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ABSTRACT

This thesis investigates the application of multifractal analysis to user behaviour during
interaction with technology. Multifractal analysis is an analysis technique which quantifies
features in behavioural signals which have been connected to embodied, control structures

which emerge from interactions between processes across brain, body and context. It has been
widely observed in human movement and behaviour, and variation in multifractal signatures has
been associated with a range of flexible adaptive behaviours.

Through experiments and data analyses, I investigate the value of this approach for Embodied
Interaction research, and HCI more broadly. I find the approach offers potential in operationalis-
ing key concepts in Embodied Interaction, which often rely on similar assumptions about the
role of contextual interactions. In particular, my results show that multifractal signatures in be-
haviour are informative about dimensions of ready-to-hand tool use — an influential construct in
Embodied Interaction, drawn from phenomenological philosophy, which describes fluid, engaged
tool use, in which the tool “disappears” for the user.

I also investigate the potential to apply multifractal analysis to understand behavioural
constructs of wider interest in HCI, beyond Embodied Interaction. I find that the approach has
significant potential as a convenient-to-deploy measure which can be used to infer behavioural
constructs including fatigue, engagement and skill. To support future work, I develop a framework
and make methodological contributions to which can guide future applications of multifractal
analysis in HCI.
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INTRODUCTION

1.1 Overview

Embodied Interaction has been an important thread within Human Computer Interaction

research for decades, since long before [375] the term was popularised by Paul Dourish [90], or

the community created its own conference [209]. Embodied Interaction typically concerns the

role of our bodies, contexts, and activity shapes how we perceive, feel, think and behave [229].

While there are multiple traditions and approaches within Embodied Interaction, each placing

emphasis on different aspects of embodiment, these approaches are generally united by their

contrast to more cognitivist approaches to understanding behaviour in HCI, grounded in accounts

of information processing in the brain [229]. It is not that embodied accounts think the brain

is not relevant, more that “the brain is not the sole cognitive resource we have available to us

to solve problems” [371]. Much as embodied accounts differ, they tend to agree that a focus on

information transfer between brains and technologies results in an impoverished account of

behaviour and experience, because much of the richness, meaning, and complexity of behaviour

tends to come from the interaction and coordination with context, which are argued to be lost in

information-transfer models [229, 371, 372].

While successful and influential by any account [229], Embodied Interaction has not been

without its critics. Where computational and cognitivist accounts of interaction build their

accounts on very clearly defined, quantified constructs, such as information, and optimisation

[263, p.7-8], it has been argued that Embodied Interaction lacks clear metrics, models, and clear

cut concepts that support reasoning about the role of embodiment in interaction. Instead it is

argued that the approach has focused on “thick description” of interaction as it emerges [149].

Many in Embodied Interaction would likely dispute this — at least some work in embodied

interaction has been developed in empirical settings using quantitative measures and grounded
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in reasoning scientific frameworks [194]. Others might argue that this applies an inappropriate

standard to a domain where scientific approaches often turn out to be reductive and inadequate

[323].

However fair it might be to dispute these points, it does seem true that there is a clear

pragmatic contrast with computational approaches. The operationalisation of basic constructs

in computationally tractable form has allowed broadly cognitivist approaches to subject design

ideas to hypothesis testing, and develop systems which adapt to the user and their context in a

wide variety of ways [263]. By contrast, while Embodied Interaction places a strong emphasis on

the role of context, and the need for systems to be flexible with respect to the user’s dynamically

changing needs, embodied accounts have not to my knowledge been the source of any methodolo-

gies which support systems in adapting in this way. There also appears to be a contrast in terms

of scope: Computational and broadly cognitive approaches address human behaviour across a

wide variety of scales, from a micro-level focus on individual gestures within interaction [223],

to inferences about user intent [177], and immersive user experience [248]. By contrast even

researchers within Embodied Interaction have lamented the limited focus of much embodied

research on novel interactions with tangible objects, and the lack of work addressing everyday,

banal, interaction scenarios [91].

In this thesis I address this situation by investigating a particular scientific formalisation of

embodied cognition: what has sometimes been called the Interaction Dominant View of Cognition

(IDVC) [85, 161]. I investigate the potential of this account and, in particular its experimental

methodology of multifractal analysis (MFA) [190], to develop operationalisations of some key

constructs in Embodied Interaction. I address the phenomenological construct of readiness-to-

hand, and also more basic constructs of interactivity, and coupling. While the work I develop is

grounded in embodied cognitive science, and addresses accounts of Embodied Interaction, it is

by no means limited in interest to those with a theoretical interest in embodiment. Beyond the

focus on these embodied constructs, I investigate MFA for its broader potential contribution to

HCI. I conduct empirical experiments to investigate its practical usefulness in user experiments

and system design, to infer behavioural and experiential constructs which have been of broader

interest to the HCI community, including fatigue and engagement.

1.1.1 Multifractal Analysis and Interaction Dominance

Before stating my research questions, it feels useful to begin to clarify two pieces of jargon

introduced above and that will be central to this thesis. First, multifractal analysis (MFA) is

an approach to the analysis of task directed movement behaviour which I investigate in this

thesis through a number of experiments and analyses. This approach is widely used in embodied

cognitive science [187, 190] to understand the coordination between processes in body, brain

and context, and the role of this in high-level behaviour. In this thesis I apply this approach to

understand interaction behaviour. Multifractality is a measure of dynamical complexity which

2



1.1. OVERVIEW

has been widely observed in human movement and behaviour, and which can be revealing about

coordination in the observed system. MFA, then, is a signal analysis technique which computes

the multifractal properties of signals captured from such movement and behaviour [190]. MFA

has been widely applied to investigate the ideas of an approach to cognitive science known as the

Interaction Dominant view of cognition (IDVC) [85, 161].

Secondly, Interaction dominant describes systems whose behaviours must be described in

terms of non-linear interactions between sub-components, and not in terms of the behaviour of

those components taken individually. The IDVC is an embodied account of behaviour, grounded

in ecological psychology and (as I argue across chapters 2 and 3), consistent in many ways with

the assumptions of Embodied Interaction. It hypothesises that, contrary to the assumptions of

computational models of cognition, behaviour is organised in terms of complex interactions and

ongoing, task-directed, adaptation to behavioural context [161].

Bringing these jargon terms together: the work in this thesis investigates the potential

for MFA, and the theories of the IDVC, to contribute to research in HCI, and in particular, in

embodied interaction. At the foundation of this work is the idea of interactivity, which I argue in

chapters 2 and 3 is key to ideas both in Embodied Interaction and in the IDVC. Interactivity is

the idea that user behaviour is “best understood as the emergent property of the interactions of

the [user] with its environment” [190, p.2]. The IDVC formalises this kind of interactivity and

emergence in terms of cascade structures which give rise to multifractal signatures in behaviour.

I suggest this formalisation of interactivity, together with the experimental methodology of MFA,

provides a potential foundation for much future work contributing to Embodied Interaction, and

more broadly to HCI. For Embodied Interaction, I suggest this interactivity is the foundation

which supports the operationalisation of other constructs, such as coupling and readiness-to-hand

(a phenomenological account of distinct modes of fluid and engaged, or reflective and detached

tool use). This in turn, I suggest, points to the possibility to formulate embodied design ideas

into testable hypotheses, clarify concepts, and develop systems which infer and respond to user

behaviour on the basis of embodied design ideas.
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1.1.2 Research Questions

The high level research questions this thesis investigates are as follow:

• RQ1 How can multifractal signatures in user movement contribute to HCI user-studies

and technology design?

– RQ1a Can MFA be used to infer user behaviour and experience?

– RQ1b What are the practical properties and constraints of MFA, relevant to HCI

contexts?

• RQ2 How can MFA and the IDVC augment existing research on embodiment in HCI?

– RQ2a Is the IDVC sufficiently consistent with HCI approaches to embodiment?

– RQ2b Do MFA and the IDVC support the operationalisation of important concepts in

Embodied Interaction research?

RQ1: How can multifractal signatures in user movement contribute to HCI user-studies
and technology design? RQ1a Can MFA be used to infer user behaviour and experience? is

addressed by seven experiments and data analyses across chapters 4 to 9. These experiments,

outlined below, investigate the correlations between multifractal signatures in user movement,

and a range of behavioural constructs including readiness-to-hand, fatigue, engagement, and skill.

The results show significant potential for application of MFA in HCI. First, they demonstrate

significant correlations between multifractal signatures and a range of constructs relevant to

HCI, including fatigue, skill, engagement, and task complexity. Second they demonstrate the

practicality of the approach for HCI: the approach only requires the measurement of task-directed

user behaviour, and in many cases this can be captured through commonplace input devices,

already required for the measured interaction.

RQ1b What are the practical properties and constraints of MFA, relevant to HCI contexts? is

addressed partly via these same experiments and in particular by analytical and methodological

work in chapters 5 and 7. I report findings which clarify practical constraints on signal length

and signal quality in the analysis of typing data and eye-gaze. These constraints are particularly

relevant to HCI since signal length impacts on system response times, and signal quality is more

likely to be a factor outside the context of the lab experiments in which the vast majority of

previous work using MFA has taken place. Work in these chapters also addresses practical issues

in analysis. MFA requires the selection of a number of analysis parameters for which precise

guidance is lacking, leaving significant degrees of freedom at analysis time (posing an issue for

hypothesis testing) and leading to uncertainty in the analysis of novel signals for which there is

no precedent in the literature. I develop a data-grounded approach to parameter selection which

can be specified in advance of experiments, addressing these issues.
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Finally, in my discussion chapter I gather these results together with discussion of prior work

to present a framework for applying MFA in HCI. This framework presents four levels at which

multifractality in interaction behaviour can be understood, aiding reasoning about hypotheses,

applications, and interpretation of results. It points to future work in the shape of promising

applications work to address limitations and gaps in understanding.

1.1.3 RQ2: How can MFA and the IDVC augment existing research on
embodiment in HCI?

RQ2a Is the IDVC sufficiently consistent with HCI approaches to embodiment? is addressed

through analysis of literature in chapters 2 and 3, where I articulate the role of interactivity,

coupling and readiness-to-hand as important concepts which run through much research in

Embodied Interaction, before articulating the way these concepts are addressed by the IDVC. I

find significant theoretical congruence between the two accounts.

RQ2b Do MFA and the IDVC support the operationalisation of important concepts in Embodied

Interaction research? is addressed by building on this foundation. The seven experiments which

address RQ1a also shed light on RQ2b. Most directly, in chapter 4, I conduct experiments to

understand the relationship between multifractal signatures in mouse control, and behavioural

dimensions associated with readiness-to-hand — a phenomenological account of fluid behaviour

which has been important in Embodied Interaction and which I introduce in detail in chapter

2. I build on prior work which demonstrated that changes in multifractal signatures mark

the transition from ready-to-hand (fluid, involved tool engagement, with attention on the task)

to unready-to-hand (less fluid engagement in which the tool becomes obtrusive and more an

object of conscious attention), during tool malfunction. I extend this work to address further

scenarios associated with readiness-to-hand, outside of tool breakdown, including the acquisition

of skill, and the increase of engagement. More broadly all the empirical work in this thesis, by

illustrating multifractality as a measure of interactivity — another key Embodied Interaction

concept — contributes to an understanding of how MFA supports the operationalisation of

Embodied Interaction concepts.

At the end of the thesis, in my discussion I reflect on these results and their contribution to

Embodied Interaction. I suggest that while the results I observe are congruent with accounts

of readiness-to-hand in HCI, another closely related, embodied, phenomenological construct —

Dreyfus’ account of coping [249] — is more congruent with the full range of results in the thesis.

As I note in chapter 2, much of HCI’s exposure of readiness-to-hand already comes via Dreyfus’

somewhat idiosyncratic [171], pragmatist account, and there are a number of reasons for HCI

researchers to shift their focus to this account. I also address the limits of potential contributions

to Embodied Interaction by MFA and the IDVC. In particular, I note that much work in Embodied

Interaction focuses on the role of social and cultural factors, where MFA only measures physical
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movement. While the broader theory of the IDVC is inclusive of these factors, I note that HCI

researchers will need to take care to avoid applying these approaches in a reductionist manner.

1.2 Thesis Map

My thesis begins with two background chapters, then divides into three main parts

1.2.1 Background (chapters 2 and 3)

In chapters 2 and 3 I discuss relevant background literature, and develop the theoretical basis of

this thesis. Chapter 2 reviews important currents in Embodied Interaction, from early work

in the 1980s, through work on Distributed Cognition, and Situated Action, to recent work on

sensorimotor coupling. I trace the role of three core concepts in this work:

• Interactivity: the idea that user behaviour is “best understood as the emergent property

of the interactions of the [user] with its environment” [190, p.2]

• Coupling: a concept for articulating the temporary states of adaptation and synchronisa-

tion between user and interaction context which emerge through this interactivity.

• Readiness-to-Hand: a recurring account of fluid, intuitive technology use, and the effect

of tools on experience and behaviour, which has been influential in embodied interaction,

and which brings together the concepts above

At the end of that chapter I argue that Embodied Interaction lacks methods and metrics which

can address low-level aspects of embodied interaction, which are particularly relevant to un-

derstandings of proximal engagement with technologies. These include skilled interaction with

games, and creative applications, and the expected coupling and decoupling between user and

tool involved in accounts of readiness-to-hand, which Embodied Interaction researchers have

suggested plays an important role in learning and appropriation [56, 90]. I also suggest these

kinds of metrics are essential to understand issues which seem likely to be increasingly important

in future HCI research, such as the potential of sensorimotor coupling with augmented reality

technology [321, 322], and human-computer integration [245].

I pick up these three core concepts in chapter 2, where I turn to discuss the IDVC, suggesting

that the latter can help us to operationalise these concepts, and study them empirically using

MFA. I note that, as in Embodied Interaction, IDVC researchers argue that interactivity is the

foundation of adaptive human behaviour. I describe how the IDVC formalises that interactivity in

terms of multiplicative cascade structures which give rise to multifractal signatures in behaviour.

I discuss prior work which has undertaken to understand the role of interactivity in behavioural

control by attention to multifractal signatures in behaviour, focusing in particular on recent work
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to understand human-tool couplings, and readiness-to-hand. This work argues that ready-to-

hand tool engagement has its basis in sensorimotor coupling between user and tool, grounded

in multiplicative cascade structures, which result in multifractal signatures. At the end of the

chapter I point to some remaining gaps in this research. These include the need for stronger

evidence in certain areas, and the need to expand the experiments associating multifractality

with readiness-to-hand to address other dimensions of the latter account — something I pick

up directly in chapter 4. This chapter also provides a technical introduction to multifractality,

cascade dynamics, and MFA, supporting the reader in understanding the analyses carried out in

the rest of the thesis.

1.2.2 Part 1: Mouse Use, Readiness-to-Hand, and Methodological Groundwork

Chapter 4: I describe two experiments on mouse use which investigate the potential to opera-

tionalise the account of readiness-to-hand via multifractal signatures in hand movement. I build

on prior work discussed in chapter 3, which found that multifractal signatures indicated the shift

from ready-to-hand to present-at-hand tool use, with multifractal signatures decreasing during

simulated malfunction, and attention to the tool increasing. I replicate this result using stronger

forms of evidence, and proceed to address two other dimensions of readiness-to-hand important

in HCI. Multifractality increases over repeated plays as the user gains expertise with the task.

Multifractality is also found to increase when users play a more engaging and motivating version

of the task. I suggest that both of these results are consistent with the underlying account that

that ready-to-hand engagement has its basis in cascade-based sensorimotor-coupling between

the user and tool.

CFGhapter 5: I turn to methodological issues. My original intention to further pursue issues

relating to readiness-to-hand was blocked by the pandemic, which made in-person experiments

impossible. As such I took the opportunity to address methodological issues which became

apparent after my first experiments, and which were inadequately addressed in prior literature.

MFA is a relatively young technique, there are multiple available analysis algorithms, and

guidance on MFA practice is scattered and in some respects underspecified. In particular it was

unclear how to select precise values of analysis parameters which can impact upon results. This

issue poses issues for hypothesis testing, since it leaves the experimenter with too many degrees

of freedom at the analysis stage, a range of different parameters can be justified, and it can be

hard to know how to specify precise parameters in advance. As such in this chapter I describe

the development of my analysis pipeline, including a new data-driven approach to parameter

selection, which can be specified in advance of the experiment. To support future work in HCI,

this chapter not only presents this tuning method, but also gathers together guidance on MFA,

and points to potential pitfalls researchers must avoid. The work in this chapter also sets up the
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methodological groundwork for the work in the remainder of the thesis, supporting a shift in

focus to broader behavioural constructs.

1.2.3 Part 2: Multifractality in Typing: Task Complexity and Fatigue

In part 2 I turn my attention to a different interaction modality, and a different behavioural

construct. I conduct empirical work to investigate how this embodied methodology, MFA, can

be applied to keyboard use to shed light on behavioural constructs which are less specific to

Embodied Interaction — executive control, task complexity, and fatigue. This work shows that

multifractal analysis can help bridge between embodied accounts of behaviour and more everyday

concerns of HCI.

Chapter 6: I describe the background to this work, reviewing the prior work on writing support

technologies, and on multifractality in writing, and executive control.

Chapter 7: I return to empirical work, conducting three analyses on typing data-sets captured

in prior experiments. These analyses serve two purposes. First they replicate a result previously

observed in exploratory work, indicating that multifractality in typing is a marker of task com-

plexity, again, using stronger forms of evidence than have previously been applied. As explained

in the previous chapter, this result points to a relationship also identified elsewhere, between

multifractality and executive control, and points to the potential for multifractal signatures to

function as markers of issues which impact on executive control, such as fatigue. The three analy-

ses also serve two other important purposes. First they serve to evaluate the tuning approach and

pipeline developed in chapter 5, and demonstrate its application so that future HCI researchers

can apply it in their own research. As such I give a quite detailed account of these analyses,

addressing adaptations at each step to deal with data quality issues. Finally, these analyses

shed light on practical issues in the application of MFA, relevant to HCI. Due to data quality

issues in the dataset, they show the impact of poor data on empirical measures of multifractality,

something barely addressed in prior literature, but important to applications of the technique in

HCI and system building. I also conduct analyses to investigate the impact of signal length on

the analysis: another important issue for HCI, since this can impact on response latency.

Chapter 8: I then build on these results to test the impact of fatigue on multifractal signatures

in typing, during text composition. I find that in a realistically-open short text composition task,

multifractal signatures in typing are predictive of level of subjectively reported fatigue. As well

as representing the first published work showing that fatigue impacts on multifractal signatures,

this work indicates the potential to apply these techniques in real world HCI scenarios: data

was captured via online experiments, via the web-browser on machines which were not specially

configured, but was found to be adequate for analysis with these methods.
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1.2.4 Part 3: Multifractality in Interactions in the World: Analysis of Eye Gaze

Chapter 9: I return to focus on skill. Here however, I address how multifractality in eye-gaze

can be informative about skill, or level of experience with a task. I analyse data from participants

engaging in a forestry training task: operating heavy machinery, outside, to load logs. This

chapter addresses the potential to apply MFA in more complex real-world environments, away

from the desktop, to support training, and everyday work tasks, particularly in safety critical

environments.

1.2.5 Discussion

At the end of my thesis, in my discussion, in chapter 10, I bring these accounts together and

discuss how they address my two research questions. To the best of my knowledge this thesis

represents the first work in HCI to address MFA and the IDVC. as such I present this discussion

as a framework for applying MFA, and the implications of the IDVC to HCI issues. I present

four levels at which MFA might be addressed by HCI researchers, moving from the general,

to the particular, with each level having implications for empirical work, and future system

development. Within this I argue for a shift away from focusing on the Heideggerian language

of readiness-to-hand, and towards the more pragmatic language of Dreyfus’ closely related,

embodied and phenomenological, account of practical coping. I suggest that while there is

potential to operationalise readiness-to-hand via multifractality, practical coping is in many ways

a better fit for the broader implications of the account. I also suggest that accounts of practical

coping by Dreyfus and others are more transparent, less forbidding to outsiders, and have a

more pragmatist focus than Heidegger’s account, focusing more on the detail and mechanism

of individual experience and behaviour. As such I suggest they are not only better suited for

translating results of MFA, but more generally better suited to the concerns of HCI researchers

than Heidegger’s often difficult and ontology-focused account. The discussion closes by addressing

the specific contribution of MFA and the IDVC for embodied interaction. I suggest that MFA

addresses Embodied Interaction concepts at a particular level, most suitable for the proximal

conditions of single-session interactions with technology. In this context I suggest they make

a real contribution to Embodied Interaction, and point to the potential for its design ideas to

be empirically clarified, and directly engineered into technologies which adapt to the user. I

also argue that there are limitations to this, and that these approaches risks being used in

reductionist ways. I caution researchers taking up these methods to do so mindful of the wider

principles and complexities of Embodied Interaction, and not, as Suchman puts it, to evacuate

embodiment of its social and cultural dimensions [323, p.15].
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1.3 Definitions

Due to the nature of the subject matter in this thesis, I have found it necessary to use number

of jargon terms, and specific technical usages of terms, that seem likely to be unfamiliar to

many in HCI. This section provides definitions of the most important of these. All these terms

receive more detailed treatment throughout the thesis, and this list is intended to serve as a

quick primer and convenient reference. “Multifractality” has been briefly introduced above, and

receives more extensive treatment than would be appropriate in this section: that is found in

chapter 3 and particularly section 3.3.3.1. In addition list of technical definitions of statistical

and signal-processing concepts is provided in appendix A.

Coupling I use the term ‘coupling’ to describe a relationship between two independent entities

— for example a user and a technology, two people, two neural pathways in the body — which

is temporary, variable, and reciprocal. Interactivity in systems (see below) including user-tool

systems, can be analysed in terms of a (often large) number of such couplings between component

processes. This usage of the term is distinct from the more permissive sense of “coupling” which

has been used in HCI to refer to any relationship of coordination, including linear and functional

feed-forward relationships. It instead implies the relation between the entities is non-composable

(cannot be reduced to the behaviour of the two entities) since the interaction involves significant

non-linearity. This usage of the term follows existing practice in embodied HCI - e.g. in Winograd

and Flores’ use of the term “structural coupling” [375], and similar use of the term “coupling” by

Dourish [90]. My use of the term aligns it with the use of the term “coupling” in a range of work

on embodied cognition, from early work by Maturana [375] (Winograd and Flores’ own source) to

recent work in the Interaction Dominant View of Cognition [190]

Coping A term coined by Hubert Dreyfus to describe practically engaged, active, adequate,

and characteristically unreflective, adaptation to the demands of the task at hand. This is a

holistic term used to describe behaviour which is grounded in “practical wisdom” — or what

has sometimes been called “know-how” [351] — and based on adaptation to situational factors,

rather than representational knowledge that can easily be brought to mind and articulated in

language [249]. Many factors can interrupt the smooth coping with a task: from a faulty tool, to

fatigue, resulting in a “breakdown” of greater or lesser degree. This breakdown is expected to

result in some increase in conscious awareness of tools and resources operationalised in the task,

and a sense of their “obtrusiveness” more consciously reflective, representational thinking and

problem-solving behaviours. I use the term “practical coping” to distinguish this from common

non-technical use of the term, and because other commonly used prefixes in post-Dreyfusian

thought (“smooth”, “absorbed”) seem over-specific. The term is closely related to the concept of

“readiness-to-hand” (below) but I suggest that the term is more transparent and grammatically
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convenient, more aligned with the pragmatic nature of HCI, and usefully distanced from certain

complex or disagreeable aspects of Heidegger’s thought. Further discussion of coping is found in

sections 2.4.3 and 10.3.5.

Interactivity “Interactivity” has had various meanings in HCI. I use it in a particular technical

sense, to indicate the role of interactions in defining behaviour. Specifically I use it to describe

situations where the behaviour of a system goes beyond what can be understood by analysis

of the components of the system alone. Instead, as Kelty-Stephen puts it: “the patterns of an

organism’s behavior are best understood as the emergent property of the interactions of the

organism with its environment ...[not] understood as the independent activity of so many sense

receptor cells, nerve pathways, and muscle fibers [but] in the broader context of the task and

environment within which coordination of those biological nuts and bolts takes place” [190, p.2-3]

This usage of the term is drawn from work in the Interaction Dominant View of Cognition, but

in chapters 2 and 3, I argue that this usage also captures an idea which runs through work on

embodied interaction in HCI.

Ready-to-Hand Readiness-to-hand is an influential concept for understanding technology use in

HCI, drawn from the phenomenological philosophy of Martin Heidegger [56, 90, 108, 363, 375].

A technology becomes "ready-to-hand" during familiar, effective use or "skilled coping" with a

task [96, 139, 368]. In these circumstances attention is focused on the task. Awareness of the tool

and its properties diminishes. HCI researchers have found readiness-to-hand a useful concept

for understanding intuitive, natural and "fluid" technology use [5, 90, 244], and have linked

the phenomenon to high engagement with the task at hand [363], and the feeling that the tool

becomes a "part of us" [33, 240, 368]. The move away from readiness-to-hand - often during

malfunction or "breakdown" - has been associated with more detached, analytical relationship

to technology [56, 108, 240, 368], with problem solving [108, 368, 375], and with an greater

awareness of tool’s properties [5, 6, 96, 368].

1.4 Contributions

In addressing these research questions, my thesis makes the following contributions

1.4.1 General Contributions

• I report on empirical results which demonstrate the value of multifractal analysis to help

infer important aspects of user experience and behaviour: engagement, skill, locus of

attention, and fatigue
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• I present a framework for applying multifractal analysis to address issues in human-

computer interaction: both in user studies and in the potential development of future

technologies. I describe four levels at which HCI researchers can interpret and reason about

multifractal signatures in user behaviour, and about potential applications.

• I evaluate technical issues around multifractal analysis relevant to the deployment of the

method in HCI: effect of signal quality and signal length.

1.4.2 Contributions for Research in Embodied Interaction

• I develop and evaluate an operationalisation of the embodied construct of readiness-to-hand

which supports hypothesis testing and the inference of user behaviour and experience.

• I articulate the role of 3 foundational concepts for Embodied Interaction — interactivity,

coupling and readiness-to-hand — and map them to equivalent understandings in the

Interaction Dominant View of Cognition, supporting the translation of theory and method

between these areas of research.

• I articulate the way in which these MFA can help to clarify understandings of embodied

aspects of interaction, and expand the scope of embodied approaches within HCI.

1.4.3 Broader Scientific Contributions

• I provide the first empirical evidence that multifractal signatures in behaviour are affected

by fatigue, contributing to a wider line of research linking interaction dominance and

multifractality to high-level coordination phenomena such as executive control.

• I develop data driven, theory-grounded methods for the selection of parameters for multi-

fractal analysis. This supports good hypothesis testing practices, and future use of these

methods not only in HCI but in behavioural research more widely

• I contribute further evidence to support the understanding of ready-to-hand tool use in

terms of interaction dominant structures of control, addressing dimensions absent in

previous work: skill acquisition and engagement.

1.5 Work Published During my PhD

1.5.1 First Author

• Multifractal Mice: Operationalising Dimensions of Readiness-to-hand
https://doi.org/10.1145/3491102.3517601
CHI 2022 Full Papers
Daniel Bennett, Anne Roudaut, Oussama Metatla
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• Complex Systems Models of Cognition for HCI
http://doi.org/10.14236/ewic/HCI20DC.4
BCS HCI 2020 Doctoral Symposium
Daniel Bennett

• Small-‘p’ philosophy in HCI
https://doi.org/10.31234/osf.io/jup57
CHI 2019 Workshop on Philosophy in HCI
Dan Bennett, Anne Roudaut, Oussama Metatla

• Neurythmic: A Rhythm Creation Tool Based on Central Pattern Generators
NIME 2018
Dan Bennett, Anne Roudaut, Peter Bennett

1.5.2 Other

• It’s Touching: Understanding Touch-Affect Association in Shape-Change
https://doi.org/10.1145/3491102.3502003
CHI 2022 Full Papers
Feng Feng, Daniel Bennett, Zhi-jun Fan, Oussama Metatla

• Emergent Interaction: Complexity, Dynamics, and Enaction in HCI
https://doi.org/10.31234/osf.io/zd82b
CHI 2021 Workshops and Symposia
Daniel Bennett, Alan Dix, Parisa Eslambolchilar, Feng Feng, Tom Froese, Vassilis Kostakos, Sebastien
Lerique, Niels van Berkel

• Disruptabottle: Encouraging Hydration with an Overflowing Bottle
https://doi.org/10.1145/3334480.3382959
CHI 2020 Extended Abstracts
Adam Beddoe, Ro Burgess, Lucian Carp, James Foster, Adam Fox, Leechay Moran, Peter Bennett,
Daniel Bennett

• PauseBoard: A Force-Feedback Keyboard for Unintrusively Encouraging Regular Typing
Breaks
https://doi.org/10.1145/3334480.3382969
CHI 2020 Extended Abstracts
Lewis Bell, Jay Lees, Will Smith, Charlie Harding, Ben Lee, Daniel Bennett
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BACKGROUND: INTERACTIVITY, COUPLING, AND

READINESS-TO-HAND IN EMBODIED INTERACTION

2.1 Summary

This chapter:

• Articulates the role of three key constructs in Embodied Interaction — interactivity, cou-

pling and readiness-to-hand — all of which are central to work in this thesis.

• Argues that while current definitions of these constructs may have served qualitative

and design work well to date, they are poorly specified for understanding current and

future issues in HCI. These include the role of embodiment in low level aspects of everyday

technology interactions with familiar interfaces, understanding the unfolding dynamics of

ready-to-hand tool use, sensory augmentation, and human computer integration.

2.2 Overview

The word “embodiment” has acquired many different meanings for different communities (cf.

[229, 371, 372]. I will not attempt to address all of these meanings, but will instead focus

on embodiment as it has been understood by a large and somewhat loose community of HCI

researchers, bought together under the term “embodied interaction” [229]. Moreover, I will not

attempt to provide a general purpose map even for this community1, but instead focus on a

particular route through its territory, following the path of a few key theoretical concepts, through

1others have offered book length accounts of the approach [90, 339], or of communities within it [146], at various
points in its history
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both foundational texts and more recent work. The concepts I focus on are not only key for the

field of embodied interaction in HCI, but also for the cognitive science which I survey in the

next section, and build upon in the remainder of this thesis — the Interaction Dominant View of

Cognition.

My goal in tracing this map is to show that embodied interaction in HCI, and the Interaction

Dominant View of Cognition have at the least a shared border, and that the work in this thesis

only opens up meaningful trade across that border. More plainly: this chapter should show that

my work, as it builds on the Interaction Dominant View of Cognition to address issues in HCI, is

theoretically consistent with core ideas of the embodied interaction community, and contributes

to a research gap within it. This chapter thus addresses RQ2b Is the IDVC sufficiently
consistent with HCI approaches to embodiment?, and in particular it lays the foundations

for an understanding of the consistency of the Interaction Dominant View of Cognition with HCI

approaches to embodiment, which will be developed further in the next chapter’s discussion of

the Interaction Dominant View of Cognition. Before setting off, it is useful to orient the reader

in a couple of ways: first by giving a working definition of embodiment which is adequate to

understandings in Embodied Interaction. Then by outlining those few key aspects of Embodied

Interaction on which this discussion will focus.

2.3 Definitions

A clear and precise definition of embodiment is given by Wilson and Golonka:

Embodiment is the surprisingly radical hypothesis that the brain is not the sole

cognitive resource we have available to us to solve problems. Our bodies and their

perceptually guided motions through the world do much of the work required to achieve

our goals, replacing the need for complex internal mental representations. This simple

fact utterly changes our idea of what “cognition” involves, and thus embodiment is not

simply another factor acting on an otherwise disembodied cognitive processes [371].

Since this definition comes from ecological psychology, the home of the Interaction Dominant

View of Cognition, there is a risk in using this definition that I load the dice in my favour. I hope

the rest of this chapter will succeed in showing that, on the contrary, this definition captures the

core of what HCI researchers in embodied interaction seem to mean by the term. Specifically it

emphasises

• The role of factors outside the brain

• The role of movement and action in the world

• A critical stance towards the role of internal mental representations
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• The radical change in perspective this can involve, relative to non-embodied accounts

I will not pretend that embodied interaction research in HCI never diverges from this definition,

but I will suggest that these divergences are largely a matter of emphasis and rarely if ever a

matter of contradiction. For example below I discuss the work of Dourish and Suchman: key

figures in the development of embodied interaction. While both authors clearly and explicitly

emphasise “the role of factors outside the brain”, they place less emphasis on the body and

action than does the quote above, and more on the local environment and social context [90].

Another divergence will come with the stance on internal representations: Wilson and Golonka

are eliminativist about internal mental representations, where HCI researchers typically take far

less strong stances on this issue. Work by Kirsch, Scaife and Rogers, for example, seems to assume

the existence of internal mental representations even as it calls for a shift in focus towards the

role of external representations in the environment [195, 299]. In this thesis I will not place

strong emphasis on the debate around cognitivism, nor attempt to argue a position on it. I will

only outline key issues and points of difference, and largely do this for the sake of broad context,

or where they have immediate relevance. 2 Finally, readers with backgrounds in HCI will no

doubt associate the word “embodiment” with tangibility: a specific line of research on physically

manipulable digital objects and interfaces [151]. This is far from essential to the definition

quoted above. However, as I will discuss below, neither is it essential to embodied interaction

in HCI: Dourish for one has regretted the emphasis his early work placed on tangibility, and he

considers it peripheral to the core project of embodied interaction [91]. In these and other ways,

the definition above will acquire nuance in the discussion below. But even as it gains nuance, it

will remain a useful landmark in this chapter and the next, while navigating through the ideas

of HCI researchers and towards those of the Interaction Dominant View of Cognition.

A few other landmarks will be helpful for navigation. My discussion focuses on three key

principles and concepts which are central both to work on embodied interaction, and to work in

the Interaction Dominant View of Cognition, which I draw upon and develop:

• Interactivity: the idea that user behaviour is “best understood as the emergent property

of the interactions of the [user] with its environment” [190, p.2]

• Coupling: a concept for articulating the temporary states of adaptation and synchronisa-

tion between user and interaction context which emerge through this interactivity.

• Readiness-to-Hand: a recurring account of fluid, intuitive technology use, and the effect

of tools on experience and behaviour, which has been influential in embodied interaction,

and which brings together the concepts above

2interested readers can turn to the texts discussed below, particularly [375] and [323] in HCI, and to texts by
Wheeler [367], Chemero [59], and Wilson [371] for a more detailed discussion of the relationship between embodiment
and cognitivism
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Finally to give some idea of where we are going, it is helpful to give some indication of where I

think the edge of the map lies: what is the research gap in existing embodied interaction research,

that I intend to fill in? I will argue the following:

• The key concepts discussed above (interactivity, coupling, and readiness-to-hand) are

somewhat underspecified in HCI research. We lack quantitative methods and formalisms

adequate to operationalise and clarify them.

• In its focus on the body, action, and context, embodied interaction gives a key role to moment-

to-moment sensorimotor interactions with the task context. However, little attention is paid

to this at a fine-grained level, nor how it relates to the unfolding of behaviours, outcomes,

and experiences.

• Embodied interaction has generally focused on novel “tangible” and spatial interactions. It

has had less to say about more familiar, everyday interactions with utility software, desktop

and console gaming, and input devices like keyboards, and mice.

• While early work in Embodied Interaction drew on embodied cognitive science and ecological

psychology, subsequent work has not kept pace with developments in these fields, which

can help address the gaps above.

Since I believe this is the clearest way of organising the account, I begin by giving a relatively

non-critical account of key literature in embodied interaction, as it relates to the concepts above,

aiming to give the reader a clear view of the basic theoretical framework I will work within. At

the end of the chapter, with this established I then take a more critical stance, articulating the

gap which this thesis addresses.

2.4 Winograd and Flores: Some Foundations for Embodied
Interaction

One of the earliest and most influential statements of the ideas of embodiment in HCI came

in Winograd and Flores’ 1986 book Understanding Cognition and Computers [375]. This book

introduces all of the core issues and constructs which I identify above: in particular coupling,

interactivity and readiness-to-hand are given explicit central roles, and the theoretical seeds

of much of the later work in embodied interaction are found here. As such, I introduce these

concepts via a somewhat extended discussion of the book, before introducing other accounts in

relation to this.

2.4.1 Cognitivism and Interactivity

Winograd and Flores’ book develops as a critique of what they call a rationalistic view of computers

and human intelligence, which has often been called cognitivism (see [375, p.10 fn.2]). They argue
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this view isolates cognition from both the behaviour involved in cognition, and from the context

in which it occurs, treating it as “the manipulation of knowledge of an objective world”. A similar

critique is operative through much of the work discussed below, and while I will not focus strongly

on this critique, it is useful to articulate a version of it, to give context to the rest of the work in

this chapter.

On Winograd and Flores’ account of this cognitivist approach, technology use is modelled as

problem-solving, and approximates a kind of algorithm:

1. generate some number of potential strategies to solve the problem

2. Evaluate the consequences of each strategy

3. compare and evaluate these consequences against some goal criteria

Key to this account is that the strategies, and their constituent parts, are held by the user

as internal mental representations, and define a problem space corresponding to the task-

environment in which they find themselves. The overall problem-solving process then reduces

to a brain-situated search task. The authors argue that while this approach “provides a fertile

background for developing new technology, [but] does not support an adequate understanding of

what computer devices do in a context of human practice.”[375, p.4]: their role in life and society.

In this respect they argue the approach has important limitations, and does not characterise

most real-world human problem solving. In most real world cases, they argue, neither goals,

possible actions, nor the effects of those actions are so clearly defined or predictable. Goals

can emerge in the course of action, and individual actions (even insofar as they are directed

towards some goal) can change the situation, or even the goal. Further, behaviours are often

time-constrained, making timely action more important than optimality. They argue that real

behaviour is thus far more improvisatory. Our view of our situation is far from objective: it

is conditioned by our concerns, our personal history, and our culture. In place of this account,

then, Winograd and Flores develop an embodied account of technology use, grounded in what

I have called interactivity: the principle that behaviour at all levels arises from interactions

between entities. At societal level they emphasise how the concerns which bring human societies

to engender technologies, in turn engender changes in humans and their societies, leading to

the emergence of new behaviours and creative possibilities [375, pp.4-5]. At the individual level

they emphasise the role of reciprocal, moment-by-moment coordination between individuals, and

between individuals and technologies [375, p.48].

2.4.2 Coupling

To address these shortcomings, Winograd and Flores articulate a view of technology interaction

centred on two important and closely related concepts: structural coupling, and readiness-to-hand.

Structural coupling is an idea from neurobiology which has subsequently become influential in the
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development of embodied cognitive science. It describes a relationship between two independent

entities — for example a user and a technology, or two people — which is temporary, variable,

and reciprocal. In such structurally coupled relationship the behaviour of each entity is to some

extent dependent on the behaviour and properties of the other, through a process of ongoing

adaptation between them. This idea contrasts with the standard cognitivist approach which

explains behaviour in terms of processes operating on internal symbolic representations in the

brain. Here, the relationship between the entities is not determined or maintained by the storage

of symbols in each entity which represent elements of the other, but by continued creative adaption

behaviour in one or both entities, in service of ongoing needs [375, pp.44-49]. The authors do not

deny that representations may in fact be used by one or both entities, but suggest this factor

is somewhat contingent. What is important for understanding the behaviour is the combined

ability of the two systems in maintaining an ongoing adaptive pattern of behaviours, which serve

some relevant end. Applying this idea to technology design the authors note that, in most tasks

of any useful complexity it is impossible for a system to represent the vast space of possible

actions and goals of the user, as seems to be required in the representational account. They argue

it is more practical to provide a set of basic mechanisms which will be adequate to the user’s

capacities, and that support structural coupling: “a network of sequences of mutually interlocked

conducts” [375, p.48] between user and technology, which will then gain their meaning from the

interaction. In a word processor this might include scrolling windows which allow for (among

other things) fast and adaptive movement between portions of the document for comparison. The

user can then couple with the system via such a set of basic mechanisms, to move towards the

completion of their task — often using these mechanisms in ways which were not anticipated

by their designers. As such, the authors note: “The most successful designs are not those that

try to fully model the domain in which they operate, but those that are ‘in alignment’ with the

fundamental structure of that domain, and that allow for modification and evolution to generate

new structural coupling.” [375, p.53] As I will return to later, features of this account — including

its network model, the reciprocity of the relationship, and the grounding in physical principles —

trace a path to later work on embodied cognitive science, which I pick up in this thesis.

2.4.3 Readiness-to-Hand

More concrete connections between this idea of structural coupling and technology-use are

found in the authors’ discussion of another important concept which they introduce to Embodied

Interaction: readiness-to-hand. Readiness-to-hand is a concept drawn from the phenomenological

philosophy of Heidegger, which has particular applicability to tool-use, though applies far beyond

it. On this account, a tool is “ready-to-hand” when used in an engaged, skilful, task-directed, and

“hitch free” way. In this mode, the technology becomes "transparent" or invisible, to the user. It

does not draw the user’s conscious attention, and can even come to feel like part of the body, while

the user’s intention remains on the task. Winograd and Flores equate this notion with the idea of
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a good structural coupling between user and technology [375, p.72]. In other circumstances, they

suggest, this coupling may weaken and the user may detach somewhat from the tool, entering

what Heidegger terms "Present-at-hand" engagement. Now, in place of skilful, task-oriented

and practical ready-to-hand engagement, the user enters a detached, reflective, attitude to the

technology; attending to and perceiving the technology as a separate object. The authors argue

that in this mode particular objects and their determinate properties “come into existence” for the

user, as it appears as a distinct object, detached from themselves and from the purpose it acquired

in use. The authors refer to a transition from ready-to-hand to present-at-hand engagement as a

“breakdown”. Here and in the wider literature on readiness-to-hand, such breakdowns can arise

due to some inadequacy of the tool, some misunderstanding, a mismatch with the user’s skill and

training, or an intentional effort to step back and perceive the tool differently [367].

However, despite the name, it should be emphasised that breakdowns are far from straightfor-

wardly negative. Although ready-to-hand tool use is associated with features we tend to associate

with good user experience — easy, fluid, hitch free, and absorbed engagement — the shift towards

present-at-hand engagement brings with it important changes in style of behaviour, cognition,

and pattern of attention (now shifting towards the tool):

Breakdowns serve an extremely important cognitive function revealing to us the

nature of our practices and equipment, making them ‘present-to-hand’ to us, perhaps

for the first time. In this sense they function in a positive rather than a negative way.

[375, p.78]

Furthermore Winograd and Flores suggest that such breakdowns create the possibility of reflec-

tion on our tools, their relation to our task, to other tools, and to the culture in which they are

embedded. Through this, breakdown creates the possibility of creativity: “New design can be

created and implemented only in the space that emerges in the recurrent structure of breakdown.

A design constitutes an interpretation of breakdown and a committed attempt to anticipate

future breakdowns.” [375, p.78] 3. And while this framing implies professional designers, it also

applies to the users of the technology: elsewhere the authors emphasise breakdowns as situations

which allow users to shift their domains, “enter into new commitments” [375, p.124], and move

beyond currently perceived limits [375, p.147]. In general when the tool is ready-to-hand the user

engages skilfully and purposively, and during breakdowns they pose the question “what needs to

be done” [375, p.147], and users move recurrently between these modes. This is so much the case,

they suggest that technology designers’ work is defined by “the domain generated by the space of

potential breakdowns” [375, p.72].

Finally it is worth noting that Flores’ PhD supervisor was the American Heidegger interpreter

and philosopher of cognitive science Hubert Dreyfus, and that the authors they draw their

account of readiness-to-hand from his work (see [375, p.32]). Dreyfus’s own articulation of

3These ideas can be connected to Schön’s influential account of reflective practice, and the ability to adopt a critical
stance to practice and thereby support longer term adaptation and development [300]
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readiness to hand is given in terms of “coping” [46] 4 — practically engaged, active, adequate, and

characteristically unreflective, adaptation to the demands of the task at hand — which arises in

ready-to-hand use, and which is interrupted by its break down. His account is more pragmatic,

aimed at supporting research in AI and cognitive [95], and more attentive to experiential and

behavioural aspects of skilled behaviour and skill acquisition (e.g. [98, 249, 338]) than Heidegger’s

original work. Heidegger, it has been argued, does not make the strong distinction between two

modes of originary understanding of the world, which Dreyfus does [171], aiming to elucidate

a single mode of understanding of the world, grounded in existential rather than practical

matters: our being towards oblivion [38], and focused on elucidating basic issues of ontology

[382]. Also, Dreyfus’ writing on coping arguably places more emphasis on absorption in the task

than does Heidegger’s account [46], something which again is more consistent with the common

treatment in HCI of readiness-to-hand as an immersive, or high engagement state [5, 6, 43, 363].

As such Dreyfus’ account is arguably better suited to much work in HCI. Despite this, Dreyfus’

terminology: “coping” seems not to have been so influential in HCI as readiness-to-hand, nor

has his wider discussion of this been discussed 5, I return to Dreyfusian coping in my discussion

chapter, noting the expansion and refinement of the concept by later thinkers, and arguing for

HCI to shift focus to his account and largely drop Heideggerian terminology. However, since

Dreyfusian terminology is not common in Embodied Interaction to date, for the remainder of this

chapter, and most of this thesis, I continue to focus on readiness-to-hand.

2.5 Later Engagement with Coupling and Readiness-to-Hand

The idea of readiness-to-hand, has been widely influential in later accounts of embodied interac-

tion, often, but not always via Winograd and Flores’ account.

2.5.1 Readiness-to-Hand in Situated Action

Shortly after Winograd and Flores’ publication, the idea also appeared in another seminal text

in the early development of Embodied Interaction: Suchman’s Plans and Situated Actions [323].

While account focused on people performing maintenance tasks, which may not be entirely

typical, it has nonetheless been highly influential on a wide range of subsequent HCI research.

In Suchman’s account the the overt discussion of readiness-to-hand only takes up a couple of

pages, but again it plays an important role in the work — both in her critique of cognitivism, and

in her positive account. Suchman argues that while cognitivist accounts treat representations of

rules and procedures, plans, and maps, as primary drivers of behaviour, observation reveals that

4sometimes called “smooth coping” [249] or “absorbed coping” [46]
5A rare exception to this is a book by Phil Turner, which argues for broadly Dreyfusian coping as a foundation for

an embodied approach to HCI engaged with cognitive science [338], but which has been little cited compared to the
other theoretical work discussed in this chapter, and does not seem to have been strongly influential on embodied
interaction practice.
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this is not the case. Rather it is what she calls situated-action that is primary: our pre-reflective

engagement with the world, in which technologies are ready-to-hand [323, pp.73-74]. Suchman

arrives at similar ideas independently. As in Winograd and Flores, our embodied and skilful

engagement comes first, and it is only through this action, and breakdown in it, that the elements

of the situation become present-at-hand. Again, breakdown serves to promote reflection on what

comes next. In Suchman’s case she argues this drives us to produce plans and maps for future

action. These do not (when they work well) act as concrete and detailed specifications of future

behaviour, detaching us from the contingencies of the situation. Instead, they serve to project our

experience towards future situated actions. They allow us to orient ourselves well to the situation

as it unfolds, and to make best possible use of our situated skills as we meet the unpredictable

challenges that arise [323, p.18]. Suchman’s account of situated action also has echoes of the

concept of structural coupling, though she does not refer to coupling explicitly. While structural

coupling structures behaviour via “a network of sequences of mutually interlocked conducts” [375,

p.48], for Suchman, behaviour relies on coordination with the dynamics of the situation [323,

p.18] and is structured “in reflexive relation to circumstances that are themselves in the process

of being generated” [323, p.20].

2.5.2 Readiness-to-hand in User Experience

In his influential 2004 book Where the Action Is Dourish draws on the work of both Suchman,

and Winograd and Flores [90], and develops an account which is closely similar with respect

to the ideas and constructs I focus on here. His account of readiness-to-hand and coupling

in particular remains quite close to that of Winograd and Flores, and he develops Suchman’s

ethnomethodological practice in a more design-focused direction [90, p.77]. Perhaps the chief

difference from work discussed above comes with the book’s focus on tangibility (a specific line

of research on physically manipulable digital objects and interfaces) and a greater focus on

design and user experience. Dourish’s own account of readiness-to-hand thus places slightly

stronger emphasis on the way that shifts between modes of engagement are crucial to effective

tool use and experience. He argues that to accomplish most tasks, the user must repeatedly

adjust their coupling to the tool; switching between practical, skillful, task-execution and a more

detached reflection on how to proceed next, and between these and intermediate levels of coupling.

At certain points it is desirable for the user that the tool should be invisible and unobtrusive

while the user focuses on the task. At other points it is desirable that the tool should capture

their attention to a greater degree, as they consider its properties and potentials [90, p.139].

Like Winograd and Flores, Dourish relates readiness-to-hand to the idea of “coupling”, which

again involves a process of coordination rather than a functional input-output relation, and is

conditioned by the user’s interests [90, p.47].

Dourish’s approach to readiness-to-hand, with its greater focus on fluid, intuitive, physical

engagement has itself been influential. Closely similar ideas have been applied to understand
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how tangibles support learning [230], and the fluidity of switching between interfaces [244].

Weiser’s quite limited but influential use of the term is also relevant here: he indicates that

readiness-to-hand and the invisibility it confers on the tool can be seen a prototype of good user

experience [363]6. The influence of this idea can be seen in later work which relates readiness-to-

hand to immersion [5, 6, 319] or fluidity [34, 244] or emphasises the way a ready-to-hand tool

comes to almost feel a part of us [33, 34, 206]. Others have somewhat reacted against Weiser’s

approach, returning to Winograd and Flores’ assertion that both present-at-hand and ready-to-

hand modes of engagement are essential. Chalmers and Galani’s articulation of the concept of

seamfulness is one highly influential example of this [56, 57]: they critique a narrow identification

of readiness-to-hand with good user experience. They argue that both seamless engagement

— ready-to-hand tool use — and what they call seamful engagement — unready-to-hand or

present-at-hand use — are neccessary for good tool use, since it is transition between the two

and the switches in perspective this affords which supports the accomodation of the user to the

device, or the appropriation of the device for their own ends. Further, they argue that neither

Dourish nor Weiser fully address how a tool becomes invisible or ready-to-hand. They note that

previous accounts have placed too little emphasis on the role of learning, and skill acquisition in

the narrative of how a tool becomes ready-to-hand (as Dix puts it elsewhere: “Heidegger’s ‘ready

at hand’ is often confused with ‘walk up and use”’ [84]). The distinction between seamless and

seamful has since been widely influential in design [164].

Ending this section, it is worth noting that, despite their association with ideas of embodiment,

many of the accounts discussed above focus relatively little on the body [152]. While Winograd

and Flores draw examples from biology and manual tool use, which speak directly to sensorimotor-

level applications of their ideas (c.f. [375, pp 33, 42, 45-46, ]), they largely focus on linguistic and

textual interactions when drawing out the implications of these ideas for technology, with little

discussion of movement or physicality (e.g. [375, p.128, 143]). This perhaps reflects the dominance

of command-line interfaces in the technologies of their day, and then-current debates over the

ability of symbolic AI to handle issues of meaning. It may also be influenced by Heidegger’s

heavy emphasis on language [275], and Maturana’s idiosyncratic use of the term “linguistic” to

describe what others might discuss as sensorimotor action (e.g. [375, p.49]). Suchman’s work

focuses largely on socio-technical context and on practices rather than the body [152]: on how

habits, and actions arise out of interactions between people against a particular cultural and

historical backdrop [323, p.277]. Again, bodies are an implicit part of this and occasionally come

to the foreground, as in discussion of “the encapsulated and augmented body”, and a concern

with “joining and separation of human and nonhuman”, or the “reconfiguration” of human bodies

in their active possibilities [323, pp 221-225] . Nonetheless, these bodies are not dealt with in

much specificity, and the most commonly mentioned “body” in her book, is the “body of meaning”.

6While there is much discussion of Weiser’s use of the concept “ready-to-hand”, he does not seem to place a
very strong emphasis on the term, using it more or less in passing with no exposition, among other accounts of the
experience of a disappearing artefact.
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Finally, while Dourish’s account arguably has a little more material focus on bodies, via his

interest in tangibility, he has noted that “the body has remarkably little presence” in the book

[91]. He notes this was a “somewhat strategic, if problematic” decision, to investigate whether

bodily concerns of new interaction possibilities could be articulated well via “existing analytic

frameworks such as those of ethnomethodology” [91].

2.6 The Individual Body in Embodiment

In this section I turn to focus on embodied interaction research which has focused more directly

on individual bodies and their actions in space. This marks a shift in emphasis, but not in basic

theoretical commitments, as will be seen by the recurrence of the same key concepts and principles

— interactivity, coupling, and readiness-to-hand. In the past authors outside embodied interaction

have tended to characterise the community by focusing exclusively on particular aspects of its

methodology. Some have focused on first person, qualitative accounts of situatedness [149], others

have focused on coordination between body and mind [208], or on particular kinds of interaction,

involving bodily movement and “tangible” devices [208]. As Dourish has made clear, such narrow

definitions somewhat miss the point: embodied interaction is unified by theoretical commitments

rather than by focus either on situations or on bodies, or on particular interaction modalities [91].

This is bought out well in accounts by Turner, and Hornecker et al.. Both emphasise the roots

of embodied interaction in a rejection of aspects of cognitivism (which I outlined above in my

discussion of Winograd and Flores), and in the influences of “post-cognitive” schools of thought.

In particular they emphasise the phenomenological philosophy of Heidegger and Merleau Ponty,

and Gibson’s original account of ecological psychology (which was itself significantly influenced

by the latter [339, pp.19-22],[152]). This accounts in part for the role of our three key concepts

across work which focuses either on the situation of the body, or on bodily action more directly:

readiness-to-hand derives from writings by Heidegger and Merleau Ponty, and as I will discuss in

more detail in the next chapter, Gibson’s work emphasises interactivity and coupling [216, 305].

As with the discussion above, this section will not attempt to give a comprehensive survey, but

rather focus on key works in embodied interaction. In this section more than the last, however,

some omissions may stand out quite strongly. In particular some readers will miss any mention

of Somaesthetics, and associated work by Dag Svanaes on phenomenology. This is arguably the

movement within HCI which has made the most thoroughgoing effort to address the body in

terms of its corporeality. I have not passed over this work out of a feeling that it is not relevant

or important. It is simply that the dimensions along which this work differentiates itself from

other work discussed, are not a focus of this thesis. Somaesthetics differs chiefly in its strong

focus on felt experiences and aesthetics, and methodologies which serve this — with a (at times

radically) first person view [146]. Also notably absent are discussion of Hutchins’ contribution to

distributed cognition focusing on interacting teams of people [156], and work which builds on

25



CHAPTER 2. BACKGROUND: INTERACTIVITY, COUPLING, AND READINESS-TO-HAND IN
EMBODIED INTERACTION

Lakoff and Johnson’s ideas about the grounding of abstract thinking in bodily experience [204].

Again these works represent important contributions to embodied interaction; however the work

in this thesis does not strongly address those issues which are uniquely raised by this work, and

absent elsewhere. Rather than pay lip-service to a wide range of perspectives, I have tried to give

a more detailed engagement with those lines of research which are most relevant to the work I

develop.

2.6.1 Distributed Cognition

Only a little after the work of Winograd and Flores, and Suchman discussed above, other

researchers began to investigate embodiment in terms of the behaviour of individual bodies.

Some of the earliest influential examples of such work are found in work by Kirsh [194, 196],

and by Scaife and Rogers [299] focusing on what has been called “distributed cognition” [144].

This work discusses how physical interactions with external representations of information are

leveraged in many ways by human technology users in conventionally “cognitive” tasks. The

authors argue that when people are reasoning, they are not only reasoning in an environment,

but reasoning *with* the environment: physical movement, gesture, and the reorganisation of

items in the environment can all form part of thinking, by reducing cognitive load and providing

access to new operations, and more complex data structures. Work by Scaife and Rogers focuses

primarily on external representations, and their reliance on existing learning, and in regard

of interactivity, and the dynamic coordination of user and environment, treats this as an open

question for future work [299]. Early work by Kirsh on the other hand investigated the epistemic

roles of action and interactivity [224], focusing on how users coordinate their actions with

technologies to support cognition. An example of this work focused on how actions in the game

Tetris supported performance. This work found that not all movements players made served

solely to move the puzzle pieces towards the correct position, but most also served a cognitive

function. As in Suchman’s account, behaviour during this task did not reduce to the execution of

mentally represented plans and cognitivist “decision cycle” models, but was more interactive in

nature, with physical coordination also having a “computational” role.

In later work, Kirsh and colleagues develop these ideas towards a wider account of role of

interactivity in HCI. They draw on ecological psychology to emphasise that even basic human

behaviours such as perception are fundamentally interactive. Again, interactivity is understood

in the sense in which I have been using the term — involving reciprocal coordination between

distributed elements (the user, other users, information and processes in the environment)

[194, 195] — though where interactivity was largely unpacked at a cultural and linguistic level

in some of the work above, Kirsh and colleagues discuss interactivity at other scales of behaviour.

Their work often focuses on immediate moment-by-moment coordination with the interface, via

particular visual and haptic actions, and how users further coordinate these behaviours over

time, to prepare, explore, and maintain environments for the purposes of problem solving [194].
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Kirsh gives the example of the game Tetris as a case where low-level sensorimotor coordination

becomes tightly coupled to the process of cognition, since time-frames for piece-rotation in the

world are shorter than for piece-rotation in the mind. By contrast in jigsaw puzzling, this coupling

is looser, with the sensorimotor action organised into stages: grouping pieces and organising

them in space to support a later piece-matching phase [194].

While these scales of activity are in turn related to wider environments, in which I am

“causally embedded” and which “both determine what I can do and what happens as a result

of my actions” [194], in this work cultural aspects of these environments are relatively under-

emphasised. Within this analysis of interactivity, the coupling is again an important unit of

analysis. Here it is a “complex, dynamic” [194] relationship between entities, involving coordina-

tion across potentially many different timescales [144], and where “to understand the behavior

of any one body, we must understand the influence of all the others in the system” [194]. This

account of coupling seems to me entirely consistent with the accounts described above, and

similar conclusions are drawn: if systems are to support learning and creativity, they must

provide affordances for users to autonomously coordinate their own behaviours with those of the

tool. In some respects this account of coupling is narrower: variations of coupling over time are

not discussed, as in the accounts of readiness-to-hand above. In other ways it gains precision.

While Kirsh and colleagues largely focus on distributed representation of information, they

explicitly relate their account to then-recent work on sensorimotor interactivity and coupling in

ecological psychology. They note that at the time of writing (roughly 7 years before the earliest

work I discuss in the next chapter [350]) the nature of interactivity per-se was poorly understood

[194], and call attention to the need to understanding the nature of “multiscale” user-technology

couplings, and how they might explain basic interaction phenomena [144].

2.6.2 Beyond Distributed Cognition: Sensorimotor Couplings and Technology
Integration

Later work has sought to move beyond the focus on distributed representation, towards a focus on

sensorimotor couplings. Such work builds on ideas from cognitive science that these sensorimotor

couplings are both prior to representation, and operate as important building blocks for the

generation of meaning [268], which point to a way of grounding the idea (present in much of the

work discussed above) that meaning arises from interaction. One line of research in this area

is developed by Van Dijk and colleagues [155, 344, 346]. Van Dijk’s description of sensorimotor

coupling is (like Winograd and Flores’ account of Structural Coupling) drawn from the work

of Varela and colleagues [344], and consistent with the accounts discussed above, but with a

greater focus on behavioural mechanisms: “[sensorimotor coupling is] the way by which the living

body continuously self-organizes into coordinating patterns in response to perturbations” in the

environment, via the formation of couplings between perception and action. These perception-

action couplings consist of regularities between behaviour and the environment which support
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the development of skills or habits, and which are stably enough integrated into the organism

that these skills or habits can “pop up when needed”, during relevant tasks [345].

While Van Dijk and colleagues do not work to operationalise or empirically study these

user-technology couplings, they do clarify how the construct might inform technology design,

via design case studies. These case studies recall sensory substitution devices (though they are

not explicitly discussed in these terms) providing real-time mappings from relevant interaction

parameters to sensory feedback. In an augmented skating system, for example, they sonify the

pressure exerted on the skate, by mapping a pressure sensor input to a band pass filter, allowing

the user to perceive the pressure they exert on the board via this sound mapping [346]. In another

case study they aim to encourage people to use less water in the shower, via an interactive floor.

This floor rhythmically massages the user’s feet, progressing through a regular temporal pattern

of vibrations tied to the length of a regular showering session. The authors suggest that over

time users will habituate to this pattern, at which point the massage sequence can be slowly

compressed in length, nudging the user towards taking shorter showers [345]. In both of these

case studies, the authors suggest that the designs do not provide symbolic interfaces with clear

pre-designed meaning, but rather provide interactive regularities which the user can recruit into

their behaviour, allowing them to develop adaptive routines and skills7. In line with the ideas

of Winograd and Flores, the authors point out that explicit meanings is not written into these

systems, but arises at a more implicit level, through the user’s coupled action. The user may not

even be able to articulate the meaning in linguistic terms, but it helps them to structure their

experience and behaviour in meaningful ways relative to the tasks at hand. The authors expect

that such technology designs will ultimately disappear into the background for the user as they

become integrated in this way [345, 346].

These ideas clearly reflect the ideas of ready-to-hand engagement discussed above, suggesting

an implicit theory of design for ready-to-hand engagement, grounded in pre-symbolic sensorimotor

interaction loops8. In doing so they give a somewhat clearer vision of how some ideas around

coupling and interactivity articulated above might be grounded in proximal bodily action. They

point to one way of understanding how meaning can arise from interaction, via the implicit

recruitment of interactive sensorimotor regularities into skills and habits. Through this, they

indicate one way to understand the ideas articulated above about how variations in coupling

and readiness-to-hand might support users in appropriating technologies for their own purposes:

moving back and forth between the pre-conscious acquisition of these skillful sensorimotor-

couplings, and conscious, critical, reflection on the behaviours they support. It is not too strong to

7Arguably the shower approach diverges from the notion of a sensorimotor coupling insofar as it does not
create a reciprocal interaction loop between user and system. Rather, it presents a more behavioural approach,
with a fixed haptic stimulus, to which which the user is expected to habituate. Compare to the descriptions of
(structural/sensorimotor/) coupling throughout this section.

