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ABSTRACT

Deep learning has quickly become the dominant approach in machine learning and successes
have led to increasing interest in modeling human cognition via deep learning models.
Deep convolutional neural networks have been hailed as the best models of human visual

processing based on state-of-the-art performance on large-scale benchmarks as well as impressive
scores on neural predictivity and representational similarity analysis measures. In this thesis
I test claims about the similarity of visual representations between deep neural networks and
humans. First, through a series of experiments, I show that humans do not intuitively understand
how neural networks classify adversarial images (stimuli designed to fool neural networks) and
that these types of stimuli do not provide insight into human vision as has recently been claimed.
Next, human and network inductive biases are explored by generating datasets which allow
manipulation of both the type and statistics of predictive features. Findings show human shape
bias remains robust in novel learning environments while networks (even ones pre-trained to
develop shape bias) adapt to the statistics of the new environment (learning to classify based on
the most predictive feature). Additionally, when shape was as predictive of category membership
as more local features, an inductive bias towards more local features was observed in networks.
Finally, a series of simulations demonstrate that high representational similarity analysis
(RSA) scores can be achieved between systems that represent stimuli in qualitatively different
ways. While high RSA scores will be a feature of models that truly capture human-like visual
representations, they are not sufficient to claim a model does so. Overall, findings presented in
this thesis highlight the importance of systematic experimental scrutiny in light of engineering
developments outpacing scientific research. This is key if deep learning models are going to be
properly evaluated in hopes of providing insight into human cognition.
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INTRODUCTION

The emergence of deep learning systems as the dominant approach to machine learning

has propelled AI research exponentially in the past decade. Successes in areas such as

object recognition and natural language processing have led to comparisons with human

cognition. These developments have been the cause of much excitement both within and outside

the scientific community.

1.1 Background

The ImageNet large scale visual recognition challenge evaluates algorithms for object classifica-

tion on millions of naturalistic images. Machine learning systems take training images as inputs,

learn to classify them into one of a thousand categories and are then tested on a held-out test

set [154]. Top-5 accuracy is usually the choice measure of classification performance. This type

of accuracy refers to whether the target class is amongst the top 5 choices a system makes for

a given image. In 2012, the winning system boasted a Top-5 accuracy rate of 84.685%, beating

out the runner up by a massive 10.857%. The system in question was a deep convolutional

neural network - AlexNet [100]. AlexNet is an end-to-end deep neural network consisting of

convolutional layers, max pooling operations and three fully connected layers (Figure 1.1).

Though AlexNet sparked the latest move towards deep learning, it was an evolution of models

inspired by findings form neuroscience about visual systems of mammals. Hubel and Wiesel [75]

examined responses of neurons in the primary visual system of cats to discover neurons broadly

group into simple and complex cells. Simple cells responded optimally to light bars at specific

locations and orientations. Complex cells shared some properties of simple cells such as being

sensitive to orientation of the stimulus, but responded just as strongly to stimuli in different

(though spatially adjacent) locations. They concluded that simple cells represent early stages
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Figure 1.1: Schematic of the AlexNet architecture.

of organization with complex cells receiving inputs from multiple simple cells. These findings

directly inspired Fukushima [46] to develop the Neocognitron. The model consists of multiple

modules with each module containing S-layers and C-layers made up of cells corresponding to

simple and complex neurons found by Hubel and Wiesel [75]. The first S-layer receives the 2D

image as an input and responses of C-cells are nonlinear combinations of several S-cell projections.

Receptive fields increase in size as the depth of the network increases (the number of modules).

The final module C-cells have receptive fields encompassing the entire area of the input with each

C-cell responding to a single input pattern. This network was found to do well at distinguishing

between a set of letters (e.g., X, Y, Z, W) as well as a set of digits (0 to 9). Such hierarchical models

became more common, including convolutional neural networks. Early convolutional networks

were followed by the success of LeCun et al. [107] who applied the backpropagation algorithm

[153] so that the convolutional kernels are learned rather than hand coding them. The network

succeeded at recognizing handwritten digits (5% misclassification on the test set), performing

better than unconstrained fully-connected networks.

While deep networks, convolutions, pooling operations, backpropagation and other concepts

implemented in modern networks have been around for a long time, hardware advances and

optimizations started a new deep learning revolution. Since AlexNet’s success on the ImageNet

challenge, companies like NVIDIA have spearheaded further hardware advances with every gen-

eration of GPU being more efficient at the kinds of computations that benefit deep learning. This

has led to development of many different architectures beyond convolutional neural networks,

both for machine vision and other areas like language processing. For example, transformer archi-

tectures, originally developed for text translation [177] have been applied to image recognition in

the form of vision transformers, achieving state-of-the-art performance on naturalistic datasets
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like ImageNet [8, 31].

1.2 Similarities between human vision and deep convolutional
networks

Since AlexNet won the ImageNet challenge, and particularly since the annual challenge was

concluded in 2017 (with the top performing classification model achieving 97.749% accuracy),

claims that these types of models are the best models of human vision have been made by many

researchers and lab groups [102, 119, 171, 189].

There are a number of research paradigms which have been utilized in order to compare

primate visual processing with convolutional neural networks. Roughly, these approaches can

be grouped into behavioral-level comparisons and neural-level comparisons. The most basic

comparison comes from performance on classification of naturalistic stimuli such as the images

found in ImageNet dataset. Human-level performance has been matched and even surpassed

using naturalistic stimuli of varying levels of difficulty [83]. Matching accuracy, however, is a

rather crude metric, but further evidence for similarity was found by investigating error patterns.

These misclassifications can be analyzed in a number of ways. For example, correspondence

of confusion matrices can be evaluated. A confusion matrix quantifies how often stimuli from

one category are misclassified as each of the remaining, non-target, categories. Rajalingham

et al. [145] presented humans, monkeys and a set of deep neural networks with naturalistic

stimuli from a number of categories (e.g., ‘camel’, ‘dog’, ‘elephant’, ‘rhino’, ‘pen’). They found good

correspondence between deep networks and human category-level misclassifications. Humans

were more likely to misclassify an ‘elephant’ as a ‘rhino’ than they were to misclassify an ‘elephant’

as a ‘pen’ etc. Deep convolutional networks mimicked the patterns of misclassiifications well,

particularly when compared to a low-level V1 model and discriminability based on pixel values of

the input images.

To further add to evidence from accuracy and confusion matrix analysis, researchers have

studied human similarity judgments. Jozwik et al. [78] gathered similarity judgments from

human participants for 92 images from a number of categories (e.g., ‘frog’, ‘lion’, ‘human face’)

and compared them to similarities as measured via internal activations of deep neural networks

(Euclidean distance between internal activations for each pair of stimuli of AlexNet and VGG-16).

Results showed that most of the explainable variance (the percentage of variance one would

expect could be explained from one human to another) of human similarity judgments can be

explained by deep neural networks. Additionally, they showed that later layers of deep networks

explain more variance in human similarity judgments when compared to early layers.

Similarly, human typicality judgments can be compared to network classification confidence.

Lake et al. [104] presented both humans and a set of ImageNet pre-trained convolutional neural

networks with 16 images from each of 8 categories (e.g., ‘banana’, ‘bathtub’, ‘coffee mug’). Partici-
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pants had to judge how typical each image is of the category it comes from. Networks completed

a classification task, but rather than simply recording classification decisions, confidence for each

image was recorded (both raw class scores and normalized class probability from a softmax layer).

Finally, a rank-order correlation between typicality scores and network classification confidence

was computed to estimate the similarity. They found that network classification scores corre-

lated well with human typicality judgments (average correlation of 0.71), especially compared

to a baseline SIFT model (correlation of 0.28). When further analyzing internal layers of the

network rather than the output, as was the case with similarity judgments, results showed better

correspondence of deeper layers with typicality judgments.

There are quite a few other lines of research in which various degrees of similarity between

neural networks and human behavior have been observed. For example, replicating Gestalt

phenomena (such as the law of closure [87]) and investigating how classification accuracy de-

creases in networks for distortions that also reduce human performance [48, 179]. These studies

find some similarity, for example, image degradation decreases accuracy for both humans and

convolutional networks, but the effects are much more pronounced for networks both in the types

of degradation leading to lower performance and the scale of performance loss.

The second, and perhaps more impressive, set of studies focuses on neural data from primates

rather than behavioral outputs. There are two prominent approaches that attempt to measure the

correspondence between neural activity (as measured by fMRI, EEG, MEG, single cell recordings

and other measures) with internal representations (activations) from deep neural networks.

One approach does so by attempting to predict neural activation patterns (e.g., from primates)

from activation patterns of neural networks. This is usually done by fitting data from a training

set using a multivariate regression model in which network activations are the predictors and

neural activations the criterion. Once a model has been fitted to the data, it is evaluated on

a held-out set of stimuli. These neural predictivity measures can vary in the exact steps by

which they are computed but the most well-known of these measures is Brain Score [159]. Both

networks and primates are shown a set of images. Activity patterns are recorded from layers of

the neural network and from regions of interest of the primate brain (for example, IT cortex).

Next, activity patterns from the deep nets are fitted to the activity patterns from brain areas -

in the case of Brain-Score this is done via PLS regression. Studies utilizing such methods have

shown performance-optimized deep networks explain more variance in neural activity when

compared to competing models such as HMAX [159, 182]. These studies also highlight that early

layers of deep networks better predict neural activity of early vision areas such as V1 and V2,

whereas deeper layers do so for neural activity of later areas such as V4 and IT [35, 60, 162, 182].

The second approach is called representational similarity analysis (RSA) which compares

representational geometries of two systems on a set of stimuli. The representational geometry

is computed by measuring distances between activation patterns for all pairs of stimuli. The

distance metric can vary (e.g., 1- Pearson correlation, Euclidean distance etc.) but all pair-wise
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distances are represented in a matrix (the representational dissimilarity matrix - RDM). RDMs

capture the similarities of visual representations within a system. For example, neural activity

patterns for images of dogs will be more similar to patterns for images of cats than they will be

to patterns for images of planes. Such RDMs can be computed from internal activation patterns

of deep neural networks at various depths and then a correspondence between human RDMs

and network RDMs can be computed (most commonly as a Spearman rank-order correlation of

the RDMs). This correspondence is then the RSA score between two systems (for more detail

on the method see Chapter 4). Studies using this method have mirrored results from neural

predictivity measures; deep networks achieve higher RSA scores with primates than competing

models [25, 82, 84, 86, 182]. The scores can reach ceiling levels which are RSA scores one can

expect when comparing an RDM from one human to an RDM of another. The hierarchical pattern

of correspondence observed with neural predictivity measures (early layers corresponding to

V1 and V2, deeper layers to V4 and IT) have been mirrored using RSA as well [25, 82]. An

example of these patterns can be seen in Figure 1.2. These results come from Khaligh-Razavi

and Kriegeskorte [82] in which humans and AlexNet were presented 92 images from various

animate and inanimate categories. RSA scores were computed as the Kendall τa correlation

between human RDMs and RDMs from different layers of AlexNet. The main findings are that

best performing layers from AlexNet reach noise ceiling and that early layers correspond to early

visual cortex better while deeper layers correspond better to IT.

Figure 1.2: RSA scores of AlexNet layers with neural activity from human IT (A) and V1 (B). RSA scores
between AlexNet layers and human neural fMRI patterns were computed as the Kendall τa between RDMs. The
shaded region represents the estimated noise ceiling (expected human to human RSA scores). The figure was adopted
from [82].
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1.3 Dissimilarities between human vision and deep
convolutional networks

Though the findings observing similarities between human vision and deep convolutional net-

works have been promising, they are far from unambiguous. As shown in the previous section,

some studies find good correspondence between error patterns, not just accuracy, between neural

networks and human classification [145]. However, Geirhos et al. [49] utilized a different measure

to measure classification overlap. They introduce the measure of error consistency which corrects

for accuracy (high accuracy by necessity means high overlap for many individual stimuli) and

for overlap expected by chance and without averaging across human participants. They found

that deep neural networks were quite consistent amongst themselves, but not with humans. This

indicates that classification strategies are quite different rather than similar.

Similarly, results reported by Jozwik et al. [78] do show significant correspondence of similar-

ity judgments from humans and deep neural networks (but the level of this correspondence is

still well below ceiling - correspondence among human participants). Further, when utilizing a

different dataset and method, Rosenfeld et al. [152] do not find that deep network representa-

tions account for human similarity judgments. They use the Totally-Looks-Like dataset (see

examples in Figure 1.3). The dataset was downloaded from a popular website where visitors

posted amusing pairs of images that look alike based on various types of features. In the actual

study, participants were shown one of the images from a pairing alongside 5 candidate images.

Distractor images were chosen differently in different experimental setups (e.g., random, based

on generic features etc.) Their task was to choose which of the 5 images was most similar to the

target image. The ‘correct’ response was the image which was in the original pair. Activation

patterns from penultimate layers of a number of deep networks (AlexNet, VGG-16, ResNet-50

etc.) were extracted and distances between activation patterns for target and candidate images

computed to check if the distance between the target and the matched pair was smaller than

the distance between the target and distractor images. Results showed human selections cor-

responded well with the original dataset taken from the website (e.g., 82.5% when distractos

chosen randomly), which was not the case for machine-human correspondence (25% in the same

condition).

Beyond comparisons to human behavior seemingly depending on datasets and methodology,

there are many other examples of dissimilar behavior. Deep learning models are susceptible

to adversarial attacks (stimuli which are designed to fool the network) [56, 57]. Adversarial

attacks consist of images which are classified as one category by humans but as a different

category by neural networks. There is a wide range of different adversarial attack. Perhaps the

most well-known attacks impose perturbations on otherwise normal images in order to induce

misclassification. For example, a specifically generated high-frequency noise mask added to an

image of a panda to make networks classify it as a gibbon [57]. Another class of adversarial
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Figure 1.3: Examples of image pairs from Rosenfeld et al. [152]. Image pairs generated by visitors to a popular
website may be similar in a variety of ways (global shape, texture, colour etc.).

attack are so called fooling images which look like random patterns of features unrelated to the

deep network classification [127] (examples of both types can be found in Chapter 2 - Figure 2.1).

Additionally, deep convolutional networks have been shown to exploit shortcuts which would

lead to solving the task at hand [47]. Shortcuts can be defined as “decision rules that perform

well on standard benchmarks but fail to transfer to more challenging testing conditions” ([47],

p. 665). This includes learning to classify images based on any feature predictive of category

membership during training. For example, Malhotra et al. [116] inserted a single pixel in images

of the training dataset such that the location of this pixel was category-correlated in the CIFAR-10

dataset. For example, all ‘cat’ images had a white pixel at the same location, and all ‘dog’ images

had a white pixel at a different location. The networks were then trained on this modified dataset

and it was shown that they classified images by learning the location of the predictive pixel.

Networks (VGG-16 and ResNet-101) performed nearly perfectly in a test set which retained the

predictive pixels, but failed when the test set did not contain these predictive pixels. This confirms

that the networks ignored other information present in the images during training in favour

of the highly predictive pixels. In general, deep convolutional networks show high sensitivity

to local features such as texture. Geirhos et al. [50] found that deep networks have a texture

bias, as opposed to shape bias which humans exhibit. Similarly, Baker et al. [6] found that deep

convolutional neural networks do not classify based on global shape. To counter this, Geirhos

et al. [50] trained deep networks using the style-transfer approach. They created a style-transfer

version of the ImageNet dataset (for an example see Figure 1.4). In each style-transfer image,

global shape was retained while different textures were superimposed on the image. This meant

that textures were no longer predictive of category membership, leaving global shape as the

feature networks needed to learn during training.

Results indeed showed that networks trained using a style-transfer version of the dataset

developed shape sensitivity. These networks performed well on both stylized images and standard

ImageNet images (79% and 82.6% respectively for a ResNet-50). On the other hand, networks

trained on the normal ImageNet images performed well on the standard test set (92.9%) but
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Figure 1.4: Style-transfer training stimuli from Geirhos et al. [50]. An image from the ImageNet dataset (left)
and 10 with the same shape/content but different texture/style (right).

much worse on the style-transfer test set in which texture was not predictive of category (16.4%).

Style-transfer trained networks were also more robust to various types of image distortions such

as adding uniform noise or changes in contrast which was more in line with human participants.

Apart from style-transfer, data augmentation, initialization and hyper-parameter choices have

been shown to increase shape bias [71, 73].

Even though studies have shown networks can develop shape sensitivity the nature of the

shape representations seems to be dissimilar to that of humans. Malhotra et al. [114] tested

whether networks trained to develop shape were sensitive to categorical changes of relations

between object parts. Human participants represent shapes of objects based on relations between

features. In contrast, CNNs in Malhotra et al. [114]showed no evidence of such a relational

representation. They used the same type of stimuli as Stankiewicz and Hummel [170] which

consisted of different objects and two modified versions of the objects (Figure 1.5). In one variant,

a categorical relationship between object parts was changed. In the second variant, categorical

relations between object parts were preserved, but coordinates of some parts were shifted.

Humans have been shown to be more sensitive to relational changes when compared to coordinate

changes [170]. In contrast, comparing internal representations of neural networks trained to

have a shape bias showed that representations for both variants were equally similar to the

representation of the original object. Malhotra et al. [114] concluded that this was likely because

networks rely on features of the proximal stimulus (the image itself) which changed equally

for both relational and non-relational deformations, while humans infer properties of the distal

stimulus (like global shape).

There are a host of other dissimilarities of deep networks when compared to humans such as

failure to exhibit uncrowding effects [30], having the capacity to learn random stimuli such as TV

static [185], being much worse than humans at handling degraded images [50, 51], images with

occluded objects [188], and objects in strange poses [2, 188], failing to generalize to novel objects

in the same/different task [142], being poor at combinatorial generalization [122] etc. For a more

detailed review see Bowers et al. [17].
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1.3. DISSIMILARITIES BETWEEN HUMAN VISION AND DEEP CONVOLUTIONAL
NETWORKS

Figure 1.5: Example of an object and modified variants from Malhotra et al. [114]. The basis object was
modified to create two variants. (Rel) The first modification consisted of a categorical change of a relation between
parts of the object. (Cood) The second modification preserved all relations but coordinates of some elements were
shifted.

Evidence for similarities between internal representations of networks and humans / monkeys

seems to be less controversial, but these findings have been based on a limited number of datasets

and neural data. One set of findings that contradicts these similarities comes form Xu and Vaziri-

Pashkam [180] who conducted an fMRI study utilizing a larger set of naturalistic and synthesized

stimuli. Xu and Vaziri-Pashkam [180] identified potential issues with the approach taken in

previous research of this type. First, the event-related fMRI approach produced data with a low

signal to noise ratio and second, regions of interest were identified anatomically rather than

functionally for each individual participant. They found that the previous pattern of early layers

corresponding well to early visual processing and deeper layers to later visual processing could

not be replicated across datasets when measuring correspondence using RSA. The correspondence

was both dataset and network-dependent. For example, in AlexNet early layers did correspond

better with early and deeper layers with later visual areas, but DenseNet-101 did not have the

same pattern with all layers corresponding fairly poorly with all areas of the ventral visual

stream. On te other and, DenseNet-101 does show a similar pattern to AlexNet for low-pass

filtered images. However, the most important finding was that none of the deep networks tested

reached beyond 60% of the total explainable variance for later regions of visual processing such

as IT. This is in sharp contrast to previous findings as the ones shown in Figure 1.2 in which, at

least, the fully connected layers reach ceiling RSA scores with human IT.

And while good prediction of neural activity will surely be a characteristic of the best model,

it is not sufficient to infer a model is indeed mechanistically similar to the region of interest it is

being compared with. A good example of why this is the case results from the rapid development

of deep learning itself. Vision transformers were initially not comparable to convolutional neural

network Brain-Score results, but have recently caught up [8]. This means we now have two

different architectures of deep learning models which are both image-computable, trained end-to-

end, achieve high object recognition performance and good neural predictivity. If one pursues

these types of benchmarks in order to evaluate models, then we have already come to the point of

them not being useful to adjudicate between models.
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1.4 Aims and overview

The review presented in the sections above demonstrates there is a lively debate about how well

deep convolutional neural networks model visual processing in the cortex. Further, it is plain

that reliable inferences about similarities of processing and visual representations as well as

adjudicating between models cannot be done based on one research paradigm. Therefore, during

my PhD project, I chose to focus on, what are in my estimate, three key areas of the ongoing

debate about the relation between convolutional networks and biological systems.

First, one key part of the debate has concerned adversarial images and has become more

contentious recently. As discussed above, adversarial images have traditionally been seen as a

striking example of dissimilarities between human visual processing and convolutional networks.

However, recent studies conclude that adversarial images, rather than being striking examples

of differences, could be used to better understand human vision [36, 61, 187]. Zhou and Firestone

[187] claim humans can decipher adversarial images and posses a kind of ‘machine theory of mind’.

Therefore, in Chapter 2 I address these claims through a re-assessment of the methodology and

data analysis that led to these claims. The re-assessment is followed by a series of experiments

designed to test various factors contributing to correspondences between human and network

classification of these images.

Second, when human-like classification behavior is replicated by networks, there is a debate

whether the behavior is based on human-like visual representations. Specifically, it has long been

established that humans primarily rely on shape for object recognition. In contrast, ImageNet

trained convolutional networks rely on local features such as texture. As discussed above, altering

the training regime (such as style-transfer augmentation as in [50]) can result in networks

developing shape bias. Therefore, in Chapter 3 I tested whether shape bias is similar in humans

and neural networks. Specifically, I asked the question: how robust are human and network

inductive biases in new learning environments. This was done by generating a novel dataset

in which predictive features can be manipulated. Humans, ImageNet and style-transfer trained

networks were then trained and tested when varying the statistics of the training set.

Finally, perhaps the most impressive line of research comparing brains and convolutional

networks looks at similarity of internal representations. Particularly, I focus on RSA as an

approach of comparing visual representations between two systems. Recent findings by Xu and

Vaziri-Pashkam [180] seem to contradict previous favorable results and indicate impressive

similarity as measured by RSA might be a function of methodological decisions such as the choice

of dataset. Therefore, in Chapter 4 I investigated whether obtaining a high RSA score necessarily

indicates similarity of visual representations between networks and biological systems, and more

generally, what types of inferences one can draw based on comparing representational geometries

of two systems.

These three projects have in common that they tackle recent developments in long-standing

areas of human-network comparisons. The choice of only investigating convolutional neural
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networks and not other classes of deep learning models is based on consequences of engineering

solutions outpacing research evaluating these solutions as models of human vision. First, as

mentioned before, architectures like vision transformers are becoming more popular at the

expense of (by deep learning standards) old convolutional networks. What were hailed as the

best models of human vision just a year or two ago might be abandoned for new architectures

which achieve similar performance, neural predictivity and RSA. This is seemingly done without

rigorous testing and adjudicating between the architectures. They cannot both be the best models

of human vision, and if newer architectures are better then old ones should no longer be hailed

as the best.

Second, successes and claims based on limited research are less likely to be scrutinized to

an adequate degree. Certain claims become generally accepted without going through what

we would usually consider enough scrutiny. Hopefully, the increase of interest in using deep

learning models to study human cognition will result in a large enough body of work to provide

the required scrutiny for claims going forward. However, rather than hoping sheer volume will

lead to diverse, systematic experimentation - that should be the dominant approach from the

outset.

Given these trends the work in this thesis has been limited to using feed-forward deep

convolutional neural networks rather than exploring a large number of architectures in less

detail. The aim was to test some of the strong claims being made about similarity between

convolutional networks and human vision. Instead of focusing on one metric or methodological

paradigm, the goal was to take a multifaceted approach, incorporating experimentation and

stimulus manipulation at different levels of analysis (both performance measures and analysis of

internal representations).
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DECODING ADVERSARIAL IMAGES

A specific class of stimuli had caught the attention of researchers as soon as deep CNNs

became the leading class of deep learning models. In object recognition, these stimuli are

collectively called adversarial images [56, 57, 172]. Originally, adversarial images were

defined as stimuli designed to cause the model to make a mistake (hence the term adversarial

attacks also being prevalent). Usually, these images will include various perturbations (e.g., noise

masks) to otherwise normal images which push the model to missclassify them. Since that time,

the type of stimuli that can be labelled as adversarial has grown to include fooling images - which

are not naturalistic stimuli with adversarial perturbations, but rather, images that do not contain

what a human would classify as an object (of any class) but nevertheless result in a confident

classification as a specific class by the model. Attacks can also be categorised depending on how

much access one has to the targeted system. When the system is completely accessible (e.g.,

having access to model weights of a CNN), white-box attacks can be performed (e.g., gradient

ascent), while black-box attacks are the ones in which the attacker only has access to the output

of the system [1]. Attacks can also be classified as targeted, if they are designed to be classified as

a specific target category, or non-targeted, if the goal is missclassification with no specific target

category.

Adversarial attacks are clearly threats to robustness which can have costly consequences if

encountered by security systems, autonomous vehicles and other systems. For example, Sharif

et al. [165] demonstrate how adversarial masks can fool facial recognition systems, and Eykholt

et al. [37] construct an adversarial street sign (e.g., a stop sign with perturbations that make

deep learning models classify it as a 45 mph sign). Apart from being problematic in practical

applications, adversarial attacks are problematic from the standpoint of using deep learning

systems to model human visual processes. This is due to CNN behavior being completely counter-
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intuitive and contrasting with how humans perceive adversarial attacks. Recently, however, some

researchers have made the claim that humans are susceptible to similar adversarial attacks as

CNNs [36, 61, 187]. These researchers state that human classification performance is reduced

when adversarial noise is superimposed on naturalistic stimuli [36], that adversarial noise can

also influence neural firing rates in primate IT, and that humans generally agree with CNN

classification of fooling images [187] (see Figure 2.1a for an example).

In this chapter, claims made by Zhou and Firestone [187] about general agreement between

humans and CNNs on classification of fooling images are explored in detail. A re-assessment of

the analysis from the original paper is followed by five experiments designed to ascertain the

level of this agreement as well as potential causes.

This is a publication chapter - the chapter is a re-formatted and slightly edited version of the

paper What do adversarial images tell us about human vision in eLife [33].

Contributions - this Zhou and Firestone [187] paper was brought to my attention by my co-

authors (also serving as my supervisors) as a potential research project. As first co-author I

initiated (and executed) the idea of re-assessing the findings from that paper. I identified factors

to be experimentally explored and designed the experiments. I conducted all of the presented

research and data analyses. Gaurav Malhotra generated stimuli for Experiment 4. All co-authors

contributed to the write-up and revisions following reviews.

2.1 Introduction

Deep convolutional neural networks (DCNNs) have reached, and in some cases exceeded, human

performance in many image classification benchmarks such as ImageNet [66]. In addition to

having obvious commercial implications, these successes raise questions as to whether DCNNs

identify objects in a similar way to the inferotemporal cortex (IT) that supports object recognition

in humans and primates. If so, these models may provide important new insights into the under-

lying computations performed in IT. Consistent with this possibility, a number of researchers

have highlighted various functional similarities between DCNNs and human vision [139] as well

as similarities in patterns of activation of neurons in IT and units in DCNNs [181]. This has led

some authors to make strong claims regarding the theoretical significance of DCNNs to neuro-

science and psychology. For example, Kubilius et al. [102] write: “Deep artificial neural networks

with spatially repeated processing (a.k.a., deep convolutional [Artificial Neural Networks]) have

been established as the best class of candidate models of visual processing in primate ventral

visual processing stream” (p.1).

One obvious problem in making this link is the existence of adversarial images. These are

“inputs to machine learning models that an attacker has intentionally designed to cause the
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model to make a mistake” [56]. Figure 2.1 shows examples of two types of adversarial images.

On first impression, it seems inconceivable that these adversarial images would ever confuse

humans. There is now a small industry of researchers creating adversarial attacks that produce

images which DCNNs classify in bizarre ways [1]. The confident classification of these adversarial

images by DCNNs suggests that humans and current architectures of DCNNs perform image

classification in fundamentally different ways. If this is the case, the existence of adversarial

images poses a challenge to research that considers DCNNs as models of human behaviour [e.g.,

24, 29, 102, 138, 151], or as plausible models of neural firing patterns in primate and human

visual cortex [e.g., 20, 25, 35, 82, 145, 182].

