coupling to the leads, ΓR ≪ ΓL, with the voltage

V applied to the left lead, there is a single step in the current equal to eΓR(N0+1)

(with N0 being the number of electrons on the dot at V=0) when V increases from 0 to

eV ∼ Ec. All the further steps are of order 1 in the same units of eΓR, i.e. practically

invisible for N ≫ 1. We have shown numerically that this result holds also for N . 10.

This is due to a significant contribution of the low energy levels even for a large number

of electrons in the dot.

2. Model

We consider the quantum dot asymmetrically coupled to two leads with the bias voltage

V applied to the left one described by the Hamiltonian

H = Hd +Hℓ +HT . (3)

Here Hd is the Hamiltonian of the Coulomb-blockaded dot in the zero-dimensional limit

[1, 2, 3],

Hd =
∑

n

εnd
†
ndn +

1
2
Ec

(
N̂ −Ng

)2

, (4)

where εn are the energy levels of the dot, d†n (dn) are the creation (annihilation) operators

of the quantum dot, N̂ =
∑

n d
†
ndn is the number operator for the dot, and Ng is the

preferable number of electrons on the dot in equilibrium set by the gate voltage. The

coupling to the leads is described by

Hℓ =
∑

k,α

(εk − µα) c
†
k,αck,α, (5)

where α = L,R labels the lead, c†k,α (ck,α) are the creation (annihilation) operators for

an electron of energy εk, and µα is the chemical potential of the lead, µL = µ+ eV and

µR = µ. The tunnelling between the dot and the leads is described by the tunnelling

Hamiltonian

HT =
∑

α,k,n

(
tαc

†
k,αdn + h.c.

)
, (6)

where the tunnelling amplitude tα, which is assumed to be independent of k and n,

defines the broadening of the energy levels Γ = ΓL + ΓR with Γα = 2πνα|tα|2, with the

density of states να taken to be a constant.
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We assume the absence of thermalisation in the dot which will allow us to use the

quantum kinetic equation for a given energy. This is justified when the inequality (1)

is satisfied. For a zero-dimensional diffusive dot, the quasiparticle decay rate due to the

electron-electron interaction at energy ε is given for ∆ ≪ T by [19, 25, 26]

γ(ε) ≈ ∆

(
ε

ETh

)2

, (7)

where ETh = g∆ is the Thouless energy and g ≫ 1 is the dimensionless conductance of

the dot. This result is valid provided that
√
g∆ < ε < ETh.

In the equilibrium regime in the absence of the coupling to the leads, the tunnelling

density of states has some interesting features [18] which, intuitively, are preserved if

one lead dominates the behaviour of the system and the chemical potential on the dot

will be determined by that lead. This quasi-equilibration allows us to solve exactly the

case of strongly asymmetrically coupled leads, either for ΓL/ΓR ≫ 1 when the jumps in

the current exist, or for ΓL/ΓR ≪ 1 when the current has almost Ohmic behaviour.

3. Quantum kinetic equation

To analyse the Coulomb blockaded quantum dot in the non-linear regime we use the

Keldysh technique (see, e.g., [27] for a review) in a way similar to that detailed in [28].

3.1. Quantum dot in the weak coupling limit

In the case of an isolated dot, i.e. totally neglecting the level broadening Γ, the Keldysh

Green’s function can be written as a sum over all levels, g>,<(ε) =
∑

n g
>,<
n (ε) with the

single-level Green’s functions given by

g>n (t) = −iTr
(
ρ̂0dn(t)d

†
n

)
, g<n (t) = −iTr

(
ρ̂0d

†
ndn(t)

)
, (8)

where dn(t) = eiHtdne
−iHt and ρ̂0 is the density matrix. Additionally, the particle

number is conserved and the Green’s functions can be written as sums over the N -

particle subspaces,

g>n (ε) = −2πi
∑

N

δ (ε− εn − ΩN ) g
>
N(εn), g>N(εn) = TrN

(
ρ̂0dnd

†
n

)
, (9)

g<n (ε) = −2πi
∑

N

δ (ε− εn − ΩN−1) g
<
N(εn), g<N(εn) = −TrN

(
ρ̂0d

†
ndn

)
, (10)

with the normalisation
∑

N (g>N(εn)− g<N(εn)) = 1. The charging energy required to

add an electron is included above through ΩN defined as

ΩN ≡ EN+1 − EN = Ec

(
N + 1

2
−Ng

)
, EN ≡ 1

2
Ec(N −Ng)

2. (11)