8while the authors themselves do not directly associate this account with the idea of readiness-to-hand, the
concept recurs through Van Dijk’s work [37, 345, 346] and in the examples discussed here, the authors associate these
designs with Merleau Ponty’s closely related, but more bodily [294]) account of the blind-person’s cane.
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say that these case studies point to testable hypotheses about readiness-to-hand and coupling.

They suggest that indexical 9 mappings of broadly task-relevant parameters are expected to be

supportive of sensorimotor coupling and, through this, of ready-to-hand engagement. Further

that these kinds of interaction designs will support users in finding their own meaning in the

device, as opposed to receiving it from the designer. What is lacking, for the further articulation

and testing of such hypotheses, is a more concrete operationalisation of the notions of coupling

and readiness to hand.

The value in developing such operationalisations and testing such hypotheses is illustrated

by the range of work which has explored a similar space to that outlined by Van Dijk et al.,

investigating sensorimotor couplings for novel augmentation devices. Such work has investigated

methods to teach musical instruments [343], present haptic illusions [321, 322], provide cognitive

support [132] and intuitive system control [247] and investigate how technologies “extend” our

senses and cognitive processes [34, 35, 343]. Such operationalisations seem likely to contribute

also to the new line of research on Human Computer Integration — the study of human-technology

engagement wherein there is “a very close coupling between the human and the electronic member

of the partnership” [245]. In this work it has been suggested that one of the key issues is to

understand how “agency is distributed or by describing the type of integration by measuring

the amount of physical or cognitive coupling between user and interface” [245], echoing calls in

recent philosophy of technology to identify measures of coupling between user and technology

to help identify cases where technologies which are highly integrated, and either intelligent or

persuasive, may put human autonomy and agency at risk [240, 369].

2.7 Summary: the Role of Interactivity, Coupling and
Readiness-to-Hand

In the discussion above, I articulated the role of three key concepts and principles — interactivity,

coupling, and readiness-to-hand — both in work which has been central to the development of

the account of embodied interaction, and in more recent work which develops these ideas, or is

closely related to them. It is helpful to recapitulate these three concepts, and summarise their

role in the work above, before articulating the research gap which I suggest emerges from this.

Of the three concepts I have focused on, interactivity is the most general and abstract. It

functions as a general principle at the root of nearly all the work discussed above: that behaviour

is “best understood as the emergent property of the interactions of the [user] with its environment”

[190, p.2]. I have picked out the ways in which key texts in Embodied Interaction, by Winograd

9Indexicality is a concept developed by C.S Peirce: indices are purely denotative, showing their associated objects,
where symbols are associated with their object by familiar convention, and icons are associated by likeness. Often the
wind-sock or weather vane are given as examples of indexical representations - they show the direction of the wind
[19]. An example of a natural mapping in HCI is the "natural inverse". The ability to ‘inverse’ or undo an action allows
intuitive recovery from error, and such actions may be made “natural” by e.g. a combination of first mapping, and
exploitation of the normal responses of our motor system [125]
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and Flores, Suchman, Dourish, and Kirsh, all proceeded from versions of this idea. All these

accounts emphasise improvisatory, adaptive behaviour in which users alter their environments,

manipulate tools and influence other users, while at the same time being influenced by these

entities, and the changes invoked in them.

Within this understanding of interactivity, coupling emerges as an important analytical

term. In all cases it seems to pick out the same basic principle of tight, reciprocal, influence

between particular entities, and the role of this in grounding particular task-oriented behaviours

and experiences. Across most of the work discussed, it is emphasised that this kind of coupling

differs from the informational coupling sometimes discussed in cognitivist accounts in that it

is tightly reciprocal, and its effect is not considered to be modular, functional, and composable

[305]. Winograd and Flores adopt the term “structural coupling” from the enactivist biology of

Maturana and Varela, to capture a relation where the behaviour of each entity is to some extent

dependent on the behaviour and properties of the other, via continued creative adaption behaviour

in one or both entities, in service of their ongoing needs [375, pp.44-49]. They develop this idea

via examples from dyadic relationships between frogs and other animals, before applying it to

more complex situational couplings between multiple users and technologies, emphasising its

validity independent of scale. Closely similar ideas recur in Dourish, and Kirsh, with the former

emphasising its difference from input-output relationships [90, p.47], and the latter emphasising

the dynamic, multiscale complexity of the relationship [144, 194]. In the work of Kirsh and later

researchers this idea moves back towards the sensorimotor specificity implied by the ideas of

Maturana and Varela, and leads to a focus on designing for sensorimotor loops which support the

integration of technologies into users’ behaviour (e.g. [34, 322, 345, 346]

Finally comes readiness-to-hand, the concept which moves us from mechanisms underlying

behaviour to higher level features of user experience and behaviour. This describes particular

changes in the mode of interaction between user and tool [367, pp 128-139], often related

to “breakdowns” . Changes in readiness-to-hand have implications for style of cognition and

behaviour, distribution of attention, and the first person experience of either fluid, or cumbersome

and intrusive emgagement [367, pp 128-139]. In the accounts of Winograd and Flores [375,

p.78], Dourish [90, p.139], and later researchers [33, 34, 344], this idea (or a closely related

phenomenological ideas from Merleau Ponty [345]) is related to changes in coupling between user

and tool. Again this concept held an important role in each of the core embodied interaction texts

discussed. Breakdowns (often framed specifically in terms of breakdown in coupling) result in

important changes in user experience and cognition [5, 6, 34, 363, 375], and support learning,

appropriation and meaning-making [56, 155, 345], to the extent that the breakdown and repair

of readiness-to-hand emerges as a basic structuring principle of interactions over time.
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2.8 Articulating the Research Gap

As I indicated at the beginning of this section: despite the central importance of these three

concepts for embodied interaction, they remain under-specified in important ways, which may

limit the future development and applicability of embodied ideas in HCI.

Interactivity, coupling, and readiness-to-hand are clearly foundational ideas across accounts

of embodied interactions with technology. They are seen as playing important roles in understand-

ing and analysing interactions, and in distinguishing different qualities of interaction experience,

and user behaviour. Coupling and readiness-to-hand are given functional roles in understanding

how interactions are structured, how particular experiences emerge, and how users learn and

appropriate technologies. Finally, in recent work on sensorimotor coupling, coupling in partic-

ular takes on a fairly precise mechanical definition, focusing on particular vectors of tool-user

adaptation. In these cases coupling is related to how technologies can become tightly integrated

into our behaviour, cognition, and experience, and the implications of this for agency. Yet it is

not at all clear, in the literature which I discuss above, how interactivity is defined, how specific

episodes of coupling or readiness-to-hand can be clearly identified, let alone how different kinds

and strengths of coupling could be distinguished from one-another. None of the accounts point

to more precise formalisms, or criteria which would support this, and so researchers are left to

“know it when we see it”.

Such limitations need not always and in all cases be problematic, and Embodied Interaction

as a field can be seen in part as testifying to the success of its existing use of these concepts. In

many situations these kinds of definitions will not only be adequate, but arguably necessary. As

Van Dijk notes, many socially, and linguistically, embedded interactions are incredibly complex,

such that the vectors of coupling will likely be so diverse that they are impossible to enumerate,

let alone compare meaningfully [344]. In such conditions, the high level accounts of coupling

discussed above seem to function well in sensitising researchers to a particular way of seeing,

analysing, and designing, interactions, and they provide a useful shared vocabulary for discussing

them.

At the same time, within this broad success, definitions of these kinds also seem likely to

meet limitations in certain circumstances. As we turn to focus on particular individual-tool

interactions, these accounts cannot offer clear guidance on what evidence of couplings would look

like, how to distinguish the weaker and stronger couplings involved in ready-to-hand tool use,

nor can they help us test which features of design support such couplings. Insofar as variations

in coupling are expected to support learning, or technology-appropriation, these accounts offer

little support in observing these sequences of changes in coupling in any temporal. This would be

useful to help understand whether particular patterns of variation are supported by particular

designs, or associated with particular outcomes. Insofar as these couplings may impact upon user

agency, as suggested by Human Computer Integration researchers and philosophers of technology

[239, 245, 369], these accounts give no guidance on what kinds, and strengths of coupling raise
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issues for user agency, or what patterns of coupling and de-coupling over time might mitigate

this issue. As such there seems clear value in seeking out more precise and formalised accounts

of coupling, and operationalising the construct. Not to replace existing understandings, but to

augment them in particular contexts. In particular these will be useful as embodied interaction

focuses on lower level sensorimotor interactions, and tight fast, sensorimotor loops, and as it

attempts to clarify and address issues that arise in our increasingly intimate relationships with

technology.

Success in other areas of HCI illustrates the potential value that comes with efforts to

operationalise those constructs which are considered to be building blocks of behaviour. Ironically

perhaps the best example of this is found in the broadly cognitivist approaches to HCI which

embodied approaches have often critiqued. Whatever other shortcomings may be levelled at

them, cognitivist approaches do have a clear formalism of their own interaction-structuring

entity — information. For broadly cognitivist approaches, human behaviour is structured by the

transmission and processing of information; with information mathematically formulated as

Shannon information [271]. This operationalisation allows ideas about good and bad interaction to

be specified in testable form: information transfer in an interaction can be defined and measured

and the results compared to theoretical expectations, and to user outcomes. It also allows systems

to respond to users on the basis of these models, comparing behaviour to expected behaviours on

the basis of these information measures [263]. In short an operationalisation of this basic concept

of interaction provides a hook both for researchers, and for technologies, to understand the

user. This in turn supports researchers in refining their ideas about interaction, and it supports

systems in adapting their behaviour to suit the user (e.g. [123, 177, 262]). This sets up the

unfortunate irony that while researchers focused on embodiment have long critiqued cognitivist

approaches for their failure to address the situated interactivity of users’ behaviour, it is arguably

the cognitivist approach which has provided most resources to help systems identify and adapt to

users’ behaviour, in context 10. While Embodied Interaction lacks basic operationalisations of its

core concepts, it seems unlikely to make similar progress on the problems it identifies.11.

As Dourish and others have noted [91, 152], but researchers outside the field sometimes seem

to misunderstand [134, 149, 208], embodied interaction is not a separate sphere or domain of HCI,

dealing with novel “tangible” objects, not focused exclusively on qualitative, first person methods,

nor on a particular scale and style of behaviour. To return to the definition at the start of this

chapter, embodiment is rather the “surprisingly radical hypothesis that the brain is not the sole

10Here I focus specifically on the development of hooks for unattended systems to adapt to users, and do not wish to
downplay the success and influence of embodied approaches in the design of systems. It is worth noting however that
even in the cases of embodied concepts such as “affordances”, HCI researchers have often inherited more cognitivist
interpretations of these concepts: “Norman affordances” — see e.g. [180, 238]

11This overstates the problem only a little. Of course information theoretic models are applied as useful abstractions
to understand interactive processes even when they are, theoretically speaking, better specified in terms of dynamical
systems. Complex systems approaches, and modern accounts of interactivity in cognition rely on this [268, 333].
Nonetheless such work still depends upon clear formalisms of interactivity and coupling to support such abstractions
and understand their limitations.
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cognitive resource we have available to us” [371], that body and context are not “optional extras”

but a hard facts that pre-exist our action and cognition, and it is the rigorous following-through

of the implications of these ideas [12, 152]. As Wilson and Golonka note, and as I have tried to

outline above, this relatively small change in perspective has major consequences [371]. However,

as Dourish recently lamented, some views of embodied interaction, even within the community,

have treated it a something of a ghetto: restricting the implications of these major consequences

to scenarios involving either tangible gadgets, or particular scales of sociocultural activity [91].

On the contrary, as Dourish argues, and the definition above makes clear, the embodied approach

is foundational, and has implications for understandings of human behaviour and interaction

across all domains. That is, the approach is not only relevant for grossly embodied interactions,

with graspable or wearable devices via novel interaction styles, or for interactions where people

coordinate closely with peers and colleagues. The embodied approach should also speak to banal,

proximal, everyday interactions: seated, manipulating keyboards, and mice, writing text, playing

games, or as noted for example by Dix et al. engaging with the web [83]. These situations still

engage our bodies (fingers, hands, eyes, heads), and call for us to arrange interactive elements

in physical space (even if only in the space of the screen) before coordinate our ongoing eye

and hand movements around these arrangements. They are still socially situated, and rely on

implicit know-how12. But they are likely to require different methodologies than the mostly

design-led and qualitative approaches which have otherwise served well. Following the example

of cognitivist approaches to interaction, it seems likely that a clearer operationalisation of basic

constructs of embodied interaction can help the approach to follow up on its implications in such

scenarios, and contribute across a wider range of domains, and incorporate embodied principles

directly into the design of everyday technology.

2.8.1 Summary

In this chapter I identified three major concepts or principles in Embodied Interaction research —

interactivity, coupling and readiness-to-hand — tracing them through major texts and strands

of research in this community. These concepts drive research and research attitudes, and seem

successful in sensitising researchers to issues in interaction, and supporting discourse and the

development of design ideas. However, they have not been formalised in ways which support

support the development of quantitative tools. While much work in Embodied Interaction is

better achieved with qualitative and design methods, certain scenarios — where timescales

are very short, where human observation may be insufficient or impractical, or when we wish

to test and refine hypotheses and design ideas — call for quantitative methods. These include

12Indeed one of Merleau Ponty’s most famous illustrations of the roles of situation and body on behaviour (and
one often related to the account of readiness-to-hand) concerns the act of typing at a keyboard. He notes: “When the
typist performs the necessary movements on the typewriter, these movements are governed by an intention, but
the intention does not posit the keys as objective locations. It is literally true that the subject who learns to type
incorporates the key-bank space into his bodily space” [242, p145]
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basic issues around readiness-to-hand, and the coupling and decoupling of the user from the

technology over the course of an interaction, which accounts in Embodied Interaction expect to

impact on experience, behaviour and task outcomes. There is clear value in observing variation

in these couplings, and modes of engagement over time, to understand their relationship to user

experience and outcomes, and to understand which design elements affect them. Understanding

these kinds of couplings and phenomena also seems important in a range of other scenarios,

including rising issues such as human computer integration and technologies which support or

exploit embodied sensorimotor coupling.

As such there is value in operationalising these basic concepts and principles, and developing

quantitative methods which address them. In the next chapter I turn to existing operationalisa-

tions of the ideas of coupling and interactivity which researchers in HCI might adopt, from what

has been called the Interaction Dominant View of Cognition. I also discuss how they have been

applied to understand readiness-to-hand, and discuss opportunities to extend this work in HCI.
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3
MULTIFRACTALITY AND THE INTERACTION DOMINANT VIEW OF

COGNITION

3.1 Summary

This chapter:

1. Relates three key constructs of Embodied Interaction interactivity, coupling and readiness-

to-hand — to work in cognitive science, grounded in the Interaction Dominant View of

Cognition

2. Introduces the Interaction Dominant View of Cognition and the closely associated method-

ology of multifractal analysis for a HCI audience, articulating its potential contributions

3.2 Overview

In the last chapter I articulated the role of three key concepts in embodied interaction — interac-

tivity, coupling, and readiness-to-hand — and argued that there was value in operationalising

these concepts, to support greater clarity in the application of embodied ideas in certain contexts:

particularly around proximal user-technology interactions, and situations of human computer

integration. In this chapter I introduce a line of research in embodied cognitive science — the so-

called Interaction Dominant View of Cognition (IDVC) [85]. I argue this provides both resources

for such operationalisation, and also methodological resources of wider value for research in HCI

— to infer and study user experience and behaviour. This is the methodological and theoretical

resource I draw upon, and contribute to, throughout the rest of my thesis. It is important to note

before I continue that I do not take these operationalisations to be reductionist: they should not

35



CHAPTER 3. MULTIFRACTALITY AND THE INTERACTION DOMINANT VIEW OF
COGNITION

replace existing uses of the terms, and I do not believe they will provide the best approaches in

all contexts. I address this briefly below, and in more depth at the end of my thesis, in chapter 10.

In the first section I begin by introducing the IDVC, and two of its key ideas: interaction

dominance and multifractality, and relating them to interactivity. In this section, I introduce

these at a relatively high level, largely by analogy. I first introduce the low level concepts of

interactivity and cascade structures on which they build.

In the second section I then relate these ideas to human behaviour, articulating the way these

ideas have been applied in previous work to understand to skilled behaviour, human-human

interaction, and tool use. Through this I articulate the relationship of this account of interactivity

to coupling and readiness-to-hand. I then finish the chapter, in section 3.7, with a deeper technical,

and methodological discussion of multifractality, and multifractal analysis.

3.3 Interactivity, and the Interaction Dominant View of
Cognition

3.3.1 Interaction Dominance

There is strong and growing evidence that cognition and behaviour more broadly have some basis

in what have been called "interaction dominant" dynamics [161, 190]. Recent work has even

argued that interaction dominant dynamics are now "the only competitive explanation" for a

wide range of behavioural phenomena [362]. However for most readers this idea will need some

introduction.

Roughly speaking, a system has interaction dominant dynamics if its behaviour over time is

dominated by reciprocal interactions between sub-processes in the system. In such reciprocal

interactions one component both modulates, and is modulated by other components, leading to

a situation whereby the behaviour of each component cannot be described adequately without

taking into account the relationships between these parts. [161, 163, 190]. That is to say: we

cannot simply decompose such a system into parts, understand it in terms of those independent

parts, and then put it back together. This is the sense in which the interactions are dominant:

they are a dominant part of any adequate description of the system, and thus an important part

of models of behaviour.

A simple but revealing example can help illuminate the role of reciprocal relationships in

systems: the well known account of the relationship between predator and prey. Here we must

consider two populations in an ecosystem: the classic example deals with the relationship between

hare and lynx — a predatory cat. We know that lynxes eat hares, and that if hares are eaten by

lynxes then they will have less success in giving birth to offspring. Out of this simple relationship

a more complex but stable pattern of dynamic adaptation arises.
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1. if the lynx population is well fed, all other things being equal1 it will increase.

2. As the lynx population increases it needs more food, and we can now expect the hares

population to dwindle in line with the increase.

3. But as the hares population dwindles this will mean less food for the lynxes — at some

point too little, so that the population of lynxes will also begin to dwindle.

4. Less lynxes mean longer lives for hares, and again the birth rate will begin to outstrip the

lynxes’ consumption rate, increasing the population of hares

5. More hares mean better fed lynxes, bringing us back to 1

Empirical data and simulation results for this scenario are shown in fig.3.1. Even in such

a simple, two component system as this, the behaviours of the populations cannot be modelled

at all well without considering the interaction between them. However, by factoring in these

interaction even at quite a simple level, the accuracy of the model increases considerably and

behaviour begins to replicate a wide range of observed behaviours. In the diagram we can see

that simply by changing the nature of that interaction, quite different behaviours and outcomes

can emerge. Given that this is a fairly simple model, modelling only one interaction, it is easy

to imagine that, as systems increase in complexity and the number and variety of interactions

increases, the significance of these interactions in understanding system behaviour can increase

also.

Such processes and models are usefully applicable to phenomena occurring on widely different

scales, from ecological, to chemical, to motor control, to sociological [333], and it is illustrative that

the example I give here is drawn from materials from the Unviversity of Notre Dame Chemical

Process Control course [170]. A wide range of complex systems and dynamical systems models are

now used in different areas of cognitive science [361], and they are central to work in the IDVC.

The IDVC is a strand of work within ecological psychology, first articulated by Turvey, Van Orden

and others, which aims to articulate an account of behaviour grounded in physical and biological

principles [85, 349]. Within this, interaction dominance picks out a particular kind of complex

(in the technical sense of the term2) systemic behaviour. In a system with interaction dominant

dynamics, components interact in a cascading and reciprocal manner across a wide range of

time-scales, such that the behaviour of the system as a whole emerges from these interactions

[190]. This contrasts with a component dominant system, such as those assumed by cognitivist

and computational approaches, in which the effects of individual component behaviours are

encapsulated, and the system can be modelled as being partitioned into modules, with the

1This all other things being equal caveat can be assumed in each statement. It is omitted for ease of reading.
2For Thurner et al, a complex system is a "co-evolving multilayer network": composed of many elements which

interact with one-another via multiple interaction types, which may themselves change over time. These interactions
are generally not independent and evolve together by mutually influencing one-another, so that the dynamics of the
system overall are generally highly non-linear, path-dependent, and exhibit "memory" [333].
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Figure 3.1: Top: pelt-trading data for hare and lynx taken from the Hudson’s Bay Company (from
MacLulich, 1937 CNX OpenStax CC BY 4.0, via Wikimedia Commons). Below: in simulations,
changing the feeding relationship between hare and lynx results in quite different patterns of
population growth, including stable fixed states, and unstable growing conditions. All simulations
begin with 20 of each animal. Examples are drawn from the Jupyter notebooks provided for the
University of Notre Dame Chemical Process Control course https://github.com/jckantor/CBE30338
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Figure 3.2: Representation of component dominant (left) and interaction dominant (right) models,
to provide a gestalt for understanding the difference between the two models. Based on a diagram
by Hilpert and Marchand [141]

expectation that individual component behaviours can be recovered in the measured behaviour of

the whole system [349] (see figure 3.2). A significant feature of interaction dominant systems,

which is not so visible in the predator-prey example above, is that they are not static in their

organisation. Instead they can reorganise themselves structurally from moment to moment in

response to environmental conditions and to the demands placed upon them. This occurs because

the components not only modulate one another as in the predator prey example, but also modulate

the relationships between themselves — strengthening and weakening connections between

neural pathways, and between neural populations and sensory organs, muscles, etc. On the

interaction dominant view of cognition, such adaptive change in organisation is theorised to be

the basis of functional adaptation and agency in organisms [348, 349]. Through constant, minute,

adjustment, between constraints and perturbations in the task-environment, and constraints

and perturbations in the organism’s own (neuro)physiology, the organism constantly adapts,

recruiting and coordinating resources and behaviours in a way which is adequate to the task at

hand.

Since interaction dominant systems reorganise themselves structurally in this way, the

diversity of connections and components which are significantly involved in the specification of a

particular behaviour can vary. For a simple task, or one relatively insulated from perturbations

of the environment, less adaptation is required and it is expected that a narrower range of

system resources must be coordinated together [212]. In the jargon of the field this is to say that

the presence of interaction dominant dynamics become less pronounced [161]. In more complex

scenarios, a wider range of components — within and without the body — must be coordinated

in order to support adequate adaptation to the task, and so interaction dominant dynamics

become more pronounced [88, 210]. In the last half century formalisms and techniques have
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been developed to observe the way that these differences in system organisation accompany

differences in behaviour. These approaches have formalised interactivity and interaction in terms

of multiplicative cascade structures, which are known to give rise to multifractal signatures

in behaviour. By analysing such signatures in behaviour, changes in interaction dominance,

have been observed in a range of circumstances, accompanying various higher level behavioural

changes. They have been shown to correlate to differences in skill levels [255], task engagement

[212], in the cognitive complexity of the task[210]. In general they are taken to correlate with

the need for flexibility and adaptation, and accordingly they have been associated with cognitive

coordination phenomena such as executive control [10, 316].

3.3.2 Interactivity

The first point of connection I wish to articulate between the IDVC and embodied interaction is

via the principle of interactivity. I will first give a high level account of this, and then proceed to

the formalisation of interactivity given in the IDVC. In the last chapter I argued that this was

a key principle in embodied interaction, tracing its role through all of the work discussed. It is

perhaps already obvious from the description of interaction dominance above, that the principle

will be important here also. In fact the working definition of interactivity which I provided in the

last chapter itself derived from foundational work in the IDVC by Damian Kelty-Stephen. As

Kelty-Stephen notes, within ecological psychology, interactivity is a central theme and principle

[190]. As in Embodied Interaction, this principle of interactivity has most often been described at

a relatively high level. Kelty-Stephen describes it thus:

“the patterns of an organism’s behavior are best understood as the emergent property

of the interactions of the organism with its environment ...[not] understood as the in-

dependent activity of so many sense receptor cells, nerve pathways, and muscle fibers

[but] in the broader context of the task and environment within which coordination

of those biological nuts and bolts takes place” [190, p.2-3]

For my working account of interactivity in embodied interaction, I simply swapped out

“organism” for “user” in this quote, and stopped before I came to the “biological nuts and bolts”.

As we saw in the last chapter, some embodied interaction researchers did indeed approach

interaction from an organismic perspective, and some addressed the nuts and bolts via ideas of

sensorimotor and structural coupling. Despite the fact that researchers in HCI have seemingly

not engaged with work in the IDVC3, it is not surprising that the two areas should share closely

similar ideas about interactivity. Gibson’s ecological psychology which grounds the IDVC has

been influential in HCI: both via the concept of affordances [122, 179] and more specifically in

3I have been unable to find such engagement, and some reviews of the field (albeit nearly a decade old) note that
at the time of writing, HCI researchers had not engaged with related approaches within embodied cognitive science
[229, 344].
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embodied interaction to understand the tight relationship between user and context [229, 339].

It is important in particular in this way in accounts by Dourish [90], Kirsh [194], and Van Dijk

[346]. In embodied interaction, and in the IDVC, the moment-by-moment interactions between

the various entities involved in the task situation are repeatedly emphasised as having a basic

role in behaviour, these interactions are emphasised to be an irreducible, and it is said that

behaviour is an emergent property of these interactions [190, p.2].

Before proceeding into more formal detail about the idea of interactivity in the IDVC, I want to

note that the aptness of IDVC approaches for embodied interaction comes with at least one caveat.

Some work in embodied interaction, which focuses mostly on situation and cultural context has

been critical of purely physicalist accounts of behaviour. In the 1990s Suchman — whose work

exemplifies this approach — criticised “third-person” approaches to “situatedness” grounded in

principles of cybernetics and cognitive science. She argued that they modelled “purely physical”

scenarios “evacuated of sociality” [323, p.15], and Dourish expressed similar concerns in the

early 2000s [90, p.189]. It would be hard to argue against this that the IDVC does not present a

physicalist account of interactivity. It may however go some way to address concerns to note that

work in the IDVC has, compared to other physicalist approaches, kept open a space for cultural

and social aspects of interaction. It has done this experimentally in a minimal way through the

analysis of interpersonal interactions and team coordination [17, 82, 211], and socio-cultural

effects such as the violation of gender-expectations [39]. At a theoretical level, foundational work

on the IDVC emphasised the “embodied status of environment, evolution, culture and mind

in theories of emotion”[126]. This work also drew heavily upon work of philosopher of action

Alicia Juarrero [126, 350], who focuses on physicalist, dynamical systems models of agency, while

at the same time emphasising that the most apt approach to understanding many real world

interpersonal interactions will remain narrative description which can accommodate complex

sociality [174]. Nonetheless, work in the IDVC is fundamentally physicalist. At present most

empirical work does not emphasise issues of sociality and focuses largely on behaviour at a lower

level. My own work in this thesis follows suit. I discuss this tension in more depth in chapter 10,

discussing the instructive example of enactivist approaches to cognition where many researchers

move fluidly between narrative and mechanistic approaches (c.f. [267, 268]). For now it is worth

noting that at least many in embodied interaction are open to the application of physicalist

formalisms of interactivity, alongside other approaches (cf. [152, 194, 344, 375]).

3.3.3 Formalising Interactivity via Cascades and Multifractality

Readers will note that the definition of interactivity I quote above gets us little closer to an

operationalisation of interactivity than did the accounts I surveyed in the last chapter. As Kelty-

Stephen notes “interactivity has not been a simple concept to make concrete.”[190], and ecological

psychologists, like embodied interaction researchers, worked with such high-level accounts of

interactivity for decades. In this subsection, however, I discuss an approach which offers both
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an empirically tractable formalisation of interactivity, and a “rigorous test of interactivity in

a variety of empirical settings” [190]. This approach formalises interactivity in terms of the

notion of cascade dynamics from statistical physics, and its mathematical relationship with

multifractality — a property which captures multi-scale complexity in signals.

3.3.3.1 From cascades to multifractality ...

The concept of multifractality originated in the needs of statistical physicists, trying to understand

turbulence in liquid (e.g. water) flow in terms of multi-scale interactions within this flow [172, 190].

As such introducing it in terms of fluid behaviour can help give readers an intuition for the

concept. In this I largely follow Kelty-Stephen’s account in [190]. It is best to begin with the

image of a single uninterrupted stream, for example a waterfall (fig 3.3). Now imagine that this

stream passes through obstacles, such as rocks and wind currents, which repeatedly partition

the stream into a set of smaller streams. In such a situation two features are important

1. Different sized rocks and gusts of wind will have quite different perturbations on the

stream: they will act on the stream at different scales.

2. Effects which begin at one scale will later have influence at other scales: for example,

perturbations which effect large streams close to the top of the cascade, will be carried over

and affect the smaller streams into which it later divides

Under the right circumstances, these repeated, disordered, partitionings will introduce

nonlinear interactions between multiple scales of behaviour. Given such a cascade, we can now

imagine ourselves standing some arbitrary distance along its length, observing it at this point,

across its width. Multifractal analysis provides a set of techniques to reconstruct the dynamics of

the cascade above from observations at this point.

To see how it is possible to reconstruct upstream dynamics from observations at a particular

point, it helps to begin by considering a very orderly process - a perfectly homogeneous cascade,

in which each stream divides in a very neat way exactly two child-streams. We can give a simple

mathematical description of such a state of affairs. First we split this dividing process into j

successive generations or scales. Second, we define a particular way of observing the stream at

our present location - we divide it into a number of equal windows, each of length L. With this in

place, we can say that the average proportion P̄ of the streams observed at a particular location,

or scale, j, can be expressed as follows

P̄ j(L j)∼ L j
α

The technical term for this expression is a singularity. In plain terms, in a signal, a singularity

is a point of discontinuity, a sharp turning point, or abrupt step-like change in a waveform. In

mathematical terms it represents a point where components of the signal have non-integer powers
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Figure 3.3: left: rocks and wind partition a cascade of water, with a cross section at an arbitrary
distance down its length. Right: a mathematical cascade (based on a diagram in [190]) which
captures the partitioning of events across increasingly small sample sizes. Waterfall image from
http://www.forestwander.com/, used with permission.

of time. It is the distribution and nesting of these singularities which defines the (multi)fractality

of the signal. The final term I have not introduced, −α, is called the singularity strength. This

value tells us how the cascade changes as we move scales. In a homogeneous process like the one

described, there will be only one singularity - a single value of α, determined by the splitting

rate of the stream (the number of streams each stream splits into, at each step). If there are no

local interactions between streams, only an orderly regular splitting, then α will be an integer.

Where there are local interactions between streams, this will create homogeneous variance in the

splitting behaviour - fractality - and now α can take a non-integer value. Finally we get back to

figure 3.3: a still more complex process, where, as I note above, there are interactions between

scales. Now multifractal behaviour emerges: there will be multiple fractal singularities - multiple

non-integer values of α will be required to describe how the cascade changes as we move scales.

This range of singularities is referred to as a singularity spectrum.

So this story brings us to the red cross-section on the waterfall in figure 3.3. What we now

want is to be able to move back from this observation, to account for the interactions which led

to the observed behaviour. From the description I have just given, it should be clear that this

account will be given in terms of singularities. Specifically, the range of singularities tells us

about the structure of interactions which gave rise to the conditions we observe. If we see a
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wider range of singularities (a wider singularity spectrum) then we know that the process is

more complex, with many interactions over a wider range of scales. If we see a narrower range of

singularities (a narrower singularity spectrum), then this indicates less complex interactions,

between less diverse components. This singularity spectrum can be estimated from empirical

signals via one of several algorithms for multifractal analysis (discussed below in section 3.7. In

practice much research which applies these analysis methods treats the width of the singularity

spectrum (the difference between the smallest and largest singularity values) as a scalar metric

to capture the range of interactions in a system. This value is commonly referred to simply as

“multifractality” [172, 187, 190] and I will follow that naming practice in the rest of this thesis.

Because the model above has been demonstrated to generalise far beyond the description

of fluid behaviour, these analytical techniques are capable of describing interactions in a wide

variety of systems. This includes systems which are for example chemical [313], physiological [55],

social [362], financial [172], and of course cognitive [161, 190]. In these other cases we often move

away from successive interaction down the course of a stream, into the potentially simultaneous

interactions within a system, between sub-components of different scales.

3.3.3.2 ...and back to interactivity and coupling

As Kelty-Stephen notes, “interactivity is deeply related to the concept of multifractality” [190].

Cascade structures provide a mathematical formalisation of the idea of reciprocal interactions

between various entities. In place of a cross section through a waterfall, we can substitute any

signal captured from user behaviour. These might describe the variations in hand movement

during tool use [88, 255], EEG signal captured during team interaction [211], eye-gaze pat-

terns [23, 241], general bodily activity from an accelerometer [1], or many other quantifiable

behavioural phenomena, up to and beyond linguistic phenomena [362]. In each case, signals

are now seen in terms of fluctuations in behaviour, just as the waterfall cross-section described

the variation in quantities of water. The multifractal properties of this signal can then be used

to understand the role of interactions in producing these fluctuations: to what degree do the

observed fluctuations result from reciprocal interactions between sub-components at diverse

scales. In human behaviour for example these sub-components may be different neural pathways

and processes [23, 241], hormonal, muscular, and broader physiological processes, processes in

the environment [9, 210, 255], and other agents [211].

In such contexts, significant individual relationships between entities are treated as couplings

(cf. [53, 82, 101]). Specifically these are non-linear couplings, meaning that, as in the accounts

of coupling discussed in the previous chapter, these couplings are not simply additive and

understandable in terms of the linear influence of one element upon another. Rather, as in the

case of the populations of lynx and hares, the behaviour of the two entities must be understood

together, and in terms of their relationship. These couplings may be largely intra-individual,

between brain and wider-body, as in the case of couplings between visual and motor processes
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[312], or between heart and brain [53]. They may also be inter-individual, for example focusing on

cases of sensorimotor coupling between users and tools (of the kind which I noted were important

in recent work on embodied interaction and human computer integration) [15, 78, 88, 105], or

focusing on couplings between interacting people [82, 101]. In principle any given measurement

of behaviour will capture the influence of interactivity of both kinds, since it is expected that

factors over a vast number of scales will weigh on any individual instance of behaviour [349].

In practice however, the task, context and experimental manipulation will make certain kinds

of interactions more influential than others, and the choice of analysis parameters (discussed

below) can further narrow this focus.

Such an account of interactivity and coupling will by no means exhaust everything which

embodied interaction researchers care about, nor even all of the issues which I covered in my

discussion of interactivity in the previous chapter. However, I suggest it does point to a principled

way of formalising at least some of the scenarios in which embodied interaction researchers have

been interested, and doing so in a way which is consistent with embodied interaction researchers

existing accounts. In the next section I will discuss how multifractality and interaction dominance

have been applied to understand human behaviour, pointing to ways in which this work might be

relevant for HCI. In particular I will focus on the potential to use these accounts to understand

readiness-to-hand.

3.4 Multifractality in Human Behaviour

A large and growing body of work in cognitive and human movement science focuses on signatures

of multifractal variation in human behaviour, and on the information these can provide about

the role of interactivity in behavioural control [8, 161, 190, 276]. Higher levels of multifractality

have most generally been associated with effective, responsive adaptation to the task context

[9, 30, 88, 210, 251, 255]. In such work signals are recorded from task-directed action (e.g.

from hand movement, posture, speech) and the multifractal properties are analysed. Across

this body of work, multifractality is observed to vary in response to changes in the task’s

demands and constraints. These variations are taken to indicate differences in coordination in

the underlying behaviour: coordination which can include underlying neural and neuromotor

pathways [8], wider physiology[53], and elements in the task context to which the person is

adapting [78, 101, 189, 255].

As I note above, the approach has been applied to understand both intra-individual inter-

activity, and interactivity between individuals and other elements in the environment, such

as tools and other users. A nice illustration of the intra-individual case can be seen in recent

work on eye gaze. For example Stan et al. investigated multifractality in eye-gaze comparing

movement during tasks involving visual perception and motor action and tasks involving visual

perception only. They found stronger multifractal signatures in perception-action tasks, which
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they regarded as evidence of the way skilled perception-action performance emerges out of

non-linear coordination between sensory and motor control pathways [312]. This and related

work [8] argues that the presence of multifractality in eye movements is informative about the

emergence of eye-control from nonlinear interactions between sub-processes. Beyond low-level

sensorimotor control, the same intra-individual approach has also been applied to understand

how conventionally “cognitive” constructs such as executive control during card sorting tasks

may be grounded in interactive processes [9]. Moving to inter-individual interactivity which has

been the more common focus of, recent work has sought to understand the role of interactivity

in tool use [78, 88, 105, 255], body language during human-human interaction [82, 228], and

coordination during team tasks [49, 211]. Some of this work is discussed in more detail below.

Whether the work focuses on interactivity which is intra-individual or inter-individual, much

work in this area has focused on multifractality as an indicator of the capacity for effective,

responsive adaptation to context [30, 88, 210, 251, 255]. In many cases this can be summarised

in plainer language as a focus on “skilled, adaptive performance”. It is theorised that multifractal

patterns are connected to this kind of skilled performance due to an association between cascade

dynamics and metastable states [161]. A system is said to be metastable when it is poised at a

critical transition point which allows it to make rapid qualitative change into one of multiple

behavioural states [2]. Such states have been shown to arise in the neuromotor system and in

wider human behaviour, where they are theorised to support flexible and adaptive behaviour

[64, 161, 186, 349, 366]. It has been argued that such metastable behavioural states [2], promote

effective behavioural transitions when people are confronted by novelty, or by the need to adapt

responsively to the changing moment-by-moment demands of a task [2, 161, 210, 349].

In line with this account, multifractality and cascade structures have been associated with

effective adaptive skill in a range of behaviours. In eye-gaze, visual search is more efficient when

eye movements exhibit fractal properties [315]. In the crafting of stone and glass beads, greater

multifractality was observed in the hand movements of more skilled crafters, and predicted the

ability to adapt to unfamiliar materials [255]. Finally, in a card-sorting task designed to elicit

executive control, significantly different trajectories in multifractality over time were observed

depending on whether the card sorting task needed to be inferred during sorting, or whether

the rule was given at the start and merely executed [9, 10]. In the context of the work in the

last chapter, this kind of work points towards one route for understanding why situations which

promote interactivity may play a significant role in supporting good interaction outcomes, at

least in certain circumstances. It also points to the potential for embodied principles to address

a wider range of issues in HCI. Work in embodied interaction has rarely addressed the role of

intra-individual interactivity, and its relationship to individual-tool and individual-individual

interaction. This aspect of embodiment seems likely to be important in addressing less grossly

embodied interactions, where the user’s physical engagement with the environment is subtler, it

seems important for understanding how significantly intra-individual issues such as fatigue and
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emotion may impact upon more inter-individual phenomena of interactivity such as readiness-

to-hand, and task-engagement. It also seems of obvious relevance to the growing interest in

inbodied interaction [11], and human-computer integration [245]. In chapters 6, 7 and 8 I focus

on situations where intra-individual interactivity seem likely to dominate, in writing tasks.

3.5 Multifractality, Coupling and Readiness-to-Hand

In the IDVC interactivity in behaviour has been hypothesised to be the basis of human-technology

coupling, and this interactivity and coupling to be the basis of readiness-to-hand. This is consistent

with accounts in Embodied Interaction. Over three papers, Dotov and colleagues investigated the

relationship between the phenomenon of readiness-to-hand, and multifractal signatures in the

movement of the hand wielding the tool [88, 89, 251]. This account builds on previous work which

indicates that context-adaptive, skilled tool use is grounded in multiplicative cascade structures

in behavioural control [255], and suggests further that variations in readiness-to-hand arise from

variation in adaptive sensorimotor coupling to the tool and task. The authors propose and that

this sensorimotor coupling supports adaptive skilled performance by maintaining the neuromotor

system in a flexible, metastable state [88, 89, 251]. They hypothesise that reorganisation of

cognition to support this state will deprioritise visual attention in favour of sensorimotor coupling

and fast adaptation (it being well established that attention is a limited resource, and that

allocation of attention affects task performance [131, 311]), and suggest that this is what underlies

the experience of the transparency of the tool: “seeing through” the tool, to the task [89]. In line

with the ideas discussed in the previous subsection, this tool-coupled, ready-to-hand, state is

expected to result in stronger multifractal patterns in movement [88, 89, 251].

By contrast, breakdown in tool use, and the transition to non-ready-to-hand states, is theorised

to involve interruption of the user’s sensorimotor coupling to the tool. They argue that this

transition results in behaviour becoming less tightly coupled to task constraints, making it

thereby more conducive to reflective, conscious, characteristically cognitive activities. This is in

line with past evidence that tasks requiring more cognitive attitude, such as decision making,

display reduced fractal properties [127]. In this less task-coupled state, movement control is

expected to involve interactions between a narrower range of sub-processes, including lower

coupling to the dynamics of tool and task, resulting in weaker multifractal signatures [88, 89, 251].

These hypotheses were supported by the results of four experiments on mouse use in a

computer game (a methodology which I adapt for my own experiment, and which is discussed in

detail below). These results showed that multifractal signatures in movement of the mouse hand

were higher during normal game-play, and reduced when they simulated a malfunction in the

mouse’s control of the game cursor. They found that during malfunction the participants visual

awareness of the game increased, and cognitive load increased.
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3.6 Application to HCI

Both the work of Dotov et al. and the wider account of the IDVC seem to me to have value

for HCI, and for embodied interaction in particular. Beginning with Dotov et al.’s account of

readiness-to-hand, this offers a promising way of operationalising readiness-to-hand for HCI. It

offers a principled account of the mechanisms which underly ready-to-hand behaviour from which

further hypotheses can be drawn, and it is grounded in a property of behaviour - task-directed

movement - which is easy to measure without interrupting or altering an interaction.

More broadly this account points to ways to operationalise coupling and interactivity. In

Dotov et al’s account, and in other work on tool use (e.g. [78, 255, 277]), and human-human

interaction (e.g. [73, 82], variations in multifractal signatures are used to investigate relevant

couplings. This is done either by observing what happens to multifractal signatures in movement

when the means of coupling are interrupted [88, 277], or by looking at “complexity matching”

between singularity spectra in the movement signatures of humans, or between humans and

other adaptive agents [73, 82]. These approaches seem likely to be highly valuable in addressing

the issues of sensorimotor coupling and human computer integration discussed in the last chapter.

Turning to interactivity more broadly, as discussed above, multifractality is interpret-able4 as

information about cascade dynamics in the underlying system — e.g., at least on one definition,

as information about interactivity. As such multifractality can be applied in the absence of

hypotheses about specific human-world couplings, to understand interactivity more generally -

between body and brain, and whatever range of couplings and constraints impinge on behaviour.

Thus the approach can be applied in less world-involving behaviours, going beyond the tangible

and grossly embodied interactions which Dourish lamented Embodied Interaction was sometimes

reduced to [91]. Previous work and to understand less world-involving tasks involving relatively

minimal action, such as card-sorting [9], and composing a text with a keyboard [210]. In these

cases multifractality is suggested to open a window on cognitive and brain-body coordination,

with multifractal signatures found to be informative about executive control during decision

making and predictive of quality outcomes in text composition [9, 191, 210]. This points to

the possibility of a more foundational role for embodied principles in HCI, and to the value of

multifractal analysis outside the Embodied Interaction community: as a source of unobtrusive

behavioural measures, which in these cases only rely upon the capture of users’ task-directed

behaviour (video of card sorting, and timings of key-presses respectively). I investigate this line

of research in chapters 6 to 8, investigating multifractality in keyboard use and its relation to

task-complexity and fatigue.

Previous researchers have also applied multifractal analysis to understand the role of interac-

tivity in eye-gaze, in sensory tasks in the absence of non-sensory action [8], and in sensorimotor

coordination tasks [312]. This points to the potential to apply embodied ideas to understand the

way users coordinate their actions with visual information in the environment. This seems highly

4given appropriate methodological constraints. See section 3.7.3 below
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relevant to understanding the distributed information interfaces proposed by distributed cogni-

tion researchers [144], and more broadly in cases where users must coordinate their behaviour

with information distributed across a wide and complex environment. (I pick up this thread in

chapter 9, applying MFA to eye-movement in the control of complex machinery).

However, the first empirical work in this thesis I address readiness-to-hand, building on

the work of Dotov et al. As such, before turning to give an account of the technical aspects of

multifractal analysis, I will discuss limitations in this previous work on readiness-to-hand, which

I address in chapter 4.

3.6.1 Limitations in Dotov et al’s approach for HCI

While there is a great deal of work on multifractality in skilled performance [189, 190, 255] rela-

tively little of this has addressed the association between readiness-to-hand and multifractality

[88, 89, 251], and as such there remain limitations, and a range of open questions for HCI.

1. Awareness of other visual properties in the environment other than the tool were not

measured. As such the methodology cannot distinguish a shift in attention towards the tool

from a more general increase in visual awareness. Stronger evidence is required to strongly

establish multifractality with a shift in attention towards the tool. In HCI research with its

focus on interface design, precision around the direction of the user’s attention is likely to

be particularly important.

2. Dotov et al. do not perform an important analysis which allows spurious contributions to

the singularity spectrum to be ruled out: confirmatory surrogate analysis (discussed in

detail below) is now considered essential [161, 163, 190] to validate that the estimated

singularity spectra provide evidence for cascade structures and interactivity.

3. Dotov et al.’s experiment included a secondary count-out-loud task to quantify cognitive

load. This task is unecological in the HCI context and is likely to represent a significant

distraction from the primary task.

4. Extant work focuses exclusively on tool breakdown — only one of the scenarios which may

affect readiness-to-hand. The work does not address the association between readiness-

to-hand and familiarity with the tool and task [88, 89, 251] which has been considered

important in accounts in philosophy and HCI [34, 84, 96, 104, 139, 367]. Nor does it address

the association between readiness-to-hand and engagement or immersion in activity, which

has also been important in HCI [6, 319]

In chapter 4 I build on Dotov et al.’s theoretical account and methodology addressing these

limitations to investigate the potential for an operationalisation of readiness-to-hand in interac-

tion dominance and multifractality. I draw out further implications of the underlying account,
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articulating a likely association between multifractality and previously unstudied dimensions of

readiness-to-hand.

3.7 Multifractal Analysis

In the sections above, I addressed the potential contributions which MFA and the IDVC can make

to HCI and Embodied Interaction, and I indicated some of the work to be done in addressing

this. I did not give much of an idea of what multifractality is, or how it might be analysed in a

signal. I turn to those questions in this section, articulating the practical and technical aspects of

multifractal analysis.

Multifractal properties must be estimated from signals recorded from the system of interest.

In human applications, where the focus is often on control during tasks, signals should be

recorded from a part of the body, or some tool, which is under control towards the completion

of the task. For example, when Nonaka and Bril analysed the crafting activities of artisans of

lower and higher skill, they recorded the movement of the hammer tip using high speed video,

and from this recovered movement signals over time [255]. In other work task-directed hand

movement has been captured via an accelerometer [88, 89], eye-movement via gaze-trackers [8],

and typing gestures have been captured via the logging of keystroke timings. While algorithms for

multivariate multifractal analysis are available [168], these are a relatively recent development,

and implementations or guidance for their application are not widely available. The overwhelming

majority of work in the analysis of human behaviour focuses on monovariate analysis (all of the

empirical work on multifractality in behaviour cited in this thesis. In some cases experiments

control is naturally exercised along a single dimension as in steering tasks [212]. In other cases

multidimensional signals are reduced to a single dimension, sometimes via the calculation of

euclidean distances between measurements at adjacent time-steps (e.g. [8]), and sometimes by

simply analysing one of the dimensions along which control is exercised (e.g. [88]).

The prepared mono-variate signal can be analysed using one of several multifractal analysis

algorithms [161]. In the literature cited in this thesis the overwhelming majority of authors use

the Multifractal Detrended Fluctuation Analysis (MDFA) algorithm [162]. Other work, including

that of Dotov et al. on readiness-to-hand [88] uses a wavelet-based approach called Wavelet

Transform Modulus Maximum WTMM). I make use of both of these algorithms in this thesis.

For the empirical work in chapter 4 I use the WTMM algorithm, following the practice of the

authors on whose work I build [88, 251]. In the other work in this thesis I switch to using the

more commonly used MDFA algorithm. In broad terms I make this change due to the wider

availability of both implementations and practical guidance for the use of the algorithm. I discuss

this change, and the MDFA algorithm itself, in more detail in chapter 5. In the remainder of

this chapter I introduce multifractal analysis via the WTMM algorithm. I do this via a brief

introduction to the concepts of fractality and multifractality, before relating these to the WTMM
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Figure 3.4: Measuring a regular shape vs measuring a fractal (a Koch curve) at different scales.
Above: lengths, below: box counting

analysis. I then discuss an important secondary analysis which is required to relate the results of

multifractal analysis to interaction dominance and cascade dynamics — the analysis of phase-

disrupted surrogates, or what is generally called surrogate analysis [161]. This analysis provides

confirmatory evidence that the singularity spectra estimated from the signals have their basis in

the kind of non-linear multiplicative processes which, I introduced above as cascade dynamics.

3.7.1 Fractality

As the word suggests, the concept of multifractality is an extension of the (perhaps more familiar)

concept of fractality. While this thesis focuses on fractals in signals, it is helpful to begin by

considering fractals in geometric shapes. Perhaps the best way to introduce both concepts is via

the idea of self-similarity across scales 5. Given a self-similar structure, if we progressively “zoom

in” to it (e.g. viewing it at larger and larger scales of magnification), then we will see the same (or

quantifiably similar) features repeated time and again. Because of this property there is a sense

in which the level of detail in a fractal is different depending on the scale at which it is measured.

Since I am currently focusing on how empirical (multi)fractals can be measured, it is helpful to

clarify this idea of fractality via a thought experiment about measuring physical objects. Imagine,

in my first day at a new job I am told to measure the length of one edge of a triangular table.

Nobody here has a tape-measure. Instead, I am told to measure the table using a set of a number

of progressively small sticks, each half the size of the last. I must report my measure “accurately”

in units of bigstick — defined by the big stick which I am handed by my manager as she leaves

the room and locks the door. It soon becomes apparent that the bigstick is too coarse a measure:

at the edge of the table it overhangs somewhat (see fig.3.4). I have no idea how “accurate” I need

5strictly fractals need not be self-similar, but focusing on self-similar cases makes explanation easier for present
purposes
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to be, so I err on the side of caution, and move to smaller and smaller sticks, noticing that the

overhang at the edges of the table broadly decreases as I get smaller and my measure seems

increasingly accurate. By the time I get to the tinystick, my measures are converging: I find

that the edge is 10 tinysticks long, without very much overlap. Checking my tinystick against

the bigstick, I find there are 12 tinysticks to a bigstick, making the edge 0.83 bigsticks long.

When I try again with the microstick — 1/2 the length of the tinystick — the table measures 24

microsticks. Again, that means 0.83 bigstick. The measurement has converged: this is adequate

to accurately measure the table side. I report this to my manager and go home for the day.

The next day, after coffee, I am pushed into the same room again, and asked to measure the

side of a new table. This one looks weirdly like a snowflake (see fig.3.4, top right). I hear my

manager laughing as she locks the door. I shrug and repeat the process. First I try the bigstick: 1

bigstick long, with some overlap. I move on through the smaller sticks, each time translating

the measurement back into bigstick. But this time I find that, as I move progressively through

smaller and smaller sticks each one fits more neatly into the weirdly jagged edge than did the

last, so that as the stick sizes decrease, the length in bigstick just keeps increasing. I carry on

for hours. Each time, as the measure gets smaller, the measured length gets larger. I never arrive

at a stable measure. I am doomed to remain in this room for eternity.

The problem here is that while the table edge I measured on the first day was one-dimensional,

the table edge on the second day was a fractal, and lay between integer dimensions. In this case

its dimensionality lay between one and two dimensions at ≈ 1.2186. As such, the one-dimensional

measure which my manager asked for depends on the scale of measurement: there is no definitive

answer. If I had wished to satisfy my manager, and escape the room, I could have tried changing

the problem. Instead of reporting length, I could have estimated the fractal dimension of the object.

This will converge towards a definite value. One way I could have estimated this would have been

to switch from measuring in one dimension, with sticks, to measuring in two dimensions, with a

grid. Two dimensions are necessary because, while I can’t tell the precise dimension of the line

by looking, I can see that it sits on a 2 dimensional plane. In technical terms it is embedded in 2

dimensions. From here, the task will be how to estimate how much of this two dimensional grid

is occupied by the edge of the table at each scale. This is illustrated in the bottom part of figure of

fig. 3.4. I can estimate the fractal dimension by first counting the number of boxes occupied by

the line at each scale of the grid. Then I need to plot the number of boxes occupied by the edge, s,

against the reciprocal of box-side-length 1
l on a log-log plot. Finally, I calculate the slope of the

resulting regression line. In this case, since this is a Koch curve, that would give me a value of

≈ 1.2186.

This fractal dimension - indicates the way in which the detail of the object changes with scale.

Figure 3.5 shows three objects with different fractal dimensions - 1, 1.6 and 1.89 respectively -

rendered on a plane. What these different numbers quantify is the difference in the way these

objects change as we zoom in. The 1 dimensional object 3.5a - line between two points - is not
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Figure 3.5: a) a line, b) a sierpinski triangle, and c) a sierpinski square

self similar - if we zoom in there will be no surprises - no more detail hidden in the original

representation6. For the other two objects, the process of zooming in will be more interesting, for

two reasons. First, as noted above, we will find that in figures 3.5b and 3.5c higher magnifications

endlessly reveal greater detail. Second we will find that the way the detail changes in the two

objects will be different, and that this difference in the way detail scales will relate to the

dimensions of the two objects. Specifically, the detail in figure 3.5c, (dimension ≈ 1.89) will grow

more quickly, as we zoom in, than that in 3.5b, (dimension ≈ 1.6): we will find more detail, more

quickly in the object with the higher dimension. Another analogy, which brings us closer to the

precise meaning of the value of the dimension, may help clarify. We can imagine building physical

models of these objects, out of perfectly uniform materials - perhaps very thin metal. With these

models in mind we can now think of the dimension as quantifying how the mass of the object

would change if that model were built at a different scale. For a 2 dimensional object without any

holes, if we scale the side length of the object by 1
2 then its mass would change by 1

4 - which is

(1
2 )2. For 3.5b, with dimension ≈ 1.6 if we change the scale of the object by 1

2 then its mass would

change by ≈ (1
2 )1.6.

3.7.2 Multifractality

Multifractality is simply an extension of the concept of fractality. For what I have been calling

a fractal a single exponent captures its scaling behaviour, or how it changes over scales of

measurement. For a multifractal however we may observe multiple kinds of scaling behaviour

- with the largest fluctuations scaling differently than the smallest. That is we will find that

if we focus on the largest fluctuations relative to each scale, these relatively large fluctuations

will scale differently than the smallest fluctuations at each scale. As such multiple values are

required to capture the scaling, or what is called a singularity spectrum. As such I will refer to the

fractals discussed above — which exhibit a single consistent scaling behaviour — as monofractals,

and fractals which exhibit multiple different kinds of scaling behaviour as multifractals. As is

6assuming a perfectly flat and featureless piece of paper and a pen with perfectly uniform ink flow!
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Figure 3.6: A signal containing fluctuations of different amplitude and scales. When we zoom in
to the signal (analyse at a different timescale) each of these fluctuations itself contains smaller
fluctuations. The balance of larger and smaller fluctuations may vary if we observe the same
signal on different time-scales.

perhaps clear from this description, multifractals are in a sense more general than monofractals,

capturing phenomena of greater complexity. But as may also be clear, the two concepts converge.

At the limit, as variation in scaling behaviour narrows, the range of numbers required to capture

this variation narrow too, converging towards a single number, and towards the monofractal case.

As such it is not surprising that the analysis of multifractals involves just a few adjustments

to the box-counting approach described above. In broad terms we apply the same box counting

approach, estimating the fractal dimension a very similar way, plotting scale (above: box size)

against quantity (above: number of boxes) on log-log plots. However now we conduct this process

on particular regions (spatial, and scaling regions) of the structure — allowing us to observe how

scaling varies across scales, and across different regions of the structure.

3.7.2.1 Scales of a Signal

Since this thesis focuses on the analysis of signals, now is a good time to move back to a discussion

of signals, and away from shapes. Multifractality, in a signal, concerns the way that the variance

in the signal is distribute over different scales of analysis (in our case this will be a time-scale

of analysis). Above, we “zoomed in” to the shape by using different spatial scales. Now we will
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Figure 3.7: Three singularities marked onto the same signal. These quantify the scaling of the
signal at different points. Singularities can be difficult to quantify with the naked eye

“zoom in” to the signal by observing the size of peaks at different temporal scales. We will also

pay attention to how different sizes of fluctuation scale across different temporal scales. Many

time-based phenomena reveal interesting variation if we change the time-scale at which we

analyse them (see fig. 3.6, left). When looking at temperature variation in a room, for example,

we may see quite different features if we move observe the room at the scale of seasons, weeks,

days or hours. This is because different processes dominate temperature change at each of these

different scales - the rotation of the planet, the orbit of the planet, and meteorological processes,

the comings and goings of people. Some of these processes may cause larger and some smaller

fluctuations, relative to the observed scale. In many natural phenomena there are also complex

interactions between these processes at different scales - the slower processes can influence the

faster processes, and the faster processes in turn influence the slower processes. This is often

the case in chemical, biological and ecological systems, for example in chemical reactions which

generate outputs which themselves influence how the reaction behaves. When this happens

the interaction between these processes shows up in the patterns at each scale - patterns of

correlation and nesting arise. These patterns are multifractal: The variance — or fluctuation

in the signal - is distributed such that the fluctuations nest within one-another, and there is

variation in that nesting so that we observe different scaling behaviours depending on whether

we focus on the smallest fluctuations at each scale, or on the largest. If we focus on the largest
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fluctuations at each scale we will find that these fluctuations grow smaller at a particular rate

— say scalinglarge. This will be different than the rate at which the smallest fluctuations at

each scale grow smaller as we move to smaller scales of analysis - scalingsmall . And between

the largest and smallest fluctuations we will find a range of other scaling behaviours7. These

differences in scaling follow from the coordinative structure of the measured system — how

processes with shorter and longer characteristic time-scales modulate one-another — so that

analysing these patterns of variation can thus give clues to the way processes in the system

interact across different scales.

3.7.2.2 Singularities

As I noted above, the scaling in a multifractal — how different kinds of fluctuation vary across

scales — is captured via a singularity spectrum. It is helpful to give an intuition for what this

means before moving on to describe how singularities can be estimated. At root the concept of a

singularity is quite simple - in plain terms, in a signal, a singularity is a point of discontinuity,

a sharp turning point, or abrupt step-like change in a waveform. In mathematical terms it

represents a point where components of the signal have non-integer powers of time. The strength

of an individual singularity in a signal - how sharp it is - can be understood by fitting a curve to it

(a Taylor expansion series). Such a curve will be defined as a function of time, and its strength will

be defined as a power of time. For a weak singularity, with a smooth curve, this will be an integer

power of time. For a stronger singularity, with a sharp discontinuity, it will be a non integer

power of time. The strength of a singularity at a particular location is given by f (t)= sh(t− ti)h

where s is the scale and h - the Hölder exponent is the strength of the local trend. Three such

singularities, with different scales and strengths have been picked out on the signal in figure 3.7

(note: this is drawn by eye, and illustrative only).

When a curve is fractal it will contain singularities at every point and at every scale, with low

amplitude singularities inside larger amplitude singularities. On the curve in the right part of

figure 3.6, in the region picked out by the green (h = 0.3) singularity, similar shapes appear to be

nested within this area at smaller scales. In a perfect monofractal, only one value of singularity

will be found - the same value of h will hold at every point, and at every scale of analysis. In a

multifractal, to capture the variation in scaling, multiple singularities, and therefore multiple

values of h are required - the singularity spectrum I mentioned above. This is the singularity

spectrum estimated by multifractal analysis. As will be discussed in detail below, in calculation,

these local Hölder exponents each correspond to particular values of q — a biasing exponent used

to focus on smaller or larger fluctuations in the signal. As such in the discussion below, these will

be referred to as h(q) in line with practice in the multifractal literature [88].

7It can be difficult to get an intuition for what focusing on the larger or smaller fluctuations at each scale can
mean: this is much clearer by focusing on multifractal analysis algorithms, where this is achieved by means of a
biasing exponent “q”, which emphasises the contributions of either larger or smaller fluctuations. This is discussed
below.
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3.7.3 Multifractal Analysis with WTMM

3.7.3.1 Overview

Wavelet Transform Modulus Maximum (WTMM) is an algorithm for estimating the singularity

spectrum of a signal. It uses a series of continuous wavelet transforms to isolate local singu-

larities across multiple scales of analysis, while at the same time removing trends from the

data that would skew results [336]. Signals captured from behavioural processes are typically

non-stationary - the captured behaviour changes over time. The influences on this behaviour

change come from two sources: the internal dynamics of the system being measured, and random

influences from the environment. It has been shown that environmental influences show up as

trends, leaving systemic influences as fluctuations around these trends. We wish to measure the

systemic influences — the fluctuations and not the trends — and so this detrending step is an

important part of not only WTMM, but also MDFA (albeit via a different mechanism).

I describe the process for WTMM analysis in below, first in overview (illustrated in fig 3.8), and

then in more detail. Both of these descriptions focus on giving readers the necessary intuitions

and concepts to follow and appraise the work in this thesis. I have not tried to explain derivation

of these algorithms or delve into deeper theoretical issues. Dissertation length work already

exists on the derivation, validity, and mathematical properties of WTMM, and good technical

introductions to this are found in e.g. [161, 163, 190, 336]. Implementations of algorithms are

also freely available (e.g. [130, 162, 291] meaning that it will not be necessary for readers in HCI

and behavioural science to understand these processes in sufficient detail to implement them.

1. First the WTMM algorithm is applied to the prepared signal, to give a partition function

a) First a wavelet decomposition is carried out on the prepared signal, which quantifies

the energy at every point in the waveform (e.g. the amplutide scale of fluctuation), at

multiple scales of analysis.

b) Next a Modulus Maximus operation is performed on the results of this decomposition.

This identifies the locations and strengths of singularities, yielding a “partition func-

tion” for the signal: a function which characterises this distribution of singularities at

different scales of analysis.

2. Next, the (log-log) gradients of this partition function are taken. This gives a set of “multi-

scaling exponents": real valued numbers which describe how the distribution of singularities

changes across scales of analysis.