Figure 2.1: Examples of two types of adversarial images. (a) fooling adversarial images taken from Nguyen
et al. [127] that do not look like any familiar object. The two images on the left (labelled ‘Electric guitar’ and
‘Robin’) have been generated using evolutionary algorithms using indirect and direct encoding, respectively, and
classified confidently by a DCNN trained on ImageNet. The image on the right (labelled ‘1’) is also generated using
an evolutionary algorithm using direct encoding and it is classified confidently by a DCNN trained on MNIST. (b) An
example of a naturalistic adversarial image taken from [57] that is generated by perturbing a naturalistic image on
the left (classified as ‘Panda’) with a high-frequency noise mask (middle) and confidently (mis)classified by a DCNN
(as a ‘Gibbon’).

However, some recent studies have suggested that there may, in fact, be theoretically relevant

overlap between DCNNs and humans in how they process these adversarial images. Zhou and

Firestone [187] (Z&F from here on) recently reported that humans can reliably decipher fooling

adversarial images that, on first viewing, look uninterpretable (as in Figure 2.1a). The authors

took a range of published adversarial images that were claimed to be uninterpretable by humans

and, in a series of experiments, they showed those images to human subjects next to the DCNN’s

preferred label and various foil labels. They reported that, over the course of an experimental
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session, a high percentage of participants (often close to 90%) chose the DCNN’s preferred

label at above-chance rates. Furthermore, they report evidence that humans appreciate subtler

distinctions made by the machine rather than simply agreeing on the basis of some superficial

features (such as predicting “bagel” rather than “pinwheel” when confronted with an image

of a round and yellow blob). These results are important because they speak to an important

theoretical question that Z&F pose in the first line of their abstract: “Does the human mind

resemble the machine-learning systems that mirror its performance?” (p.1). The high level of

agreement they report seems to suggest the answer is “yes”.

Here we show that the agreement between humans and DCNNs on adversarial images was

weak and highly variable between participants and images. The remaining agreement appeared

to reflect participants making educated guesses based on some superficial features (such as

colour) within images and the limited response alternatives presented to them. We then carried

out five experiments in which we systematically manipulated factors that can contribute to an

observed agreement between humans and DCNNs in order to better understand how humans

interpret adversarial images. The experiments demonstrate that the overlap between human

and DCNN classification is contingent upon various details of the experimental design such

as the selection of adversarial images used as stimuli, the response alternatives presented to

participants during the experiment, the adversarial algorithm used to generate the images and

the dataset on which the model was trained. When we controlled for these factors, we observed

that the agreement between humans and DCNNs dropped to near chance levels. Even when

adversarial images were selected such that multiple DCNNs confidently assigned the same label

to these images, humans seldom agreed with the machine label, especially when they had to

choose between response alternatives that contained superficial features present within these

images. We also show that it is straightforward to generate adversarial images that fool networks

trained on ImageNet but are truly meaningless to human participants, irrespective of how the

stimuli are selected or response alternatives are presented to a participant. We take the findings

to highlight a dramatic difference between human and DCNN object recognition.

2.2 Results

2.2.1 Reassessing the level of agreement in Zhou & Firestone

Our first step, in trying to understand the agreement between humans and DCNNs observed by

Z&F, was to assess how well their methods reflect the degree of agreement between humans and

DCNNs. Z&F conducted seven experiments in which they measured agreement by computing

the number of trials on which the participants matched the DCNN’s classification and working

out whether this number is numerically above or below chance level. So in Experiment 3, for

example, a participant is shown an adversarial image on each trial and asked to choose one

amongst 48 labels for that image. Each trial was independent, so a participant can choose any of
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the 48 labels for each image. Chance level is 1/48, so if the participant chooses the same label

as the DCNN on two or more trials, they were labelled as agreeing with the DCNN. In addition,

half of the participants who agreed with the DCNN on only 1/48 trials were also counted towards

the number of participants who agreed with the DCNN. When computed in this manner, Z&F
calculated that 142 out of 161 (88%) participants in Experiment 3a, and 156 out of 174 (90%) in

Experiment 3b agreed with the DCNN at above chance levels.

This is a reasonable way of measuring agreement if the goal is to determine whether agree-

ment between humans and DCNNs is statistically above chance levels. However, if the goal is to

measure the degree of agreement, this method may be misleading and liable to misinterpretation.

Firstly, the rates of agreement obtained using this method ignore inter-individual variability and

assign the same importance to a participant that agrees on 2 out of 48 trials as a participant who

agrees on all 48 trials with the DCNN. Secondly, this method obscures information about the

number of trials on which humans and DCNNs disagree. So even if every participant disagreed

with the network on 46 out of 48 trials, the rate of agreement, computed in this manner, would be

100% and even a sample of blindfolded participants would show 45% agreement (see Methods).

In fact, not a single participant in Experiments 3a & 3b (from a total of 335 participants) agreed

with the model on a majority (24 or more) of trials, yet the level of agreement computed using

this method is nearly 90%.

A better way of measuring the degree of agreement is to simply report the average agree-

ment. This can be calculated as the mean percentage of images (across participants) on which

participants and DCNNs agree. This method overcomes the disadvantages mentioned above: it

takes into consideration the level of agreement of each participant (a participant who agrees

on 4/48 trials is not treated equivalently to a participant who agrees on 48/48 trials), and it

reflects both the levels of agreement and disagreement observed (so a mean agreement of 100%

would indeed mean that participants agreed with the DCNN classification on all the trials).

Z&F reported mean agreement for the first of their seven experiments and in Table 2.1 we

report mean agreement levels in all their experiments. Viewed in this manner, it is clear that the

degree of agreement in the experiments carried out by Z&F is, in fact, fairly modest and far from

“surprisingly universal” (p.2) or “general agreement” (p.4) the authors reported.

2.2.2 Reassessing the basis of the the agreement in Zhou & Firestone

Although the mean agreement highlights a much more modest degree of agreement, it is still

the case that the agreement was above chance. Perhaps the most striking result is in Z&F’s

Experiment 3 where participants had to choose between 48 response alternatives and mean

agreement was ∼ 10% with chance being ∼ 2%. Does this consistent, above chance agreement

indicate that there are common underlying principles in the way humans and DCNNs perform

object classification?

In order to clarify the basis of overall agreement we first assessed the level of agreement for
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Table 2.1: Mean DCNN-participant agreement in the experiments conducted by Zhou & Firestone.

Exp. Test type Mean agreement Chance

1 Fooling 2AFC N15 74.18% (35.61/48 images) 50%
2 Fooling 2AFC N15 61.59% (29.56/48 images) 50%

3a Fooling 48AFC N15 10.12% (4.86/48 images) 2.08%
3b Fooling 48AFC N15 9.96% (4.78/48 images) 2.08%
4 TV-static 8AFC N15 28.97% (2.32/8 images) 12.5%
5 Digits 9AFC P16 16% (1.44/9 images) 11.11%
6 Naturalistic 2AFC K18 73.49% (7.3/10 images) 50%
7 3D Objects 2AFC A17 59.55% (31.56/53 images) 50%

a To give the a sense of the levels of agreement observed in these experiments, we have also
computed the average number of images in each experiment where humans and DCNNs
agree as well as the level of agreement expected if participants were responding at chance.

b Stimuli sources: N15 - Nguyen et al. [127]; P16 - Papernot et al. [131]; K18 - Karmon et al.
[80]; A17 - Athalye et al. [3]

each of the 48 images separately. As shown in Figure 2.2, the distribution of agreement levels

was highly skewed and had a large variance. There was a small subset of images that looked

like the target class (such as the Chainlink Fence, which can be seen in Appendix A - Figure

A.1) and participants showed a high level of agreement with DCNNs on these images. Another

subset of images with lower (but statistically significant) levels of agreement contained some

features consistent with the target class, such as the Computer Keyboard which contains repeating

rectangles. But agreement on many images (21/48) was at or below chance levels. This indicates

that the agreement is largely driven by a subset of adversarial images, some of which (such as

the Chainlink Fence) simply depict the target class.

We also observed that there was only a small subset of images on which participants showed

a clear preference amongst response alternatives that matched the DCNN’s label. For most

adversarial images, the distribution of participant responses across response alternatives was

fairly flat (see Appendix A - Figures A.3-A.5) and the most frequent human response did not

match the machine label even when agreement between humans and DCNNs was above chance

(see Appendix A - Figure A.1). In fact, the label assigned to the image by DCNNs was ranked

9th (Experiment 3a) or 10th (Experiment 3b) on average. 75% of the adversarial images in

Experiment 3a and 79.2% in Experiment 3b were not assigned the label chosen by the DCNN

with highest frequency (Appendix A - Figures A.1 and A.2). This indicates that most adversarial

images do not contain features required by humans to uniquely identify an object category.

Collectively, these findings suggest that the above chance level of agreement was driven by

two subsets of images. A very small subset of images have features that humans can perceive

and are highly predictive of the target category (e.g., Chainlink Fence image that no one would call

“uninterpretable”), and another subset of images that include visible features consistent with the

target category as well as a number of other categories. These category-general features (such as

colour or curvature) are what Z&F called “superficial commonalities” between images [187, p. 2].
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Figure 2.2: Agreement across adversarial images from Experiment 3b in Zhou & Firestone. The red line
represents the mean, the blue line represents the median, and the black reference line represents chance agreement.
The inset contains a histogram of agreement levels across the 48 images.

For this subset of images, the most frequent response chosen by participants does not usually

match the label assigned by the DCNN. Participants in these cases seem to be making educated

guesses using superficial features of the target images to hedge their bets. For the rest of the

images agreement is at or below chance levels.

In order to more directly test how humans interpret adversarial images we carried out five

experiments. First, if participants are making educated guesses based on superficial features,

then agreement levels should decrease when presented with response alternatives that do not

support this strategy. We test this in Experiment 1. Second, if a DCNN develops human-like

representations for a subset of categories (e.g., the Chainlink Fence category for which human-

DCNN agreement was high for a specific adversarial image of a chainlink fence), then it should

not matter which adversarial image from these categories is used to evaluate agreement. We

test this in Experiment 2. Third, if DCNNs are processing images in very different ways to

humans, then it should be possible to find situations in which overall agreement levels are at

absolute chance levels. In Experiment 3 we show that one class of adversarial images for the

MNIST dataset generated overall chance level agreement. In Experiment 4 we show that it is

straightforward to generate adversarial images for the ImageNet dataset that produce overall

chance level agreement. Finally, in Experiment 5 we show that agreement levels between humans
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and DCNNs remain low and variable even for images that fool an ensemble of DCNNs. The

findings further undermine any claim that DCCNs and humans categorize adversarial images in

a similar way.

2.2.3 Experiment 1: Response alternatives

One critical difference between decisions made by DCNNs and human participants in an experi-

ment is the number of response alternatives available. For example, DCNNs trained on ImageNet

will choose a response from amongst 1000 alternatives while participants will usually choose

from a much smaller cohort. In Experiment 1, we tested whether agreement levels are contingent

on how these response alternatives are chosen during an experiment. We chose a subset of ten

images from the 48 that were used by Z&F and identified four competitive response alternatives

(from amongst the 1000 categories in ImageNet) for each of these images. One of these alterna-

tives was always the category picked by the DCNN and the remaining three were subjectively

established as categories which share some superficial visual features with the target adversarial

image. For example, one of the adversarial images contains a florescent orange curve and is

confidently classified by the DCNN as a Volcano. For this image, we chose the set of response

alternatives {Lighter, Missile, Table lamp, Volcano}, all of which also contain this superficial visual

feature. See Appendix A - Figure A.6 for the complete list of images and response alternatives.

Participants were then shown each of these ten images and asked to choose one amongst these

four competitive response alternatives. Note that if humans possess a “machine-theory-of-mind”,

it should not matter how one samples response alternatives as a DCNN classifies the fooling

adversarial images with high confidence (> 99%) in the presence of all 999 alternative labels,

including the competing alternatives we have selected. In the control condition an independent

sample of participants completed the same task but the alternative labels were chosen at random

from the 48 used by Z&F.

We observed that agreement levels fell nearly to chance in the competitive condition while

being well above chance in the random condition (see Figure 2.3). The mean agreement level in

the competitive condition was at 28.5% (SD = 11.67) with chance being at 25%. A single sample

t-test comparing the mean agreement level to the fixed value of 25% did show the difference was

significant (t(99)= 3.00, p = .0034,d = 0.30). However, in the random condition mean agreement

was 49.8% (SD = 16.02) which was both significantly above chance (t(99)= 15.48, p < .0001,d =
1.54) and well above agreement in the competitive condition (t(198)= 10.75, p < .0001,d = 1.52).

Both conditions are in stark contrast to the DCNN which classified these images with a confidence

> 99% even in the presence of these competing categories.

These results highlight a key contrast between human and DCNN image classification. While

the features in each of these adversarial images are sufficient for a DCNN to uniquely identify

one amongst a 1000 categories, for humans they are not. Instead features within these images

only allow them to identify a cohort of categories. Thus, the observed decrease in agreement
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Figure 2.3: Average levels of agreement in Experiment 1 (error bars denote 95% confidence intervals).

between the random and competitive conditions supports the hypothesis that participants are

making plausible guesses in these experiments, using superficial features (shared amongst a

cohort of categories) to eliminate response alternatives.

It should be noted that Z&F were themselves concerned about how the choice of response

alternatives may have influenced their results. Therefore, they carried out another experiment

where, instead of choosing between the DCNN’s preferred label and another randomly selected

label, the participants had to choose between the DCNN’s 1st and 2nd-ranked labels. The problem

with this approach is that the DCNN generally has a very high level of confidence (> 99%) in it’s

1st choice. Accordingly, it is not at all clear that the 2nd most confident choice made by the network

provides the most challenging response alternative for humans. The results from Experiment 1

show that when the competing alternative is selected using a different criterion, the agreement

between participants and DCNNs does indeed drop to near-chance levels.

2.2.4 Experiment 2: Target adversarial images

Our reanalysis above also showed that there was large variability in agreement between images.

One possible explanation for this is that the DCNN learns to represent some categories (such

as Chainlink Fence or Computer Keyboard) in a manner that closely relates to human object

recognition while representations for other categories diverge. If there was meaningful overlap

between human and DCNN representations for a category, we would expect participants to show

a similar level of agreement on all adversarial images for this category as all adversarial images

will capture these common features. So replacing an adversarial image from these categories

with another image generated in the same manner should lead to little change in agreement. In

Experiment 2 we directly tested this hypothesis by sampling two different images (amongst the
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Figure 2.4: Example of best-case and worst-case images for the same category (‘king penguin’) used in
Experiment 2.

five images for each category generated by Nguyen et al. [127]) for the same ten categories from

Experiment 1. We chose the best and worst representative stimuli for each of the categories by

running a pre-study (see the Methods section) and labelled the two conditions as best-case and

worst-case. An example of each type of image is shown in Figure 2.4.

Figure 2.5 shows the mean agreement for participants viewing the best-case and worst-

case adversarial images. The difference in agreement between the two conditions was highly

significant (t(198)= 22.28, p < .0001,d = 3.15). Both groups showed agreement levels significantly

different from chance (which was at 25%). The best-case group was significantly above chance

(t(99) = 20.12, p < .0001,d = 2.01) while the worst-case was significantly below chance (t(99) =
10.58, p < .0001,d = 0.99).

Thus, we observed a large drop in agreement when we replaced one set of adversarial images

with a different set, and there was no evidence for consistent above-chance agreement for all

adversarial images from a subset of categories (see Appendix A - Figure A.7 for an item-wise

breakdown). In other words, we did not observe any support for the hypothesis that DCNNs

learn to represent even a subset of categories in a manner that closely relates to human object

recognition.

2.2.5 Experiment 3: Different types of adversarial images

Although we can easily reduce DCNN-human agreement to chance by judiciously selecting the

targets and foils, it remains the case that a random selection of targets and foils has led to

above chance performance on this set of images. In the next experiment, we asked whether this

effect is robust across different types of adversarial images. All the images in the experiments

above were generated to fool a network that had been trained on ImageNet and belonged to

the subclass of regular adversarial images generated by Nguyen et al. [127] using an indirect

encoding evolutionary algorithm. In fact, Nguyen et al. [127] generated four different types of

adversarial images by manipulating the type of encoding – direct or indirect – and the type of

database the network was trained on – ImageNet or MNIST (see Figure 2.6). We noticed that Z&F
used images designed to fool DCNNs trained on images from ImageNet, but did not consider the

adversarial images designed to fool a network trained on MNIST dataset. To our eyes, these MNIST

adversarial images looked completely uninterpretable and we wanted to test whether the above
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Figure 2.5: Average levels of agreement in Experiment 2 (error bars denote 95% confidence intervals).

chance agreement was contingent on which set of images were used in the experiments.

Figure 2.6: Examples of images from Nguyen et al. [127] used in the four experimental conditions in
Experiment 3. Images are generated using an evolutionary algorithm either using the direct or indirect encoding
and generated to fool a network trained on either ImageNet or MNIST

Accordingly, we designed a 2x2 experiment in which we tested participants on all four

conditions corresponding to the four types of images (Figure 2.6). Since MNIST has ten response

categories and we wanted to compare results for the MNIST images with ImageNet images, we

used the same 10 categories from Experiments 1 and 2 for the two ImageNet conditions. On each

trial, participants were shown an adversarial image and asked to choose one out of ten response

alternatives that remained fixed for all trials.

Mean agreement levels in this experiment are shown in Figure 2.7. We observed a large

difference in agreement levels depending on the types of adversarial images. Results of a two-way

repeated measures ANOVA revealed a significant effect of dataset on agreement levels (F(1,197)=
298.62, p < .0001,η2

p = 0.60). Participants agreed with DCNN classification for images designed
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to fool ImageNet classifiers significantly more than for images designed to fool MNIST classifiers.

Participants also showed significantly larger agreement for indirectly-encoded compared to

directly-encoded images (F(1,197)= 67.57, p < .0001,η2
p = 0.26). The most striking observation

was that agreement dropped from 26% for ImageNet images to near chance for MNIST images.

Participants were slightly above chance for indirectly-encoded MNIST images (t(197)> 6.30, p <
.0001,d = 0.44) and at chance agreement for directly-encoded MNIST images (t(197) = 1.03, p =
0.31).

In addition to the between-condition differences, we also found high within-condition vari-

ability for the ImageNet images.We observed that this was because agreement was driven by a

subset of adversarial images (see Appendix A - Figure A.8 for a breakdown). Thus, even for these

ImageNet images, DCNN representations do not consistently overlap with representations used

by humans.

Figure 2.7: Agreement (mean percentage of images on which a participant choices agree with the DCNN)
as a function of experimental condition in Experiment 3 (error bars denote 95% confidence intervals).

2.2.6 Experiment 4: Generating fooling images for ImageNet

Experiment 3 showed that it is straightforward to obtain overall chance level performance on the

MNIST images, and this raises the obvious question of whether it is also straightforward to observe

chance performance for adversarial images designed to fool ImageNet classifiers? In order to test

this we generated our own irregular (TV-static like) adversarial images using a standard method

of generating adversarial images (see Methods section). Each of these images was confidently

classified as one out of a 1000 categories by a network trained on ImageNet. Participants were

presented three of these adversarial images and asked to choose the image that most closely

matches the target category (see inset in Figure 2.8). In half of the trials participants were shown
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adversarial images that were generated to fool AlexNet while in the other half they were shown

adversarial images generated to fool Resnet-18.

Results of the experiment are shown in Figure 2.8. For both types of images, the agreement

between participants and DCNNs was at chance. Additionally, we ran binomial tests for each

image in order to determine whether the number of participants which agreed with DCNN

classification was significantly above chance and the results showed that not a single image

showed agreement that was significantly above chance. Clearly, participants could not find

meaningful features in any of these images, while networks were able to confidently classify each

of these images.

2.2.7 Experiment 5: Transferable adversarial images

In the experiments above we observe that while DCNNs are vulnerable to adversarial attacks

(they classify these images with extremely high confidence), participants do not show such a

vulnerability or even a consistent agreement with the DCNN classification. But it does not

necessarily follow that DCNNs are poor models of biological vision. In fact, there are many

different methods of generating adversarial images [1] and some do not transfer even from one

DCNN to another, and this does not merit the conclusion that the different the DCNNs function

in fundamentally different ways (indeed, current DCNNs are highly similar to one another, by

design). In a similar manner, the fact that adversarial images do not transfer between DCNNs

and humans does not, by itself, support the conclusion that the human visual system and DCNNs

are fundamentally different.

Figure 2.8: Average levels of agreement in Experiment 4 (error bars denote 95% confidence intervals). The inset
depicts a single trial in which participants were shown three fooling adversarial images and naturalistic examples
from the target category. Their task was to choose the adversarial image which contained an object from the target
category.
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Figure 2.9: Results for images that are confidently classified with high network-to-network agree-
ment. Networks: Alexnet, Densenet-161, GoogLeNet, MNASNet 1.0, MobileNet v2, Resnet 18, Resnet
50, Shufflenet v2, Squeezenet 1.0, and VGG-16. (a) Examples of images used in the experiment - for all the
stimuli see Appendix A - Figures A.9 and A.10, (b) average levels of agreement between participants and DCNNs
under the random and competitive alternatives conditions in Experiment 5, and (c) probability of network, human,
and network to human agreement in the competitive alternatives condition of Experiment 1 and Experiment 5 (error
bars denote 95% confidence intervals).

In order to provide an stronger test of the similarity of DCNNs and human vision, we asked

whether adversarial images that fool multiple DCNNs are decipherable by humans. If indeed

there are some underlying and reliable similarities in how stimuli are processed in DCNNs and

humans, then it might be expected that highly transferable DCNN adversarial attacks should

also lead to higher human to network agreement.

So in the next experiment, we chose 20 adversarial images that 10 DCNNs classify with

high confidence and high between-network agreement (see the Methods section for details). The

experiment then follows the same procedure as Experiment 1, where a participant is shown an

adversarial image on each trial and asked to choose a label from four response alternatives. Like

Experiment 1, participants are assigned to one of two conditions. In the random alternatives

condition, participants were shown the network label and three other labels, which were randomly

drawn from the remaining 19 labels. In the competitive alternatives condition, participants again

had to choose from the network label and three alternative labels. However, in this condition

the labels were chosen amongst the 999 remaining category labels in ImageNet such that they

contain some superficial features contained within these images (see Methods for details). Note

that all DCNNs classified these images with high confidence and with all 1000 ImageNet labels

present as alternatives.

Results are depicted in Figure 2.9b. There was a significant difference between the two

conditions t(198) = 16.37, p < .0001,d = 2.32. Additionally, both conditions were significantly
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different from chance. Agreement in the random alternatives was above chance (t(99)= 18.66, p <
.0001,d = 1.87) and below chance in the competitive labels condition (t(99) = 3.13, p < .01,d =
0.31).

Thus we find very similar levels of agreement for these adversarial images, which fool multiple

DCNNs, to the adversarial images from Experiment 1 (compare Figure 2.9b and Figure 2.3). To

further examine how the DCNN-to-DCNN agreement compares to DCNN-to-human agreement,

we computed the probability that two randomly sampled networks will agree on an image’s

label and compared it to the probability that a randomly sampled network will agree with a

randomly sampled participant (see Methods for details). Figure 2.9c shows these probabilities for

the competitive condition for both Experiment 1 and Experiment 5. We observed that: (i) even

when the probability that two networks agree on an adversarial image is larger than 90% the

probability of network-human agreement is low (∼ 10%), and (ii) the increase in probability of

network-network agreement (between Experiment 1 and Experiment 5) has very little impact

on human classification as the probability of human-human and network-human agreement

remains much the same in the two experiments. Thus, participants showed very little agreement

with DCNNs even when DCNNs agreed with each other. Interestingly, humans showed more

agreement amongst themselves, consistent with the hypothesis that participants represent these

adversarial images in similar ways, even though we find no evidence that these representations

overlap those of the networks. This again suggests that humans and current DCNNs process

these images in fundamentally different ways.

2.3 Discussion

Zhou and Firestone [187] claim that humans can robustly decipher adversarial images which

suggests that there are important similarities in how humans and DCNNs process these images,

and objects more generally. However, when we examined their results using an alternative

analysis, we found that the level of agreement was rather low, highly variable, and largely

driven by a subset of images where participants could eliminate response alternatives based on

superficial features present within these images. This was confirmed in a series of experiments

that found that agreement between humans and DCNNs was contingent on the adversarial

images chosen as stimuli (Experiments 2 and 3) and the response alternative presented to

participants (Experiment 1). We also show that there are well-known methods for generating

adversarial images that lead to overall chance level DCNN-human agreement (Experiments 3

and 4), again demonstrating that DCNNs confidently identify images on the basis of features that

humans completely ignore. Furthermore, even when humans were presented with adversarial

images that fooled at least 9 of 10 DCNNs, the level of agreement between humans and DCNNs

remained low and variable (Experiments 5). Indeed, manipulating the level of agreement between

DCNNs (by varying the adversarial images) had no impact on the level of agreement between
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DCNNs and humans, or amongst humans, as highlighted in Figure 2.9. Taken together, these

findings not only refute the claim that there is a robust and reliable similarity in processing

these adversarial images, but also suggest that humans and current DCNNs categorize objects in

fundamentally different ways.

A similar distinction between human and DCNN classification is made by Ilyas et al. [76],

who argue that current architectures of DCNNs are vulnerable to adversarial attacks due

to their tendency for relying on non-robust features present in databases. These are features

that are predictive of a category but highly sensitive to small perturbations of the image. It is

this propensity for relying on non-robust features that makes it easy to generate adversarial

images that are completely uninterpretable by humans but classified confidently by the network

(Experiment 4). A striking example of DCNNs picking up on non-robust features was recently

reported by Malhotra and Bowers [113] who showed that DCNNs trained on a CIFAR-10 dataset

modified to contain a single diagnostic pixel per category, learn to categorize images based on

single pixels ignoring everything else in the image. Humans, by contrast, tend to use robust

features of objects, such as their shape, for classifying images [12].

We would like to note that we are not claiming that there is no role played by superficial

and non-robust features in human object recognition. In a recent study, [36] asked human

participants to classify naturalistic adversarial images (see Figure 2.1b) when these images

were briefly flashed (for around 70ms) on the screen. They found that there is a small, but

statistically significant, effect of the adversarial manipulation on choices made by participants

(i.e., participants were slightly more likely to classify a ‘cat’ image as a ‘dog’ when the image was

adversarially perturbed towards a ‘dog’). Thus, these results seem to suggest that humans are

sensitive to the same type of non-robust features that lead to adversarial attacks on DCNNs.

However, it is important to note here that the size of these effects is small: while human accuracy

drops by less than 10% when normal images are replaced by adversarially perturbed images,

DCNNs (mis)classify these adversarially perturbed images with high confidence. These findings

are consistent with our observation that some adversarial images capture some superficial

features that can be used by participants to make classification decisions, leading to an overall

above-chance agreement.

It should also be noted that we have only considered a small fraction of adversarial images

here and, like Experiment 4, there are many other types of adversarial attacks that produce

images that seem completely undecipherable for humans. It could be that humans find these

images completely uninterpretable due to the difference in acuity of human and machine vision

(a line taken by Z&F). There are two reasons why we think a difference in acuity cannot be the

primary explanation of the difference between human and machine perception of adversarial

images. Firstly, we have shown above that the very same algorithm produced some images

that supported above chance agreement and other images that supported no agreement (for

example, Appendix A - Figure A.7). There is no reason to believe that the two sets of images are
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qualitatively different, with DCNNs selectively exploiting subliminal features only when overall

agreement levels are chance. Secondly, a wide variety of adversarial attacks clearly do not rely

on subtle visual features that are below human perceptual threshold. This includes semantic

adversarial attacks that occur when the colour of an images is changed [72], or attacks that cause

incorrect classification by simply changing the pose of an image [2], etc. These are all dramatic

examples of differences between DCNNs and humans that cannot be attributed to the acuity of

human perceptual front-end. Rather they reflect the fact that current architectures of DCNNs

are often relying on visual features that humans can see but ignore.

Of course, it might be possible to modify DCNNs so that they perform more like humans in our

adversarial tasks. For example, training similar models on data sets that are more representative

of human visual experience might reduce their susceptibility to adversarial images and lead

DCNNs to produce more variable responses in our tasks as a consequence of picking up on

superficial visual features. In addition, modifying the architectures of DCNNs or introducing

new ones may lead to a better DCNN-human agreement on these tasks (for example, capsule

networks [155]). But researchers claiming that current DCNNs provide the best models of visual

processing in primate ventral visual processing stream need to address this striking disconnect

between the two systems.