The coupling to the leads is included via the quantum kinetic equation (QKE),

which in the weak coupling limit (Γ → 0) can be written for each level as [28, 29]

g>,<
n (ε) = gRn (ε)Σ>,< (ε) gAn (ε) . (12)
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The self energies for non-interacting leads are assumed to be independent of the dot

level n and are given by

Σ>(ε) =
∑

k,α

|tα|2g>k,α(ε) = −i [Γ− (ΓLfL(ε) + ΓRfR(ε))] , (13)

Σ<(ε) =
∑

k,α

|tα|2g<k,α(ε) = i (ΓLfL(ε) + ΓRfR(ε)) . (14)

Above, the Green’s functions for the leads are g>k,α(ε) = −2πi(1−f(ε−µα))δ(ε−εk+µα)

and g<k,α(ε) = 2πif(ε − µα)δ(ε − εk + µα), where f(ε − µα) is a Fermi function. The

density of states in the leads, which enters via the tunnelling rates Γα = 2πνα|tα|2, is
given by να =

∑
k δ(ε− εk + µα), while Γ = ΓL + ΓR.

Now we rewrite the QKE (12) as

g>n (ε)Σ
<(ε) = g<n (ε)Σ

>(ε). (15)

Substituting in Eqs. (9, 10) we use the ansatz

g>N(εn) = pN (1− FN(εn)) and g<N(εn) = −pNFN(εn), (16)

where pN is the probability of having N electrons on the dot and FN(εn) is the

distribution function given N electrons on the dot which, in the case of complete

thermalisation, goes over to the equilibrium Fermi distribution function. In these terms,

we write the QKE as follows:

pN (1− FN(εn)) f̃(εn + ΩN ) = pN+1FN+1(εn)
(
1− f̃(εn + ΩN )

)
, (17)

where

f̃(ε) =
ΓL

Γ
f(ε− µ− eV ) +

ΓR

Γ
f(ε− µ). (18)

This corresponds to the detailed balance equations derived in [6] for ∆ ≫ T and

reproduces the case of complete thermalisation after the summation over n and making

the replacement FN (ε) → f(ε − εF). The QKE (17) should be complemented by the

normalisation conditions,
∑

N pN = 1 and
∑

n FN(εn) = N .

We represent the current going from the dot to the lead α via pN and FN(εn) as

Iα = eΓα

∑

N

pN
∑

n

(
FN (εn) [1− f(εn−µα+ΩN−1)]− [1− FN (εn)] f(εn−µα+ΩN )

)
(19)

Applying current conservation, I = IR = −IL and using µL = µ + eV and µR = µ, we

express the current as

I = e
ΓLΓR

Γ

∑

N

pN
∑

n

(
FN (εn) [f(εn − µN−1 − eV )− f(εn − µN−1)]

+ (1− FN (εn)) [f(εn − µN − eV )− f(εn − µN)]
)
. (20)

with µN ≡ µ − ΩN . Assuming a density of states on the dot to be constant, 1/∆, we

convert the sum over n to an integral over all energies on the dot (counted from zero).

Then in the low-T limit

I = e
ΓLΓR

Γ

∑

N

pN

[ ∫ µN−1+eV

µN−1

dεΘ(ε)FN(ε) +

∫ µN+eV

µN

dεΘ(ε)(1− FN (ε))

]
, (21)

where Θ(ε) is the Heaviside step function.
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3.2. Solution to the QKE

The charging energy strongly penalises states with a wrong number of electrons on the

dot. In the case of strongly asymmetric leads with ΓL ≫ ΓR, the main contribution

to (20) is given by the two states with N closest to Ng + eV/Ec, since electrons have

time to fill the dot up. In the opposite case, ΓL ≪ ΓR, the two relevant states are those

closest to Ng. Keeping only the appropriate two states in the QKE (17) allows us to

obtain the following exact solution:

pN =
ZN

ZN + ZN+1
, pN+1 =

ZN+1

ZN + ZN+1
,

(22)

FN(εn) =
ZN(εn)