3. Finally, this set of multiscaling exponents is subjected to a mathematical transformation

which gives us the final singularity spectrum. This is is the Legendre transform. The

Legendre transform gives the estimate of the “Hölder exponents” in the signal. The Hölder

exponents characterise the the distribution of singularities in the signal.
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4. The width of this spectrum of Hölder exponents (the distance between the smallest and

largest Hölder exponents) is perhaps the most commonly used measure of strength of

multifractality. If there is a wider range of exponents, then the signal is more strongly

multifractal. As the range of exponents tends towards a single value, so the signal tends

towards being fractal (or, if that single value is an integer, non-fractal)

3.7.3.2 Wavelet Decomposition (1a)

As described above, the WTMM depends on a continuous wavelet transform (CWT) - a signal

analysis tool related to the Fourier transform. The Fourier transform decomposes the signal into

non-localised, sinusoidal-functions of theoretically infinite length, and is therefore not sensitive

to scale and location. By contrast, the CWT can decompose the signal into components which

are localised in both time and time-scale: i.e. the results are descriptive of both the positions

particular features in the analysed signal, and how these features are distributed across scales.

This scale-sensitive analysis is useful for understanding multifractality since, as discussed above,

multifractality is defined by the way fluctuations in the signal nest and correlate across scales.

The CWT achieves this sensitivity to position and scale by replacing the infinite sine function

used in the Fourier analysis with a finite function which we call a wavelet. Since the wavelet is

finite, it can be moved and resized on its time-axis. CWT involves convolving this wavelet with

the original signal to give W(ni, s). This is achieved using a sliding window-approach, shifting

the kernel in time (n) and scaling its amplitude (s), so that W(ni, s) is a time-scale decomposition

of the waveform. This is illustrated in the second panel of figure 3.8.

The wavelet that is chosen for this convolution process is important [88]. It is conventional to

use a derivative of the Gaussian function [88]. The order of this function determines which poly-

nomial trends in the waveform will be rejected. For a Gaussian wavelet of order o all polynomial

trends below o will be rejected. This can be useful since it removes spurious contributions to the

multifractal spectrum from linear trends. As I will discuss in 4 it is difficult to know in advance

which trends should be rejected. In that chapter I develop an approach to selecting the wavelet

empirically.

3.7.3.3 Calculating the Partition Function(1b)

Having decomposed the signal by this process of repeatedly scaling, shifting and fitting a wavelet,

we now use these results to estimate the distribution of local singularities. Naturally some of

these transformations of the wavelet will have proven a better fit to local features than others.

The better the fit of the scaled wavelet, then the higher the energy returned by this convolution

operation. The highest energy thus gives the best estimate of the singularity. As such we now

seek out these highest energy points within regions of the wave by taking the local modulus-

maximum of the energy values from the convolution. In order to understand how different sizes of
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fluctuation scale over different scales of analysis, we repeat this process multiple times, varying

a parameter q, which “focuses” the calculation on smaller or larger fluctuations in the signal.

(3.1) Z(q, s)=
imax∑
i=1

|W(ni, s) |q

This calculation gives us the “partition function” (figure 3.8, panel 3) whose slopes we will

later use to estimate the multifractal spectrum [103]. It is worth taking a moment to give a

high-level account of this partition function before turning back to discuss this equation for its

derivation. As shown in figure 3.8, The partition function can be visualised as a log-log plot

of a number of distinct series of data. Each series of data represents one run of our analysis

above, using a particular value of q, and thereby focusing on the scaling behaviour of smaller

or larger fluctuations: does the size of the larger fluctuations shrink more quickly over different

time-scales of analysis, than does the size of smaller fluctuations? The points plotted on each

series of this partition function can be seen, in rough terms, as indicating the characteristic

fluctuation sizes (y axis) at each temporal scale of analysis (x axis), with our attention skewed

towards larger or smaller scales of fluctuation (by the parameter q). As such, the gradient of one

series describes the scaling behaviour of the signal, for those scales of fluctuation bought into

focus by one particular value of q. I am carefully using the terms “focus” and “bias” rather than

e.g. “set of scales of fluctuation” because (as will be apparent to more mathematically inclined

readers, from observing the function of q in the equation) these seem to be the more precise words:

q does not pick out a particular range of fluctuations, but acts in a softer way, as a bias towards

large or small. As noted above, differences in scaling behaviour for larger of smaller fluctuations

is what distinguishes multifractality from monofractality, and multifractal analysis differs from

monofractal analysis via the analysis at a range of values of q. Finally, the partition function

taken as a whole — all series, for all values of q — describes how different sized fluctuations tend

to grow or shrink, as the temporal scale of analysis gets smaller.

Now I can re-describe this in terms of the equation. First the terms: W(n, s) is the time-scale

decomposition, wherein n is the time-shift in the waveform and s is the scaling factor for the

wavelet. q is the scaling exponent which biases the analysis towards smaller or larger fluctuations.

Negative values of q place emphasis on the scaling of small fluctuations whereas positive values

of q emmphasis on large fluctuations. This range of q values is an important parameter which

must be selected for the analysis. Excessively large magnitudes of q (negative or positive) can

result in numerical error, or the inclusion of scales which may be less relevant, and in either case

result in a poor estimate of the singularity spectrum [161, 163, 336]. In particular, large negative

values of q can result in errors both due to the amplification of inadequate measurement at small

scales, and potentially due to inadequate numeric resolution [161].
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3.7.3.4 Transforming the Partition Function into the Singularity Spectrum (2-4)

Finally, this partition function (and specifically the slope for each value of q), is the source of the

singularity spectrum. Transformation into the singularity spectrum requires two stages. First we

find the slope of each series (e.g. for each value of q), and plot this. This gives us the multi-scaling

exponents (figure 3.8, panel 4), τ(q). From these multi-scaling exponents we can then derive the

singularity spectrum, via the Legendre transform (figure 3.8, panel 4). The Legendre transform

gives us the Hölder exponents, which describe the local singularities h(q) for each value of q.

(3.2) h(q)= dτ(q)
dq

Finally we can calculate the corresponding Hausdorff dimensions D(h). These are the dimen-

sions corresponding to each particular value of h — e.g. for each singularity value, and describes

the frequency, or probability of its occurrence [88]

(3.3) D(h)= qh−τ(q)

The resulting spectrum is illustrated in figure 3.8, panel 5. Since the singularity spectrum

is an important concept throughout the thesis, I will re-summarise: This describes the range of

singularities which are required to characterise the nesting of larger and smaller fluctuations

within the observed signal, and the respective proportions of these singularities in the signal.

The x axis gives the holder exponents h, which describe the size of the singularities (see

fig 3.7, and the y axis gives the Hausdorff dimensions D(h), which describe the probability
of finding each singularity - or how dominant it is in the signal [161, 190].

It is common to take the width of this singularity spectrum — the difference between the

smallest and largest Hölder exponents — as indicating the the multifractality, or multifractal

strength of the signal [172]. This captures the diversity of singularities in the signal. This will be

an important measure throughout this thesis.

3.7.4 Validating the Multifractal Spectrum

As I have stressed throughout this section, the immediate purpose of multifractal analysis in

this thesis (and more generally for work grounded in the interaction dominant view of cognition)

is to infer the presence of multiplicative cascades, and variations in these structures. These

multiplicative cascades, and variations therein, are the theoretical processes which ground

explanations of behaviour in terms of coordination. Any interpretations of results in terms

of experience and behaviour therefore rely on the solidity of the evidence for multiplicative

cascades. This is thus an important matter not only for researchers concerned with issues in

embodied interaction, with its focus on interactivity. It is important for anyone who wishes to
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use these approaches to learn about the higher aspects of skilled and adaptive user behaviour,

which seem most relevant to HCI research. This becomes a more-than-theoretical matter, since

empirically measured multifractal singularity spectra may provide better or worse evidence for

cascade structures and interactivity: Factors other than non-linear interactions can contribute to

empirical spectra. Ass such it is important to conduct further analyses to provide information on

the strength of the evidence which our provided for cascades.

Ihlen and Vereijken [161] note that while the estimated multifractal spectra may be indicators

of multiplicative interactions across scale, and thereby of genuine multifractality, they may also

follow from other, independent features of the measured signal. Namely, they may be due to a

non-Gaussian probability density function (PDF), or to scaling in the Fourier spectrum of the

signal. As such it is considered best practice for researchers to provide confirmatory evidence that

the results follow from non-linear factors. This can be done using so-called “surrogate analysis”.

In this approach the original data is compared to data in which non-linear relationships in

the signal are scrambled, while the PDF and Fourier Spectrum are conserved. A large number

of these “surrogates” is generated, and singularity spectra of the original data is compared to

the population of surrogate spectra. If the original spectrum width is significantly far from the

population mean for the surrogate spectra then this provides confidence in interpreting the

original spectrum as evidence of interaction dominance [161]. In this process, surrogates are

generated using a technique called Iterated Amplitude Adjusted Fourier Transform (IAAFT)

[161] (see appendix A for details of IAAFT).

3.8 Summary

I ended this chapter with an introduction to multifractality and cascade structures, followed by

a discussion of technical issues around multifractality and, multifractal analysis. In the work

in the rest of this thesis this analysis approach is applied to understand a range of interaction

behaviours and to shed light on issues important in Embodied Interaction. However in the detail

of that section, it is possible that the original motivation has been lost. As such I will end by

re-summarising the relationship between Embodied Interaction, the IDVC and multifractal

analysis, and relate this to the work I begin in the next chapter.

Like much work in Embodied Interaction, the IDVC places interactivity at the foundation

of its explanation of human behaviour. Interactivity here meaning the emergence of high-level

behaviour out of interactions between elements in brain, body and interaction context. In the

last chapter, I noted that Embodied Interaction lacks formalisms of this interactivity which

would support it in developing metrics and models of human behaviour. In this chapter I noted

that the IDVC offers a way forward here, by formalising interactivity in terms of multiplicative

cascade structures. These cascade structures are expected to arise in human behaviour out of

coordination between sub-processes in neural pathways, wider physiology, and elements (such
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as tools) in the interaction context. They are expected to vary in response to task constraints

and conditions, supporting the apt coordination of behaviour. In particular, to support skilful,

adaptive performance of more complex tasks, cascade structures across a wide range of cognitive

resources are expected to arise, poised close to “critical” transition points which support rapid

qualitative change between related behavioural states [2, 161].

This provides an account of how the kind of situated, embodied interactivity described in some

accounts of Embodied Interaction might arise, how it might be supportive of task performance,

and it also provides an empirical metric which can be used to quantify this interactivity. Cascade

structures are known to give rise to multifractal signatures “singularity spectra” which carry

information about the cascades. Wider singularity spectra (which are treated as indicating

stronger multifractality) correspond to more heterogeneous structure in the fluctuations of

the signal, indicating behaviour is more strongly influenced by diverse interactions [190, 210].

Experiments on a wide range of different behavioural phenomena indicate that wider singularity

spectra arise in flexible adaptive behaviour.

One way these approaches have been applied has been to understand the role of particular

“couplings” in behaviour between humans and other humans [82], processes [317], or tools

[88, 255]. Again, as in Embodied Interaction, interactivity is often analysed in terms of individual

couplings, and as in Embodied Interaction, these couplings have been used to conceptualise the

phenomenon of readiness-to-hand. I discussed a line of work by Dotov and colleagues investigating

multifractal signatures in tool use during tool breakdown, which argued for the basis of the

phenomenon in sensorimotor coupling to the tool, supported by cascade dynamics [88, 89].

However, I noted certain gaps and limitations of this work. There are methodological gaps,

concerning the measurement of attention and the verification of nonlinearity in the multifractal

signatures. And there are limitations in terms of scope: the approach only addresses the conditions

of tool malfunction, and does not engage with other aspects of readiness-to-hand which are

important in HCI, such as the acquisition of skill which is required before a tool can become

ready-to-hand, and the role of motivation or engagement in promoting deep, absorbed states of

readiness-to-hand. In the next chapter I develop experiments to address these gaps.
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4
MULTIFRACTALITY IN MOUSE USE:

READINESS-TO-HAND, SKILL AND ENGAGEMENT

4.1 Summary

This chapter:

• Investigates the potential to operationalise the account of readiness-to-hand in multifractal

measures

• Describes two experiments relating behavioural dimensions associated with readiness-to-

hand to multifractal signatures in movement

Findings:

• When users play a mouse-controlled game, and a malfunction in mouse control is simu-

lated, multifractal signatures in mouse-hand movement drop, and recall of abstract visual

properties of the game increase; relative to play without malfunction

• Multifractal signatures increase over a training period, as users acquire skill with this

novel game

• Multifractal signatures increase when users play a more engaging version of the game

4.2 Introduction

In the last chapter I outlined work in the IDVC which applied MFA to understand the embodied

phenomenon of readiness-to-hand ... I noted that there were certain gaps and limitations in this
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work, in terms of scope and methodology. In this chapter I describe the experiments I developed

to address these gaps. This work addresses the adequacy of the IDVC and MFA to form and test

hypotheses around a core concept of embodied interaction: readiness-to-hand. It also assesses the

use of multifractal analysis to infer high level attributes of the interaction and the user: in this

case component aspects of readiness-to-hand: skill, locus-of-attention, and engagement.

I describe two experiments to understand the potential to operationalise the embodied

construct of readiness-to-hand for HCI research via the IDVC and MFA. As I discussed in chapter

2, ready-to-hand technology use has been an important idea in embodied HCI research, describing

engaged, skilful, fluid, user experience, in which the user pays little conscious attention to the

technology. This is often described in terms of the user perceiving through the tool, to the task, or

in terms of the technology becoming "transparent" for the user [90, 363, 367, 375]. In embodied

HCI, and the phenomenological literature it draws upon, ready-to-hand tool use contrasts with

two other modes of tool use: "unready-to-hand" and "present-at-hand" modes of tool use, which

describe progressively more detached, reflective attitudes to the technology, where the tool can

become obtrusive, and the user pays greater attention to its determinate properties.

The value of this account for HCI can be seen as following from its articulation of two

distinct modes of tool use, each of which has particular behavioural and experiential properties;

and from the idea that users’ movements between these modes will follow certain regularities,

related to their needs, and to the demands and constraints of the task-context [34]. Accordingly,

researchers have connected readiness-to-hand to engaged, natural and "fluid" technology use

[5, 90, 244, 285, 363], to the feeling of a tool becoming “part of us” [33], and to the user’s

locus of attention during a task [5, 6, 285]. ‘Present-at-hand’ and ‘unready-to-hand’ modes of

engagement have been associated with “breakdowns” in fluid interaction, and with lack of skill or

familiarity [34, 285, 367]; but also with useful and valuable behaviours such as reflection and

analysis [56, 108, 240, 368] problem solving [108, 368, 375], and conscious awareness of the tool’s

properties [5, 6, 96, 285, 368].

4.2.1 Operationalising Readiness-to-Hand for HCI

Readiness-to-hand is an influential idea in HCI, and relates to an array of useful and user

experience important UX constructs. As such it is not surprising that there have been calls to

operationalise the construct — in other words, to define the measurement of the phenomenon in

a way which permits its empirical study. It has been argued that operationalisation would allow

the testing of design ideas and interaction variables for their ability to support phenomenally

transparent interaction, and also help design experience to feed back into theory. This could

support empirical work to refine understandings of these modes of interaction, understand the

roles they play in engagement in technology use, and how we might support users in inhabiting

them, or transitioning between them [34]. I discussed the potential value of operationalisation

and theory building around readiness to hand in more detail in section 2.8. To date, however, I

68



4.2. INTRODUCTION

am only aware of one more-or-less direct attempt to operationalise readiness-to-hand in HCI,

and one other empirical approach which claims to shed light on the phenomenon. The less direct

attempt is found in a paper by Bergström et al., which evaluates a measure of tool-extension to

understand the embodiment of computer-based tools [33]. The authors relate this measure to

readiness-to-hand purely via the sense in the latter that the tool becomes "part of us" but do not

connect this to other aspects of behaviour and experience associated with readiness-to-hand such

as breakdown, familiarity-with-tool, or task-engagement. A significant issue with this approach

for the study of readiness-to-hand is its reliance on a secondary measurement task which the

user must perform in addition to the primary task. Accounts of readiness-to-hand, in HCI in

particular, fundamentally emphasise intuitiveness, fluidity and transparency in the performance

of the task at hand (e.g. [5, 6, 43, 319]: additional tasks performed alongside this seem likely to

be highly distorting of the phenomena under study.

The more direct approach to operationalising readiness to hand is developed in two papers

by Alzayat et al. [5, 6], but again, this work has methodological limitations, and only addresses

limited aspects of the account. The authors operationalised readiness-to-hand in measurements of

the user’s attention to properties of the tool, having users observe and respond to blinking lights

during the interaction. This approach was found to be useful in measuring sense-of-immersion

during tool breakdown, and might also be used to test hypotheses about locus of visual attention.

However, again, this approach relies on a distracting secondary task, likely to be distorting of

ready-to-hand technology use. Further, the approach has not been related to other aspects of

readiness-to-hand such as skill, and it requires the user to engage in a secondary observation task

– a distraction which might be considered distorting when dealing with experiences of focused tool

use and immersion. Moreover, while all the papers I discuss here link aspects of readiness-to-hand

to other psychological constructs such as change-blindness, or body-schemas, they do not make

clear how these psychological constructs and accounts might interact to produce the complex

co-variance of behaviours and experiences described in accounts of readiness-to-hand.

4.2.2 Readiness to Hand and the IDVC

As I discussed in chapter 3, prior work by Dotov and colleagues. offers a compelling route forward

for an operationalisation of readiness-to-hand suitable for the needs of HCI. Their work is

grounded in interaction dominant accounts of behaviour, and (in line with accounts of readiness-

to-hand in HCI - see 2.4.3), in Dreyfus’ pragmatist [171] articulation of readiness-to-hand in

terms of smooth, adaptive, practical “coping”. They found that that multifractal signatures in

hand movement during tool breakdown correlate with changes in behaviour which are consistent

with accounts of readiness-to-hand [88, 89]. They observed that during breakdown of the tool,

multifractal patterns diminished, cognitive load increased, and the user’s attention shifted

towards the tool.

This approach seems particularly suitable for HCI for a number of reasons:
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1. Multifractal analysis relies only on task-directed movement, which in principle can be

captured directly from the input device. This makes it easy to incorporate the approach

seamlessly into interaction scenarios without even the user’s awareness, let alone the

requirement to learn and perform separate and distracting measurement tasks.

2. This approach is grounded in a principled theoretical account of how readiness-to-hand

arises, based in the large literature of the IDVC. This supports the elaboration of further hy-

potheses about readiness-to-hand, both those consistent with existing accounts in embodied

HCI, and new hypotheses which follow from the IDVC.

3. Since multifractality has been shown to have discriminatory power in the analysis of a

range of skilled behaviours, which are both mechanically and cognitively diverse [8, 9,

30, 210, 211], including skilled tool use [88, 89, 105, 255] it seems likely that its use to

understand readiness-to-hand will generalise beyond mouse use and into other interaction

modalities.

Below I describe the two experiments which I conducted to replicate and extend this work

by Dotov and colleagues. The experiments provide stronger evidence for some of the core claims

of this prior work, and extends the operationalisation of readiness-to-hand to other features

of the account which are relevant to HCI. The first experiment seeks to replicate Dotov et al’s

findings concerning multifractality, locus of attention and tool breakdown. It goes beyond prior

work in three ways. First it provides evidence from confirmatory surrogate analysis that the

observed results have their origin in variations in interaction dominant dynamics in behavioural

control1. Second, I develop a more discriminatory method for identifying shifts in the user’s locus

of attention, which allows me to distinguish a shift in attention towards the tool from a more

global increase in visual attention. Third I also use this experiment to test a new hypothesis: that

multifractal signatures will increase with the user’s skill and familiarity with the tool and task.

This hypothesis follows from the emphasis in accounts of readiness-to-hand, that the state relies

upon acquisition of skill.

The second experiment then tests another another novel hypothesis implied by discussions of

readiness-to-hand in HCI and beyond: that ready-to-hand tool use is associated with engagement.

I test the hypothesis that a more engaging version of the game will result in wider multifractal

spectra.

After reporting on these experiments, the end of this chapter, I discuss the implications,

limitations and future work which follows from them. Data, software, and notebooks for this

chapter are available at https://osf.io/2hm9u/

1surrogate analysis was discussed in 3.7.4
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4.3 Experiment 1: Tool familiarity and breakdown

4.3.1 Overview and Purpose

In line with calls for HCI to follow wider scientific practice in first replicating, and then extending

existing results [374], my first experiment (N=44) replicates and then extends prior work on the

relationship between multifractality and readiness-to-hand. The experiment replicates work by

Dotov et al.[88, 89], which found an association between multifractality and readiness-to-hand

during tool breakdown (H1 and H2). It also tests a new hypothesis (H3) relating multifractality

to skill and familiarity.

4.3.2 Hypotheses

H1. In line with accounts of ready-to-hand tool use, users whose tool malfunctions (the “break-

down” group) will show an increase in visual awareness, centred on the tool, when compared

to a control group whose tool continues to function well.

H2. This tool breakdown and shift in attention will be accompanied by weaker signatures of

multifractality in hand movement.

H3 Since skill and familiarity are considered pre-requisites of ready-to-hand engagement, mul-

tifractality should increase as users become more familiar with the tool: When confronted

with a novel task and given the chance to practice it over a number of trials, multifractal

signatures will become stronger.

4.3.2.1 Rationale

It is helpful to begin by articulating the theoretical account which grounds these hypotheses,

before articulating the motivation for replication and extension. Dotov et al.’s account Ready-to-

hand tool use [88, 89, 251], directly grounds H1 and H2, which I replicate here. Their account

suggests that readiness-to-hand emerges when effective, active, sensorimotor coupling to the tool

supports the maintenance of a task-specific and adaptive state in the user. This sensorimotor

coupling temporarily incorporates the tool into behavioural control, supported by so-called cascade

structures across the user’s neuro-physiology, which allow the user to quickly move between

a range of behaviours relevant to the moment-by-moment adaptive control of the task [210].

These cascade structures are known to result in strongly multifractal signatures. Hence Dotov et

al. predicted that (H2) ready-to-hand tool use would be accompanied by stronger multifractal

signatures [88, 89, 251]. They argue that when the tool is ready-to-hand, conscious attentional

resources (which are known to be limited [131, 311]) are de-prioritised in favour of supporting the

more immediate sensorimotor coupling described above. They suggest this grounds the experience

of seeing-through the tool, rather than perceiving it, and will result in poorer ability to report on

visual tool-properties (H1). Completing the account it is argued that non-ready-to-hand modes
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(unready-to-hand and present-at-hand) arise when the active sensorimotor coupling described

above is disrupted or otherwise not strong. The malfunction of the tool changes the dynamics

of the task into something unfamiliar and perhaps unpredictable. Since the user does not (yet)

have the resources to adapt smoothly to these new dynamics, the prior sensorimotor coupling to

the tool and task, and the cascade structures which support it, collapse. In their place a more

cognitive, reflective state emerges, and attentional resources, which are now useful for diagnosis

and problem-solving, are no longer de-prioritised. The tool again becomes an object of attention

and conscious perception (H1).

I replicate and provide stronger evidence for these hypotheses, responding to gaps in previous

work, which I outlined in section 3.6.1. In brief, in Dotov et al.’s experiments their measure

of attention was not able to distinguish a shift in attention towards the toll, from a more

general increase in attention. The locus of attention seems a particularly important issue for

HCI, for example when delivering and timing information dialogues. In my replication I modify

the methodology to clarify this. Second, Dotov et al. do not conduct surrogate analysis, which

is necessary to clarify that the results provide evidence for underlying variations in cascade

dynamics. This is an important issue if I aim to ground ready-to-hand tool use in cascade-

supported sensorimotor-coupling to the tool. I discuss below how my new methodology addresses

these issues.

I also develop a third hypothesis H3, to the best of my knowledge articulated and tested for

the first time in this chapter. Accounts of ready-to-hand tool emphasise that the user must have

sufficient familiarity and skill with the tool and task, to support smooth-coping [84, 96, 367].

I know from everyday experience that for even moderately skilful tasks, familiarity and skill

must be acquired over time. As such, if ready-to-hand tool use does depend upon the ability

to maintain cascade structures in cognition which support sensorimotor-coupling to the task

environment then I would expect the ability to maintain these structures to increase with practice

and familiarity. This predicts that multifractal signatures, which are evidence of such cascade

structures, will become stronger the longer the user has spent with the task (H3). If this effect

were not observed this might suggest problems with the underlying theoretical model.

Beyond providing further evidence for the underlying theoretical account, I suggest that skill

and familiarity are particularly relevant to HCI. Full breakdown is relatively rare, but users

often meet new tools and unfamiliar task contexts. This may be particularly relevant in education

and training contexts.

4.3.3 Experimental Task

In this first experiment users are split into two conditions: breakdown, or control. They play a

modified version of the game task developed by Dotov et al. for six trials (t1-6) while I capture

the movement of their mouse-hand with an accelerometer. The first five trials are learning trials.

In the breakdown group, in the second half of the sixth and final trial (t6b), a malfunction is
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Figure 4.1: L: Experimental setup, with closeup showing attachment of the accelerometer (inset)
Mid: experiment 1 game screen. Cursor: white square, sheep: red, green, blue. R: experiment 1
process

simulated by introducing noise between the mouse and the cursor. No such perturbation is

applied to the control group. After the final trial I conduct an attention test, focused on visual

aspects of the game.

I use a variant of Dotov et al’s "sheep herding" game [88, 89]. Here the participant moves

an on-screen cursor with a mouse, to "herd" three "sheep" objects. They must keep the sheep

close to the centre of the screen for the duration of the task and prevent them from touching

a boundary at the edge of the field. The sheep move as a loose group, away from the cursor.

The further the cursor is from the group’s spatial centroid, the quicker they move, and the

harder they are to control. To ensure presenting an effective challenge to the user, and avoid

entering a stable condition where user input is not required, a small amount of noise is added

to the sheep movement. The game can be intentionally “broken” in order to elicit a change in

readiness-to-hand. Breakdown is implemented by disrupting the relationship between mouse

and cursor movement to produce a "sticky mouse" effect. During breakdown, the cursor is frozen

at randomly determined intervals, for randomly determined periods. Timescale ranges for this

freezing were arrived at by user-testing, aiming to disrupt skilled coping with the game and

present an authentic appearance of breakage.

4.3.3.1 Observing changes in visual awareness

A defining property of ready-to-hand tool use is the lack of conscious attention to properties of the

tool, compared to non-ready-to-hand states where this conscious attention increases, for example

during breakdown. I follow established precedent in both HCI [5, 6, 34] and cognitive science

[88, 89, 251], in measuring visual awareness of tool properties as a marker of ready-to-hand and

non-ready-to-hand modes of tool use. To support this, each game object (sheep, cursor, arena

boundary) is presented in unique combination of colour and shape, (e.g. a yellow square, a white

star, a green triangle, a blue diamond, etc.). After the final trial participants filled a questionnaire
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about the colours and shapes of elements. As previous work [5, 6, 88, 89], a greater number of

correct answers would indicate greater attention to visual properties of the tool – characteristic

of non ready-to-hand states. My methodology moves beyond previous work by not only measuring

awareness of task-relevant objects, but also measuring awareness of task-irrelevant scenery

objects (trees and flowers - see fig4.1). By separately measuring attention to tool and non-tool

elements, I am able to observe whether any change in measured attention focuses specifically on

the tool, as predicted by accounts of readiness-to-hand, or reflects a more generalised change in

awareness. This was motivated by the idea that understanding locus of attention is important for

interface design and UX research in HCI.

4.3.4 Equipment & Environment

The game was implemented in C++. The user’s movement was measured with an accelerometer-

logger. I built this myself, since off-the-shelf loggers of adequate resolution were expensive to

acquire, while the individual components were inexpensive. This logger was built using a polulu

minumu-9 IMU and rasberry pi zero, running logging software developed in C++ on realtime

raspbian to ensure accurate timing. This device logged data at 250hz and 16bit/G resolution. I

chose to measure movement with an accelerometer following Dotov et al.’s arguments in favour

of this approach [88, 89, 251]: since the signal is technically appropriate due to its stationarity

and spectral bandwidth, and theoretically appropriate since the acceleration signal is the closest

measure to the control forces which act on the hand during mouse interaction.

The raspberry pi was attached to the arm and the IMU taped to the back of the hand using

micropore tape, aligned as closely as possible to the axes of the mouse. Participants sat at a

standard office desk, with a 24" monitor. They used a Logitech G300s gaming mouse, on a high

quality mouse mat, and wore headphones, playing low-level white noise, to minimise distraction.

All data, and software can be found at my Open Science Framework repository2

4.3.5 Protocol

Participants (N=44, 14 female, 30 male, 18+, recruited from student population via posters)

played the game in one of two conditions - "control" or "breakdown" - 22 in each condition. 50

participants were recruited in total, but 4 were lost to hardware failure, 1 due to a power cut,

and 1 participant was excluded due to colourblindness. Each participant played the game 6

times (t1-6), 5 "training" trials and one "breakdown" trial, for 70 seconds each time. In t1-5

the game performed normally. In t6 the tool was "broken" for the "breakdown" group only, by

randomly freezing the cursor (see 4.3.3). Breakdown began 35 seconds in, and continued to the

end, dividing the trial into two 35 second blocks (t6a and t6b). Participants were not told to expect

breakdown. They were also told they would play 7, not 6, trials in order to avoid any performance

2https://osf.io/2hm9u/
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Figure 4.2: experiment1. spectral widths for learning (above), and breakdown (below)

Figure 4.3: experiment1. left: scores on the observation questionnaires (out of possible 1.0)
right: Z-scores for surrogate analysis, wavelet orders 1-7. my selection criterion is to maximise
the z-score which quantifies the difference in multifractality between the original data and the
population of artificial surrogates of those datasets. This indicates the degree to which parameters
minimise spurious linear contributions to the multifractal measure

or expectation effect on the final trial, and no distinction was made between the status of the

trials.

At the end of the trials participants answered a questionnaire about visual features of the

game during t6 (see Experimental Task). This allowed measurement of differences in attention to

tool, between the breakdown and control groups. In order to distinguish attention-to-tool from

a more general increase in visual attention, the questionnaire included questions about both

task-relevant "tool" elements, and task-irrelevant "scenery" elements - trees and flowers. These

trees and flowers were placed in the four corners of the screen around the field of play. Two

varieties of tree and three colours of flower were used (fig.4.1). "Scenery" questions concerned the

number of trees and flowers in each corner of the screen, along with their colour or type. To avoid

any learning effect, relevant visual features of the game ("scenery" and "tool") were randomised

during t1-5, but consistent for all participants in t6. The visual elements shown in t6 did not

overlap in colour or shape with those shown in previous trials.
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4.3.6 Ethics

All experiments were submitted in advance to the university ethics committee for approval

(review references 2019-5501-5448, 2019-6158-6105) Since the experiment involved deception.

This necessitated a more rigorous approval process, the giving of consent both before and after

the experiment, and a debrief process, explaining the deception.

4.3.7 Analysis Method

My analysis comprises 3 stages. I describe these stages and provide a working description below.

More technical details of some aspects are provided in my supplementary materials (analysis

code and data at my osf repository).

1. Initial signal processing to prepare data for analysis

2. Data driven selection of parameters for multifractal analysis, grounded in surrogate analy-

sis.

3. Multifractal analysis: calculation of the singularity spectrum of the signal using WTMM,

and specifically the “width” of this spectrum

4.3.7.1 Data Preparation

Multifractal analysis techniques take a one dimensional data input, and it is common to analyse a

single dimension of activity, even manipulating data into this format where necessary (e.g. [9, 73,

76, 88, 210]). Theoretically any dimension measured from a system which exhibits multifractal

dynamics should reflect the multifractal dynamics of the system - as demonstrated in Takens’

theorem [154]. In this case, I observed that users playing the game did not focus on control

in one dimension over the other, so ranges of motion and variance were similar on either axis,

providing similar data resolution. I thus followed Dotov et al in using data from the X axis of the

accelerometer [89].

Before processing my signal, DC offset was removed by subtracting the signal’s mean, to

remove effect of gravity on an inclined accelerometer axis. Signal was low-pass filtered at 15hz, as

hand movements occur below 12hz [114]. Data were then integrated since preliminary Detrended

Fluctuation Analysis revealed negative Hurst exponents (see [129]).

4.3.7.2 Overview of Multifractal analysis

The singularity spectrum for hand movement was calculated using an implementation of WTMM

in C++ based on the physionet implementation [130], but which I adapted to support parallel

computation and batch analysis, improving performance. I quantified multifractal strength using

the "width" of the analysed spectrum - the difference between its smallest and largest exponents

76



4.3. EXPERIMENT 1: TOOL FAMILIARITY AND BREAKDOWN

(3.7.3). WTMM is a commonly used methods of multifractal analysis in the behavioural science

literature, and was used by Dotov et al. [88, 251]. Like them I analyse hand movement data from

an accelerometer, and WTMM is robust to non-stationaries which can arise in accelerometer

recording [88]. In conducting this analysis I followed guidance drawn from prior work by Dotov et

al. [88], material shared by the physionet project [130], and Ihlen and Veriejken’s influential 2013

paper on methodology in multifractal analysis [163]. Parameters for multifractal analusis were

selected using an empirical approach described below (section 4.3.7.4), but since this approach

builds on the surrogate analysis methodology, I first introduce that methodology first.

4.3.7.3 Surrogate analysis

In line with best practice [103, 161] I subjected my data to confirmatory surrogate analysis. As

described in 3.7.3, this provides evidence that the estimated singularity spectrum reflects multi-

fractal behaviour and is not significantly influenced by other, linear, factors. In my experiments

the linear factors I wish to rule out include changes in movement behaviour such as larger hand

movements (increased variance), or faster hand movements (a shift in the Fourier spectrum)

[190]. The singularity spectrum of the original signal was compared to that of a population of

processed copies, or "surrogates" of that data. In these surrogates, temporal-correlations between

time-scales (characteristic of multifractal behaviour) are disrupted by an Iterated Amplitude

Adjusted Fourier Transform, or IAAFT [301]. The IAAFT does not affect probability density

function or Fourier spectrum of the signal (affected by e.g. speed, amplitude and jerkiness in

hand-movement). For details of the IAAFT see appendix A If the width of the singularity spectrum

of the original signal sits outside the 95% probability interval of the singularity spectra in the

surrogate population, then these features can be judged to make an insignificant contribution

and the observed spectrum attributed to multifractal behaviour. If enough of the sample meets

this criterion then this provides evidence that the analysed spectra reflect nonlinear interactions

which provide evidence for multiplicative cascade structures, and that the influence of other

factors is small.

4.3.7.4 Parameter Selection for Multifractal Analysis

Multifractal analysis relies on the selection of analysis parameters, but discussion of this selection

is largely passed over in empirical work, making the approach less accessible than it could be. To

support future work in HCI I expose the details of my approach to parameter selection. First the

parameter q. As described in chapter 3, multifractal analysis quantifies variation over multiple

scales of analysis. The parameter q determines range of these scales and must be large enough

to capture the phenomenon at all relevant scales. For this parameter I followed prior work by

using −5< q < 5 - considered adequate for physiological data [87, 103, 129]. Another important

parameter is the choice of "mother wavelet". This is a finite function repeatedly scaled, and

convolved with the signal in WTMM, in order to measure fluctuations at different scales of
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analysis (see [7]). The order of the wavelet determines the orders of polynomial trends in the

data which are rejected. In biological time series, system dynamics appear as residual variability

around contingent environmental trends. By rejecting these trends the results of analysis focus

on variability which captures system dynamics. [76, 269]. This choice of order can thus affect

the degree to which true multifractal behaviour is captured, and the degree to which spurious

contributions to the result are rejected. But in a particular set of empirical data it is difficult to

determine the correct order of trends in advance, and the literature lacks techniques for making

this selection [172]. As such I developed a data-grounded approach to wavelet selection. Which

builds on the surrogate analysis described in (4.3.7).

I begin by stating the rationale for the my parameter selection approach: In MFA, my goal

is to quantify multifractality in the measured system. Thus my goals in selecting parameters

are: 1) to maximise the degree to which the analysis captures multifractality, and 2) to minimise

spurious contributions, from sources other than multifractal behaviour. The surrogate analysis

described in the previous section provides a way of addressing the second of these, by quantifying

the influence of spurious contributions. It compares the original data, to "surrogate" data in which

temporal correlations between frequency bands have been disrupted, but in which the "spurious"

factors remain, so that a larger difference, means a smaller contribution from spurious features.

I can thus use surrogate analysis to identify which parameters minimise spurious contributions

most effectively: applying this surrogate analysis repeatedly using different parameters, and

selecting the parameters which maximise difference between original and surrogates.

I evaluated the use of Gaussian wavelets of orders 1-7 since these are commonly used for

physiological data [88, 130], though my approach can be applied to any set of candidate wavelets.

Having established these candidates, I evaluated each using my algorithm. For each candidate

wavelet I conducted a surrogate analysis of the entire dataset using the wavelet, finally selecting

the wavelet where surrogate analysis showed least evidence of spurious linear contributions to

the singularity spectra. The surrogate analysis for a single data item proceeds as follows.

1. Generate N = 30 surrogates from the original data using a python implementation of the

Iterated Amplitude Adjusted Fourier Transform algorithm (IAAFT) [225]

2. Calculate the singularity spectrum for the original and each of the N surrogates using

WTMM and the current candidate wavelet

3. Calculate the widths of the spectra (difference between smallest and largest exponents -

see refMF) for both the original wo and each of the surrogates ws

4. Calculate the z-score of wo within the population of ws, and take the absolute value of this

z-score.
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This process was repeated for every item in the dataset, summing the absolute z-scores across

the dataset to give a fitness score for the wavelet. This in turn was repeated for each candidate

wavelet, and the wavelet with the largest z-score was chosen.

The aim in selecting the wavelet in this way is not (as in e.g. machine learning) to find the

optimal value which most effectively separates experimental conditions — and as will be seen

above, the algorithm has no information which would support this kind of optimisation. Rather

the aim is primarily to specify the analysis approach ahead of analysis, in a principled and

theoretically grounded way, thereby supporting good hypothesis testing practice.

4.3.8 Results

My wavelet selection method showed that the 1st order Gaussian wavelet gave the greatest

differentiation between original and surrogates (91% of samples outside the 95% confidence

interval), indicating that it best minimised the contribution of linear features such as speed

and variance in hand-movement, and that the multifractal spectra would be likely to reflect

nonlinear contributions, characteristic of multiplicative cascades [161]. The 3rd order Gaussian

wavelet ranked second (83% outside the 95% confidence interval) (fig.4.3). I thus use the 1st order

analysis when drawing conclusions, but present results for the 3rd order too.

Breakdown: Per H1, I observed a shift in attention, toward task-relevant elements of the

game during breakdown. Participants in the breakdown condition correctly identified more

details of the task-relevant objects (t(43) = 2.19, p = .02). There was no difference between

the groups for non task-relevant objects (t(43) = −0.49, p = .31). Per H2. widths of singularity

spectra in the breakdown group were significantly lower than in the control group (Wavelet

order 1: t(43) = 2.9p = .003). Within the breakdown group, widths were significantly lower

during the breakdown block 6b, than in the equivalent period during the previous trial, 5b

(t(21) = 4.4, p < .001). On a 3rd order analysis these results would not have been significant

(t(43)= 1.4, p = .087 and t(21)= 1.1, p = .13 respectively).

Familiarity and Learning: Per H3., I observed an increase in spectral width during learning.

This was significant on analysis at wavelet order 1 and would have been significant also at 3.

I did not see strong correlation for spectrum width with respect to trial no at population level

(Order 1: r(43)= .03, p = .14; Order 3: r = .04p = .14) indicating a lack of evidence for consistent

trial-to-trial increases over the five trials. However, by the last training trial t5 spectral widths

were significantly wider than at the beginning, during t1. (Order 1: t(43)= 2.46p = .009; Order 3:

t(43)= 2.51, p = .008).

Summary: These results show correlations between multifractality and three dimensions

associated with readiness-to-hand: familiarity with tool, locus of attention, and tool breakdown. I

replicated the previously observed result that shifts in attention to the tool were accompanied

by wider multifractal spectra [88], providing stronger evidence (via surrogate analysis) that

these changes in spectra reflect non-linear interactions in the control system (rather than other
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static factors of analysis such as speed of movement, or variance). I also found evidence for a

new hypothesis: that multifractal signatures would be stronger when the participant was more

familiar with the tool and task.

4.4 Experiment 2: Engagingness of the Task

4.4.1 Overview and Purpose

My second experiment (N=30) tests two new hypotheses associating multifractality with en-

gagement, responding to patterns observed in my first experiment, and the association between

readiness-to-hand and engagement. When reviewing results I noticed that multifractality was

slightly lower in the second half of each trial, even where there was no malfunction. I hypothe-

sised that this result might be due to waning engagement over time, since I found that it required

considerable concentration to remain engaged with the task and perform well. I found theoretical

and empirical support to pursue this association in previous literature.

As discussed above, multifractality provides evidence for the coordination of behavioural

resources in cascade structures, which have been associated with flexibility and adaptation

to circumstances [9, 210]. Wider multifractal signatures are taken to indicate that a wider

range of behavioural resources are coordinated [190, 210]. Researchers have drawn connections

between this account of resource coordination, and accounts of executive control — a psychological

construct which describes the control and coordination of cognitive resources towards consistently

maintained goals [9], and which can be undermined by sustained performance [40, 81, 265,

342]. While previous work has not tested the association between engagement or fatigue and

multifractal signatures, there is evidence that multifractal signatures are affected by executive

control, [9, 10, 191], and executive control has itself been closely related to task engagement,

insofar as “subjective engagement signals the intervention of executive processing in maintaining

progress toward personally-important task goals” [133, p.227].

I therefore predicted that sustained engagement on a challenging task like the sheep game,

would result in lower multifractal signatures in task-directed movement (H1 below). This would

be due to a slightly reduced ability to coordinate behavioural resources and thereby maintain the

sensorimotor coupling, which Dotov et al. suggest supports performance on the task [88, 89, 89]. It

is also known that more engaging tasks better support executive control, while less engaging tasks

result in lower executive control and mind-wandering [81]. Based on this and the aforementioned

association between multifractality and executive control, I hypothesised that a more engaging

task would result in stronger multifractal signatures in task-directed movement (H2 below), due

to the stronger motivation to engage and effectively coordinate resources.

4.4.2 Hypotheses

H1. Multifractal signatures will be stronger in the group playing the "engaging" game.
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H2. Multifractal signatures will be stronger in the 2nd half of each trial than in the 1st.

4.4.3 The "Engaging" Sheep Game

To test these hypotheses, I created a version of the sheep game which supported engagement by

providing continuous ability-calibrated challenge and informational feedback on progress. The

kinds of engagement which seem most relevant to readiness-to-hand, are cognitive - focus-on-task

and cognitive effort [86]. I therefore focused on these dimensions of engagement. I drew on

sub-dimensions of Flow theory and other accounts of cognitive engagement to adapt the game.

I did not aim to measure flow-states specifically, but followed previous authors in drawing on

sub-dimensions of flow which were relevant to cognitive engagement [257]. I redesigned the task

to match challenge to the user’s ability, since there is evidence that this supports task focus and

effort [248]. I also provided clear informational feedback on performance, since this has been

shown to increase engagement [86].

The challenge of the task was adapted to player ability via a simple mechanism: A variable

controlling difficulty continually increased for as long as the sheep did not touch the edge of

the field. On touching the border, the difficulty was decreased by a fixed amount, and immunity

was granted for 1 second. During immunity the difficulty could not be reduced again, giving

players a chance to recover. The difficulty variable affected two game parameters: the rate at

which the sheep flee from the cursor, and the noise which is added to the movement of the

sheep. To increase investment and to keep the level of difficulty well adapted to the player,

this progression in difficulty level carried over from game to game - players started each game

on the average difficulty level they reached in the previous game. The first game began at a

nominal difficulty level of 0. To further increase sense of investment, and engagement, simple

informational feedback on the current difficulty level was provided via the colour of the game

elements, which was tied to the difficulty parameter. The colour slowly and smoothly interpolated

between four fixed colours: green at the easiest level, then yellow, red, and finally white. This

scheme was designed to provide clear information without being distracting, and was explained

to users at the start of the game.

In the control version of the game, difficulty was fixed at zero throughout, and game elements

remained green. There was thus no difficulty adaptation, and no feedback on performance. Since

this experiment did not include an observation task, game elements were presented in a single

colour and shape. The sheep objects were all circles, and the cursor was a square. To help

distinguish the cursor, this was coloured a fixed white in both conditions.

After informal piloting to arrive at appropriate parameters, I performed a short study to

confirm the effect of these adaptations. 12 participants each played both versions of the game

engaging (A) and control (B), twice each. Half of the participants played two games of A, for 2

minutes each, then two games of B for the same time. For the other half this order was reversed.

After completing both sessions for one version of the game, participants completed a questionnaire

81



CHAPTER 4. MULTIFRACTALITY IN MOUSE USE: READINESS-TO-HAND, SKILL AND
ENGAGEMENT

comprising three questions, answered on a 5 point Likert scale. 1) I was completely focused on the

task at hand, 2) I felt motivated to keep engaging with the task. 3) I put a great deal of effort into

performing the task.

The first question was taken from the short Flow State Scale questionnaire (SFSS) [167]. The

SFSS consists of 9 questions each addressing one sub-dimension of flow. I did not aim to measure

flow states as such, and my hypotheses did not concern dimensions of flow such as autotelic

experience. Instead I focused on one sub-dimension of the SFSS: “concentration on task”, which

captures cognitive engagement [86, 167]. There is precedent for drawing on sub-dimensions of

flow, for example the development of the Focused Attention construct in the UES scale [264].

The second and third questions were formulated for the experiment, to capture continuing

motivation, and level of cognitive effort. Scores on this questionnaire were significantly higher

for the more engaging version of the game (t(11)= 4.81, p < .001 (paired)).

4.4.4 Protocol

30 Participants (10 female, 20 male, 18+, recruited from student population via posters) played

this game 4 times for 2 minutes each. The longer play time per game was designed to maximise

any effect of sustained performance on multifractality over the course of each trial. The same

equipment and environment was used as in the first game.

4.4.5 Results

As in the first experiment, the surrogate analysis showed that the 1st order Gaussian wavelet

resulted in the greatest differentiation between original and surrogates (91% outside the 95%

confidence) indicating that this wavelet minimised the contribution of linear features such as

speed and variance in hand-movement. This statistic in addition gives confidence that the effect

of these linear features in the results is low, and so the results can be taken as reflective of

differences in nonlinear behaviour, characteristic of multiplicative cascades [161]. This was

followed by the 3rd order (87% of samples outside the 95% confidence interval) . As such I draw

my conclusions from the 1st order analysis.

The hypotheses were supported by the results using 1st order wavelet, and would have been

supported by a 3rd order analysis also. Per H1 I observed that spectral width was significantly

higher for participants playing the engaging game than for those playing the non-engaging game

(Order 1: t(29)= 4.07, p < .001; Order 3: t(29)= 3.72, p < .001). Per H2 both groups’ widths in the

first minute of each trial were higher than those in the second minute (Order 1: t(119)= 2.76p =
.003; Order 3: t(119)= 2.39p = .009).

Summary: My second experiment indicates that the multifractal singularity spectra correlated

with another dimension associated with readiness-to-hand: task engagement. The singularity

spectrum was significantly higher when participants performed a more engaging task, and higher

in the first half of each session, than the second - which might be attributed to waning interest, or
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Figure 4.4: Experiment 2: Spectral widths during first and second minute of each game

to fatigue from sustained performance. The superposition of these two patterns show something

of the complexity involved in interpreting multifractal results where multiple factors can bear on

measures.

4.5 Discussion

Readiness-to-hand is an important concept in HCI and embodied HCI in particular, and re-

searchers in HCI have pointed to the value of operationalising the concept to support the testing

of design ideas and interaction variables, and to help integrate design practice and theory around

the concept [34]. The two experiments presented in this chapter take the first steps towards

developing an operationalisation of readiness-to-hand for HCI, grounded in the IDVC. In this

respect they address RQ2 of this thesis: Can MFA and the IDVC augment existing research on

embodiment in HCI? This chapter demonstrates the capacity of methods grounded in the IDVC

to support hypothesis testing around one of the central constructs of embodied interaction. As I

will discuss below, this work also points to potential contributions to design work grounded in

ideas of embodiment: while future work will be required to further extend the operationalisation

begun here, this work points to the potential to develop intelligent user interfaces grounded in

the account of readiness to hand.

This work also directly addresses RQ1 of this thesis: Can multifractal signatures in user

movement to infer high-level attributes of the user and of the interaction, with the potential

to support user studies, and the development of intelligent user interfaces. This chapter shows

potential for multifractal features analysed from user control behaviour to help us infer high level

behavioural constructs which have been of interest to UX researchers: skill, engagement, and
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locus of attention. It is important to note the limitations and complexities around this inference.

In these experiments this relies on controlling other factors which can affect multifractality. I

discuss prospects for real-world applications in this light in the final discussion chapter.

In the sections below I discuss the key results from these experiments, and their relation to

the above questions in more detail. This includes discussion of limitations that are apparent from

this work, which have implications for future research which must be completed to develop this

operationalisation, and to develop applications and experimental methodologies grounded in it.

4.5.1 Key Findings and Contributions

The results observed replicate and extend previous findings of an association between multi-

fractality in task-directed movement, and dimensions of behaviour and experience associated

with readiness-to-hand. I first replicated results from two studies by Dotov et al. [88, 89] that

focus on breakdown in tool use, then develop and tested new hypotheses based on the theories

which underpin the association between multifractality and skilled task-directed movement. I

find that multifractality increases as users become more familiar with the game, that it increases

when playing a more engaging game, and that it decreases over sustained performance in a way

suggestive of fatigue or disengagement.

• Breakdown: In line with Dotov et al., I observed that when the tool functioned well for

the task at hand, the movement of the hand was more multifractal, and the user’s attention not

focused on the tool, indicated by low recall scores on a test of visual awareness. When the tool

became inadequate for the task, due to a simulated malfunction in cursor control, movement

became less multifractal and attention shifted towards the tool. This was indicated by higher

recall scores on a test of visual awareness of task-relevant tool objects. There was no, accompany-

ing significant change in recall scores for task-irrelevant objects in the same environment. This

finding replicates findings in HCI and cognitive science which have demonstrated the effect of

shifted locus-of-attention during tool breakdown [5, 6, 88, 89], and findings in cognitive science

which relate this phenomenon to multifractality in hand movement [88, 89].

These findings go beyond previous findings in three ways.

1. They show that the change in multifractality during breakdown occurs in the absence of a

distracting counting task (see 3.6.1), that seems likely to affect the ability to engage and

"smoothly cope" with the task as described in canonical accounts of readiness-to-hand [88].

2. They provide evidence that the change in multifractality is associated with a shift in

user-attention towards the tool, in distinction to a general increase in visual awareness

[88]. This is an important issue for HCI, where interface designers may be interested in

the locus of the user’s visual attention.

3. Finally my results provide confirmatory surrogate analysis on the analysed multifractal

spectra, giving further evidence that the results are likely to reflect multiplicative cascades
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in control structures, as predicted by the theoretical account relating skilled performance

and readiness to hand to multifractal signatures. This was not carried out by Dotov et al.

[88].

It is worth elaborating a little on the third contribution. Confirmatory surrogate analysis is

considered best practice in MFA since while singularity spectra have a mathematical association

with multiplicative cascades, they can also be influenced by linear contributions such as the

Fourier-spectrum and probability density function of the signal [161]. In plain terms this can

mean that results can be influenced by shifts in speed of movement, or changes in amplitude and

variance. Surrogate analysis isolates and quantifies these contributions to the results. Where, as

in my results, a high percentage of the original data-set is outside the 95% confident interval for

the surrogate population, this gives evidence for the insignificance of such contributions in the

results [161, 190]. This result thus provides a stronger evidence base than has previously been

available on which to develop an operationalisation of readiness-to-hand in multifractal patterns

in hand movement.

More immediately for HCI, these results point to future possibilities for developing applica-

tions of MFA. The unobtrusive nature of the measure – requiring only the capture of task-directed

movement – points to applications in user-facing systems, and user-measurement. MFA might

in future be used to help infer users’ locus of attention (tool or task) during game play, during

activity in VR environments and with tangible gadgets. This might support information display

in adaptive user interfaces, only making use of important screen real-estate to display notifica-

tions, when the user is poised to make use of it. It might also support UX evaluation: previous

researchers found that a measure of locus-of-attention grounded in accounts of readiness-to-hand

showed promise as a measure of immersion in a VR experience, or of the naturalness of the

interaction [5, 6]. By contrast to the approach developed there, MFA offers a far less intrusive

way of inferring this, which does not rely on user report or interruptions to the main task, which

are themselves likely to affect immersion and naturalness.

• Learning and Familiarising with Technology: Accounts of readiness-to-hand in

philosophy [96, 368] and HCI [84, 338] have emphasised skilled "coping" — adequate familiarity

with tool and task — as a key aspect, and pre-requisite of ready-to-hand tool use. Despite

this, previous empirical approaches to readiness-to-hand had not addressed this issue. My first

experiment addressed this gap, testing the hypothesis that multifractal signatures in movement

will increase with familiarity. Though this hypothesis had not previously been articulated or

tested, I have articulated the way in which it is implied by the prior work. Dotov et al. argued

that ready-to-hand modes of engagement arise when neuromotor resources are organised into

cascade structures which support adaptive behaviour, via task-specific, sensorimotor coupling

to the task. It seems clear that the ability to maintain such states, should be learned over time,

and accounts of readiness-to-hand emphasise the need to acquire skill and familiarity with the

tool [84, 367]. It follows that, since multifractality is a signature of such adaptive behavioural
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structures, we should expect multifractality in task-directed movement to increase over time, as

the user familiarises themselves with the tool and task. My first experiment tested and found

evidence to support this new hypothesis. Multifractal signatures were significantly higher in the

5th trial, after the user had gained experience with the tool and task, than in the first.

This result addresses a gap in previous efforts to operationalise readiness-to-hand. Previous

measures in HCI have focused on the effect of tool deficiencies and breakdown [5, 6], lack of

realism [33]), or the difference between passive and active engagement [33]. While such issues

are important and relevant, it is arguably more common and useful to observe changes in user’s

familiarity with an adequately functioning tool, during active use. Finally, this result points

to the possibility of applying multifractal analysis in skill training applications, in line with

recent calls to apply multifractal measures and associated theories in physical therapy, based on

evidence that multifractal signatures predict the generalisation of learned movement behaviours

and adaptability in skill [54].

• Engagement with task: Some kind of practical engagement is essential to the account

of readiness-to-hand. While specifically high engagement is not a necessary part of Heidegger’s

original account, influential interpreters such as Dreyfus have often stressed this aspect [46], and

accounts in HCI have often stressed the connection to high-engagement, focus, and immersion

[5, 6, 43, 319, 332].

Previous work has connected multifractal patterns with executive control [9], which points to

the possibility that multifractal signatures may function as markers for the related construct

of engagement. However, the association between fractal signatures and engagement has only

been investigated in monofractal signatures, and only when comparing tasks which require

no cognitive engagement, to tasks which are only minimally engaging [212]. My experiment

is the first work to my knowledge to investigate the association between multifractality and

engagement during realistically challenging and engaging tasks. This is important for HCI where

these measures must be useful in realistically challenging and engaging tasks, and where they

must be able to identify changes in engagingness due to relatively small differences in user

feedback and task calibration.

The results of the same experiment also confirmed my hypothesis that multifractality would

diminish over the course of each session of play. This result is again consistent with a link

between multifractality and engagement. However, I see at least two possible interpretations:

it could follow from lower ability to engage due to sustained performance and fatigue, or from

disengagement due to boredom, or low arousal. The theoretical model I build upon suggests

that multifractality follows from behavioural coordination [88, 161, 190], and both fatigue and

boredom are consistent with the reduced ability to coordinate behavioural resources towards

the performance of a task [81]. My preferred interpretation is that the effect is more likely due

to fatigue than boredom: the same effect is clearly observable in both conditions, and since I

observed that participants in the "engaging" task were highly motivated, and seemed to engage
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strongly right to the end of the task. However, my experimental design does not allow us to

clearly distinguish fatigue from disengagement due to boredom, so future work will be required to

understand this. The relationship between fatigue and multifractality has not, so far as I can tell,

been investigated and this seems to me a fruitful direction for future work in HCI and cognitive

ergonomics.

One final observation in the second experiment warrants some discussion. In the non-engaging

condition there seems to be an increase in multifractality over the course of the trials,in line with

the results of the learning phase in the first experiment. However, I was surprised not to observe

such a pattern in the "engaging" group. Overall my results suggest that the metastable states

of behavioural coordination which are argued by Dotov et al. to give rise to both multifractality

and ready-to-hand experience [88], are supported by both engagement and learning. It may be

that high engagement is effective in encouraging the earlier attainment of such states as the

user learns the task. This is supported by the similar levels of multifractality observed between

the groups by the final trial. Whether similar patterns are observed in different tasks is an

interesting question for future research. But further to this, it is worth noting that this increasing

multifractality over trials coexists with a diminishing multifractality within each trial. It may be

that that three forces are at work across this experiment: level of engagement between conditions,

learning effect over the course of the trials, and fatigue due to sustained performance during the

course of each trial. It is also possible that this effect is an artefact of the methodology - that

the anticipation of the end of the trial changes user behaviour or engagement in some way. This

could be addressed by observing longer trials in which gradients in multifractality in the middle

of the task could be isolated from any such end-effect. Such work might coexist with qualitative

methods, perhaps making use of phenomenological interview techniques [236, 270], or other user

experience approaches to further the understanding of the relationship of these measures to

experiential dimensions of readiness to hand.

4.5.2 Practical Features of MFA

Data capture for MFA is less disruptive to interaction than previous approaches in HCI, and easier

to incorporate into existing interaction situations. It does not rely on secondary measurement

tasks which may interrupt performance on the primary task, and alter level of engagement

and perhaps focus of attention, and only requires commonly available input devices. My study

applies MFA to recordings from accelerometers, which are now commonly available in consumer

technologies. Below, I note it may be possible in future to collect this data directly through the

mouse. In other studies data from video object tracking [255], and even the keyboard [210],

have been used as sources. All of this makes MFA cheap and discrete to deploy, even in existing

systems, and it opens up the potential to measure readiness-to-hand outside the lab, both for

studies "in-the-wild", and for incorporation into everyday technologies, allowing systems to react

to user requirements more effectively. In the right circumstances it may be possible to use only
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the sensors already incorporated in the system, for example recording mouse or accelerometer

input directly, or using motion detection tools such as Leap Motion and video motion analysis

[255, 276]. This could result in lower barriers to acceptance, since no unfamiliar peripherals are

required.

Finally, the approach seems likely to fit into a wide range of interaction situations. While

this work evaluates multifractality in mouse use, previous research makes it clear that the same

approach can be applied to many other circumstances which are quite mechanically different:

examples include steering a car [212], sports training [113], and writing an essay at a keyboard

[212].

4.5.3 Operationalising Readiness-to-hand in Multifractality and the IDVC

Readiness-to-hand is an important theoretical concept in HCI, and particularly so in embodied

approaches. The concept gathers together a complex of experiential and behavioural dimensions

relevant to HCI, and predicts that these dimensions will vary together in a more or less reliable

and predictable way, in response to particular conditions. It is natural to frame many aspects of

the account of readiness-to-hand, in terms of hypotheses and design implications. For example:

accounts of readiness-to-hand suggest that the user’s attention will be distributed differently

under different conditions of technology use, at different levels of engagement. When the user

is deeply engaged in performing a task they are less likely to notice visual elements at the

control interface, and perhaps sounds which are associated with the normal functioning of that

interface. But when this smooth "coping" with the task is interrupted — either when the task

changes, or the user realises their strategy is ineffective, or the tool proves ineffective — then

this pattern of attention will change, and these features of the interface may become more

noticeable. If this turns out to be a reliable phenomenon during interaction, then it suggests

certain approaches to design: we might, for example, vary interface layouts for different phases

of interaction, use different notification strategies. This is one example, and the account of

readiness-to-hand raises many others, pointing to the value of operationalising the concept in

order to explore these possibilities empirically [34]. For some recent interpreters, readiness-

to-hand implies predictions about a user’s sensitivity to relevant affordances [282, 368]. Some

accounts, including the theoretical model I build upon, suggest ready-to-hand tool use involves

the functional incorporation of the tool into cognition [33, 89], and some point to implications of

this functional incorporation for the user’s perceived ability to act in space [33, 79].

If these accounts of readiness-to-hand hold true, and are sufficiently consistent in user

behaviour, they suggest implications for design, and for theory, raising important questions

for further research. Perhaps the most immediate contribution to theoretical nuance which

follows from this work addresses the common focus on readiness-to-hand as a dichotomy, and an

attendant focus on breakdown. The results related to skill and engagement point to a change

in perspective here. While prior-skill is seen as an important aspect of readiness-to-hand in
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interpretations focused on cognitive science (see e.g. [367, p.128-] and [184, p.58]), work in HCI

has not tended to emphasise this aspect of the account [84]. The account I build upon: Dotov et

al.’s interpretation of tool use in the light of the IDVC, suggests that multifractal signatures will

be impacted by any circumstances which result in diminishing or improving the ability to achieve

an effective predictive sensorimotor and behavioural coupling with the demands of the task, via

the tool. This is consistent with the idea that skill (and engagement) supports readiness-to-hand,

and motivated those hypotheses. It is also consistent with the idea found in recent interpreters

of Heidegger, that readiness-to-hand is a spectrum, not a dichotomy, with most activity being

more-or-less unready-to-hand, and absolute ready-to-hand or present-at-hand states forming

something like limit cases [367, p.141]).

This points to future work in HCI which can add nuance to existing understanding of

readiness-to-hand in HCI, moving beyond the implied hard division between three states of

behaviour: either smooth practical coping, awkwardness, or total breakdown. If breakdown need

not be restricted to malfunction, and readiness-to-hand can be in a sense intensified by e.g.

skill and absorbed engagement, then it may be more intuitive to relax our focus on the binary

language of “breakdown” and on Heidegger’s three distinct states, and instead think in terms of

continuous variation. HCI research can be helped in this by concepts from wider phenomenology

[94, 242, 367]. It may be useful for us to think in terms of how the user’s level of ‘practical

coping’ or ‘grip’ on an interaction situation diminishes or increases, treating breakdown as merely

an extreme case of this. ‘Grip’ and ‘coping’ are terms from Dreyfus’ interpretation of Merleau

Ponty and Heidegger, which have been developed significantly by later thinkers and associated

with empirical findings and models of human behaviour [46, 88, 93, 249, 283, 367]. An extended

discussion of this is beyond the scope of this chapter, and I return to it in my discussion. But

in brief, while the results in this chapter are consistent with accounts of readiness-to-hand,

and support future work in this direction, I find their articulation in the language of grip and

coping more intuitive, consistent, and potentially more useful for communication with designers

and developers. I also find the wider literature around these terms provides a rich source of

descriptive, theoretical, and empirical material.