There are two rhetorically appealing arguments against our conclusion that adversarial

images still represent a striking example of dissimilarity between humans and deep nets. First,

that adversarial images are akin to visual illusions humans experience [93, 112, 181]. And second,

that if we could access the human brain similarly to how we can access connection weights in

CNNs, we could generate adversarial stimuli for humans. Both of these arguments are appealing

and thought provoking but do not further the argument about similarity between humans and

CNNs. If we do accept the analogy that adversarial attacks are akin to visual illusions, then the

fact that CNNs are susceptible to illusions so different to the ones experienced by humans is not

a good argument for similarity. Visual illusions are a consequence of normal visual processing

resulting with incorrect perceptions under specific circumstances. They provide insight into the

process itself. Take, for example, the Ponzo illusion (Figure 2.10 left). We perceive the blue line as

longer than the red line even though they are of the same length. We do so because the blue line

is perceived to be further away from us. In order for two objects at different depths to be the same

size in the retinal image, they need to be of different sizes in the real world. The farthest object

has to be larger in order to be the same size on the retina from a farther distance. The illusion is

therefore a consequence of a process which is normal and useful in navigating the world around

us. If adversarial images are the same type of stimuli for CNNs then they are a consequence of

processes which are highly dissimilar to human vision.

The second argument, that we could generate human adversarial images if we had access to

the brain the same way we can access deep nets, is uninformative on what these stimuli would

look like. There is nothing to suggest that these human adversarial images would be similar to
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Figure 2.10: The Ponzo ilussion. The red and blue lines are of equal lengths but the blue line is perceived as being
longer on the left-hand side. This is due to it being perceived as further away form the observer. Since it has the same
length on the retinal image at a greater distance, the blue line has to be longer in ’reality’ and is perceived as such.
When depth information is not present, the lines are perceived as being the same length (right-hand side).

CNN adversarial images. Therefore, adversarial images indicate dissimilarity between humans

and deep learning models, though they can be an interesting gateway into better understanding

of deep learning models.

To conclude, our findings with fooling adversarial images pose a challenge for theorists using

current DCNNs trained on data sets like ImageNet as psychological models of human object

identification. An important goal for future research is to develop models that are sensitive to the

visual features that humans rely on, but at the same time insensitive to other features that are

diagnostic of object category but irrelevant to human vision. This involves identifying objects on

the basis of shape rather than texture or color or other diagnostic features [6, 50], where vertices

are the critical components of images [9], where Gestalt principles are used to organize features

[141], where relations between parts are explicitly coded [170], where features and objects are

coded independently of retinal position [15] size [11], left/right reflection [10], etc. When DCNNs

rely on these set of features, we expect they will not be subject to adversarial attacks that seem

so bizarre to humans, and will show the same set of of strengths and weakness (visual illusions)

that characterize human vision.

2.4 Methods

Reassessing agreement: Blindfolded participants If a participant is blindfolded and chooses

one of 48 options randomly on 48 trials, the probability of them making the same choice as the

DCNN on k trials is given by the binomial distribution
(48

k
)
pk(1− p)48−k, where p = 1

48 . Substi-

tuting different values of k, one can compute that 37.2% of these blindfolded participants will

agree with the DCNN on 1 trial, 18.6% will agree on 2 trials, 6% will agree on 3 trials, and so on.

To compute the proportion of participants who agree with the DCNN, Zhou and Firestone [187]

count all participants who agree on 2 or more trials as agreeing with the DCNN (chance is 1 out

of 48 trials) and half of the participants that agree on exactly 1 trial. Thus, summing up all the

blindfolded participants that agree on 2 or more trials and half of those who agree on exactly 1

trial, this method will show ∼ 45% agreement between participants and the DCNN.
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Experiment 1. This experiment examined whether agreement between humans and DCNNs

depended on the response alternatives presented to participants. We tested N = 200 participants

and each participant completed 10 trials. During each trial, participants were presented a fooling

adversarial image and four response alternatives underneath the image and asked to choose

one of these alternatives. Participants indicated their response by moving their cursor to the

response alternative and clicking. We selected 10 fooling adversarial images from amongst the 48

images used by Z&F in in their Experiments 1–3. Each of these images was classified with > 99%

confidence by a DCNN which was trained to classify the ImageNet dataset. We selected these 10

adversarial images to minimise semantic and functional overlap in the labelled categories (for

example, we avoided selecting both ‘computer keyboard’ and ‘remote control’). The experiment

consisted of two conditions, which differed in how the response alternatives were chosen on

each trial. In the ‘Competitive’ condition (N = 100) we chose four response alternatives that

subjectively seemed to contain one or more visual features that were present in the adversarial

image. One of these response alternatives was always the label chosen by the DCNN. The other

three were chosen from amongst 1000 ImageNet class labels. This was again done to minimise a

semantic or functional overlap with the target class (e.g. an alternative for the ‘baseball’ class was

parallel bars but not basketball). All ten images and the four competitive response alternatives for

each image are shown in Appendix A - Figure A.6 In the ‘Random’ condition (N = 100) the three

remaining alternative responses were drawn at random (on each trial) from the aforementioned

48 target classes from Experiment 3 in Zhou and Firestone [187]. We randomised the order of

images, as well as the order of the response alternatives for each participant.

Experiment 2. This experiment was designed to examine whether all fooling adversarial images

for a category show similar levels of agreement between humans and DCNNs. The experiment’s

design was the same as Experiment 1 above, except participants were now randomly assigned

to the ‘best-case’ (N = 100) and ‘worst-case’ (N = 100) conditions. In each condition, participants

again completed 10 trials and on each trial, they saw an adversarial image and four response

alternatives. One of these alternatives was the category chosen by a DCNN with > 99% confidence

and the other three were randomly drawn from amongst the 48 categories used by Z&F in their

Experiments 1–3. The difference between the ‘best-case’ and ‘worst-case’ conditions was the

adversarial image that was shown to the participants on each trial.

In order to choose the best and worst representative image for each of the categories we ran a

pre-study. Each image used by Z&F in their Experiments 1–3 was chosen from a set consisting

of five adversarial images for that category generated by Nguyen et al. [127]. In the pre-study,

participants (N = 100) were presented all five fooling images and asked to choose an image that

was most-like and least-like a member from that category (e.g. most like a computer keyboard).

Then, during the study, participants in the ‘best-case’ condition were shown the image from each

category that was given the most-like label with the highest frequency. Similarly, participants in
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the ‘worst-case’ condition were shown images that were labelled as least-like with the highest

frequency. DCNNs showed the same confidence in classifying both sets of images. We again

randomised the order of presentation of images.

Experiment 3. The experiment consisted of four experimental conditions in a 2x2 repeated

measures design (every participant completed each condition). The first factor of variation was

the database on which the DCNNs were trained – ImageNet or MNIST with one condition contain-

ing images designed to fool ImageNet and the other containing images designed to fool MNIST

classifiers. The second factor of variation was the evolutionary algorithm used to generate the

adversarial images – direct or indirect. The indirect encoding method leads to adversarial images

which have regular features (e.g. edges) that often repeat, while the direct encoding method

leads to noise-like adversarial images. All of the images were from the seminal Nguyen et al.

[127] paper on fooling images. The MNIST dataset consists of ten categories (corresponding to

handwritten numbers between 0 and 9), while ImageNet consists of 1000 categories. As we

wanted to compare agreement across conditions, we selected ten images (from ten different

categories) for both datasets. The indirectly-encoded ImageNet images were the same as the

ones in Experiment 1 while the images for the other three conditions were randomly sampled

from the images generated by [127]. Participants were shown one image at a time and asked

to categorize it as one of ten categories (category labels were shown beneath the image). One

of these ten categories was the label assigned to the image by a DCNN. Therefore, chance level

agreement was 10%. The participants had to click on the label they thought represented what

was in the image. The order of conditions was randomized for each participant and the order of

images within each condition was randomized as well. A total of N = 200 participants completed

the study. Two participants were excluded from analysis because their choices were made with

average response times below 500 ms indicating random clicking rather than actually making

decisions based on looking at the images themselves.

Experiment 4. In this experiment we used the Foolbox package ([148]) to generate images that

fool DCNNs trained on ImageNet. The experiment consisted of two conditions, one with images

designed to fool AlexNet [100] and the other with images designed to fool ResNet-18, both trained

on ImageNet. We generated our own adversarial images by first generating an image in which

each pixel was independently sampled and successively modifying this image using an Iterative

Gradient Attack based on the fast gradient sign method ([57]) until a DCNN classified this image

as a target category with a > 99% confidence. The single trial procedure mirrors Experiment 4

from Z&F. Participants (N = 200) were shown three of the generated images and a set of five

real-world example images of the target class (see Inset in Figure 2.8). They were asked to choose

the adversarial image which contained an object from the target class. The example images were

randomly chosen from the ImageNet dataset for each class. Each participant completed both
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experimental conditions. The order of trials was randomized for each participant.

Experiment 5. The experiment mirrors Experiment 1 in procedure and experimental con-

ditions. Participants (N = 200) were sequentially shown 20 images and asked to choose one

out of four response alternatives for each image. The order of presentation of these images

was randomized. The stimuli were chosen from ten independent runs (a total of 10000 im-

ages) of the evolutionary algorithm used in [127] which were kindly provided to us by the

first author. The images were selected such that at least 9 out of 10 networks classify the im-

ages as the same category with high confidence (median confidence of 92.61%). The DCNN

models were pre-trained on ImageNet and are a part of the model zoo of the PyTorch frame-

work. The models are: Alexnet, Densenet-161, GoogLeNet, MNASNet 1.0, MobileNet v2,

Resnet 18, Resnet 50, Shufflenet v2, Squeezenet 1.0, and VGG-16. The input images

were transformed in accordance with recommendations found in PyTorch documentation: 224x224

centre crop and normalization with mean = [0.485,0.456,0.406] and std = [0.229,0.224,0.225]

prior to classification.

The two experimental conditions mirror Experiment 1. In the random alternatives condition,

for each image, participants (N = 100) chose among labels which included the network classifi-

cation and three alternatives chosen at random among the remaining 19 stimuli labels. In the

competitive alternatives condition, participants (N = 100) chose among labels which included

the network classification and three competitive labels. To determine these competitive labels,

we conducted a pre-study, where participants (N = 20) were asked to generate three labels for

each adversarial image. These labels were then used as a guide to select the three competitive

categories from ImageNet while ensuring that these categories did not semantically overlap with

the target category. Participants were assigned to one of the two conditions randomly, the order

of images and label positioning on the screen were randomized for each participant. Stimuli and

competitive labels can be seen in Appendix A - Figures A.9 and A.10.

Statistical analyses. All conducted statistical analyses were two-tailed with a p-value under

0.05 denoting a significant result. In Experiments 1, 2, 4, and 5 we conducted single sample t-tests

to check if agreement levels were significantly above a fixed chance level (25% in Experiments 1,

2, and 5, 33.33% in Experiment 4). We additionally ran a between-subject t-test (Experiments 1,

2, and 5) and a within-subject t-test (Experiment 4) to determine whether the difference between

experimental conditions was significant. We also conduct a Binomial test in Experiment 4 to de-

termine for how many items was agreement level significantly above chance. In Experiment 3 we

ran a two-way repeated measures analysis of variance. In Experiment 5 we ran a mixed two-way

analysis of variance. We report effect size measures for all tests (Cohen’s d for t-tests and partial

eta squared for ANOVA effects). We calculate probability of network-network, human-human, and

network-human agreement in the competitive labels condition of Experiment 1 and 5. This was
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done by calculating the percentage of agreements among all possible comparisons. For example,

the total number of comparisons to calculate the probability of agreement between two networks,

was: 20(images) ∗45(number of possible combinations of two networks). The number of such

comparisons which resulted in agreement between two networks divided by the total number

of comparisons gives the probability of two networks agreeing when classifying an adversarial

image. We conducted the same calculation on data from Experiment 1, since those stimuli were

not specifically chosen to be highly transferable between networks.

Power analysis. A sample size of N = 200 was chosen for each experiment which mirrors Z&F
experiments 1-6 in order to detect similar effects. This allowed us to detect an effect size as low as

d = 0.18 at α= .05 with 0.80 power in within-subject and d = 0.35 in between-subject experiments.

Online recruitment. We conducted all four experiments online with recruitment through the

Prolific platform. Each sample was recruited from a pool of registered participants which met

the following criteria. Fluent English speakers living in the UK, USA, Canada or Australia of

both genders between the ages of 18 and 50 with normal or corrected to normal vision and a high

feedback rating on the Prolific platform (above 90). Participants were reimbursed for their time

upon successful completion through the Prolific system.

Data availability. Data and stimuli form all our experiments are available via the Open Science

Framework at https://osf.io/a2sh5/.

Stimuli from evolutionary runs producing fooling images by [127] can be found at https:

//anhnguyen.me/project/fooling/.

Ethics approval. Participants were informed about the nature of the study, and their right

to withdraw during the study or to withdraw their data from analysis. The participants gave

consent for anonymized data to be used for research and available publicly. The project has been

approved by the IRB at the University of Bristol (application ID 76741).
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Chapter 2 explored various datasets of adversarial stimuli to infer whether there is agree-

ment between humans and deep neural networks. Adversarial images are edge-cases,

however it is still possible that for most other stimuli network and human representa-

tions share more similarities. This chapter focuses on shape-bias in particular. As discussed in

Chapter 1, studies have shown that CNNs trained on large naturalistic datasets do not exhibit a

shape bias. In contrast, it is well known that humans exhibit a shape bias - we prefer to categorize

objects based on shape if the task allows for it [12, 105, 108, 126]. Further, shape bias develops

very early [26, 169] between 18 and 24 months of age [183].

In their seminal paper Landau et al. [105] presented children and adults with objects varying

in size, shape and texture to test whether shape is weighed more heavily than the other two

features. For example, in Experiment 1 they presented participants with a standard (Figure

3.1 top) stimulus and the name associated with the stimulus. Then, in a yes/no task they asked

participants to simply respond whether a new stimulus is of the same category (e.g., “is the object

a DAX”). They found that variations in size and texture did not affect the proportion of ‘yes’

responses. In other words, participants confirmed that a new object was of the same category as

the standard if shape was not changed but size and texture were. However, for shape changes

the proportion of these responses decreased, and decreased more for the more extreme shape

distortion (the bottom row in Figure 3.1). Age was also a factor; 2-year olds rejected the greater

shape distortion less often than 3-year olds (31% vs 50% of the trials) while adults did so in 94%

of the trials. Thus, even though shape was more important than the remaining two features, the

magnitude of shape bias increased with age.

Considering experience influences the magnitude of shape-bias this chapter investigated

whether networks of different experiences (ImageNet and style-transfer trained) adapt to a new
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Figure 3.1: Example stimuli from Landau et al. [105]. Standard versions of the stimuli were shown to participants
and named (top). In trials of a yes/no taks, participants were presented with objects that could vary from standards
either in size, texture or in shape (shape variations can be seen in the bottom of the figure). The task was to answer
whether the new objects were of the same kind as the standard object.

environment similarly to humans. We generated a new dataset in order to test how CNNs and

humans learn when different features predict category membership. We designed datasets in

which both global shape, and a secondary feature could be predictive of category membership (for

example, the colour of a single part of the shape as shown in Figure 3.2b. We then conducted a

number of simulations and behavioral studies by creating various experimental conditions using

these new datasets. Our aim was to test how adaptable humans and CNNs are to statistical

properties in novel learning environments and what impact previous biases (like the shape bias

in humans) have on learning in these novel environments.

This is a publication chapter - this chapter is a re-formatted and slightly edited version of the

paper Feature blindness: A challenge for understanding and modelling visual object recognition

in PLOS Computational Biology [115].

Contributions - Gaurav Malhotra initiated and led this project. My role was consulting during

initial stages of dataset generation, discussing various iterations and providing input. After the

datasets had been generated Gaurav Malhotra conducted all of the simulations presented in

this chapter while I designed and conducted all the behavioral studies and provided statistical

analysis of the resulting data. All co-authors contributed to write-up and revisions during the

review process.

3.1 Introduction

Sometimes we fail to see what’s right in front of our eyes.
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The seemingly simple task of recognising an object requires contending with a multitude of

problems. Humans can recognise something as a “chair” for a vast range of lighting conditions,

distances to the retina, viewing angles and contexts. We can recognise chairs made out of wood,

metal, plastic and glass. Thus, to classify something as a chair, the brain must take the image of

the object projected onto the retina and convert it into an internal representation that remains

invariant under all these conditions [28]. A lot of effort in psychology, computational neuroscience

and computer vision has gone into understanding how the brain constructs these invariant

representations [27, 173].

One hypothesis is that the brain learns these invariant representations from the statistics of

natural images [27, 52, 81]. But until recently, it has proved challenging to construct scalable sta-

tistical inference models that learn directly from natural images and match human performance.

A breakthrough has come in recent years from the field of artificial intelligence. Deep Convolu-

tional Neural Networks (CNNs) are statistical inference models that are able to match, and in

some cases exceed, human performance on some image categorisation tasks [106]. Like humans,

these models show impressive generalisation to new images and to different translations, scales

and viewpoints [83]. And like humans, this capacity to generalise seems to stem from the ability

of Deep Networks to learn invariant internal representations [55]. It is also claimed that the

learned representations in humans and networks are similar [83, 101, 151]. These results raise

the exciting possibility that Deep Networks may finally provide a good model of human object

recognition [24, 93, 137, 176] and provide important insights into visual information processing

in the primate brain [20, 85, 119, 149, 181].

Many reasons could be, and are, given for why CNNs have succeeded where previous models

have failed [7, 106]. For example, it is often argued that CNNs excel in image classification because

they incorporate a number of key insights from biological vision, including the hierarchical

organization of the convolutional and pooling layers [107]. In addition, both systems are thought to

implement optimisation frameworks, generating predictions by performing statistical inferences

[149, 182]. Indeed, evidence suggests that humans perform some form of statistical optimisation

for many cognitive tasks including language learning [156], spatial cognition [40], motor learning

[90] and object perception [81]. Due to this architectural and computational overlap between

the two systems it might seem reasonable to hypothesise that humans and CNNs end up with

similar internal representations.

However, the parsimony and promise of this hypothesis is somewhat dampened by recent

studies that have shown striking differences between CNNs and human vision. For example,

CNNs are susceptible to small perturbations of images that are nearly invisible to the human

eye [33, 57, 127]. They often classify images of objects based on statistical regularities in the

background [174], or even based on single diagnostic pixels present within images [116]. That is,

CNNs are prone to overfitting, often relying on predictive features that are idiosyncratic to the

training set [47].
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To what extent do these findings reflect fundamental differences between CNNs and human

vision? On the one hand, such differences could be simply down to differences in the learning

environments of humans and artificial neural networks. Evidence supporting this hypothesis

comes from studies that have compared features used by CNNs and humans to classify objects.

Psychological experiments have repeatedly shown that humans rely primarily on global features,

such as shape, for naming and recognising objects [12, 105, 126, 169]. By contrast, a number of

studies have demonstrated that CNNs trained on standard datsets, such as ImageNet, rely on

local textures [50, 70, 109]. But these studies have also shown that, when CNNs are trained on

datsets with the right biases, their behaviour can be brought a lot closer to human behaviour

[38, 50, 70, 71]. For example, Geirhos et al. [50] showed that CNNs trained on a modified version

of ImageNet learn to show a shape-bias. Based on these results, Geirhos et al. conclude that

“texture bias in current CNNs is not by design but induced by ImageNet training data”. Similarly,

Hermann et al. [70] showed that CNNs can learn to classify images based on global shape

when they are trained with naturalistic data augmentations, leading them to conclude that

“apparent differences in the way humans and ImageNet-trained CNNs process images may arise

not primarily from differences in their internal workings, but from differences in the data that

they see.”

On the other hand, behavioural differences between humans and CNNs may arise out of more

fundamental differences in resource constraints and mechanisms, rather than just differences

in their training sets. While a CNN trained on a particular environment is able to mimic some

aspects of shape-bias, the origin of shape-bias may be very different in the two systems. One way

to distinguish between these two hypotheses is to check how the bias (of a network or human) is

affected by moving to a new environment. If the origin of the bias is purely environmental, then

a shift in the environment should also lead to a shift in the bias – that is, the system should start

selecting features based on the statistical properties of the new environment. If, on the other

hand, the bias is a reflection of a mechanistic principle or a resource constraint, it will be much

more immune to a change in the statistical properties of the environment.

In this study, we explored this question by training models and humans to classify a set of

novel objects. Each object contained multiple diagnostic features, all of which were clearly visible

and could be used to perform the task. We manipulated the statistical bias for selecting these

features, by manipulating the extent to which each feature type predicted the category labels. We

wanted to explore the extent to which human adults and pre-trained CNNs were adaptable to

the biases present within this task environment. At one extreme, people (and CNNs) could be

completely adaptable, and select features solely based on the statistical properties of the new

environment. At the other extreme, they could be completely inflexible and continue selecting

features based on their prior biases. To gain a deeper insight into the role that prior biases play

in learning new information, we compared the performance of both humans and CNNs to a

statistical inference model that had no biases and learned to infer the category of a stimulus
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based on the sequence of samples observed in the task.

In a sequence of experiments that tested a range of different feature types and model

settings, we observed that (i) the behaviour of human participants was in sharp contrast with

the statistical inference model, with participants continuing to rely on global features, such as

shape, and ignoring local features even when these features were better at predicting the target

categories, (ii) when multiple global features were concurrently present (e.g. overall shape as

well as colour), some participants chose to rely on one feature while others chose to rely on the

second feature, but participants generally did not learn both features simultaneously, (iii) the

behaviour of CNNs also contrasted with the statistical inference model, with the CNNs also

preferring to rely on one feature, (iv) however, unlike human participants, CNNs frequently relied

on diagnostic local features and, crucially, this dependence on local features increased when the

features were made more predictive, (v) CNNs were highly adaptable in the feature they used for

learning – even when they were trained to have a shape-bias, this bias was lost as soon as they

were trained on a new dataset with a different bias.

In two follow-up studies, we investigated whether human participants can overcome their bias

for global features by (a) learning in an environment where there is no concurrent shape at all, or

(b) being told what type of local feature to look for. In both cases, we observed that participants

still failed to learn these tasks based on local features. Thus, the reason why participants ignore

some clearly visible features is not simply due to the competition from shape, or to the difficulty in

discovering these types of features. Rather, participants seem to struggle with the computational

demands of learning the task based on certain features.

These results highlight important differences in how human participants and CNNs learn to

extract features from objects and the role that existing biases play in adapting to novel learning

environments. In general, CNNs are highly adaptable in learning new information, with the

statistical structure of their learning environment driving their learning. While performing

statistical learning is also clearly important for humans, their behaviour is much more strongly

constrained by prior biases. Models of visual object recognition need to explain how such strong

biases can be acquired and how they constrain learning in order to adequately capture human

object recognition. The training and test sets developed in this study can be used to constrain

and falsify models towards this end.

3.2 Results

3.2.1 Behavioural tasks and Simulations

The behavioural tasks mimicked the process of learning object categorisation through supervised

learning. In each experiment, participants were trained to perform a 5-way classification task,

where they had to categorise artificially generated images into one of five categories. Each image

consisted of coloured patches that were organised into segments. These segments were, in turn,
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Figure 3.2: Example training images from Experiments 1 and 2. (a) Two features predict stimulus category:
global shape and location (xcat, ycat) of one of the patches. For illustration, the predictive patch is circled. Stimuli in
the same category (middle row, reduced size) have a patch with the same colour at the same location, while none of
the stimuli in any other category (bottom row) have a patch at this location. (b) Global shape and colour of one of the
segments predict stimulus category. Only stimuli in the same category (middle row) but not in any other category
(bottom row) have a segment of this colour (red). The right-most stimulus in the middle row shows an example of a
training image containing a non-shape feature (red segment) but no shape feature. For further illustration of stimuli
used in these and other experiments, see Appendix B - Figures B.1–B.5.

organised so that they appeared to form a solid structure. Within each figure, the relative location,

size and colour of patches as well as segments was perturbed (within some bounds) from image

to image, making each stimulus unique and avoiding any unintentional diagnostic features,

such as local features where segments intersect. In order to successfully perform the task, the

participants and CNNs had to generalise over all these variables and discover the invariant

shape or non-shape feature. See Figure 3.2 for some example images.

For each experiment, we constructed a dataset of images where one or more generative

factors – features – predicted the category labels. In Experiments 1 to 4, images were drawn from

datasets with two predictive features. One of these features was shape (the global configuration

of segments) while the other feature was different in each experiment. In Experiment 1, the

second feature was the location of a single patch in the image – that is, all images of a category
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Table 3.1: Feature combinations examined in different experiments.

Experiment Features % Shape

Global
Shape

Patch
Location

Segment
Colour

Average
Size

Global
Colour

Exp 1a 100%

Exp 1b 80%

Exp 2a 100%

Exp 2b 80%

Exp 3a 100%

Exp 3b 80%

Exp 4a 100%

Exp 4b 80%

Exp 5 0%

Exp 6 0%

Rows correspond to experiments and columns correspond to features. A shaded cell indicates that the
feature in that column was used in the experiment in that row. The last column shows the proportion of
training trials that contain a diagnostic shape. In Experiments 1–4 each participant saw stimuli that
consisted of the combination of features shown in that row. Experiments 5 and 6 were between-subject
designs so that participants were allocated to four (Experiment 5) or three (Experiment 6) groups and
each participant saw stimuli with only one non-shape diagnostic feature.

contained a patch of a category-specific colour at a particular location (and none of the images

from other categories contained a patch at this location). In Experiment 2, this feature was the

colour of one of the segments – that is, all images assigned to a category contained a segment of

a particular colour (and none of the images from other categories contained a segment of this

colour). In Experiment 3, the second feature was the average size of patches – all patches in an

image had similar sizes and the average size was diagnostic of the category. In Experiment 4,

this feature was the colour of patches – all patches in an image had the same colour and images

of different categories had different colours. In Experiment 5 and 6, all images had only one

predictive feature. This was either patch location, segment colour, patch size or overall colour;

but none of the categories had a predictive shape.

Table 3.1 summarises the different combinations of features that were examined in the

behavioural tasks in this study. Examples for all Experiments are shown in Appendix B - Figures

B.1–B.5.

In Experiments 1 to 4, training blocks were interleaved with test blocks which presented novel

images that had not been seen during training. Each test block contained four types of test trials

– Both, Conflict, Shape and Non-shape – that were designed to reveal the feature(s) used by the

participant to categorise images. Trials in the Both condition contained the same combination of
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Figure 3.3: An illustration of the four types of test conditions. Each category has two diagnostic features: here,
the overall shape and the colour of one of the segments. In the training images, features are mapped to categories
using the following mapping: {(Shape A, Red) → Category 1; (Shape B, Blue) → Category 2}, where Shape A and
Shape B are the shapes on the left and right, respectively. In the Both test condition, both types of features (shape
and colour) have the same mapping as training. In the Conflict condition the mapping of the non-shape feature
is swapped – i.e., the new mapping is {(Shape A , Blue) → Category 1; (Shape B, Red) → Category 2}. In the Shape
condition, images have only one diagnostic feature – the overall shape – which has the same mapping as training:
{Shape A → Category 1; Shape B → Category 2}. In the Non-shape condition, images have no coherent shape, but
contain the same diagnostic colours as the training images: {Red → Category 1; Blue → Category 2}.

features that predicted an image’s category during training. Conflict trials contained images

with shape feature from one category and the second feature was swapped from another category.

Shape trials contained images with only the shape feature and a non-predictive value of the

second feature. Finally, the Non-Shape trials contained images where the five segments were

placed at random locations on the canvas, giving the stimulus no coherent shape, but each image

contained the second predictive feature (see Appendix B - Figures B.1–B.5 for some examples).

An illustration of the four test conditions is shown in Figure 3.3. We measured accuracy in the

Both, Conflict and Shape test trials based on the category predicted by the shape feature and

accuracy in the Non-shape trials based on the category predicted by the non-shape feature.