ZN

, FN+1(εn) =
ZN+1(εn)

ZN+1
,

where

ZN =
∑

{nj=0,1}

∞∏

j=1

[ϕ(εj + ΩN )]
nj δ(

∑
j nj),N ,

(23)

ZN+1 =
∑

{nj=0,1}

∞∏

j=1

[ϕ(εj + ΩN )]
nj δ(

∑
j nj),N+1,

with functions ϕ defined via f̃ in (18) as

ϕ(εj + ΩN ) =
f̃(εj + ΩN )

1− f̃(εj + ΩN )
, (24)

while ZN(εn) in (22) is defined by restricting the sums in (23) to configurations with the

state εn occupied. It is important to highlight that due to the form of the QKE (17),

ZN+1 in (23) contain ΩN rather than ΩN+1 so that the relevant N dependence enters

only in the Krönecker delta.

When N ≫ 1, the Krönecker delta is equivalent to a delta function,

δ(
∑

j nj),N =

∫
dθ

2π
eiθ(

∑
j nj−N) , (25)

which allows us to write the sums in (23) in the form

ZN =

∫
dθ

2π
eNf(θ), f(θ) =

1

N

∑

j

ln
(
1 + ϕ(εj + ΩN )e

iθ
)
− iθ. (26)

Now ZN can be evaluated in the saddle-point approximation. The optimal θ0 is

found from the second equation above where the sum is converted to the integral,∑
j → ∆−1

∫∞

0
dε, which gives

εF = N∆ =

∫ ∞

0

dε

(
e−iθ0

ϕ(ε+ ΩN )
+ 1

)−1

. (27)

As ΩN is unchanged by definition when going between ZN and ZN+1, (23), the relevant

N dependence of θ0 enters only via εF = N∆. Thus we find that in the saddle-point

approximation ZN = g(θ0)e
−iNθ0 , where g(θ0) is a function which depends on N only
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via εF. Hence for N ≫ 1, this function is approximately the same for ZN and ZN+1

which allows us to cancel g(θ0) in calculating pN and FN(εn) in (22). This results in

pN+1

pN
= e−iθ0 , FN(εn) ≈ FN+1(εn) ≈

(
e−iθ0

ϕ(ε+ ΩN )
+ 1

)−1

. (28)

The ratio of probabilities can be found by using N =
∑

n FN(εn), which corresponds to

the saddle point equation above.

The resulting I-V characteristics turn out to be strikingly different for the two

opposite regimes, when the ratio εF/Ec is either small or large, as described in the

following section.

4. Results and Discussion

We begin by reproducing the well-known results of the standard theory for εF ≫ Ec to

show that (i) our approach works and (ii) the absence of the full thermalisation does not

make a significant impact on the Coulomb staircase in the case of strong asymmetry in

the coupling to the leads.

Then we show that in the opposite limit, εF ≪ Ec, there is only one significant step

left in the Coulomb staircase if N ≫ 1. Additionally, we present numerical results for

small N which are in full agreement with our analytical results for N ≫ 1.

4.1. Small charging energy, Ec ≪ εF

We start with the linear response regime. Then f̃(ε) → f(ε − µ) in (18) so that

ϕ(ε+ΩN ) → exp[−β(ε−µ+ΩN )] in (24). Hence, using (28) we reduce the saddle point

equation (27) to

εF =

∫ ∞

0

dε

eβ(ε−µN )−iθ0 + 1
= T ln

(
eβµN+iθ0 + 1

)
≈ µN + iθ0T, (29)

where the approximate equality holds in the low-temperature limit, βµN + iθ0 ≫ 1.

Substituting into (28) iθ0 = β(εF − µN) = β(εF − µ + ΩN) (with µ being the chemical

potential in the leads and εF in the dot), and using pN+pN+1 ≈ 1 results in the following

expressions for the probabilities and distribution function,

pN =
e−β(EN+N(εF−µ))

∑
N e−β(EN+N(εF−µ))

, FN(ε) =
1

eβ(ε−εF) + 1
, (30)

where the sum over N is restricted to the two states with N closest to Ng. Substituting

(30) into the current (20) results in the following shape of the differential conductance

near the peak, µ− ΩN − εF = 0:

G =
dI

dV
=

e2

2∆

ΓLΓR

Γ

β

2
(ΩN + εF − µ)

sinh(β
2
(ΩN + εF − µ))

, (31)

in agreement with [4, 6].