This chapter is only a first step towards these goals, but motivates exciting future work

[34]. An account of readiness-to-hand grounded in the IDVC points not only to opportunities to

develop new measures, but also opportunities to deepen and clarify our understanding of ready-

to-hand experience and behaviour. Future work may test the interaction of the various features

which may affect a user’s ability to maintain the meta-stable states and which thereby can be

theorised to affect readiness-to-hand, with outcomes implied by accounts of that phenomenon.

Framing in terms of the ability to maintain such states, points to potential relationships between

readiness-to-hand and fatigue, for example — an aspect which is not commonly foregrounded in

discussions of readiness-to-hand in HCI. Work in the IDVC points to other hypotheses also: work

on multifractality in skilled performance indicates that highly constrained interactions which
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leave users little freedom and agency may also undermine multifractality [210, 349]. It seems

plausible that this might also impact on the behavioural and experiential dimensions associated

with readiness-to-hand. There is important future work to be done understanding how these

things interact and influence one another, and in extending the work I build upon in this study to

understand the effect on behaviour and multifractality in subtler species of breakdown, due to

disengagement, confusion, occlusion of relevant information for action. Indeed, since I carried

out the work in this chapter, some further work in this direction has been completed. Further

evidence for the role of interaction dominant dynamics in user-technology couplings have been

reported, focusing on quite different technologies and behaviours — eye tracking [78], tangible

sensory substitution technology [105], and more work on mouse use (which builds directly on the

methodologies I developed in this chapter) [277].

4.5.4 Limitations

As an early step towards operationalising readiness-to-hand for HCI, this work naturally comes

with limitations, pointing to opportunities for future research. First, my experiments focus on

one particular game. This may raise concerns that peculiarities of the task and manipulations

create sources of error which influence the measure of multifractality — for example by directly

influencing the user’s movement amplitude, or speed. It is worth beginning by emphasising some

mitigations against this concern. First, my hypotheses were supported through quite different

manipulations, including when the only manipulation was time (experiment 3, H2). Second, I

made use of surrogate analysis to provide evidence that results do not have their basis merely

in linear features such as speed or amplitude, but are due to non-linear behaviour [161, 190]

(4.3.7. It is also important to note that many previous studies have related multifractality to

closely related phenomena. For example (multi)fractality has been associated with engagement

in steering [212], skill in crafting with a hammer [255], immersion in the experience of drawing

[219, 220], and quality of essays during typing [210]. The mechanical diversity of these tasks,

and the connection of outcomes to dimensions of readiness-to-hand provide further evidence for

the likely transfer of my results beyond the particularities of the task. Nonetheless, future work

must test hypotheses related to readiness-to-hand in different interaction modalities, and in

different tasks, exploring more ecologically valid tasks in various interaction modalities, and

even in-the-wild. Such work may focus in part on exploring the variation in multifractality over

the course of a task observed in experiment 3 (prior examples of MFA applied in-the-wild, or to

observe variation over time can be found in [9, 10, 255]

To support future applications, it will be valuable to test the approach directly on recordings

of mouse input, and other common input methods. This was left for future work, since my primary

aim was to build the evidence base and methodological foundation for the approach, and the task

of adapting the methodology to mouse use is non-trivial. Mouse drivers use nonlinear transfer

functions to translate physical movement into screen movement [52], and high time-precision in
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recording movement is difficult to achieve in modern, multi-threaded operating systems [274].

Locus of attention is an important aspect of readiness-to-hand. Based on the account developed

here, we might expect visual awareness to vary not only over breakdown conditions, but also

due to skill and level of engagement with the task, and for this to be predicted by multifractal

signatures. It was not possible to test this in my experiments focusing on skill and engagement,

since both focused on repeated, relatively uninterrupted engagement with a task, to which I felt

the interpolation of observation tasks would be disruptive and distracting. Further, I felt that

repeating observation tasks could prime users to pay attention, distorting the results, and that

special care would need to be taken to distinguish the effect of skill or engagement from the effect

of the diminishing novelty of the environment over time. While this task may be challenging there

is value in future work addressing this limitation, and finding imaginative approaches to testing

whether more skilled and engaged users are less attentive to the visual properties of the game or

tool, as might be expected from the account, or whether other factors might mitigate against this.

As I have noted, Dotov et al. argue that the change in awareness is due to the deprioritisation of

cognitive resources in favour of the maintenance of a meta-stable sensorimotor coupling to task

which supports flexible adaptation. My intuition is that skill (if perhaps not engagement) may in

part consist in improved efficiency at maintaining such states, which may modulate any expected

effect of skill on diminished awareness of the tool. Nonetheless, there is value in testing this

assumption, since the results should be highly relevant for understanding information display in

different modes and phases of interaction, for example in the design of alerts and information for

experienced users. It is perhaps particularly relevant in safety critical applications.

There also remains a need to further investigate the relationship between multifractality

and first person experience. In this work I only establish an association with the engagingness

of the task. Future work might deploy qualitative and quantitative measures to more precisely

understand the relationship to the experience of engagement. One direction may be to investigate

the relationship of multifractality and other constructs which have been related to readiness to

hand. My measure of attention is already quite close to the measure Alzayat et al. associated

with presence and tool-embodiment [5, 6], differing primarily in its focus on the observation

of persisting properties rather than change. It thus seems likely that I measure the same

phenomenon, though there is value in testing the association of multifractal measures with their

Shift of Locus of Attention Index, and with measures of presence and tool-embodiment in VR.

Future researchers may also investigate the relationship between multifractality and experiences

of of tool-extension and peripersonal space, which have been considered valuable in HCI and

linked to experience of immersion and perception of ability to act in space [33]. In the work of

Dotov et al. [88, 89] and others [105] multifractality in tool use was treated as evidence of the

tool’s incorporation into cognition, but to date no work has attempted to link multifractality in

movement with reaction time measures of tool-extension, and peripersonal space [33].

Finally, turning to methodology: after conducting these experiment I began to investigate
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wider research applying multifractal analysis to behaviour, which was not so directly linked to

phenomenological constructs. I found that this wider research overwhelmingly tended to make

use of a different multifractal analysis algorithm. Where I followed Dotov et al in using the

WTMM algorithm, it was far more common to use Multifractal Detrended Fluctuation Analysis

(MDFA) in wider research, and I later found that guidance for the use of this algorithm, and the

selection of parameters was much better documented. Also while I applied a data-driven method

to select the mother wavelet for analysis in these experiments, I did not apply similar methods to

select other parameters, following precedent instead. In the next chapter (and through the rest of

the thesis) I address this by adopting MDFA and extending my data-driven parameter selection

method to all parameters of analysis.

4.6 Conclusion

The work in this chapter directly addresses both of the research questions of this thesis. It takes

the first steps towards developing an operationalisation of readiness-to-hand for HCI, grounded

in the IDVC, and shows how the IDVC points to nuances in the account of readiness-to-hand

which are generally not addressed in HCI, and provides a means of articulating new hypotheses

around the contstruct. In this respect it addresses RQ2b: Do MFA and the IDVC support the

operationalisation of important concepts in Embodied Interaction research?. In more directly

practical terms, the work in this chapter has also pointed to future potential for the use of MFA

to measure important features of user experience and behaviour, related to the construct of

readiness-to-hand: a core concept in embodied approaches to interaction. In this respect it not

only addresses RQ2b, but also RQ1a: Can MFA be used to infer user behaviour and experience?

(though re: “inference” see caveats around the impact of multiple factors on the multifractal

signature, which are discussed further in chapter 10).
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ADAPTATION TO THE CONDITIONS OF THE PANDEMIC

Shortly after I had completed the set of experiments described in the previous chapter, the global

coronavirus pandemic began. It soon became clear that the conditions of the pandemic would be

long-lasting, and extend beyond the end of my PhD funding period. To continue investigating

phenomenal and experiential aspects of interaction I felt it would have been necessary to conduct

in-person experiments and interviews, which was not possible for a number of reasons. I decided

to pause empirical work and instead focus on methodological issues which had arisen out of my

initial work, while also thinking more widely about potential contributions of MFA and the IDVC

to HCI and Embodied Interaction.

I saw great value in focusing on methodological issues since MFA is a young analysis method

and particularly so in HCI. Guidance is scattered, certain aspects of analysis can be hard to

specify, and most previous work has been lab-based, and so rarely addresses questions which

arise around real-world applications. As discussed in the next chapter, the wider literature

on multifractal analysis gave me reasons to consider developing a new analysis pipeline, and

expanding my approach to parameter selection. I felt that this effort could not only support my

own further empirical work, but also support future work in HCI.

When developing my further empirical work, I saw value in addressing contexts and con-

structs outside the common focus of Embodied Interaction research. As I noted in my background

sections, if embodiment is taken to be a foundational aspect of HCI, then it should speak to a

wide range of interaction scenarios. I found a small amount of previous work on multifractality

in typing, and felt this was a promising line of research. I also felt that it would be practical to

conduct typing experiments remotely, since keyboards are very widely available, and most users

have basic keyboard skills. As such, the majority of the rest of this thesis focuses on multifractal

analysis of typing data, to understand fatigue - a line of research which has clear continuities

with the work described above, but also inevitable discontinuities, insofar as it marks a move

away from world-involving forms of interactivity, and a shift in focus away from the theoretical

frame of readiness-to-hand, and towards other psychological and behavioural constructs: par-

ticularly fatigue, executive control, and skill. I was later able to negotiate access to eye-gaze

data-sets captured during the operation of forestry machinery, which allowed me to investigate

the application of multifractal analysis in technology use beyond the desktop, without the need

to conduct in-person experiments (chapter 9).
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5
DEVELOPMENT OF MY TUNING AND ANALYSIS PIPELINE

5.1 Summary

This chapter:

• Describes the development of the analysis methodology described in the rest of this thesis.

– Switching analysis algorithm to MDFA, which is better documented and supported

in the community, to facilitate future development, and the critique, comparison and

replication of results

– Extending the approach to parameter selection developed in chapter 4 to address all

parameters of analysis, supporting good analytical practice

– Applying validity checks to empirical analytical results.

– Making use of a different multifractal metric — the t-statistic for non-linear multifrac-

tality TMF — which is more directly interpret-able as evidence of cascade structures

and interaction dominance.

• Describes the development of a data-grounded approach to parameter selection, which

addresses uncertainty in the selection of these parameters, and supports good hypothesis

testing practice.

• Gathers together prior guidance on multifractal analysis to provide a resource for future

work.

• Serves, alongside chapter 7, as a guide to the application of MFA for researchers new to the

topic.
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5.2 Introduction

In the last chapter I described the first empirical work in my thesis, applying MFA to mouse

control to understand the relationship of multifractality to readiness-to-hand. In that chapter I

discussed issues around parameter selection, and my initial response to this, via the development

of a data-driven selection method, applied to one parameter. In this chapter I motivate and

describe the development of the multifractal analysis approach which I developed in response to

these findings, and which I apply in all of the remaining work in this thesis. This new approach

includes a change of analysis algorithm, an extension of the approach to parameter selection

developed in the previous chapter, and a more robust set of validation steps, going beyond the

approach taken in the overwhelming majority of the prior literature I surveyed1, and a shift in

use of multifractal metrics: introducing a feature which provides more direct evidence of cascade

structures.

I first describe my rationale for further developing this workflow, outlining the particular

benefits it offers in the context of HCI research (being better suited to the exploration of new

input modalities, more easily incorporated into computational systems, and better supported

in the research community). Then I describe the analysis workflow itself, including the new

approach to parameter tuning, and explain how these were arrived at.

Multifractality is a new approach in HCI, a young analytical method in general, and contains

many concepts and practical steps which will be unfamiliar to HCI researchers. Moreover,

HCI is interdisciplinary in nature, making it difficult for many researchers to indulge in deep

specialisation. As such this chapter, and work later in the thesis aims to make these techniques

more accessible, not only by gathering together guidance and documenting the approach, but

also by providing detailed worked examples. While all the empirical work which follows in

this thesis applies this same approach, the analyses in chapter 7 are particularly relevant for

researchers new to this approach. There I take care to provide a particularly detailed, step by

step, demonstration of the analysis. The results of the analyses in that chapter also serve to help

evaluate the approach, and shed light on issues that can be expected to arise in its application

outside of the laboratory, with data captured in the world — for example the impacts of signal

quality and signal length, and how these can be addressed. This issue was important in my

own work as I prepared to move my empirical work online, into less controlled environments, in

response to the pandemic.

The approach to tuning and analysis described in this chapter lays the foundation for all of

the remaining analytical work in this thesis, and more generally contributes to support future

work in the study of interaction and human behaviour. Currently guidance on practical issues

1After completing the work in the previous chapter, and beginning to think about next steps, I began to discuss
some methodological issues with researchers who had been integral interaction dominant approaches to behaviour.
From these conversations, it became clear to me that there was little or no published work addressing validity checks
for empirical spectra, nor were there widely agreed upon practices for this. Recently work has been pre-printed which
addresses some of these issues, though it reports that validity criteria are still an open question [187]
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around multifractal analysis of human data is quite scattered in the literature. Furthermore

that guidance leaves experimenters with considerable degrees of freedom in parameter selection,

which can be difficult to specify in advance of analysis — something which can cause problems

in hypothesis testing. This chapter gathers together and evaluates existing guidance and in-

corporates it into a new, data-driven, approach to parameter selection which can be applied to

multifractal analysis of any signal. This approach reduces the experimenter’s degrees of freedom

in analysis in a principled, theoretically grounded way, allowing the approach to analysis to be

specified in advance of hypothesis testing.

To summarize:

• I bring together practical guidance on multifractal analysis from a variety of sources

• I address gaps in this guidance, particularly regarding the prior specification of analysis

approach, developing and describing an end to end workflow for multifractal analysis

• as part of this, I develop a novel, data-driven approach to parameter selection, which

supports good hypothesis testing practice, and is grounded in accounts of interaction

dominance in human behaviour.

5.2.1 Motivation to Further Develop My Approach

The approach to parameter tuning in the first chapter moved already beyond that reported in

previous literature, in providing a principled method for wavelet selection. However, as I moved

on to specify further experimental work, I found reasons to further develop and expand my

approach.

5.2.1.1 Switching Analysis Algorithm

First I found reason to switch away from WTMM to another analysis algorithm. Since the

work in chapter 4 indicated that there was value in pursuing this approach further, I began to

investigate broader applications of multifractal analysis in other kinds of behaviour. In particular

(as discussed in the next part of my thesis) I began to focus on typing behaviour. Signals captured

from typing are quite different in kind than those captured from mouse use, being composed of

discrete timed events, rather than continuous position or acceleration data readings. My previous

use of WTMM was tied to the particularities of accelerometer signal (with WTMM being robust

to the non-stationaries found in these signals [88, 89]), and to the desire to replicate results

from studies which had themselves made use of WTMM [88, 89]. In developing further work, I

found that, in the wider literature, a different algorithm was far more commonly used, across a

wide range of signals: Multifractal Detrended Fluctuation Analysis (MDFA). In particular, this

approach was used for the work closest in kind to the work I intended to develop: it was used in

all previous work on multifractal analysis of typing data [210, 359], and in work on the analysis
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of button push timings [161]. Perhaps unsurprisingly, given the wider use of MDFA, I also found

that implementations of the algorithm, and practical guidance in their use were far more readily

available. Finally, while MDFA and WTMM seek to estimate the same properties, the different

formalisms and approaches to estimation mean that results are not comparable between the

two [103], and as such I felt there was value in using the algorithm most commonly used in the

community, to facilitates critique, comparison and replication of work. For all of these reasons I

opted to use MDFA for remaining work in place of WTMM.

5.2.1.2 Further Developing my Approach to Parameter Selection

Secondly I also felt the need to further develop the data driven approach to parameter selection

which I described in the previous chapter. As I noted above, I had found a larger body of guidance

supporting the use of MDFA, when compared to WTMM, and in particular regarding the selection

of parameters. However, I felt that gaps remained in this guidance: while parameter selection

can affect results of analysis, I could find no principled, deterministic means of determining the

parameters for analysis in advance. I felt that this left considerable degrees of freedom during

analysis, raising issues for good hypothesis testing practice. In chapter 4 I addressed one of these

degrees of freedom, by developing a data driven approach to the selection of the wavelet, and I

simply followed precedent for the selection of other parameters. In many cases such precedent

will not be available, and there is no guarantee that any available precedent will be optimal, or

well justified. As such I felt that the same approach should be extended to address the selection

of other parameters.

5.2.1.3 The Use of TMF as the Primary Measure of Interest

Hypothesis testing in chapter 4 had focused on a particular multifractal feature: w, or the

width of the multifractal spectrum. In future work I make use of a second multifractal feature:

TMF — a t-statistic which has been used in previous work to quantify what is called "nonlinear

multifractality".

To explain this shift it is helpful to return again to my approach in chapter 4, and to recapitu-

late my prior discussion of the surrogate analysis 3.7.4, from which TMF derives. As I discussed in

chapter 4, w is by far the most commonly used feature in prior literature on multifractal analysis,

though it has been pointed out that, in order to treat the feature as evidence of interaction

dominance in the measured system, its use must be backed up with a confirmatory surrogate

analysis. This is necessary because empirical multifractal spectra can be affected not only by

the non-linear interactions which are evidence of interaction-dominant organisation, but also

by linear contributions, which need not follow from interaction dominance [161, 190]. Surrogate

analysis allows us to quantify non-linear contributions to the multifractal spectrum. It does this

by comparing the spectrum of the original signal, to the population of spectra of the signals

“surrogates” — signals derivating from the original, but in which non-linearities have been de-
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stroyed by a random process. The value TMF is then the t-statistic which quantifies the distance

between the spectrum widths of original and surrogates, and which thereby quantifies non-linear

contributions to the original spectrum. In turn, this serves as evidence for the likelihood that this

spectrum reflects cascade dynamics and interaction dominance in the measured system.

The use of this surrogate analysis varies widely in the literature, and the understanding of

its importance has shifted over time, and my own revisions to my method stem from attempts

to follow currently agreed best practice. It has been acknowledged for about a decade that

surrogate analysis is neccessary when interpreting multifractal spectra as evidence of interaction

dominance [161, 190]. Nonetheless much prior work on MFA of human behaviour, even in recent

years, fails to report the results of such analyses (e.g. [88, 89, 105, 210]. Papers which do make

use of surrogate analysis tend to do so as I did in chapter 4 — focusing primarily on w as evidence

of changes in interaction dominant dynamics, and then using the value of TMF across the whole

data-set as confirmatory evidence that it is valid to interpret w in this way [30].

More recently, however, work by Bell et al. have argued for the use of TMF from individual

signals as a primary feature of interest. They use this value to directly quantify what they call

“nonlinear multifractality” — the non-linear component of the multifractal width [30]. They argue

that this represents a convenient single feature which is more directly related to the predictions

of the IDVC than is the width of the spectrum, w. This is because it is the non-linear component

which should be expected to vary when there are changes in the diversity of scales coordinated,

and in the degree to which these scales reciprocally modulate one-another. TMF is arguably also

a more intuitive measure: more directly and clearly interpretable in terms of the predictions of

the IDVC than the two stage, two value analysis described above. For these reasons I begin from

this chapter to treat TMF as a primary feature of interest in my hypotheses. Consistent with Bell

et al.’s argument my results in chapter 7 suggest that TMF is a more reliable feature than w,

and in chapter 8 my hypotheses concern this measure only (while I still provide results for w for

comparison and to support interpretation).

5.2.1.4 Summary

The three considerations described above are likely to have significance for any work which makes

use of multifractal analysis to understand behaviour, but I suggest they have particular value for

disciplines like HCI which focus substantially on applications and system building. Taking the

subsections in turn: First is value for HCI and system developers in using more common analysis

algorithms for which there is a broader community of use, more easily accessible guidance, and

implementations. Researchers here must often master a wider variety of analytical methods

and narrow specialisations in novel expertise are less easily afforded. Second, the availability

of a deterministic parameter selection method is also useful in an applied context, providing

programmatic guidance for researchers new to the technique support the use of online parameter

tuning. It would also help future researchers to quickly and reliably select parameters for novel
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input modalities, and for activities for which little or no precedent could be found in the literature.

In deployed systems, this deterministic tuning technique would also support the adaptation of

parameters to user behaviours over time, via online optimisation processes. This would allow

systems deployed in-the-wild to adapt to changes in skill, task-strategy, and differences between

user groups. Finally, the use of TMF to directly quantify what I have been calling interactivity

makes for results which are more straightforwardly interpretable. Beyond the value of this for

experimental work of all kinds, if a marker of interactivity can be quantified with a single scalar

value then this is more easily incorporated into computational systems, for example via machine

learning, and in systems designed to respond automatically to the user’s behaviour.

5.3 Revised Approach to Analysis and Tuning

5.3.1 Overview

Of the changes to my approach described in the previous section, the changes to the tuning method

and the choice of analysis algorithm in particular require greater elaboration. In the remainder of

this chapter I first give a more detailed overview of Multifractal Detrended Fluctuation Analysis

(MDFA) the algorithm I now use in place of WTMM. After this I discuss the additional changes

I made to my analysis approach, including the development of the wavelet selection method

described in chapter 4 into the more comprehensive approach to parameter selection I use for the

rest of the work in this thesis.

5.3.2 Overview of Multifractal Detrended Fluctuation Analysis

MDFA, described in [178], is a multifractal generalisation of Detrended Fluctuation Analysis

(DFA), and it is easiest to begin by explaining that algorithm. DFA estimates the generalised

Hurst exponent h of a signal - a measure of long-term dependencies in the signal, which is

directly related to statistical self-similarity in the signal, and to the signal’s fractal dimension. In

schematic terms we can say that h captures how patterns of variance in the waveform scale as

we zoom into the signal. DFA captures this variance in a single value of h. As such, in high level

terms, analysis via DFA focuses on the repeated measurement of fluctuation scales in the signal,

at different temporal scales — beginning by quantifying the scale of fluctuation over a very large

number of samples, of up to a quarter of the signal length, and then progressively “zooming in” to

analyse fluctuations at smaller scales, ultimately measuring fluctuation behaviour at the scale of

only a few samples. The generalised Hurst exponent h is then derived by making a log-log plot

these fluctuation scales against temporal scale, drawing a regression line through this plot, and

retrieving the slope of that line.

MDFA extends this approach to compute multifractal properties. It characterises variation in

fractal scaling by repeated analysis at each time-scales biased by an exponent q which sensitises

the results towards larger or smaller energetic scales (if time scaling is conventionally represented
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Figure 5.1: Overview of MDFA steps illustrated using data from the eye-gaze experiments in
chapter 9 (participant 6, segment 1 (loading cycles 1-3)) Top left: Euclidean distance series for
the eye movement and top right: the integrated "profile" of this signal. This is the source from
which the fluctuation function (Bottom left) is calculated, the log-log slopes of which, indicate
the multi-scaling properties of the signal, and provide the localised Hurst exponents and tau
values for the H(q)/t(q) plot (bottom mid, above), which is transformed into the multifractal
spectrum d(h)/h (bottom mid, below). The width of the multifractal spectrum on the x-axis
is the standard measure of multifractal strength. Bottom right shows the comparison between
this analysis for the original signal and for its phase-randomised surrogates. The distance of the
original spectrum’s width from the population of surrogate widths, quantified by a t-statistic t, is
used to quantify non-linear contributions to multifractality.

on the x axis, this energetic scaling then refers to the y axis). This approach allows the approach

to describe the dependence of the local Hurst exponent (local insofar as it refers to a particular

energetic scale: H(q)) upon time-scale of analysis. As with WTMM, this analysis allows us to

estimate the so-called singularity spectrum of the time series, albeit by different means. As noted

in my discussion of WTMM, the “width” of this spectrum (discussed in more detail below) is the

most commonly used measure in the literature on multifractality in behaviour. It describes the

degree of multifractality of the signal, corresponding to the strength and diversity of cross-scale

interactions [190], and is sometimes called called “multifractal strength” [172], since wider the

spectrum, the larger the difference between fractal scaling in the small and large fluctuations of

the signal (see fig. 5.1).

5.3.3 MDFA Algorithm

Analysis with MDFA consists of the following steps (stages of which are shown in fig.5.1).:

1. The signal is first integrated, and its mean subtracted, to give the ‘profile’ of the signal.
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2. This profile, of length N, is first divided into M overlapping and equally spaced segments

of equal length s.

3. Each segment is then detrended by fitting and subtracting a polynomial trend of order o.

The variability of this detrended segment is quantified by the root mean square (RMS) of

all data points. Detrending allows the measurement of the systemic variability rather than

the contingent environmental trends. The motivation for detrending in this way (roughly

equivalent to the use of derivatives of the Gaussian wavelet in WTMM) is that in biological

time series, random influences from the environment present themselves as changing

trends in the biological time-series, while biological system dynamics appear as residual

variability. It is this residual variability which multifractal analysis of physiological data

aims to capture [76, 269].

4. Next we derive the fluctuation function, Fq - the qth order variability of the signal at each

segment size, or scale. This is obtained for each scale by taking the root mean variability of

all segments and raising to the power of q: Fq =
√

RMSs
q

. The Holder exponent is derived

from the slope of this function on a log-log plot. In schematic terms, we plot the variability

Fs against scale s, on log axes, then fit a line to these results, using a least-squares method.

5. For (monofractal) DFA, the above process is carried out only once, for q = 2, yielding one

Hurst exponent H(2). For MDFA we repeat this process over various values of q, giving a

set of values H(q). This has the effect of focusing the numerical result on bins with smaller

or larger fluctuations. Increasingly negative values of q focus the results on increasingly

small fluctuations, and increasingly positive values focus results on increasingly large

fluctuations. When a time series is multifractal, the result retrieved here (i.e. the log-log

slope of the function) will be different for different values of q. This can be quantified in

terms of the singularity spectrum, calculated from H(q)

6. The singularity spectrum is retrieved in two stages. First H(q) is converted to the qth

order mass exponent t(q) by t(q) = H(q)∗ (q − 1), and t(q) in turn is converted to the

singularity exponent h(q) : h(q)= dt(q)
dq . Finally we retrieve the singularity spectrum D(q)

from t(q)andh(q) D(q)= 1+qh(q)− t(q). Plotting D(q) against h(q) gives us the singularity

spectrum. As noted above, the degree of multifractality can thereby be quantified in terms

of the “width” of this singularity spectrum ∆h = h(qmin)−h(qmax).

Before this process, it is recommended to calculate the Hölder exponent at q = 2 (e.g. the

standard DFA). If this is close to zero, then the signal should first be integrated [178] (prior to,

and in addition to, step 1 above).

The application of this algorithm, and the selection of o, s and q for this analysis, are discussed

below.
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5.3.4 Detail of the New Analysis Approach

In this section I discuss the analysis methodology which I take in the rest of this thesis. This

begins with a discussion of the candidate values for each parameter of analysis, discussing the

role of each parameter, and collecting together guidance from prior work on valid ranges. These

parameters are

1. the order of analysis o, which is in MDFA is roughly equivalent to the selection of wavelet

in WTMM

2. the range of q exponents — determining the range of scales of (x-axis) fluctuation that are

addressed

3. the maximum scale of analysis — determining the maximum time-scale at which data is

analysed

Following this discussion I give a step by step of the algorithm I use to select parameters

during empirical analysis, and describe principles for validating the selected parameters. As

noted, this selection approach is in large part deterministic, minimising degrees of freedom in

analysis to support good hypothesis testing practice.

5.3.4.1 Selection of Parameter Values

As discussed above, in broad terms, when selecting analysis parameters, the goal will be to reject

contributions to multifractal spectra which do not follow from non-linear cross-scale interactions.

E.g. the aim is to minimise the contributions of linear and static processes, which may come

from Gaussian processes, and static trends in body and environment. Accordingly, my tuning

approach is (as described in the previous chapter) to select parameters which result in multifractal

spectra where non-linear contributions are maximised and linear contributions minimised. This

is achieved by optimising a t-statistic TMF which quantifies non-linear contributions to the

multifractal spectrum (more information on this process is described in section 5.3.4.7). In the

last chapter, the same approach was applied only to the selection of wavelet for the WTMM

algorithm, from a discrete and quite limited set of options. In this chapter other parameters

are selected, and in each case the candidate ranges of these parameters must be more carefully

chosen with respect to their functions and with respect to practical issues such as data quality

and input type. In this section I discuss the parameters which must be selected for analysis using

MDFA, and the guidance drawn from prior literature on the selection of candidate ranges for

each.

5.3.4.2 Parameter: Order of analysis, o

This determines the polynomial order of the trends which are fitted by the algorithm in order

to detrend the signal and allow the measurement of residual fluctuations around this trend. It
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performs an equivalent function to the selection of mother wavelet in WTMM. Here as there,

the parameter must be selected so as to reject static polynomial trends. These static trends are

considered to represent non-systemic influences [76, 269], while the residual fluctuations around

these trends are considered to carry information about the organisation of behavioural control in

the system [190].

Since the order of the environmental trends which impact on behaviour will not be known

for behavioural scenarios of any complexity, it is not necessarily clear (as in the selection of the

mother wavelet for WTMM) which order of polynomial to select for detrending. Previous work has

suggested that higher orders of analysis give more reliable results, due to better fitting of trends

[166], however this must be balanced against the risk of over-fitting the trend line and thereby

underestimating the scale of residual fluctuations [162]. This may be a particular issue at the

smallest scales of analysis - if the number of data points at the lowest scale is particularly low

relative to the order of analysis, then the risk of overfitting is particularly high [162]. Overfitting

at the smallest scales can result in distortions in the fluctuation functions estimated for the

signal, as shown in figure 5.2. As such the selection of order and of the smallest scale of analysis

are constrained by one-another: the smallest scale of analysis should be somewhat larger than

the order of detrending. Since it is generally desirable for smin to be small in order to capture

the influence of behaviours at small time-scales, this constrains o from being too large. Based

on evidence of analyses in previous literature, a maximum o value of 5 is considered adequate

[87, 103, 129]. The order of analysis is then selected from the candidates range [1,5] by selecting

the order which results in the highest value of TMF , exactly as the wavelet was selected in the

previous chapter.

In the discussion below I need to distinguish parameters which affect the two axes of the

signal (the Cartesian x and y). However in some work using multifractal analysis — including

that described in this chapter and the next — the data and scales on these axes may slightly

confound expectations for those familiar with the conventions of signal processing in other areas -

for example in audio signals. As such it is worth by explaining the background and the language

I will use to refer to these axes. In multifractal analysis of behavioural signals, the x axis will not

always measure clock-time: seconds, milliseconds, and so on. Instead, in some cases the x axis

will mark discrete, time-ordered, events — for example key presses, or button pushes — while

the measured fluctuations on the corresponding y axis measure the time-deltas between these

events (see [210, 359]). For example, in the work in this chapter and the next, the first sample

of the signal may represent the time difference between the first and second key presses, the

second sample the difference between the second and third, and so on. I will ask readers to keep

all this in mind while I continue to refer to the x axis as the temporal axis, and to the [smin, smax]

parameters as temporal scale. I stay with this language because despite the x axis not always

measuring regular units of clock-time it will nonetheless still always represent samples ordered

in time, while the y axis will not. As such I hope this language can quickly become transparent to
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Figure 5.2: Non-linearities in the smaller scales of the fluctuation function. This can be due to
overfitting of trend lines using polynomials of high order, relative to the size of the smallest
analysis scales.

readers, even if it requires some initial adjustment.

5.3.4.3 Parameter: scales of temporal analysis [smin, smax]

Since multifractality is a scale-dependent phenomenon, multifractal algorithms analyse be-

haviour across multiple scales. In the analysis of physiological data these different scales of

analysis correspond to the characteristic time-scales of the component processes occurring. In

particular we are interested in the characteristic time-scales of those processes which are sig-

nificantly coordinated together, constraining and modulating one-another, towards the overall

performance of the task. It is differences in these scales which can be expected to distinguish

conditions which result in different kinds of behavioural coordination, and adaptation to the task

[190, 210].

As a result of these considerations, the range of scales of temporal analysis [smin, smax] should

be set so as to cover the relevant scales of control-coordination for the phenomenon, without

stretching too far beyond them. Increasing the highest scale too far may place too much emphasis

on processes which may not be relevant to the observed phenomenon. It will also decrease

accuracy of statistics at the largest scales, since fewer large samples can be selected from a

signal of fixed length [161, 292]. When using the standard MDFA algorithm, for analysis of a
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signal of length l at smax, there will be l
smax

non-overlapping windows of analysis. As such it is

recommended to ensure that the maximum scale of analysis is not large relative to the length of

the signal, in order to ensure adequate statistics at the largest scale [292]. In practical situations

however, there are often limitations on signal length relative to the scales of interest and so more

recently an adaptation to the MDFA algorithm has been developed to address this constraint.

This approach uses an overlapping moving window analysis, allowing for a larger number of

windows of analysis at the largest scale [292, 383]. This has been found to reduce errors and

oscillations in the fluctuation function, and improve the stability of results[383, 385]. As such I

use this overlapping-window approach in my own analyses.

Regarding the selection of specific scale values, Ihlen suggests that selection of scales of

analysis can be guided by attention to the phenomenon of interest, and to the means of measure-

ment [162]. For smin this advice is relatively easy to follow: not only is this value constrained

by the order of analysis as discussed in the previous section, it is also likely to be constrained

practically by the resolution of available signals: there are likely to be relevant processes at scales

considerably shorter than those resolved in the signal. In general it will be practical to use the

smallest scale of analysis which allows for adequate fitting of the largest candidate value for

order o.

However, depending on the phenomenon at hand it may be harder to select smax based on

Ihlen’s advice. The examples given by Ihlen to elucidate phenomenological reasoning around

scale selection concern physiological phenomenon like heartbeat, and simple human movement

phenomena like postural sway. In these cases it seems relatively straightforward to reason

about relevant scales. In other cases, including more complex and cognitive phenomena, relevant

scales may be harder to determine. Van Orden et al. emphasise the difficulty of identifying

the characteristic scales of cognitive mechanisms, noting that interaction dominant dynamics

are likely to extend at the very least least to the periphery of the body. They indicate that

time scales relevant to the performance of a task may go well beyond the frame of that task

[349, 350]. However, I suggest that, for many uses of multifractal analysis in HCI and other

applied disciplines, the question of relevant scales may be subtly different from that at work in

laboratory science. Rather than seeking to describe the mechanism of behaviour, applied research

often aims to understand how measures such as multifractality can be informative about user

experience and higher level behaviour. In such case the goal will often be to identify the range of

scales which most effectively allow us to discrimination between relevant conditions, given the

resolution of data capture available. This may not include every scale of process which is relevant

to the performance of the activity.

In investigating multifractal analysis for use in HCI, these considerations motivated me

to again take an empirical approach to selecting smax, grounded in the statistic for non-linear

multifractality. I begin with candidate values selected based on phenomenological reasoning and

methodological constraints, as advised by Ihlen [162], but then, as for order of analysis, I select
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the precise value by analysing data at all candidate values of smax, and evaluating the resulting

values of TMF . Two selection methods offer themselves here: we might either choose the value of

smax which optimises TMF , or look for a knee-point in the plot of t against smax, and select the

value of smax at the knee. The latter approach identifies the point at which additional scales of

analysis begin to make diminishing contributions to the nonlinear component of the resulting

spectrum. This may be particularly useful for online and applied approaches where a reduction

in the number of scales of analysis may improve processing times and system responsiveness. In

the work in this chapter I take the latter approach.

5.3.4.4 Parameter: Range of Q Exponents

In broad terms we can say that this parameter determines the range of scales of variability (e.g.

the y axis) to be analysed. The q exponent focuses analysis toward smaller or larger perturbations

in the signal, so that the range of exponents selected determines the degree to which these

smaller and larger perturbations are represented in the estimated spectrum. In monofractal

DFA, a single value q = 2 is conventionally used [292]. In multifractal analysis, a range of values,

[qmin, qmax] is used, and it is recommended that both negative and positive values of q are used,

in order to characterise both large and small fluctuations [162]. However, larger magnitudes of q

can be unstable, and so it is suggested that a maximum |q| = 5 is sufficient for biological datasets

[162]. Negative q values, which focus on small fluctuations, can be particularly unstable due to

issues with both measurement, and numeric error at smaller scales, and in an analysis of the

performance of several approaches to MFA, Turiel et al. found that all methods showed poorer

accuracy in spectral components contributed by negative q values [336]. As such, some authors

suggest that even moderately large negative values of q should be avoided [103, 246].

As with the temporal scale parameter, it can be unclear in advance what specific range

of fluctuation scales is important in the phenomenon, and it can be unclear to what degree

measurement and numeric errors can affect results. This may be particularly true when analysing

data captured in the wild - for example when building software to respond to users’ data in

realtime, with relatively little control over specifications of input hardware. Again, I saw value in

taking an empirical approach to the selection of q exponents, and again I saw potential to select

and evaluate candidate ranges using TMF .

Candidate ranges for selection of [qmin, qmax] are selected based on the guidance collected in

the first paragraph of this section. I require that values fall in the range [−5,5]. To ensure the

analysis captures a range of scales of fluctuation I enforce a minimum range by requiring that

|qmax − qmin| >= 4. In order to avoid biasing results towards unstable negative values of q, I do

not allow the midpoint of the range to fall below zero. Finally, since the midpoint is limited in

this way, I also constrain qmin <=−2 to ensure that smaller fluctuations are captured.
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5.3.4.5 Candidate Parameters

Based on the reasoning outlined above, the following candidate parameter ranges were used

in the analysis of data in this section. For order integers in the range [1,5] were used. For the

range of q exponents, I used ranges which were both symmetrical and asymmetrical about zero:

[(−2,2), (−2,3), (−2,4), (−2,5), (−3,3), (−3,4), (−3,5), (−4,4), (−4,5), (−5,5)]. For maximum scale of

analysis I was guided by the available signal lengths in the data-sets (see discussion of data-

sets below) using the values smax = [64,96,128,192,256]. Minimum scale of analysis was set at

smin = 10, though for some data-sets this had to be adapted after validation revealed issues with

the analysis. Note that for any planned analysis, all of these candidate ranges can be specified in

advance, supporting pre-registration of analysis.

5.3.4.6 Validation of parameters

Various issues, including those of parameter selection and signal quality can result in poor fits

for fluctuation functions, which in turn can result in distorted multifractal spectra. Above I gave

an example of this in the shape of overfitting at small temporal scales (illustrated in fig. 5.2).

Despite authors such as that by Ihlen drawing attention to the issues of poor fitting in MDFA

[162], it seems relatively rare in prior work on multifractal analysis to report which checks on

fluctuation function fits have been carried out. I conduct randomised visual inspections and also

enforce a numeric constraint on the acceptable quality of fit, requiring that r2 > 0.99 for all fitted

lines in all fluctuation function. Candidate parameters which do not reach this threshold are not

considered for the final analysis. This latter approach is particularly useful when evaluating large

data-sets, over a large number of potential parameters, since poor fits can be ruled out without

time-consuming visual inspection of every item, and it makes for a more deterministic parameter

selection process. In addition, this approach can support unsupervised tuning of parameters,

allowing self-tuning of systems deployed for online-analysis in real-world settings.

5.3.4.7 Step by step summary of parameter selection process

This analysis process is important in all the remaining work in this thesis, and is the main

focus of this chapter. As such it feels useful to provide a step by step summary distilled from the

discussion above, of how I select parameters.

1. Based on the reasoning outlined above, I establish the candidate parameters for the order

of the detrending lines o, the range of q exponents [qmin, qmax] which determine sensitivity

to scale of fluctuation, and the maximum scale of temporal analysis smax.

2. I set the smallest temporal scale of analysis, smin, to a value higher than the largest

candidate value of o. Since I use o in range [1,5], I begin with smin = 8 for the analyses

below, having generally found this to be adequate, but in later steps following validation,
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this may be increased if fluctuation functions show evidence of overfitting at low scales (see

above).

3. Select o, qmin, qmax from the candidate values. I analyse the data-set using each combina-

tion of these parameter values, in each case evaluating the value of
∑ |t| for the parameter

set (details in section 5.3.4.1). The parameter set which maximises the value of
∑ |t| is

selected. For this analysis, a preliminary value of smax must be used. In each case I used

the maximum recommended value: 1/4 of the length of the signal.

4. Select smax from the candidate values established in the first step. Analyse the data-set

at each candidate values, and evaluate the corresponding value of
∑ |t| for the data-set

(details in section 4.3.7.4). I then plot smax against
∑ |t|, and select the value of smax at the

knee point. In the absence of a knee point, I select the value of smax which gives the highest

value of t.

After each of the parameter selection steps (3 and 4), fits for the fluctuation functions are

checked. If bad fits (r2 < 0.99)2 are found for any fit in the dataset, then that data is investigated.

Where bad fits are found only in outliers then they can be excluded from the analysis. If a

more widespread problem is found the parameter set is not used, and the next highest scoring

parameter set is evaluated, until a parameter set that results in adequate fits is found.

Where several parameter sets result in closely similar values of t, higher values of o will be

preferred: As discussed above, fitting trends using a higher polynomial order in the detrending

step can be expected to more effectively eliminate local and non-systemic trends, leading to

better detection of the temporal structure of the local scaling exponents [166]. The use of an

insufficiently high order polynomial can result in poor fitting of the fluctuation function, retaining

local and non-systemic trends which distort the multifractal spectrum [162, 269].

5.4 Summary and Conclusion

This chapter has described the revised approach to multifractal analysis which I developed

following the completion of the empirical work on mouse use in the previous chapter, and

which I use in all remaining empirical work described in this thesis. I have described the

rationale for the change in methodology, and the rationale for the specific choices made in its

2I could find no guidance in prior work addressing validity criteria here, and in conversation with Damian
Kelty-Stephen, he suggested that checks on validity were unfortunately, almost never reported and seemingly rarely
used. He suggested that setting a threshold value for r2 was one good, practical approach, so I followed that advice.
At time of writing Kelty-Stephen and others have just pre-printed work on this and other methodological issues
[187]. Their described approach is more sophisticated in certain senses than what I describe here: it is more granular,
rejecting individual point-estimates within the spectrum which do not meet an r2 threshold. However, as the authors
note, it brings a risk of producing spuriously large values of TMF in the case where surrogate series turn out to be
more stable than original series. Handling this risk can mean either lowering the threshold for acceptable fits, or
implementing more detailed decision-trees for acceptance, which will be more complex to implement, particularly for
future automated optimisation in online systems.
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development. The methodology I have described here described further develops the methodology

described in the previous chapter. First, it extends the data driven, optimisation-based approach

to parameter selection which I developed in that chapter, applying the same principle to select

further parameters beyond the order of wavelet. It also responds to the same motivations as that

initial approach: to provide a principled approach to the selection of parameters, which can guide

future HCI research in conducting multifractal analyses, and which can support good hypothesis

testing practice by reducing degrees of freedom at analysis stage.

The approach described in this chapter turns in part on a change to use a different multifractal

analysis algorithm than I used previously - moving from WTMM to MDFA. This switch to an

algorithm which is more widely documented and applied, and which appears to the greater

focus of active development, allowed the approach developed to draw upon the larger guidance

available for the use of this algorithm. It also helps the approach developed to better support

future work. It will help future researchers to compare their results to those in prior work (it not

being meaningful to compare spectra derived from one algorithm with the other [103]), and to

take advantages of future extensions of the core algorithm and approach.

The approach described here is applied and demonstrated throughout the rest of the thesis.

In particular, in chapter 7 I describe three empirical analyses in step-by-step detail, helping to

clarify the methodology for future researchers building on this work. Beyond their empirical

contribution to this thesis, these analyses also make other methodological contributions building

on the work in this chapter. They help to evaluate the methodology described here, and open a

window on the effects of signal length and signal quality on the results of multifractal analysis —

issues which are likely to be important as future researchers move the approach from the lab

into the more applied contexts common in HCI.
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Part II

Multifractality in Typing: Task
Complexity and Fatigue
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BACKGROUND TO THE EMPIRICAL WORK ON TYPING

6.1 Summary

This chapter describes the background to the research in this section of the thesis, focused on

typing. It addresses:

• Prior research on technologies to support writing

• The effect of mental fatigue on task performance, via executive control

• The relationship between multifractality, complex behavioural coordination, and executive

control

6.2 Introduction

This part of my thesis brings together two closely related chapters on the multifractal analysis

of typing behaviour. Both chapters build on the same theoretical account described in earlier

chapters. That is, the work here is grounded in the interaction dominant view of cognition (IDVC),

which grounds flexible, adaptive control of task-directed behaviour in interaction dominant

structures, and cascade dynamics, which arise across the individual’s neuro-physiology, and may

extend into the interaction context. As discussed in depth in earlier chapters, multifractal signa-

tures in behaviour provide evidence for variation in these interaction dominant structures. The

work in this part investigates whether these multifractal signatures can thereby be informative

about factors relevant to writing behaviour using computers: specifically, whether they are infor-

mative about the complexity of the writing task, and about the writer’s level of fatigue. Looking

beyond HCI, the results in these chapters add to a growing body of evidence which suggests
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that that multifractality predicts executive control 1, and flexible, adequate adaptation to a task

context. Understood in this wider context the results in this section have further implications for

HCI: pointing to a line of future work investigating the potential for multifractal signatures to

infer a wider range of conditions beyond fatigue, which might undermine the user’s ability to

perform flexibly and effectively on tasks, such as environmental distractions, mismatch of skill

and task, or the inadequacy of the tool. Taken together, the results presented in this section point

to the use of multifractal measures for the technological support of writing tasks, and keyboard

use tasks more widely: to guide the timing of notifications, and information presentation, suggest

breaks from work, or to support the user’s own sense-making and reflection.

Chapter 7, the first chapter in this section, primarily serves to lay foundations, and to solidify

foundations laid in earlier chapters. It describes the analysis of three typing data-sets drawn

from previous empirical studies, which make both methodological, and empirical contributions to

this thesis. Empirically, the work in this chapter grounds the work on fatigue in typing which

is described in the following chapter. Specifically, the analyses replicate the finding, in prior

exploratory work, that multifractal signatures correlate with the complexity of the typing task.

As I discuss below, this finding supports a line of future work on multifractal signatures in typing,

including that conducted in the second chapter. This replication was necessary since previous

work was exploratory, and did not provide certain evidence which is necessary to clarify that

the results followed from variations in interaction-dominance [359]. Further to this, the work

in chapter 7 also makes methodologically contributions to the thesis: serving to demonstrate,

clarify, and evaluate the tuning method which I developed in chapter 5. This work provides a very

detailed step-by-step account of the tuning approach which I described there, as applied to three

data-sets which show evidence of the kind of issues likely to be found in real world data. In this

respect it demonstrates how my approach adapts to issues with signal quality and limited signal

length, and serves to evaluate the effect of these factors on analysis results. These are potentially

important issues for the use of multifractal analysis in applied settings, for user research and

system building, since in these contexts signal quality may be harder to control, and signal length

will affect the responsiveness of the system. As such these results serve to guide and inform

future use of multifractal analysis in HCI, including later work in this thesis.

Having replicated the finding that multifractal signatures predict the complexity of the typing

task in chapter 7, in chapter 8 I describe experiments which find confirmatory evidence for a

novel hypothesis: that multifractal signatures in typing will predict the writer’s fatigue. As I

discuss at the end of that chapter, this result in particular supports future work on writer support

technologies grounded in multifractal analysis.

In this short chapter I provide background specific to the work in this part of the thesis. I

1It should be noted that while executive control is often associated with conscious tasks and conscious planning,
that association is not intended here, and work engaging with multifractality and executive control has typically
focused on task-oriented behavioural coordination and adaptation, rather than conscious planning specifically. I
discuss this as a limitation on interpreting multifractality as evidence of the broad phenomenon of executive control in
chapter 10
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begin with a brief discussion of prior work on writing support technologies, and in particularly

the inference of fatigue and stress during writing tasks. After this, I discuss the measurement

and experimental induction of mental fatigue, which is relevant to that prior work, and to the

work I conduct in chapter 8. Finally I discuss the work which grounds my hypotheses in that

chapter, which links multifractality, in writing and other behaviour to adaptive skill in tasks, and

to executive control.

6.3 Research on Technologies to Support Writing

Since much writing is now mediated by computers, for example via word processors, it seems

unsurprising that there should be a growing set of technologies which seek to help augment

the writing process in various ways with technological guidance and support. Even generic

writing software like Microsoft Word now includes many kinds of support for writing, including

grammar checking, and the management of references and some of these tools, most obviously

spell-checking, have become almost invisibly familiar. The potential appetite for such tools among

the public is well illustrated by the $1B market capitalisation of Grammarly - a company which

provides a plug-in for word-processors and web-browsers which supports clarity and grammatical

correctness in writing [377]

It is not surprising then, that a large body of empirical work investigates the use of computers,

and information technologies to support writing and writing instruction [370]. This research

covers diverse contexts and tasks, from tutoring in the classroom, and online [16, 221, 370],

through to more autonomous writing, for example of academic publications [71, 176, 320, 335].

The goals of technologies range from teaching basic literacy [370], through direct support for

the composition of narratives [16, 221], organising resources and ideas [221, 281], up to more

situational support and feedback on focus and time-management [71, 107, 327].

A subset of this research, most relevant to the work in this part of my thesis, focuses on how

metrics of writing behaviour can be used by computer systems to support writers and tutors.

These approaches, often referred to as “Automated Writing Evaluation” (AWE), and “Interactive

Writing Platforms” (IWP) [320] use writing data to infer a range of features relevant to writing

performance, before feeding these back to the user or their tutor, or else using these features to

support suggestions or other interventions [115]. Many such approaches focus on the text itself,

for example using Natural Language Processing to identify quality of the resultant text, and

errors in spelling or grammar [386]. However, other work in this area also aims to support higher

order behaviours relevant to writing: for example text revision behaviours, self-regulation, self-

monitoring and metacognitive control [115, 121, 202, 386], and in these cases not only qualties of

the text (or so-called “product features”) considered relevant, but also behaviour involved in the

production of the text (so-called “process features”), concerning how the text is produced by the

user [278]. In supporting the writing process in particular, it has been suggested that AWE apps
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might be improved by the use of data from fine grained logging, including timing data from the

keystrokes and other parts of the interface, since information about the unfolding behaviour of the

writer over time can capture important qualities which might be used to support early prediction

of outcomes [63, 287, 330], or guide the writer, or their tutor during the task [173, 210]. In this

regard, it has been found that key-stroke-level data, and the dynamics of key-stroke-timings

can be significantly predictive of writing quality [4, 67, 80, 210, 308], stress [356], and fatigue

[173, 272, 340] — though I discuss issues with fatigue-induction and measurement in some of

this work below.

A very wide range of key-stroke and textual features are explored in this body of literature,

ranging from simple, very low level, mechanical features, such as the interval between key

presses (the inter-key interval or IKI), to more semantic features such as the number of correction

keystrokes, the distribution of pauses relative to word and sentence completion, and lexical

features such as the breadth of vocabulary [68, 308, 330, 356]. Interestingly some very low level

mechanical features recur as among the most effective predictors of quality-of-text, fatigue and

stress. The mean and standard deviation of the IKI in particular are found in several studies

to be the most effective predictors of all three of these features [3, 68, 75, 308, 330, 356, 356].

Other features found to contribute significantly to prediction include slightly more behaviourally

specific features such as the regularity and distribution of pauses [330], and statistics concerning

correction keystrokes [75].

Systems which identify fatigue and stress might be used to help writers structure their

writing process in time, identify opportunities for breaks, and avoid burnout [3, 75, 173, 272].

Fatigue is known to impact upon health, productivity, and increase risk of errors [258]. There

is evidence that, for some kinds of mental fatigue at least, some of the acute effects of fatigue

can be mitigated by short rejuvinating breaks [314]. However, there is some evidence that we

are insensitive to the warning signs of fatigue, and poor judges of our own need to break, with

fatigue-related impairment arising quickly and unpredictably [254]. It is unsurprising then, that

much work in HCI has pointed to opportunities to nudge writers towards better break-taking, and

work-timing, behaviours. Much of this work has focused on providing external structure, which

does not necessarily automatically adapt to the user. Examples include several projects which

have focused on variations of the popular “Pomodoro Technique” for structuring and logging work

and break periods in regular short segments with brief breaks. [69, 107, 128, 176, 289, 327] In a

similar vein, work I supervised during the course of my PhD, focused on the potential to nudge

break-taking behaviour through an actuated keyboard which made typing progressively more

difficult on a fixed schedule [31]. But this pattern of work-and-break application, with some degree

of basic logging, offers a clear opportunity to develop approaches which are responsive to the user’s

needs, whether to identify high risk periods and occasions to change from the regular pattern of

work and breaks, or else to simply provide feedback on fatigue to the user, in order to motivate

breaking suggestions and support the user’s own sense-making and mindful habit-forming. In
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this direction, researchers have investigated designs for systems which suggest breaks and task-

switching transitions based on sensor data, which help to articulate some of the potential design

space here. One approach which suggested breaks based on fatigue-detection via a head-mounted

eye-tracker, was found to delay the onset of perceived workload and fatigue, relative to self-chosen

breaks [226]. Another approach attempted to identify opportune moments for breaks and task-

transitions in the workplace, via a large range of input signals including facial emotion analysis
2, heart-rate monitors, movement sensors, interaction data, and emotion and activity logging

sensors, finding that the approach was able to identify breaks considered opportune by users 77%

of the time, and transitions considered opportune 85.7% of the time, during a lab study [185].

Cambo et al. developed an approach based on bluetooth beacons that prompted entertaining

break tasks when it identified that the user was away from their workstation [50]. Relative to

identification of fatigue via a keyboard these approaches have advantages and disadvantages:

while they will function when the user is away from their workstation, these approaches rely on

the use of obtrusive, sometimes intrusive, and expensive sensors. Further there is a potential

issue of intrusion in a system which follows the user throughout their working day, rather than

remaining limited to a particular interface and kind of task.

6.4 Mental Fatigue and Task Performance

Unsurprisingly, given the impact which mental fatigue and stress can have on health, experience,

productivity, and safety [258], there is now a large body of research focused on quantifying fatigue,

and on understanding its impact on cognition and behaviour. While the overwhelming majority

of this research is beyond the scope of this thesis, a discussion of certain aspects of it will provide

important context for the work described in chapter 8. In particular it is useful to address recent

work on fatigue and task outcomes in neuroergonomics, and on the induction and measurement

of fatigue.

6.4.1 What is Mental Fatigue?

Mental fatigue is the kind of concept which we are apt to think we can pick out when we see it,

but which we may struggle to define adequately. Ishii et al. define it as “a decline in the ability

and efficiency of mental and/or physical activities that is caused by excessive mental and/or

physical activities” [165] for example, but Okogbaa et al. note the difficulty of pinning mental

fatigue down to a single definite state due to its multiple dimensions of alertness, performance,

and subjective experience [258]. Illustrating this difficulty, Nilsson et al. point to specific issues

with defining the concept too straightforwardly in terms of abilities: people will often focus efforts

sufficiently to avoid degraded performance despite other evidence and subjective experience of

2though not directly relevant to this thesis, it is important to note the basic ethical, political, and scientific
problems with the use and even concept of facial emotion analysis see e.g. [36]
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fatigue [253]. Writing in a human factors and ergonomics context, Matthews, and Dehais et al.

thus point to the “transactional” nature of fatigue: that it arises from an interaction between the

capacities of the individual, the context, and the specific demands of a particular task [81, 234].

Matthews thus treats fatigue as a set of underlying deficits which affect appraisal (of self and

situation), decision processes, and regulation of coping with the situation. These deficits can be

affected by environmental stressors, personality factors, and their outcomes can be subjective —

feelings of e.g. apathy, tension, insecurity — and behavioural — e.g. impairment of control and

attention and risk taking. This account in particular emphasises fatigue processes as involving

capacities of response and coordination: the capacity to adapt, actively cope and exert executive

control over performance [234]. As I will discuss in more detail in the next section, this account

of fatigue has clear significance for the IDVC. I noted in chapter 3 that multifractality has been

associated with a wide range of flexible, adaptive, context sensitive coping behaviours, and with

the phenomenon of executive control.

6.4.2 How is Mental Fatigue Addressed Experimentally?

To conduct experiments on mental fatigue, it is necessary to measure fatigue, and also helpful to

be able to induce it. Fatigue can be measured via physiometric methods or subjective report. A

range of physiological features are known to be sensitive to fatigue, including EEG [310], galvanic

skin conductance [165, 254, 258, 265], and heart rate variability 3 [265, 310]. Though the case

of the work in this thesis, carried out during the pandemic, such approaches would have been

impractical as requiring specialised equipment which is not available during online experiments

with participants in-home. There are also a range of validated approaches to measuring fatigue via

subjective report. Recent work reported that among these a simple visual analog scale for fatigue

(VAS) — a slider with unmarked increments, going from “no fatigue” to “worst possible fatigue” —

was the most effective of a set of commonly used fatigue measures [310], though some research

applying this appraoch emphasises the need to first coach participants regarding the meaning of

"fatigue" in this context [265]. Since mood is affected by fatigue [265] another commonly used

scale in research on fatigue is the Brunel Mood Scale (BRUMS) — a validated multi-item scale

with six, four-item, sub-scales including fatigue [45]. Often multiple fatigue measures are used

together (e.g. [40, 265, 310]). As discussed above, fatigue is a complex phenomenon with multiple

dimensions and outcomes, which are dependent on factors specific to the individual and their

context, individual methods may be used to capture subtly different dimensions of this — for

example in recent work the fatigue components of the BRUMS were used to capture mood effects,

alongside the VAS, and physiological measures [265]. In other recent research, for example,

physiological measures were used alongside performance measures and the VAS [40].

Similarly there are a range of methods for inducing mental fatigue, and for handling non-

fatigue control conditions. Common fatigue stressors are based around cognitively challenging

3(though e.g. Nilsson et al. were unable to find a correlation of this measure with stress [254])
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tasks designed to maintain cognitive load for some extended period of time [265]. Sometimes

these stressors extend for very long periods: for example: reorganizing schedules for 2 hours, or

performing mental arithmetic for 3 hours [265]. However, not only can these extended duration

tasks pose obvious problems for experimenters, there are concerns that they may also produce

confounds, by inducing not only fatigue, but also under-arousal, or boredom — which can have

different outcomes and experiential properties [40, 147, 148, 265]. As such shorter tasks, which

leverage observed cognitive effects to induce higher cognitive load have been developed and

deployed [279], these include the AX-continuous performance test (AX-CPT) [265], and Time

load Dual-back task (TloadDback) [40]. For these tasks, shorter durations have been found to be

effective in inducing fatigue: recent work found that TloadDback was more effective at inducing

fatigue after a 16 minute task, than was a 50 minute AX-CPT task. In addition, TloadDback was

more effective at maintaining arousal levels [265]. TloadDback has the additional advantage that

it can be adapted to address individual differences. Individual differences in cognitive ability

are now widely documented, and it has been argued that standardised stressors might not

reliably and consistently induce fatigue in all participants. TloadDBack avoids this by supporting

simple and automated adjustment of the task to the ability of particular participants [40].

Similarly control conditions must also be handled carefully to avoid fatigue. It is common for

study designs to balance the time taken for the fatigue-stressor in the control condition, by

having the participants watch an emotionally neutral documentary. Recent work found that,

when compared to the simple absence of a task (leading to unbalanced task timings between

conditions) the documentary viewing task resulted in significantly higher under-arousal [265].

It is worth noting that, in the work discussed in section 6.3 which attempted to identify

methods to infer fatigue from keyboard use, it was rare to see engagement with this literature

from cognitive ergonomics. In place of controllable stressors, this work used time-on-task [75, 173],

time-of-day [75, 173, 340], or sleep loss [3] as their fatigue-manipulation. None addressed the

distinction between mental fatigue and under-arousal. Some did not make efforts to measure

fatigue ground truth [75, 173, 340] On the basis of the work discussed in this section, these

features of the studies raise questions about precisely which underlying processes give rise to the

results observed in the keystroke features — cognitive fatigue, sleepiness, boredom, can have

importantly different effects, for example [265]. Exceptions to this existed however - Pimenta

et al. validated fatigue using a scale specifically validated to identify mental fatigue [272], and

Vizer et al. focused on stress rather than fatigue, but manipulating stress using relevant tests,

and captured ground truth [355, 356].

6.4.3 Complex coordination, Multifractality, and Fatigue in Writing

But writing is a highly complex task. From an analytical perspective, a writer seems to need

to juggle a large number of tasks, both in sequence and in parallel. They must decide what to

write, how to express it, they must consider the potential audience. They will often move back
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and forth between ideation, drafting, revising. All of these activities will impact on the rhythm of

the writing task [325, p.31] The prior work discussed above, which links fatigue to key-stroke

level features rarely addresses such questions of the mechanisms underlying the keystroke-

level variation they identify. Mostly this work takes an exploratory data-mining approaches

[4, 68, 308, 356]. A few speculate that typing movements might be slowed, or the regularity of

timing affected by constructs such as increased cognitive load (e.g. [330, 356]), but none discuss

patterning in this way. .

In recent scientific work, writing is understood to recruit a wide range of cognitive processes,

and to consist of many sub-modes (planning, transcription, revision, etc.), each of which are

themselves complex, and may contain sub-tasks such as spontaneous spelling and sentence

combining, and each of which are subject to the multifaceted constraints presented, for example,

by context, audience, style and the demands of syntactic correctness [137, 213, 260, 365]. To write

well, research has found that writers must coordinate processes which occur over a wide range of

characteristic temporal scales [213, 260], with this range of constraints. If these processes are

isolated individually a diversity of features are found: some will require considerable attentional

resources and mental effort, while others might operate quickly with minimal attentional effort

[213, 260]. However, in the real world circumstances under writing-practices (and their techno-

logical support) must occur, all of these quite dynamically and cognitively diverse tasks must

be coordinated together, both in parallel, and in sequence over time [260]. Perhaps as a result

of this complexity, and despite considerable work on text-production over the last four decades

[137], understandings of these processes and how they are coordinated remains limited [260],

and it has been argued that it is not possible to standardize writing in the same way as reading

or performance in a simple motor task [359, 365]

Responding to this lack of understanding, some have focused specifically on the question of

how processes are coordinated during writing, often emphasising the importance of seeing writing

through the lens of executive control [214] and a recent theory of writing argues for writing to be

modelled as a substantially parallel process with control cascading across scales [260]. This latter

account uses the word “cascade” to describe a slightly different structure than the “multiplicative

cascade” which is central to accounts in the IDVC, and which is associated with multifractal

signatures. Here, "cascades" are not multiplicative and the coordination of processes is not framed

in the language of constraints and dynamical processes. While the “cascades” described here are

essentially feed-forward, and do not entailing the reciprocal, multiplicative interactions between

cascaded processes which are central to the IDVC [288], more recent work has explicitly linked

the problem of coordination and executive control in writing to multifractal cascades and the

IDVC.