We can infer the features that a participant uses by looking at the pattern of performance

across the test conditions. There are four possible patterns. If a participant relies on shape, they

should perform well in trials where shape predicts the image category. Thus their pattern of

performance should be high, high, high, and low in the Both, Conflict, Shape, and Non-shape

conditions, respectively. In contrast, if the participant relies on the non-shape feature, this pattern

should be high, low, low, high. If a participant uses both (shape and non-shape) features, the

pattern should be high, medium, high, high, where a “medium” performance in the Conflict

condition is indicative of the fact that the two cues (features) learnt by the participant will

compete with each other in these trials. Finally, if a participant does not learn either feature,

their performance should be low in all four conditions. For a similar methodological approach for

determining features used to categorise novel stimuli see [54].
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In each experiment, we compared the behaviour of participants with two statistical inference

models: an ideal inference model and a CNN. The ideal inference model computes what should a

participant do if they had no prior biases and wanted to be statistically as efficient as possible,

using all the information available during training trials. This model uses a sequential Bayesian

updating procedure to compute the probability distribution over category labels given the training

data and a test image. Similarly, the CNN computes the most-likely category-label for an image by

learning a mapping between images in the training set and their category labels. Thus, it makes

an approximate statistical inference by approximating a regressive model [167], (pp. 85–89), but

additionally has constraints built in through the choice of its architectural properties, such as

performing convolutions and pooling. Both models are described in Materials and Methods below.

3.2.2 Both features equally predictive

Figure 3.4A shows the pattern of performance in the final test block in Experiments 1a, 2a, 3a,

and 4a. In these tasks, both shape and non-shape features perfectly and independently predict

the category label during training. Thus the learner could use either (or both) features to learn

an image’s category. The top row shows the pattern of performance for the ideal inference model.

In all four tasks, this model predicts that the probability of choosing the correct category is high

in the Both, Shape and Non-shape conditions and significantly lower in the Conflict condition.

This indicates that there is enough information in the training trials for all four experiments to

predict the category label based on either the shape or the non-shape feature.

Note that the ideal-inference model predicts that the accuracy for the Conflict condition

is different for Experiment 1a from the other experiments. The shape and non-shape cues are

equally competitive in Experiments 2a, 3a and 4a. Consequently the probability of choosing the

correct (shape-based) category is around 0.50 in the Conflict condition in these experiments.

However, the results in Figure 3.4A show that, in Experiment 1a, the non-shape cue dominates

the shape cue in the Conflict condition. This is because an image with a diagnostic patch at

one of the diagnostic locations contains two types of information: (i) a diagnostic colour at one of

the diagnostic locations, and (ii) white (background) patches at all the other diagnostic locations.

These two signals together dominate the shape signal in Conflict trials in Experiment 1.

The middle row shows the pattern of performance for the CNN model. In all four tasks, the

network showed high accuracy in the Both condition – showing an ability to generalise to novel

(test) stimuli, as long as both shape and non-shape features were preserved in the stimuli. It

showed a low accuracy in the Conflict condition, but high accuracy in the Non-shape condition.

Its performance in the Shape condition was above chance in Experiments 1a, 2a and 3a and at

chance in Experiment 4a. The above-chance performance in the Shape condition implies that this

network is able to pick up on shape cues. However, its performance is significantly lower in the

Shape condition compared to the Non-shape condition. When these two cues competed with each

other, in the Conflict condition, the network favoured the non-shape cue and the accuracy was

43



CHAPTER 3. FEATURE BLINDNESS

Figure 3.4: Results in Experiments 1–4. Each column corresponds to an experiment and each row corresponds to
the type of learner (ideal inference model, CNN or human participants). The top row shows the posterior probability of
choosing the labelled class for a test trial given the training data. The bottom two rows show categorisation accuracy
for this labelled class. Panel A shows results for experiments where both features are equally predictive (1a, 2a, 3a
and 4a), while Panel B shows results for experiments where the non-shape feature is more predictive (1b, 2b, 3b and
4b). Each plot shows four bars that correspond to the four types of test trials. Patch, Segment, Size and Colour refer
to the Non-shape test trials in Experiments 1, 2, 3 and 4, respectively. Error bars show 95% confidence and dashed
black line shows chance performance. In any plot, a large difference between the Both and Conflict conditions shows
that participants rely on the non-shape cue to classify stimuli. Both models show this pattern while humans show no
significant difference.

at or below chance. These results indicate that the CNN learns to categorise using a combination

of shape and non-shape features.

It is also worth noting that, unlike the ideal inference model, the CNN showed a bias

towards relying on non-shape features in all experiments, even though it would be ideal (from

an information-theoretic perspective) to learn both features in parallel. A similar result was

observed by Hermann et al.[71], who found that when multiple features predict the category,

CNNs preferentially represent one of them and suppress the other.

The bottom row shows the average accuracy in the four experiments for human participants

(N=25 in each task). Like the ideal inference model and the neural network model, participants

showed high accuracy in the Both condition (mean accuracy was between 70% (in Experiment 1a)

and 89% (in Experiment 4a). This indicates an ability to generalise to novel (test) stimuli as

long as shape and non-shape features were preserved. However, their pattern of performance

across the other three conditions were in sharp contrast to the two models. In Experiments 1a,

2a, and 3a, participants showed a high-high-high-low pattern in the Both-Conflict-Shape-

Non-shape conditions, indicating that they strongly preferred the shape cue over the non-shape

cue. In fact, performance in the Non-shape trials was at chance in all three tasks with mean

accuracy ranging from 20% to 24%. Single sample t-tests confirmed that performance was

statistically at chance in all three tasks (largest t(24) = 0.99, p > .05). Thus, unlike the ideal

inference model, which learnt both predictive cues, participants chose one of these cues. And
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unlike the neural network model, which favoured the non-shape cue, participants preferred to

rely on shape.
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Figure 3.5: Two groups in Experiment 4a. Each panel shows the accuracy under the four test conditions for a
subgroup of participants. Participants were split based on whether they performed better in the shape or colour
conditions. The first group contained N=12 participants and the second group contained N=13 participants.

The behaviour of participants was different in Experiment 4a, where the non-shape cue was

the colour of the entire figure. Performance was again high in the Both condition, but significantly

lower in the Conflict, Shape and Non-shape conditions (F(3,72)= 8.18, p < .01,η2
p = .25). So, on

average, participants seemed to be using both shape and non-shape (colour) cues to make their

decisions, but neither feature was strongly preferred over the other. This behaviour seemed to

be qualitatively similar to the ideal inference model, which learnt to use both predictive cues

simultaneously. However, examining each participant separately, we found that participants could

be grouped into two types, those that primarily relied on shape (N=12) and those that relied on

colour (N=13). Participants were categorised as relying on colour if performance in the Non-shape

condition was above performance in the Shape condition. Figure 3.5 shows the average pattern

of performance for each of these groups. The first group shows a high-low-low-high pattern,

indicating that they were predominantly using the colour cue to classify test images. The second

group shows a high-high-high-low pattern, indicating that they were predominantly using the

shape cue. Mixing these two groups of participants results in the high-medium-medium-medium

pattern shown in Figure 3.4A.

3.2.3 One feature more predictive than the other

Our next step was to check what happens when one of the features predicts the category better

than the other. If the nature of shape-bias is similar in humans and CNNs, we expect both

systems will adapt in a similar way to a new statistical environment, which favours a non-shape

feature. In Experiments 1b, 2b, 3b, and 4b the shape feature predicted the category label in only

80% of the training trials. The remaining 20% images contained horizontal and vertical segments

placed at random locations on the canvas so that these images contained no coherent shape.

The second feature (patch location, segment colour, patch size or overall colour) predicted the

category label in 100% of training trials. See Figures 3.2 and B.5 for some examples of training

images that do not contain a shape feature but contain a non-shape feature. Figure 3.4B shows
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the performance for the two models as well as human participants (N=25 in each task). The ideal

inference model (top row) showed a very similar performance, again predicting that a participant

should learn both features simultaneously. Its accuracy on non-shape feature was slightly better.

This is a consequence of larger number of samples containing non-shape cues. In contrast, the

performance for the CNN model was significantly different. In all experiments, the model now

showed a high–low–low–high pattern, with performance in the Shape condition close to chance

in most experiments. Thus, the CNN model started relying almost exclusively on the (more

predictive) non-shape feature.

In contrast to both models, participants continued showing a high–high–high–low pattern in

Experiments 1b, 2b, and 3b, indicating a clear preference for relying on shape. It should be noted

that this happens even though shape is not the most predictive feature. In fact, performance

in the Non-shape condition was at chance (mean accuracy ranged from 18% to 24%, largest

t(24) = 1.74, p > .05 when compared to chance level), showing that participants completely

ignored the most predictive feature.
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Figure 3.6: Two groups in Experiment 4b. Each panel again shows accuracy under the four test conditions for the
subgroups of participants who prefer to rely on shape and colour, respectively. In this case, the first group consisted of
N=7 participants and the second group consisted of N=18 participants.

The behaviour of participants was again different in the experiment using colour of entire

figure as the non-shape cue (Experiment 4b). Average accuracy across participants was high in

the Both condition, but significantly lower in the Conflict, Shape, and Non-shape conditions

(F(3,72)= 22.68, p < .01,η2
p = .49). Like Experiment 4a, examining each participant separately

in Experiment 4b showed that participants could be divided into two groups – those that learnt

to rely on shape and those that learnt to rely on colour. However, the ratio of participants in

these groups changed. While 12 participants (out of 25) relied on shape in Experiment 4a, 7

participants (out of 25) relied on it in Experiment 4b (see Figure 3.6).

3.2.4 Effect of previous training on CNN behaviour

In the above experiments, we observed that the participants systematically deviated from the

two statistical inference models. This contrast was particularly noteworthy in Experiments 1b-4b.

Here, the non-shape feature was more predictive than shape but participants still focused on
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global features like shape. In contrast, the CNN preferred to rely on the more predictive (non-

shape) feature. So we wanted to explore whether CNNs can be made to behave like humans

through training. A recent set of studies have suggested that CNNs indeed start showing a

shape-bias if they are pre-trained on a dataset that contains such a bias [50, 70]. However,

after the network had been pre-trained on the first set with a shape-bias, these studies did not

systematically manipulate how well each feature predicted category membership in the new set

of images. This is a crucial manipulation in the above studies that allowed us to more directly

assess the feature biases of CNNs, and our results suggest that the CNN learns to rely on the

most diagnostic feature in this new set.

To test the effect of pre-training, we used the same CNN as above – ResNet50 – but this time

pre-trained on the Style-transfer ImageNet database created by [50] to encourage a shape-bias.

We then trained this network on our task under two settings: (i) the same setting as above, where

we retuned the weights of the network at a reduced learning rate, and (ii) an extreme condition

where we froze the weights of all convolution layers (that is 49 out of 50 layers) limiting learning

to just the top (linear) layer.

Figure 3.7: Results for pre-training on a dataset with a shape-bias. The first row shows results when the CNN
was pre-trained on the Style-transfer ImageNet [50] and allowed to learn throughout the network. The second row
shows results of the same network when weights for all convolution layers are frozen. First column shows results
when both features are equally likely (Experiments 1a, 2a, 3a and 4a) while the second column shows results when
the non-shape cue is more predictive (Experiments 1b, 2b, 3b and 4b). In all panels, we again observed a large
difference between the Both and Conflict conditions, indicating that despite pre-training, models relied heavily on
the non-shape cue to classify stimuli.

The results under these two settings are summarised in Figure 3.7. In line with previous

results [50, 70], we observed that this network had a larger shape-bias – for example, it predicts

the target category better in the Shape condition than the network pre-trained on ImageNet

(compare with the middle row in Figure 3.4). In some cases, this makes the network behave more

like the ideal inference model, where it is able to predict the category based on either shape or

non-shape features. But this pattern is still in contrast with participants who were at chance

when predicting based on non-shape features in Experiments 1–3. Crucially, when the non-shape

feature is made more predictive, the network shows a bias towards this feature, showing the

same high-low-low-high pattern observed above (Figure 3.7, top right). Even under the extreme
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condition, where we froze the weights of all except the final layer, the network preferred the

non-shape feature as long as this feature was more predictive (Figure 3.7, bottom right). That

is, CNNs do not learn to preferentially rely on shape when learning new categories even when

pre-trained to have a shape bias on other categories.

3.2.5 Dynamics of learning

We probed the learning strategy used by models and participants by examining performance at

regular intervals during training. If a participant (or model) learns multiple features in parallel,

they should show an above-chance performance on both the Shape and Non-shape test trials at

the probed interval. If they focus on a single feature, their performance on that feature should

be above-chance and match the performance on the Both trials. If they switch between different

features over time, their relative performance on Shape and Non-shape trials should also switch

over time.

Figure 3.8A shows the performance under the four test conditions over time for Experi-

ments 1b, 2b, 3b and 4b (results for Experiments 1a, 2a, 3a and 4a show a similar pattern and

are shown in Figure B.6). The ideal inference model shows an above-chance performance on the

Shape as well as Non-shape trials throughout learning. This confirms the expectation that the

ideal inference model should keep track of both features in parallel. However, this is neither

what the CNN nor what human participants do. The CNN shows a bias towards learning the

most predictive (non-shape) feature from the outset, with performance on the Non-shape trials

closely following performance on the Both trials. Human participants showed the opposite bias,

with performance on the Shape trials closely following performance on the Both trials. We did not

observe any case where the relative performance on the Shape and Non-shape trials switched

over time. This suggests that participants did not systematically explore different features and

choose one – rather they continued learning a feature as long as it yielded enough reward. Even

in Experiment 4b, where some participants used the colour cue while others used the shape cue,

no participant in either group showed any evidence for switching form one feature to the other.

3.2.6 Learning in the absence of shape

The above experiments always pit a highly predictive feature against shape. We wanted to know

whether participants struggle to learn the predictive local feature even when a diagnostic shape

was absent. If participants only fail to learn this feature when a diagnostic shape is present, it

indicates a difference in the bias between participants and CNNs (humans prefer global shape,

while CNNs prefer more local features). On the other hand, if participants struggle to learn

this feature even when it is clearly visible and a diagnostic shape is absent, it indicates a more

fundamental limitation in human (but not CNN) capacity to extract these features. To test this,

we designed a behavioural task (Experiment 5) where a shape feature was absent from the

training set. Like the above experiments, each training stimulus still contained a set of patches

48



3.2. RESULTS

Figure 3.8: Change in test performance with training in Experiments 1a, 2a, 3a, and 4a. Each plot in Panel
A shows how accuracy on the four types of test trials changes with experience. The top, middle and bottom row
correspond to ideal inference model, CNN and human participants respectively. Columns correspond to different
experiments. The scale on the x-axis represents the number of training trials in the top row, the number of training
epochs in the middle row and the index of the test block in the bottom row. The two plots in Panel B show accuracy in
test blocks for humans and CNN, respectively, when they are trained on images that lack any coherent shape. Each
bar corresponds to the type of non-shape feature used in training.

and segments, but the segments were not consistently organised in a spatial structure (see Figure

B.5 for examples of this stimuli). Instead, every training trial contained a non-shape predictive

feature. We used the same features as above – patch location, segment colour, patch size or overall

colour. Participants were divided into four groups based on the type of predictive feature they

were shown in the training trials. The test block consisted of novel images (that were not seen in

training) but had the same diagnostic feature as training (equivalent to the Non-shape condition

in the above experiments).

The average accuracy in test trials for each type of diagnostic feature is shown in Figure 3.8B.

There was a large difference in performance depending on the type of diagnostic feature. When the

colour of the entire figure predicted the category, accuracy on test trials was high (M = 98.67%).

The responses collected for training trials indicated that participants learned this feature quickly

(performance reached 94.40% after 100 training trials). Accuracy in the test block was lower

(though still significantly above chance) when the size of patches predicted the category (M =
52.40%) and participants learned this feature at a slower rate. In contrast to these two conditions,

participants were unable to learn the other two diagnostic local features. Performance was at

chance in test trials both when the colour of a segment predicted the category (M = 21.47%)

and when the location and colour of a single patch predicted the category (M = 17.47%). Thus

participants seemed sensitive to the computational complexity of the diagnostic feature. They
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extracted simple features like the colour of the entire figure or the size of patches, but did not

extract more complex features like colour of single segment or patch. Figure 3.8B also shows the

performance of the CNN on this task. In contrast to human participants, the network learnt all

four types of non-shape stimuli and showed high accuracy on test trials in all four conditions.

3.2.7 Identifying versus Learning features

In order to discover the correct diagnostic features in the experiments above, a participant must

perform two distinct operations: they must identify a diagnostic feature (from a list of all possible

features) and match the correct value of this feature to each category. For example, in Experiment

2, the participant must first realise that the diagnostic feature is the colour of each segment.

That is, they must find this feature in the space of all possible features (shape, number of patches,

location, size, etc.). Secondly, they must map the stimulus on a given trial to the correct category,

extracting the colour of all five segments, working out which segment is diagnostic and what

the mapping is between the diagnostic colour and category. The second operation – mapping a

diagnostic value to a category – is a computationally demanding task as it requires the participant

to remember several pieces of information, comparing the features observed in a given stimulus

with the features and outcomes of past stimuli. One reason why participants might fail when the

CNN succeeds is that humans and CNNs have very different computational resources available

to them. For example, while humans are limited by the capacity of their working memories (the

number of features they can process at the same time), CNNs have no such limitations. If this

was the case – i.e., if participants were failing because of their limited cognitive resources and

not because they were unable to identify the correct feature – we hypothesised that helping the

participants identify the diagnostic feature will not improve their performance on these tasks.

We checked this hypothesis in Experiment 6 that repeated the design of Experiment 5, where

participants saw stimuli that had only the non-shape diagnostic feature and no coherent shape.

Instead of letting participants figure out which feature was diagnostic, we informed them of the

diaganostic feature in each task and showed them two examples of stimuli with the diagnostic

feature (see Materials and Methods for details). Additionally, we increased the duration of each

stimulus from 1s to 3s to ensure that participants do not underperform because of the time

constraint. Finally, we gave participants an added incentive to learn the task, increasing the

possible bonus reward based on their performance in the test block. Participants then completed

6 training blocks (50 trials each) where they saw random samples of stimuli from each category.

We already know that participants can solve the task when the diagnostic feature was the colour

of the entire figure (see Figure 3.8B above). Therefore, we tested three groups of participants,

where each group was trained on stimuli with one of the other three non-shape features – patch

location, segment colour or average size – being diagnostic of the category.

The results of Experiment 6 are shown in Figure 3.9. Like Experiment 5, mean performance

across participants was above chance in the Size condition but at chance in the Patch and
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Figure 3.9: Results of telling participants the diagnostic cue. Each bar shows mean accuracy across 10 partic-
ipants in the test block. Participants were divided into three groups based on the diagnostic cue – patch location,
segment colour, or average size – used to train the participants.

Segment conditions. The overall pattern of results for the three conditions was statistically

indistinguishable from the results of Experiment 5. In other words, even when participants

were told the diagnostic features and given additional time and incentive to learn the task, they

struggled to classify stimuli based on patch location or segment colour. These results confirm the

hypothesis that the difficulty of these tasks for human participants is not limited to identifying

the diagnostic features. Instead, the cognitive resources required to extract the diagnostic feature

value and mapping it to the correct category may play a critical role in how humans select

features for object classification.

3.3 Discussion

In a series of experiments we repeatedly observed that participants learned to classify a set of

novel objects on the basis of global features such as overall shape and colour even when local

non-shape features were more predictive of category (Figure 3.4B). This behaviour is in keeping

with psychological studies which show that humans prefer to categorise objects based on shape

[12, 105, 108, 126] but, additionally, shows that this shape-bias is retained in novel learning

environments where the statistics favoured learning based on a different feature. This observation

is consistent with category-learning studies which show that participants overlook salient cues

when multiple cues can be used to solve the task [160] and especially in high-dimensional

classification tasks [132].

We found that one cannot explain human behaviour using a simple statistical model that

infers the category of a test stimulus based solely on the evidence observed in the training trials

and no prior biases. We also found that human behaviour was inconsistent with the behaviour of

CNNs as the the predictive value of features play a key role in how CNNs learns to classify novel
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objects. Unlike human participants, previous biases of the network (either learnt through training

or built-in through architectural constraints) were not sufficient to overcome this reliance on

predictive features. If humans indeed learn in novel environments through a process of statistical

learning, these results motivate an exploration of why humans do not quickly adapt to the novel

environment in the same way the statistical models presented in this study do. Note that this may

be a challenging problem to solve for CNNs and statistical inference models as in Experiment 5

and 6 participants struggle to learn some features even when there is no concurrent shape

feature.

Our results were robust across a range of experimental and simulation conditions. Of course,

this does not mean that we have controlled for all differences between human experiments

and CNN simulations, but our study shows that our findings are robust across multiple CNN

architectures, a range of hyper-parameters, different types of pre-training and different types

of predictive features (patch location, segment colour, patch size). While we believe that there

is unlikely to be a set of experiment conditions that will make humans behave like CNNs, we

acknowledge that we do not control for all possible differences in the experimental setup.

Another difference between human participants and CNNs is that participants in our studies

had a life-time of exposure to a natural world where shape may be the most diagnostic feature.

Indeed, some longitudinal studies have shown that it is possible to create a shape-bias in very

young children by intensively teaching them new categories but keeping the statistical properties

of their linguistic environment [158]. Accordingly, it is possible that our participants had acquired

a shape-bias early on in life [26, 169] that constrained how the new objects in our experiments

were learned. But we observed that CNNs did not retain a shape-bias even when we induced a

shape-bias in pre-training and when we froze the weights in an attempt to preserve the shape-

bias when classifying our new objects. Instead they simply learned whatever features of new

object categories were most diagnostic. In other words, even if one assumes that CNNs adequately

capture why humans learn to classify objects based on their shape, they do not capture why

humans continue to look for certain features (like shape) and are agnostic to other features when

learning about new objects.

Note, we do not want to claim that humans could never learn to use features other than shape.

In Experiment 4, many participants learn to rely on another global feature – the overall colour of

objects. And in some of our experiments (for example, where the size of the patches predicted

category membership) it is possible that if participants were given a lot more training, some

participants may switch to using the more predictive feature. If this were the case, the pattern

would be that participants prefer relying on global features early in learning, then switch to more

predictive features. The dynamics of the ideal inference model and the CNN (Figure 3.8A) show

that neither of the models predict this behaviour.

It should also be noted that the behaviour of participants observed here highlights a more

extreme form of shape-bias than has been reported before. In a typical shape-bias experiment,
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the term shape-bias indicates the inductive-bias to rely on shape in the presence of alternative

features that are equally good at predicting the target category [105, 169]. In our experiments,

we observed that participants relied on shape even in the presence of features that were better at

predicting the target category. Furthermore, in two of our experiments (Experiments 5 and 6)

there was no consistent shape at all that could be used to predict category membership. In these

experiments, participants failed to pick some perfectly predictive statistical features (like location

of patch or colour of segment) even in the absence of a diagnostic shape. This functional blindness

towards certain features cannot necessarily be explained as a shape-bias as there is no competing

shape feature to learn.

These findings are consistent with a recent study conducted by Shah et al.[164], who found

that CNNs learn to classify images on the basis of simple diagnostic features and ignore more

complex features. The focus of Shah et al.[164] was not on comparing CNNs to humans, but

rather, showing how a simplicity bias limits generalisation in CNNs. Nevertheless, their study

may shed light on another key difference between human and CNN vision, namely, humans are

much better at generalising to out-of-distribution image datasets compared to CNNs, such as

identifying degraded and distorted images [47, 51]. It may be that that the shape bias we observed

in humans but lacking in CNNs plays a role in more robust human visual generalisation.

An important outstanding question is why participants in our study relied on global features

such as shape or overall colour and struggled to learn salient features that were highly diagnostic.

Some of the observations made in our experiments provide clues to the reasons underlying

participant behaviour. In Experiment 6, we observed that even when the relevant features are

pointed out, participants still could not learn to classify objects based on patch location and

segment colour. This shows that the inability to learn these local features is not limited to

the difficulty of discovering the type of feature, but may be due to the computational demand

of learning how features map to categories. For example, consider the Segment condition in

Experiment 6, where the colour of a segment predicted the object category. One strategy to learn

this task is to simultaneously store colours of all five segments in memory during each trial and

compare these colours across trials of the same category, eliminating colours that do not overlap.

This type of strategy will have strained or exceeded the visual capacity of humans, leading them

to ignore this predictive cue and focus on shape, even though it is less diagnostic.

Similarly, we also observed that participants frequently selected only one of several possible

features available to learn an input-output mapping (e.g. in Experiment 4 participants chose

to classify either based on colour or shape but almost never both, even though this was the

optimal policy in the task). Learning multiple features may lead to better prediction in certain

circumstances, however it also requires using more cognitive resources. The fact that participants

generally rely on only one feature suggests that participants trade off their performance in the

task with the mental effort [89, 166] required to learn how each feature maps to the object

category.
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By contrast, CNNs do not suffer from the same resource limitations as humans. A striking

example of this is that CNNs not only succeed in learning to classify millions of images in

ImageNet into 1000 categories, they can also learn to classify the same number of random

patterns of TV static-like noise into 1000 different categories [185], something far beyond the

capacity of humans [175]. This capacity was no doubt exploited by the CNNs in the current

learning context. By contrast, our participants had to learn the object categories in the face

of many well documented cognitive limitations of humans, such as limited capacity of visual

short-term memory [5], visual crowding [117, 178] and selective attention [110, 186].

Whatever the origin of the shape-bias, the results here should give pause for thought to

researchers interested in computational models of visual object recognition. These results show

that humans are blind to a wide range of non-shape predictive features when classifying objects,

and if models are going to be used as theories of human vision, they should be blind to these

features as well. This may result not only in models that are more psychologically relevant, but

also capture the robustness and generalisability of the human visual system that is lacking in

current models [33, 47, 163].

To counter these conclusions, there is an argument to be made that a strong shape bias in

humans has been demonstrated primarily in behavioural studies. We used performance metrics

based on classification behavior. However, researchers claiming similarity of mid-level visual

representations with representations in layers of deep networks would argue that this is unfair.

There are a number of neural systems between areas such as IT in the ventral stream and

the final behevioral output, as well as recurrent and top down processes which are not present

in models. Additionally, the fact that networks which were trained to have shape bias still

contain non-shape information is not unreasonable. After all, representations in the human

visual system certainly encode information about many other features. They would argue that

mid-level representations could still be similar and that shape bias emerges downstream. To this

end, Ayzenberg and Behrmann [4] discuss whether the ventral stream processes global shape.

From their point of view, findings form neuroscience seem to be ambiguous and the contribution

of the dorsal stream largely ignored. In related work, Jagadeesh and Gardner [77] conducted

an MVPA-style study in which neural patterns from various areas in the ventral stream were

used in an ’odd-one out’ task (see Figure 3.10). Neural patterns for images with preserved spatial

structure and without preserved spatial structure but matched in texture were presented to

participants in an attempt to correctly identify the odd stimulus from the set of three. Results

revealed that neural patterns can be used to identify the odd-one out if done at category level.

When the task is to identify the odd image in a set with two images from one category and a

single image from another - neural patterns can be successfully used to do so. However, when the

task is to identify a naturalistic (spatial structure preserved) image among synthesized (spatial

structure not preserved) images - then it was not possible to do so from BOLD signals in regions

of interest from the ventral stream which was also true for activity patterns from layers of CNNs.
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Figure 3.10: Decoding representations from the ventral stream. Three images are shown to participant during
an fMRI imaging session. Two of the images are synthesized to match the third naturalistic image in local features
but do not have spatially preserved structure. Activity patterns are then used in order to idenrify the odd-one out. In
this example, the naturalistic image. Figure adapted from Figure 4 in [77].

The researchers conclude that the ventral stream encodes local shape and other local features

such as texture which are then combined downstream depending on task demands rather than

the ventral stream being particularly sensitive to spatially structured stimuli. It is not clear how

these findings reconcile with a number of previous studies showing areas in the ventral stream

are indeed sensitive to shape [118, 133, 134] but this approach is the type of research advocated

for in this thesis. Further research is clearly required to reconcile the contradicting findings at

different levels of analysis as well as demonstrate robustness of these findings across different

datasets.

3.4 Methods

Ethics Statement All studies adhered to the University of Bristol ethics guidelines and

obtained an ethics approval from the School of Psychological Science Research Ethics Commit-

tee (approval code 10350). For all behavioural experiments, we obtained formal consent from

participants to use their anonymised data for research.