We now turn to the nonlinear regime and demonstrate, by reproducing the well-

known results [4, 7, 8] for strongly asymmetric coupling to the leads and εF ≫ Ec, that
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the absence of thermalisation has no impact on the Coulomb staircase. For ΓL ≫ ΓR,

the solution to the QKE (17) for any V is given by (30) provided that we replace µ by

µL ≡ µ+eV and restrict the sum over N to the two states with N closest to Ng+eV/Ec.

Due to the exponential forms of the probabilities in (30), only one such state contributes

to the current outside some narrow windows in V . For a given V , this is the state where

N obeys the inequality ΩN−1 . eV . ΩN . Noticing that the distribution function in

(30), FN(ε) = f(ε − εF), is a Fermi function with a chemical potential εF, we see that

the second integral in (21) does not contribute to the current for low T , as the upper

limit of integration µN + eV ≈ εF − (ΩN − eV ) < εF.

Consider the contribution of the first integral in (21), starting with the regime

that begins in equilibrium (V = 0) and continues for 0 ≤ eV . ΩN0
, when there

are N0 electrons on the dot. Then, as ΩN0
≈ Ec/2 the lower integration limit

µN0−1 ≡ µ−ΩN0−1 ≈ εF +Ec/2 > εF so that this integral also vanishes. The current is

therefore zero as expected. With V increasing beyond ΩN0
, there are N > N0 electrons

on the dot. In this case, having εF ≫ Ec ensures that εF > ΩN for all relevant ΩN and

both the integration limits are positive, so the presence of Θ(ε) is irrelevant. The steps

in the current in the low-T limit are, therefore, given by

I = 0, 0 ≤ eV . ΩN0
(pN0

= 1),

I = eΓR
ΩN0

∆
, ΩN0

. eV . ΩN0+1 (pN0+1 = 1), (32)

I = eΓR
ΩN0+1

∆
, ΩN0+1 . eV . ΩN0+2 (pN0+2 = 1),

and so on. This demonstrates a staircase structure with the steps separated by eV=Ec

and an almost constant height proportional to Ec/∆. The full results, including the

windows around the jumps at eV=ΩN , are obtained by substituting (30) with the change

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

eV/Ec

0

50

100

150

200

250

300

350

400

450

I

eΓR

Non-thermalising

Thermalising

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

eV/Ec

0

50

100

150

200

250

300

350

400

450

I

eΓL

Non-thermalising

Thermalising

(a) (b)

Figure 1. The I-V characteristics for a dot in the regime where N0∆ ≫ Ec (N0∆=10Ec) and

ΩN0
= Ec/2. The blue line represents our solution to the QKE and the black dashed line is the

solution to the master equation in the standard theory where full thermalisation is assumed [4, 7, 8]. In

both instances, (a): ΓL/ΓR = 103 and (b): ΓL/ΓR = 10−3 an equilibrium is set up with the dominant

lead and the approaches produce the same results.
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µ → µL into (20) and are practically indistinguishable from the full thermalisation case

[4, 7, 8], as shown in Figure 1(a).

For the opposite asymmetry, ΓR ≫ ΓL, equilibrium with the right lead (with no

voltage applied there) is maintained and no staircase is observed as pN0
≈ 1 for all values

of V . Instead, the Ohmic behaviour prevails for eV & ΩN0
as the tunnelling electron

gains more energy as shown in Figure 1(b).

4.2. Large charging energy, Ec ≫ εF

In this limit, the low-energy states in the dot make a considerable impact on the

transport behaviour. The reason is that the regime εF < ΩN , which was impossible

εF/Ec ≫ 1, now arises.

For ΓL ≫ ΓR, the expressions for pN and FN(ε) are formally the same as for

Ec ≪ εF in (30) with the substitution µ → µL. However, as FN(ε) is now an extremely

narrow function (on the scale of Ec) and the integration limits may be negative, the

contributions of the above integrals to the current are severely restricted in comparison

to the case of εF/Ec ≫ 1. Starting again with N0 electrons on the dot at equilibrium,

we make similar arguments as in the former case to see that only the first integral in

(21) contributes. The crucial difference for N > N0 is that the lower limit of integration,

µN−1 ≈ εF − ΩN−1 = N∆ − ΩN−1, is less than zero, so that Θ(ε) becomes relevant.