An initial step in this direction was taken by Wallot and Grabowski, who approach the analysis

of typing behaviour from the perspective outlined above, treating writing as a complex and multi-

scale coordination challenge [359]. Their work addresses an experimental problem which follows
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from this perspective: if writing tasks must be understood in terms of coordination, but differ

importantly both in complexity, and in terms of the kinds of coordination involved, then highly

constrained laboratory tasks which isolate sub-tasks and diminish the need for coordination, have

limitations in helping us to understand writing. A copy-typing task, for example, will not only

require less attentional resources and mental effort than real world writing, but will not involve

many processes involved in text composition, nor the need to coordinate these processes together,

in parallel and over time. Wallot and Grabowski argue that, in order to begin to categorise and

understand these differences in task complexity, it is necessary to establish measures which

distinguish behaviour and performance on tasks which are more or less complex. As such they

conducted an exploratory study to identify how a number of linear and non-linear features

vary across three writing tasks of different complexity, from highly constrained copy tasks, to

“relatively natural and open text writing”. They observe typing during two copy tasks - in which

the text was either memorised, or read concurrently with typing, and one text composition task,

describing a route familiar to the participants, which was expected to involve planning and

formulation.

Of all the features investigated by Wallot and Grabowski, the one which most clearly distin-

guishes the text composition task from both copy tasks is the multifractal spectrum of the typing

time-series. Relating this back to the work on fatigue in typing, which I discuss above, it is worth

noting that the features investigated included the inter-key interval which previous work had

consistently reported, as either the best or among the best, predictors of fatigue and stress. As I

will discuss below, this points to strong potential for multifractal measures as predictors of fatigue.

Though the authors do not discuss this, this result points to possible evidence for interaction

dominant dynamics in the complex coordination involved in writing. As I discussed in section

3, multifractal spectra are expected to reflect the presence of reciprocal coordination between

diverse processes across scales. The consequences of such interaction dominant dynamics in

writing would be important. Most importantly for further work in this thesis, and for work in HCI,

this would point to multifractality in typing as a marker of flexible global cognitive coordination,

suggesting it may have potential to identify factors which undermine such coordination — for

example fatigue and stress [235]. Wallot & Grabowski observed stronger multifractal signatures

in the naturalistic writing task which placed greater demands on flexible adaptive coordination.

This would be in line with previous work which has found evidence for the role of interaction

dominance in skillful adaptation [255], and executive control tasks [9, 10, 316]; and as discussed

above, writing is often treated as a paradigmatic case of a task which places demands on ex-

ecutive control. Further to this, this result might also point to future work investigating the

complexity of the different writing sub-phases which have been identified in previous work on

writing [137, 213, 260], and the potential for multifractal features such as TMF to identify these

writing phases, or transitions between them. However, Wallot and Grabowski did not include a

confirmatory surrogate analysis in their multifractal analysis, which would allow us to confirm
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that the results have their basis in underlying non-linearities in control, rather than in linear

features. As such, while their results point to this as a valuable direction of research, they do not

yet provide strong evidence on which to draw conclusions.

Further work in a similar direction was carried out by Likens et al. [210]. In this case,

rather than focusing on how behaviour varied in response to the complexity of the writing

task, the researchers aimed to understand the relationship between multifractality in typing

during an essay writing task, and the quality of the resulting essay as marked by trained raters

on a standardised rubric developed for assessing SAT essays. They found that the width of

the multifractal spectrum predicted both overall scores of essays, and seven out of the nine

sub-scales on the rubric, in some cases describing more than twice the variability describing

by previously identified metrics [210]. Likens et al. explicitly ground this result in the IDVC.

As with the accounts discussed above, they emphasise that writing relies on simultaneously

occurring processes occurring on different timescales, but argue that these processes will be

coordinated together in a multiplicative cascade, resulting in multifractal signatures. They link

this to previous findings which link multiplicative cascades to executive control, and the capacity

to coordinate a temporary state of flexible, task-relevant, adaptation, in the pursuit of completion

of a task [9, 10, 318].

This result reported by Likens et al. is important for this thesis in confirming that multifractal

signatures in typing are not only affected by external factors like task complexity, which place

demands on coordination, but also on the participant’s success in coordinating resources towards

the completion of the task. This is consistent with my findings on skill in mouse use in chapter

4, and with findings in the wider literature (e.g. [255]), and points forward to the analysis of

multifractal signatures of typing time series to understand other factors which might affect

the participant’s ability to coordinate resources towards task completion. In particular, in the

next chapter, I investigate the effect of fatigue. Also relevant to this thesis, and more broadly to

work in HCI: Likens et al. explicitly link these findings to possibilities for technological support,

arguing for the use of the approach in educational settings to help monitor for early signs of

writing difficulty, allowing timely and directed engagement by tutors.

6.4.4 Conclusion

These results are promising for future applications of multifractal analysis to understand and

support writing in HCI, however some limitations remain here. First, while both studies reported

strong effects, and are consistent with results in other behavioural modalities, these are the

only two results in the literature to report similar results in studies of typing. Wallot and

Grabowski’s work in particular was exploratory, observing a number of variables, and not guided

by a strong hypothesis that multifractality would predict complexity [359]. Further, neither

study provided the results of confirmatory surrogate analysis, which I have noted is necessary to

confirm that results have their basis in non-linearities in the measured system [161]. As such,
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before proceeding to extend this work in my own experiments, I felt it was important to first

confirm Wallot and Grabowski’s result. I focus on this work rather than that of Likens et al. since

Wallot and Grabowski’s work seems to me more foundational for future work in this area, in

linking multifractality to the complexity of the cognitive task. The assumption that this result

holds can be seen as a prerequisite for further hypothesis which focus on either other kinds

of change in task complexity, or on changes in the writer’s ability to adapt to that complexity -

whether due to the writer’s skill, or (as I will investigate in chapter 8) due to other factors such

as fatigue.
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7
MULTIFRACTALITY IN TYPING REFLECTS COMPLEXITY OF THE

WRITING TASK

7.1 Summary

This chapter describes the analysis of three typing data-sets, which serve the following purposes

• Confirms a result observed in previous exploratory research, linking complexity of writing-

task to signals in multifractal spectra, thereby laying the ground for work in the next

chapter on multifractality and fatigue in typing.

• Evaluates and refines the approach to tuning and analysis described in the previous chapter

• Provides worked examples of the analysis approach to guide future research.

7.2 Introduction

This chapter describes the multifractal analysis of three typing data-sets, from experiments

where participants either copied out a pre-written text, or composed a new text according to

some prompt. A primary purpose of this work is to confirm the a result previously observed

in an exploratory study, whereby more complex typing tasks resulted in stronger multifractal

signatures than did simpler typing task. The importance of confirming this result was outlined

in the previous chapter but it is worth briefly recapitulating in outline. In the context of this

thesis, the work in this chapter marks a shift towards more conventionally ‘cognitive’ behavioural

phenomena: language production, though still addressing these via the same embodied models of

behavioural control. In addition, as laid out in more detail in 6.4.3, this particular result stands

as an important foundation for future work on multifractality in typing: it points to the value of
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multifractality as a marker of the writer’s adaptation to the complexity of the task. If this holds,

then it points to potential to use MFA to identifying factors which have long been of interest in

human factors and HCI, and which are known to undermine this adaptive ability: such as fatigue,

and stress [234, 258]. This is of practical interest since MFA of typing only requires unobtrusive

key-logging during the task, avoiding any specialised equipment or secondary tasks. It is of

theoretical and rhetorical interest because it points to the value of work grounded in embodied

approaches to cognition to address basic dimensions of user-experience and interaction, relevant

to everyday HCI applications. The work also has wider scientific value: the result I replicate

here had previously only been observed in an exploratory study, not tested as a hypothesis. In

that work no association was made with interaction dominant signatures, and the confirmatory

surrogate analysis, neccessary to ground results in interaction dominance [161], were not reported

[359]. By investigating this basis in interaction dominance, the work in this chapter contributes

further evidence that performance on a range of skilled tasks associated with executive control,

has some basis in interaction dominant structures [9, 15, 191].

This chapter also makes other methodological contributions, both to this thesis and more

widely. As discussed in the overview of this part of the thesis in chapter 6:

1. These analyses serve to evaluate and refine my approach to tuning and analysis.

2. The post-hoc analyses in this chapter also provide insight into practical issues of multifrac-

tal analysis. They investigate how the results of multifractal analysis are affected by issues

with signal quality, and signal length. This work is perhaps of particular relevance to HCI

researchers, system designers and other applied users of MFA. In these cases MFA will

often be applied to data captured in the wild, where signal quality is likely to be lower. In

deployed systems in particular, signal length will directly influence the delay between user

activity and system response.

3. Finally, these analyses provide detailed worked examples of the analysis approach I outline

in chapter 5. The work here demonstrates how the approach is adapted to handle issues in

real-world data. Multifractal analysis is a relatively new approach, particularly in HCI,

and there is a need for such worked examples which can help guide future researchers in

practical applications of the method.

I begin this chapter by stating the hypotheses tested by these three analyses. From there, I

proceed to discuss the analyses themselves. I describe the data-sets analysed, the steps taken in

their analysis, and the results of this analysis. After this, I describe the post-hoc analyses which I

conducted to understand issues with signal length and quality which arose during the analysis.

Finally at the end of the chapter, I bring all of these results together for discussion, describing

the theoretical and methodological implications they raise for further work.
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7.3 Overview of the Analysis

7.3.1 Motivation to Study Task Complexity

The background and motivation for the analysis in this chapter was given in detail in the

previous chapter. However, it is helpful to briefly summarise the motivation here. In previous

work multifractal signatures have been found to be predictive of both the complexity of task

[212, 359], and the ability of the user to adapt to that complexity [73, 210, 255]. In chapter 4

my result relating multifractality to familiarity and expertise with the task can be seen as an

example of the latter: as users learned the task they became better able to adapt to it. Other

features — for example fatigue and stress [234, 258] — may also impact upon user ability to

adapt, and these are often of interest to HCI research. I therefore see interest for HCI and

Human Factors value in investigating the relationship between multifractal signatures and

fatigue. In previous work Wallot and Grabowski observed that out of a number of keystroke

features, multifractality was particularly effective at distinguishing between typing in tasks

of different cognitive complexity. When related to the results above, this seems to indicate the

potential to applying multifractal analysis to understand skill, fatigue, and other factors, in

conventionally “cognitive” tasks which make up much of human computer interaction. They

also point to the potential to infer these features through an incredibly common and low cost

interface: the keyboard. However, this work was exploratory, and authors did not test, or raise,

the hypothesis that changes in task complexity resulted in changes in interaction dominance —

they treated multifractality as a measure of dynamical heterogeneity, and complexity. As such

they did not perform the surrogate analysis necessary to ground results in cascade dynamics

and interaction dominance. If evidence is found that variation in task complexity in writing

tasks results in variation in interaction dominance, this provides a foundation both for future

work investigating interaction dominant basis of writing tasks, and for application-focused work

investigating multifractality as a metric of coping on cognitive tasks: to identify factors such as

fatigue which may undermine capacity to adapt to task complexity. (the work I conduct in the

next chapter). A wider discussion of this background, grounding this hypothesis was presented in

the previous chapter, in section 6.4.3

7.3.2 Hypotheses

H1 Typing to compose a new text will produce signals which exhibit wider multifractal spectra

and stronger evidence of nonlinear multifractality than will typing to copy an existing text.

127



CHAPTER 7. MULTIFRACTALITY IN TYPING REFLECTS COMPLEXITY OF THE WRITING
TASK

7.4 Method

7.4.1 High Level Overview of the Analyses

Three data-sets were subjected to the following analysis. I discuss each step, for each data-set,

below.

1. Prepare signals, identify high level issues, and select data-set

2. Initial inspection of linear and nonlinear properties of the data-set. Further identification

of issues and exclusions

3. Select parameters for multifractal analysis.

4. Run multifractal analysis on the final selected data-set, using the selected parameters

7.4.2 Description of Data-sets

I subjected three data-sets to the analysis described in section 5.3.4. These data-sets were all

drawn from previous studies of typing in which key-press timings were captured during both

transcription and free-composition of texts. The three data-sets were captured by different

experimenters, under different conditions, and each used a slightly different task. This is of value

for my purposes since it shows the transfer of the finding to different writing tasks and technical

conditions. All datasets are available via links at the cited papers, either publically available or

by request from the papers’ authors.

7.4.2.1 Killourhy and Maxion (KM)

This data-set comes from an experiment which aimed to evaluate key-stroke dynamics as a

feature which might confirm a typist’s identity during normal computer usage [193]. Twenty

subjects each completed two kinds of typing task: one involving transcription and the other

free-composition. They completed each task twice with different stimuli. In the free composition

condition, participants responded to one of four images — paintings by Norman Rockwell. They

were asked to complete 8 short typing exercises, in each case writing a description of some aspect

of the image in their own words. The task was designed to require around 1500 characters,

comparable in size to previous samples captured in free-composition research. Images were

chosen as stimuli based on piloting: so as to avoid writers block, with Rockwell’s scenes chosen

for their ease of description. In the transcription task, subjects transcribed prior responses to the

same 8 stimuli which were composed by the experimenters.

Four image stimuli were provided, and each participant responded to all four — two as

transcription, two as free-composition — giving four trials for each participant, two in each

condition. All subjects completed these tasks, on the same keyboard, in the same environment.

Key-up and key-down events were recorded along with key-codes and timestamps.
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7.4.2.2 Villani key-stroke data-set

This data-set (N=118) again contains key-stroke time-series from users captured from text

composition and transcription tasks [354]. As in KM, the study which produced this data aimed

to identify subjects based on keyboard dynamics.

In the composition condition, participants wrote arbitrary emails (average length 793 charac-

ters). In the transcription condition participants copied a text of approximately 650 characters.

Details of email prompt and copied text are not given. Key-up and key-down events were recorded

with key-codes and timestamps. All 118 participants completed at least one transcription task

and one composition task, though some completed more, giving 1345 composed-text samples and

393 fixed-text samples.

7.4.2.3 Banerjee Truthful Typing data-set

This data-set contains key-stroke time-series for both transcribed texts, and also for two kinds of

freely composed texts: truthful and deceptive writing. In the original study the authors aimed to

identify features of typing behaviour which could help distinguish truthful and deceptive writing.

[25]. The data-set was captured from three closely related experiments, which captured truthful

and deceptive writing of three kinds: business reviews, essays on gun control and essays on gay

marriage. Participants in each of these three experiments were asked to write four texts - two of

which were truthful and two deceptive. In each case the participants first composed a text, and

then created the second text by copy-typing the text they had just composed. In the restaurant

review task, the truthful condition required them to write a review of a restaurant they liked, and

the deceptive condition to write a review of a restaurant they had never attended. In the essays

on gun control and gay marriage, participants were asked their opinions and asked to write a

truthful essay articulating their opinion, and a deceptive essay articulating its opposite. Half

of the participants wrote the truthful texts first, half wrote the deceptive texts first. 1000 texts

were obtained from 250 participants in the review task, and 800 each (from 200 participants) in

the essay tasks. Participants were asked to write texts longer than 100 words.

7.4.3 Data Preparation

In preparation for analysis, I first prepared the signals required for analysis, checked these for

issues, and identified the subset of participants which I would analyse.

Following previous work on multifractality in typing, I analysed multifractality in the dynami-

cal structure of key-press intervals - signals representing how the interval between one key-down

event and the next varied over time [210, 359]. This signal was generated by differencing the

key-press time-stamps. In cases where other events besides key-down events were recorded in

the log (e.g. mouse events and key-up events) such events were removed first.
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7.4.3.1 Identifying the Subset for Analysis

In this analysis, “signal length” means “number of key press intervals”. In multifractal analysis

it is highly advisable to truncate all signals in the analysis to a uniform length (keystroke count),

since length of signal can impact the analysis [295]. Further, a signal of sufficient length should be

used - prior work suggests that analysis of shorter signals can result in unreliable results, though

I was not able to find clear guidelines on lower limits. For each data-set I identified a signal

length which provided an acceptable trade-off between maximising signal length and maximising

participants. It was also necessary to identify any variables in the original experiments which

might confound results, and make exclusions so that potentially significant sources of variation

were distributed across conditions.

KM data-set All texts had more than 1400 key-presses, and on reviewing the data, I saw no

grounds for exclusion of participants. As such, all 80 texts were selected for analysis. These

texts came from 20 participants, each contributing four texts. Each participant completed the

task under both of the two experimental conditions (copying and composing a text respectively),

repeating the task twice under each condition.

Villani data-set Texts were relatively short, with no participants executing more than 1000

keypresses, and only 15 participants executing 750 keypresses or more under each of the two

conditions. Since all but 39 participants produced at least 650 keypresses, I opted to set signal

length to 650, excluding those participants who fell beneath this threshold. While this is shorter

than some authors have recommended for multifractal analysis, hard limits and rationale for

thresholds are lacking. I felt analysing this data under potentially sub-optimal conditions might

shed light on practical applications of multifractal analysis, where a shorter signal length can

improve system response.

The data-set contained a variable titled “awareness” - with two values "aware" or "unaware".

It was not clear to me from available information what this denoted. Since only 120 of the 1606

texts in the data-set were marked "unaware", I opted to exclude participants who were marked

“unaware” anywhere in the data-set. This data-set included user inputs captured on both laptop

or desktop computers, with the majority captured on desktop. To balance conditions, found users

who had engaged in the experiment at least once in each condition, and on each platform, and

selected the first session for each user, condition and platform (sorted by the random identifiers

assigned in the data-set). This gave four data-sets per participant, two in each condition, once for

laptop, once for desktop. This left a data-set of 26 participants, giving 104 texts in total, 52 in

each condition.

Banerjee data-set Here there were three related experiments (typing about restaurant re-

views, gun crime, and gay rights) and three conditions - two composition conditions (truth,
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deception) and one copy condition. I opted to compare the copy condition to the truthful composi-

tion condition, however I analysed all three conditions, and provide descriptive statistics for all,

in order to illustrate a case where results in two conditions which are not expected to differ. I

did not find any unevenly distributed variables of concern in these data. While text lengths were

often short a fairly large number of participants completed texts over 800 characters in all three

conditions (truth, deception, copy). 132 participants met this criteria in the gay rights essay, 157

for the gun control essay, and 108 for the restaurant review.

In this data-set some participants typed very long texts in the allotted time, and I felt that

this might bias results — whether mechanically, due to high typing speeds vs sample rate of

data capture, or via a potential lack of care and engagement in text creation: as observed in the

previous chapter, engagement can affect multifractal signatures. As such I excluded participants

with key-stroke counts greater than 3 interquartile ranges above the mean in any condition. This

left us with 129 participants across all three conditions for the "gay rights" essay, 153 for the

"gun control" essay, and 108 for the "restaurant review" condition.

Finally, as discussed below, some participants were later excluded due to an issue with value-

clustering in the data, which seemed to affect outcomes of multifractal analysis (see 7.4.4 below).

These exclusions left 60 participants for the "gay rights" essay, 83 for the "gun control" essay, and

50 for the "restaurant review".

7.4.3.2 Initial inspection of signals

Before progressing to multifractal analysis, I first inspected basic linear properties of the signals,

to look for potential issues. Descriptive statistics are presented in table 7.1, and histograms are

presented in figures 7.1, 7.2 and 7.3

KM data-set Results for the KM data-set were straightforward and raised no substantial

issues. They thereby provide an instructive baseline for the other data-sets. First the histogram

showed the data did not approximate a normal distribution, but exhibited a pronounced fat right

tail. Such fat tails are characteristic of phenomena involving nonlinear interactions, but may also

occur in the absence of non-linear interactions[161]. The histogram was quite smooth, with no

clustering around particular values, or time-divisions: phenomena which might indicate issues

with signal capture, such as quantising, or poor timing resolution.

Turning to the summary statistics, minimum and maximum key-stroke lengths seemed

plausible for the task. Mean key-stroke length was similar in each condition, though slightly

longer in the composition condition. The composition condition also showed more variation in key-

stroke length, with a considerably larger standard deviation, and a slightly larger inter-quartile

range. These properties are broadly in line with what might be expected: speed of typing being

slowed by the need to also compose text, and also more likely to show "bursty" characteristics

due to the greater need to pause and think. Dynamic heterogeneity is also characteristic of
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Table 7.1: Descriptive Statistics for key-stroke Intervals (ms)

Data-set condition min max mean std

copy 0 51642 227 320KM
composition 1 24850 297 590
all 0 51642 262 476

copy 1 59922.000 265 801Villani
composition 1 554207 302 2913
all 1 554207 284 2176

copy 0 113719 226 768Banerjee
(reviews) composition (lie) 0 409665 374 3179

composition (truth) 0 272227 312 2014
all 0 409665 309 2282

copy 0 347139 189 1084Banerjee
(gay
rights)

composition (lie) 0 796809 272 2484
composition (truth) 0 676071 273 2299
all 0 796809 249 2098

copy 0 89975 207 669Banerjee
(gun
control)

composition (lie) 0 406383 288 2064
composition (truth) 0 2020624 287 4837
all 0 2020624 264 3242

multifractal signals [359], and its visibility in linear statistics here illustrates the importance of

conducting surrogate analyses, which help us to distinguish multifractality from patterns which

might have a purely linear basis.

Villani Data-set The Villani data-set showed other potential issues (see fig 7.2). While the

histogram again showed a pronounced fat right tail, this time the histogram was not smooth, but

showed pronounced clustering, around time-divisions of both 8ms and 10ms, suggesting that there

are perhaps two different quantising phenomena at play in the data-set, one at 10ms intervals,

and another at 8ms intervals. Such clustering may be due to key-logging processes running at

these respective rates, whether in the experimental software, or earlier in the chain, in libraries,

or at operating system level. Such quantising seems likely to affect the results of multifractal

analysis. Quantising of key-stroke timings will affect the size of fluctuations between key-stroke

intervals, particularly at smaller time scales, and thereby might be expected to introduce non-

linearity into the fluctuation functions at lower scales of analysis, akin to that illustrated in

chapter 5, fig. 5.2. I initially expected that one of these (8ms,10ms) quantising intervals might

have been associated with laptop and the other with desktop, but further inspection did not

provide evidence for this. Nor were they particularly associated with any other recorded variable.

As such I felt the risk of biasing results due to this issue seemed low. However it does seem likely

it to impact on the ability to discriminate between conditions via the multifractal spectrum by
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Figure 7.1: above - histogram for inter-key intervals in the KM data-set, truncated at 2000ms
upper limit to show central shape of the distribution. Below - more granular bins over range
below 100ms to show lack of quantising effects

homogenising fluctuations at smaller scales. This issue is discussed in more detail in the results

and discussion sections below.

Turning to the summary statistics, other features were in line with those observed in the

KM data-set. Minimum and maximum key-stroke lengths were again in plausible ranges. Mean

key-stroke length was again slightly longer in the composition condition, as might be expected,

though this difference was small relative to the standard deviation of either population. Finally,

the composition condition showed higher standard deviation.

Banerjee Data-set Again, the distributions of key-stroke timings did not approximate the

normal distribution in any of the the three Banerjee data-sets, and each exhibited fat right tails.

Means and standard deviations were higher in the text composition conditions, and min and max

values were plausible.

As in the Villani data-set quantisation was visible in all three sub experiments (writing on

gun-control, gay-rights, and restaurant reviewsm see fig 7.3). This time only one clear quantising

pattern was observed, with keypress lengths again clustering around multiples of 8ms, and

this quantising seemed slightly less pronounced than in the Villani data. The histograms also

revealed a pronounced clustering of key-stroke intervals around two absolute values: 32ms and

(to a lesser extent) 0ms. This suggests issues in the implementation of the key-logger, and perhaps
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Figure 7.2: above - histogram for inter-key intervals in the villani data-set, truncated at 2000ms
upper limit to show central shape of the distribution. Below - Below - more granular bins over
range below 200ms show quantising effects more clearly

interference from operating system interrupts. The clustering at 32ms is particularly strong,

with bins in this region exhibiting some of the highest frequencies in the distribution, despite

occurring in a tail of the distribution where surrounding bins exhibit low frequencies. As with the

issues with quantising, this kind of clustering can be expected to affect the results of multifractal

analysis. In this case the clustering represents an increased regularity in one scaling region,

which is again likely to introduce non-linearities into the fluctuation function. This issue is

discussed in more detail in the results and discussion.

Looking at the descriptive statistics (fig. 7.1), values seem fairly consistent across the data-set.

In the Banerjee gun-control data-set, in the truth condition one participant recorded a particularly

long pause between key-strokes (max column), and the standard deviation for this data-set is

accordingly high. As such, this participant was excluded from the data-set. Across all data-sets,

composition conditions show consistently longer mean interkey intervals, and larger standard

deviations, as might be expected.

7.4.4 Parameter Selection

I selected and validated parameters for the final multifractal analysis as described in 5.3. This

process involves preliminary multifractal analyses of the data, and in some cases this revealed
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Figure 7.3: Top 3 plots: Histograms for inter-key intervals in the Banerjee data-set, truncated at
2000ms upper limit to show central shape of the distribution. First: restaurant reviews, second:
gay rights essays, third: gun-control essays. Bottom: histogram for reviews dataset showing more
granular bins over smaller range to show quantising patterns more clearly
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issues with the fitting of fluctuation functions, which in turn indicated issues in the data. In

this section I discuss these issues and the analysis choices made to address them, before finally

presenting the results of the parameter selection processes. For all data-sets, I used the candidate

parameters described in section 5.3.4.5.

KM data-set Tuning of this data-set was straightforward, requiring no adaptation to issues

in the data. For the order and q exponents, the values o = 5, q = [−2,2] resulted in the greatest

value of
∑ |TMF |. This indicates that these parameters produced multifractal spectra in which

linear contributions were proportionally lowest across the whole data-set, blind to experimental

condition, providing the most reliable measure of non-linear-derived multifractality. Results were

validated as discussed in 5.3.4.6: first the minimum r2 value for all fits, across all signals was

checked and found to be above the pre-defined threshold of r2 = 0.99. I also conducted a visual

inspection of the fluctuation functions for a random selection of original signals, and found no

evidence of dips at the smaller scales, or other non-linearities (see fig. 7.4). The list of the top 10

scoring parameter sets, along with r2 values for the fluctuation functions is listed in table 7.2.

There were not large differences between similarly high-scoring parameter sets.

Table 7.2: The 10 highest scoring parameter sets for the KM data-set∑ |t| order qmin qmax r2 min r2 mean
337.9 5 -2 2 0.9981 > 0.9999
334.9 4 -2 2 0.9979 > 0.9999
328.4 3 -2 2 0.9976 > 0.9999
326.9 5 -2 3 0.9984 > 0.9999
325.6 4 -2 3 0.9982 > 0.9999
321.1 3 -2 3 0.9979 > 0.9999
312.9 5 -2 4 0.9986 > 0.9999
312.7 4 -2 4 0.9984 > 0.9999
310.0 3 -2 4 0.9981 > 0.9999
307.1 5 -3 3 0.9981 > 0.9999

The selected values of q and o were then used to analyse the data using the candidate

values for maximum scale. Analysis of the plot of maximum scale against
∑ |t| with the kneedle

algorithm [297] indicated a knee point at a maximum-scale value of s = 128 (see figure 7.4). While

visual analysis of the plot suggested that s = 256 could have been reasonably chosen I followed

the more deterministic approach offered by the kneedle result. Again I observed r2 > 0.99. for all

fits, in all signals.

Banerjee data-set As discussed above, the data-set comprised three subsets with participants

performing different tasks. For efficiency, I tuned parameters using the reviews subset only. In

contrast to the KM data-set, tuning for this data-set revealed issues during validation which led

to adaptations in tuning. After the first step, to select q-exponents and order, I found that no
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Figure 7.4: KM data-set tuning. Above: Selecting the maximum scale of analysis for the KM
data-set. The kneedle algorithm indicated a knee point at 128, or roughly 25-30 seconds. Value
will be partially a function of the discrete scales chosen, and is a guide to relevant parameter
range rather than revealing of precise knees. Below: sample fluctuation function for a composed
text signal from the KM data-set, analysed using the parameters selected by the tuning method

parameter sets had resulted in uniformly acceptable fluctuation function fits. While averages for

r2 values were still almost uniformly above 0.999, every parameter set resulted in at least some

fits where r2 < 0.99 indicating that values for some local Holder exponents would not be reliable.

Visualisation of the fluctuation functions showed that for a large number of signals there

were large residuals between some fitted lines and their data points, particularly in the lower

scales of analysis (see fig. 7.6 ). As discussed previously this pattern can indicate that the smallest

scale of analysis is too large relative to the order of analysis, resulting in overfitting [162]. In

this case, overfitting alone seemed unlikely to be the culprit, since the number of bad fits was

slightly lower overall for higher orders of analysis. Nonetheless, the plots suggested that the

issue centred on results at smaller scales of analysis (smaller numbers of key-strokes). This
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Figure 7.5: above - histogram for inter-key intervals in the signals of the Banerjee data-set which
produced bad fits on the fluctuation function. Data truncated at 200ms upper limit to show detail
of aliasing in the faster typing. Below - the same plot, but for the good fits in the same data-set

pointed to the observed issues with quantising, and clustering of key-stroke values as a likely

source of the bad fits, since at smaller scales in particular, quantisation can be expected to

reduce variation in fluctuation. This interpretation was also supported by comparison of inter-key

interval histograms between signals which produced good and bad fits. This is seen in fig. 7.5

which shows a comparison of inter-key offset time distributions in the shorter time-scales: first

for the population which produced bad fits in their fluctuation functions (r2 < 0.99) and then for

the population which produced particularly good fits (r2 > 0.999). While both the 32ms peak and

quantising effect are still visible in the "good" histogram, they are much less pronounced.

I addressed this issue with two changes: first I raised the minimum scale of analysis smin

to 20, since most of the issues observed in plots occurred below this scale. Since this still left

a significant number of fits r2 < 0.99 I also excluded participants whose signals gave bad fits

even for the raised value of smin. This excluded more than half of the 108 participants, leaving

50 participants remaining. Each of these participants were represented in all three conditions

(truth, lie, copy). Naturally this compromises the conclusions which can be drawn from the

results found here, but I include the analysis to show the impact and process of analysing real

world signal issues. I finally repeated the analysis process using this smaller data-set, to select

order and q-exponents. This analysis indicated that parameters o = 5, q = [−3,3] resulted in the
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Figure 7.6: Sample fluctuation function for one trial, for one participant, in the Banerjee reviews
data-set, analysed using the parameters initially selected by the tuning method, before making
the described adjustments. At this stage of analysis, a line is fitted to each series (the values
measured at each scale of analysis, for a particular value of q) and the gradients of these lines
are the ultimate source of the singularity spectrum. Here it can be seen that high residuals at
the lower scales of analysis - likely due to data quality issues discussed above, result in poorly
fitted lines. This will result in distorted singularity spectra and unreliable results.

Table 7.3: The 10 highest scoring parameter sets for the Banerjee data-set. Differences between
similarly scoring parameter sets are small.∑ |t| order qmin qmax r_min r_mean

528.5 5 -3 3 0.9962 0.9997
515.4 5 -3 4 0.9967 0.9997
507.2 5 -3 5 0.9970 0.9997
505.1 4 -3 3 0.9953 0.9996
502.1 5 -4 4 0.9971 0.9997
492.5 4 -3 4 0.9960 0.9997
489.0 5 -5 5 0.9977 0.9998
485.2 4 -3 5 0.9963 0.9997
479.3 4 -4 4 0.9966 0.9997
474.5 3 -3 3 0.9946 0.9996

greatest value of
∑ |TMF |, and in minimum r2 values above the pre-defined threshold of 0.99.

The list of the top 10 scoring parameter sets at the end of this process, along with r2 values for

the fluctuation functions is shown in table 7.3. Again, there were not large differences between

similarly high-scoring parameter sets.

When selecting maximum scale using these parameters, analysis of the plot of maximum scale

against
∑ |t| with the kneedle algorithm [297] again indicated a knee point at a maximum-scale

value of smax = 128 (see figure 7.7). However, in this case fits for analysis at smax below 256

resulted in r2 < 0.99 in at least some fluctuation functions in the data-set. As such smax = 256 was
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Figure 7.7: above - scale selection using the kneedle algorithm to select the knee point in the plot
of scale vs

∑ |t|. The value will be partially a function of the discrete scales chosen, and is a guide
to relevant parameter range rather than revealing of precise knees. Below - Sample fluctuation
function for one trial, for one participant — composed text signal (truthful condition) — from the
Banerjee data-set, analysed using the final parameters selected by the tuning method

used for final analysis. Finally a random selection of fluctuation functions for the final analysis

parameters were checked visually to confirm no issues were found - an example function is shown

in 7.7.

Villani data-set Again, as for the Banerjee data-set, adaptations had to be made to accom-

modate issues revealed by the validation steps. Again this data-set had shown issues with

quantising, though clustering of values around an absolute value was not an issue in this case.

Initial analysis to select o and q, again resulted in poor fluctuation function fits, though in this

case comparison of the histograms of signals groups with respectively good and bad fits did not

show visible differences in quantising. As such I again raised the minimum scale of analysis,

to smin = 20. This resulted in fits which were consistently above the minimum threshold, and
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Table 7.4: The 10 highest scoring parameter sets for the Villani data-set. Differences between
similarly scoring parameter sets are small.∑ |t| order qmin qmax r_min r_mean

263.36 5 -2 3 0.9983 0.9998
260.94 5 -2 2 0.9981 0.9998
255.45 5 -2 4 0.9985 0.9998
248.64 5 -2 5 0.9987 0.9998
248.29 4 -2 3 0.9976 0.9998
245.85 5 -3 3 0.9982 0.9998
243.13 4 -2 4 0.9980 0.9998
242.22 4 -2 2 0.9971 0.9997
240.04 5 -3 4 0.9984 0.9998
238.06 4 -2 5 0.9984 0.9998

further steps were not necessary. The parameters o = 5, q = [−2,3] resulted in the greatest value

of
∑ |TMF |, and r2 > 0.99 . The details of the highest scoring parameter sets are presented in

table 7.4/ There were not large differences between similarly high-scoring parameter sets.

These parameter values were then used select smax. This time the plot of smax against
∑ |TMF |

was not monotonic (fig 7.8) and so the kneedle function could not be applied, and I did not consider

the peak of the curve, at smax = 92 suitable since smin had been raised to 20, and this would

result in a very small range of scales of analysis, limiting the meaningfulness of the results. Since

differences in
∑ |TMF | were reasonably small, and fluctuation function fits increased as smax

increased, I opted to use smax = 256 for the final analysis. Fluctuation functions for this final

set of tuning parameters where manually checked to ensure no problems remained, an example

function is shown in fig 7.8

7.5 Results

To recap I tested the following hypotheis:

H1 Typing to compose a new text will produce signals which exhibit wider multifractal spectra

and stronger evidence of nonlinear multifractality than will typing to copy an existing text.

I am not aware of evidence that values of spectrum width and TMF are expected to be normally

distributed, and Shapiro tests for some of the data-sets gave p < 0.05 - evidence that the data

were not normally distributed. Levine test values for each data-set gave p > 0.05 so I proceeded

on the assumption that conditions were of equal variance. As such all hypothesis tests were

conducted using the non-parametric Wilcoxon signed-rank test. I used a Bonferroni adjustment

to correct for the testing of two hypotheses for each data-set, doubling the calculated p values 1. I

1Bonferroni corrections should be applied across all tests in a related set, but what constitutes that related set
is not well defined. It is arguable that all 8 hypotheses taken together constitute the related set, rather than the 2
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Figure 7.8: Above - plot of scale vs
∑ |t| for the Villani data-set, used when selecting scale. Below -

example fluctuation function for one trial, for one participant — a composed text signal from the
Villani data-set — analysed using the final parameters selected by the tuning method

quantified effect sizes using the Common Language Effect Size (CLES), which is known to be

robust when comparing samples whose distributions diverge from normality [237]. The CLES

has the added advantage of being easy to interpret. It gives a number between 0 and 1 which

describes the probability of selecting an item from the data-set from each category and finding

that the item from the category which is expected to take a larger value, takes a larger value

[237]. For a CLES of 0.95, for example, we can say that if we selected items at random from each

category, there would be a 95% chance that their values would be in line with my hypothesis.

Due to the use of different signal lengths and analysis parameters for the three data-sets, it

is not meaningful to compare spectra directly across the data-sets.

I found evidence in all three data-sets supporting my first hypothesis: spectrum widths w

hypotheses per dataset which I treated as the related sets. While this would make for an very conservative correction,
in this case p values are very low and neither correction would have affected the significance of results.
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and nonlinear multifractality tMF were significantly larger in the text composition condition

than in the text copying condition. In the case of the Banerjee dataset, the need to exclude large

numbers of participants places limits on the meaningfulness of these results. All discussion below

should be taken with this caveat, and results are presented for completeness’ sake. The results

are detailed in table 7.5, descriptive statistics can be found in table 7.6, and plots of the data can

be found in figure 7.11. To summarise these results: Wilcoxon tests gave p < 0.001 in all cases,

and effect sizes were large or very large. In the KM data-set I observed CLES > 0.95 for tests on

both w and tMF , indicating in each case a probability of greater than 0.95 of randomly selecting a

participant from each condition, and finding them consistent with the predicted result. In the

Villani and Banerjee data-sets, which both showed lower signal quality (see section 7.4.4) the

effect size was lower but still substantial, and in both cases slightly lower for tMF than for w. This

may indicate that data quality issues in these data-sets resulted in greater linear contributions

to the spectra, but the differences are not large, and this was not tested for directly.

The plots in figure 7.11 provide further insight by exposing individual within-participant

comparisons. Here, in the KM data-set in particular there is a very strong intra-individual effect.

There are only a handful of participants for whom either of the two multifractal features is

weaker in the copy condition (indicated by a joining line marked in red). Interestingly, in this

data-set participants whose results do run counter to the trend are extreme cases: they have the

very highest values for spectrum width and nonlinear multifractality in the copy condition, and

the very lowest in the composition condition. In the other two data-sets a larger proportion of

individual cases oppose the trend. Here these cases are not restricted to participants with high

values in the copy condition, but occur across the distribution. Signals in these two data-sets had

poorer signal quality and shorter lengths, and I give a more detailed discussion of signal-quality

differences in the next section.

Finally, the plots and descriptive statistics suggest that there is little or no separation

between the truthful and deceptive typing conditions in the Banerjee data-set. This is as might

be expected. It is hard to reason about whether writing truthfully is a more or less complex task

in cognitive terms than writing deceptively, particularly as here when there is little at stake

for the participants. Whether for example processes associated with recall, or fabrication place

greater demands on cross-scale coordination is hard to intuit.

7.5.1 Summary

The results reported here provide strong evidence of the potential of multifractal measures to

distinguish between the performance of typing tasks of quite different complexity even in a case

where the texts themselves should be indistinguishable. The intra-individual results in particular

appear very strong, which suggest value for the analysis of variations in user behaviour over time.

This motivates the further investigation of multifractal measures to identifying other features

of task and behaviour. However this discriminatory power will not be the only consideration
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Figure 7.9: Stages of multifractal analysis for both conditions for a single participant across
the conditions in the KM data-set (top two rows), and the Villani data set, (bottom two
rows). Within each grouping: Top: fluctuation functions, the log-log slopes of which provide
the localised Hurst exponents and tau values for the H(q)/t(q) plot (Below left) which itself is
transformed into the multifractal "singularity spectrum" d(h)/h (below right). The width of this
spectrum gives a measure of "multifractal strength". The distance of a signal’s width from the
population mean of widths of its phase-distorted surrogates gives the t-statistic t quantifying
nonlinear-multifractality
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Table 7.5: Hypothesis tests for the three analyses. (note that large exclusions limit the meaning-
fulness of the Banerjee results)

data-set feature hypothesis N w p CLES
KM w copy < compose 80 205.0 <.0001 .96
KM tMF copy < compose 80 207 <.0001 .98

Villani w copy < compose 104 1211.0 <.0001 .80
Villani tMF copy < compose 104 1149.0 <.0001 .75

Banerjee w copy < compose 286 9245.0 <.0001 .82
Banerjee tMF copy < compose 286 8706.0 <.0001 .77
Banerjee w truth != lie 286 4337.0 =.20 .52
Banerjee tMF truth != lie 286 4037.0 =.05 .56

Figure 7.10: Stages of multifractal analysis for all three conditions for a single participant across
the conditions in the Banerjee data-set Within each grouping: Top: fluctuation functions, the
log-log slopes of which provide the localised Hurst exponents and tau values for the H(q)/t(q)
plot (Below left) which itself is transformed into the multifractal "singularity spectrum" d(h)/h
(below right). The width of this spectrum gives a measure of "multifractal strength". The
distance of a signal’s width from the population mean of widths of its phase-distorted surrogates
gives the t-statistic t quantifying nonlinear-multifractality
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Figure 7.11: Raincloud plots of results for the three data-sets. Top: KM, middle: Villani, bottom:
Banerjee. Lines join data for the same participant. Green and pink lines join original signals
to their surrogates, red lines pick out counter-trend comparisons. Left: comparison of spectum
widths. Right: comparisons of the t-statistic quantifying nonlinear-multifractality
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Figure 7.12: Probability density functions of the original and surrogate data for the three data-sets

that weighs on the use of this approach in HCI. It is useful also to understand the potential

issues of applying the method on real-world data, since analytical methods may be built into

user-facing systems to inferred user state from input data which is likely to show data issues

which go beyond those found in laboratory data. As such, I felt it worth further analysing the

effects of the issues I observed in these data-sets.

7.6 Post-hoc Analysis: Issues with Signal Length and Quality

There is some indication in the results reported that the observed signal quality issues may

have impacted on the ability to resolve nonlinear contributions to multifractal spectra. This

is an important issue since, as discussed in section 3.7.4 interpretation of multifractal spectra

as indicators of cascades and control structure hinges on the assumption that these spectra

reflect nonlinear behaviour in the shape of bi-directional, cross-scale interactivity. As discussed

at the start of this chapter, this motivates my use of TMF , which is more directly interpretable in
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Table 7.6: Descriptive Statistics for the three analyses

Width t
data-set condition mean std median IQR mean std median IQR

KM

Copy 0.430 0.196 0.381 0.243 2.407 1.220 2.383 1.784
Copy (surr) 0.171 0.096 0.157 0.132
Compose 1.019 0.376 0.940 0.369 4.642 0.458 4.699 0.530
Compose (surr) 0.155 0.085 0.144 0.122

Villani

Copy 0.497 0.277 0.471 0.237 1.740 1.747 1.643 2.446
Copy (surr) 0.257 0.140 0.243 0.196
Compose 0.877 0.376 0.861 0.516 3.451 1.919 4.221 2.546
Compose (surr) 0.285 0.158 0.265 0.210

Banerjee

Copy 0.696 0.308 0.659 0.426 2.609 1.669 2.531 2.701
Copy (surr) 0.290 0.157 0.272 0.221
Compose (truth) 1.087 0.323 1.111 0.379 4.066 1.434 4.478 1.590
Compose (truth, surr) 0.293 0.169 0.272 0.225
Compose (deceptive) 1.130 0.329 1.242 0.411 4.383 1.226 4.323 1.601
Compose (deceptive, surr) 0.275 0.155 0.258 0.215

these terms. In the results just discussed, for data-sets with poorer-quality and shorter signals,

effect sizes were lower for TMF than for w. In the data-set with less observable data issues,

the reverse was true (albeit values here were close). This may indicate that signal issues in

these data-sets resulted in larger linear contributions to spectra. This would result in wider

spectra in the surrogates (where these linear-contributions are retained) relative to the spectra

of the original signals they are derived from. In turn, this would be expected to result in a

greater reductions in TMF (where linear contributions are excluded) than in w. If these linear

contributions are somewhat random, this might also be expected to result in reduced ability to

discriminate between conditions. Both of these effects are consistent with the results I reported

in the previous section.

The raincloud plots in (fig.7.11) provide some further visibility of potential differences in

surrogate results across the data-sets. In these plots, however, each surrogate point represents

the mean of the surrogate population for one signal, and their distribution will not tell the whole

story about overall distributions of surrogates. While there is some indication of wider surrogate

distributions in these plots, it is hard to interpret this. As such I ran further post-hoc analyses to

investigate the effect of the observed issues with data quality on the data.

7.6.1 Distance between surrogate and original distributions

Plots of probability density functions for original and surrogate data are provided in 7.12. Both

these, and the descriptive statistics 7.6 show the pattern which seemed present in the raincloud

plots: in the KLM data-set (where signal lengths were longer and where no signal quality issues

were observed) spectrum widths in the surrogates were on average smaller and showed lower

variance than those in the two datasets with observed signal quality issues.

To clarify the effect of this on the distinctness of surrogate and original data, I calculated
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Wasserstein distances between surrogate and original distributions. The Wasserstein distance

was chosen because attempts to log-transform the distributions to allow parametric analysis were

unsuccessful, and the Wasserstein distance is agnostic about distribution shape. The Wasserstein

distance is a non-parametric measure of distance between groups, sometimes known as the

"earth-mover’s" distance. Intuitively, it can be seen as quantifying the minimum "work" required

to transform one distribution into another - how much of the distribution weight must be moved

and how far. I calculated this measure on the normalised histograms of width values for surrogate

and original distributions. For brevity I will refer to this distance as the SO-distance ("SO"

standing for "Surrogate-to-Original").

7.6.1.1 Wasserstein Distance Results

The Wasserstein distance results are shown in table 7.7. For the KLM data-set, where no serious

signal quality issues were observed, the SO-distance for the composition data is high, and a

little over twice the SO-distance for the copy condition. This is as I would expect given that

one condition is expected to be considerably more multifractal than the other, and behavioural

control is significantly more complex: not only will spectra be wider, but also the distance between

surrogates and original spectra will be greater, indicating greater non-linear contributions [30]. In

the two data-sets with poorer signal quality the SO-distance for the composition condition drops

by a little over 25%, relative to the KLM data-set. This is particularly impactful in the poor-quality

Banerjee data-set, making SO-distances between copy and composition conditions very close. It

is worth noting that visual inspection of the distributions indicates greater separation than is

suggested by these values, and so it is possible that other distance measures might show greater

distinction. Nonetheless the basic insight seems secure: there is a clear loss of differentiation

between conditions in both Villani and Banerjee relative to the KLM data-set. Further, this

loss seems most pronounced in the composition condition where non-linear contributions are

expected to be highest, suggesting that signal quality issues may have a particular impact on

those non-linear contributions which are most important in the interpretation of multifractal

results.

These results provide further evidence that issues of signal quality and length may have

impacted on the ability of the multifractal analysis algorithm to resolve some of the non-linear

contributions which characterise composition behaviour. This would indicate the importance of

attention to signal length and data quantisation when capturing data for multifractal analysis.

However these results do not make it possible to separate out these issues, identifying the impact

of signal length separately from issues with quantising and clustering of values. In the next

section I describe further analyses to address this.
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Table 7.7: Wasserstein distances between surrogate and original distributions in the three data-
sets. (the composition conditions in the Banerjee data-set have been combined)

copy composition
KLM 0.169 0.341
Villani 0.145 0.251
Banerjee 0.242 0.247

7.6.2 Isolating the effects of signal length and quality

To help me to separate out the two factors, I conducted further analyses on all three data-

sets, focusing on the effect of signal length on the quality of fits, the t-statistic for non-linear

multifractality, and discrimination between conditions.

7.6.2.1 Analysis Method

I again computed multifractal spectra for each data-set, now repeating the analysis for different

lengths of signal. Length was altered by end-truncating the signals. For the shorter data-sets

(Villani and Banerjee) I used signal lengths of 256, 384, 512, and 640. For the KLM data-set,

where longer signals were available, I used signal lengths of 256, 384, 512, 640, 768, 896, 1024,

1152, 1280, and 1408. I used the parameters which had been selected in the previous tuning

steps. Where before I had analysed all three conditions in the Banerjee data-set, for this analysis

I continued to compare only the copy and truth conditions: previous analyses had indicated little

or no difference between truth and lie conditions.

7.6.2.2 Effect of signal length on fluctuation function fits

Across all three data-sets r2 values for fluctuation function fits increased with signal length (see

fig. 7.13). Up to a length of 640 key presses (the maximum available in two of the data-sets)

these increases were fairly large relative to the variance at each sample size. It was only possible

to test longer signals in the KLM data-set. Here improvements in fits slowed down above 800

keypresses.

Turning to signal quality (by comparing across groups at equal signal lengths), visual inspec-

tion indicates that fits in the poorer quality data-sets were several standard deviations poorer

than those in the KLM data-set, when matched for signal length (see fig. 7.13).

7.6.2.3 Effect of signal length on TMF (non-linear multifractality)

For all data-sets, TMF increased as sample length increased (fig. 7.14). Increases were not so

large, relative to variance, as observed in the fluctuation function fits. However, in the two

data-sets with poorer data quality, the difference between 256 and 640 samples was large, and

larger than for the better-quality KLM signals, suggesting that the observed quantising may
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Figure 7.13: Effect of sample-length on fit qualities in the fluctuation functions. Error bars mark
the 95% confidence interval. Top: KLM, middle: Villani, bottom: Banerjee

have impacted on the degree to which the signals captured non-linear behaviour at the smaller

scales, leaving variation at the larger scales to drive the effect. For the KLM data-set where it

was possible to analyse above 640 samples, the t-statistic continued to rise consistently up to the

maximum available samples, indicating that there were substantial non-linear contributions to

the spectrum at all measured scales.

Perhaps surprising given the issues observed in other features in this section, the poorer

quality data-sets did not show lower values of TMF , and in fact the Banerjee data-set which

showed considerable quantising issues and poor r2 values for fluctuation function fits, showed the

highest values here (fig. 7.14. This might be put down to task differences: it seems reasonable that

the subject matter participants wrote about in this task (either a short essay about gay marriage

or gun control, or a review of a restaurant one visited in the past) might be more challenging and

complex than the subject matter in the other tasks (a description of an image stimulus in KLM,

and an unknown task in Villani).
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Figure 7.14: Effect of sample-length on the t-statistic quantifying non-linear multifractality, at
participant level. Error bars mark the 95% confidence interval. Top: KLM, middle: Villani, bottom:
Banerjee

7.6.2.4 Effect of signal length on discrimination between conditions

Ability to discriminate between conditions (copy and composition) was quantified, as in the

main analysis, using the p-value of the Wilcoxon signed-rank test, and the CLES for effect size.

Naturally these results cannot be interpreted as significance tests, and their absolute values,

which are not adjusted for the testing of multiple hypotheses, are not informative. Results are

shown in figs 7.15 and 7.15. In the KLM data-set the CLES increased with sample length,

suggesting that coordination structures were different between conditions at all measured time-

scales. This was true for both multifractal features - both spectrum width and non-linearity

statistic t. The effect size and p-values for both these features tracked one-another quite closely,

indicating that the difference in observed widths may have been largely driven by non-linear

factors. While p values did not show a consistent directional change over much of range of sample

length, there was a sharp dip in ability to discriminate between conditions below 400 keypresses,
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Figure 7.15: Effect of sample-length on difference between the copy and composition conditions
(common language effect size). Top: KLM, middle: Villani, bottom: Banerjee

with p-values rising by orders of magnitude, and the effect size dropping by about 10%.

In the two poorer quality data-sets, effect sizes were consistently lower, and the results for

width and t-statistic diverged more significantly, with the two conditions being more strongly

distinguished by width, than by the t-statistic. This indicates that there is a greater linear

influence on the multifractal widths of these poorer-quality data-sets.

In the Villani data-set, where data quality seemed slightly better the effect sizes for both the

t-statistic and the width rise with sample length (as for observed in the KLM data-set), and the

corresponding p-values fall. In the Banerjee data-set by contrast the reverse is true, with the

effect size for the t-statistic falling as sample length increases, and the p value rising – albeit by

a comparatively small amount.
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Figure 7.16: Effect of sample-length on p values (Wilcoxon) for the difference between copy and
composition conditions (note values of p in the bottom figure are multiples of e−7

7.6.2.5 Summary of the effect of signal length on results

In all cases results improved with signal lengths, but in the better quality data-set there was

some indication that some important features increased more slowly above a threshold of around

800 samples. In particular this was true of quality of fits, indicating that 800 samples may be

sufficient for reliable results in a typing test. This also seemed true of the effect size observed,

suggesting that in applied situations results may stop improving much above around 800-900

key-strokes. These kinds of consideration can be important when it comes to designing systems

around multifractal measures. Signal length will affect both the timeliness and granularity at

with which a system can respond to the user and the costliness of the analysis in terms of system

resources.

In the two data-sets where signal quality issues were observed, the ability to discriminate

between the two conditions via the multifractal measures was lower. In these conditions there
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was also weaker evidence for the basis of the results in specifically non-linear features, with

results for TMF and w diverging. This is important for the interpretation of results as evidence

for interactivity and co-ordination in behavioural control, which this thesis argues is a major

motivation for the use of multifractal approaches in HCI. In the phenomenon analysed in

this chapter, differences in multifractality are clearly very strong, and so such issues may be

less important in practice in this case, but for other behavioural phenomena, and for subtler

differences in task, behaviour or experience, these issues are likely to take on greater significance.

There is some indication here that signal length and data quality both affect these results,

but that data quality may be the stronger effect in this case. First, for comparable signal lengths,

effect sizes for the KLM dataset are consistently higher than for the other two data-sets. Second

the distance between effect sizes for TMF and w is greater in the poorer quality data-sets than in

KLM, across the entire range of scales. While this cannot be entirely separated from differences

in task, the basic similarity of tasks, and the observed presence of data-quality issues points

towards the significance of poor data in these analyses.

7.7 Discussion

The empirical work in this chapter serves three main ends. First it looks back to the previous

chapter, providing a clarification and demonstration of the multifractal analysis methodology

articulated there, and examples of how that methodology adapts to issues with the data. In this

respect it contributes to future work by providing worked examples on publicly available datasets,

which future researchers can follow. Second this chapter looks forward, to the work in the next

chapter. The analyses here replicate a result which is important for the development of work in

in the next chapter, and for other future work in the same vein. These replications also go beyond

the original study by providing further evidence to link the result to the account, articulated in

the IDVC, of the role of interactivity in behavioural control during skilful tasks. Finally the work

looks forward more broadly to future work in this thesis and more widely. The analyses open a

window onto how data quality issues can impact on the results of multifractal analysis. In this

respect they can guide future work towards the neccessary conditions for adequate analysis.

The remainder of this chapter provides a deeper discussion of the results, their implications,

and how they serve the latter two of these ends.

7.7.1 The Replication Results as a Foundation for Future Work

The results in each of the three analyses were consistent with those found in previous work by

Wallot and Grabowski. [359]. All three analyses provided significant evidence for the hypothesis

that multifractal features of the keystroke time series would be stronger for text copying than

text composition. Not only, as observed by Wallot and Grabowski, were multifractal spectra wider

in the composition task, but the measure of nonlinear multifractality TMF was also higher. This
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is important in providing further evidence for the basis of the effect in reciprocal interactions

across scales in behavioural control, or interactivity. As in the case of mouse use in chapter 4,

this kind of interactivity is a marker of the range of resources which are coordinated towards the

execution of the task, and are expected to play a significant role in flexible adaptation. In the case

of this experiment, the composition of a text stands as a task which requires greater flexibility

and moment to moment adaptation than does the copying of an existing text. This result was

confirmed with a large effect size in all three tasks.

The clarification and confirmation provided by the analyses in this chapter open the way

for future work on typing, including that which I present in the next chapter. In that chapter

I test the hypothesis that greater fatigue during a creative typing task will result in lower

signatures of non-linear multifractality. This hypothesis follows from the expectation that fatigue

will undermine the ability of the user to coordinate resources effectively towards the completion

of the task. It is therefore an important assumption of this hypothesis that creative typing tasks

rely upon this flexible coordination of resources, resulting in significant signatures of nonlinear

multifractality. The work in this chapter strengthens the evidence for that assumption.

In a HCI context, it is also of interest that the work in this chapter confirmed large effect sizes,

and that the effect was observed even in data with quality issues. The change in task complexity

in this experiment is reasonably large - comparing a quite simple, largely mechanical, task to one

which requires creativity, memory, reflection, and attention to structure, grammar, spelling and

other aspects of prose writing. Many changes in task complexity and user attitude to task are

likely to be much smaller. As such, from an applications point of view, it is reassuring to see large

effect sizes here, making it reasonable to suppose that the measure may be useful to infer subtler

changes. As I discuss further below, there were indications that the lower effect size in two of the

datasets for w compared to TMF was due to poor data quality and / or shorter signal lengths. This

points to the need to capture sufficiently long texts, and minimise the presence of signal artefacts

such as quantising and value clustering. However, it is also reassuring, when considering future

use in applied work, that the effect was still observed even when signal quality and length were

less adequate. This bodes well for the potential to use this approach with data captured under

everyday conditions in HCI research and in user-facing applications

Still with an eye on future applications, it is worth noting that the raincloud plots indi-

cated that the intra-individual effect was particularly strong: in the better quality data-sets in

particular, very few users went against the trend: with multifractality increasing rather than

decreasing in the less complex task. This points to the potential of the approach to help infer

changes in an individual’s behaviour and experience over time. In this case that change would be

task complexity, which may be useful for inferring the kind of task, and adapting interfaces and

system support to suit the task.

Finally, the results of the analysis of the Banerjee dataset did not confirm the opportunistic

hypothesis formed around that data — that multifractal properties would distinguish typing on
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a true or false task. While a marginal result was observed in this case, with the mean for TMF

lower than that for w, the effect size was very small, and the sample size reasonably large. It

is worth stating the caveat that this was observed in the data-set with the poorest data quality,

where the size of an effect expected to ba large was smaller than in other datasets. This may

leave a door open for future investigation of this effect, but the present result does not provide

evidence for the hypothesis.

7.7.2 Adaptations of the Analysis Approach to Issues in the Data

During the analysis of the Banerjee dataset and the Villani dataset, I found it neccessary to

make adaptations to the methodology. I observed poor fits in the fluctuation functions for analysis

with all candidate parameters, and I connected this to signal artefacts. This made it neccessary

to diverge from the analysis plan I had specified ahead of testing, raising the lower scale of

temporal analysis smin from 10 to 20 (≈ 2−6 seconds) — a response motivated by observing

the largest residuals at the smallest scales of analysis. In the Banerjee dataset, further issues

were encoutered. Having adapted analysis parameters, I still observed poor fitting of fluctuation

functions, and found it neccessary to exclude data to address this. Again it was possible to clearly

motivate exclusions based on features of the signal, but this resulted in substantial exclusions,

significantly limiting the interpretation of the results.

These issues demonstrates the difficulty of making any such analysis plan completely deter-

ministic. I would argue that in most cases such an adaptation as this would constitute a relatively

minor and unproblematic adjustment, particularly if properly motivated by evidenced issues. In

certain cases however caution should be exercised — particularly where hypotheses explicitly

concern the scales of analysis over which control is coordinated. In such cases, as this result

illustrates, particular care should be taken to ensure data capture at sample rates which are

adequate to all relevant scales of analysis, and also sufficient stability of this sampling rate. This

also points to the particular value of piloting for complex analysis approaches, allowing such

issues to be identified and addressed ahead of final experiments. Such piloting, however may not

always be feasible, particularly for user-facing systems or for experiments in-the-wild.

While I have not seen this approach taken in prior literature I identified one potential

approach for adapting online, or user facing analyses to poor data. This approach excludes

results at particular scales of the fluctuation function on the basis of an initial fitting, before

re-fitting the function. The approach is illustrated in fig 7.17. Here five scales, marked in red,

show particularly high residuals, while all other scales suggest fairly clear linear trends. It is

possible to identify such scales by setting a threshold for residuals. In this figure these scales

were then excluded and the fluctuation function fitted to the remaining scales, giving a well fitted,

linear fluctuation function. Since only the gradients contribute to the final singularity spectrum,

this intervention can be applied on a per-signal basis without preventing the direct comparison of

multifractal spectra between signals. This approach may be unsuited for hypothesis testing, but
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Figure 7.17: In the fluctuation function, the range of gradients determines the range of scaling
exponents and the width of the singularity spectrum. Left: Measurement and numerical errors at
particular scales can result in non-linearities in the function (r2 < 0.99) and an exaggerated range
of gradients. Right excluding scales with high residuals from the regression recovers linearity
(r2 > 0.99) and leads to a less exaggerated range of gradients.

likely acceptable in application scenarios, where poor data and variation between measurement

environments may create large residuals. Future work should investigate the impact of this

intervention, identify workable thresholds for exclusion, and strategies for adapting system

confidence based on the trustworthiness of such altered fits2.

7.7.3 The Effects of Signal Length and Signal Quality

As MFA methods move into applied disciplines like HCI, they will have to contend with data

captured in less controlled environments. HCI research often involves the use of commodity-grade

sensors, rapidly developed prototypes, and data captured in the wild [284]. In all these cases

the quality of captured data may be lower than in the laboratory studies where, to date, MFA

has mostly been applied. Beyond this, further issues will arise where MFA is used in deployed

systems, to infer transitions in user behaviour and experience. In such cases, developers will also

have to pay attention to signal length, since this will determine the responsiveness of the system:

while analysis algorithms can be optimised, and compute power can be expected to increase by

the year, the time taken to capture user data will remain a hard limit. Signal length will thus

remain a bottleneck on how quickly systems built around MFA (or any similar analysis method)

can respond to the user. The results observed in this chapter help shed light on all of these issues.

Signal Length Effects for signal length were very consistent: increasing signal length resulted

in improved fits in the fluctuation functions, greater values of TMF (indicating that spectra were

more reflective of underlying nonlinearities) and higher effect sizes (indicating greater ability to

discriminate between the two conditions). The exception to this pattern was the Banerjee dataset

2Writing in the few days before submission: recently pre-printed work details a similar solution [187], I do not
now have time to address this in detail.
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where the poorest data quality was observed. In this case effect sizes did not appear to increase

with signal length, but remained fairly consistent.