Experimental Details

Materials We constructed nine datasets of training and test images. There were 2000 training

images and 500 test images in each dataset. Each image consisted of 30–55 coloured patches on

a white background. The colours of patches were sampled from a palette of 20 distinct colours

so that they were clearly discernible. These patches were organised into five segments. There

were four short segments (consisting of 5–10 patches) and one long segment (consisting of 10–15
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patches). Each segment was oriented either vertically or horizontally. Images were grouped

into five target categories and each category was paired with a unique spatial configuration of

segments. It is this spatial configuration of segments that we refer to as shape. These shapes

were chosen such that the five shapes were clearly distinct from one another. A pilot experiment

showed that most participants could learn to categorise based on the chosen shapes within 300

trials. All images in a category also contained a second diagnostic feature, which was the location

and colour of a patch in Experiment 1, the colour of a segment in Experiment 2, the average size

of patches in Experiment 3 and the colour of all the segments in Experiment 4.

Within each category, images were randomly generated and varied in the number, colour,

location and size of patches. This variability ensured that (i) participants (human and CNN) had

to generalise over images to learn the category mappings, and (ii) there were no incidental local

features that could be used to predict the category. The exact number of patches in each segment

was sampled from a uniform distribution; the size and location of each patch was jittered (around

30%); and the colour of each patch (Experiments 1 and 3) or each segment (Experiment 2) was

randomly sampled from the set of (non-diagnostic) colours. In addition, each figure was translated

to a random location on the canvas and could be presented in one of four different orientations (0,

π/2, π and 3π/4 radians).

The original size of images was 600x600 pixels. This was reduced to 224x224 pixels for the

simulations with CNNs. For the behavioural experiments, the stimuli size was scaled to 90% of

the screen height (e.g. if the screen resolution was 1920x1080 the image size would have been

972x972). This ensured that participants could clearly discern the smallest feature in an image

(a single patch) which we confirmed in a pilot study (see Procedure below).

Participants Participants were recruited and reimbursed through Prolific. In Experiments 1–4,

S1 and S2 there were N = 25 participants per experiment (total N = 250), and in Experiments 5,

6, S3 and S4 there were N = 10 participants per experimental condition (total N = 100). In

Experiments 1–5 as well as S1-S3 participants received 4 GBP for participating in the experiment

and could earn an additional 2 GBP depending on average accuracy in the test blocks. In

Experiment 6 and S4 the incentive was increased to 5.30 GBP and a possible bonus of 3 GBP

based on performance in the test block. Calculated as payment per hour, the average payout per

participant in our experiments was 7.62 GBP per hour.

Procedure All experiments consisted of blocks of training trials, where participants learned the

categorisation task, followed by test trials, where their performance was observed. During training

trials participants saw an image for a fixed duration and were asked to predict its category label

(see Figure 3.11). In Experiments 1–5, this duration was 1000 ms, but we experimented with

both longer durations (Experiments 6 and S4) and shorter durations (Experiments S1–S3, see

below) and obtained a similar pattern of results. After each training trial, participants were told

whether their choice was correct and received feedback on the correct label if their choice was
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Figure 3.11: Procedure for human experiments. Time course for a single training trial in human experiments.
The test trials followed an identical procedure, except participants were not given any feedback on their choices.

incorrect. In Experiments 1 to 5, participants had to discover the predictive features themselves,

while in Experiment 6, they were explicitly told what the predictive feature was at the beginning

of the experiment. In this experiment, they were given textual instructions describing the target

feature and shown exemplars where the target feature was highlighted. Participants saw 5 blocks

of 60 training trials in Experiments 1–4 and 10 blocks of 50 trials in Experiments 5 and 6. The

number of training trials was chosen based on a pilot experiment and ensured that participants

learnt the behavioural task. In Experiments 1 to 4, each training block was followed by a test

block containing 40 trials (10 per condition). In Experiments 5 and 6, one test block was presented

at the end of training consisting of 75 trials. Test trials followed the same procedure as training,

except participants were not given any feedback. As we were interested in object recognition

rather than visual problem solving, all trials (training as well as test) used a short presentation

time of 1000ms. In a follow-up experiment (as well as Experiment 6), we also tried a longer

presentation time of 3000ms and observed a similar pattern of results (see Figure B.7).

All experiments were designed in PsychoPy and carried out online on the Pavlovia platform.

We ensured that participants could clearly see the location of each patch by conducting a pilot

study. In this study, participants were shown an image from one of our datasets and asked to

attend to a highlighted patch. After a blank screen they were shown a second image from the

same dataset and asked to click on the patch which was in the same position as the highlighted

patch in the first image. We found that the median location indicated by participants deviated

from the center of the target patch by only a quarter of the width of a patch - meaning that

participants were able to attend, keep in working memory and point out a specific patch location.

This indicates that even the smallest of the local features used in this study was perceivable for
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human participants.

In order to ensure that our results are not affected by the presentation time or field of view,

we conducted three control experiments. The results of our main experiments (see Figure 3.4)

showed that be biggest contrasts between participants and humans were in Experiment 1 and 2,

where the diagnostic non-shape feature was the location of a patch or the colour of a segment.

Therefore, we conducted three control experiments, reproducing the setup of Experiments 1, 2

and 5 (Patch and Segment conditions). All details of these control experiments were the same

as above, except (i) presentation time of stimulus was reduced to 100ms, (ii) the stimulus was

re-scaled so that it was always within 10◦ visual angle, (iii) instead of testing participants

in between every training block, we tested participants only at the end, and (iv) in order to

ensure that participants are able to learn the task despite the shorter presentation time, we

increased the number of training trials from 300 to 450. We re-scaled the stimulus by using

the ScreenScale script https://pavlovia.org/Wake/screenscale, which has been shown to

give good estimates of visual angle in online experiments [19]. Participants were asked to adjust

the size of a displayed rectangle to the size of a credit card. To ensure that participants did

this correctly, we asked participants to measure the size of a second rectangle and rejected all

participants whose measurements did not match the correct size. To compute the visual angle,

we asked participants to sit at an arm’s length from the screen and asked them to measure the

distance between their eyebrow and a fixation cross on the screen. Based on this measurement

and how participants re-scaled the displayed rectangle, we re-scaled the stimulus so that the

entire image subtended a visual angle of 10◦. Participants were reminded to sit at an arm’s

length at the end of every training block. The results of these control experiments are shown in

Appendinx B - Figure B.8.

Data Analysis In all experiments chance performance was 20% since there is a 1 in 5 chance of

randomly picking the correct category. Single sample t-tests were conducted in order to determine

whether participants were above chance level performance. Repeated measures analyses of

variance (ANOVA) were conducted when determining whether there was an effect of condition

(Both, Conflict, Shape, Non-shape) on performance in an experiment. Follow-up comparisons

were conducted with the Tukey HSD correction for multiple comparisons.

Simulation Details

Neural Network model During a supervised learning task (like the task outlined in this

study), a neural network performs an approximate statistical inference by constructing an

input-output mapping between a random vector X and a dependent variable Y . The training set

consists of N realisations of this random vector, {x1 . . . ,xN} and N category labels {c1 . . . , cn}. For

a CNN, the vectors xi can simply be an image (i.e. a vector of pixel values). That is, X lies in

a high-dimensional image space. The neural network learns a non-linear parametric function

58

https://pavlovia.org/Wake/screenscale


3.4. METHODS

ĉi = F(xi,w) by finding the connection weights w which minimise the difference between the

outputs produced by the network ĉi and the given category labels, ci. During a test trial, the

network performs an approximate statistical inference by deducing the class of a test vector xtest

by applying the learnt parametric function to this vector: c = F(xtest,w).

Since our task involved image classification, we evaluated three state-of-the-art deep convolu-

tional neural networks, ResNet50 [67], VGG-16 [168] and AlexNet [100] which performs image

classification on some image datasets to a near-human standard. We obtained the same pattern

of results with all three architectures. Therefore, we focus on the results of ResNet50 in the main

text and describe the results of the other two architectures in B.9–B.11 Figs. Since evolution and

learning both play a role in how the human visual system classifies natural objects, we used a

network that was pre-trained on naturalistic images (ImageNet) rather than trained from scratch.

However, we observed the same pattern of results for a network that was trained from scratch.

In each experiment, this pre-trained network was fine-tuned to classify the 2000 images sampled

from the corresponding dataset into 5 categories. This fine-tuning was performed in the standard

manner [184] by replacing the final (fully-connected) layer of the network to reflect the number of

target classes in each dataset. The models learnt to minimise the cross-entropy error by using the

Adam optimiser [88] with a mini-batch size of 32 and learning rate of 10−5, which was reduced

by a factor of 10 on plateau using the Pytorch scheduler function ReduceLROnPlateau. In one

simulation study (Figure 3.7), we used a network that was pre-trained on a variation of Ima-

geNet that induces a shape bias [50] and then froze the weights in all but the final classification

layer to ensure that the learned bias was present during the training on the new images. In all

simulations, learning continued till the loss function had converged. Generally this meant that

accuracy in the training set was > 99%, except in the case where we froze all convolution weights

where accuracy converged to a value > 70%. Each model was tested on 500 images drawn from

Both, Conflict, Shape and Non-Shape conditions outlined above. The results presented here

are averaged over 10 random seed initialisations for each model. All simulations were perfomed

using the Pytorch framework [135] and we used torchvision implementation of all models.

Ideal inference model In order to understand how prior biases affect human and CNN

classification in the new task environment, we compared their classification to a statistical

inference model that computes the ideal category label for a stimulus based solely on the

information observed in a sequence of trials. In all our experiments, a trial presented a mapping

between a group of features and a category label. The goal of the Ideal Inference model was to

accumulate this information over a sequence of trials to predict the mapping in a future trial. It

does this by creating a generative model that predicts the probability of observing each feature,

given a category label. For example, in Experiment 2, each trial presents a shape, five segment

colours and a category label. Based on this information, we can update the generative model,

assigning a higher probability for observing the shape and segments observed in the trial, given

the class label. Over a sequence of trials, a participant will observe more colours, shapes and
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category labels and in each trial we can keep adjusting the generative model predicting shapes

and colours given the class labels. In a test trial, we can then use the generative model and Bayes’

rule to infer the probability of all category labels given the observed shape and colours. We now

describe this sequential Bayesian updating procedure formally.

The goal of this model is to answer the following question: what class, Y ∈ {1, . . . ,C}, should

a decision-maker assign to a test image, given a set of mappings from images to class labels

(training trials). For the purpose of statistical inference, each image can be treated as a vector of

features and each training trial assigns a feature vector, xi = (x1
i , . . . , xF

i ), to a class label, Y = c.

In our behavioural task, each feature (colour / location / size) can take a discrete set of values, so

we treat each feature as a categorical random variable, X f ∈ {1, . . . ,K}. The decision-maker infers

the class label for a test image, xtest, in two steps. Like the neural network, it first learns a set

of parameters θ that encode the dependencies between class labels and feature values in the

training data. It then uses these parameters to predict class label for a given test image, xtest.

We start at the end. Our goal is to compute p(Y = c|X= xtest,D), the probability distribution

over class labels given the training data, D, and a test image, xtest. Using Bayes’ law, we have:

p(Y = c|X= xtest,D)∝ p(X= xtest|Y = c,D) p(Y = c)(3.1)

where p(Y = c) is the class prior and p(X= xtest|Y = c,D) is a joint class-conditional density – the

probability of observing the set of features, xtest, for a given class, c. In our behavioural tasks,

each feature is independently sampled. This means that the joint distribution factorises as a

product of class-conditional densities for each feature:

p(X= xtest|Y = c,D)=
F∏

f=1
p(X f = x f

test|Y = c,D)

Our approach is to estimate these class-conditional densities by constructing a generative

model p(X f = x f
test|Y = c,θ). Here θ are the parameters of the model that need to be estimated

based on training data. Since X f is a categorical variable, a suitable form for this parametric

distribution is the multinomial distribution, Mult(x f
test|1,θ). The Bayesian method of estimating

these parameters is to start with the prior distribution p(θ) and update it based on training

data, D, to obtain the posterior p(θ|D). An appropriate prior for the multinomial is the Dirichlet

distribution, Dir(θ|α), where α are the hyper-parameters of the Dirichlet distribution. Here

we assume the flat prior, α = 1, which corresponds to Laplace smoothing. For this Dirichlet-

multinomial model, the update step involves counting the number of times each feature value

occurs in the training data and adding these counts to the hyper-parameters [13].

Once we have a posterior distribution on the model parameters, p(θ|D), we can obtain the

required class-conditional densities, p(X f = x f
test|Y = c,D) by integrating over these parameters.

This leads to the following expression (see [124]):

p(X f = x f
test|Y = c,D)= Nk +αk∑

v Nv +αv
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Here Nk is the number of times X f takes the value k in the training data and the sum in the

denominator is carried out over all possible values {1, . . . ,K} of X f . Thus this model predicts

that the class-conditional density of observing a feature value during a test trial depends on the

relative frequency with which the given feature value occurs during the training data. These class-

conditional densities can be plugged back into Equation 3.1 to give the probability distribution

over all classes given the test image, xtest. In our Results, we report this probability for the

labelled class averaged over all the test images in a test condition.

In all experiments, the class label, Y can take one of five possible values, that is Y ∈ {1, . . . ,5}.

In Experiment 1, where the location and colour of a single patch is diagnostic, the feature vector

on any trial, xtrial, is (xshape, x1
loc, . . . , xF

loc), where xshape ∈ {1, . . . ,5} is a multinomial random

variable for the shape feature that can take one of five values, and each of the x f
loc ∈ {1, . . .20} is

multinomial random variable for a location that can take one of twenty possible colour values

(we restricted the number of colours to 20 to make sure colours are clearly discernible by human

participants). In Experiment 2, where the colour of one of the segments is diagnostic, the feature

vector on a trial, xtrial is (xshape, x1
colour, . . . , x20

colour), where xshape is again a multinomial variable

for the shape feature that can take one of five values and each x f
colour ∈ {0, . . . ,5} is a count

variables that represents the number of segments of colour, f , in the image. In Experiment 3,

where the average size of patches is diagnostic, xtrial = (xshape, xsize), where xsize ∈ {1, . . . ,5} is

a multinomial random variable for the average size of patches in the image. In Experiment 4,

where the global colour of the figure is diagnostic, xtrial = (xshape, xcolour), where xcolour ∈ {1, . . . ,5}

is a multinomial random variable representing the global colour of the figure.
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4
REPRESENTATIONAL SIMILARITY ANALYSIS

In previous chapters I used performance measures as our main dependent variable when

assessing how humans and models categorize fooling images and a dataset specifically

designed to manipulate the statistics of learning environments. While performance metrics

can be used very effectively when combined with rigorous experimental design, delving into

internal representations provides further opportunities to gain insight into how information

is represented throughout networks. Methods derived to do so have heavily borrowed from

neuroscience. The family of multivariate pattern analysis methods (MVPA) has in particular

been of use to researchers and provides interesting possibilities for future research.

For example, multivariate pattern classification usually takes neural patterns of activation

as inputs to a decoder (which could be as simple as a regression model and as complex as a

deep neural network) which is then trained to classify stimuli based on the input. The approach

has been heavily used to study category selectivity along the ventral visual stream (for an

excellent review see Bracci et al. [18]). Similar approaches have been adopted when studying

representations of deep neural networks. By placing decoders at various layers of the network,

a better understanding of information being represented at various levels can be achieved. For

example Doerig et al. [30] train decoders to investigate whether a vernier offset can be decoded

at different levels of a pre-trained deep learning model in a study about uncrowding in humans

and machines.

More recently, representation similarity analysis (RSA) has become a popular addition to the

MVPA family of methods [96]. RSA abstracts away neural tuning information and operates as

a second-order measure. Rather than decoding information from activity patterns, it is used to

compare representational geometries (how activity patterns between stimuli relate to each other

in representational space). The major benefit of this method is that any type of data can be used
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to compute similarity - e.g., human fMRI patterns and activation vectors from deep networks.

However, the flexibility this provides also represents a potential source of confusion regarding

the inferences that can be made about similarity of representations using this method. As a

second-order metric, it measures similarity between representational similarities - and similar

representational geometries (theoretically) could be achieved between systems that represent

the external world in quite dissimilar ways. Therefore, inferring that two systems have similar

representations because RSA scores are high is a logical fallacy.

This major issue has been hinted at on a theoretical level by Kriegeskorte and Diedrichsen

[94], Kriegeskorte and Wei [98] and more concretely by Haxby et al. [65]. However, the method

itself has not been used with adequate caution. This is either because both the possibility and

plausibility of high RSA scores coming from drastically dissimilar systems is dismissed, or is

not taken into account at all. In this chapter a series of simulations demonstrate that it is both

possible and plausible that confounds in stimulus datasets can drive RSA scores. Apart from

demonstrating these pitfalls, we attempt to revive what is now a neglected debate on the nature

of representations.

This is a publication chapter - the chapter is a re-formatted and slightly edited version of the

paper Some pitfalls of measuring representational similarity using representational similarity

analysis which is at the time of writing under reviews, a pre-print can be found at [32].

Contributions - The project was originally initiated and conceptualized by myself. After devel-

oping a number of research ideas I (with valuable feedback and commentary from my co-authors)

settled on the simulations presented in this chapter. Gaurav Malhotra conducted Study 1 while I

developed and conducted all other simulations and accompanying data analyses. All co-authors

contributed to write-up and revisions during the review process.

4.1 Introduction

How do other animals see the world? Do different species represent the world in a similar

manner? How do the internal representations of AI systems compare with humans and animals?

The traditional scientific method of probing internal representations of humans and animals

(popular in both psychology and neuroscience) relates them to properties of the external world.

By moving a line across the visual field of a cat, Hubel & Wisel [74] found out that neurons in the

visual cortex represent edges moving in specific directions. In another Nobel-prize winning work,

O’Keefe, Moser & Moser [62, 129] discovered that neurons in the hippocampus and entorhinal

cortex represent the location of an animal in the external world. Despite these successes it

has proved difficult to relate internal representations to more complex properties of the world.

Moreover, relating representations across individuals and species is challenging due to the
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differences in experience across individuals and differences of neural architectures across species.

These challenges have led to recent excitement around multivariate analyses methods, such

as Multi-Voxel Pattern (MVP) Classification, which uses machine learning algorithms to decode

neural activity [65]. MVP classification assesses whether a brain region codes for a stimulus

feature by examining whether the feature can be easily decoded from neural response patterns

in the region. However, there are at least two issues with using MVP classification for comparing

mental representations across individuals. Firstly, just because a stimulus feature can be easily

decoded from neural response patterns in a region does not imply that downstream regions in

the brain actually decode this information [150]. Different individuals (or species) may use this

information in different ways and MVP classification does not provide a way of capturing this.

Secondly, there are methodological limitations on mapping brain regions and neural activity

patterns between individuals and species. Therefore, even if two individuals represent a visual

stimulus in the same manner, a decoder trained on one individual will show a significant

performance drop when applied across individuals [63].

A newer addition to multivariate analysis, Representation Similarity Analysis (RSA), is

specifically designed to compare representations between different systems and overcomes some

of these obstacles. RSA usually takes patterns of activity from two systems and computes how the

distances between activations in one system correlate with the distances between corresponding

activations in the second system (see Figure 4.1). Rather than compare each pattern of activation

in the first system directly to the corresponding pattern of activation in the second system,

it computes representational distance matrices (RDMs), a second-order measure of similarity

that compares systems based on the relative distances between neural response patterns. This

arrangement of neural response patterns in a representational space has been called a system’s

representational geometry [95]. The advantage of looking at representational geometries is that

one no longer needs to match the architecture of two systems, or even the feature space of the

two activity patterns (see section 4.2 for a brief history of RSA and its philosophical origins).

One could compare, for example, fMRI signals with single cell recordings, EEG traces with

behavioural data, or vectors in a computer algorithm with spiking activity of neurons [96]. RSA is

now ubiquitous in computational psychology and neuroscience and has been applied to compare

object representations in humans and primates [97], representations of visual scenes by different

individuals [63, 130], representations of visual scenes in different parts of the brain [120], to

study specific processes such as cognitive control [45] or the dynamics of object processing [79],

and most recently, to relate neuronal activations in human (and primate) visual cortex with

activations of units in Deep Neural Networks [25, 82, 84, 86, 182].

However, this flexibility in the application of RSA comes at the cost of inferences one can draw

from this analysis. If the goal of the neuroscientist, psychologist or AI researcher is to establish

whether two systems are similar in mechanism, feature representation or information processing,

then RSA may not be the correct analytical method to use. This is because RSA is a second-order

65



CHAPTER 4. REPRESENTATIONAL SIMILARITY ANALYSIS

Figure 4.1: RSA calculation. Stimuli from a set of categories (or conditions) are used as inputs to two different
systems (for example, a human brain and a primate brain). Activity from regions of interest is recorded for each
stimulus. Pair-wise distances in activity patterns are calculated to get the representational geometry of each system.
This representational geometry is expressed as a representational dissimilarity matrix (RDM) for each system. Finally,
an RSA score is determined by computing the correlation between the two RDMs. It is up to the resercher to make a
number of choices during this process including the choice of distance measure (e.g., 1-Pearson’s r, Euclidean distance
etc.) and a measure for comparing RDMs (e.g., Pearson’s r, Spearman’s ρ, Kendall’s τ, etc.).

measure – it looks at the similarity of similarities – that abstracts over mechanism, feature

representations and information processing. This point has been made before. For example,

Haxby et al. [65] write that the disadvantage of using RSA is that:

...one cannot investigate whether the spaces in different subjects share the same

feature tuning functions or how these tuning function codes differ for different brain

regions. One cannot predict the response to a new stimulus in a subject on the basis

of the responses to that stimulus in other subjects. One cannot predict the tuning

function for individual neural features in terms of stimulus features, precluding

investigators from predicting the response pattern vector for a new stimulus on the

basis of its features. (p. 446)

Despite these warnings, RSA continues to be used to infer that different individuals or brain

regions or computational models have similar mechanism (that is, they are similar in nested

functions and algorithms that transform inputs into neural response vectors). One area where

these conclusions are frequently made is the comparison between the hierarchical representations

in the visual cortex and Deep Neural Networks (DNNs). For example, Cichy et al. [25] observed a

correspondence in the RDMs of DNNs performing object categorization and neural responses in

human visual cortex recorded using MEG and fMRI. Based on this correspondence, the authors

concluded that:
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...hierarchical systems of visual representations emerge in both the human ventral

and dorsal visual stream as the result of task constraints of object categorization

posed in everyday life, and provide strong evidence for object representations in the

dorsal stream independent of attention or motor intention. (p. 5)

Thus, the correspondence in RDMs is used to infer the mechanism of emergence of visual

representations. Based on a similar comparison, Kriegeskorte [93] concluded that:

Deep convolutional feedforward networks for object recognition are not biologically

detailed and rely on nonlinearities and learning algorithms that may differ from

those of biological brains. Nevertheless they learn internal representations that are

highly similar to representations in human and nonhuman primate IT cortex. (p. 441)

While authors are sometimes careful in stating that the term ‘similarity in representations’ is

used as a shorthand for a ‘similarity in representational geometries’, they nevertheless also

invite the reader to accept that different systems show similar representational geometries

because it is likely that they also use similar mechanisms to transform sensory information into

latent representations, or they use similar (downstream) mechanisms to decode these latent

representations. But how safe are these assumptions?

The main goal of our paper is to show that high RSA scores should not be used to infer two

systems have similar mechanisms. In Study 1, in a bare-bones setup, we show that it is possible

for two systems to transform input stimuli through known functions that are vastly different

but end up with similar representational geometries. In particular, the study shows that 1) the

presence of second-order confounds in the training data can lead systems to mimic each other’s

representational geometry even in the absence of mechanistic similarity, and 2) the intrinsic

structure of datasets rather than mechanistic alignment can lead to artifactual modulation of

RSA scores. Then in Studies 2 and 3 we show these problems extend to more complex datasets

directly relevant to artificial intelligence and computational neuroscience by making comparisons

within and between sets of artificial and biological systems. Finally, in Study 4, we show that

not only are misleadingly high RSA scores possible in practice but they are also highly plausible

given the hierarchical structure of categories in datasets that are routinely used.

Our demonstrations provide an explanation of how these phenomena, which arise ubiquitously,

can lead to incorrect inferences and contradictory or paradoxical findings. For example, it has

been recently observed that correlations in representational geometries between human visual

cortex and DNNs can vary from being close to the noise ceiling to being uncorrelated based on

the visual stimuli used in the experiments [180]. Since our results have considerable generality

with respect to current practices across multiple fields, we discuss the implications for published

results, including a discussion of two alternative philosophical perspectives on the nature of

mental representations that our findings speak to. We conclude by providing some general

recommendations regarding how to best use RSA going forward.
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4.2 The nature of representation and a brief history of RSA

In the 1990s there was an important debate taking place on how to compare the mental repre-

sentations of two individuals. On one side of this debate was Paul Churchland. Inspired by the

success of connectionist models, Churchland argued that the brain represents reality as a pattern

of activations over its network of neurons [22]. This pattern of activation can be seen as a position

in the brain’s (high-dimensional) state-space. So, Churchland argued that one could compare how

two individuals represent an object by comparing the corresponding positions in each individual’s

state-space. On the other side of the debate were Jerry Fodor and Ernie Lepore [43]. They pointed

out that a problem with Churchland’s proposal was that it ’offers no robust account of content

identity’ (p. 147). On Churchland’s account, they argued, two mental representations have the

same meaning only if they are embedded in identical state-spaces. This condition was highly

unlikely to be satisfied in practice, given that no two brains have either the same number or

connectivity of neurons and no two individuals have exactly the same experiences.

A possible solution to this problem of comparing representations across state-spaces of

different dimensions was proposed by Laasko and Cottrell [103], who were investigating whether

different neural networks, trained on the same data, represented an input stimulus in a similar

manner. A direct comparison of activations across networks was not possible due to the difference

in the number of units. To overcome this problem, [103] devised a method that compared encodings

based on their relative positions in state-space. That is, based on a second-order isomorphism.

They argued that two networks could be said to represent a concept in a similar manner if

both networks partitioned their activation space (amongst concepts) in a similar manner – that

is, if the activation spaces in both systems had a similar geometry. [103] conducted a series

of experiments with neural networks, showing that neural networks with different sensory

encodings and different number of hidden units nevertheless partitioned their activation space

in a similar manner, leading them to conclude that these networks learned similar internal

representations.

Churchland [23] saw Laasko and Cottrell’s method as a decisive response to Fodor & Lepore’s

scepticism. He argued that, using Laasko and Cottrell’s method, one could use the state-space

approach to compare representations across individuals, even individuals that had different

dimensions of their representational spaces. All one needed to do was to replace the requirement

of ’content identity’ with ’content similarity’. That is, instead of comparing absolute positions of

representations, one could simply compare how representations were organised relative to each

other within each representational space.

However, Fodor & Lepore [44] argued that Churchland’s reply was, in fact, ’an egregious

ignoratio elenchi’ (p. 382). The problem was not, they argued, that one couldn’t find the right

metric to measure similarity across vector spaces of different dimensions. Rather, it was the

fact that Churchland (and Laasko & Cottrell [103]) were interested in a semantic similarity

– i.e., they wanted to compare whether representations had the same meaning in the two
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systems. Fodor & Lepore [44] argued that this problem of semantic similarity was intractable

because similarity of concepts across systems of different dimensions is undefined. Consider

the concept of a ’dog’. Let’s say one person’s representational space has a dimension of ’loyalty’,

while the other person’s representational space does not. There is no principled answer for how

similar the representation of ‘dog’ should be for these two individuals as it depends on how the

dimension of ‘loyalty’ is weighted in the concept of ‘dog’. And the relative weight of dimensions

can differ for different concepts and circumstances. Moreover, Fodor & Lepore [44] argued that

even identical representational geometries could mean very different things. For example, one

individual may represent a dog along the dimensions of ‘size’ and ‘speed’ as being small (sized)

and medium (speed). Another individual may represent a dog along the dimensions of ‘usefulness’

and ‘furriness’ as being of small (usefulness) and medium (furriness). Even if the concept of a

dog occupies a similar position in both state-spaces (small, medium) the two individuals clearly

represent dogs differently.