Therefore, we find the current in the low-T limit to be strikingly different from that in

(32). (Note that for the opposite asymmetry, ΓR ≫ ΓL, the current remains Ohmic for

any ratio εF/Ec.)

I = 0, 0 ≤ eV . ΩN0
(pN0

= 1),

I = eΓR(N0 + 1), ΩN0
. eV . ΩN0+1 (pN0+1 = 1), (33)

I = eΓR(N0 + 2), ΩN0+1 . eV . ΩN0+2 (pN0+2 = 1),

0.0 0.5 1.0 1.5 2.0 2.5 3.0

eV/Ec

0

1

2

3

4

I

eΓR

Ec = 10

Ec = 30

Ec = 50

0.0 0.5 1.0 1.5 2.0 2.5 3.0

eV/Ec

0

1

2

3

4

I

eΓR

N0 = 0

N0 = 1

N0 = 2

(a) (b)

Figure 2. The numerical I-V characteristics for a dot with 7 states in the regime where N0∆ ≪ Ec

(N0∆ ≈ 0.01Ec) and ΩN0
= Ec/2. (a): Increasing the charging energy makes the steps sharper but

does not affect the size of the jumps. (b): Increasing the number, N0, of electrons in equilibrium (with

the gate voltage) illustrates that the first jump is equal to eΓR(N0+1). In both cases ΓL = 100ΓR.
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and so on. Crucially the first jump in the current (measured in units of eΓR) at eV = ΩN0

is equal to N0 + 1 while all the subsequent jumps equal to 1 in these units.

For N0 ≫ 1, this means that the staircase practically disappears beyond the first

step in contrast to the constant jumps of size Ec/∆ for large N0∆, see (32). Although

we have performed analytical calculations for N0 ≫ 1, the results for εF ≪ Ec turn out

to be exactly the same for small N0 given a constant charging energy. We demonstrate

this by numerically solving the quantum master equation [30] under the conditions (1),

(2), for a dot with 7 levels. The results are shown in Figure 2. While all the steps there

are pronounced, all but the first one would practically disappear for N0 ≫ 1.

5. Conclusion

To summarise, we have analytically calculated I-V characteristics of the quantum dot

with a strong asymmetry in the tunnelling coupling to the leads in the Coulomb blockade

regime (2) in the absence of thermalisation (1). We have solved the appropriate quantum

kinetic equation in the two limits, for either a large or small ratio, Ec/εF, of the charging

energy to the Fermi energy of electrons in the dot.

We have demonstrated that for a relatively small charging energy, Ec/εF ≪ 1, the

absence of thermalisation in a quantum dot has practically no impact on the Coulomb

staircase as an equilibrium is established between the dot and the most strongly coupled

lead, see Figure 1. This is in agreement with previous numerical results [21] which

assume the distribution function is the same for all relevant N . We have verified this

assumption in the large N limit when no more than two states are relevant in (28).

In the opposite limit, Ec/εF ≫ 1, we have analytically shown that for N ≫ 1 the

Coulomb staircase has only one pronounced step. With a voltage V applied to the left

lead and ΓL/ΓR ≫ 1, this is a step in the current from 0 to eΓR(N0 + 1) in a narrow

window around eV = ΩN0
with ΩN0

= Ec/2 if N0 = Ng, see (11). All the subsequent

current jumps with V increasing have the magnitude eΓR, see (33), i.e. negligible when

the number of electrons at equilibrium N0 ≫ 1. Further to the analytic results, we

have numerically solved the quantum master equation for a constant Ec to find that the

analytical results (33) proven for N ≫ 1 are exactly valid also in the experimentally

attractive regime of N . 10, see Figure 2. The reason for such behaviour of the Coulomb

staircase is that the only electrons available for tunnelling are those in an energy window

∼ εF with the voltage window being much larger, eV ∼ Ec. With εF/Ec increasing,

more electrons are available for tunnelling, thus restoring the jumps between the steps

to their full value ∝ Ec/∆ in the usual regime εF ≫ Ec [4, 7, 8] where electrons from

the entire voltage window contribute to the current.
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