The results here should be interpreted with respect to the phenomenon measured, the task

length, and in terms of the maximum scale of analysis measured in each case - here I set

maximum scale to 1/4 of the signal length (using a recently developed moving window adaptation

[292] to improve stability of the statistics at the larger scales). Against this backdrop the results

indicate that scales of behaviour up to at least 350 keystrokes were relevant to behavioural

coordination in this task. It is interesting that the quality of fits did not continue to increase at a

linear rate and began to plateau above 800 keystrokes, indicating that further improvements

in other features were due to the behaviour captured and not purely down to improved data

quality. This points to the importance of larger time-scales in coordination of writing behaviour —

something which is perhaps not surprising. I have struggled to find statistics on average writing

session length, but one study cites writing sessions of over an hour [13] as the norm among

the 100 adult students surveyed. Anecdotally at least, my own experience, and that of some

colleagues, is that it is harder to get started on a writing task, than to continue once engaged.

In general, this indicates the importance of considering the task’s characteristic time-scales

when considering data capture. At the same time, in this case it is striking that fairly high effect

sizes were seen for w and TMF even at quite low sample lengths, particularly in the high-quality

KLM data-set. This points to the potential to develop relatively fast-responding systems. It may

also point to the potential to analyse shorter writing tasks, such as micro-blogging, email writing,

etc. but caution must be exercised here. These results come from the analysis of truncated signals

from a longer text. Text-and-task lengths did not vary, and insofar as these parameters can be

expected to have a significant impact on the challenge and complexity of the cognitive task, they

can be expected to have some impact on multifractal signatures. It may be that short signals

from longer tasks, like those analysed here, are still quite informative, while signals of the same

length from a shorter tasks are not. This is a question for future research.

One limitation to consider when interpreting these results is that the analysis was conducted

by end-truncating the data to the required length. This will have the effect of not only progres-

sively shortening the signal, but also progressively focusing results on the first part of the activity.

It seems reasonable that different periods of writing may have different multifractal properties,

with e.g. the beginning of the task perhaps less multifractal than the middle, when the user has

settled into the activity. As such this factors like this may have impacted on results, in addition

to any effect of the shorter signal alone. However, figure 7.13 indicates that the quality of fit

declines significantly at lower signal-lengths, which will impact reliability of results, and this

seems unlikely to follow from changes in the user’s activity during the period measured.

Signal Quality By comparing three data-sets which captured behaviour on closely similar

tasks, it was possible to somewhat isolate and clarify the effects of data quantising which I

observed in two of the datasets, but not the third. First these quantising issues appeared to have
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substantial effects on the fitting of fluctuation functions. This is a fundamental step in analysis

with MDFA, and poor fits can result in unstable and unreliable results [187]. These issues led

to a large number of exclusions in the worst affected data-set in order to achieve acceptable fits.

Even once the worst affected samples had been excluded, the quality of fits in the two data-sets

which exhibited quantising issues was still significantly lower than in the KLM dataset, where

these issues did not occur. In the end I was able to achieve acceptably high r2 values in all three

data-sets, but fits in the poorer quality data-sets were still several standard deviations poorer

than those in the KLM data-set at the same signal lengths (see fig. 7.13).

These issues with fits seem to have impacted on the ability of the analysis to discriminate

between conditions. The effect sizes observed in the KLM data-set were considerably higher

than those for the other two data-sets, and this was independent of the effect of sample length

7.15. Further, this issue affected TMF more strongly than w, suggesting that the quantising may

have masked those non-linear features of user behaviour which are important to identifying

interaction dominance and cascade, while differences in linear features between the conditions —

pertaining to the Fourier spectrum and the probability density function — were not affected so

strongly.

Together, these issues point to the need to check signals ahead of MFA, to pay attention to

fluctuation function fits (which are too often not shared in previous work in this area), and to

make use of surrogate analysis and of TMF in place of the spectrum width, where the hypothesis

or its theoretical basis entail changes in interactivity and system organisation. Linear contribu-

tions to multifractal spectra are not theoretically related to underlying changes in coordination

phenomena, and so caution must be exercised in interpreting spectrum widths where data issues

are present. Future work might explore this issue in more detail via simulation of quantising

and other signal issues.

7.8 Summary

The results in this chapter make both methodological and empirical contributions to this thesis.

In methodological terms this work provides a step-by-step demonstration of the analysis and

tuning approach which I described in chapter 5. The results of this analysis also shed light

upon practical applications of MFA in HCI. They demonstrate the importance of attention to the

quality of captured signals, and the need to check fluctuation functions and make use of surrogate

analysis in order to arrive at results which can be reliably interpreted. The results in this chapter

also point to the potential to use MFA on relatively short typing signals — something which can

improve responsiveness in user-facing systems — and to future work evaluating the application

of MFA to shorter typing tasks such as email and micro-blogging.

Finally, the empirical contributions of this chapter are particularly important for the next

chapter. The results here successfully replicate the result, reported by Wallot & Grabowski, that
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multifractal features predict the complexity of the typing task. The very strong effect sizes I

observed in some cases suggest that there is potential to use this approach to help infer the kind

of task the user is engaged with. More interestingly however, they indicate that there is value in

investigating whether multifractal features in typing signals can be used to infer subtler changes

in user behaviour during everyday text composition tasks, as the user’s coordination of resources

towards the performance of the task is affected by for example engagement or fatigue. In the

next chapter I continue this investigation, testing whether multifractal signals in typing predict

fatigue.
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MULTIFRACTALITY IN TYPING PREDICTS USER FATIGUE

8.1 Summary

This chapter builds on the work in the previous chapter, which found that nonlinear multifrac-

tality in typing correlated with the cognitive complexity of the typing task. This chapter again

focuses on typing. It describes an experiment investigating effect of user fatigue — which is

expected to undermine ability to coordinate behavioural resources to adapt to the complexity of

the task — on multifractal signatures in typing.

Findings:

• Multifractal signatures in typing are lower for users who have been exposed to a fatigue

stressor.

• Change in multifractality predicts change in self reported level of fatigue.

8.2 Introduction

In this chapter I build on the findings of the previous chapter, to test a new hypothesis: that

multifractal signatures in typing will predict fatigue in the writer. As I discussed in section 6.3,

previous research has investigated both the potential to develop technologies which support

writing processes in a responsive manner, and the potential to infer fatigue in the user. Some

of this work has focused on inferring fatigue from key-stroke logs, as an unobtrusive means of

identifying opportunities for breaks, and adapting to the user’s needs. Further to this, prior work

has indicated that multifractal signatures in typing may be a particularly strong candidate for

inferring fatigue. As I discussed in section 6.4.3, not only are there theoretical reasons to expect

that multifractal signatures will be responsive to fatigue, but these signatures have been found
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to out-perform other keystroke features when inferring features which seem likely to be related

to fatigue: complexity of writing task [359], and predicting quality of essay [210].

In the last chapter I replicated one of these findings: that multifractal signatures in typing

were stronger in more complex, naturalistic writing tasks than in simpler text-transcription

tasks. I went beyond previous work in providing evidence that the nonlinear component of

multifractality was also larger in the more complex task. This provides evidence for the idea

that this change is due to changes in the interaction dominant organisation of behaviour [161],

with behaviour in the more complex task grounded in more complex, reciprocal, multi-scale

coordination of cognitive resources. As I noted in chapter 6, this points to the possibility that non-

linear multifractal signatures in typing will be affected by factors which are known to undermine

cognitive coordination and executive control.

This chapter now builds on that foundation to test the hypothesis that non-linear multifrac-

tality in a naturalistic typing task will predict user fatigue. I focus on non-linear multifractality

since it is more closely related to the theoretical basis of the hypothesis than is the multifractal

width, and because work in the last chapter showed that it was more effective at discriminating

between changes in task complexity than was the width.

Since the work in the two empirical chapters in this part of the thesis are tightly related, a

wider discussion of the background and motivation for the work in both chapters is discussed in

chapter 6.

8.3 Rationale

A wider and more detailed discussion of the rationale for this work and all work in this part of my

thesis was given in chapter 6, but it is helpful to recapitulate the key points before continuing.

Prior work has demonstrated that fatigue can be expected to affect both task engagement and

executive control (or the task-directed coordination of behavioural resources) [234]. At the same

time, multifractality in task-directed movement has been shown to correlate with the demands

of tasks associated with executive control [9, 15, 191], suggesting that cascades play some role

in the underlying behavioural coordination. If fatigue undermines behavioural coordination, I

suggest it is reasonable to expect that it may impact on multifractal signatures, also, allowing us

to treat them as a marker of fatigue.

Fatigue is known to impact upon health, productivity, and increase risk of errors [258], and a

significant body of previous work has attempted to infer fatigue from users, in order to support

appropriate interventions [3, 75, 173, 272], including during keyboard use [31, 50, 185, 226],

since it is known that some kinds of mental fatigue can be mitigated by short rejuvinating

breaks [314], and that people are often poor judges of their own need for such breaks [254].

Many extant approaches rely on intrusive cameras [226] or complex multi-sensor systems [185],

where multifractal methods would require only data-capture from the keyboard. Further, since
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Figure 8.1: Protocol for each of the two experimental conditions. Order of conditions for each
participant was randomised, and conditions took place on separate days. My camera was turned
on and off at relevant points to balance rapport and distraction. Participants shared their screens,
and kept microphones open throughout. Conditions were not time-balanced since previous work
has indicated this can introduce confounds in fatigue experiments (see 8.4.6.1)

only keystroke timings are required, privacy could be assured by avoiding logging of linguistic

information.

As well as there being independent interest in the relationship between multifractality and

fatigue during typing, the theoretical grounding of this expected relationship points to potential

applications in other modalities. Hypotheses relating multifractality to skill for example, have

found supporting evidence in quite mechanically different modalities: including in bead-crafting

with a hammer [255], essay writing at a keyboard [210], and in my first chapter, in mouse control

in a game 4. The explanations linking multifractality to skill and fatigue seem symmetrical: As I

noted in chapter 7, skill can be seen as the positive capacity of the user to match the complexity

of the task (e.g. [255]. Fatigue, as discussed above, can be seen as the mirror image to this — a

condition which undermines behavioural coordination. As such findings relating multifractality to

fatigue would point to future work investigating other modalities, which may open up potential for

unobtrusive fatigue monitoring in a variety of settings, for example in safety critical applications:

where there is significant interest in measures of fatigue and stress [200, 358].

8.4 Method

I first describe the component parts of the experiment in detail, before describing the protocol

via which they were deployed. A diagram of the order of the two conditions of the experiment is

provided in figure 8.1. All experiments were conducted online, and I attended each session via

video-chat.

8.4.1 Ethics

The experiment was submitted in advance to the University ethics committee, and approved (ref.

2020-7998-7945)
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8.4.2 Participants

36 participants were recruited via posts on social media and disciplinary mailing lists. 6 of these

participants did not meet criteria for exclusion, leaving 30 participants in total for analysis.

Participants were asked to freely describe their gender. 22 reported masculine ("male"/"man"/"M"),

14 reported feminine ("female"/"f"), and two reported non-binary ("non-binary"/"male-ish"). The

mean age of the group was 27.5, standard deviation was 8.3. Minimum and maximum ages were

19 and 43 respectively. All participants were fluent and regular users of written English. 26 had

English as their first language

8.4.3 Experiment Design

This experiment has a 2 condition within-subject design. The independent variable is exposure to

a fatigue stressor. The dependent variable is non-linear multifractality in the signals of key-press

timings TMF (see chapter 5. Participants all undertook both conditions. In both conditions they

completed a text composition task, during which the text and the timings of their keystrokes

were captured. In the experimental condition, before starting this text composition task, partici-

pants completed a stressor task which has been shown to induce mental fatigue. In the control

condition, by contrast, participants were not exposed to any stressor, and proceeded directly to

the typing task. Order of conditions was randomised so that half of the participants performed

the experimental condition first, and half performed the control condition first. In order to avoid

order-effects, participants did not participate in both conditions on the same day, but on separate

days.

A within-subject design was chosen for three reasons. First, in prior work in this thesis, I had

observed that multifractal signatures showed considerable individual variation. Second, I am

unable to standardise the test setup between individuals, having to rely on the configurations of

their home computers. Different measurement contexts are likely to introduce different sources

of correlated and uncorrelated noise, and both are known to have an impact on detrending during

MDFA [103, 153]. Finally, I expect I see the primary application of multifractal analyses in HCI

to be in inferring changes in user state over time, or in response to conditions.

8.4.4 Hypotheses

I test two closely related hypotheses

H1 Non-linear multifractality will be higher in the control condition, than in the fatigue

condition

H2 Non-linear multifractality will correlate negatively with self-reported fatigue

One way of seeing this difference is that H1 is a coarser measure, and H2 more precise. At

the same time the results for the two hypotheses can be interpreted together to help confirm that
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the multifractal measure correlates with self-reported fatigue, or whether it is possible that it

correlates instead with some other potential outcome of the stressor.

8.4.5 Writing Task

In the main writing task experiment, participants were asked to compose a text responding to

one of two prompts.

The writing prompts were as follow:

1. Write a short account of a situation in which you achieved something you were
proud of in the last 5 years. Please imagine you have been asked to contribute to

a collection of short descriptions of personal achievement and this is your first writing

session. The collection aims to provide examples of the many different varieties of personal

achievement. The achievement you write about can be of any kind - related to work, social

life or the family, practical and skill based, education, sports, artistic pursuits or hobbies

2. Write a short account of a day, or part of a day spent with a good friend, or friends
in the last 5 years. Please imagine you have been asked to contribute this to a collection

of short descriptions of friendship and this is your first writing session. This collection aims

to provide diverse examples of experiences of friendship and their value to people.

Participants responded to a different prompt in each condition, and the order of prompts was

randomised. In both cases I emphasised to participants that this text was to be written for an

audience of people they did not know, but who came from a similar cultural background. I also

emphasised that the account should be compelling and aim to interest the audience in the story.

Both writing prompts intentionally focus on the recounting of personal memories, and in-

tentionally emphasise writing in a compelling manner, for a public audience unfamiliar with

one’s life. Memory tasks were chosen, since previous work has argued that greater multifractality

in language production arises from the need to coordinate a wider range of cognitive resources

[210]. By focusing on participants’ memories I aimed to place demands on episodic memory

processes in addition to processes otherwise required for the creation of a new text. The focus on

an unfamiliar audience was also expected to place demands on anticipatory processes: imagining

a potential audience and their likely response to one’s text. It was also expected to provoke a

simultaneous focus on clarity and narrative construction, adding complexity to the task. Finally

these prompts were designed to be motivating to the participants, in their focus on pleasant and

meaningful biographical events, and designed to provide inspiration that would support extended

writing. I expected that most participants would be able to call to mind such episodes, and write

at reasonable length about them.

For both prompts participants were first given a few moments to think of an appropriate

event, then given 15 minutes to write their account. The task was timed by the experiment

software, and the window exited automatically at the end of the 15 minutes. They were asked to
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Figure 8.2: The TloadDBack test consists of two interpolated response tasks: a 1-back test in
which the displayed letter must be matched to the previous displayed letter, and a odd/even
discrimination test in which the current number must be categorised as odd or even. On the
1-back trials, for a match, participants must press space, and for a non-match participants must
refrain from responding. On the odd/even trials, participants must press 1 for odd, 2 for even.

write for the whole of the time available. They were told not to rush to try to finish the story in

one session, but to write at their usual pace, expecting that they would be able to pick up this

task at a later time and complete it. They were told to use the keyboard as they usually would,

and to draft, revise and edit as they usually would. The exceptions to normal practice were that

that copy and paste would be disabled (to ensure that texts were typed, and not e.g. pasted in

from a second screen), and spell-checking was disabled, to avoid distraction or incompatibilities.

Participants were asked not to move away from their keyboards, not to use their phones,

switch to other applications, or browse the web. The typing input area was centred on the user’s

screen. Text was displayed in a 12 point sans-serif font, and the input area was scaled large

enough to contain twice the length of text participants were expected to write.

8.4.6 Stressor Task

To induce fatigue I used an adapted version of the Time Load Dual Back (TLoadDBack) task [40].

TLoadDBack was chosen as it has recently been shown to induce fatigue more effectively and effi-

ciently than other commonly used mental fatigue stressors, and it also supports individualisation

of the stressor [265]. Individual differences in cognitive ability are now widely documented, and

it has been argued that standardised stressors might not reliably and consistently induce fatigue

in all participants [40].

TLoadDBack builds on two neuropsychological theories which link fatigue to cognitive tasks:

cognitive loading and time-based resource sharing. Cognitive load theory (CLT) suggests that

working memory is a limited resource which can be exhausted by tasks, resulting in acute

diminished cognitive ability [266]. The time-based resource sharing (TBRS) model suggests that

fatigue induction is affected by the amount of time available to process stimuli [27]. The two

sub-tasks in TLoadDBack place pressure on working memory and time-availability respectively.
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A diagram illustrating TLoadDback is shown in figure 8.2. In high level terms the task

combines a classical N-back working memory-update task, with a simple secondary (odd or even

number identification) task which is designed to interfere with performance on the N-back. These

tasks combine to place a high load on working memory (c.f. CLT) [40]. The participant is presented

with a string of stimuli to which they must respond. The stimuli alternate between either a single

digit or a single letter. When presented with a letter, the participant must press the space bar

if and only if this letter matches the previously displayed letter (making this equivalent to the

classical 1-back test). When presented with a number, the participant must press 1 if the digit is

odd, and 2 if the digit is even. TBRS argues that time-availability of a stimulus modulates the

cognitive demands of the associated task [40]. Accordingly, participants are given limited time to

respond to each stimulus, and this time can be modulated to control the cognitive demands of

the task. This allows the stressor can be adapted to individual ability: time-availability can be

adjusted based on performance [40, 265].

In previous work this task was individualised by altering stimulus time based on preliminary

exposure to the task. Experimenters measured participants’ performance on several initial

attempts at the task, with stimuli displayed for shorter periods of time in each task. They then

selected the shortest display time (and highest speed) at which the participant’s performance

passed a pre-defined performance threshold of 85% [265]. Performance was rated by a weighted

average of accuracy on both tasks, with letters contributing 65% and numbers 35%, since prior

literature indicated this was the more demanding task [40]. This approach is, however, time-

consuming, requiring many cycles of stressor and recovery breaks. I did not feel this would be

suitable in an online task, and felt that the long experiment time would undermine participants’

good will in engaging with the final typing task, which might impact on results. As such I altered

this approach so that difficulty adapted online, during the performance of the task. In this

approach Per-stimulus display time was initialised at 1100ms (the slowest display rate used in

previous studies [265]), and this was then adjusted based on a moving window calculation of the

same performance score used by Borragan et al., taken over 20 stimuli. For the first 20 stimuli

no adjustment occurred. Thereafter adjustment occurred every 5 stimuli. If the participant’s

average performance fell below a threshold of 82.5%, then the stimulus time was adjusted by

+50ms. If the accuracy rose above 85%, then the stimulus time was adjusted by -50ms. Stimulus

times were clamped to the range [650,1200].

Motivation is an important factor in the induction of mental fatigue. Stressors like TLoad-

DBack rely on participants sustaining high levels of attention to task throughout the course of

the activity [265]. As such I supported motivation using both informational feedback and reward.

By way of informational feedback, participants were told that they would be notified of their

performance on the task at the end of the experiment, and given the option to know their ranking

within all participants, once all experiments had been completed. By way of reward, they were

told that if they met a minimum performance threshold they would be entered into a prize-draw
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to win a £40 Amazon voucher, and that in addition the highest scoring participant would win

a £40 Amazon voucher. Participants were told that performance metrics took into account both

speed and accuracy.

Following Borragan et al. I implemented TLoadDBack using a limited set of 8 letters (A,

C, T, L, N, E, U, and P) and 8 digits (1, 2, 3, 4, 6, 7, 8 and 9) to give an equal number of odd

and even digits [40]. Pseudo-random stimulus lists of sufficient length were pre-generated. 10

distinct stimulus lists were generated for training so as to avoid repetitions of patterns which

participants might recognise. Another stimulus list was generated for the final performance

of the task. The same lists were used for all participants. All stimuli were presented in black

Arial font 96 pixels high, presented centrally on a white background. Previous researchers had

found that individualised TLoadDback induced significant levels of fatigue after only 16 minutes

[40, 265], I increased this to 20 minutes to allow for any potential reduction in effect due to the

switch to an online-adaptation mechanism.

8.4.6.1 Non-fatigue condition

In the non-fatigue condition, participants were not exposed to any stimulus in the equivalent

block of the experiment, proceeding directly to the typing stage. While some prior work has used

time-matched non-fatiguing stimuli in their control conditions — often an emotionally neutral

documentary — there are several issues with such an approach. Aside from the difficulty of

finding activities which are neutral and equally (un)challenging for participants of all interests

and backgrounds, recent work has found that such tasks can induce fatigue, sleepiness and

decreased motivation when compared to their absence [265].

8.4.7 Measures

8.4.7.1 Typing Measures

During the text-creation task, individual keystrokes and keystroke timings were captured. From

keystroke timings I computed a sequence of inter-key offset times (the time difference between

one key-down event and the next), and subjected the resulting signal to multifractal analysis,

with MDFA, as described in chapters 5 and 7.

8.4.7.2 Fatigue Measures

To confirm the effect of fatigue measures, and provide a ground truth for correlating multi-

fractal measures with fatigue, self-report measures of fatigue were administered. These were

administered both before exposure to stressors, and before the typing task.

For self report, a compound measure based on 3 metrics was used. As discussed above, prior

work indicates that mental fatigue can be divided into high and low arousal varieties. Since I
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expected both of these kinds of fatigue might impact upon coordinate of resources during a typing

task, I chose measures to capture both.

Visual Analogue Scale (VAS) for fatigue Recent research showed this to be the most effective

method for assessing mental fatigue [310]. I used a 100 point VAS, from “no fatigue” at 0 to

“worst possible fatigue” at 100. A text above the slider advised: “ Mental fatigue is different from

physical fatigue, and different from " sleepiness. Mental fatigue involves feelings of tiredness and

lack of energy. Mental fatigue is about your ability to focus or concentrate”

Brunel Mood Scale (BMS) Mood change is characteristic of fatigue [265], and in this ex-

periment, participants also responded to the fatigue components of the Brunel Mood Scale [45].

This test asks participants to read a number of mood-describing words, which capture different

components of mood. The fatigue component words are “worn-out”, “exhausted”, “sleepy”, “tired”.

For each word, participants are asked to indicate “how you feel right at this moment” on a five

point Likert scale, marked "not at all", "a little", "moderately", "quite a lot", "extremely".

Stanford Sleepiness Scale (SSS) This long-established measure captures subjective feelings

of sleepiness, by asking participants to choose which of of seven descriptions of fatigue best

captures their current feeling of sleepiness [303].

In combining these three metrics, I follow previous work on cognitive ergonomics and fatigue

[265]. Also in line with this work, I first briefed all participants on the difference between mental

and physiological fatigue.

I planned to use a combined score on these three scales using an equally weighted sum, first

validating the assumption that the combined score captured a single construct via factor analysis

and the calculation of Cronbach’s alpha and McDonald’s omega.

8.4.7.3 Auxiliary Measures

I also captured Metrics which were not directly relevant to hypotheses, but which were useful to

verify engagement with the task, and provided information which might be useful in post-hoc

investigations. In the typing task, in addition to individual keystrokes, I captured the final

completed text. This was used only to verify that users met a basic standard of engagement

and fluency. During the fatigue stressor I captured the response time and correctness of each

response, and the display time of each stimulus. Again, these measures allowed verification

that participants engaged with the task. It also formed the basis of the reward to the users. As

noted above, a prize was given to the participant with the highest overall percentage of correct

responses. Average response-time was used as a tie-breaker in the event of identical scores.
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8.4.8 Environment, and Software

The experiment was conducted online, with participants logging on from their own homes

(since this was conducted during a period when lockdowns affected most of the world). For

better or worse, in-person experiments implicitly rely upon aspects of the laboratory setting, and

participant-experimenter relationship to support engagement and compliance — something which

is not available in online experiments, and which has been related to known issues of compliance

and engagement in online experiments [175, 233], particularly in complex or challenging tasks

[41]. As such I made particular efforts to verify the appropriateness of users’ environments during

experiments, and to develop a motivating rapport. I felt this was particularly important in this

case due to my use of a fatigue stressor, which I expected to present a somewhat challenging

experience for some users. I expected that without my presence, and without some degree of

rapport, not only would many participants drop out during the stressor task, but that these

dropouts would be likely to bias results, since I could expect higher dropout rates in participants

who were more affected by the stressor.

Before the experiment, I asked participants to find a space free from distractions, where

they would not be interrupted for the course of the experiment. They were told to use a familiar

push-button keyboard for typing: either a laptop, or a desktop computer, and not a touchscreen.

I also asked them to refrain from drinking caffeine for the 3 hours before the experiment, and

to pick a time of the day for the experiment when they would usually be alert. At the start

of the experiment, I asked participants to open their cameras and microphones. For relevant

sections of the experiment they were asked to switch to sharing screen. This allowed me to verify

a distraction free environment, and continual engagement with the task. I also opened my own

camera and mic, closing them in relevant sections to avoid distraction (see procedure for detail).

Software was developed using the jspsych library [77], a framework for developing psychology

and psychophysics experiments which is designed to provide robust timing in stimulus presenta-

tion and input capture in the web browser. The framework largely focuses on capturing timing

of response to stimuli, and does not have native facilities for capturing longer-form text input.

As such I developed a new jspsych plugin to capture keystrokes during text input on a standard

web-UI form interface element. This necessitated a small change to a core function to allow

default UI text input behaviour to be displayed in web-forms, alongside jspsych’s own handling of

the input events.

For the stressor and writing tasks, the software automatically set the experimental software

to fill the user’s full screen. This was done to avoid distractions, and discourage any instinct to

open other applications or browse the web.

8.4.9 Procedure

A timeline of the procedure is provided in figure 8.1. Participants all took part in both conditions

of the experiment - fatigue and non-fatigue. These conditions took place on different days, to
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ensure that the fatigue stressor did not impact on the non-fatigue condition. The order of fatigue

and non-fatigue conditions was randomised and balanced.

Each session of the experiment began with introductions and some conversation to put the

participants at ease, during which I asked them to turn on their cameras. Next I progressed

to questions concerning participants’ eligibility, their current state of alertness, and quality

of sleep the previous evening, and their compliance with the requirements of the experiment

(not having consumed caffeine, having an environment free of distractions, working on a push-

button keyboard). In one case the participant indicated having drunk coffee by accident, so

the experiment was rescheduled. After completing these questions concerning eligibility the

participants were asked to read a description of the experiment, and a consent form, and confirm

consent.

After this, participants were asked to prepare themselves and their environment for the

uninterrupted completion of the remainder of the experiment. They were asked to perform any

personal comfort activities, adjust their seat, computer setup, and lighting for comfort, and take

any other measures required to diminish the potential for distractions in their environment,

including informing others in their environment about the experiment.

When this was completed, the experiment proceeded. At this point I informed the participants

that the experiment software would now request to display full-screen, and that if they exited

full screen before the experiment was over, this would invalidate the experiment. I also asked

participants to share screen for the remainder of the experiment.

8.4.9.1 Elements specific to the fatigue condition

In the fatigue condition only, participants first completed the pre-stressor fatigue questionnaire

described above, before practising and completing the fatigue stressor task described above. I

did not describe this stage to participants as a stressor task, but simply as one stage of the

experiment, and referred to it (accurately) as a difficult cognitive test which can be revealing

about on working memory capacity.

Since the stressor task combines two distinct, alternating, sub-tasks, I asked participants to

practice each sub-task independently before practising the combined task. Participants needed

to achieve a sufficiently high score to indicate that they had understood and mastered the task

before proceeding to the next stage. Finally, before proceeding to the stressor task proper, I asked

the participants one more time if they felt the need for a comfort break, explaining that the

remainder of the experiment must be completed in one continuous block.

Finally, in this portion of the experiment, I told participants that I would close my camera

and microphone to avoid distracting them from the task, but would continue to observe their

screen. Participants were then asked to complete the full 20 minute stressor task.
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8.4.9.2 Elements common to both conditions

For the remainder of each experiment, both conditions were identical. First, participants com-

pleted the fatigue questionnaire described above (in the fatigue condition, this was the second

completion of this questionnaire). Next, participants I introduced participants to the typing task,

explaining details of the task, before asking them to answer three multiple choice questions

which verified that they understood the task. After this, participants began the task. I closed my

camera and microphone to avoid distraction but asked participants to continue sharing their

screen, and to keep their microphone open.

Finally, after participants had completed the writing task, I again turned on my camera. I

asked them to tell me about any issues they had noticed during the experiment, and to write

these issues into a text box provided for this purpose.

8.4.10 Analysis

8.4.10.1 Statistical Tests

Since I expected inter-individual differences to be potentially large, and primarily see value in

this approach in tracking changes in individuals over time, I used repeated measures hypothesis

tests. For H1 I planned to use a dependent t-test for paired samples. For H2 I used the rmcorr

test repeated measures correlation. This is “a statistical technique for determining the common

within-subject association for paired measures assessed on two or more occasions for multiple

individuals” which proceeds without averaging or agreggation and so overcomes issues which

arise when applying simple regression and correlation tests to non-independent observations and

aggregated data. The approach fits separate parallel lines to the data from each participant, with

the slope of this line giving the rmcorr coefficient, and calculates correlation with these lines. I

calculated this using the implementation of rmcorr in the python pingouin package. See appendix

A for details.

8.4.10.2 Exclusion Criteria and Data Preparation

Since this experiment was conducted online I expected that, as in prior work [41, 175, 233],

participants show lower compliance than in in-person experiments; even with me ‘attending’ the

experiment via video chat. I also felt that other factors might adversely influence performance.

Expecting that these and other issues might necessitate exclusion of some participants, I defined

exclusion criteria ahead of the experiment.

EF Evidence of Fluency Since this test involved writing in English, it was important to

ensure that participants met a basic standard of fluency in written English. First at

recruitment stage participants I emphasised that fluency was a condition for participation.

I then conducted further checks on fluency (0 exclusions total)
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EF1 Self-report of fluency. If participants reported a level of fluency other than "native

speaker" or "fluent" (0 exclusions)

EF2 Writing Check If spelling and grammar on the completed texts was very poor. (0

exclusions)

EDlx Dyslexia If participants reported they had been diagnosed with dyslexia. (1 exclusion)

ED Evidence of Disengagement (6 exclusions total)

ED1 Screen Observation. If over the whole experiment at least one seriously distracting

events was observed either via screen sharing, webcam or microphone (1 exclusion -

cat interrupted session)

ED2 Stressor Engagement If during the stressor task, the percentage of correct responses

was more than 3IQR below the mean (3 exclusions)

ED3 Large Gap in Typing If there was a gap of more than 1 minute during the first 1700

keystrokes of the typing task (3 exclusions)

ED4 Very Short Text If the length of text produced was 3IQR below the mean (1 exclusion)

6 participants were excluded in total, with two participants being excluded under multiple

categories. Among the participants who had a long gap in their typing, one also created a very

short text, and another also had a very low accuracy score on the fatigue task.

8.4.10.3 Parameter Tuning and Signal Inspection

I followed the approach to inspection tuning and validation outlined in chapter 5.

Initial inspections of the histograms (fig. 8.3) of the interkey intervals showed evidence of the

quantising observed in some datasets in chapter 7. Again, I saw regular peaks at intervals of

8ms, but also a less emphasised pattern of peaks at intervals of 1ms. These quantising patterns

were not, however, as pronounced as the patterns observed previously, nor did I see evidence of

clustering around a particular single value. As such I moved on to parameter selection.

As discussed in chapter 5, and evidenced in chapter 7, signal length can impact on the results

of MFA. As such, before analysis, signals were truncated to an equal length. Since the shortest

series in the data-set was 1527 keystrokes long, I truncated all signals to 1526 inter-key intervals.

The KLM data-set in the previous chapter was analysed with a signal length of 1400 inter-key

intervals, producing high quality of fits and a strong observed effect size, indicating that this

signal length would be sufficient. This signal length was used both for tuning and for the final

analysis.

First I selected the q exponents and the order of the detrending line, beginning with the

candidate parameters described in section 5.3.4.1, and selecting those values which maximised

the sum of the t-statistic quantifying lon-linear multifractality,
∑

TMF , across all signals in the
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Figure 8.3: Histograms of the interkey intervals (in ms) for the typing task. Above: whole
distribution, below: truncated to show detail below 50ms

data set, blind to condition. I did not observe issues with fitting the fluctuation functions, which I

found in the data-sets that exhibited more serious quantising issues in chapter 7; here r2 values

for fitted lines were all above the predefined threshold of acceptance of 0.99. The top ten scoring

parameter sets are shown in figure 8.1.

I then used the highest scoring parameters (o = 5, q = [−2,2]) to select the maximum scale of

analysis. The signal length was 1526 keystroke intervals, so candidate parameters were defined

as [64,96,128,192,256] - going up to just below 1/4 of the signal length (as in all work using

MDFA in this thesis, a sliding window implementation was used to improve stability of fits at the

largest scales — see 5.3.4.3). These scales were plotted against values of
∑

TMF (fig. 8.4) and the

kneedle algorithm [297] was used to find the knee point — at maximum scale of 192. In this case

this scale also resulted in the highest value of
∑

TMF . Fluctuation function fits for analysis with

these parameters had r2 values above the minimum threshold of 0.99.
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Table 8.1: The 10 highest scoring parameter sets for the fatigue data∑ |t| order qmin qmax r2 min r2 mean
317.9 5 -2 2 0.9995 > 0.9999
316.7 5 -1 3 0.9992 > 0.9999
312.9 4 -2 2 0.9994 > 0.9999
311.2 4 -1 3 0.9993 > 0.9999
305.7 5 -2 3 0.9994 > 0.9999
304.2 3 -1 3 0.9992 > 0.9999
303.4 3 -2 2 0.9994 > 0.9999
301.6 5 -1 4 0.9991 > 0.9999
301.5 4 -2 3 0.9995 > 0.9999
297.3 4 -1 4 0.9992 > 0.9999

Figure 8.4: plot of maximum scale of analysis vs
∑

TMF , the vertical line marks the knee point,
as identified by the kneedle algorithm

8.5 Results

8.5.1 Fatigue Measures

The results of the individual self-report fatigue tests indicated that the fatigue stressor had been

effective at inducing fatigue. For plots of these results see fig 8.5. In all cases fatigue scores

were higher in the fatigue condition than in the control condition. I judged that differences were

sufficiently clear from visual inspection and did not conduct confirmatory tests. The smallest

effect was in the SSS quantifying sleepiness.

Factor analysis and reliability tests for these three measures indicated that they together

captured a single factor. On an initial 3 factor analysis, only the first factor had an eigenvalue

above 1.0 (fig. 8.6). Analysed as a single factor, the loadings were V AS = −0.73,BRUMS =
−0.93,SSS = −0.67, and this factor captured 62% of the total variance. Cronbach’s alpha is

the most commonly used reliability test for psychological scales, but concerns have recently
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Figure 8.5: Plots of the three individual fatigue measures and the combined score. Grey lines join
the same participant in each condition. Red lines pick out participants whose results ran counter
to the general trend

Figure 8.6: Left: scree plot for the factor analysis of fatigue results. Eigenvalues over 1.0 are
generally taken to indicate reliability. Right: Histogram of the differences in TMF

been raised about its stability under certain conditions. Cronbach’s alpha is a special case of

McDonald’s omega, with the latter making less restrictive assumptions and now recommended

by many as a replacement for alpha [136]. As such I calculated both Cronbach’s alpha and

McDonald’s omega. The results for both scores were closely similar: α= 0.79ω= 0.82. On both

scores 0.7 is often considered an acceptable cutoff for reliability. As such I proceeded by combining

these into a single score as initially intended, as an equally weighted sum of the three measures.

Again, the plot of the results for this combined fatigue score are found in fig. 8.5, indicating a

clear difference between scores in control and fatigue conditions.

8.5.2 Multifractal Features

I calculated TMF — a t-statistic quantifying non-linear multifractality — from the inter-key

interval series captured from the participants during the typing task, according to the approach

178



8.5. RESULTS

Figure 8.7: Selection of maximum scale of analysis by plotting TMF against scale of analysis. The
knee point found by the kneedle algorithm corresponded to the highest value of TMF

described in chapter 5, and using parameters selected as described in section 8.4.10.3. The results

for these features are plotted in fig 8.9 I investigated values in the tails of the distribution of TMF

and no data quality issues were identified which pointed to potential exclusion. The resulting

fluctuation function fits in these cases were strong (r2min > 0.999, mean > 0.9999), and there

were no outliers in the distribution of differences between conditions (important since I use

repeated measures tests) — see fig 8.6.

8.5.2.1 Difference Between Conditions

I conducted Shapiro’s tests and Levene’s tests normal distribution and equal variance respectively.

In both cases p > 0.05: I did not find evidence that data were non-normally distributed, and

conditions were of equal variance. As such I tested my first hypothesis using a directional,

dependent, t-test for paired samples, and calculated Cohen’s d to quantify post-hoc effect size. I

adjusted my result using a Bonferroni correction for 2 hypotheses, multiplying calculated p values

by 2 to get the reported results. t = 3.75, p < 0.001,d = 0.61. For H1 Non-linear multifractality

will be higher in the control condition, than in the fatigue condition, These results thus provide

evidence to reject the null hypothesis.

8.5.3 Correlation between Fatigue and Multifractality

I then came to test H2: non-linear multifractality will correlate negatively with self-reported

fatigue. I tested the correlation between TMF and the combined fatigue score (whose reliability I

tested in section 8.5.1) using the rmcorr repeated measures correlation test (see section 8.4.10.1).

The plot of this regression is shown in 8.10. After Bonferroni correction for two hypotheses, the

179



CHAPTER 8. MULTIFRACTALITY IN TYPING PREDICTS USER FATIGUE

Figure 8.8: Intermediate analysis plots for one participant over both conditions. Above - partition
function. below left tau plot, right: holder plot

Figure 8.9: Plots showing results for multifractal features between conditions. left: width (w),
right: nonlinear multifractality (TMF ). Lines join data for the same participant. Red lines pick
out participants whose results ran counter to the general trend.
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Figure 8.10: repeated measures correlation plot of TMF against the combined fatigue score. The
lines show the prediction of the model — a gradient of -0.438, fitted to each pair. Points show
observed results, and are joined to the predictions by dotted lines. The results of the rmcorr test
gave p = 0.026, power = 0.713

results of the rmcorr test provide to reject the null hypothesis for H2: r =−0.438,dof = 29, p =
0.026, power = 0.713

8.5.4 Post hoc Analysis

8.5.4.1 Analysis of Other Features

As noted in section 6.3, prior work has suggested that simple linear keystroke features may

also be used to predict fatigue. As such I conducted post-hoc analyses of the predictive power of

five other statistics which had been associated with fatigue and exposure to stress in previous

work: the mean and standard deviations of the inter-key interval [3, 173, 272, 340, 354, 356], the

percentage of correction keystrokes (delete, backspace, arrow) [173, 354, 356], pause rate (Total

pauses / total keystrokes, where a pause is defined as a gap of 0.5s) [354, 356], and the lexical

diversity of the final text [354, 356] (Total unique words / total words).

Results for these additional measures are plotted in figure 8.11. No plots indicate strong

differences between conditions. The largest differences are observed in the mean the standard

deviation of the inter-key interval, though even here populations are closer than for the multifrac-
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Figure 8.11: Plots showing features summarised from keystroke inter-key intervals (IKI) between
conditions. top, from left to right mean IKI; standard deviation IKI; nonlinear multifractality
(TMF repeated for ease of comparison). Bottom, left to right: lexical diversity; pauses; corrections.
Grey lines join the same participant in each condition. Red lines pick out participants whose
results ran counter to the general trend

tal measure. In both cases the means for the two conditions are within one standard deviation

of one-another, and for the mean inter-key interval means are quite close pointing to a smaller

effect size at least. For each of the other measures, means for the two conditions are very close.

8.5.4.2 Signal Length

As discussed in the previous chapter when considering applications of MFA in HCI, it becomes

an important question what length of signal is required to discriminate between conditions. I

therefore conducted post-hoc analyses on the effect of signal length on reliability of results, and

on the ability to discriminate between conditions — just as I did for the three typing data-sets

analysed in the previous chapter (section 7.6). As in that case, I once again computed multifractal

spectra and TMF for all signals in the data-set, as described in the method section above, only

182



8.6. DISCUSSION

now I repeated this analysis for different lengths of signal. Length was altered by end-truncating

the signals. I used signal lengths of 256, 384, 512, 640, 768, 896, 1024, 1152, 1280, and 1526

— the final signal length being that used for the results above. For these analyses I used the

parameters selected in section 8.4.10.3.

To quantify reliability of the analysis, I calculated r2 values for the fits of the fluctuation

function, and average TMF across all signals regardless of condition. These measures are dis-

cussed in chapter 5. To summarize: the fluctuation function is the basis of further calculations of

multifractal spectra, and the quality of fit is an important indicator of the reliability of results.

TMF across the data-set indicates the distance in standard deviations between the widths of

multifractal spectra for the original signal, and those of population of phase-scrambled surrogates

derived from these signals. Phase scrambling here disrupted non-linear features in the signal.

This value will be higher overall if the estimated spectra reflect non-linearities in the signal than

if they reflect spurious linear properties. Again, as discussed in chapters 3 and 5, it is important

when interpreting multifractal properties that we can be confident they derive from non-linear

features in the measured system. As a t-statistic, it can be interpreted like a z-score, indicating

the number of standard deviations of the width original signals from the mean. The results of

these analyses can be seen in fig. 8.12. As observed in the previous chapter, both measures of

reliability increase with sample length. Here both measures are adequate across the full range of

sample lengths analysed.

To quantify the ability to discriminate between conditions, I calculated both the dependent

t-test for paired samples, and Cohen’s d. Here these are not used as hypothesis tests, and I

emphasise that it would be invalid to interpret them as such — their absolute values should not

be treated as informative. They serve purely to support comparison. The results of these analyses

can be seen in fig. 8.13. Effect sizes are smaller for the multifractal width than for TMF across

all scales — as discussed in chapter 5, and observed in chapter 7, the latter is the more reliable

measure for quantifying changes in the cascade dynamics which are theoretically associated with

flexible adaptation and executive control, and which I hypothesised would be undermined by

fatigue. In the work reported in the previous chapter, where the difference between the conditions

was expected to be quite large, effect sizes and p-values remained quite strong even at smaller

scales of analysis. In this case, both drop quite quickly below a sample length of 1152. This is

broadly in line with previous advice on signal lengths for multifractal analysis (e.g. [163]).

8.6 Discussion

8.6.1 Overview of Results

The results of this experiment provide evidence that user fatigue during a short typing task is

predicted by a signature of nonlinear multifractality which can be easily analysed from keystroke

timings. First, there was a significant difference in participants’ multifractal signatures between
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Figure 8.12: Effect of sample-length on quality-of-fit in the fluctuation functions (above) and TMF .
Error bars mark the 95% confidence interval

the two conditions: the measure of nonlinear multifractality TMF was significantly lower in

participants’ typing after they had engaged in a task which induced mental fatigue. The results

also indicate that the widths w of the multifractal spectra were consistently lower in the fatigue

condition; though I did not set out to test this hypothesis: the TMF measure was more directly

related to the hypothesis tested, and work in the last chapter showed it to be the more reliable

and discriminatory measure. That finding was borne out here, with the effect sizes for w in the

post hoc analysis consistently lower than those for TMF . Second, and significantly for future

applications in HCI, I also found significant evidence that changes in TMF predicted self-reported

fatigue scores.

8.6.2 Implications for Applications Inferring User Fatigue

The finding that changes in TMF predict fatigue points to the potential to use TMF to infer user

fatigue during typing. This might be applied alongside other metrics to infer good moments to

suggest breaks [3, 50, 75, 173, 185, 272] or changes of activity, or simply to provide descriptive

feedback for the user’s own sense-making (as in e.g. [22]).

The results, and the timescales over which they were captured, indicate that this approach
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Figure 8.13: Effect of sample-length on p-value (above) and effect size (cohens d, below) for
differences in TMF and w

would fit into ordinary day-to-day typing contexts. The time-frame of the typing task in this

experiment was 15 minutes, but methodological constraints meant that it was necessary to

truncate time-series to match the shortest signal in the sample. As a result the data captured

represents a mean of about 7 minutes of typing per participant. The post-hoc analysis of the

effect of signal length indicates that results became unreliable below around 1152 keystrokes

(equivalent to around 5.5 - 6mins). Given the post-hoc nature of these analyses, this should be

treated conservatively. As in the previous chapter, the analysis relies on end-truncation which

will focus shorter signal lengths on the beginning of the activity, and this needs to be taken into

account when interpreting this result. The r2 results for quality of fit do however provide strong

indication that at least some of this effect will be due to data quality (fig 8.12). Finally, it is worth

noting that this signal length constraint primarily affects measurement at the beginning of the

activity: if N keystrokes are required for reliable analysis, the first reliable measurement cannot

occur until N keystrokes have been captured. Thereafter, however, a moving-window approach

can be taken to analysis, repeatedly analysing the previous N keystrokes at a frequency only

limited by available system resources. After an initial c7 minute delay, it would be quite possible

to analyse the signal every 20 seconds, for example. When inferring fatigue this seems to me a
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reasonable constraint, as few tasks are likely to induce fatigue so quickly that a c7 minute delay

would be problematic.

While these results on timing are only preliminary and would need confirmation in future

studies, they serve to guide us towards potential applications in real world writing tasks. A delay

of around 7 minutes would rule out applications in shorter tasks, such as micro-blogging and very

short emails. Not only this, but in such tasks it seems likely that the challenge and complexity

involved — the demand on flexible behavioural coordination — may not be sufficient for effective

measurement. This constraint points instead to more extended and demanding tasks, such as

creative writing, or writing essays, white papers, and blog posts. In these contexts concentrated

periods of 15 minutes and far longer are unreasonable. For context, the popular “pomodoro

technique” for breaking up large writing tasks suggests that writers work for blocks of around 25

minutes, with 5 minutes break in between [128]. As discussed in section 6.3, writing methods

like this are often already supported by apps, and these apps often already provide metrics and

feedback to writers. These apps might easily be augmented with multifractal measures to drive

suggestions for breaks and task-switching. Alternatively, multifractal features may be suitably

summarised and interpreted alongside other metrics, and fed back to the user for their own

sense-making.

These results concern writing, but keyboard activities in HCI are by no means restricted

to writing — what of applications in other areas? It is of course not possible to infer strongly

from these results to their generalisation in other kinds of keyboard use and even typing. As

indicated by the results in chapter 7, much will depend on the complexity of the task, and the

demand it places on flexible adaption. Nonetheless, it seems clear that the results here, and the

theoretical account explaining them, point to value in future research exploring the application

in different tasks. One avenue might be to investigate computer games with keyboard interfaces,

from platform games to puzzle games like Tetris — though thought will have to be given to

whether the game imposes its own rhythm on behaviour, as in the case of rhythm action games,

for example. In exploring this territory, prior work on fractality in button-push reaction times

(e.g. [142, 143] and in musical pulse response (e.g. [280]) are likely to provide methodological

guidance.

A more promising application area, and one more directly connected to the task here, seems

to me to be the authoring of computer code. Errors in coding due to fatigue are well documented,

as is the industry’s tendency to valorize “crunch” periods of prolonged high intensity work [70]:

as such the ability to infer fatigue in this context seems valuable. The interaction conditions

in coding also seem suited to the constraints discussed above: software developers prefer fairly

extended coding sessions, and interfaces which allow them to maximise periods of uninterrupted

engagement [207]. Some software developers will even go so far as to select interfaces and tools

such as VIM, which avoid the need to shift from mouse to keyboard, something which seems

likely to improve the fidelity of the measurement by ensuring that all interaction is captured
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through a single, continuous, input modality. Coding is, however, a quite different kind of task

than writing, with quite different dynamics. As such, further work will be required to investigate

multifractality in coding key-press time-series, and its association with task complexity and

fatigue.

Finally the results in this section once again point to the value, for future HCI research which

makes use of MFA, in focusing on on TMF - the t-statistic capturing nonlinear multifractality,

rather than the spectrum width w. In the experiment described in this chapter I focused my

hypotheses on TMF , rather than w, both because TMF is more directly and clearly connected

to the changes in interaction dominance I expected (see 5.2.1.3), and more practically because

empirical work in the last chapter indicated that TMF had more discriminatory power than w.

This second, practical, point was borne out in the results in this chapter: effect sizes in the post

hoc analysis for w were much smaller than those observed for TMF .

8.6.3 Scientific Significance and Wider Implications for HCI

Beyond immediate, practical, contributions to HCI, the empirical results in this part of my

thesis (in this chapter and chapter 7) also make wider scientific contributions, which also

have implications for HCI research insofar as it makes use of psychological models of the user.

Specifically, the work in this part of my thesis adds to a growing body of evidence that control and

executive control and performance during skilful tasks display interaction dominant dynamics.

executive control can be described as the self monitoring and adaptive control of behavioural

resources towards the completion of goals [9], making its relationship to skilled behaviour quite

clear.

As explained in my background chapter, interaction-dominant and component-dominant pro-

cesses are organised differently, leading to statistical and dynamical differences which show up in

the multifractal spectra of overt, task-directed, behaviour (see [190] and chapter 3). In interaction-

dominant processes, behaviour emerges from cascade structures — reciprocal multiplicative

interactions between neuro-physiological processes of diverse scales – leading to wide multifractal

spectra with large non-linear contributions [161]. In a component-dominant processes, behaviour

is under centralised and modular control: built up from functional modules in a more-or-less

composable way, via additive rather than reciprocal and multiplicative interactions. Such struc-

tures give rise to narrow multifractal signatures with weak or absent non-linear contributions

[161, 190]. Since interaction dominant structures are associated with flexible adaptive behaviour,

it has long been theorised that they may provide a foundation for higher level phenomena such

as agency and executive control [166, 348, 349], and more recent work has begun to provide

evidence for their role in purposive skilful behaviour [255] and executive control [9, 191, 316].

The contribution of the work in this part of my thesis is best articulated in relation to some

of this prior work. Work by Kelty-Stephen et. al. observed differences in multifractal spectra

between two versions of a card sorting task which placed different demands on executive control.
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In the simpler task participants were given the rule for card sorting ahead of time, and simply

needed to execute it, responding appropriately to the cards which were dealt to them. In a more

complex version of this task, where performance is known to be predictive of executive control,

participants needed to flexibly induce the rules for card sorting as the task progressed, while

sorting the cards [316]. A direct comparison can be drawn to the simpler and more complex

typing tasks which I analysed in the last chapter, confirming findings by Wallot & Grabowski

[359], particularly given the growing emphasis upon writing tasks in general as paradigmatic

examples of executive control [214]. There again, multifractal signatures differed significantly

between tasks which can be expected to place differential demands on executive control. Going

beyond prior work, I provided stronger evidence for the basis of these differences in interaction

dominant dynamics, by conducting surrogate analyses, and showing that non-linear contributions

to the spectra were significant, and larger in the more complex task. I found that this result was

consistent across three quite different writing tasks.

Finally in this chapter, I built on this baseline of evidence to provide evidence linking changes

in interaction dominant dynamics to another condition which is expected to affect executive

control: fatigue [342]. Here I followed previous work in associating multifractal signatures not

only with the executive control demands of the task, but also with the participant’s capacity

to meet these demands. Likens et al. had previously shown that multifractal signatures in

typing predicted a essay quality, associating multifractal signatures with skill [210], and in the

other direction Stephen et al had associated multifractal variation in a circle-drawing task with

impairments to executive control due to ageing [191]. My work in this chapter, then, extends these

findings to a more acute, and episodic form of impairment — fatigue — showing that a measure of

non-linear multifractality TMF was lower in writers who had been exposed to a fatigue stressor,

and predicted the participants level of fatigue. In the context of the previous work discussed

above, I interpret this result as evidence that fatigue impairs the ability to coordinate behavioural

resources effectively in those cascade structures which are thought to support flexible adaptation,

and executive control.

8.6.3.1 Wider Implications for HCI

This broader scientific context also points to implications for HCI. While the results in this chapter

show that changes in multifractality can be used to infer fatigue in the user, the wider context

of empirical and theoretical work on multifractality in behaviour indicates that multifractality

is primarily a marker of something more fundamental: the user’s skilful, flexible adaptation

to the task context. As such variations in multifractality might stem from a variety of causes

depending on context. Referring back to the experiments on mouse-use in chapter 4, that work

showed that changes in multifractality can follow from skill, engagement, and tool breakdown.

In the experiments described in this chapter conditions are controlled enough to allow us to infer

the cause of the change. In the real world, the cause of a reduction in multifractality will be
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ambiguous without additional contextual cues: perhaps due to user fatigue, sudden mismatch

of task-challenge with user skill, or tool breakdown. Future work seems likely to point to other

sources of change: I noted in chapter 4 that the association with readiness-to-hand would predict

that the user’s control behaviour may go through cycles of high and low multifractality during

a task, as they switch between engaged and reflective modes of engagement. In some cases the

task context and the pattern of change in the multifractal feature may be itself itself enough to

significantly clarify the most likely cause: in a pomodoro writing app, for example, consistently

decreasing multifractality over a number of writing sessions, or within one session seems most

likely to point to fatigue. In other cases however, this ambiguity with respect to the cause of the

observed change may pose both challenges and opportunities for the use of the measure in HCI.

In the discussion at the end of this thesis, I address the issues raised by this in greater detail,

but for the moment some implications and routes forward can be quickly sketched.

Perhaps the most obvious broad approach here would be to use other contextual information

and features of user behaviour to augment the multifractal feature and disambiguate the cause

of change. Such information might include the kind of task the user is engaged with, their past

patterns of behaviour, eye gaze patterns, and in the case of writing tasks, textual features: for

example the percentage of key-strokes which delete or otherwise correct existing text. Another

route forward, which can be pursued separately or in tandem with the above, would simply focus

on the multifractal feature as a measure of coupling, which itself is expected to predict certain

features of user behaviour and experience. This would expand on the approach I pointed to in

chapter 4, grounding interventions in accounts of readiness-to-hand and the user’s coupling to

task. To recap, this account predicts that a cluster of behavioural and experiential constructs will

co-vary with changes in the user’s coupling to the task. Increased multifractality, as a marker of

coupling during an episode of interaction, would be expected to correlate with reduced attention

to the tool, and a more practically engaged (as opposed to reflective, and critical) attitude. As

I noted, these findings would need to be confirmed and their bounds of validity identified. In

particular, their interaction with fatigue requires investigation. However, assuming these results

remain consistent, large decreases in multifractality could then be taken to indicate moments

when the user is less practically engaged, and more aware of and open to interface notifications,

and communication with the system. Such moments could be used to deliver information, suggest

breaks, or engage the user in reflective sense-making interactions regarding their current state

and activity. This latter approach can be seen as more consistent with ideas articulated in

embodied and situated accounts of interaction, and with enactivist accounts of cognitive science.

Where many approaches to user quantification emphasise the effort to read the state of the user,

these approaches often emphasise affective and attentional autonomy [158], and collaborative

sense-making around the user’s interactions with technologies and the world [347].
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8.6.4 Limitations and Future Work of Results

Recent work has argued that mental fatigue is not a simple, singular phenomenon, but that there

are at least two distinct varieties of mental fatigue. In work task engagement and performance,

both under-arousal (e.g. boredom, or sleepiness) and high-arousal fatigue can result in lower

engagement with a task [147, 265]. Recent work has pointed to the importance of distinguishing

cognitive fatigue from low arousal states such as sleepiness and boredom, which may have

different impacts on capacity to perform, and ultimately on task performance [147, 148, 265].

In the work in this chapter I selected a fatigue stressor which was previously found to produce

high-arousal fatigue, and low-sleepiness [265], and selected self report measures which would

allow some separating out of these factors in post-hoc analysis. However, factor analysis of the

fatigue results revealed only a single clear factor, meaning the results did not support this

kind of differential analysis, and both measures of mental fatigue and sleepiness were clearly

affected by exposure to the stressor. As such it is not clear to what degree the effect observed

is due to high or low arousal fatigue. Further work would be required to situate the work in

this chapter within this landscape, and there will be value in studying multifractal signatures

in relation to important neuroergonomic concepts such as mind-wandering, perseveration, and

effort withdrawal.

8.7 Summary

The results in this chapter show that fatigue during a writing task results in reductions in

nonlinear multifractality in typing There is considerable evidence that people have a poor ability

to report on their own levels of fatigue, and this is known to create issues in a range of situations.

I have pointed to potential applications of this result in future writing support technologies,

and suggested that future work might investigate the applicability of the measure in software

development, where long coding sessions are common, and there is a risk of coders continuing to

work past the point where fatigue is likely to increase errors. Since the principle underlying this

approach is not linked to typing, and there is evidence linking multifractality to adaptability and

executive control in a range of quite different tasks, I suggest that there is potential for future

work to investigate the value of multifractal measures to infer fatigue in a wide range of different

activities. In part this work will involve understanding the differential impact of fatigue and

other factors which have been shown in this thesis to affect multifractality.

Finally, the work in this part of my thesis, which concludes in this chapter, makes scientific

contributions beyond the boundaries of HCI. These results contribute to a growing body of

evidence that executive control has its foundation in interaction dominant dynamics. This

has wider scientific implications for how behaviour should be formalised and studied. See for

instance recent calls by Amor et al. to shift behavioural research to a focus on understanding

“emergent phenomena from an underlying nonlinear system operating at a neuromotor level” [8],
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or discussion by Cavanaugh et al. of the implications of multifractality in movement for practices

in clinical rehabilitation [54].
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Multifractality in Interactions in the
World: Analysis of Eye Gaze
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9
MULTIFRACTALITY IN EYE-GAZE CORRELATES WITH SKILL IN THE

CONTROL OF COMPLEX MACHINERY

9.1 Summary

This chapter

• Describes an analysis of data from a prior experiment, to investigate the correlation between

multifractal signatures in eye-gaze, and users’ experience with the task

• Data is captured during the control of complex forestry machinery, showing the value of

these approaches for computer support of training tasks outside of the desktop environment.

• Data is captured via a head-mounted eye-tracker, under realistic training conditions,

outdoors, demonstrating the potential to apply these methods in the wild.

Findings

• Signatures of non-linear multifractality are stronger in experienced machine operators,

than in novices.

9.2 Introduction

This is the last empirical chapter of the thesis. It applies the approach developed in previous

chapters to a quite different data source and activity. It investigates MFA of eye-movement as an

approach to inferring skill in the operation of complex machinery. At the same time, the work in

this chapter marks a significant shift from previous work in this thesis, in ways which help to

broaden our understanding of potential applications of multifractal analysis in HCI.

195



CHAPTER 9. MULTIFRACTALITY IN EYE-GAZE CORRELATES WITH SKILL IN THE
CONTROL OF COMPLEX MACHINERY

1. This chapter marks a shift away from the desktop and towards scenarios of computa-

tional support in training and the workplace, broadening understanding of the application

contexts in which MFA might be applied.

2. It also marks a shift away from the analysis of control-movements, towards the analysis

of sensory-movements. Previous chapters focused on traces of hand movement on mouse

and keyboard which enacted the task. This chapter focuses on eye-movement, captured

via a eye-tracker, serving to ensure task performance remains coordinated with processes

and constraints in the environment. In this sense, the work in this chapter extends the

implications of this thesis to address information-centric accounts of Embodied Interaction,

such as distributed cognition, where the coordination of user action with information in the

environment is considered a key factor.

3. This chapter marks a shift towards data captured in-the-wild. Data were captured outside,

during real-world training tasks, in a forestry-work training centre. In this sense this

chapter contributes to the understanding of real-world applications of MFA.

The approach taken in this chapter is otherwise consistent with the other empirical chapters,

and continues building on the same theoretical foundations: hypotheses are elaborated based on

accounts of interaction-dominance in the control of behaviour. I test the hypothesis that non-linear

multifractality in eye-gaze will correlate with skill (quantified by participants years of experience

in the task) . This is expected on the basis of recent findings linking multifractality in eye-gaze

to complex interactions between motor and visual pathways during hand-eye coordination. It

also builds directly on my work in chapter 4, where I observed that skill (quantified by length

of experience with a simpler task) correlated with level of multifractality. I test this hypothesis

via MFA of eye-movement signals which were captured under real world working conditions,

during an authentic forestry-work training task, featuring expert and novice forestry workers.

This experimental work was not carried out by me, but by other researchers at the University of

East Finland [199] who agreed to grant me access to the data-set and provided some guidance

on relevant prior work in eye-gaze analysis. I conduct a reanalysis of their data. As in previous

work in this thesis, the experiment not only points to scientific results, but reveals positive

practical features of MFA as a metric of skill relative, relative to competing methods. Unlike

other metrics of skill based in eye-movement, MFA of eye-gaze does not require mapping gaze

to scene [157, 232], nor rely upon high-level patterns of behaviour which can be invalidated by

gross changes in behaviour that occur during learning [293].

The results confirm my hypothesis, and demonstrate the potential value of the approach for

future applications in observing and understanding skill and learning in complex interactions

with technology. In my discussion at the end of the chapter, I point to the value of the approach

not only for computer supported skill training, but also for monitoring of risk in safety critical

conditions. I also point to practical benefits of the approach in terms of implementation in real
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world conditions, since the approach can dispense with error-prone scene mapping steps required

by most eye-tracking approaches.

9.3 Background

In research on HCI, human-factors, and skill training, there has long been interest in measures

which can shed light on differences in skill and cognitive processes, to help understand and

support both skill learning, and the performance of skilled behaviour, especially in safety critical

conditions [48, 106]. Eye gaze is one interesting and potentially unobtrusive source of such

measures [373]. Eye-movements are essential for motor control in complex manual tasks [47,

205, 250, 298] and for learning new motor skills and adapting these skills to new settings

[293, 331, 376]. In addition, they are known to indicate decision making processing [109, 110].

As a result, recent applied work has investigated eye-gaze as proxy for expertise in laparoscopy

[373, 384], and to understand how the eye movements of skilled and novice participants lead or

follow hand movements during a task [102, 199, 384], and how gaze metrics can inform about

skill and stress during microsurgery [200].