Representation Similarity Analysis is an evolution of Laasko and Cottrell’s method for com-

paring representations across systems. It retains its core principle of comparing representations

based on their relative locations within each system’s state-space. In addition, it formalises the

ideas of similarity of representations within and across systems [96]. Like Laasko and Cottrell’s

method, a representation is usually coded as a vector of activation over some units (in a neural

network or the brain). However, it could also be a behavioural measure, such as similarity judg-

ments or even measures like accuracy or response times. We believe that many of the objections

levelled by Fodor & Lepore against Churchland’s idea of comparing systems based on relative

positions in state-space also hold for representation similarity analysis. For example, Fodor &

Lepore’s point that similar state-space representations could mean different things can also be

extended to RSA and in the main text we show how different systems with same representa-

tional geometries can, in fact, be encoding very different properties of sensory stimuli. From an

externalist’s perspective, activations within these systems mean very different things and yet

have very comparable state-space representations (i.e. geometries). The only way to argue that

concepts have a similar meaning in systems with similar representational geometries is to adopt

a holistic perspective on representations. And as Fodor & Lepore [44] argued, and we discuss in

the main text, adopting this perspective comes with its own set of problems.

4.3 Results

It may be tempting to infer that two systems which have similar representational geometries

for a set of concepts do so because they encode similar properties of sensory data and transform

sensory data through a similar set of functions. In section 4.3.1, we show that it is possible, at

least in principle, for qualitatively different systems to end up with very similar representational

geometries even though they (i) transform their inputs through very different functions, and (ii)
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select different features of inputs.

4.3.1 Study 1: Demonstrably different transformations of inputs can lead to
low or high RSA-scores

We start by considering a simple two-dimensional dataset and two systems where we know the

closed-form functions that project this data into two representational spaces. This simple setup

helps us gain a theoretical understanding of the circumstances under which it is possible for

qualitatively different projections to show similar representational geometries.

Consider a population of animate and inanimate objects that consist of four categories of

objects – birds, dogs, airplanes and bicycles. Each object in this population will have a set of

stimulus features, using which one can map each exemplar from all four categories into a feature

space. In Figure 4.2A (left), we show a hypothetical 2D feature space where exemplars from each

category cluster together. Futhermore, we consider two datasets sampled from this population –

Dataset A (Figure 4.2A, middle) which consists of birds and bicycles and Dataset B (Figure 4.2A,

right) which consists of dogs and airplanes. Both datasets consist of animate and inanimate

objects, but they differ in how items in each category are represented in the input space.

Now, consider two information-processing systems that re-represent Dataset A into two differ-

ent latent spaces (Figure 4.2B). These could be two recognition systems designed to distinguish

animate and inanimate categories. We assume that we can observe the representational geometry

of the latent representations of each system and we are interested in understanding whether

observing a strong correlation between these geometries implies whether the two systems have a

similar representational space – that is, they project inputs into the latent space using similar

functions. To examine this question, we consider a setup where we know the functions, Φ1 and Φ2,

that map the inputs to the latent space in each system. We will now demonstrate that even when

these functions are qualitatively different from each other, the geometry of latent representations

can nevertheless be highly correlated. We will also show that the difference in representational

spaces becomes more clear when one considers a different dataset (Dataset B), where inputs

projected using the same functions now lead to a low correlation in representational geometries.

We can compute the geometry of a set of representations by establishing the pair-wise

distance between all vectors in each representational space Φ. There are many different methods

of computing this representational distance between any pair of vectors, all deriving from the

dot product between vectors (see, for example, Figure 1 in Bobadilla-Suarez et al. [16]). Previous

research has shown that the choice of the distance metric itself can influence the inferences one

can draw from one’s analysis [16, 147]. However, here our focus is not the distance metric itself,

but the fundamental nature of RSA. Therefore, we use the same generic distance metric – the dot

product – to compute the pair-wise distance between all vectors in both representational spaces.

In other words, the representational distance d[Φ(xi),Φ(x j)], between the projections of any pair

of input stimuli, xi and x j into a feature space Φ, is proportional to the inner product between
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the projections in the feature space:

d[Φ(xi),Φ(x j)] ∝ Φ(xi) ·Φ(x j)(4.1)

And we can obtain the representational geometry of the input stimuli {x1, . . . , xn} in any

representational space Φ by computing the pairwise distances, d[Φ(xi),Φ(x j)] for all pairs of

data points, (i, j). Here, we assume that the projections Φ1 and Φ2 are such that these pair-

wise distances are given by two positive semi-definite kernel functions κ1(xi, x j) and κ2(xi, x j),

respectively:

d[Φ1(xi),Φ1(x j)] ∝ Φ1(xi) ·Φ1(x j) = κ1(xi, x j)(4.2)

d[Φ2(xi),Φ2(x j)] ∝ Φ2(xi) ·Φ2(x j) = κ2(xi, x j)(4.3)

Now, let us consider two qualitatively different kernel functions: κ1(xi, x j) = e
||xi−−−x j ||2

2σ2 is a

radial-basis kernel (where σ2 is the bandwidth parameter of the kernel), while κ2(xi, x j)= xT
i x j

||xi ||||x j ||
is a cosine kernel. In other words, Φ1 and Φ2 are two fundamentally different projections of the

inputs {x1, . . . , xn} – while Φ2 maps a 2D input xi into a 2D feature space, Φ1 maps the same 2D

input into an infinite-dimensional space. Nevertheless, since cosine and RBF kernels are Mercer

kernels, we can compute the distances (as measured by the dot product) between each pair of

projected vectors using the kernel trick [157, 161]. That is, we can find the distance between any

pair of points in the representational space by applying the kernel function to those points in the

input space. These pairwise distances are shown by the kernel matrices in Figure 4.2B.

Next, we can determine how the geometry of these projections in the two systems relate to

each other by computing the correlation between the kernel matrices, shown on the right-hand-

side of Figure 4.2B. We can see from these results that the kernel matrices are highly correlated –

i.e., the input stimuli are projected to very similar geometries in the two representational spaces.

If one did not know the input transformations and simply observed the correlation between

kernel matrices, it would be tempting to infer that the two systems Φ1 and Φ2 transform an

unknown input stimulus x through a similar set of functions – for example functions that belong

to the same class or project inputs to similar representational spaces. However, this would be

an error. The projections Φ1(x) and Φ2(x) are fundamentally different – Φ1 (radial basis kernel)

projects an input vector into an infinite dimensional space, while Φ2 (cosine kernel) projects it

onto a unit sphere. The difference between these functions becomes apparent if one considers

how this correlation changes if one considers a different set of input stimuli. For example, the set

of data points from Dataset B (sampled fromt the same population) are projected to very different

geometries, leading to a low correlation between the two kernel matrices (Figure 4.2C).

In fact, the reason for highly correlated kernel matrices in Figure 4.2B is not a similarity in

the transformations Φ1 and Φ2 but the structure of the dataset. The representational distance
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Figure 4.2: Mimic and modulation effect in representational geometries. (A) An example of a population of
animate (birds, dogs) and inanimate (planes, bikes) objects, plotted in a hypothetical 2D stimulus feature space. Two
datasets are sampled from this population: In Dataset A (middle), the Euclidean distance (in input space) between
categories mirrors the Cosine distance, while in Dataset B (right) it does not. (B) Simulation where two systems
transform stimuli in Dataset A into latent representations such that the (dot product) distance between latent vectors
is given by RBF and Cosine kernels, respectively. As Euclidean and Cosine distances in the input space mirror each
other, the representational geometries (visualised here using kernel matrices) end up being highly correlated (shown
using Pearson (ρ), Spearman (rs) and Kendall’s (τ) correlation coefficients on the right). We call this strong correlation
in representational geometries despite a difference in input transformation a mimic effect. (C) Simulation where
objects in Dataset B are projected using same transformations as (B). The (dot product) distance is still given by the
same (RBF and Cosine) kernels. However, for this dataset, the Euclidean and Cosine distances in input space do not
mirror each other and as a consequence, the representational geometries show low correlation. Thus the correlation in
representational geometries depends on how the datasets are sampled from the population. We call this change in
correlation a modulation effect.
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between any two points in the first representational space, d[Φ1(xi),Φ1(x j)], is e
||xi−−−x j ||2

2σ2 . That is,

the representational distance in Φ1 is a function of their Euclidean distance ||xi−−−x j|| in the input

space. On the other hand, the representational distance between any two points in the second

representational space, d[Φ2(xi),Φ2(x j)], is,
xT

i x j
||xi ||||x j || . That is, the representational distance in Φ2

is a function of their cosine distance in the input space. These two stimulus features – Euclidean

distance and cosine distance – are confounds that lead to the same representational geometries for

certain datasets. In Dataset A, the stimuli is clustered such that the Euclidean distance between

any two stimuli is correlated with their cosine distance (see Figure 4.2A, middle). However, for

Dataset B, the Euclidean distance is no longer correlated with the angle (see Figure 4.2A, right)

and the confounds lead to different representational geometries, as can be seen in Figure 4.2C.

Thus, this example illustrates two effects: (i) a mimic effect, where two systems that transform

sensory input through very different functions end up with similar representational geometries

(Figure 4.2B), and (ii) a modulation effect, where two systems that are non-identical have similar

representational geometries for one set of inputs, but dissimilar geometries for a second set

(compare Figure 4.2B and 4.2C).

4.3.2 Study 2: Complex systems encoding different features of inputs can
show a high RSA-score

Study 1 made a number of simplifying assumptions – the dataset was two-dimensional, clustered

into two categories and we intentionally chose functions Φ1 and Φ2 such that the kernel matrices

were correlated in one case and not correlated in the other. It could be argued that, even though

the above results hold in principle, they are unlikely in practice when the transformations and

data structure are more complex. For example, it might be tempting to assume that accidental

similarity in representational geometries becomes less likely as one increases the number of

categories (i.e., clusters or conditions) being considered. However, In Figure 4.3 we illustrate how

complex systems transforming high-dimensional input from a number of categories may achieve

high RSA scores. Even though one system extracts surface reflectance and the other extracts

global shape, they can end up with very similar representational geometries. This would occur if

objects similar in their reflectance properties were also similar in shape (e.g., glossy balloons and

light bulbs) and if objects dissimilar according to reflectance properties were also dissimilar in

shape (e.g., dogs and light bulbs). This is the mimic effect, where representational geometries of

these two systems end up being similar because reflectance and shape are second-order confounds

in this dataset. Conducting RSA on this dataset will show a high correlation in RDMs, even

though the latent representations in these systems are related to very different stimulus features.

To demonstrate this empirically, we now consider a more complex setup, where the trans-

formations Φ1 and Φ2 are modelled as feedforward deep neural networks (DNNs), trained to

classify a high-dimensional dataset into multiple categories. Many studies that use RSA compare

systems using naturalistic images as visual inputs [97, 182]. While using naturalistic images
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Figure 4.3: Example of a second-order confound. Two systems, one forming representations based on surface
reflectance of objects (while ignoring all other features such as colour or texture) and the other based on global shape
(while ignoring other features), can have very similar representational geometries. This similarity would lead to a
high RSA score but would not justify an inference about the representations being similar.

brings research closer to the real-world, it is also well-known that datasets of naturalistic images

frequently contain confounds – independent features that can predict image categories [174]. We

will now show how the simplest of such confounds, a single pixel, can lead to a high RSA score

between two DNNs that encode qualitatively different features of inputs.

Consider the same setup as above, where an input stimulus, x, is transformed to a repre-

sentation space by two systems, Φ1 and Φ2. Instead of a two-dimensional input space, x now

exists in a high-dimensional image space and Φ1 and Φ2 are two versions of a DNN – VGG-16

– trained to classify input images into different categories. We ensured that Φ1 and Φ2 were

qualitatively different transformations of input stimuli by making the networks sensitive to

different predictive features within the stimuli. The first network was trained on an unperturbed

dataset, while the second network was trained on a modified version of the dataset, where each

image was modified to contain a confound – a single pixel in a location that was diagnostic of the

category (see Figure 4.4 for the general approach).

The locations of these diagnostic pixels were chosen such that they were correlated to the

corresponding representational distances between classes in Φ1. Our hypothesis was that if the

representational distances in Φ2 preserve the physical distances of diagnostic pixels in input

space, then this confound will end up mimicking the representational geometry ofΦ1, even though

the two systems use qualitatively different features for classification. Furthermore, we trained

two more networks, Φ3 and Φ4, which were identical to Φ2, except these networks were trained

on datasets where the location of the confound was uncorrelated (Φ3) or negatively correlated

(Φ4) with the representational distances in Φ1 (see Figure 4.5 and Methods for details).

Classification accuracy (Figure 4.6 (left)) revealed that the network Φ1, trained on the
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Figure 4.4: Training and testing DNNs with different feature encodings. Panel A shows the training procedure
for Studies 2–4, where we created two versions of the original dataset (gray), one containing a confound (blue) and
the other left unperturbed (yellow). These two datasets were used to train two networks (gray) on a categorisation
task, resulting in two networks that learn to categorise images either based on the confound (projection Φ2) or based
on statistical properties of the unperturbed image (projection Φ1). Panel B shows the testing procedure where each
network was tested on stimuli from each dataset – leading to a 2x2 design. Performance on these datasets was used to
infer the features that each network encoded and their internal response patterns were used to calculate RSA-scores
between the two networks.

unperturbed images, learned to classify these images and ignored the diagnostic pixel – that is,

it’s performance was identical for the unperturbed and modified images. In contrast, networks

Φ2 (positive), Φ3 (uncorrelated) and Φ4(negative) failed to classify the unperturbed images

(performance was near chance) but learned to perfectly classify the modified images, showing

that these networks develop qualitatively different representations compared to normally trained

networks.

Next we computed pairwise RSA scores between the representations at the last convolution

layer of Φ1 and each of Φ2,Φ3 and Φ4 (Figure 4.6 (right)). When presented unperturbed test

images, the Φ2,Φ3 and Φ4 networks all showed low RSA scores with the normally trained Φ1

network. However, when networks were presented with test images that included the predictive

pixels, RSA varied depending on the geometry of pixel locations in the input space. When the

geometry of pixel locations was positively correlated to the normally trained network, RSA scores

approached ceiling (i.e., comparable to RSA scores between two normally trained networks).

Networks trained on uncorrelated and negatively correlated pixel placements scored much lower.

These results mirror Study 1: we observed that it is possible for two networks (Φ1 and Φ2)

to show highly correlated representational geometries even though these networks learn to

classify images based on very different features. One may argue that this could be because the

two networks could have learned similar representations at the final convolution layer of the

DNN and it is the classifier that sits on top of this representation that leads to the behavioural

differences between these networks. But if this was true, it would not explain why RSA scores

diminish for the two other comparisons (with Φ3 and Φ4). This modulation of RSA-scores for

different datasets suggests that, like in Study 1, the correlation in representational geometry is
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Figure 4.5: Study 2 confound placement. The representational geometry (Panel A and B) from the network trained
on the unperturbed CIFAR-10 images is used to determine the location of the single pixel confound (shown as a red
patch here) for each category. In the ‘Positive’ condition (Panel C), we determined 10 locations in a 2D plane such
that the distances between these locations were positively correlated to the representational geometry – illustrated
here as the red patches in Panel C being in similar locations to category locations in Panel B. These 10 locations were
then used to insert a single diagnostic – i.e., category-dependent – pixel in each image (Insets in Panel C). A similar
procedure was also used to generate datasets where the confound was uncorrelated (Panel D) or negatively correlated
(not shown here) with the representational geometry of the network.

Figure 4.6: Study 2 results. Left: Performance of normally trained networks did not depend on whether classification
was done on unperturbed CIFAR-10 images or images with a single pixel confound (error bars represent 95% CI,
the dashed line represents chance performance). All three networks trained on datasets with confounds could
perfectly categorise the test images when they contained the confound (blue bars), but failed to achieve above-chance
performance if the predictive pixel was not present (yellow bars). Right: The RSA score between the network trained
on the unperturbed dataset and each of the networks trained on datasets with confounds. The three networks showed
similar scores when tested on images without confounds, but vastly different RSA scores when tested on images with
confounds. Networks in the Positive condition showed near ceiling scores (the shaded area represents noise ceiling)
while networks in the Uncorrelated and Negative conditions showed much lower RSA.
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not because the two systems encode similar features of inputs, but because different features

mimic each other in their representational geometries.

In Studies 1 and 2, we showed that it is possible for qualitatively different systems to end up

with similar representational geometries. However, it may be argued that while this is possible

in principle, it is unlikely in practice in real-world scenarios. In the following two studies, we

consider real-world data from some recent influential experiments, recorded from both primate

and human cortex. We show how RSA-scores can be driven by confounds in these real-world

settings and how properties of training and test data may contribute to observed RSA-scores.

4.3.3 Study 3: Neural activations in monkey IT cortex can show a high
RSA-score with DNNs despite different encoding of input data

In our next study, we consider data from experiments comparing representational geometries

between computational models and macaque visual cortex [159, 182]. The experimental setup

was similar to Study 2, though note that unlike Study 2, where both systems used the same

architecture and learning algorithm, this study considered two very different systems – one

artificial (DNN) and the other biological (macaque IT cortex). We used the same set of images

that were shown to macaques by Majaj et al. [111] and modified this dataset to superimpose a

small diagnostic patch on each image. In the same manner as in Study 2 above, we constructed

three different datasets, where the locations of these diagnostic patches were either positively

correlated, uncorrelated or negatively correlated with the RDM of macaque activations. We then

trained four CNNs. The first CNN was pre-trained on ImageNet and then fine-tuned on the

unmodified dataset of images shown to the macaques. Previous research has shown that CNNs

trained in this manner develop representations that mirror the representational geometry of

neurons in primate inferior temporal (IT) cortex [182]. The other three networks were trained on

the three modified datasets and learned to entirely rely on the diagnostic patches (accuracy on

images without the diagnostic patches was around chance).

Figure 4.7 (right) shows the correlation in representational geometry between the macaque

IT activations and activations at the final convolution layer for each of these networks. The

correlation with networks trained on the unmodified images is our baseline and shown as the

gray band in Figure 4.7. Our first observation was that a CNN trained to rely on the diagnostic

patch can indeed achieve a high RSA score with macaque IT activations. In fact, the networks

trained on patch locations that were positively correlated to the macaque RDM matched the

RSA score of the CNNs trained on ImageNet and the unmodified dataset. This shows how two

systems having very different architectures, encoding fundamentally different features of inputs

(single patch vs naturalistic features) can show a high correspondence in their representational

geometries. We also observed that, like in Study 2, the RSA score depended on the clustering of

data in the input space – when patches were placed in other locations (uncorrelated or negatively

correlated to macaque RDMs) the RSA score became significantly lower.
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Figure 4.7: Study 3 results. Left: Classification Performance of the network trained on unperturbed images (Normal
condition) did not depend on the presence or absence of the confound, while performance of networks trained with the
confound (Positive, Uncorrelated and Negative conditions) highly depended on whether the confound was present
(dashed line represents chance performance). Right: RSA-scores with macaque IT activations were low for all three
conditions when images did not contain a confound (yellow bars). When images contained a confound (blue bars), the
RSA-scores depended on the condition, matching the RSA-score of the normally trained network (grey band) in the
Positive condition, but decreasing significantly in the Uncorrelated and Negative conditions. The grey band represents
a 95% CI for the RSA-score between normally trained networks and macaque IT activations.

It is quite usual to compute RSA scores on category-level RDMs like the score in Figure 4.7

(right panel) or on a smaller number of stimuli per category (as was the case in Study 2). It is

rare to see RSA scores being computed using a large number of items per category. Therefore,

in Figure 4.8 we show the pattern of RSA scores when computed on RDMs of size 3200×3200

(all of the stimuli in the dataset). The overall pattern of results remains the similar - RSA scores

in the Positive condition are high (even above that of normally trained networks) with lower

scores in the Uncorrelated and Negative conditions. The difference being that RSA scores were

overall lower than in the category-level analysis and that in the Uncorrelated and Negative

conditions were higher relative to the Positive condition (when the confound was present). The

lower overall scores can be explained by the increase of noise when computing over so many

stimuli, this would be even more pronounced in a dataset such as the full CIFAR-10 or large

subsets of stimuli from ImageNet since compared to this, more curated, dataset. This is because

within-category similarity in naturalistic datasets tends to be rather low. The relatively higher

scores, particularly in the Negative condition, can be explained by the increased number of

stimuli per category. RSA scores with multiple items per category (and without averaging) will

depend on both within-category similarity and on whether relations between categories is similar

between two systems. As long as compared systems represent stimuli within a category as more

similar to each other than to stimuli from other categories - the larger the number of items per

category, the larger the RSA score between the two systems. Thus, even though networks in

the Negative condition were specifically trained to achieve low scores (and on a category level

they do so as can be seen in Figure 4.7), when there are 400 images per category the RSA score

gets inflated even if the between-category structure is dissimilar to macaque IT. Therefore, the
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selection of dataset and number of stimuli/conditions can impact scores in a significant way. For

a simulation of how completely unrelated systems can achieve significant RSA scores due to a

larger number of within-category stimuli see Appendix C.

Figure 4.8: Image-level RSA scores from Study 3. RSA-scores with macaque IT activations were low for all three
conditions when images did not contain a confound (yellow bars). When images contained a confound (blue bars), the
RSA-scores depended on the condition, even exceeding the RSA-score of the normally trained network (grey band)
in the Positive condition, but decreasing significantly in the Uncorrelated and Negative conditions. The grey band
represents a 95% CI for the RSA-score between normally trained networks and macaque IT activations.

4.3.4 Study 4: High RSA-scores may be driven by the structure of testing data

All the studies so far have used the same method to construct datasets with confounds – we

established the representational geometry of one system (Φ1) and constructed datasets where the

clustering of features (pixels) mirrored this geometry. However, it could be argued that confounds

which cluster in this manner are unlikely in practice. For example, even if texture and shape

exist as confounds in a dataset, the inter-category distances between textures are not necessarily

similar to the inter-category distances between shape.

However, categories in real-world datasets are usually hierarchically clustered into higher-

level and lower-level categories. For example, in the CIFAR-10 dataset, the Dogs and Cats

(lower-level categories) are both animate (members of a common higher-level category) and

Airplanes and Ships (lower-level categories) are both inanimate (members of a higher-level

category). Due to this hierarchical structure, Dog and Cat images are likely to be closer to each

other not only in their shape, but also their colour and texture (amongst other features) than they

are to Airplane and Ship images. In our next simulation, we explore whether this hierarchical

structure of categories can lead to a correlation in representational geometries between two

systems that learn different feature encodings.

For this study, we selected a popular dataset used for comparing representational geometries

in humans, macaques and deep learning models [82, 92]. This dataset consists of six categories

which can be organised into a hierarchical structure shown in Figure 4.9. Kriegeskorte et al. [97]

showed a striking match in RDMs for response patterns elicited by these stimuli in human and
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Figure 4.9: Exploiting intrinsic dataset hierarchy in order to place confounds. The top panel shows the
hierarchical structure of categories in the dataset, which was used to place the single pixel confounds. The example at
the bottom (middle) shows one such hierarchical placement scheme where the pixels for Inanimate images were closer
to the top of the canvas while Animate images were closer to the bottom. Within the Animate images, the pixels for
Humans and Animals were placed at the left and right, respectively, and the pixels for bodies (B) and faces (F) were
clustered as shown.

macaque IT. For both humans and macaques, distances in response patterns were larger between

the higher-level categories (animate and inanimate) than between the lower-level categories (e.g.,

between human bodies and human faces).

We used a similar experimental paradigm to the above studies, where we trained networks

to classify stimuli which included a single predictive pixel. But instead of using an RDM to

compute the location of a diagnostic pixel, we used the hierarchical categorical structure. In

the first modified version of the dataset, the location of the pixel was based on the hierarchical

structure of categories in Figure 4.9 – predictive pixels for animate kinds were closer to each

other than to inanimate kinds, and pixels for faces were closer to each other than to bodies, etc.

One such configuration can be seen in Figure 4.9. In the second version, the predictive pixel was

placed at a random location for each category (but, of course, at the same location for all images

within each category). We call these conditions ‘Hierarchical’ and ‘Random’. Khaligh-Razavi and

Kriegeskorte [82] showed that the RDM of average response patterns elicited in the human IT

cortex (Φ1) correlated with the RDM of a DNN trained on naturalistic images (Φ2). We explored

how this compared to the correlation with the RDM of a network trained on the Hierarchical
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pixel placement (Φ3) and Random pixel placement (Φ4).

Figure 4.10: Study 4 results. Left: Performance of normally trained networks did not depend on whether the confound
was present. Networks trained with the confound failed to classify stimuli without the confound (yellow bars) while
achieving near perfect classification of stimuli with the confound present (blue bars, dashed line represents chance
performance). Right: RSA with human IT activations reveals that, when the confound was present, the RSA-score for
networks in the Hierarchical condition matched the RSA-score of normally trained network (gray band), while the
RSA-score of the network in the Random condition was significantly lower. The grey band represents 95% CI for the
RSA score between normally trained networks and human IT.

Results for this study are shown in Figure 4.10. We observed that representational geometry

of a network trained on Hierarchically placed pixels (Φ3) was just as correlated to the repre-

sentational geometry of human IT responses (Φ1) as a network trained on naturalistic images

(Φ2). However, when the pixel locations for each category were randomly chosen, this correlation

decreased significantly. These results suggest that any confound in the dataset (including texture,

colour or low-level visual information) that has distances governed by the hierarchical clustering

structure of the data could underlie the observed similarity in representational geometries be-

tween CNNs and human IT. More generally, these results show how it is plausible that many

confounds present in popular datasets may underlie the observed similarity in representational

geometries between two systems. The error of inferring a similarity in mechanism based on a

high RSA score is not just possible but also probable.

4.4 Discussion

In four studies, we have illustrated a number of conditions under which it can be problematic

to infer a similarity of representations between two systems based on a correlation in their

representational geometries. In particular, we showed that two systems may transform their

inputs through very different functions and encode very different features of inputs and yet

have highly correlated representational geometries. Of course, one may acknowledge that a

second-order isomorphism of activity patterns does not strictly imply that two systems are similar

mechanistically but still assume that it is highly likely to be the case. That is, as a practical

matter, a researcher may assume that RSA is a reliable method to compare systems. However,
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our findings challenge this assumption. We show how a high RSA score between different systems

can not only occur in a bare-bones simulation (Study 1), but also in practice, in high-dimensional

systems operating on high-dimensional data (Studies 2–3). Furthermore, we show that the

hierarchical structure of datasets frequently used to test similarity of representations lends itself

to a high RSA score arising because of second-order confounds present in the dataset (Study 4).

Therefore, second-order confounds driving high RSA scores is not only possible but plausible.

One limitation of our method is that we manually insert a confound in input stimuli (in

Studies 2–4) and train a network based on this confound. Even though our findings demonstrate

that second-order confounds are plausible, they do not allow us to infer whether such confounds

are present in existing datasets and driving the observed similarity in existing studies. In our

view, there are two methods one could use to check whether confounds are driving results of RSA.

The best way would be to identify the stimulus features in a dataset that mimic each other in

representational space (e.g. shape and reflectance in Figure 4.3). This is not straightforward to

do in high-dimensional stimuli, such as naturalistic images, which consist of millions of features.

However, another approach is more tractable: conduct controlled experiments to establish whether

the two systems are representing information in similar ways. We have argued for this approach

in relation to making inferences about mechanistic similarity between DNNs and humans

[17]. In fact, research relating DNNs to human vision provides a striking case of a disconnect

between RSA and behavioural findings from psychology [17, 33, 163]. The findings here may

explain contradictory RSA scores between DNNs and human visual processing as pointed out

by Xu and Vaziri-Pashkam [180]. At the very least, a researcher claiming that two systems are

mechanistically similar to one another based on high RSA scores should have an explanation for

this discrepancy.

A related point has been made by Kriegeskorte and Diedrichson [94] and Kriegeskorte and

Wei [98], who point out that two systems may have the same representational geometry, even if

they have a different activity profile over neurons. In this sense, the geometry abstracts away

the information about how information was distributed over a set of neurons. Kriegeskorte and

Diedrichson [94] equate this loss in information to ’peeling a layer of an onion’ – downstream

decoders that are sensitive to the representational geometry rather than activity profiles over

neuron populations can focus on difference in information as reflected by a change in geometry

and be agnostic to how this information is distributed over a set of neurons. We agree that

this invariance over activity profiles is indeed a useful property of representational geometries

for downstream decoders. However, we are not aware of any studies that highlight how rep-

resentational geometries also abstract over behaviourally relevant stimulus properties. While

abstracting over activity profiles may be useful, abstracting over stimulus properties loses an

important piece of information when comparing representations across brain regions, individuals,

species and between brains and computational models. Our studies show how two systems may

appear similar based on their representational geometries in one circumstance (e.g. Figure 4.2B)
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but drastically different in another circumstance (Figure 4.2C).