To date, work in this area has mostly employed simple linear measures, focusing on the

influence of eye gaze on motor control. Measures of skill, to support training and understanding

of skill use have been developed based on the distance between the eye-gaze and manual action

[42] (e.g. the tip of the tool), the temporal delay between such movements [384], and eye-time

span during music reading tasks [62]. However, such approaches may not capture finer temporal

evolution of eye-hand coordination strategies, or the reciprocal influence between eye-and-hand

control in skilled behaviour — factors which remain poorly understood [74]. It is known that not

only do eye movements guide hand movements, hand movements can also improve eye movement

accuracy in pursuit and tracking tasks [60], and eye movements evolve as motor skills develop

[293]. This is consistent with a recent body of work pointing to strong and reciprocal coordination

between motor and visual systems, resulting in non-linearities in the dynamics of eye-gaze over

time [60, 312]. This reciprocity, which is not captured by linear measures [189], has been linked to

important features of real-world skill use, which can be difficult to infer from direct measures of

performance under practice conditions [379]: flexibility, adaptation, and generalisation of skilled

behaviour [8, 30, 228, 255]. This points to the need for new approaches related to the coordination

processes underlying skilled performance with complex interfaces.

In the work below I investigate MFA as a source of new metrics of skill which address such

issues. As noted in earlier chapters, multifractality has been shown to correlate with effective

adaptation during skill use [255].
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9.3.1 Metrics of Skill in Eye-gaze

Eye-tracking has been used for performance evaluation in a variety of fields [286], with expertise

being known to affect gaze behavior during interpretation of visualizations [124] and of dynamic

stimuli [169]. Many eye tracking studies have involved skilled operation of machines, often

focusing on aviation [296], including studies investigating differences between novices and

experts [182]. There has been interest in applying such results in technology support systems, for

example in surgery to monitor risk of error [140], predict workload [378] and more generally as a

tool for skill training [286].

One situation in which eye-tracking has been applied to observe and understand skill in real

world conditions has been forestry machinery operation — a situation where operators interact

with complex machinery in a busy working environment, and where safety is a significant concern

[157, 199, 329]. These studies have shown the effectiveness of head-mounted eye-tracking to

monitor performance of skilled tasks, though it has also been highlighted that tracking can be

affected by many environmental challenges, such as illumination and head-movements, leading

to difficulties for example in mapping eye-gaze to the scene [157, 232]. More generally it is

known that eye-hand coordination, the spatio-temporal management of eye-movements and

motoric action, is a central skill for many visuo-motor tasks [72], from daily routine activities

[138], to microsurgery [29]. Accordingly eye-gaze metrics have been used to understand issues

from expertise to stress in a range of situations: in surgery [102, 200, 373, 384], forestry work

[199]. These approaches are based on linear measures of eye-gaze movement with in the task-

scene, for example, based on the distance between the eye-gaze and manual action (e.g. the

tip of the tool), the temporal delay between such movements [384], and eye-time span during

music reading tasks [62]. There are open issues with such approaches. First is a known problem

that it can be difficult to infer generalisability of skills to real world conditions from direct

measures of performance[379]. Second, and relatedly, these measures do not capture or account

for the evolution of strategies in time, through learning. It is known that eye movements change

over the course of learning a new goal-directed movement: for example gaze behaviour shifts

from monitoring the current state of the moved object to anticipating its arrival to the target

[293]. Finally it is increasingly documented that control of eye-gaze emerges from reciprocal

interaction between multiple pathways, something which affects the evolution of eye-gaze over

time, and leads to non-linearities in measured behavior, with multiscale, multifractal structure

[8, 65, 112, 189, 312]. Such interaction is increasingly considered significant for understanding

flexible and transferable motor performance [54], but is not captured by linear analysis methods

[189, 190]. While multi-scale approaches to the analysis of eye-tracking data have been used

to separate scales of pupil activity to develop indicators of cognitive load [100, 231] these do

not capture such non-linearities, or quantify the multifractal features of the signal, which, as I

discuss below, are increasingly implicated in cognitive and behavioural coordination.

198



9.4. EXPERIMENTAL METHOD

9.3.2 Multifractality in Eye-gaze

In recent years some eye-gaze researchers have turned their attention to multifractality. While

it had previously been assumed that fixational eye movements reflect random uncorrelated

processes [201, 273], recent work has demonstrated the presence of fractal and multifractal

signatures in eye movement [8, 23, 65, 112, 189], indicating that fixational eye movements reflect

interactions between component processes [23, 241]. Amor et al. argue that such results point to a

promising new lines of enquiry into eye-gaze as a window on wider cognition: arguing “statistical

properties of the whole [eye-gaze] time series [. . . ] should be regarded as a means to uncover

emergent phenomena from an underlying nonlinear system operating at a neuromotor level” [8].

The promise of multifractality in eye-gaze as a window on co-ordination and emergence in

cognition, has motivated other work in this area. Stan et al., conducted work to understand

how multifractal signatures can indicate higher coordination between perception and action

processes which are commonly studied in isolation. They found that eye-gaze during perception-

only tasks showed significantly different multifractal signatures compared to perception-action

tasks, indicating the emergence of perception-action tasks out of interactivity between sensory

and motor control pathways [312]. Their results indicate that combined perception-action tasks

show stronger signatures of what Bell et al. have called multifractal-nonlinearity [30]: the

specifically nonlinear component of multifractality which indicates the "interactive" cascade

dynamics described above [190]. Interestingly the results, which focused on the analysis of saccade

fluctuations, suggest relatively high linear contributions to spectra in both cases, and differences

between the conditions in the linear contributions also, pointing to value in investigating both

multifractal features in eye gaze during perception-action tasks. Finally, Freije et al. took this

focus on system organisation a step further, finding that multifractality in eye-gaze differentiated

different cognitive paradigms [112].

Despite the potential of the multifractal approach for understanding complex perception-

and-action tasks, and despite evidence for stronger signatures of multifractal non-linearity in

combined action-and-perception tasks [312], most work to date has focused on sensing-only tasks

[8, 21, 23, 112, 304, 352]. This points to a significant research gap, investigating multifractality

in eye-gaze during skilful tasks, which can support development of measures to understand

task performance, skill and adaptation. The potential for such work is further indicated by the

effective application of multifractal analysis outside of laboratory conditions in a few cases, with

studies showing variation in multifractality in real world working conditions, linked to levels of

expertise [255, 360].

9.4 Experimental Method

My empirical work in this chapter is solely analytical. The experimental studies were conducted

by researchers at the University of East Finland, who were kind enough to share their data after
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I contacted them about potential collaboration. To contextualise my analysis, I describe their

experimental method, but emphasise that only the analytical work in the next section is my own

(and this was conducted independently).

9.4.1 Participants and Apparatus

The participants were recruited from a local vocational school that trains forest machine operators.

The novices were students and the experts were either teachers at the school with professional

experience or professional operators. The novice participants were given a small monetary gift

for participation. Table 9.1 shows the participant demographics. Eye movements were measured

at 30 Hz with the SMI ETG head mounted eye tracker. The eye tracker also records a video of the

scene at 24 Hz and resolution of 1280x960. The scene video was used to evaluate data quality. A

3-point calibration was used to calibrate the tracker.

9.4.2 Experimental procedure and Data Set

The data for this analysis was drawn from a prior experiment where eye-gaze time series were

captured from expert and novice operators of forestry machinery, during a task in which they

loaded timber using a crane [199].

Figure 9.1: Fig.1. (left) Top: Forwarder being loaded with logs (1) using the hydraulic crane
(2). bottom: Participant in the cabin wearing the head mounted eye tracker (1) while using the
hydraulic crane (2) to load felled trees into the cargo space (3).
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All
Novice Expert

Total [n] 11 6
Mean age (SD) [years] 16.6 (0.9) 43.8 (13.6)

Handedness (left/right) [n] 2/9 0/6

Analyzed
Novice Expert

Total [n] 8 5
Mean age (SD) [years] 16.6 (1.1) 40.6 (12.3)

Handedness (left/right) [n] 2/6 0/5

Table 9.1: Demographics for all participants and for the participants included in the final analysis

The data was recorded in two sessions at the school’s training grounds. At the start of the

experiment, the participants were briefed about the experimental procedure and asked to fill a

questionnaire about their demographic information and previous experience operating forest

machines. After calibrating and testing the eye tracker, the experimental task was commenced

with one the researchers present in the cockpit to monitor the gaze tracking performance. For

some participants the eye tracker had to be fitted with shades because light and strong reflections

interfered with the tracking. In the original work, two novices’ and one expert’s data had to be

discarded due to tracking failure that was related to participant’s eye type or their need to wear

glasses, and these exclusions were carried over into this work. One novice participant was further

excluded in the data cleaning and preparation process (see below).

The forest machine used in the experiment was a forwarder, a machine that is used to pick

up and transport felled trees. The main parts of the forwarder are the cabin, the cargo space,

and the hydraulic crane with a grappler to carry the logs. The hydraulic crane and the grappler

are controlled with two joysticks. The forwarder was a custom model of the John Deere 1110G

forwarder that used an electric engine. The forwarder was stationary, powered by an outside

electricity source, and the logs were placed within its normal operational distance. Figure 1.

shows the forwarder, the arrangement of the logs and the participant in the cabin. The cabin

was set to rotate automatically with the boom, and the speed of the boom was set to 40 % of

the maximum speed. The overall task was broken into 10 loading cycles, with the participants

loading the cargo space with a total of 10 logs that were initially placed on both sides of the

forwarder. Data from four participants was excluded due to poor quality data (see below), leaving

data from 5 experts and 8 novices analysed.

To ensure adequate signal length, I analysed data in groupings of 3 contiguous loading

cycles. This gave 3 signals for analysis per participant (the first 9 loading cycles): 15 for experts,

and 24 for novices. I subjected eye gaze signals from this task to multifractal analysis. As in

previous chapters, Multifractal Detrended Fluctuation Analysis (MDFA) was used to calculate

the multifractal spectra, and the non-linear contributions to multifractality were calculated
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using surrogate analysis, based on Iterated Amplitude Adjusted Fourier Transform. The anal-

ysis is described in greater detail below. I expected that expert eye-gazes would show greater

multifractality than novice eye-gazes and a greater component of nonlinear multifractality.

9.5 Hypotheses

In the work in chapter 4, I observed that multifractality increased with experience, which I

associated with skill. Based on this, and the findings in prior literature that multifractality in

eye-gaze is associated with cognitive paradigm in visual search tasks, and that hand-eye coordi-

nation tasks result in stronger non-linear multifractality than tasks with no motor coordination

component. Finally, since prior work indicates the possibility that both linear and non-linear

components of multifractality may be significant in eye-gaze, and that both may discriminate

between conditions in skilful tasks, I form two hypotheses about both multifractal width w, and

non-linear multifractality TMF .

H1 Value of multifractal width w will be higher in experts than novices.

H1 Value of non-linear multifractality TMF . will be higher in experts than novices.

9.6 Analysis

First it is helpful to provide a high level overview of the analysis sequence. Steps 3-5 follow the

same approach described in previous chapters.

1. Data series were cleaned, removing eye-tracking errors which might bias results

2. Eye-gaze time series were converted to Euclidean distance series: the sequence of Euclidean

distances between measured eye-positions at each sample

3. Multifractal spectra were calculated for each signal using Multifractal Detrended Fluctua-

tion Analysis (MDFA).

4. The widths of these spectra were calculated, to quantify multifractal strength [172, 190]

5. Finally, TMF , the t-statistic quantifying nonlinear-multifractality — the contributions

to the multifractal spectrum which reflect complex coordination dynamics [190] — was

calculated for each signal.

9.6.1 Cleaning and Preparation of Data

During the experiment, signals x and y coordinates for eye-positions had been captured at

30hz, giving a two-dimensional signal. I cleaned this data to remove eye-tracking artefacts that
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could impact analysis. As discussed previously, MFA quantifies variation in perturbations across

scales and can thereby be affected by large single frame movements created due to error in the

eye-tracking process. To identify such cases I searched for single-frame movement deltas larger

than N Standard Deviations above the mean, setting N conservatively and sense-checking the

identified deltas against the video footage. On this basis I arrived at a value of N = 24 removing

these samples and interpolating to fill the gaps. During this process, I excluded the data of one

participant which displayed persistent errors in eye-tracking.

Next I calculated Euclidean distance series for each signal – calculating the Euclidean

distance between each pair of successive points. Data-sets were then end-truncated to the same

length – the length of the shortest signal in the data-set: 940 samples. This is necessary since, (as

discussed in chapter 3) empirical multifractal spectra can be affected by length of signal. Finally,

prior to analysis with MDFA, it is necessary to integrate a time series if its Hurst exponent is

close to zero (the algorithm can only estimate positive values of h(q)) [178]. I therefore computed

Hurst exponents of my Euclidean distance signals with Detrended Fluctuation Analysis (DFA).

Finding them to be consistently close to zero, I integrated the signals.

9.6.2 Multifractal Analysis

9.6.2.1 Parameter Selection

Parameters of analysis were selected as described in 5.3.4.1, and these parameters were used to

calculate multifractal spectra, and TMF — the t-statistic quantifying non-linear multifractality —

as described in 5.3.4 where further background can be found to understand the specific choices

made. Based on this approach the minimum scale of analysis was set at smin = 8 (≈ 0.27s).

The work discussed in the background in this chapter indicates that there would be value in

analysing shorter time scales in eye gaze, since saccades show significant evidence of non-linear

multifractality. However this must be balanced against the risk of overfitting over a small number

of samples, which as I noted in 5, and demonstrated in 7, can lead to distortions in multifractal

spectra. The maximum scale was set at smax = 128. Order of detrending lines was set to o = 4 and

range of q exponents q = [−2,2]. Analysis with these parameters resulted in fluctuation functions

with stable fits (r2 > 0.99)), and no fluctuation functions were linear down to the lowest scales of

analysis (see bottom right, table 5.1), indicating the validity of smin parameter.

9.7 Results

9.7.1 Differences in multifractal measures

I compared the spectral widths w, and the t-statistics quantifying nonlinear multifractality

(TMF ) across expert and novice populations. My hypothesis was directional, and Shapiro and

Levene tests indicated that distributions were normal and of equal variance, so I used standard
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Figure 9.2: Histograms and box-plots showing comparison between experts and novices: multi-
fractal widths w, (above) and nonlinear multifractality TMF (below)

one-tailed t-tests, and Cohen’s d. I applied a Bonferroni correction for multiple hypotheses. Both

raw multifractal spectral widths w and nonlinear multifractality TMF were significantly higher

in the expert population (for w: t=2.53, p=0.016, d=0.9, and for TMF : t=3.03, p=0.005, d=1.1).

Descriptive statistics regarding linear features are provided in table 9.3. First, these statistics

show that, as expected, probability density functions and Fourier spectra are barely if at all

affected by the surrogate generation process. This result is consistent with the very close results

observed for t-statistic and raw multifractality, suggesting that linear features did not contribute

substantially to the results observed in raw multifractality.

9.7.2 Parameter selection

To give insight into the effects of parameter selection in another signal type (having reported

results for parameter selection in typing data in 7) I report the results of analysis at the ten valid

candidate parameter sets which scored highest. As noted above validity relied on stable fitting

of fluctuation functions (r2 > 0.99)) (see table 9.2). The use of any but one of these parameter
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sets of these would have resulted in significant results for w p<0.025, and all show significant

results for TMF . The one parameter set which would not have resulted in non-significant results

for raw multifractality was the only example at order 2, with all other order parameters having

value 3 or higher. There is far greater separation of the populations at this order of analysis

via the nonlinear t-statistic (p<0.02), suggesting that there are large linear contributions to the

spectrum at these parameters. This is consistent with the issue I noted in my earlier discussion

of tuning: low orders of analysis can fail to effectively resolve multifractal scaling, since they

may not remove the influence of local and non-systemic trends. Naturally these other p-values

cannot be interpreted as indicating significance: they are illustrative and given for the sake of

transparency. They show that optimising parameters as I do - based on the degree to which they

resolve non-linear contributions to multifractality - does not mean optimising p-values. They also

show the value of a pre-determined criteria for parameter selection when hypothesis testing with

multifractal analysis, in order to minimise the risk of overstating results.

t-sum order q p (w) p (TMF ) r2
min r2

mean
173.303 4 [-2, 2] 0.0162 0.0047 0.9978 0.9995
172.148 3 [-2, 2] 0.0060 0.0019 0.9979 0.9995
165.581 5 [-2, 2] 0.0056 0.0042 0.9960 0.9994
162.945 4 [-2, 3] 0.0076 0.0036 0.9977 0.9996
161.685 3 [-2, 3] 0.0030 0.0026 0.9978 0.9996
156.121 5 [-2, 3] 0.0025 0.0034 0.9966 0.9995
156.035 4 [-2, 4] 0.0054 0.0031 0.9980 0.9996
154.548 3 [-2, 4] 0.0020 0.0026 0.9979 0.9996
153.293 2 [-2, 2] 0.0994 0.0172 0.9972 0.9995
152.895 4 [-2, 5] 0.0047 0.0026 0.9982 0.9996

Table 9.2: Results of analysis at 10 highest ranked (by t-sum) parameter sets which had valid
(fluctuation function r2 > 0.99). t-sum is the summed t-statistic for non-linear multifractality
across all participants.

mean std min max IQR
orig surr orig surr orig surr orig surr orig surr

all 0.326 0.326 0.045 0.045 0.238 0.238 0.552 0.552 0.007 0.007
exp 0.322 0.322 0.013 0.013 0.276 0.276 0.335 0.335 0.006 0.006

mean
eye
movement nov 0.328 0.328 0.058 0.058 0.238 0.238 0.552 0.552 0.009 0.009

all 0.020 0.020 0.040 0.040 0.001 0.001 0.208 0.208 0.005 0.005
exp 0.010 0.010 0.015 0.015 0.001 0.001 0.049 0.049 0.001 0.001

std eye
movement

nov 0.028 0.028 0.051 0.051 0.002 0.002 0.208 0.208 0.023 0.023

Table 9.3: Descriptive statistics for original and surrogate signals.
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9.8 Discussion

As discussed throughout this thesis - a growing body of work suggests that MFA can be an

efficient and sensitive method for the investigation of subtle cognitive effects in skilled movement

phenomena, [30, 255]. In the background section of this chapter I discussed the way recent work

has extended this to eye movements, in combined hand-eye coordination tasks [312], arguing for

multifractality in eye-gaze as an indicator of the role of coordination between neural pathways in

behaviour [8, 312]. The results of my analytical work not only provide further evidence for these

ideas, but more importantly demonstrate the applicability of the technique outside conventional

laboratory tasks, in an authentic training situation, during interaction with complex technology.

The results observed show that multifractal measures distinguished expert and novice

machine operators during a forestry task. The eye gaze of expert users not only showed stronger

raw multifractal signatures, but also stronger evidence of nonlinear contributions to these

multifractal signatures. This is important since — as I have emphasised throughout the thesis —

the latter has been established as stronger evidence for dynamical coordination processes in the

underlying movement system [161], in both eye-gaze [8, 312] and other movement phenomena

[30, 255]. By demonstrating this ability to discriminate between levels of skill in a challenging,

real-world forestry training scenario, the results here indicate the potential for multifractal

metrics of eye-gaze to be used in real-world training scenarios, and potentially in other situations

during skilled interaction with technology.

As discussed in section 9.3.1, much work has argued for gaze control as key in optimising

motor control in a range of tasks. Accordingly there is increasing interest in such metrics, in

particular to support training and assessment [18, 227, 334] This rise interest occurs alongside

the rise of simulation training in a range of domains, and the growing potential for unobtrusive

and mobile eye-trackers and other sensors to be deployed in real-world conditions. The results in

this chapter suggest the potential of multifractal measures in such applications. One striking

potential benefit of multifractal measures in such work is that while most extant approaches

focus on the target of the gaze, multifractal analysis analyses the dynamics of control of the

eye-movement itself. This removes the need to map eye-movement to the scene, or to gaze

targets. This may be valuable since accurate mapping of the eye movements to the gaze target

depends on several variables, such as the choice of the mapping model and performing the

calibration procedure [183], which can introduce errors in the data [145, 261]. Head-mounted eye

trackers, which are often preferred where freedom of movement of head and body are important,

can introduce additional errors [99, 222, 252]. By skipping these mapping steps, multifractal

analysis seems likely to offer a robust measure. In particular it may be useful when applied to

eye-measurement approaches which are less accurate in defining the precise direction of gaze,

such as the unobtrusive electro-oculography [135] where sensors small enough to embed into the

form-factor of conventional glasses can be used used to detect the movement of muscles. [61].

It is well established in the skills training literature that it is difficult to infer true learning —
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in the sense of generalisable and retained skill — from direct measures of performance under

practice conditions [379]. Multifractality holds some promise in this respect, via its association

with adaptation to novel challenges, accross a variety of movement behaviours [9, 30, 54, 255]. In

skilled bead craftsmen, multifractality in hammer control has been shown to predict the ability

to adapt skills skills to unfamiliar task conditions [255]. Multifractality has also been observed

in other adaptive phenomena, including executive control: the ability to progress toward goals

while adapting to changing circumstances [9], and what has been called “strong anticipation”:

cases where people must coordinate an organised, anticipatory response under conditions of

uncertainty [30, 228, 317]. Such findings have led to calls for the use of multifractal methods in

the support of motor-rehabilitation, where generalisation is also a known problem [54], and I

argue that there may be similar potential in the case of computer supported skills training.

Returning to embodied accounts, the results in this chapter, add to the evidence that multi-

fractality can be interpretable in terms of readiness-to-hand or practical coping. Dreyfus gives a

five-stage account of adult skill acquisition, closely related to his account of coping [97]. He notes

that novices and beginners take a conscious attitude to the task, with particular elements of

the task being focused on individually and switched between in series, and they follow rule-like

maxims in adapting to the conditions of the task. Referring back to the IDVC and to accounts

relating multifractality to readiness-to-hand and coping, this would point to more conscious,

centralised control of behaviour, in which behaviour is not tightly coupled to processes in the

environment, and also coordinated with a narrower range of these processes. Together this can

be expected to result in weaker multifractal signatures in behaviour [88]. By contrast Dreyfus

suggests that proficient and expert users, who have achieved a high level of coping with the

task, switch to a holistic engagement with the task and environment. They attend to a wider

range of relevant issues and processes in the task environment, progress by a feel for relevant

details rather than by consciously diverting their attention to particular elements. The expert, in

particular, sees directly what needs to be achieved and acts accordingly. Dreyfus relates this to

findings in neuroscientific experiments that expert chess-players show more evidence of imme-

diate memory processes, compared to amateurs, and comparatively little evidence of analytical

behaviour [97]. In skilled tasks like the one studied in this chapter, we might expect that vision

guided by these faster processes could result in tighter temporal coupling to processes in the

environment. When this is added to the expectation that the expert will attend to a wider range

of relevant processes, pointing to greater multi-scale complexity in the task, this would point to

the expectation of wider multifractal signatures (see e.g. [210]).

Finally, as discussed in the previous chapter, multifractality is associated with the coordi-

nation of behavioural and cognitive resources, and I found that non-linear multifractality in a

creative typing task was predictive of fatigue, which is known to undermine such coordination.

There seems likely to be value in investigating the use of MFA of eye-gaze to support monitoring

of fatigue, as well as stress, age-related decline, and cognitive load, all of which are known to
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undermine such coordination [20, 203, 302, 306, 309, 357, 380]. In this regard, previous work has

provided evidence linking age-related decline to multifractality in pupil dilation behaviour [192].

9.8.1 Limitations and Future Work

Application in real-world working environments is essential to the testing of new techniques

— it raises challenges and conditions which cannot be found or even accurately anticipated

in the laboratory. The focus of this chapter is on the application of an established laboratory

technique in real world conditions, and so it inevitably faces environmental issues which will

affect measurement. The forest machine cockpit is a challenging environment for eye-tracking

experiments. The operators perform large head movements and the field of action is wide.

Reflections and sunlight, especially in snow conditions, as well as vibrations from the cockpit

movements can further affect the data quality. While in these experiments the experimenter was

present in the cockpit during the recordings to ensure high-quality, the head-mounted eye-tracker

may have slipped during operation, which might result in imprecise eye-tracking at times. As I

note, in the analysis I checked for such issues, by sense-checking the signals against videos with

eye-gaze mapped to screen and then performing a deterministic cleaning of the signals. This,

however, raises a challenge for potential unsupervised, and on-line applications of this analysis

technique — while data cleaning can be readily automated based on statistical features, the

visual sense-checking of data is inevitably manual and time-consuming. While this is an issue

common to all such applications of eye-tracking, it remains an issue to be addressed for future

work, and it is unclear whether its effect will be larger or smaller in the case of MFA.

Regarding recruitment, the requirement for skilled participants and the cooperation of real-

world workplaces means that, as often in studies of this kind, the number of participants is lower

than might be expected in laboratory studies. Despite the environmental challenges, I observed a

strong separation between conditions, and the results are both significant and consistent with

a substantial body of prior laboratory work. Nonetheless, it will be desirable to conduct future

studies on a larger scale, likely in tasks where expertise is more readily available. Another

concern may be that the age difference between my groups may affect their gaze behavior.

However, the expected effect of age on multifractality would be opposite to that which I observe

here: age-related decline is associated with lower multifractality in a wide range of physiological

behaviours, including eye-control behaviours [192].

Finally, I have emphasised throughout this thesis that it is the non-linear contributions to

the multifractal signature, which provide the strongest evidence for the interaction dominant

structures which are hypothesised to support optimal coordination of behaviour. And previous

work on eye-gaze has found that it is the non-linear component of multifractality which most

distinguish tasks requiring hand-eye coordination from those requiring only visual perception

[312]. My results in this chapter, however, did not indicate a notably stronger effect in nonlinear

multifractality than raw spectral widths. This may be related to the fact that previous research
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has found that observed nonlinearity is strongest in the saccade component of eye movement,

which will not have been resolved at the tracking frequencies I used — the shortest scale of

analysis was 0.27s, constrained by the 30fps sample rate. There is thus clear value in future

researchers conducting similar work at higher sample rates. At the same time, however, the

ability to distinguish between skill levels with low-frequency eye tracking data points to the

potential to use these techniques to develop skills training in common commodity hardware, such

as the eye-tracking systems found in home VR headsets, and standalone systems increasingly

popular for gaming, where rates higher than 30fps are increasingly common.

9.8.2 Conclusion

This chapter presents the results of a multifractal analysis of skilled behaviour during an

authentic real-world forestry training task, and offers a guide for future research on applied uses

of the multifractal analysis of eye-gaze. My results show that multifractality in eye-gaze, and

the non-linear component of that multifractality, distinguish expert from novice performance.

These results point to the promise of these approaches for application in real world technology

interaction scenarios, not only for training and assessment, but also for monitoring in safety

critical scenarios.

Since the approach described is quite new in applied eye-tracking research, I provide support

and guidance for future investigation of these approaches in real-world applications, such as the

study of working behaviour. To this end I provide analysis code, and give a detailed introduction

to multifractal analysis and its practical issues, and describe a data-grounded approach to

parameter selection, which can support researchers when dealing with new movement modalities

and interaction contexts.
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DISCUSSION

10.1 Summary

This chapter:

• Gathers together the research in the previous 9 chapters and articulates its contribution to

Embodied Interaction, and HCI more broadly, addressing my two research questions.

• Describes a theoretical and methodological framework for applying multifractal analysis to

issues in Human Computer Interaction

• Proposes Dreyfus’ account of ‘coping’, as an alternative account of embodied tool use, more

suited than readiness-to-hand for research in Human Computer Interaction

10.2 Introduction

This final chapter brings together the theoretical discussion, empirical findings, and methodologi-

cal refinements represented in the previous 9 chapters, addressing my two research questions

and their sub-questions.
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• RQ1 How can multifractal signatures in user movement contribute to HCI user-studies

and technology design?

– RQ1a Can MFA be used to infer user behaviour and experience?

– RQ1b What are the practical properties and constraints of MFA, relevant to HCI

contexts?

• RQ2 How can MFA and the IDVC augment existing research on embodiment in HCI?

– RQ2a Is the IDVC sufficiently consistent with HCI approaches to embodiment?

– RQ2b Do MFA and the IDVC support the operationalisation of important concepts in

Embodied Interaction research?

10.2.1 Summary of Chapter Contributions

I begin with a summary of contributions, before extending discussion of these contributions

further below.

This thesis began with two theoretical chapters which laid the groundwork for the contri-

butions to come in later chapters. In chapter 2 I articulated three key concepts for this thesis:

interactivity — the idea that user behaviour is “best understood as the emergent property of

the interactions of the [user] with its environment” [190, p.2]. Coupling — a co-ordinative rela-

tionship between two independent entities which is temporary, variable, and reciprocal. Finally

Readiness-to-hand a concept from phenomenological philosophy which describes fluid, intuitive

technology use, and the effect of tools on experience and behaviour, and has often been discussed

in terms of coupling between user and tool. I then traced these concepts through research on

embodied interaction in HCI from the 80s until the present day. I argued that all three play

important roles in embodied HCI, grounding explanatory frameworks and design ideas, and

supporting discourse. However I also noted that these ideas have not been formalised in ways that

support hypothesis testing, nor the development of quantitative metrics. I noted that this limits

the degree to which embodied approaches can support the detailed specification of technology

responses in terms of the adaptive interaction behaviour which embodied approaches value.

In chapter 3 I then described theoretical and methodological resources which are useful in

addressing these latter issues: the interaction dominant view of cognition (IDVC) and multifractal

analysis of behaviour (MFA). I argued that these same three key concepts were operative in the

IDVC: First the IDVC grounds its account of behavioural control in interactivity, formalising

this concept in terms of cascade structures which give rise to quantifiable multifractality in

signals. Coupling appears in the IDVC as an analytical concept in understanding interactivity,

and articulating conditions under which interactivity and multifractality are expected to vary.

Finally these concepts have been applied within this framework to study readiness-to-hand in

tool use, relating this construct to multifractal signatures in task-oriented movement. Pointing to

further relevance for HCI, I also noted that multifractality has been linked to a wide range of
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skilled behaviours, from simple perception-action tasks to complex in-context behaviours and

cognitive tasks.

These theoretical chapters set the context for the work in the following chapters, which

investigated the two research questions described above. The empirical work, which addressed

RQ1a and RQ2b, focused on constructs which have been important in embodied HCI and in HCI

more generally: readiness-to-hand, skill, engagement, and fatigue. In each case I related these

constructs to theorised groundings in interactivity (between user and tool, and within the user,

between neural pathways, and across other (neuro)physiological scales of behaviour. In turn these

theoretical accounts grounded hypotheses that relate these constructs to multifractal measures.

These hypotheses were then tested via empirical studies and the re-analysis of publicly available

data-sets.

In chapter 4 I replicated and extended prior work to investigate the basis of readiness-to-

hand in interactivity and multifractality over two experiments. I replicated a previously observed

result, showing that multifractality decreased during tool breakdown, and was accompanied

by the expected shift in user awareness of the tool. I then further investigated other aspects of

readiness-to-hand: I observed that multifractality in hand movement tracked the increase in

skill as the user became more familiar with the task, and that multifractality increased in a

more engaging version of the same task. I argued that these results point to strong potential to

operationalise HCI’s ideas about readiness-to-hand in multifractal measures in task-directed

movement. I suggest this can support the refinement of design ideas related to readiness-to-hand,

and the testing of narratives which have grown around the account in design communities.

I also noted that these results point to the potential to use multifractal measures to inform

systems about users’ level of engagement, skill, and attention. I discuss these possibilities, and

the challenges that accompany them, in more detail in the next section of this discussion.

In chapters 5 and 8 I moved away from the investigation of mouse use, to focus on keyboard

use. First this allowed me to demonstrate the transfer of these approaches to another common

interaction modality, and it allowed me to show the application of embodied theories of behaviour

to an interaction modality which has not in recent years tended to be considered within the

scope of “embodiment”. Nonetheless as I had pointed out in chapter 2, on a foundational view of

embodiment, all behaviour is embodied, and embodied accounts should in principle be capable of

addressing all interaction behaviour. This work also shifted my focus to new behavioural con-

structs: task complexity and fatigue. In chapter 5 I reported strong evidence, across the analysis

of 3 distinct typing data-sets, that multifractality in typing corresponded to the complexity of

the typing task. In each case a less cognitively complex task (the copying of a text) resulted in

lower multifractality, and lower non-linear multifractality (the stronger form of evidence for

interactivist cascade dynamics) than a more cognitively complex task (the creative authoring of a

new text based on a personal experience). This result was expected due to the need, in the more

complex task, to coordinate together a wider range of different cognitive activities, each with
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their own characteristic time-scales. Previous work had provided evidence that such differences

in cognitive complexity, associated with executive function, were associated with differences in

multifractal signatures.

This result provided the foundation for the work in chapter 8 investigating fatigue during

text-creation. To my knowledge previous work had not investigated the relationship between

fatigue and multifractality, nor articulated an account of how they might be related. I reasoned

that insofar as multifractality is associated with executive control and the coordination of diverse

cognitive activities, it should reflect not only the need to coordinate thus (task complexity) but

also the ability to do so — something which we know is undermined by fatigue. My results

confirmed this hypothesis showing that multifractality and non-linear multifractality in typing

were lower for participants who had been exposed to a fatigue stressor, than those who had not.

This points to the potential to use multifractal analysis to help identify fatigue in users during

office tasks, and I note the potential in particular to integrate this into writing and productivity

software, and software development environments. In a broader scientific context, I note that

these results provide further evidence for the association between multifractality and executive

control, and to the best of my knowledge provide the first evidence linking fatigue to reduced

multifractality.

Finally, in chapter 9 I moved to another interaction modality: eye-gaze, while returning to

focus again on skill. Here, in a reanalysis of existing experimental data, I investigated non-linear

multifractality in eye-gaze during a forestry training task which involved the control of heavy

machinery in a visually complex outdoor environment. In line with the results on mouse use in

chapter 4 I found that participants with greater experience and skill in the task showed greater

gaze-multifractality than did novices. I noted that the evidence of multifractality in eye-gaze as a

marker of skill points to the use of multifractality in training tasks in virtual reality. I also noted

that in combination with previous results in the thesis, this result pointed to value in future work

investigating gaze-multifractality as a marker of fatigue, since this approach could be applicable

in a relatively unobtrusive manner in a wide range of safety critical environments. In comparison

to other eye-gaze based approaches I noted that multifractality does not require the mapping of

eye-gaze to the scene of the activity — an error prone, and often labour intensive process.

As I articulate in more detail below, it is difficult to fit all of these results neatly into a

Heideggerian account of readiness-to-hand. In particular it is hard to articulate the relation of

fatigue and task-complexity to readiness-to-hand. Also, while previous work in HCI has related

engagement to readiness-to-hand, this is arguably also difficult to connect to Heidegger’s original

discussion. However, as indicated in discussions throughout the thesis, and developed further

in this chapter, I suggest that these results can be brought together under the closely related

account of coping, articulated by Dreyfus. This offers a philosophically sophisticated and intuitive

behavioural and experiential construct which is consistent with the findings I report, and which

maps neatly to theories linking multifractality to skilled behaviour in the IDVC. While Dreyfus’
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account is in large part an interpretation of Heidegger’s account of readiness-to-hand, it is

idiosyncratic [171], and differs in important ways: it is articulated in more transparent language,

offers more detail in terms of behaviour and experience, and may in many cases be the actual

source of HCI’s account of readiness-to-hand. I suggest that this offers an embodied account of

skilled interaction behaviour for HCI which is both adequate to communication between designers,

engineers, and researchers, and which can be formalised in terms of empirically measurable

features, via multifractal analysis.

Finally the work in this thesis investigated methodological questions. In chapters 4 and 5 I

developed empirical approaches to parameter selection for multifractal analysis. In chapter 5 I

investigated the impact of data quality on the discriminatory power of multifractal measures.

In chapters 5, 8 and 9 I investigated the impact of signal length on the discriminatory power

of multifractal measures. These results can inform future work in HCI in applying multifractal

analysis in studies and system designs, guiding the analysis, and pointing to limitations in terms

of task length and measurement environment.

10.2.2 Overview of the Discussion in this Chapter

All of these issues are discussed in greater detail in the sections below, alongside a deeper

discussion of the implications of my results. In the next section, 10.3, I outline a framework for

engagement with multifractal analysis in HCI, translating the findings in the previous chapters

into a set of principles and approaches which can guide future work. Addressing RQ1a — Can

they be used to infer user behaviour and experience? — I articulate four behavioural levels at

which multifractal signatures might be interpreted, and discuss how we might improve precision

of inferences by leveraging patterns in multifractality over time, and knowledge of context. In

the same section I also describe some limitations to current understandings, and how they might

be addressed in future work. In particular, my results show that multifractality in movement is

related to multiple behavioural constructs: In some circumstances at least, it will be desirable to

tease these issues apart. I discuss potential avenues for addressing this.

Then in 10.3.8, I turn to address RQ1b — What are the practical properties and constraints of

MFA, relevant to a HCI context? — addressing practical properties and constraints on MFA which

are relevant to a HCI context, and discussing how researchers can identify tasks, interaction

contexts and measurement dimensions for the application of multifractal analysis.

After this in section 10.4, I address RQ2, relating my findings back to Embodied Interaction.

Addressing RQ2a — Is the IDVC sufficiently consistent with HCI approaches to embodiment? — I

review the account I gave in chapters 2 and 3 which related the theories of the IDVC to three

key concepts and principles which I identified in Embodied Interaction research: interactivity,

coupling and readiness-to-hand. I also address RQ2b — Do MFA and the IDVC support the

operationalisation of important concepts in Embodied Interaction research?. I discuss the prospects

for operationalising these three concepts and principles in embodied work, via MFA and the
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theories of the IDVC.

Finally the end of section 10.4 I discuss a limitations in the contribution which MFA can

make to Embodied interaction. In particular I note that Embodied Interaction research has

often focused on qualitative and narrative methods precisely to ensure fidelity to the complexity

inherent in interactive behaviour. By contrast quantitative methods focusing on movement pose a

risk of reductionism. As such I suggest the value of these methods for Embodied Interaction will

not rest on theoretical compatibility alone, but will rely on practitioners’ ongoing commitment to

explanatory pluralism and pragmatic realism. Finally at the end of this chapter, I conclude the

thesis, and summarise its individual contributions.

10.3 A Framework for Applying Multifractal Analysis in HCI

10.3.1 Overview

To the best of my knowledge this is the first work in HCI to investigate the IDVC and multifractal

analysis of behaviour. In certain respects, working within the IDVC requires a shift in perspective.

This seems to me likely to be true both for researchers used to working with computational and

cognitive models of the user, and for those immersed in discourse of embodiment in HCI. For

the first group the IDVC marks a shift away from brain-centric symbol processing models of

behaviour, and towards a quite different formalism of behavioural control, in which, for example,

users’ representations of intents and goals play less immediate roles. This seems to me to demand

new ways of thinking. For Embodied Interaction researchers, the approach addresses some

familiar constructs and ideas, but via methods and formalisms that are likely to be unfamiliar.

Relatedly, recent work has emphasised that contributions to design research should ideally go

a little beyond scientific findings, and translate science into terms which are both relevant and

tractable to HCI researchers, to support design and reasoning about interaction behaviour [66].

So in addressing RQ1a — the question of how multifractal signatures can be used to infer

behaviour and experience — it feels important to provide conceptual tools HCI researchers can

use to think about multifractal signatures and apply them to everyday problems in their field.

As such in this section, I present the findings of this thesis in terms of a framework for HCI

researchers seeking to engage with multifractal analysis. I point to four levels of understanding

which are useful when applying the IDVC and multifractal analysis to the common concerns of

HCI. These move from the general (multifractality as a marker of interactivity) to the particular

(multifractality as a marker of familiar behavioural constructs like fatigue). In each case I

cover both theoretical and practical concerns, and point to potential applications. One of these

levels in particular is worth picking out. As noted above, I introduce a behavioural construct

which seems to have been neglected in HCI, but which I suggest could become important for

us: the notion of coping, which originates in Dreyfus’ interpretation of Heidegger, and which I

label practical coping for clarity. This seems to me an intuitive translational concept for HCI
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and design researchers dealing with task-directed user behaviour and experience. It seems

particularly suitable for HCI researchers working with multifractal analysis and within the

theoretical framework of the IDVC, but seems to me useful well beyond this, as an intuitive term

for a fundamental issue in HCI, akin in this sense to Gibson’s concept of affordances [181] Finally

in this section, I summarise the practical considerations which arise when applying multifractal

analysis, and I discuss future work to develop this framework: both in terms of new opportunities,

and in terms of limitations to be addressed.

10.3.2 Four levels For Interpreting Multifractality in HCI

In this section I describe four interrelated levels which may be useful HCI researchers and

designers when thinking about multifractality in behaviour and what it can tell us, depending on

aims and interaction context. I suggest multifractality in interaction behaviour can be usefully

understood as an indicator of:

1. interactivity

2. executive control

3. practical coping

4. other, specific behavioural constructs, such as fatigue and engagement

In this section I outline these four levels of interpretation, and I discuss how the results in

my thesis can be understood in terms of each, and the relevance and benefits of each for HCI

researchers. As noted above, the discussions of interactivity and practical coping have particular

relevance for Embodied Interaction, and discussion here also contributes to RQ2b — Do MFA and

the IDVC support the operationalisation of important concepts in Embodied Interaction research?

10.3.3 Level 1: Interactivity

At the most immediate and mechanical level, multifractality in a signal is evidence of what I

called (following Kelty-Stephen et. al. [190]) interactivity1. Interactivity here refers to the case

where observed behaviour is at least strongly influenced by reciprocal interactions between

diverse sub-components in the measured system, operating across multiple scales. Stronger

signatures of multifractality (wider singularity spectra, and stronger signatures of non-linear

multifractality2) are evidence of a stronger role of interactivity in the organisation of the system’s

behaviour. The “system” here is the set of significantly interacting components which influence

1See chapter 3 for a fuller account of this
2I have repeated this throughout the thesis, and it risks becoming tedious, but it is an important point: it is non-

linear multifractality evidenced by the results of surrogate analysis, which is the indicator of interactivity. Multifractal
signatures can be impacted by other factors than cascade dynamics and interaction dominant structures, and so
confirmatory evidence of non-linear origin is required. See 3
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the behaviour we are observing. It will always include the user, but for practical purposes it can

be understood at multiple levels depending on our interest. It may be the system of interactions

within the user’s body including brain, it may also incorporate tools [8, 15, 33, 105, 312], and

other agents [49, 82] 3.

This discussion of interactions across body and wider interaction context, brings us to another

important concept from Embodied Interaction: coupling. When it comes to some element outside

the user’s body — e.g. a tool — which is involved in this system of interactivity, we can speak of the

relationship to the user and tool/element in terms of “coupling”. This points to one way of thinking

about interaction scenarios in terms of interactivity: to identify changes in coupling between

user and other tools, agents and elements in the interaction concept4 [15, 88, 105, 211]. Work

in the IDVC suggests that if a particular element (e.g. a tool) is significantly incorporated into

the user’s behaviour, via this kind of coupling (what has elsewhere been called tool-embodiment

[33]), then we will expect that significant changes in the relationship between the element and

the user (malfunction, disengagement, or other forms or detachment) will impact on multifractal

signatures. If the change in multifractal signatures in such a case is larger, then we can say that

the change in coupling (the change in the degree to which the element is incorporated within

the overall system of interactivity) is larger [15, 88, 105]. This is the principle grounding the

work on tool breakdown in chapter 4, and it grounds other work on tool-embodiment [78, 88, 105],

including some which builds on my work [277].

10.3.3.1 Interactivity as the Foundation of the Other Levels

This account of interactivity (and coupling) is the foundations on which each of the other levels

of engagement will build, and it grounds each of the hypotheses in this thesis. It is perhaps

the primary level of understanding for researchers in psychology who wish to understand the

centralised or distributed nature of cognition and behaviour in a particular context. But it will

perhaps less often be the primary level at which HCI researchers will engage with multifractality.

It may be difficult to reason immediately from this principle to results in a particular interaction

scenario. Nonetheless, it will remain an important background principle for HCI researchers as

they form intuitions about how and where multifractal analysis might be applied: how it might

be expected to vary under particular circumstances. It should also guide methodological practices

such as surrogate analysis, and the use of the t-statistic for non-linear multifractality: these

methodologies are necessary to provide evidence for interactivity, and therefore for findings at

each of the other levels (see chapters 3 and 5 for deeper discussions of these issues).

3More detailed accounts of the constitution of systems can be found in [174, 243, 333], a short, lucid, and accessible
precis is found in [371]

4In a sense interactivity is being used here to clarify the practical boundaries of the system of interactivity
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10.3.3.2 Interactivity as a Foreground Issue for HCI

In some cases however, interpreting multifractality in terms of interactivity may become more of

a foreground issue for HCI researchers. I see two main classes of issue in HCI where this may

be the case. First: studies of interactivity in interpersonal coordination mediated by technology,

for example in dance, body language coordination over video chat, group activities and games in

VR, or team gaming in e-sports (primary research which may support such directions includes

[76, 82, 211, 228]). Second, interactivity will be a foreground issue for researchers interested

in Human Computer Integration [245], and those studying sensorimotor phenomena (e.g. [33,

321, 322, 347]) who wish to investigate coupling and the incorporation of tools into cognition. In

this thesis, the mouse experiments in chapter 4 provide the clearest examples of reasoning and

methodology here, relating multifractal signatures to user-system couplings, though all work in

the thesis is grounded in reasoning at the level of interactivity.

10.3.4 Level 2: Executive Control

Moving to a more familiar human-behavioural level of explanation, multifractal signatures are

associated with flexible adaptation to context. A large body of research, addressing a wide range

of behavioural phenomena, finds that increases in multifractal measures are associated with

increases in effective adaptive behaviour (e.g. [9, 30, 210, 211, 255]). Increasingly, researchers

have begun to relate this to the psychological construct of executive control: “the ability in humans

to elaborate, maintain and adjust intentional goal-directed actions in changing environments”

[14], to coordinate cognitive functions towards goals, control attention, and to adjust to novel

circumstances outside the range of habit [256]. The relationship between multifractality and

executive control seems to me to represent another important level of understanding for HCI

researchers. Though it again remains relatively high-level and psychological, it again provides

a foundation for reasoning about user behaviour, and experience. It played an important role

throughout this thesis, in particular in part 2 where I focused on writing. However, as I note

below, the relationship between multifractality and executive control comes with some caveats.

One of the most striking illustrations of the association between multifractality and the

kind of online, flexible, adaptation associated with executive control is found in work by Nonaka

and Bril. Though they did not themselves relate their results to executive control, the results

seem strikingly characteristic of the phenomenon. They analysed the hammering movements

of skilled bead craftsmen, finding that when skilled crafters worked with unfamiliar materials

multifractality increased, while for less skilled crafters faced with the same, unfamiliar materials

multifractality decreased. Further, these differences were found to reflect quality of outcome

[255]. The explicit connection between multifractality and executive control has largely been

developed in later work [2, 14, 161, 210]. In my thesis I drew on the connection to executive

control to form hypotheses about both engagement (chapter 4) and fatigue (chapter 8), since

task engagement has been closely associated with executive control [133, p.227], and fatigue
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is known to undermine it [234]. In line with my hypotheses, I observed that fatigue reduced

levels of multifractality, and a more engaging task increased them. Similar reasoning around

executive control may support future research around other behavioural constructs associated

with executive control, or in other interaction modalities. To support such work I discuss my

results in terms of executive control and practical coping in a little more detail at the end of the

next section , drawing out some general guiding principles.

Before I proceed to that discussion, it is worth noting that HCI researchers should be cautious

about drawing too strong or comprehensive associations between multifractality and executive

control, when interpreting results, or forming design hypotheses. The body of work explicitly

linking multifractality to executive control is currently relatively small when compared to the

wider body of work on executive control (c.f. [353]), and it is largely confined to relatively low-order,

and primarily sensorimotor, tasks (c.f. [2, 14, 161, 191, 210]). To my knowledge, for example,

no work to date has articulated the relation of multifractal signatures to executive control

phenomena such as disengagement from tasks, or in general executive control over thought —

core aspects of the wider account of executive control [217]. Further, I have not been able to find

work investigating multifractality in tasks such as task-switching, and dual task procedures,

which are central methodologies for studying executive control [218]. Turning to more theoretical

issues; accounts of multifractality diverge from accounts of executive control in at least one

important way. In psychology more generally, the term “executive control” generally refers to the

coordination of resources which are located in the brain (e.g. [218]). Multifractal coordination

meanwhile is expected to concerns coordination across brain, body and task-environment [14].

Turning to practical issues for HCI researchers: executive control is a core psychological

phenomenon with many aspects including e.g. implications for control of working memory [218].

Much of this may seem quite divorced from the immediate concerns of HCI researchers, and

designers, and as with interactivity it may be difficult to reason immediately and unambiguously

to expected outcomes. The breadth of the account of executive control also raises the potential to

unwittingly relate multifractality to aspects of executive control where the connection may not

hold (those cases where experimental data and mechanistic account are lacking, discussed above).

At best this may be confusing, and at worst it may lead to invalid inferences and over-claiming.

Having stated these caveats, HCI researchers may still turn to understandings at the level of

executive control to guide intuitions about which features of behaviour multifractality might be

informative about (as I did in forming hypotheses about engagement and fatigue), but should

proceed incrementally in this, and remain close to primary research on multifractality. In the

case of engagement I was able to build incrementally on prior work on fractality in minimally

engaging tasks [212], basic executive control tasks [9], and experiments by myself and others on

the same task [88, 251].
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10.3.5 Level 3: Practical coping

A third, more direct and pragmatic, level at which HCI researchers can understand multifractal

signatures takes us back to the concerns of Embodied Interaction, and to ideas from phenomenol-

ogy. We can say that variations in multifractality during a task indicate variations in coping —

in the sense of this word associated with the philosopher Hubert Dreyfus. This is sometimes

referred to as “smooth coping”, “absorbed coping” [46], or simply “coping” [96, 338]. For reasons of

clarity I will call this practical coping5.

Practical coping describes practically engaged, active, adequate, and characteristically unre-

flective, adaptation to the demands of the task at hand. This behaviour is grounded in “practical

wisdom” — or what has sometimes been called “know-how” [351] — based on adaptation to situa-

tional factors, rather than representational knowledge that can easily be brought to mind and

articulated in language [249]. Dreyfus’ account emphasises the basis of skilled coping in expertise

and skill, and often emphasises high levels of skill and flow-like absorption [46]. However, he

also makes it clear that basic, quite unabsorbing behaviours, such as walking, display practical

expertise and are examples of practical coping [32].

Dreyfus’ account of practical coping is developed through interpretation of Heidegger’s writing

on readiness-to-hand, and as such is very closely related to it. In fact, readiness-to-hand as it is

received in HCI, often seems to derive substantially from Dreyfus’ interpretation. In many cases

HCI researchers draw on Dreyfus directly e.g. [375, p.32], [90, p.191]), [345]), and in other cases

it seems to me that they retain Dreyfus’ pragmatist emphasis on two modes of engagement and

understanding (which while present in Heidegger’s account, are not treated so much as distinct

and primal states as they are in Dreyfus’ account. In wider Heidegger scholarship Dreyfus’

account is often considered somewhat idiosyncratic in this respect, and at odds with Heidegger’s

broader ontological project [38, 171]). As such the shift to thinking in terms of practical coping

should go fairly smoothly. At the end of this section I will argue that there are reasons for future

work in HCI in general, and not only that which engages with multifractality, to focus directly on

the language and details of Dreyfus’ account of practical coping, and of the work which builds

upon it, moving away from language of Heidegger’s original account of readiness-to-hand.

Dreyfus’ account also seems closely related to those overt aspects of executive control which

previous research on multifractality have addressed, insofar as it captures the same engaged,

flexible, adaptation. In other ways it differs significantly from wider accounts of executive control,

but I suggest these differences make it a more relevant everyday construct for HCI. Practical

coping is a more particular phenomenon than executive control, with a more pragmatic and

experiential focus, suited to HCI’s primary focus on outcomes and experience. Usefully and

5I prefer to avoid simply “coping” since this risks creating confusing slippages between technical and everyday
usage (c.f. Marcuse’s critique of “false concreteness” in Heidegger’s neologisms [259]), and might make it difficult for
future HCI researchers to find the term in literature searches. In a HCI context, I think the term “practical coping” is
apt since, as I discuss below, coping in this technical sense may be more or less smooth, or more or less absorbed, but
it will always be fundamentally practical.
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importantly, practical coping does not address less immediately pragmatic aspects of executive

control, such as suppression of thought and mental control, for which we lack evidence of

multifractality, and which I have suggested might lead HCI researchers astray 6. Regarding its

potential mechanistic relation to multifractality, in later work Dreyfus and other cognitive-science

focused phenomenologists explicitly relates practical coping to non-representational, dynamical

systems accounts of cognition and behaviour not dissimilar from those described in the IDVC

[95, 367], and as I have noted, at least some empirical work already relates it to multifractal

signatures in behaviour [88].

Subsequent authors have criticised and revised Dreyfus’ original account of practical coping

on certain points. These revisions seem to me relevant to HCI research, and particularly they

make practical coping a better fit for the observed results in this thesis. For Dreyfus at least

some aspects of practical coping are dichotomous: we either exhibit practical coping, or we do

not. In particular he argues that all practical coping is “mindless” in the sense of completely

lacking in conscious propositional mental attitudes and objective awareness [249]. He is explicit

that when such conscious, propositional awareness arises, and the tools and resources involved

in the task become a focus of conscious awareness, then practical coping will break down [32]7.

Later commentators argued, against this, that both practical coping in general, and its “mindless”

aspect in particular, are matters of degree [32, 118, 160, 249]. 8. These authors argue for degrees

of practical coping, and their accounts make it reasonable to say that our level of practical

coping might increase or decrease with factors like engagement, skill, fatigue. Some have pointed

out that Dreyfus’ dichotomous approach prevents us from distinguishing between the almost

aesthetic sense of immersion Dreyfus attributes to highly skilled rock climbing (during climbing

rather than planning of routes), and everyday examples of practical coping which lack this

immersion — opening doors, writing letters with a pen [46]. This implies that practical coping

can be more or less intense: there can be high level and low level practical coping. Similarly these

later accounts tend to argue that while practical coping may be generally characterised by lower

conscious attention a non-propositional attitude, it can still be accompanied — and even guided

— by a degree of residual conscious, effortful, engagement: particularly in highly trained expert

behaviour [118, 31-63].

In the rest of this section I articulate the relationship of this practical coping to the results

in this thesis, to executive coping, and to readiness-to hand. At the end of the section, I give a

summary of factors which may be expected to impact on multifractality and practical coping,

which can guide future research. Finally, in section 10.3.7 I return to smooth coping (after

discussion of other behavioural constructs) to give an example applying multifractality, skilled

coping and other levels of understanding to user behaviour in a drawing application.

6Dreyfus’ original account in fact rules out any role of conscious thought in practical coping [249], and while later
thinkers relax this somewhat [32, 249], the control of thought still does not arise in discussion.

7In this he seems to have been influenced by Merleau-Ponty’s treatment of “habit” and “skill” as synonymous [92]
8similar moves have been made in post-Dreyfus accounts of readiness-to-hand focused on the cognitive sciences —

see [197, 368, p128-142]
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10.3.5.1 Relating the Results in my thesis to practical coping:

Given the relationship between practical coping and readiness-to-hand, it is perhaps not surpris-

ing that the results in my thesis can all be articulated in terms of it. This is clearest in chapter 4,

where I explicitly relate multifractal measures to readiness-to-hand, building on work by Dotov

et al. who translated readiness-to-hand into experimentally tractable form in part via Dreyfus’ ac-

count [89]. During the initial training trials, we can say that the user acquired expertise with the

task and progressed towards increasing levels of practical coping, corresponding to an increasing

level of multifractality in hand movement. Likewise in the forestry experiment in chapter 9, those

with greater experience in the task — which we expect to translate into greater skill, or expertise

— can be expected to show greater practical coping in the task, coordinating their eye-movements

and other behaviours effectively to access the information they need to perform the task, resulting

in stronger multifractality in eye-gaze. Finally, during tool malfunction (again in chapter 4),

practical coping was interrupted as the change in the tool dynamics moved the task outside the

user’s expertise, and capacity to cope, leading the user to a large drop in multifractality.

Turning to work outside my thesis, in the bead-crafting example given when both skilled and

less skilled crafters are given an unfamiliar material, they display different levels of practical

coping with the task. The more skilled crafters show greater ability to adapt to the situation, and

their practical coping continues at a higher level in this more challenging task. Accordingly their

movements in the task show greater signatures of multifractality. By contrast the less skilled

crafters show decreased practical coping with the task, fail to maintain adaptive practical coping,

coordinating their behaviour with the unfamiliar situation poorly, and so their movements display

lower multifractal signatures.

Turning to engagement: as I note above, later commentators argue that practical coping

will often be accompanied by at least some degree of effortful engagement, willing, and exertion

[32]. They emphasise that high level cases of practical coping (rock climbing, highly skilled

gaming) may involve high degrees of absorption while low level practical coping (moving a

mouse cursor while filling in a tax form) need not [46]. The increased multifractality in the

participants who played the more engaging game in my experiments in chapter 4 can be seen

in terms of higher levels of practical coping, motivated by the more engaging task. Equally

in the comparison between the text-copying and text-composition tasks, the text-copying task

clearly offers a quite low level challenge to anyone with a good standard of English language and

typing skills: placing little stress on flexible ongoing adaptation. Accordingly, the level of practical

coping (and multifractality) was lower than in the case of the text composition task which can be

expected to place demands on ongoing flexible adaptation, and coordination [210].

Finally, fatigue was observed to reduce multifractal signatures in typing in the experiment

in chapter 8. Relatively little work has focused directly on practical coping and fatigue. Shaun

Gallagher has addressed the phenomenology of fatigue during tasks in a few articles (e.g. [44, 116,

117]), and his account seems broadly consistent with the intuition that fatigue would undermine
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smooth coping. He indicates that fatigue primarily shows up to us not as a conscious feeling, but

in ways suggestive of a breakdown in our practical coping: “when the eyes become tired in reading,

the reader does not perceive his fatigue first, but that the light is too weak or that the book is

really boring or incomprehensible” [116]. Beyond this, not only does it seem intuitively correct

that fatigue will undermine our practical coping with tasks: this intuition also finds support in

the evidence that fatigue impacts on executive control and task outcomes [234].

I will finish this section by briefly discussing why and when we might prefer to think in terms

of practical coping rather than executive control, or readiness-to-hand, when relating interaction

behaviour to multifractality. As I have noted, both are related in particular ways to practical

coping.

10.3.5.2 Practical Coping and Executive Control:

Focusing first on executive control: it seems fair to say that in most practical cases, closely similar

conclusions will be reached whether reasoning from executive control or from practical coping,

but there will be a wider range of empirical research on executive control, upon which HCI

researchers can draw. For example I drew on findings about executive control in developing

hypotheses about fatigue, and noted that accounts of fatigue in practical coping felt relatively

lacking.

Nonetheless, I see significant benefits in often (and perhaps mostly) turning to skilled coping

rather than executive control when interpreting and reasoning about multifractal signatures

in interaction behaviour. Practical coping, seems to me a clearly more intuitive and pragmatic

construct: more closely aligned to HCI reseachers’ goals in many cases. HCI researchers often

wish to maximise fluid, intuitive technology experience, or to support good task outcomes. Many

of us are more used to working at the level of user behaviour, and experience, than we are used to

working at the level of cognitive process. Practical Coping also has the advantage of being more

closely associated with overt behaviour and outcomes, and insulated from more purely mental

aspects of executive control for which there is (currently at least) no evidence of accompanying

multifractality in behaviour (e.g. executive control over thought), though fractality has been

observed in brain-signals and associated, for example, with effective team coordination [211].

As such, when reasoning in terms of practical coping it seems to me harder to err by importing

unwarranted assumptions about wider implications for underlying thought processes and related

phenomena. Weighing these benefits on both sides, I think it is useful to move back and forth

between the two levels of explanation, having access to research on executive control in practically

engaged behaviour to guide and clarify hypotheses and expectations (alongside of course work on

multifractal interactivity in behaviour), but likely thinking primarily in terms of practical coping.
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10.3.5.3 Practical Coping and Readiness-to-hand:

Turning to readiness-to-hand: past embodied interaction ideas and design principles have been

articulated in terms of readiness-to-hand and as such, in this thesis, I have addressed this concept

— in order to support empirical work related to these ideas, and to help translate between existing

work on embodied interaction and potential future work on embodiment drawing on the IDVC.

However I feel that, in comparison to readiness-to-hand, practical coping seems the more apt

construct to capture the range of phenomena related to multifractality in behaviour. It also seems

the more apt construct for the development of conceptualising tool use behaviour in HCI more

generally. Dreyfus develops this out of a discussion of readiness-to-hand, by focusing primarily

on its pragmatic, experiential, and behavioural aspects, aiming to support work in AI, Cognitive

Science and Neuroscience [94]. Dreyfus is broadly pragmatist in his approach, focusing on the

roles of modes of practice in understanding, where Heidegger is not especially interested in

pragmatic issues. Such distinctions between modes of practice are not especially significant in

Heidegger’s account, except insofar as they serve to elucidate our single underlying mode of

understanding [171] and thereby shed light into the two title concepts of his major work: Being

(ontology), and Time (temporality) [38]. HCI researchers’ have, unsurprisingly, tended to focus on

pragmatic aspects of the account of readiness-to-hand, and many may draw their understandings

directly from Dreyfus. As such design ideas previously articulated in terms of readiness-to-

hand will be readily restated in terms of practical coping (see e.g. [88, 338] for examples of this

where authors move behavioural or design claims about readiness-to-hand seamlessly into the

language of Dreyfusian coping). The findings in this thesis pertaining to skill, tool breakdown,

and arguably fatigue, are consistent with an association between multifractality and practical

aspects of readiness-to-hand. However, while the result linking engagement to multifractality fits

comfortably into the way many in HCI have discussed readiness-to-hand (e.g. [5, 6, 319], it feels

at least peripheral to Heidegger’s original account. And issues of task-complexity seem difficult

to me to relate to readiness-to-hand. These two results fit far more neatly into existing accounts

of practical coping, which as I have noted above, focuses more on practical and behavioural

detail, and prior literature indicates that it is reasonable to treat immersive high-level expert

performance on demanding tasks as intensified cases of practical coping [46]. Second, the name

“practical coping” seems to me more intuitively descriptive of the phenomenon it labels, and

less likely to act as a barrier between embodied researchers and pragmatically minded (and

potentially sceptical) researchers outside the community. Thirdly, “practical coping” is distanced

from certain implications and subtleties in Heidegger’s account which can feel unhelpful for a

discipline focused primarily on design and behaviour rather than broader existential matters, and

ontology [84]. Not least, practical coping avoids the three-way distinction between ready-to-hand,

unready-to-hand, and present-at-hand [139]. While important in Heidegger’s work, this seems

to me more likely to create confusion in HCI. More recent work articulating Heidegger’s work

for cognitive science has emphasised presence-at-hand and readiness-to-hand as limit points on
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a continuum, with actual behaviour falling into broad “unready to hand” grey zone in between

[368, p128-142]. This is consistent with the later accounts of practical coping which I outline

above, and it feels more natural for practical purposes to use a single term for such a construct

than to use three. Alongside all this, the grounding of Dreyfus’ account in work by Heidegger and

Merleau Ponty leaves the door open to draw on these accounts where it seems useful. 9.