It is important to note how our results differ from previous studies exploring limitations of

RSA. A number of studies have focused on the importance of how neural data is pre-processed

and how the distance between neural patterns is computed. For example, Ramirez [146] found

that pre-processing steps, such as centering (de-meaning) activation vectors may lead to incorrect

inference about the representational geometry of activations. He demonstrated that subtracting

the mean from activations could change the rank order of similarity between conditions. In turn,

this could lead to clearly distinct RDMs becoming highly correlated and vice-versa. While this

is an important methodological point, it is clearly distinct from the point we are making in this

study. Indeed, the results here are agnostic of the data pre-processing steps and hold whether or

not activations are centered.

Some previous studies have also explored how confounds present in data can influence the

results of RSA. For example, Henriksson et al. [69] and Cai et al. [21] demonstrated that RDMs

measured based on fMRI data can be severely biased because of temporal and spatial correlations

in neural activity. These authors have pointed out that if activity patterns from different brain

regions are recorded during the same trial, the similarity estimates will be exaggerated due to

correlated neural fluctuations in these regions. Similarly, neural activity is correlated over time,

which means estimated similarity based on activity patterns from the same imaging run also

introduces a strong bias in RDMs. These sources of bias are important to understand, but they

can also be addressed by a more careful task design and analysis [21]. In contrast, the confounds

that are highlighted in this study exist in the stimulus itself. Therefore, even if one were to

completely mitigate the bias in estimating RDMs, the types of confounds we highlight in our

work would still pose problems when drawing inferences from correlation in RDMs.

Similarly, previous research has also highlighted the importance of choosing the correct

distance metric when using RSA. For example, Ramirez [147] compared Euclidean distance

with an angular metric (such as cosine similarity) and showed that the choice of distance

metric can reveal different aspects of the same fMRI data. They argued that the Euclidean

distance is particularly sensitive to the mean activity over a recorded voxel. Based on this

analysis, Ramirez [147] suggested using an angular distance metric, especially when neural

signal is aggregated over large number of neurons. Similarly, in another exhaustive study

over distance measures, Bobadilla-Suarez et al. [16], evaluated neural similarity using various

distance measures, including angle-based measures (cosine, Pearson, Spearman) and magnitude-

based measures (Euclidean, Mahalanobis, Minkowski) and found that the choice of metric

significantly influenced the measured similarity. They also found that there was no one metric

that outperformed all others – rather, the preferred metric varied across different studies, but

was consistent across brain regions within a study. The choice of distance metric is again a related

but orthogonal issue to the one we highlight in this study. Our results show that representational

geometry loses information about stimulus features and different stimulus features (and indeed
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transformations of input stimulus) can lead to the same geometry. This is fundamental to the

nature of representational geometries, rather than a consequence of the distance metric used.

Of course, the problem of confounds in stimuli is not unique to RSA and will affect other

statistical analyses, including multivariate regression methods such as MVP classification. Indeed,

the problem of confounds in stimuli is well appreciated in many different contexts [47, 121, 174],

but there has been no consideration of whether these confounds are contributing to RSA findings.

Perhaps this is because, unlike for MVP classification, a confound for RSA needs to not only help

decode category membership, but also lead to a second-order isomorphism. Nevertheless, as we

illustrate in Figure 4.3, there could be confounds with a second-order similarity structure in

many datasets that are the product of unexpected properties of the world or the product of how

these datasets are curated or hierarchically organized. This is problematic as we have clearly

shown that these second order confounds can drive high RSA scores.

A reader could ask why these results matter. Couldn’t a researcher take the view that repre-

sentational geometry is representation and therefore, a strong correlation in representational

geometries between two systems is sufficient to infer that the systems are representing the world

in a similar manner? This question goes to the heart of an existing debate in philosophy, where

philosophers distinguish between the externalist and holistic views on mental representations.

According to the first view, the content of representations is determined by their relationship to

entities in the external world. This perspective is implicitly taken by most neuroscientists and

psychologists, who are interested in comparing mechanisms underlying cognitive processes – that

is, they are interested in the set of nested functions and algorithms responsible for transforming

sensory input into a set of activations in the brain. From this perspective, our finding that high

RSA scores can be obtained between systems that work in qualitatively different ways poses a

challenge to researchers using RSA to compare systems.

Alternatively, a researcher may reject an externalist view and adopt the perspective that

representations obtain their meaning based on how they are related to each other within each

system, rather than based on their relationship to entities in the external world. That is, ’rep-

resentation is the representation of similarities’ [34]. From this perspective, as long as the two

systems share the same relational distances between internal activations, one can validly infer

that the two systems have similar representations. That is, a second-order isomorphism implies

a similarity of representations, by definition. This view has been called holism in the philosophy

of mind [14, 42] and is related to a similar idea of meaning holism in language, which is the idea

that the meaning of a linguistic expression is determined by its relation to other expressions

within a language [68, 143]. For example, Firth [39] (p. 11) writes: “you shall know a word by the

company it keeps”. Similarly, Griffiths and Steyvers [58], and Griffiths, Steyvers, and Tenenbaum

[59] have adopted meaning holism accounts of semantic representations in neural networks. More

recently, Piantadosi and Hill [140] have argued that large language models capture important

aspects of meaning and approximate human cognition because they represent relations between
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concepts and their roles within a representational geometry. Even if a researcher was to adopt

this holistic perspective on representations, our results should still be of interest to them as

they show that the similarity between representational geometries can vary based on the visual

stimulus that is used to compare them (the modulation effect). Additionally, our results show

that adopting this view misses the information about differences in mechanistic processes that a

psychologist or neuroscientist is frequently interested in, for instance, whether the visual system

processes surface reflectance or shape (or the location of diagnostic pixels) in order to identify

objects. Fodor and Lepore long ago criticized this philosophical stance [41, 42], and interestingly,

this philosophical debate played an important part in the development of RSA (see S1 Appendix).

Unfortunately, this debate has largely been ignored by researchers who use RSA as a method to

compare similarity of systems.

In closing, we describe our recommendations for practitioners who find RSA to be useful for

their research goals. These will be especially relevant to the large majority of researchers in

computational, cognitive, and systems neuroscience, cognitive scientists and AI practitioners,

who are interested in mechanistic similarities (i.e., they adopt an externalist position). But they

should also be relevant to adopters of the holistic view who are interested in how observed

representational geometries depend on the stimulus used to extract them.

First, since the intrinsic structure of datasets can artificially modulate RSA scores, researchers

should compare systems on a wider variety of datasets and sampling schemes than currently

done. Second, given that confounding features can lead to mimicked representational geometries,

researchers should consider running additional controlled experiments to rule out this possibility

when inferences hinge crucially on it. This point has recently been made by Bowers et al [17]

in relation to testing DNNs. Similarly, the ’controversial stimuli’ designed by Kriegeskorte and

Golan [53] should also enable researchers to test representational geometries for stimuli where

different models make contrasting predictions. Third, when studies are conducted to search for

evidence of mechanistic similarity between two or more systems, researchers should use a wider

range of complementary methods, each addressing the others’ blindspots (e.g., RSA combined

with neural predictivity [182], MVPC [63, 64], CCA [123], SVCCA [144], CKA [91]).

Lastly, perhaps the most important general recommendation we make is that researchers

should acknowledge, procedurally and in writing, which inferences are afforded by the use of

RSA, and what dissimilarities remain possible despite having observed a given pattern of RSA

scores. To this end, we believe that general statements of similarity tend to obfuscate rather than

accurately summarize any set of RSA-based results. Instead, we urge researchers using RSA (1)

to justify the use of this method by theoretically motivated interest in representational geometry

or otherwise consider other tools that best fit their goals, and (2) to state in precise terms that

RSA scores reflect the similarity of representational geometries in particular, and generally avoid

underspecified claims of similarity.
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4.5 Methods

Dataset generation and training

All DNN simulations (Studies 2–4) were carried out using the Pytorch framework [136]. The

model implementations were downloaded from the torchvision library. Networks trained on

unperturbed datasets in all studies were pre-trained on ImageNet as were networks trained on

modified datasets in Study 2. Networks trained on modified datasets in Studies 3 and 4 were

randomly initialised. For the pre-trained models, their pre-trained weights were downloaded

from torchvision.models subpackage.

Study 1 Each dataset in Study 1 consists of 100 samples (50 in each cluster) drawn from

two multivariate Gaussians, N (x|µ,Σ), where µ is a 2-dimensional vector and Σ is a 2× 2

covariance matrix. In Figure 4.2A, the two Gaussians have means µ1 = (1,8) and µ2 = (8,1) and a

covariance matrices Σ1 =Σ2 = 1
2 I, while in Figure 4.2B the Gaussians have means µ1 = (1,1) and

µ2 = (8,8) and a covariance matrices Σ1 = I, Σ2 = 8I. All kernel matrices were computed using

the sklearn.metrics.pairwise module of the scikit-learn Python package.

Study 2 First, a VGG-16 deep convolutional neural network [168], pre-trained on the ImageNet

dataset of naturalistic images, was trained to classify stimuli from the CIFAR-10 dataset [99].

The CIFAR-10 dataset includes 10 categories with 5000 training, and 1000 test images per

category. The network was fine-tuned on CIFAR-10 by replacing the classifier so that the final

fully-connected layer reflected the correct number of target classes in CIFAR-10 (10 for CIFAR-10

as opposed to 1000 for ImageNet). Images were rescaled to a size of 224×224px and then the

model learnt to minimise the cross-entropy error using the RMSprop optimizer with a mini-batch

size of 64, learning rate of 10−5, and momentum of 0.9. All models were trained for 10 epochs,

which were sufficient for convergence across all datasets.

Second, 100 random images from the test set for each category were sampled as input for

the network and activations at the final convolutional layer extracted using the THINGSVision

Python toolkit [125]. The same toolkit was used to generate a representational dissimilarity

matrix (RDM) from the pattern of activations using 1-Pearson’s r as the distance metric. The

RDM was then averaged by calculating the median distance between each instance of one category

with each instance of the others (e.g., the median distance between Airplane and Ship was the

median of all pair-wise distances between activity patterns for airplane and ship stimuli). This

resulted in a 10×10, category-level, RDM which reflected median between-category distances.

Third, three modified versions of the CIFAR-10 datasets were created for the ‘Positive’,

‘Uncorrelated’ and ‘Negative’ conditions, respectively. In each dataset, we added one diagnostic

pixel to each image, where the location of the pixel depended on the category (See Figure 4.5).

The locations of these pixels were determined using the averaged RDM from the previous step.

We call this the target RDM. In the ‘Positive’ condition, we wanted the distances between pixel
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placements to be positively correlated to the distances between categories in the target RDM.

We achieved this by using an iterative algorithm that sampled pixel placements at random,

calculated an RDM based on distances between the pixel placements and computed an RSA score

(Spearman correlation) with the target RDM. Placements with a score above 0.70 were retained

and further optimized (using small perturbations) to achieve an RSA-score over 0.90. The same

procedure was also used to determine placements in the Uncorrelated (optimizing for a score

close to 0) and Negatively correlated (optimizing for a negative score) conditions.

Finally, datasets were created using 10 different placements in each of the three conditions.

Networks were trained for classification on these modified CIFAR-10 datasets in the same manner

as the VGG-16 network trained on the unperturbed version of the dataset (See Figure 4.4).

Study 3 The procedure mirrored Study 2 with the main difference being that the target system

was the macaque inferior temporal cortex. Neural data from two macaques, as well as the dataset

were obtained from the Brain Score repository [159]. This dataset consists of 3200 images from 8

categories (animals, boats, cars, chairs, faces, fruits, planes, and tables), we computed an 8×8

averaged RDM based on macaque IT response patterns for stimuli in each category.

This averaged RDM was then used as the target RDM in the optimization procedure to

determine locations of the confound (here, a white predictive patch of size 5×5 pixels) for each

category. Using a patch instead of a single pixel was required in this dataset because of the

structure and smaller size of the dataset (3200 images, rather than 50,000 images for CIFAR-10).

In this smaller dataset, the networks struggle to learn based on a single pixel. However, increasing

the size of the patch makes these patches more predictive and the networks are able to again

learn entirely based on this confound (see results in Figure 4.6). In a manner similar to Study 2,

this optimisation procedure was used to construct three datasets, where the confound’s placement

was positively correlated, uncorrelated or negatively correlated with the category distances in

the target RDM.

Finally, each dataset was split into 75% training (2432 images) and 25% test sets (768 images)

before VGG-16 networks were trained on the unperturbed and modified datasets in the same

manner as in Study 2. One difference between Studies 2 and 3 was that here the networks

in the Positive, Uncorrelated and Negative conditions were trained from scratch, i.e., not pre-

trained on ImageNet. This was done because we wanted to make sure that the network in the

Normal condition (trained on ImageNet) and the networks in the Positive, Uncorrelated and

Negative conditions encoded fundamentally different features of their inputs – i.e., there were no

ImageNet-related features encoded by representationsΦ2,Φ3 andΦ4 that were responsible for the

similarity in representational geometries between these representations and the representations

in macaque IT cortex.

Study 4 The target system in this study was human IT cortex. The human RDM and dataset

were obtained from [97]. Rather than calculating pixel placements based on the human RDM,
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the hierarchical structure of the dataset was used to place the pixels manually. The dataset

consists of 910 images from 6 categories: human bodies, human faces, animal bodies, animal

faces, artificial inanimate objects and natural inanimate objects. These low-level categories can

be organised into the hierarchical structure shown in Figure 4.9. Predictive pixels were manually

placed so that the distance between pixels for Animate kinds were closer together than they were

to Inanimate kinds and that faces were closer together than bodies. This can be done in many

different ways, so we created five different datasets, with five possible arrangements of predictive

pixels. Results in the Hieararchical condition (Figure 4.10) are averaged over these five datasets.

Placements for the Random condition were done similarly, except that the locations were selected

randomly.

Networks were then trained on a 6-way classification task (818 training images and 92 test

images) in a similar manner to the previous studies. As in Study 3, networks trained on the

modified datasets (both Hierarchical and Random conditions) were not pre-trained on ImageNet.

RDM and RSA computation

For Studies 2-4 all image-level RDMs were calculated using 1− r as the distance measure. RSA

scores were computed as the Spearman rank correlation between RDMs.

In Study 2, a curated set of test images was selected due to the extreme heterogeneity of the

CIFAR-10 dataset (low activation pattern similarity between instances of the same category).

This was done by selecting 5 images per category which maximally correlated with the averaged

activation pattern for the category. Since CIFAR-10 consists of 10 categories, the RSA-scores in

Study 2 were computed using RDMs of size 50×50.

In Study 3, the dataset consisted of 3200 images belonging to 8 categories. We first calculated

a full 3200×3200 RDM using the entire set of stimuli. An averaged, category-level, 8×8 RDM

was then calculated using median distances between categories (in a manner similar to that

described for Study 2 in the Section ‘Dataset generation and training’). This 8×8 RDM was

used to determine the RSA-scores. We also obtained qualitatively similar results using the full

3200×3200 RDMs. These results can be found in the S2 Appendix.

In Study 4, the dataset consisted of 818 training images and 92 test images. Kriegeskorte et al.

[97] used these images to obtain a 92×92 RDM to compare representations between human and

macaque IT cortex. Here we computed a similar 92×92 RDM for networks trained in the Normal,

Hierarchical and Random training conditions, which were then compared with the 92×92 RDM

from human IT cortex to obtain RSA-scores for each condition.

Testing

In Study 2, we used a 4×2 design to measure classification performance for networks in all

four conditions (Normal, Postive, Uncorrelated and Negative) on both unperturbed images and

modified images. We computed six RSA-scores: three pairs of networks – Normal-Positive, Normal-
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Uncorrelated and Normal-Negative – and two types of inputs – unperturbed and modified test

images. The noise ceiling (grey band in Figure 4.6) was determined in the standard way as

described in [128] and represents the expected range of the highest possible RSA score with the

target system (network trained on the unperturbed dataset).

In Study 3, performance was estimated in the same manner as in Study 2 (using a 4×2

design), but RSA-scores were computed between RDMs from macaque IT activations and the four

types of networks – i.e. for the pairs Macaque-Normal, Macaque-Positive, Macaque-Uncorrelated

and Macaque-Negative. And like in Study 2, we determined each of these RSA-scores for both

unperturbed and modified test images as inputs to the networks.

In Study 4, performance and RSA were computed in the same manner as in Studyn 3, except

that the target RDM for RSA computation came from activations in human IT cortex and the

networks were trained in one of three conditions: Normal, Hierarchical and Random.

Data analysis

Performance and RSA scores were compared by running analyses of variance and Tukey HSD

post-hoc tests. In Study 2 and 3, performance differences were tested by running a 4 (type of

training) by 2 (type of dataset) mixed ANOVAs. In, Study 4, the differences were tested by

running a 3x2 mixed ANOVA.

RSA scores with the target system between networks in various conditions were compared

by running 3x2 ANOVAs in Studies 2 and 3, and a 2x2 ANOVA in Study 4. We observed that

RSA-scores were highly dependent on both the way the networks were trained and also the test

images used to elicit response activations.

In this section we provide more detailed statistical analyses for Studies 2-4.

Study 2

In order to test for differences in performance (Figure 4.6, left panel), a 4 (normally trained/positive/uncorrelated/negative)

by 2 (dataset with/without confound) mixed analysis of variance (ANOVA) was conducted. The

finding was a significant interaction effect (F(3,36)= 12256.10, p < .001,η2
p = .99). Tukey HSD

post-hoc comparisons revealed that performance in the positive, uncorrelated and negative con-

ditions was significantly better on datasets which included the confounds (all p < .001) while

the normally trained networks performed equally well on both datasets with and without the

confound (p = .99). This shows that networks trained on datasets with confounds learned to

classify based on the predictive confounding feature (single pixel) and ignored other features in

the dataset (failing to classify if the confound is not present) while the normally trained networks

remain unaffected by the presence or absence of the confounding feature.

Differences in RSA scores (Figure 4.6, right panel) were tested by conducting a 3 (posi-

tive/uncorrelated/negative) by 2 (dataset with/without the confound) mixed ANOVA. The key
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findings was a significant interaction effect (F(2,297)= 289.27, p < .001,η2
p = .66). Post-hoc com-

parisons revealed that there were no differences between the networks in RSA scores with

normally trained networks when images without the confound were used as input (all p > .954).

On the other hand, for images which contained the confound, networks in the positive condition

achieved a significantly higher RSA score than both networks in the uncorrelated and negative

conditions (p < .001), at the same time, networks in the uncorrelated condition achieved signifi-

cantly higher RSA scores than networks in the negative condition (p < .001). This indicates a very

strong modulation effect of RSA scores - depending on the relation between the representational

geometry of the confounding feature exploited by these networks, RSA scores with normally

trained networks can vary from high to low when the confound is present, but are consistently

low when there is no confound in the test stimuli.

Study 3

The same analytical approach was taken as in Study 2, performance (Figure 4.7, left panel) was

analyzed by conducting a 4 (normal/positive/uncorrelated/negative) by 2 (dataset with/without

confound) mixed ANOVA. Again, the key finding was an interaction effect (F(3,51)= 8086.60, p <
.001,η2

p = .99). Post-hoc comparisons revealed that performance in the positive, uncorrelated

and negative conditions was significantly better on datasets which included the confounds (all

p < .001) while the normally trained networks performed equally well on both datasets with and

without the confound (p > .99).

RSA scores (Figure 4.7, right panel) were analyzed by conducting a 3 (positive/uncorrelated/negative)

by 2 (dataset with/without confound) mixed ANOVA. The key result being a significant interaction

effect (F(2,42) = 122.46, p < .001,η2
p = .85). Post-hoc comparisons revealed that there were no

differences between the networks in RSA scores with normally trained networks when images

without the confound were used as input (all p > .071). However, for images with the confound

present, networks in the positive condition achieve a significantly higher RSA score with macaque

IT when compared to networks in the uncorrelated and negative conditions (all p < .001). Net-

works in the uncorrelated condition achieve higher RSA scores than networks in the negative

condition (p = .005). Finally, it is worth emphasizing that networks in the positive condition

match RSA scores with macaque IT achieved by networks pretrained on naturalistic images and

then finetuned on the dataset without confounds (t(23) = 0.89, p = .384) when the confound is

present in the dataset.

Study 4

For this simulation, performance differences between conditions (Figure 4.10, left panel) were

tested by conducting a 3 (normal/hierarchical/random) by 2 (dataset with/without confound) mixed

ANOVA. As in previous studies, the eky result was a significant interaction effect (F(2,42) =
407.61, p < .001,η2

p = .95). Post-hoc comparisons revealed that performance in the hierarchical
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and random conditions was significantly better on datasets which included the confounds (all

p < .001) while the normally trained networks performed equally well on both datasets with and

without the confound (p > .99).

RSA scores with human IT (Figure 4.10, right panel) were analyzed by conducting a 2

(hierarchical/random) by 2 (dataset with/without) mixed ANOVA. The interaction effect was

significant (F(1,28) = 8.46, p = .007,η2
p = .23). Follow-up comparisons show that there was no

difference between networks in the hierarchical and radnom conditions when the dataset did not

contain the confound (p > 99), but networks in the hierarchical condition achieved significantly

higher RSA scores when the dataset did contain the confound (p < .001). Again, it is worth

emphasizing that networks in the hierarchical condition match RSA scores with human IT

achieved by networks pretrained on naturalistic images and then finetuned on the dataset

without confounds (t(28)= 0.46, p = .647) when the confound is present in the dataset.

Data Availability

Confound placement coordinates (Studies 2-4), unperturbed datasets (Studies 3 and 4), macaque

activation patterns and RDMs (Study 3) and human RDM (Study 4) are available at OSF.
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5
SUMMARY, CONTRIBUTIONS AND CONCLUSIONS

Throughout these projects, the aim was to take a multifaceted approach to investigating

visual representations in humans and deep learning models with the hope to better

understand both. Beyond the main goals set for each of the studies, the findings also

resulted in lessons learned about how this research can, and should, be approached in the future.

5.1 Summary

My main aims were to provide a rigorous examination of the similarities and dissimilarities of vi-

sual representations in humans and deep learning models. Throughout this process I maintained

that taking a multifaceted approach is key. The idea was to provide converging evidence via

multiple different methodological approaches and rigorous experimentation within each approach.

Reliance on one measure or a set of measures using one or a constrained set of stimuli is likely to

lead to inaccurate inferences. Studies can, of course, be focused on one specific phenomenon but a

multifaceted approach would benefit this type of research as well.

In Chapter 2 I show how a different combinations of stimulus and data analysis choices can

lead to completely different inferences. The original Zhou and Firestone [187] paper dealt with

a curated set of adversarial stimuli and examined human-CNN agreement in an unorthodox

manner, concluding that humans reliably decipher adversarial images. This line of reasoning

ignores the fact that there are nearly endless adversarial examples for which agreement would

be exactly at chance. It also ignores that under certain setups agreement will be below chance

(see Figure 2.4) when humans agree amongst themselves on a label different to the one assigned

to the image by a CNN. By and large, findings concerning adversarial images show that for

a small subset of them, humans can have some intuitive insight into why and how they were
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misclassified. A subset of these intuitions is trivial; they actually depict an exemplar from the

target class (e.g., chain-link fence) and should not be considered adversarial at all. For a subset of

images humans do indeed pick up on features which allow them to correctly identify the label a

deep learning model assigned to the image at an above chance level (e.g., black and yellow color

scheme for the school bus image in Figure A.2). Note that even in that case, it is not clear whether

humans and networks transform these inputs into visual representations in a mechanistically

similar manner.

In Chapter 3 I demonstrate how resilient human shape bias is to a novel environment, even

when environment statistics were manipulated so that shape was less predictive of category

membership than local features. Comparisons with an ideal inference model and CNNs reveal

that CNNs also have an inductive bias. While the ideal inference model learns to use both global

shape and the secondary feature, CNNs prefer local features. Perhaps most importantly, we

show that human-like shape bias is not simply a matter of better training. When we froze all

of the convolutional layers of a network trained to develop shape bias (style-transfer trained

networks from [50]) we found that bias is not robust in a new environment. Classifiers on top of

the frozen convolutional layers readily learn to classify based on local features, particularly when

predictivity of such features is higher than that of global shape.

In Chapter 4 I demonstrate how good RSA scores do not necessarily imply similarity of

representations. Systems processing stimuli in qualitatively different ways can achieve high

similarity as measured via RSA scores. This is important from the perspective of neuroscientists,

computer scientists and cognitive scientists given that the method has become increasingly

popular in all three of these fields and at their intersections. It provides high flexibility, as

dissimilarity matrices can be constructed from any type of data and provide a summary of how

stimulus representations relate to each other. However, it does not allow for reliable inferences

about which features and by which processes were transformed into those representations. High

RSA scores and good neural predictivity achieved by deep learning models has become the leading

argument for these models being the best models of human vision. These claims remain strong in

spite evidence to the contrary (for a detailed review see Bowers et al. [17]. Findings in Chapter 4

provide a plausible explanation for the reasons of some of these impressive results despite the

many dissimilarities between human and network behavior. As more researchers start using

these methods there will be better understanding of what exactly they imply. For example, Xu and

Vaziri-Pashkam [180] found RSA scores do not follow the same patterns as previously reported

and do not generalize across different stimulus sets - which could be explained by our findings of

dataset dependent scores in Chapter 4. The overall conclusion is that, as most measures, RSA is

an indirect measure of representations and processes (even more so, being a second-order metric)

and does not allow for inferences without being embedded in rigorous experimentation and/or

combined with other measures to provide converging evidence.
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5.2 Contributions

Apart from the specific contributions and furthering of understanding of human and CNN visual

representations, one would hope work written up in this thesis highlights the importance of

experimental rigour, adequate choice of methods, the importance of converging evidence and

nuance in research. While the vast majority of work surrounding deep learning has been done

in the engineering domain, there is a part of deep learning which intersects with neuroscience

and cognitive science with an ever increasing number of researchers. The potential for inter-

disciplinary approaches, cross-pollinating of ideas and research paradigms is exciting, however

the deep learning revolution comes at a cost as well. The pressure to publish at high volume

and highlight successes is increasing daily - competition for careers and funding, are all threats

to nuanced, rigorous science. Even cautious researchers are encouraged to make strong, flashy

claims for the sake of promotion. This oftentimes results in nuanced research being interpreted

thorough the lens of that attention-grabbing claim. By the hundredth citation, a lot of the nuance

and understanding may be gone from how the work is perceived and interpreted in the community.

As researchers we need to be cognizant of how the work is going to be consumed.

Furthermore, the work presented here has resulted in very useful tools and approaches.

The ‘patchwork’ datasets generated for studies in Chapter 3 is a prime example of such a

contribution. The dataset allows for independent manipulation of different features and their

level of predictivity. This, in turn, allows for testing specific hypotheses about which the models

and which features are being prioritized.

The approach taken in Chapter 4 to study RSA demonstrates how deep learning models

can be useful test-beds for evaluating properties of statistical methods conducted on complex,

multi-dimensional data. In this instance, CNNs were easily trained to develop qualitatively

different visual representations in order to study factors influencing RSA scores. This type of

manipulation is not possible with human participants. They are complex systems, transforming

high-dimensional inputs into representations useful for solving a specific task. Even if they are

not modeling the ventral visual stream (or any other region of interest) particularly well, they can

prove to be useful because they provide similarly complex data as human studies would. At the

same time they are easy to experimentally manipulate and probe. In my mind, this is certainly

a major contribution of the deep learning revolution, beyond attempts to use them as models

of human cognition. Neural networks are used in MVPA as decoders of neural activity and the

manner in which I used them in Chapter 4 could lead to more such research. There are many

methodological decisions to be made when using RSA and similar methods - deep learning models

can provide an excellent tool for evaluating the impact of those decisions. For example, one could

investigate how curating datasets, decisions on distance metrics, deciding on the level of analysis

and other decisions impact whether models developing qualitatively different representations

can be distinguished based on RSA. Therefore, the hope is that researchers not interested in deep

learning models as models of human cognition may find them to be valuable auxiliary tools in
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their work as well.

5.3 Conclusions

Through a number of simulations and behavioural studies from different perspectives we have

found the following.

• Humans do not poses a robust ‘machine theory of mind’ as claimed by Zhou and Firestone

[187] when controlling for important methodological factors

• The numerous types of adversarial stimuli and the lack of agreement between human and

CNN classification on a large range of these stimuli provides evidence for dissimilarity

between human and machine object recognition.

• Robust human-like shape bias cannot be induced purely through training on style-transfer

stimuli which are designed to eliminate category predictivity of textures.

• Human shape bias is robust to changing statistics of the learning environment - humans

rely on shape when compared to local features even when it is less predictive of category

membership.

• Humans have inherent resource (attentions and working memory) limitations which con-

tribute to the development of shape bias.

• Convolutional neural networks pre-trained on large-scale naturalistic stimuli datasets

show a bias towards learning local features.

• Representational similarity analysis as a second order measure can produce high similarity

scores between systems which represent stimuli qualitatively differently in the presence of

confounds.
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Figure A.1: Participant responses ranked by frequency (Experiment 3b). Each row contains the adversarial
image, the DCNN label for that image, the top 8 participant responses. Shaded cells contain the DCNN choice, when
not ranked in the top 8, it is shown at the end of the row along with the rank in brackets.



Figure A.2: Participant responses ranked by frequency (Experiment 3b). Continued.
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Figure A.3: Per-item histograms of response choices from Experiment 3b in Zhou and Firestone. Each
histogram contains the adversarial stimuli and shows the percentage of responses per each choice (y-axis). The choice
labels (x-axis) are ordered the same way as in Figure 2.2 from 1 to 48. Black bars indicate the DCNN choice for a
particular adversarial image.
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Figure A.4: Per-item histograms of response choices from Experiment 3b in Zhou and Firestone. Continued.
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Figure A.5: Per-item histograms of response choices from Experiment 3b in Zhou and Firestone. Continued.
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Figure A.6: Experiment 1 stimuli and competitive alternative labels.
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Figure A.7: An item-wise breakdown of agreement levels in Experiment 2 as a function of experimental
condition and category. Average agreement levels for each category in each condition with 95% CI are presented in
(a) with the black line referring to chance agreement. The best case stimuli are presented in (b), these stimuli were
judged as containing the most features in common with the target category (out of 5 generated by Nguyen et al. [127]).
The worst case stimuli are presented in (c), these were judged to contain the least number of features in common with
the target category.
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Figure A.8: An item-wise breakdown of agreement levels for the four conditions in Experiment 3. Each
bar shows the agreement level for a particular image, that is, the percentage of participants that agreed with DCNN
classification for that image. Each sub-figure also shows the images that correspond to the highest (blue) and lowest
(red) levels of agreement under that condition.
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Figure A.9: Experiment 5 stimuli and competitive alternative labels.
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Figure A.10: Experiment 5 stimuli and competitive alternative labels. Continued.
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Figure B.1: Examples of stimuli in Experiment 1 (patch). In each row we show (from left to right) an example
image from the training set, Both condition, Conflict condition, Shape condition and Non-shape (Patch) condition
for a category. Each image in the training set contains a diagnostic patch of a certain colour that is present at a
category-specific location. Additionally, all training images in Experiment 1a and 80% of images in Experiment 1b
have a diagnostic shape. Images in the Both condition contain both these features. Images in the Conflict condition
contain the shape from one category but diagnostic patch from another category. Images in the Shape condition contain
the shape feature but none of the diagnostic patches. Images in the Patch condition contain the diagnostic patch but
none of the shapes from the training set.



Train Both Conflict Shape Segment
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Figure B.2: Examples of stimuli in Experiment 2 (segment). In each row we show (from left to right) an example
image from the training set, Both condition, Conflict condition, Shape condition and Non-shape (Segment) condition
for a category. Each image in the training set contains a diagnostic segment of a category-specific colour. Only images
of this category have a segment of this colour. Additionally, all training images in Experiment 2a and 80% of images
in Experiment 2b have a diagnostic shape. Images in the Both condition contain both these features. Images in the
Conflict condition contain the shape from one category but diagnostic segment from another category. Images in
the Shape condition contain the shape feature but none of the diagnostic segments. Images in the Segment condition
contain the diagnostic segment but none of the shapes from the training set.
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Train Both Conflict Shape Size
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Figure B.3: Examples of stimuli in Experiment 3 (size). In each row we show (from left to right) an example
image from the training set, Both condition, Conflict condition, Shape condition and Non-shape (Size) condition for
a category. The average size of all images in the training set is diagnostic of the category. That is, different categories
have images that have different average size of patches. Additionally, all training images in Experiment 3a and 80%
of images in Experiment 3b have a diagnostic shape. Images in the Both condition contain both these features. Images
in the Conflict condition contain the shape from one category but diagnostic size from another category. Images in
the Shape condition contain the shape feature and the average size of patches is larger than the diagnostic size of
any category in the training set. Finally, the Size condition contains images where the average size of patches is
diagnostic but shape is not.
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Figure B.4: Examples of stimuli in Experiment 4 (colour). In each row we show (from left to right) an example
image from the training set, Both condition, Conflict condition, Shape condition and Non-shape (Size) condition
for a category. All patches in an image have the same colour. This colour is diagnostic of an image’s category in the
training set. Additionally, all training images in Experiment 4a and 80% of images in Experiment 4b have a diagnostic
shape. Images in the Both condition contain both these features. Images in the Conflict condition contain the shape
from one category but diagnostic colour from another category. Images in the Shape condition contain the shape
feature and a colour that is not diagnostic of any category in the training set. Finally, the Colour condition contains
images with no coherent shape but where the colour of segments is diagnostic of the category.
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Figure B.5: Examples of stimuli in Experiment 5 and 6 (no shape). Each row shows four examples from the
training set that have the same category label as well as one example from the test set with the same label. The four
rows correspond to the four conditions. In row 1, the predictive feature is patch location. In row 2, the predictive
feature is colour of one of the segments. In row 3, the predictive feature is average size of patches. And in row 4, the
predictive feature is colour of all patches.
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Figure B.6: Change in test performance with training in Experiments 1a, 2a, 3a, and 4a. Figure 3.8A in the
main text shows the change in performance under the four test conditions in Experiment 1b, 2b, 3b and 4b, where
the non-shape feature and more predictive than shape features in training. Here we have plotted how performance
changes in Experiments 1a, 2a, 3a and 4a, where both features are equally likely. Each panel shows how accuracy on
the four types of test trials changes with experience. The top, middle and bottom row correspond to optimal decision
model, CNN and human participants respectively. Columns correspond to different experiments. The scale on the
x-axis represents the number of training trials in the top row, the number of training epochs in the middle row and the
index of the test block in the bottom row. A comparison of Figsure B.6 and 3.8A from the main text shows a very similar
pattern in all experiments and for humans as well as the two types of models. The two models predict that a difference
between Both and Conflict conditions emerges early and grows with learning. In contrast, human participants show
no difference in the two conditions throughout the experiment in Experiments 1a, 2a and 3a. Further analysis of
individual participants showed that, like Experiments 1b, 2b, 3b and 4b, no participant switched from using one
feature to another during the experiment.
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Figure B.7: Results for Experiment S4. Accuracy in the four conditions when participants are shown the stimuli for
3s instead of 1s. In this experiment, every trial has two diagnostic features – global shape and average size. Despite
the increase in the duration of the stimulus, participants performed well in the Both, Conflict and Shape conditions,
but performed at chance in the non-shape (Size) condition, indicating that they still preferred to learn based on shape.
Notice, we used Experiment 3 (non-shape cue = average size) to test this because this is experiment in which the
participants were most likely to pick on the non-shape (Size) cue based on results in Experiment 5, where mean
performance in the Size condition was above chance, while mean performance in Segment or Patch conditions was at
chance, even when there was no competing shape feature.
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(a) Exp S1. Patch (b) Exp S2. Segment (c) Exp S3. No shape

Figure B.8: Results for Experiments S1, S2 and S3. In three experiments, we tested how participant behaviour
changed when we presented the stimuli for a shorter duration (100ms) and restricted the field of view, such that
the stimulus was always presented within 10◦ of fixation (see Materials and Methods in main text). (a) Accuracy of
N=25 participants in the four test conditions in an experiment that mirrors Experiment 1b – i.e., all training images
contain a diagnostic patch and 80% images contain a diagnostic shape, (b) Accuracy of N=25 participants in the four
test conditions in an experiment mirroring Experiment 2b – i.e., all training images contain a diagnostic segment
and 80% images contain a diagnostic shape, (c) Accuracy of two groups of N=10 participants in test block where
the training images contained only non-shape cues. Performance of participants in all experiments was consistent
with their performance observed in other experiments. Though the overall accuracy of participants in this control
experiments was slightly lower (mean accuracy in the Both condition was M = 59.60% in (a) and M = 57.20% in (b)),
which is understandable given the faster presentation time, there was statistically no difference in their performance
in the Both, Conflict and Shape conditions and their performance in the Non-shape condition was at chance. In
Experiment (c), where there was no shape features in the training set, performance of both the Patch and Segment
groups was statistically at chance. That is, participants consistently learned based on shape cues; when a diagnostic
shape was not present during training, no participant managed to learn the task. (Compare results with Figure 3.4B
and 3.8B)
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Figure B.9: Results when both features are equally predictive. Each panel shows the accuracy under the four
test conditions for AlexNet (top row) or VGG-16 (bottom row). Each column corresponds to a different experiment.
Both models were pre-trained on ImageNet and fine-tuned by reshaping the final layer to reflect the number of target
classes in each experiment and trained on 2000 images from the training set (see Materials and Methods for details).
A comparison with Figure 3.4A shows that both architectures showed the same pattern of results as ResNet50: models
were able to learn the task (high accuracy in the Same condition), learned both the Shape and Non-shape features
(above chance accuracy in Shape and Non-shape conditions) and preferred to rely on the Non-shape feature (low
accuracy in the Conflict condition).
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Figure B.10: Results when non-shape feature is more predictive. Each panel again shows the accuracy under the
four test conditions for AlexNet (top row) or VGG-16 (bottom row). Each column corresponds to a different experiment.
A comparison with Figure 3.4B shows that both architectures showed the same pattern of results as ResNet50:
models showed a strong preference to rely on the non-shape feature in this case (a high-low-low-high pattern in the
Same-Conflict-Shape-Non-shape conditions) and this preference became larger than the experiments where both
features were equally predictive (compare with Figure B.9).
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Figure B.11: Results for learning without shape feature. The two panels show accuracy in test blocks for AlexNet
and VGG-16, respectively, when these models were trained on images that lack any coherent shape (Experiment 5).
Each bar corresponds to the type of non-shape feature used in training. Like ResNet50, but unlike human participants
(compare with Figure 3.8B), both models were able to learn all types of non-shape features.
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In Study 3 we found that, relative to the highest RSA scores, networks from the Negative condition

obtained higher scores when RSA was calculated using image-level RDMs when compared to

averaging and calculating on category-level RDMs. Here we present a simple set of Monte Carlo-

like simulations which explain how an increase of stimuli per category can inflate RSA scores

between systems.

Imagine we are computing RSA using a dataset of 100 images for each of 10 categories. After

extracting activation patterns for each stimulus and computing distances for each pair of stimuli,

we would be left with RDMs of size 1000×1000. Since RSA is computed after excluding distances

on the diagonal (which have a value of 0) and values above the diagonal (or below, the RDM is

mirrored) - this leaves us with a total of 4950 pairwise distances from each RDM. A correlation

(usually rank-order) is then computed between sets of 4950 values from different systems in

order to obtain the RSA score between them.

From the 4950 pair-wise distances - 4500 are distances between stimuli from different

categories and 450 are within-category distances. Let us further assume that both systems being

compared are representing within-category stimuli as more similar to each other than to stimuli

from other categories. This means that the 450 within-category distances should be the smallest

distances for each system.

In a set of simple simulations distances were sampled randomly in the following way. First,

4500 distances were sampled randomly from a Gaussian distribution with a mean of 1 and

a standard deviation of 0.1 (distances in real RDMs - if computed as in Chapter 4 using the

1-Pearson’s r metric have a range of 0-2). These represent the between-category distances. The

distances were sampled independently for each system. Since the sampling was done in this

manner, the resulting distances do not correlate between two systems. In effect, this would mean
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that two systems do not share the between-category representational structure. Second, 450

distances were sampled in the same manner as the initial 4500 but the mean of the Gaussian

distribution was 0.5 rather than 1. These are within-category distances, and if the two systems

are representing stimuli within categories as more similar to each other than to stimuli from

different categories - then these 450 distances should be smaller (similarity should be higher)

than the first set of sampled distances. Again, due to the manner of sampling, these sets of

distances do not correlate meaning that within-category structures are not similar between

systems. Finally, we combine the two sets of distances into the full set of 4950 for each system to

compute the RSA score between pairs of systems.

The simulation was conducted by generating distances for a 100 systems. This meant that

4950 pairs of systems were compared. The median RSA score (Spearman rank-order correlation)

between these systems was 0.248 with a range of 0.206-0.285. These results show that even

systems which do not share between-category nor within-category representational geometry can

achieve significant RSA scores simply due to the fact that they represent within-category stimuli

as generally more similar to each other than to stimuli from different categories.
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[33] Dujmović, M., Malhotra, G., and Bowers, J. S. (2020).

What do adversarial images tell us about human vision?

eLife, 9:e55978.

[34] Edelman, S. (1998).

Representation is representation of similarities.

Behavioral and Brain Sciences, 21(4):449–467.

[35] Eickenberg, M., Gramfort, A., Varoquaux, G., and Thirion, B. (2017).

Seeing it all: Convolutional network layers map the function of the human visual system.

NeuroImage, 152:184–194.

[36] Elsayed, G., Shankar, S., Cheung, B., Papernot, N., Kurakin, A., Goodfellow, I., and Sohl-

Dickstein, J. (2018).

Adversarial examples that fool both computer vision and time-limited humans.

In Advances in Neural Information Processing Systems, pages 3910–3920.

126



BIBLIOGRAPHY

[37] Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A., Kohno, T.,

and Song, D. (2018).

Robust physical-world attacks on deep learning visual classification.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[38] Feinman, R. and Lake, B. M. (2018).

Learning inductive biases with simple neural networks.

arXiv preprint arXiv:1802.02745.

[39] Firth, J. R. (1957).

A synopsis of linguistic theory, 1930-1955.

Studies in linguistic analysis, pages 1–31.

[40] Fiser, J. and Aslin, R. N. (2001).

Unsupervised statistical learning of higher-order spatial structures from visual scenes.

Psychological science, 12(6):499–504.

[41] Fodor, J. (1987).

Psychosemantics: The Problem of Meaning in the Philosophy of Mind.

MIT Press, Cambridge.

[42] Fodor, J. and Lepore, E. (1992).

Holism: A Shoppers Guide.

Blackwell, Cambridge.

[43] Fodor, J. and Lepore, E. (1996).

Churchland on state space semantics.

In McCauley, R. N., editor, The Churchlands and Their Critics, pages 145–158. Blackwell.

[44] Fodor, J. and Lepore, E. (1999).

All at sea in semantic space: Churchland on meaning similarity.

Journal of Philosophy, 96(8):381–403.

[45] Freund, M. C., Etzel, J. A., and Braver, T. S. (2021).

Neural coding of cognitive control: The representational similarity analysis approach.

Trends in Cognitive Sciences, 25(7):622–638.

[46] Fukushima, K. (1980).

Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition

unaffected by shift in position.

Biological Cybernetics, 36(4):193–202.

127



BIBLIOGRAPHY

[47] Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., and Wichmann,

F. A. (2020a).

Shortcut learning in deep neural networks.

Nature Machine Intelligence, 2(11):665–673.

[48] Geirhos, R., Janssen, D. H., Schütt, H. H., Rauber, J., Bethge, M., and Wichmann, F. A.

(2017).

Comparing deep neural networks against humans: object recognition when the signal gets

weaker.

arXiv preprint arXiv:1706.06969.

[49] Geirhos, R., Meding, K., and Wichmann, F. A. (2020b).

Beyond accuracy: quantifying trial-by-trial behaviour of cnns and humans by measuring error

consistency.

Advances in Neural Information Processing Systems, 33:13890–13902.

[50] Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., and Brendel, W. (2018a).

Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy

and robustness.

arXiv preprint arXiv:1811.12231.

[51] Geirhos, R., Temme, C. R., Rauber, J., Schütt, H. H., Bethge, M., and Wichmann, F. A.

(2018b).

Generalisation in humans and deep neural networks.

Advances in neural information processing systems, 31.

[52] Geisler, W. S. (2011).

Contributions of ideal observer theory to vision research.

Vision research, 51(7):771–781.

[53] Golan, T., Raju, P. C., and Kriegeskorte, N. (2020).

Controversial stimuli: Pitting neural networks against each other as models of human cogni-

tion.

Proceedings of the National Academy of Sciences, 117(47):29330–29337.

[54] Goldwater, M. B., Don, H. J., Krusche, M. J., and Livesey, E. J. (2018).

Relational discovery in category learning.

Journal of Experimental Psychology: General, 147(1):1.

[55] Goodfellow, I., Lee, H., Le, Q., Saxe, A., and Ng, A. (2009).

Measuring invariances in deep networks.

Advances in neural information processing systems, 22:646–654.

128



BIBLIOGRAPHY

[56] Goodfellow, I. J., Papernot, N., Huang, S., Duan, R., Abbeel, P., and Clark, J. (2017).

Attacking machine learning with adversarial examples.

last accessed on 18/06/2020.

[57] Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014).

Explaining and harnessing adversarial examples.

arXiv preprint arXiv:1412.6572.

[58] Griffiths, T. L. and Steyvers, M. (2002).

A probabilistic approach to semantic representation.

In Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society,

Hillsdale, NJ. Erlbaum.

[59] Griffiths, T. L., Steyvers, M., and Tenenbaum, J. (2007).

A probabilistic approach to semantic representation.

Psychological Review, 114(2):211–244.

[60] Güçlü, U. and van Gerven, M. A. (2015).

Deep neural networks reveal a gradient in the complexity of neural representations across the

ventral stream.

Journal of Neuroscience, 35(27):10005–10014.

[61] Guo, C., Lee, M., Leclerc, G., Dapello, J., Rao, Y., Madry, A., and Dicarlo, J. (2022).

Adversarially trained neural representations are already as robust as biological neural repre-

sentations.

In International Conference on Machine Learning, pages 8072–8081. PMLR.

[62] Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., and Moser, E. I. (2005).

Microstructure of a spatial map in the entorhinal cortex.

Nature, 436(7052):801–806.

[63] Haxby, J., Guntupalli, J., Connolly, A., Halchenko, Y., Conroy, B., Gobbini, M., Hanke, M.,

and Ramadge, P. (2011).

A common, high-dimensional model of the representational space in human ventral temporal

cortex.

Neuron, 72(2):404–416.

[64] Haxby, J. V. (2012).

Multivariate pattern analysis of fMRI: the early beginnings.

Neuroimage, 62(2):852–855.

[65] Haxby, J. V., Connolly, A. C., and Guntupalli, J. S. (2014).

Decoding neural representational spaces using multivariate pattern analysis.

129



BIBLIOGRAPHY

Annu Rev Neurosci, 37:435–456.

[66] He, K., Zhang, X., Ren, S., and Sun, J. (2015).

Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.

In Proceedings of the IEEE international conference on computer vision, pages 1026–1034.

[67] He, K., Zhang, X., Ren, S., and Sun, J. (2016).

Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

770–778.

[68] Hempel, C. G. (1950).

Problems and changes in the empiricist criterion of meaning.

Revue Internationale de Philosophie, 4(11):41–63.

[69] Henriksson, L., Khaligh-Razavi, S.-M., Kay, K., and Kriegeskorte, N. (2015).

Visual representations are dominated by intrinsic fluctuations correlated between areas.

NeuroImage, 114:275–286.

[70] Hermann, K., Chen, T., and Kornblith, S. (2020).

The origins and prevalence of texture bias in convolutional neural networks.

Advances in Neural Information Processing Systems, 33.

[71] Hermann, K. and Lampinen, A. (2020).

What shapes feature representations? exploring datasets, architectures, and training.

Advances in Neural Information Processing Systems, 33.

[72] Hosseini, H. and Poovendran, R. (2018).

Semantic adversarial examples.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,

pages 1614–1619.

[73] Hosseini, H., Xiao, B., Jaiswal, M., and Poovendran, R. (2018).

Assessing shape bias property of convolutional neural networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,

pages 1923–1931.

[74] Hubel, D. H. and Wiesel, T. N. (1959).

Receptive fields of single neurones in the cat’s striate cortex.

The Journal of Physiology, 148(3):574–591.

[75] Hubel, D. H. and Wiesel, T. N. (1962).

Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex.

The Journal of Physiology, 160(1):106–154.

130



BIBLIOGRAPHY

[76] Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., and Madry, A. (2019).

Adversarial examples are not bugs, they are features.

arXiv preprint arXiv:1905.02175.

[77] Jagadeesh, A. V. and Gardner, J. L. (2022).

Texture-like representation of objects in human visual cortex.

Proceedings of the National Academy of Sciences, 119(17):e2115302119.

[78] Jozwik, K. M., Kriegeskorte, N., Storrs, K. R., and Mur, M. (2017).

Deep convolutional neural networks outperform feature-based but not categorical models in

explaining object similarity judgments.

Frontiers in Psychology, 8.

[79] Kaneshiro, B., Perreau Guimaraes, M., Kim, H.-S., Norcia, A. M., and Suppes, P. (2015).

A representational similarity analysis of the dynamics of object processing using single-trial

eeg classification.

PLOS ONE, 10(8):1–27.

[80] Karmon, D., Zoran, D., and Goldberg, Y. (2018).

Lavan: Localized and visible adversarial noise.

arXiv preprint arXiv:1801.02608.

[81] Kersten, D., Mamassian, P., and Yuille, A. (2004).

Object perception as bayesian inference.

Annu. Rev. Psychol., 55:271–304.

[82] Khaligh-Razavi, S.-M. and Kriegeskorte, N. (2014).

Deep supervised, but not unsupervised, models may explain it cortical representation.

PLOS Computational Biology, 10:1–29.

[83] Kheradpisheh, S. R., Ghodrati, M., Ganjtabesh, M., and Masquelier, T. (2016).

Deep networks can resemble human feed-forward vision in invariant object recognition.

Scientific reports, 6(1):1–24.

[84] Kiat, J. E., Luck, S. J., Beckner, A. G., Hayes, T. R., Pomaranski, K. I., Henderson, J. M., and

Oakes, L. M. (2022).

Linking patterns of infant eye movements to a neural network model of the ventral stream

using representational similarity analysis.

Developmental Science, 25(1):e13155.

[85] Kietzmann, T. C., McClure, P., and Kriegeskorte, N. (2018).

Deep neural networks in computational neuroscience.

BioRxiv, page 133504.

131



BIBLIOGRAPHY

[86] Kietzmann, T. C., Spoerer, C. J., Sörensen, L. K. A., Cichy, R. M., Hauk, O., and Kriegeskorte,

N. (2019).

Recurrence is required to capture the representational dynamics of the human visual system.

Proceedings of the National Academy of Sciences, 116(43):21854–21863.

[87] Kim, B., Reif, E., Wattenberg, M., Bengio, S., and Mozer, M. C. (2021).

Neural networks trained on natural scenes exhibit gestalt closure.

Computational Brain & Behavior, 4(3):251–263.

[88] Kingma, D. P. and Ba, J. (2014).

Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.

[89] Kool, W. and Botvinick, M. (2018).

Mental labour.

Nature human behaviour, 2(12):899–908.

[90] Körding, K. P. and Wolpert, D. M. (2004).

Bayesian integration in sensorimotor learning.

Nature, 427(6971):244–247.

[91] Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. (2019).

Similarity of neural network representations revisited.

In International Conference on Machine Learning, pages 3519–3529. PMLR.

[92] Kriegeskorte, N. (2009).

Relating population-code representations between man, monkey, and computational models.

Frontiers in Neuroscience, 3(3):363–373.

[93] Kriegeskorte, N. (2015).

Deep neural networks: A new framework for modeling biological vision and brain information

processing.

Annual Review of Vision Science, 1(1):417–446.

PMID: 28532370.

[94] Kriegeskorte, N. and Diedrichsen, J. (2019).

Peeling the onion of brain representations.

Annual Review of Neuroscience, 42(1):407–432.

[95] Kriegeskorte, N. and Kievit, R. A. (2013).

Representational geometry: integrating cognition, computation, and the brain.

Trends in Cognitive Sciences, 17(8):401–412.

132



BIBLIOGRAPHY

[96] Kriegeskorte, N., Mur, M., and Bandettini, P. (2008a).

Representational similarity analysis - connecting the branches of systems neuroscience.

Frontiers in Systems Neuroscience, 2.

[97] Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K., and

Bandettini, P. A. (2008b).

Matching categorical object representations in inferior temporal cortex of man and monkey.

Neuron, 60(6):1126–1141.

[98] Kriegeskorte, N. and Wei, X.-X. (2021).

Neural tuning and representational geometry.

Nature Reviews Neuroscience, 22(11):703–718.

[99] Krizhevsky, A. and Hinton, G. (2009).

Learning multiple layers of features from tiny images.

Technical report, University of Toronto, Toronto, Ontario.

[100] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).

Imagenet classification with deep convolutional neural networks.

Advances in neural information processing systems, 25:1097–1105.

[101] Kubilius, J., Bracci, S., and Op de Beeck, H. P. (2016).

Deep neural networks as a computational model for human shape sensitivity.

PLoS computational biology, 12(4):e1004896.

[102] Kubilius, J., Schrimpf, M., Nayebi, A., Bear, D., Yamins, D. L., and DiCarlo, J. J. (2018).

Cornet: modeling the neural mechanisms of core object recognition.

BioRxiv, page 408385.

[103] Laakso, A. and Cottrell, G. (2000).

Content and cluster analysis: Assessing representational similarity in neural systems.

Philosophical Psychology, 13(1):47–76.

[104] Lake, B. M., Zaremba, W., Fergus, R., and Gureckis, T. M. (2015).

Deep neural networks predict category typicality ratings for images.

In CogSci.

[105] Landau, B., Smith, L. B., and Jones, S. S. (1988).

The importance of shape in early lexical learning.

Cognitive development, 3(3):299–321.

[106] LeCun, Y., Bengio, Y., and Hinton, G. (2015).

Deep learning.

nature, 521(7553):436–444.

133



BIBLIOGRAPHY

[107] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel,

L. D. (1989).

Backpropagation applied to handwritten zip code recognition.

Neural computation, 1(4):541–551.

[108] Leek, E. C., Roberts, M., Oliver, Z. J., Cristino, F., and Pegna, A. J. (2016).

Early differential sensitivity of evoked-potentials to local and global shape during the percep-

tion of three-dimensional objects.

Neuropsychologia, 89:495–509.

[109] Long, B. and Konkle, T. (2018).

The role of textural statistics vs. outer contours in deep cnn and neural responses to objects.

In Conference on Computational Cognitive Neuroscience, page 4.

[110] Mack, A. (2003).

Inattentional blindness: Looking without seeing.

Current Directions in Psychological Science, 12(5):180–184.

[111] Majaj, N. J., Hong, H., Solomon, E. A., and DiCarlo, J. J. (2015).

Simple learned weighted sums of inferior temporal neuronal firing rates accurately predict

human core object recognition performance.

Journal of Neuroscience, 35(39):13402–13418.

[112] Majaj, N. J. and Pelli, D. G. (2018).

Deep learning—Using machine learning to study biological vision.

Journal of Vision, 18(13):2–2.

[113] Malhotra, G. and Bowers, J. (2019).

The contrasting roles of shape in human vision and convolutional neural networks.

In Proceedings of the 41st Annual Conference of the Cognitive Science Society, pages 2261–2267.

[114] Malhotra, G., Dujmovic, M., Hummel, J., and Bowers, J. S. (2021).

The contrasting shape representations that support object recognition in humans and cnns.

bioRxiv.
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