10.3.5.4 Summary

The variation in multifractal signatures observed in this thesis can perhaps most immediately

be interpreted as reflecting the level of practical coping in the user, arising from effective

coordination of resources towards the demands of the task. In comparison to the other levels

I have presented in this section, practical coping seems most promising as a transparent and

directly interaction-relevant level of understanding, which can guide reasoning and design

hypotheses, somewhat independently of theoretical commitments and background in embodied

cognition. It is akin, in this respect at least, to the concept of “affordances” — grounded in

embodied principles, but also intuitively applicable without deep engagement with them. It

offers a bridge to phenomenological accounts like readiness-to-hand which have been relevant

in Embodied Interaction, while retaining greater focus on those pragmatic elements of the

account which seem most relevant to HCI. Finally it seems better able than the other levels

of understanding to function as a lingua franca in HCI, across communities. It seems more

generally and directly applicable to interaction situations than either interactivity, or executive

control, and more specific, and less alienating to newcomers than the less transparent terms of

Heideggerian phenomenology. However, there will be cases when it is important to move back

and forth between levels of understanding in order to interpret results in multifractal spectra

and specify hypotheses and design ideas. In the remainder of this section I discuss how such

movement back and forth supports the translation of multifractal signatures into more familiar

and specific constructs such as fatigue, engagement. To support this, and general reasoning about

9A final consideration here, peripheral to the technical and practical aspects of this thesis, but increasingly
important for me as I have progressed through writing it, is the issue of Heidegger’s politics. His fullhearted
engagement with Nazism is a matter of historical record; including supportive telegrams to Hitler, speeches in which
he referred to Hitler as “Germany’s only reality and it’s law”, and the betrayal of Jewish colleagues [381, p.3]. Many
have argued that this, and more generally his reactionary eurocentric conservatism, pervades his philosophy [307], and
some that this makes his thought unredeemable [259]. Others argue that this political engagement was inconsistent
with the deepest aspects of his philosophy, albeit careful reading seems to be required to disentangle this [381]. It
seems to me perfectly possible to engage very narrowly with ideas of readiness-to-hand without having much to do
with the wider, problematic aspects of Heidegger’s wider thought. In fact (with a few exceptions (e.g. [326, 345, 375])
this seems to be mostly the approach HCI has taken, perhaps resulting in some of the occasional misunderstandings
around these concepts, e.g. regarding the reliance of ready-to-hand engagement on acquired skill (c.f. [84, 364]). Given
the obscurity of Heidegger’s prose, and the fact that most HCI researchers will lack training in the humanities,
relatively narrow engagement with his work seems more than forgivable. However it also raises the question: what do
we gain by engaging narrowly with opaque Heideggerian terminology, when we could engage more fully with the more
transparent, pragmatically focused, and less politically entangled account of a closely related construct — practical
coping?
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practical coping, it is helpful to summarise those factors which are expected to influence practical

coping and multifractality.

1. Multifractal signatures are expected to be affected by the degree to which the user exhibits

flexible coordination and practical coping, which is itself a factor of:

a) The complexity of the task

(see ch. 7, and prior work [212, 255, 312, 359] )

b) The capacity of the user to adapt to that complexity

(see fatigue in ch. 8 skill in ch.4,9 (skill), and prior work on skill, age-related decline

[191, 210, 255])

c) The engagement of the user with the task

(see ch. 3)

2. Multifractal signatures are also expected to be affected by decoupling of the measured

behaviour from immediate practical coping — as in tool breakdown, or the user shifting

to more reflective, or diagnostic modes of engagement. This may be seen intuitively as a

shift from practical coping to more propositional or cognitive modes (from ready-to-hand to

unready-to-hand or present-at-hand, in Heideggerian terms). In more mechanistic terms,

it can be seen as a shift in towards behavioural coordination over longer scales of action

(diagnosis, reflection) in which immediate practical control via the measured movement is

less immediately constrained (see examples of tool breakdown in ch. 4, prior work [88, 251],

and work published subsequent to my own experiments [78, 105, 277])

The underlying theory, which grounds behaviour in interactivity, tells us that these factors

should not be expected to be independent of one another. Each acts upon the same system of coor-

dination, which underlies practical coping, and which we attempt to measure by recording task

directed movement. This will have consequences for the hypotheses we form about multifractal

signatures in real world conditions, where multiple of factors may be relevant simultaneously.

• An increase in task complexity should be expected to result in an increase in multifractality,

and practical coping only insofar as the user has the capacity (e.g. skill, lack of fatigue, etc.)

to respond adequately.

• Likewise, the effect of greater engagement on both practical coping, and multifractal

signatures is also expected to be mediated by this match between skill and task complexity.

Strong, engagement with a task one cannot practically master can be expected to result in

frustration rather than practical coping, and relatively weak multifractal signatures.

• Finally strong engagement should only be expected to result in strong multifractal sig-

natures in measured movement if the measured movement is immediately task-directed
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and significantly constrained by the achievement of the task-goal — e.g. practical coping

is a practical phenomenon. A task may be of high complexity, and the user may have

adequate skill, but if tool malfunction arises, or some degree of reflective detachment, or

some other cause of practical disengagement, then we will expect the measured movement

to become less immediately constrained within task coordination, resulting in relatively

weak multifractal signatures.

10.3.6 Level 4: Other Behavioural Constructs

Much research in HCI focuses on the impact of interaction conditions on particular behavioural

constructs such as fatigue, or engagement (or focuses on the impact of these constructs on

outcomes). It seems probable that at least some of this work aims primarily to support or

understand something like what I have described above as the user’s level of practical coping.

In those cases, practical coping may be the most immediately relevant construct. However,

constructs such as fatigue, engagement, and skill, addressed in this thesis (and others, such as

flow) will often be important to understand the causes of observed changes, and to understand

outcomes in greater specificity. It is therefore an important question: since multifractal signatures

can be affected by multiple behavioural constructs, how can we relate particular variations in

multifractality to particular behavioural constructs.

In lab experiments this might be relatively straightforward. We first reason about the likely

relationship of these constructs to multifractality via the three levels of understanding I have

articulated above, and then test these relationships by controlling factors associated with the

construct. Examples of this level are found throughout my thesis where I relate multifractal

signatures to fatigue (ch.8), engagement (ch.4), and skill (ch.4,9). In the fatigue experiment, for

example, I reasoned, on the basis of the relationship of multifractality to behavioural coordination,

and executive control, that fatigue, being known to undermine these aspects of behaviour, would

be likely to undermine multifractal signatures also. I then manipulated user fatigue with a

fatigue stressor across two conditions.

But there are also opportunities to apply multifractal analysis outside lab experiments, where

such controls will not be available: in studies in the wild, and in deployed systems which infer

and adapt to user needs. In these cases it seems likely that we can refine our inferences about

user behaviour and experience, by leveraging other data also: patterns of temporal variation in

the multifractal signature, and broader information about the task and context.

10.3.6.1 Leveraging Patterns of Multifractal Variation and Contextual Information

First, we can pay attention to the time-scale over which the change in multifractality (which

we take as an indicator of practical coping) occurs, and relate these to expected timescales of

behavioural phenomena. Changes in coping over minutes or tens of seconds, for example, are

often unlikely to be due to changes in skill or fatigue, which can be expected to take place on
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longer timescales. These shorter timescale changes will be more likely due to changes in level

or mode of engagement. The form of the change will also be informative. A fairly consistent,

gradual, increase in the multifractal feature over time seems likely to imply growing skill, or

perhaps evidence of growing engagement. An example of this can be seen in the game experiment

in chapter 4). Likewise, a consistent, gradual decline seems likely to imply either fatigue or

diminishing engagement.

The scale of the change in the multifractal feature might act as another important inter-

pretive clue. In the work in this thesis, the largest observed changes in multifractal features

occurred during tool breakdown (chapter 4), and over a large change in task-type (from copying to

composing a text in chapter 7). Large magnitude changes over short time-periods may be expected

to indicate a significant change in task, or in the user’s mode of engagement: for example, from

practical coping to a more reflective or diagnostic modes, or simple detachment. At this level

of change, we might also expect reasonable confidence that the risk of interrupting the user’s

engagement is lower, and system dialogues might be opened to capture information to further

infer cause.

Further inferences will be possible if knowledge of task and the state of the technology are

taken into account. For example, we will often have information about the level of challenge

or task complexity presented to the user: games and skill training systems are good examples

of cases like this. In such a scenario, we may know that task difficulty is rising, and observe

that multifractal signatures remain steady or increase. On the basis of research in this thesis

(chapters 4, 9), and prior research (e.g. [255]) this seems most likely to indicate that the challenge

remains well matched to skill. In comparison, rising difficulty with declining multifractality

would seem likely to indicate that the difficulty exceeds the user’s skill, or is provoking fatigue or

disengagement. Finally, other behavioural measures and contextual clues may be incorporated,

together with system state, multifractal and time measures, in multivariate models. The relevant

measures will be highly dependent on interaction context, and the character of the task in

question, determined by the ease, convenience, and disruption of capturing these variables, and

their role in the performance of the task. This is of course not uncommon when inferring from

behavioural features (e.g. [26, 185, 235]). Previous work has implemented similar multivariate

user monitoring using, for example, Bayesian methods [177] and machine learning techniques

[330, 356].

10.3.7 Example: Multifractality in a Drawing Application

It is helpful to consider another concrete example application of multifractal analysis in an

application, extending outside the work in my studies in this thesis. Where could the approach

be applied, and what could it tell us about the user? Below I give more consideration to how

HCI researchers might identify potential use cases in general, but for this section, I will focus

on what seems to me a good use case: drawing apps such as photoshop. This is a creative task,
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which is absorbing, and relies on skill. It is complex enough that it is likely to progress through

multiple phases, and the progression through those phases in time is determined by the user. For

high-level users, it involves the use of a carefully designed task-specific tool — a tablet and stylus

— from which we are likely to capture adequate signals. These systems often have high spatial,

temporal, and pressure resolution to support fine control by users, which is likely to make signals

captured from them technically suitable for multifractal analysis 10.

During drawing with such a tablet, in Photoshop or similar apps, large changes in multi-

fractality might be expected to indicate qualitative changes in task or performance, and might

support interface adaptation. A large increase in multifractal signatures over a short period

might be expected to indicate that the challenge of the task or the user’s engagement with the

challenge have increased. The user may have reached a particularly intricate and skillful part

of the drawing for example. This change in multifractality and smooth coping can be expected

to indicate increased focus and perhaps an increased level of skilled performance in the user.

This in turn might suggest interface changes. The system might reduce the opacity of potentially

distracting feedback elements and tool palettes, suspending system notifications, make tools

commonly accessed from the current state quickly accessible, or make slight adjustments to tool

behaviour (e.g. gradually increasing sensitivity) to support skilled performance.

We may also observe large, sudden, decreases in multifractal signatures. These were observed

in chapter 4 during tool-breakdown. In real world conditions it seems unlikely that actual and

significant malfunction will be such a common case. Polished, production software packages,

already set up on a user’s system are likely to be fairly stable. Rather, large, reasonably sudden

decreases in multifractality seem likely to indicate significant detachment from the task, whether

originating in the user or the wider environment. This may follow from the user reflecting on

progress, considering ways forwards, or reconsidering their approach. In such cases it might be

useful to provide ready access to tools for review (scaling and navigating the image, switching

between layers), make a wider range of tool-palates visible, or perhaps even provide access to

ideation tools, or prompt a break. Equally it may mean an external interruption, or that the

user has reached a point of terminal disengagement. However, in this case there is likely to

be no useful interface intervention, and inappropriate interface interventions are unlikely to

cause problems. This seems likely to allow system designers to collapse these two cases, and only

handle the case where a useful adaptation exists.

Smaller but consistent variations in multifractality during the task might be most immedi-

ately interpreted to indicate small variations in level of practical coping, but might be harder to

interpret further. They might be interpretable at a high level in terms of the user’s confidence

and certainty about the development of the drawing, or about the variation of challenges and con-

straints in the task. Such patterns alone might not support inference about immediate changes

10The Wacom Cintiq 24 offers a pressure resolution of 8192 levels, spatial resolution of 5080 dpi, captured at 50hz
[215], which places hand movement frequencies (maximum c 12hz [114])
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in the interface to support the user, but they might contribute to overall pattern finding in user

activity.

Combining all of these kinds of variation, overall logs capturing multifractality and practical

coping over time, may serve as useful feedback for developers. These can be combined with

information about drawing modes and tools in use to help diagnose issues and patterns of

behaviour relevant to these tools. They might also be fed back to the user, supporting their own

sense-making and reflection upon their creative process. This might help draw attention to parts

of the process that seemed more skilfully demanding, or that resulted in pause for thought,

supporting longer term self-development.

Much of this account could be adapted to cases other than drawing applications. As I note

above, games and skill training seem particularly apt use cases: helping the system to calibrate

challenge to the user. As discussed in chapter 8 writing and software development applications

also seem relevant use cases. There inference from multifractal signatures might support ap-

propriate timing of breaks, silencing of notifications. In these cases again, representations of

smooth-coping over time might be reported back to users for sense-making and reflection on

their practice. With this in mind, multifractal measures might be built into integrated devel-

opment environments (IDEs), or existing writing-support tools, such as pomodoro apps (e.g.

[107, 176, 289].

10.3.8 Practical Considerations

In addition to issues of interpretation, HCI researchers engaging with multifractal analysis

will need to address practical issues relating to measurement and analysis. As a relatively

young approach to analysis, in which approaches are still developing (c.f. [161, 187, 190] it is

perhaps more than usually important to proceed with care, and as such I addressed this at

reasonable length, in chapters 5 and 7. In this section I will summarise the main points of

practical consideration, and readers are directed to those chapters for further detail and worked

examples.

10.3.8.1 Practical Advantages of Multifractality over other Behavioural Measures

Before turning to best practices and potential pitfalls, it is worth briefly outlining some practical

reasons why HCI researchers might choose multifractal analysis over alternative approaches

to infer information about the same behavioural constructs. The primary practical advantage

of multifractal analysis is its potential unobtrusiveness and seamlessness for the user. Where

many related behavioural measures involve user report or the performance of secondary tasks

(c.f. [5, 6, 33, 86], multifractal analysis only requires the measurement of task-directed user

behaviour, and in many cases this may be possible using input devices already required for the

task. This seems particularly valuable where multifractal analysis is used to address constructs

related to engagement and immersion. An example of this seamless measurement can be seen
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in my typing experiments in chapter 6. Were it not for ethical considerations, users need never

have been aware that any measurement was taking place: they wrote a text as they usually

would, in a normal browser input element — closely equivalent to posting on a forum, social

media, or making notes for a text in a minimalist text editor like notepad — and their behaviour

was captured for analysis invisibly via a key-logger. In the mouse experiments in chapter 4 I

captured movement using an accelerometer, but this was done for convenience, to avoid solving

technical issues with mouse resolution, transfer functions and operation system timing stability.

Given stable signal capture, of raw mouse data prior to transfer function and at sufficiently high

resolution, there should be no reason not to capture movement directly from the mouse. Other

studies have recorded movement from video capture for example (e.g. [255]), suggesting that data

from gaming systems such as Microsoft’s Kinekt might be suitable for analysis. Eye tracking

systems with capture frequencies higher than I used in chapter 9.3.1 are increasingly common in

consumer systems such as VR headsets, and accelerometers are widely incorporated into mobile

phones and games controllers.

10.3.8.2 Principles for Measurement and Analysis

Having decided that multifractal analysis is a potential candidate measure, researchers must

consider issues pertaining to signal capture. These principles as they pertain to analysis are

addressed at length in chapter 5 and detailed examples of analysis applying these principles can

be found in 7. In summary, the experimenter must consider signal length, resolution, sample rate,

and timing-jitter, all of which are relative to the behaviour being measured. This may involve

careful selection or development of measurement tools which are adequate to requirements. For

example in chapter 4 I built an accelerometer tracker on a real-time computing platform to give

adequate timing stability and resolution in an affordable device. Having captured the signal, it

is important to conduct verification checks on the linearity of the fluctuation function, tracing

these back to potential issues in the data (see chapter 7), and to conduct confirmatory surrogate

analysis to separate out spurious contributions to the singularity spectrum (see chapters 3 and

5). On this note, future researchers will consider using the statistic for non-linear multifractality

TMF over the more commonly used spectrum width w, since it provides more direct evidence of

variation in the cascade structures we are interested in [30, 187]. As discussed in chapter 7, I

also found this to be a more conservative and reliable measure in the face of poor data quality. By

chapter 9 I turned to focus on this measure exclusively.

In the laboratory, many of the issues above are more easily addressed since we have control

over system specifications and task conditions. However, HCI also aims to address situations

outside the laboratory: studies in the wild, online studies, and applications deployed to end users.

In these cases we often have little control over system configuration and aspects of measurement,

and empirical verification such as pilot studies or formal replications may be important to identify

and take steps to address potential issues. In chapter 7 I conducted a replication of a prior result
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— that changes in task complexity result in changes in multifractality — as preparation before

moving on test novel hypotheses. One important role of this was to understand the validity of

observed multifractal spectra in data captured in this particular environment — key-logging

through the browser, in user-owned computers where I had no control over specification, and

system setup. In that chapter I discuss the observed issues with signal quantising and their

effects on resulting analyses. Even in a more controlled lab study, for novel tasks, contexts and

interaction modalities, or where there is uncertainty about the relevant frequencies and scales of

behaviour, empirical verification will be important. This was a motivation for replicating relevant

prior results in chapter 4. Such work is important to provide a baseline, to identify potential

issues in signal capture, and to understand relevant time-scales for the task.

10.3.8.3 What to Analyse? Dimensions and Tasks

Beyond these technical questions, it is also important to consider more broadly what to measure.

First: how is control being exercised in the task, and how can this be captured in a one-dimensional

signal? In some cases there may be a single obvious candidate: if a user is moving a cursor with a

mouse, or typing on a keyboard, then there is a straightforward candidate: hand movement on

the mouse, or timing of key-presses. For the mouse, either a single axis might be used as I did

(following Dotov et al.[88]), or a euclidean distance series might be generated from the movement

on both axes (as I did in chapter 9).

In other cases it may be necessary to look for other less obvious alternatives — in my eye-

tracking experiments on forestry machinery operation (chapter 9), the most obvious candidate for

analysis might seem to have been the various control levers and buttons in the cockpit. This is the

most obvious and direct way in which the user acts towards the completion of the task. However,

it is not easy to see how this multidimensional signal might be reduced to a single dimension

without too much loss of fidelity. Eye gaze is a less obvious candidate for measurement, but a

better option. Control is also exercised in this scenario here through eye-movement: the user

must coordinate eye-movements effectively in order to coordinate their task-directed movements

with events, obstacles, and other constraints in the environment. This provides a two-dimensional

signal which can easily be reduced to one-dimension for analysis. However, eye-movement will not

always be so crucial, or so highly constrained by the task. In many screen based tasks GUIS are

highly ordered and centralised, allowing users’ eye movements to remain quite localised. It seems

less likely for instance, that coordination of eye-gaze will be a relevant dimension in writing tasks,

or in many computer games (though some of the latter may place high demands on this). On

the other we might expect that eye-movement control will be a significant factor in engagement

with systems proposed by distributed cognition researchers, in which users manipulate the

distribution of task relevant information over time [194].

When considering what to measure, the length of the task (not only length of signal) may also

be an important consideration. As discussed in chapter 7, longer typing tasks, for example, seem
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likely to be more challenging and complex, since the user must consider structural issues in the

text. Here task length not only impacts on the length of signal as discussed above, but also upon

the expected task complexity. As again seen in chapter 7 (and in e.g. [210, 359], task complexity

should be expected to impact on the multifractal spectrum, and therefore upon our capacity to

resolve significant variations in multifractality over time.

Multifractal analysis is perhaps best applied in tasks which involve at least some degree

of extended engagement. Multifractal analysis of tweet-writing seems unlikely to be a good

application, since texts are very short, the demand on coordination is likely to be relatively low,

and signals are likely to be below the length required for stable analysis (see chapter 6 for an

illustration of poor results in short signals). The length of task required will vary for different

kinds of task, and depending on the resolution and frequency at which data can be captured. A

combination of intuition about the task and empirical testing can guide us to the length of task

required for analysis of different tasks to be useful. In a computer game, (analysing continuous

movement), I observed significant results for tasks of 1 or two minutes (chapter 4). In typing

tasks (analysing timings of discrete keypress events), my analysis suggested that around seven

minutes of data would be required, in a task that took 15 minutes (chapter 8). In a forestry

task (analysing continuous eye movement) I observed significant results analysing blocks of c 31

seconds of data taken from a task which took 3-7 minutes for different participants (chapter 9).

10.3.9 Future Work

Above in this section, I have articulated a framework which can guide future work on multi-

fractality in interaction behaviour, and support reasoning about the application of multifractal

analysis: in design, in user studies, and in experimental work. This framework as I have drawn it,

extrapolates from results observed in this thesis, from prior empirical results, and from theoreti-

cal accounts of multifractality in human behaviour articulated in the IDVC. However, this thesis

represents only the first step in its development. While a large body of prior empirical research

supports the associations of multifractality with flexible behaviour, the application of this to

the concerns of HCI is a new frontier in this work, as is its understanding in terms of practical

coping. As such a significant body of future work remains; refining this account, placing its claims

on stronger foundations, and expanding it into design practice, user studies, and user-facing

systems.

10.3.9.1 Multifractality, Interactivity and Executive Control

I articulated four levels at which HCI researchers might understand executive control. In each I

see opportunities for future work, and issues to address.

First, the status of multifractality as an indicator of interactivity seems to me fairly secure:

multifractality and cascade structures are known to be closely related [190], and there is now a

significant body of prior evidence relating physiological interactivity to multifractal signatures
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(e.g. [8, 53, 161, 187, 312]. There is also a growing body of evidence relating multifractality

to emergent interpersonal coordination [49, 76, 82, 113, 211, 228, 317]. Some theoretical and

practical questions remain for HCI though: to what degree this kind of interactivity provides

an apt formalisation of at least some of what I have characterised as the “interactivity” in

Embodied Interaction. I address this a little further in my section 10.4 below. In this respect

I also see opportunities for future empirical work relating embodied interactivity to both user

experience, and task outcomes. This work may focus on coordination between users, in hand

gestures (following e.g. [228]), or perhaps coordination of hand and eye-gaze in interactions with

distributed representations of information, following the model in chapter 9, and the discussion

in section 10.3.8.3 above.

Turning to executive control: the relationship of multifractality to flexible adaptive behaviour,

is also well established in prior literature (see e.g. [9, 14, 51, 54, 188, 210, 255]), but as I noted

above, the identification of this with executive control requires much further work. This however

seems to me to be largely outside the scope and expertise of HCI research.

10.3.9.2 Multifractality and Practical Coping

Above I articulated how results in this thesis, support the idea that multifractality supports

practical coping — practically engaged, active, adequate, and characteristically unreflective,

adaptation to the demands of the task at hand, grounded in know-how, and based on adaptation

to situational factors [249]. This is supported by a body of prior work which associates higher

multifractal signatures with greater adaptive skill in practical tasks (e.g. [30, 255]), better task

outcomes (e.g. [210]), and with increases in task demands within the limits of user capacity (e.g.

[9, 212, 359]). To date the majority of this work has been conducted in lab studies, and, before the

work in this thesis, rarely if ever in tasks directly relevant to HCI. Future work should address

these limitations to provide a stronger foundation to this account.

The potential to apply these techniques outside the lab and to ecologically valid tasks is

supported by the potential for unobtrusiv data capture as discussed above. This can be seen

in studies like Nonaka and Bril’s study of crafting, which was conducted in the crafters’ own

workshops, analysing a task important in their everyday work [255], and it can be seen in the

results of my forestry work analysis in chapter 9, applied to data captured during standard

training tasks in a working environment. Future work may directly extend the work in this

thesis by studying some of the aspects of practical coping I have described in more everyday

environments. Examples might include user’s everyday writing practices (via longitudinal key-

logging studies, perhaps via pomodoro-style productivity apps), or mouse and gestural control

during commercial video games. Also as I outlined above, drawing applications seem a fruitful

direction of study.

Other work in this direction might seek to expand the understandings of the relation of

multifractal signatures to particular aspects associated with practical coping, and with conditions
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expected to affect it. Other factors which affect engagement might be tested, to rule out confounds,

and subjective level of engagement measured more directly11. Since my result in this thesis is the

first to observe a decrease in multifractality due to fatigue, future work might observe the effect

of fatigue in other tasks. Future work may also expand understandings of the relation between

task complexity (or challenge), and multifractal signatures. We would expect to see an upper

limit on this effect when challenge or complexity exceeds the user’s skill, leading to a breakdown

in practical coping. Outside results in typing (in this thesis and in [359]) this result has only

previously been reported in the comparison between steering tasks of intentionally minimal

challenge [210].

Finally, it will be important to further address attentional, and experiential aspects of

practical coping. Due to the conditions of the pandemic, it did not seem plausible to me to further

extend this line of work, but it seems likely to be an important issue for user experience. It is

an open question whether forms of breakdown less dramatic than full tool malfunction, and

those not originating in the tool, but in the user, might also result in shifts of locus of attention.

Future work might address whether reflective decoupling from the task, or more creative and

less task-focused engagement results in the same combination of decrease in multifractality and

shift in locus of attention. It seems likely that there is significant value in the ability to infer

locus of user attention: to drive interface adaptation to support task performance, and to drive

the timing of user notifications to support visibility and engagement. Work by Dreyfus and other

phenomenologists emphasises experiential aspects of practical coping, and these are likely to

be relevant to understandings of user experience. Future work may address user experience via

qualitative methods, perhaps including microphenomenological interviews [270] or explicitation

interviews [236, 328] which have been thought effective for interrogating implicit and difficult to

articulate aspects of user experience [198, 341]. Analysis of such interviews may focus on aspects

such as propositional attitude, and abstract awareness of properties, as well as more evaluative

aspects relevant to conventional user experience goals. Work by Dreyfus and others will be an

important source of material for such studies (e.g. [46, 94, 159, 249])12

10.3.9.3 Understanding Patterns in Multifractality Over Time

Only a little of the work in this thesis, and very little prior work on multifractality in behaviour,

has focused on patterns of change in multifractality over time. The majority has focused on com-

parisons between isolated point measures taken under different controlled conditions. However, I

have suggested that there is potential value in leveraging patterns in multifractality over time,

to help infer user state and interaction issues, and many of the applications I discuss above rely

11in my protocol I felt it would be too much of an interruption to engagement to measure engagement between
each trial

12In line with some of my reservations above, by contrast to work by Dreyfus, Merleau Ponty, Gallagher and others.
which focuses directly on everyday experience and behaviour, and often extends into empirical studies [119, 120],
Heidegger’s work is a poorer source of clear concrete analysis of the first person experience of tool use and skilled
performance
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on observations of the user over time. Not only this but, I suggested in chapters 2, and 3 that

multifractal methods may be useful to shed light on the patterns of coupling and decoupling

over time which prior work in embodied interaction has suggested (discussing readiness-to-hand)

are important for learning, creativity, and appropriation of technology. For all these reasons

there is clear value in future work investigating patterns of variation over time, in skill learning,

engagement and disengagement, and over the course of tasks.

In this thesis the experiments on skill and engagement in chapter 4 take initial steps in this

direction, observing multifractality over a number of trials, and between the first and second

halves of the trial to understand changes due to training or disengagement. These results point

to some intuitively interpretable patterns which I discuss above. Future work should further

investigate these variations over time, to understand the consistency of measures, clarify patterns

of change related to different phenomena, and understand the ways in which these patterns relate

to behaviours and experiences of interest in HCI. As I note above, relatively little prior work can

be drawn upon directly here, but researchers may build on the “epoching” approach demonstrated

by Anastas et al [10] — essentially analysis of signals using a moving window — and draw on my

work in chapter 7 and e.g. [111] when selecting epoch size. As an example of approach: I began

investigating time-based variation in eye-gaze during microsurgical training, to understand the

relationship between variation in multifractality and “breakdowns”: dropped needles and other

errors which required adaptation and recovery. I time-annotated videos breakdown events, and

conducted a multifractal analysis on the signals using a moving-window approach to calculate a

value for TMF for each window. I planned to analyse the correlation between these periods and

periods of high and low multifractality. Unfortunately issues in the data-set halted this project,

but the broad approach seems to me useful for future work seeking to understand variations in

practical coping over time during real-world tasks.

10.3.9.4 Understanding Interactions Between Factors Which Affect Multifractality

In order to pursue some of the applications discussed above, it will be necessary to understand

how to distinguish different factors which impact upon multifractal spectra. I identified four

main factors: The complexity of the task; the capacity of the user to adapt to that complexity; the

user’s engagement with the task; and the degree to which the measured movement is constrained

within the task directed behaviour.

Examples of potential interactions between factors can be seen in some of the work in this

thesis. In the mouse experiments in chapter 4 in both the training period in the first experiment,

and the multiple sessions of the second experiment, multifractality rose overall over the course

of several sessions, but at the same time showed a tendency to decline during the course of

individual sessions: being lower in the second half of each session than in the first. I noted in

that chapter that it seemed likely that these shorter time-scale issues could be attributable to

disengagement or fatigue. It will be important to understand trajectories like these as they occur
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Table 10.1: Factors which affect multifractal signatures in behaviour. All are expected to be
operative simultaneously

Factor Example Impact on Multifractal
Signatures

Task Complexity A task which requires coordinating
more cognitive resources, negotiating
within more interacting constraints,
or coordinating between more people
can be considered more complex

Greater task complexity will
increase multifractality
(other things being equal)

User’s Capacity to
Adapt

Skill can be seen as a marker of
greater capacity to adapt, fatigue
undermines adaptive capacity

Greater ability to adapt to
complexity will increase
multifractality (other things
being equal)

User’s Engagement Greater motivation to complete the
task, via rewards, or enjoyment

Greater engagement will
increase multifractality
(other things being equal)

Degree to which
measured behaviour
is directed to the task

If the tool seems broken and the user
starts making diagnostic movements,
these movements are likely less
constrained by complex
task-completion dynamics.
If I measure eye-gaze and the user
begins to ideate rather than
coordinate eye-gaze with hand
movement in drawing, then eye-gaze
is no longer constrained by task

Reduced task-directedness
will reduce multifractality
(other things being equal)

during longer training sessions, and over periods of weeks and months, and to understand how

they relate to skill, fatigue, and engagement.

Further, in the second mouse experiment, there appeared to be an increase in multifractality

over time in the less engaging task only, while multifractality in the engaging task remained

more or less static over trials (see fig. 4.4). This result was not expected, let alone hypothesised,

and so I did not test for significance, but the difference in gradients of change was large enough

that, despite the more engaging task having much higher multifractality in the first session and

significantly higher multifractality overall, the trends are suggestive of convergence at similar

levels of multifractality within a couple more trials. One explanation for this effect might be

that, where tasks are challenging, but relatively non-complex, motivation to engage carefully

and attentively can compensate for skill in performance, though this effect may be small enough

that skill acquisition catches up with it over time. Future work might attempt to replicate and

understand this effect in the interaction between engagement and skill. This might, for example,

involve training users on more and less engaging tasks before measuring performance and

multifractality on a third, similar task, to isolate the effect of engagement from the effect of
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training and fatigue. A challenge here will be that we may expect a more engaging training task

to result in better skill acquisition.

10.3.9.5 Inferring and Supporting Skill

In the game task in chapter 4, changes attributable to familiarity with the task, or skill, were

apparent after only a few trials. Skill based differences in multifractality were also apparent

in eye-gaze between expert and novice machinery operators, in a task far closer to real-world

conditions (chapter 9), and representing skill acquired over a number of years. We can add

to these relevant findings in prior work: Nonaka and Bril found that multifractal signatures

predicted level of experience, and capacity to adapt to novel changes in the task, in skilled crafting

task [255]. Cavanaugh et. al. have recently suggested that multifractality might be important

in physical therapy to understand the difference between therapy which only supports recovery

of range of movement and therapy which recovers the genuine adaptive capacity required for

everyday tasks. Together these findings point to real promise in multifractality as an indicator

of skill for training applications, and e.g. in gaming applications for to allow the game to adapt

to the user’s skill. To support these kinds of applications, future work should understand how

skill affects multifractality in task-directed movement in a range of different tasks, and over

time. This work should both observe changes within single training sessions, and over the longer

periods required for significant and lasting skill acquisition. Challenges here may come from the

co-occurence of other factors which affect multifractal spectra, discussed in more detail above.

10.3.9.6 Relating Multifractality to Other Behavioural Constructs

Finally, the work in this thesis has made steps to understand the links between multifractality

and other constructs of interest in HCI. Results in this thesis contribute to understandings

of the relationship between multifractal signatures and both readiness-to-hand (or practical

coping) 3, and executive control 8. I have also reported the first results (to my knowledge) which

associate variations in multifractal signatures with fatigue (ch 8), and the engagingness of

the task (ch 4). There is scope for future research to relate multifractal signatures to other

features of interest in HCI. Perhaps particularly strong candidates for future research are flow

[285], and tool-extension [33]. HCI researchers have long been interested in flow as a means

of understanding user experience. It is a construct from positive psychology which describes

states of optimal experience characterised by features including a sense of intense concentration,

loss of time-awareness, the effective matching of skill and challenge, the merging of action and

awareness, and a strong sense of control [248]. Previous researchers have noted both connections

and distinctions between flow and readiness-to-hand [285], and practical coping [46]. Future

research might further investigate the degree to which multifractal signatures in movement

arise during flow states, and might serve as indicators of these states.
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Tool extension is a concept which has more recently received interest in HCI [33, 34]. It con-

cerns the degree to which tools are functionally incorporated into our body schema, and cognition.

This construct has clear significance for understandings of Human Computer Integration [245],

and Bergstrom et al. suggest that the measure can be used to quantify claims of embodiment, and

to understand how tools extend our representations of action possibilities, relating the idea to

accounts of readiness-to-hand [33]. Current measures of tool-extension are somewhat obtrusive,

relying on a secondary response-time perception task. As I note in chapter 3, multifractal features

have been associated with tool-coupling, and Dotov et al’s account of readiness to hand relies

on the theory that multifractal signatures indicate the incorporation of the tool into cognition

[88, 251]. Since I conducted the empirical work in chapter 3 a growing body of work has arisen

investigating the phenomenon of tool-extension via multifractal measures [78, 105, 277], but none

of this has tested the association with the tool-extension measures investigated by Bergstrom

et al. Future work may investigate the relationship between these measures, to align under-

satndings, and evaluate multifractal analysis as a potentially less obtrusive methodology for

investigating tool extension in HCI.

10.3.10 Summary

This section has largely addressed RQ1 — Can multifractal signatures in user movement

contribute to HCI user studies and technology design? — by articulating a four-level framework

for understanding multifractality and MFA, when specifying studies, interpreting results, and

reasoning about applications. Regarding RQ1a Can multifractal signatures be used to infer user

behaviour and experience?, the empirical results in my thesis show that they can be used to infer

engagement, fatigue, skill, task-complexity, and locus-of-attention during tool malfunction. Above

I have pointed to other implications of these results for inferring user behaviour, and the future

research which can expand and clarify these results, and inform the future use of these measures

in studies and system designs.

I followed this discussion by addressing RQ1b What are the practical properties and con-

straints of MFA, relevant to a HCI context?. I discussed the convenience and unobtrusiveness of

MFA. Since it focuses only on measurement of the task at hand, in many cases it can be deployed

without interruption to the user. Further, it will often not require specialist equipment, making

it cost-effective and easy to set up. I also reviewed my work in chapter 7 on the ways in which

the measure is affected by signal length and quality, indicating that this makes it suitable for

more focused uninterrupted tasks, but that the relevant length of task will vary by domain. To

provide practical support for future research using MFA, I developed and documented an analysis

pipeline in 5 and 7. These chapters included a wide range of practical guidance on the analysis

stage, including the presentation of a data-driven approach to parameter selection which can

supported researchers investigating new interaction modalities, for which there is no precedent

to follow, and promote good hypothesis testing practices. Finally I gave some suggestions for how

240



10.4. MULTIFRACTALITY, THE IDVC, AND EMBODIED INTERACTION

researchers might go about identifying appropriate tasks, contexts and behavioural dimensions

for analysis.

10.4 Multifractality, the IDVC, and Embodied Interaction

The IDVC is an account of cognition grounded in ecological psychology and its embodied view of

cognition and behaviour, and multifractal analysis serves within IDVC research to understand

the role of interactions between elements in brain, body and environment in how behaviour

emerges. As such it is not terribly surprising that the work in this thesis should make some

contribution to research in the Embodied Interaction community. However, since embodiment is

subject to various understandings in different fields and communities [372], it is worth returning

to the more precise questions I articulated at the start of this thesis, addressing how the IDVC

relates to Embodied Interaction research in particular.

RQ2 Can MFA and the IDVC augment existing research on embodiment in HCI?,

RQ2a Is the IDVC sufficiently consistent with HCI approaches to embodiment?, and

RQ2b Do MFA and the IDVC support the operationalisation of important concepts in Embod-

ied Interaction research?.

First of all, much of the framework I have outlined above addresses three concepts which

I suggested play important roles in accounts of embodied interaction in HCI (chapter 2) —

interactivity, coupling, and readiness-to-hand. To recap these concepts:

• Interactivity: the idea that user behaviour is “best understood as the emergent property

of the interactions of the [user] with its environment” [190, p.2], these interactions being

understood in some way to be not readily decomposed into the behaviour of individual

elements.

• Coupling: a concept for articulating the temporary states of adaptation and synchronisa-

tion between user and interaction context which emerge through this interactivity.

• Readiness-to-Hand: a recurring account of fluid, intuitive technology use, and the effect

of tools on experience and behaviour, which has been influential in embodied interaction,

and which brings together the concepts above.

10.4.1 Readiness-to-Hand and Practical Coping

I have made a case above for HCI and Embodied Interaction to move away from readiness-to-hand

and towards practical coping as a more apt concept for the issues of interest in our research.

Practical coping is also an embodied account of behaviour, and closely related to readiness-to-hand.

As such I take my discussion of practical coping, readiness-to-hand and multifractality to be a

contribution to embodied interaction research, and take the discussion of the relationship between
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multifractality and practical coping to be directly translatable into the terms of readiness-to-hand.

My results in the mouse experiments in chapter 4 indicate there is promise in operationalising

Embodied Interaction researchers’ understanding of readiness-to-hand in terms of multifractal

signatures in overt task-directed movement. Above I discussed opportunities for testing the ideas

of Embodied Interaction researchers which link readiness-to-hand to, for example, immersion

[5, 364], creativity and learning [56].

I also see far wider opportunities for practical coping and its multifractal basis to expand

the scope of embodied interaction research. As Turner notes, the concept of coping is readily

translated into the pragmatic, task-oriented language of engineering and computing which is

accessible to designers and software engineers [337]. My contribution in this thesis goes beyond

such conceptual translation, and provides hooks for empirical work and computational inference.

As I argue in chapter 4 with respect to readiness-to-hand, the empirical results in this thesis

point to the potential to operationalise and measure practical coping, allowing design hypotheses

to be formulated in terms of practical coping and then tested and refined. Due to the unobtrusive

nature of the measurement, and the computational nature of the analysis, my results also points

to the potential for the behaviour of systems which adapt to user needs, specified directly in terms

of the users’ embodied, practical coping. Finally, some Embodied Interaction researchers may

feel, or find in practice, that aspects of the account of readiness-to-hand which are important to

their work exceed that of practical coping, or exceed that which is captured by operationalisation

in multifractal signatures. What I offer in this thesis is unlikely to be completely comprehensive

with respect to an account of phenomenology which is so multilayered and often ambiguous. In

these cases I am at least confident that the account I have given will be close enough to such

broader phenomenological enquiry, to support useful dialogue with it. Returning to RQ2b Do

MFA and the IDVC support the operationalisation of important concepts in Embodied Interaction

research?: in the case of readiness-to-hand as HCI researchers have addressed it, these approaches

do seem to me to offer a meaningful and useful operationalisation, though this work also points

to the value of shifting focus from readiness-to-hand towards practical coping.

10.4.2 Interactivity and Coupling

In chapter 2 I argued that the idea of interactivity — the emergence of behaviour from interactions

between user and environment in a way which is in some way irreducible to the behaviour of

components — was fundamental to work in embodied interaction. And I argued that coupling

acted as a sub-concept in analyses of this interactivity. In line with this, interactivity stands at

the foundation of my framework for understanding multifractality in HCI. Interactivity here is

formalised in terms of multiplicative cascade structures. Properly interpreted, using surrogate

analysis, this kind of interactivity is precisely what multifractal signatures provide evidence of

[161, 190]. From here the question is: how close is this kind of cascade interactivity to the kinds

of ‘interactivity’ that appear in accounts of embodied interaction?
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While it seems clear to me that previous Embodied Interaction researchers did not think

explicitly in terms of multiplicative cascades, in chapters 2 and 3 I made the case that there seems

to be an adequate conceptual fit between it and at least many of the accounts of behavioural

coordination, situational improvisation, and coupling in Embodied Interaction. As with readiness-

to-hand, I do not expect cascade interactivity to capture all of this, but again, I believe it can

make important contributions in particular areas. I think cascade interactivity will most effec-

tively and uncontroversially formalise the local interactivity involved in particular interactions,

between brain, body and non-human elements in the proximal environment. This will be the

interactivity specific to a single session of technology engagement: sensorimotor interactivity in

the environment, between user and technology. This is the level addressed by the empirical work

in my thesis, and I take the aptness of multifractality as a formalism of ideas at this level in

Embodied Interaction as largely an empirical question. In particular I see this as being relevant

to ideas and claims about sensorimotor coupling [321, 322, 345], human computer integration

[245], and the accounts of ready-to-hand coupling discussed above.

When it comes to other “higher order” kinds of interactivity in embodied interaction, in some

cases cascade interactivity seems a priori unlikely to be the best lens to understand behaviour —

even if the IDVC suggests that these phenomenon will have their basis in this. These cases will

include some of the linguistic, and cultural kinds of interactivity often addressed by ethnomethod-

ology [90, 324]. I return to these below. In other cases of human-human interaction, however,

cascade interactivity still seems to me a potentially useful formalisation, and multifractal signa-

tures may be informative here. For example prior work suggests that multifractal analysis can

shed light on how certain behaviours arise out of users’ physical and spatial coordination. To date,

prior work in this area has mostly focused on coordination in quite simple lab tasks in which

participants are explicitly asked to coordinate (e.g. [73, 82], however some work has indicated

that multifractal signatures can be informative about how pairs of people coordinate their head

movements during conversation [17], about the coordination between gesture and speech in

dyadic conversation tasks [76], and about spatial coordination in football teams [49]. I see value

in applying multifractal analysis to understand how emergent physical coordination may have

bearing on task outcome, and how this may be affected, positively or negatively, by the introduc-

tion of technologies. The most immediately obvious application seems to me the investigation of

coordination in team e-sports, where physical coordination can be expected to have a significant

role on experience and outcome. Equally, however, multifractal analysis might be informative

(alongside other qualitative and quantitative measures) about the role of co-presence vs digital

telepresence in various tasks, helping to address questions about which kinds of task are affected

by video conferencing, and in which ways, and which parameters impact most on coordination.

I also see potential to apply multifractal methods to shed light on the interactivity involved in

distributed cognition. Work by Kirsh and others as investigated the ways in which users leverage

information distributed spatially in the interaction space, and proposed design frameworks which
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support users in adaptive engagement with such spatially distributed information [144, 194, 195].

Future work may apply methodologies like those I applied to understand eye-gaze coordination

in forestry tasks in chapter 9. Multifractal analysis of eye-movements in distributed interaction

environments would allow us to understand the kinds of information distribution, and the kinds

of control over information distribution which help users to couple to the interaction context. We

would expect based on prior work in both distributed cognition [144, 194, 195], and multifractal

analysis of eye-gaze [8, 312], that tools which affectively allow users to distribute information in

their workspace should lead to both better task outcomes and stronger multifractal signatures in

eye-gaze.

Regarding more longitudinal, linguistic, and cultural aspects of interactivity, multifractal

analysis seems likely to hit limits of usefulness. Examples here include cases like Suchman’s

analysis of photocopier use [323], Hornecker’s analysis of sense-making in museums [150], and

in general efforts to understand how intersubjective meaning arises from practice, and bears

upon behaviour and experience in particular contexts. Practically in these cases, it will not be

clear in advance which specific behaviours are most relevant: it is expected that surprising and

situationally emergent aspects of practice can turn out to have a significant bearing on outcomes,

and any parameterisation in advance will exclude the study of these phenomena. In some cases,

“universal” features of human-human coordination such as eye-gaze and body movement might be

recorded and analysed, but these will not capture linguistic aspects of the situation, for example.

There may be potential in some cases for multifractal analyses to inform qualitative analyses,

or draw attention to particular periods and factors, but in speculating about this I am stepping

beyond my expertise. I hope in future to have the opportunity to discuss the potentials and

limitations of this with experienced practitioners of ethnomethodology and conversation analysis.

10.4.3 Quantifying Embodied Concepts Without Evacuating them of Sociality

Finally, it is worth noting one final limitation regarding the contribution MFA and the IDVC

might make to some aspects of Embodied Interaction, and the implications of this for future

work using MFA in HCI. While some in Embodied Interaction have embraced quantitative

methods and cognitive-scientific approaches (e.g. [152, 194, 345]), others have been critical

of such attempts [344]. Suchman, for example, criticised contemporary (’90s) “third-person”

approaches to “situatedness” grounded in cybernetics and cognitive science, arguing that the

situations modelled were “purely physical” and “evacuated of sociality” [323, p.15]. Suchman

describes an unfortunately familiar outcome, not to be lightly dismissed: quantitative approaches

can lead to a narrow exclusion of human complexity in favour of convenient simplifications. It

is undeniable that the approaches I have applied in this thesis are purely physical, and not

only can they be applied without much consideration of wider social and cultural issues, my

empirical work in this thesis does exactly this. And in fact this is generally also true of empirical

work in the IDVC. While I have pointed to work above which relates multifractal signatures to
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human-human interaction, this work only addresses movement coordination, and in culturally

barren lab experiments. While it is obviously the case that different kinds of work in HCI must

focus on different scales of human behaviour, it seems to me that work which seeks to address

Embodied Interaction — which itself focuses on messy embodied and situated human complexity

— should have some kind of answer to this. My answer will come in two parts: First I’ll point to

some principles and theories in work on the IDVC, which suggest potential ways forward. Second

I’ll argue that nobody should accept this first answer at face value.

So, first, as in chapter 3, I want to emphasise a basic congruence in theory and principle

between the IDVC and Embodied Interaction. At a theoretical level at least, interaction dominant

accounts of behaviour do assume the entanglement of individual behaviour with social and

cultural contexts [348–350]. The scale of human life, and the impacts of daily routines and

culture are assumed to impact upon multifractal signatures, and on any expression of behaviour.

Accordingly, early articulations of the IDVC emphasise the necessary interdisciplinarity of any

understanding of human behaviour. This is consistent with the view of the philosopher of action

Alicia Juarrero, whose work was a central influence on the IDVC [348–350]. Juarrero develops

an account of human agency, grounded in physicalist, dynamic-systems models of agency. At

the same time, however, she emphasises that narrative description will remain the most apt

approach to understanding many real world interpersonal interactions, due to its ability to flexibly

accommodate complex sociality [174]. On paper at least this sounds a lot like the existing use of

“thick description” [28] in Embodied Interaction: it points to compatibility between approaches,

and argues that applied work grounded in the IDVC should be open to integrating narrative

and critical approaches. A model for such openness and engagement can be seen in the work of

the enactivist cognitive scientist Ezequiel de Paolo. De Paolo’s work often focuses on embodied

sensorimotor accounts, at the level of behaviour addressed in this thesis, and lower orders of

behaviour (so called “minimal cognition”), and while his work sits within an enactivist theoretical

frame (rather than the ecological frame of the IDVC [190]), he has noted the proximity of his

work to accounts of interaction dominance [268, pp.36-37]. At the same time, he is one of the

major contributors to research on “participatory sense-making”: the embodied, situated, and

social practice of constructing meaning through active “languaging”, which often draws upon

narrative approaches [267].

This brings me to my second, and I think more meaningful, ‘answer’ to the potential concerns

of Suchman and others. I would expect any researcher who takes the importance of situated

action seriously to be sceptical of in-principle arguments like the one I outline above. I would

expect such researchers to feel — as I do — that abstract principles only take us so far. In Plans

and Situated Actions, Suchman discusses the example of a canoeist traversing white water rapids.

She notes that this canoeist may create plans or maps to guide their traversal, but argues that,

while these static guides can indeed be useful, they cannot define the route, nor assure success.

Instead these plans and maps act as guides to the canoeist’s ongoing, situated action: their

245



CHAPTER 10. DISCUSSION

attentive adaptation to the moment-by-moment conditions of the rapids [323, p.72]. I think the

principles and precedents I outline above are a little like the canoeist’s plan. They are important

but useless without the right, ongoing, adaptive activity to the turbulence of academic research,

individual experiments, economic factors. If, in practice, multifractal methods are applied in a

way which is insensitive to wider context — bluntly packaging isolated aspects of behaviour into

neat measurable units — then the theories and principles above will amount to little more than a

cover story. I, and other practitioners who engage with these methods, should follow the examples

of researchers like Di Paolo as much as their ideas: moving between perspectives, methods, and

scales of analysis. Remaining mindful of the complexity which is just out of frame, at another

scale of analysis. It seems to me that embodied approaches of all stripes call for exactly this:

the kind of principled, pluralist, “pragmatic realism” described by the philosopher of science

Hasok Chang. For Chang, scientific realism is not an account, principle or school of thought. It

is an ideology: an ongoing commitment to maximise our contact with reality, especially where

it exceeds our own account of it [58]. The tools in this thesis must be applied in that spirit: to

shed light on context-bound human activity in the world, to help our systems serve it better, and

to allow us to sharpen our attention to those aspects of it which are just out of frame, or which

exceed our expectations.

10.4.4 Summary

This section addresses RQ2 — Can MFA and the IDVC augment existing research on embodi-

ment in HCI? — and its two sub-questions: RQ2a is the IDVC sufficiently consistent with HCI

approaches to embodiment? and RQ2b Do MFA and the IDVC support the operationalisation of

important concepts in Embodied Interaction research?. In chapter 2 I suggested the concepts of

interactivity, coupling, and readiness-to-hand played important roles in Embodied Interaction

research, and in chapter 3 I argued that they were at least theoretically congruent with the same

concepts as used within the IDVC. Through the rest of this thesis I have tested the application

of multifractal measures to understand interactivity in behavioural coordination (chapters 7,

8 and 9); coupling between user and tool (mouse use in 4); and the readiness-to-hand of the

tool (4 again). In this chapter I have argued that there is significant potential in operational-

ising all three of these concepts in multifractal signatures in behaviour, and pointed to some

potential routes forward to develop these operationalisations. I have also suggested that in the

case of readiness-to-hand, researchers might do well to shift away from the use of this account,

and towards practical coping. Practical coping is closely similar in certain respects but better

aligned with HCI research in many respects: not least in the more detailed focus on practical

behaviour and experience in the literature on the concept. In particular, in the interpretation of

multifractal spectra, practical coping seems the more comprehensively apt construct, being more

straightforwardly relatable to variation due to engagement, fatigue and other factors of interest

in HCI.
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Alongside this evidence for the suitability of the IDVC and MFA for Embodied Interaction,

I identified limitations however. These focus mainly on the physicalist nature of the approach.

Unsurprisingly MFA and interactivity-as-cascade-dynamics seems unlikely to be the best address

higher-order linguistic and socio-cultural interactivity. I have suggested that in order to integrate

the methodology into Embodied Interaction, in the spirit of that research, researchers should

adhere to an explanatory pluralism akin to that described by Alicia Juarrero, allowing narrative

and quantitative methods and results to inform one another.

10.5 Conclusion

This thesis has investigated the contribution which multifractal analysis, and the interaction

dominant view of cognition (IDVC) can make to Human Computer Interaction, and in particular

to Embodied Interaction. I began by addressing the compatibility of these approaches (RQ2a),

identifying three key concepts in Embodied Interaction research which support translation be-

tween Embodied Interaction and the ideas of the IDVC. I argued that Embodied Interaction

research gives a foundational role to interactivity: the idea that behaviour emerges out of in-

teractions in a way which is — in practice — irreducible to the understanding of the involved

components. I then noted how, within this understanding of interactivity, Embodied Interaction

researchers focused on the role of individual couplings: between users and technologies, contexts,

and other users. Finally I turned to one key concrete expression of these couplings: the phe-

nomenon of readiness to hand in tool use, which HCI seems to have received from Heideggerian

phenomenology, via Dreyfus, and which has been influential in design ideas and for the analysis

of interaction behaviour.

Through the rest of this thesis, addressing RQ2b I related these three constructs to multi-

fractal analysis, to investigate the potential for operationalisation. In chapter 3 I drew on work

in the IDVC, to relate Embodied Interaction’s accounts of interactivity to cascade structures and

multifractality. I showed how this approach can be applied to understand couplings both within

the user — across brain and wider physiology — and also between these levels and the wider

interaction context. Then across seven experiments and data analyses, I investigated the rela-

tionship between variation in these cascade structures and aspects of high level user behaviour:

engagement, skill, fatigue, and attention. Of particular relevance to Embodied Interaction I first

related these results to the account of readiness-to-hand, showing how multifractal analysis

offered empirical methods to understand this construct, where such methods have been lacking

to date.

Alongside this I made methodological contributions to support future work in HCI. Multi-

fractal analysis of behaviour has not previously been investigated in HCI; documentation and

guidance on the approach is scattered, and the approach poses certain challenges to unfamiliar

users. As such I gathered together guidance, and developed an analysis pipeline which future
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researchers can follow, presenting it via detailed worked examples on data-sets, including details

of data quality issues. Since parameter selection can impact on the results of multifractal analysis,

and it can be difficult to reason about specific parameter values, I also developed a data-driven

approach to parameter-selection which can guide future research, and aid researchers in specify-

ing details of their analysis ahead of data capture, avoiding potentially bad practice in hypothesis

testing.

Finally in this chapter I gathered these results together into a framework for HCI researchers

engaging with multifractal analysis. I presented four levels of understanding, moving from the

general to the particular, which can support HCI researchers in reasoning from the theories of

the IDVC towards applications and user experiments.

Taken together these results show the theoretical compatibility between the IDVC and

Embodied Interaction (RQ2a), and they demonstrate a significant potential to operationalise

key embodied concepts via these theories and the methodology of MFA (RQ2b). More broadly

my results show that MFA can serve HCI research more widely in supporting the inference of

high-level aspects of user interaction behaviour, including fatigue, engagement and skill, and

task-complexity (RQ1a). They show the beneficial practical properties of MFA for this task, in its

ease-of deployment, and its unobtrusiveness to the user experience. Finally my framework, and

methodological work in chapters 5 and 7 provide practical guidance for future researchers on

where and how these approaches can be applied, and some of their practical limitations (RQ1b)

10.5.1 List of Contributions

Empirical Findings

• Multifractal signatures in mouse-hand movement decrease during tool malfunction, as

the user’s locus-of-attention shifts towards the tool. (replication using stronger forms of

evidence for both locus of attention and nonlinear multifractality) (ch. 4).

• Multifractal signatures in hand movement correlate with task-familiarity (ch. 4).

• Multifractal signatures in hand movement correlate with the engagingness of the task (ch.

4).

• Multifractal signatures in typing correlate with the complexity of the writing task. (replica-

tion using a stronger form of evidence) (ch. 7)

• Multifractal signatures in typing predict fatigue (ch. 4).

• Multifractal signatures in eye-gaze correlate with experience in the control of complex

machinery (ch. 9).

Of these the hypotheses on cognitive fatigue and engagement are particularly novel: prior

research has not to my knowledge addressed the relationship between multifractality and these

constructs.
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Methodological Contributions

• Development of a data-grounded approach to the selection of parameters for multifractal

analysis, which supports good practice in hypothesis testing (ch. 5).

• Workflow examples of the multifractal analysis of data-sets, including parameter selection,

validation, and steps to address issues in data quality (ch. 7).

• Analysis of the effects of signal length and quality on the results of multifractal analysis

(ch. 7).

• A framework for applying multifractal analysis to problems in human computer interaction

(this chapter, below).
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Common Language Effect Size (CLES)

An easy-to-interpret measure of statistical effect-size, which is known to be robust when

comparing samples whose distributions diverge from normality [237]. The CLES applies to the

selection of an item from two populations, one of which is expected to have lesser values, and

another which is expected to have greater values (‘lessers’ and ‘greaters’). It gives the probability

that a random draw from the ‘greaters’ will in fact be greater than a random draw from the

‘lessers’ [237]. For a CLES of 0.95, for example, we can say that if we selected items at random

from each category, there would be a 95% chance that the greater value would come from the set

of ‘greaters’.

In pseudocode:

greaters = sort(greaters)

lessers = sort(lessers)

lesser_index = 0

numerator = 0

for greater in greaters:

while lesser_index < len(lessers) and lessers[lesser_index] < greater:

lesser_index += 1

numerator += lesser_index

denominator = len(lessers) * len(greaters)

return numerator / denominator
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Iterated Amplitude Adjusted Fourier Transform (iAAFT)
An algorithm which generates “time series surrogates” of an original time series. These are

phase-randomized copies of the original in which which the power spectrum of the original time

series is preserved. The phase randomisation disrupts non-linear relationships in the signal, so

that comparison of multifractal properties of the original and surrogate time-series allows us to

quantify the impact of non-linear contributions.

Generates n surrogates of an original data set. For each surrogate:

1. Calculate Fourier spectrum for the original signal

2. Generate a random shuffle of the data points in the time-series

3. Apply “spectral adjustment”: Calculate the Fourier spectrum of the shuffled time-series,

and replace the magnitudes with the magnitudes of the original signal.

4. Apply “amplitude adaptation”: adjust amplitudes based on their ranking. Replace the

amplitudes of the current time-series with the same-ranked amplitudes of the original time

series.

5. Check for convergence - whether the differences in the Fourier spectrum is within tolerance.

If this has not occurred, return to step 3.

For more detail an implementation of iAAFT in Python can be found at https://github.

com/mlcs/iaaft/blob/main/iaaft.py

Multifractal Detrended Fluctuation Analysis (MDFA)
A method for estimating the multifractal properties of a time-series based on multiscale

detrending of the time-series and measurement of the residual variation. The approach builds on

Detrended Fluctuation Analysis which estimates a single fractal scaling exponent for the signal,

giving its monofractal properties. A python implementation of MDFA is listed in [290].

The process follows the following steps

1. The signal is first integrated, and its mean subtracted, to give the ‘profile’ of the signal.

2. This profile, of length N, is first divided into M overlapping and equally spaced segments

of equal length s.

3. Each segment is then detrended by fitting and subtracting a polynomial trend of order o,

and the variability of this detrended segment is quantified by by the root mean square

(RMS) of all data points. Detrending allows the measurement of the systemic variability

rather than the contingent environmental trends. Peng et al. have noted that in biological

time series random influences from the environment present themselves as changing trends
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in the biological time-series, while biological system dynamics appear as residual variability

[76, 269].

4. Next we derive the fluctuation function, Fq - the qth order variability of the signal at each

segment size, or scale. This is obtained for each scale by taking the root mean variability of

all segments and raising to the power of q: Fq =
√

RMSs
q

. The Holder exponent is derived

from the slope of this function on a log-log plot. In schematic terms, we plot the variability

Fs against scale s, on log axes, then fit a line to the results, using a least-squares method.

5. For DFA, the above process is carried out only once, for q = 2 yielding one Hurst exponent

H(2). For MDFA we repeat this process over various values of q giving a set of values H(q).

This has the effect of focusing the analysis on bins with smaller or larger fluctuations.

Increasingly negative values of q focus the results on increasingly small fluctuations.

Increasingly positive values focus results on increasingly large fluctuations. When a time

series is multifractal the result retrieved (i.e. the log-log slope of the function) is different for

different values of q. This can be quantified in terms of the singularity spectrum, calculated

from H(q)

6. The singularity spectrum is retrieved in two stages. First H(q) is converted to the qth

order mass exponent t(q) by t(q) = H(q)∗ (q − 1), and t(q) in turn is converted to the

singularity exponent h(q) : h(q)= dt(q)
dq . Finally we retrieve the singularity spectrum D(q)

from t(q)andh(q) D(q)= 1+qh(q)− t(q). Plotting D(q) against h(q) gives us the singularity

spectrum. As noted above, the degree of multifractality can thereby be quantified in terms

of the “width” of this singularity spectrum ∆h = h(qmin)−h(qmax).

Repeated Measures Correlation (RMCORR)
RMCORR is a statistical technique for determining the common within-individual association

for paired measures assessed on two or more occasions for multiple individuals. The rmcorr

correlation coefficient is given by rrm =
√

SSMeasure
SSMeasure+SSError

Where SS is the sum of squares. The

sign of rrm is given by the common slope of the data.

A more detailed treatment can be found in [24].

Wasserstein Distance
The Wasserstein distance is a non-parametric measure of distance between groups, sometimes

known as the "earth-mover’s" distance. It can be seen intuitively as quantifying the minimum

"work" required to transform one distribution into another - how much of the distribution weight

must be moved and how far.

The Wasserstein distance, W , for two continuous distributions A and B, is given by:

W = (
µA −µB

)2 + (σA −σB)2 +2σAσB
(
1−ρA,B)
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Where µ and σ are respectively the mean and standard deviations of the distributions and

ρA,B is the Pearson correlation of the points in the quantile-quantile plot of the cumulative

distribution functions of the distributions.
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