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ABSTRACT

When tilted and released, a can falls towards a flat, upright state. Instead of falling flat, the
can experiences a bouncing motion before rising up and falling over. During the bounce, the
can rotates through ±∆ψ, an angle greater than π and observable in experiments [87]. This
asymmetric behaviour is known as the rocking can phenomenon. A special case of Euler’s disk,
the equations of motion describing the rocking can contain two conserved quantities, for which
we provide a physical justification of their existence. The dynamics are reduced to a singularly
perturbed, second order ODE, with a small parameter corresponding to a combination of angular
momenta. Using matched asymptotics, we split the dynamics into an outer region, which describes
the initial rocking motion, and an inner region, which describes the bounce. The solution to
the inner problem yields the same angle of turn found by Srinivasan and Ruina [87]. We gain
new information about the sign of the angle of turn, with good agreement to the full non-linear
equations. We find that large angles of turn require prohibitively large coefficients of friction.

The related problem of Euler’s disk arises when dissipation is introduced to the system.
When spun on a hard, smooth surface, Euler’s disk rolls with a whirring noise that increases in
frequency until an abrupt halt. This halting behaviour is investigated in two experiments. In the
first experiment, we spin the disk on base-plates of different materials. We find that the energy
closely follows the well-known power law [68], but that the energy exponent n, commonly used to
characterise the motion, varies with the material characteristics of the base-plate. In the second
experiment, we spin the disk and film it from two angles, tracking both its angle of inclination
and the rotation of a strip drawn on the disk. We show that the disk continues to rotate after
falling flat. The duration of the continued rotation can be increased by lubricating the surface and
decreased by spinning the disk on a concave base-plate. It is suggested that the disk loses contact
with the plane and is briefly supported by a layer of fluid between the disk and the base-plate.

To analyse Euler’s disk, we derive the equations of motion subject to Coulomb friction and
another unspecified dissipation mechanism. We check for Painlevé paradoxes, a mechanism for
loss of contact, and find them to be impossible. In a relaxation of the rigid body assumption, we
find equivalent definitions of classical rolling friction and contour friction. Taking contour friction,
we numerically solve the equations of motion with initial conditions informed by experiments.
We find that the disk undergoes alternating periods of slipping and rolling motion, ending
with slipping motion. Furthermore, the disk encounters the discontinuity set of contour friction,
providing a mechanism for the continued rotation observed in experiments. Finally, we analyse the
post-falling flat motion, consisting of a lubrication theory-informed, contact-less phase followed
by a Coulomb-governed slip to a halt. The predicted duration of the post-falling flat motion is
in agreement with experiments. We posit that, on the concave base-plate, contour friction is the
dominant dissipation mechanism. However, on flat, hard base-plates, we conjecture the presence
of an air resistance based mechanism.
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1
INTRODUCTION

A good desk toy exhibits a physical principle in miniature. The archetypal example is

Newton’s cradle, which exemplifies the conservation of momentum through its click-

clacking pendulums. Chaos is found in the desktop double pendulum. Each mesmerising

swing is unique due to the sensitive dependence on initial conditions. A common childhood toy,

spinning tops are important to cultures around the world: Judaism has the dreidel, China has da

tuoluo and Malaysia has gasing pangkah, to name a few diverse examples. Clearly, rotational

motion is a universally captivating phenomenon and some of its most counter-intuitive properties

are typified in desk toys. Despite their simplicity, rattlebacks, tippe tops and even eggs show

surprising behaviour for which explanations are non-trivial. In this thesis, we study two desktop

phenomena that have thus far evaded satisfactory explanation: the rocking can and Euler’s disk.

Figure 1.1: Examples of spinning tops. The dreidel [2], da tuoluo [1] and gasing pangkah [4].

The rocking can phenomenon is easily replicated at home. Take an empty food can, a cylindri-

cal shell capped at both ends. When placed on a horizontal plane and tilted, the phenomenon

is observed by giving the can a small push, as in fig. 1.2. The can tilts, falling towards the flat
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CHAPTER 1. INTRODUCTION

a) b) c)

top view

side view

∆ψ
push

push

Figure 1.2: The angle of turn phenomenon. a) The can begins tilted about a point on the rim given
by the black circle. On release, the can falls down. b) As the can approaches the flat state the
contact point rapidly races around the rim of the can. c) The can rises up again, pivoting about
the contact point. The contact point has moved through an angle ∆ψ around the rim of the can.

upright state. Just before impact with the plane the can pivots, avoiding the impact, and the

contact point races around the rim. The can then rocks back up and falls over. Surprisingly, the

final state is not diametrically opposed to the initial state. The can has rotated through an angle

greater than π. Srinivasan and Ruina [87] compute this angle of turn using formal assumptions

on the motion and obtain agreement with experiments. In Chapter 2, we derive and analyse

the equations of motion for the rocking can. We reduce the system to a single, second order,

singularly perturbed, ordinary differential equation (ODE) by means of a Frobenius series. A

matched asymptotic approach splits the motion into two phases: one close to impact when the

can is almost flush with the plane, and one far away where the can is tilted over. We confirm and

extend the findings of Srinivasan and Ruina [87], determining the feasibility and direction of the

angle of turn along with the motion of the contact locus.

The remainder of this thesis examines a problem closely related to the rocking can: Euler’s

disk, a desk toy comprising of a heavy, spinning disk. Contrary to its name, Euler’s disk was

invented by Joseph Bendik [14] in 1987. A commercial version, machined out of steel, has

been developed with accompanying mirrored, concave base-plate and magnetic decorations.

An example is shown in fig. 1.3. The mirrored surface and holographic decorations are purely

aesthetic, an important consideration for a desk toy. On spinning the disk on the base-plate,

the motion continues for around two minutes. Beginning upright and spinning purely about the

vertical axis, the disk quickly falls into a more horizontal attitude. As the disk falls further, it

appears to spin faster, producing a whirring noise that increases in frequency. The noise carries

on for far longer than one might expect, with the disk oscillating only millimetres above the
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surface. Suddenly, the disk falls flat with a bang. A fair imitation of the phenomenon may be

achieved by spinning a coin or, better yet, a saucepan lid. A rigorous explanation for the motion

has not yet been found despite considerable academic interest.

Figure 1.3: The commercial Euler’s disk [3].

We study Euler’s disk experimentally in Chapter 3. In the first of two experiments, we film

the disk spinning on base-plates of different materials. Key dynamical variables are extracted

from the footage and we compute the energy of the disk. We find differences in the behaviour of

the disk on different base-plates. In the second experiment, we place a strip on top of the disk

to track its rotation. Appropriate placement of a mirror enables a second, synchronised view

of the disk. Analysis of the footage suggests that the disk continues to rotate for a short time

after falling flat. In both experiments, differences in behaviour are observed between the flat and

concave base-plates.

In Chapter 4 we derive the non-smooth equations of motion for Euler’s disk subject to an

unspecified dissipation mechanism. We discuss a number of candidate mechanisms that could

explain the motion of the disk, before analysing the most likely candidate: contour friction.

Numerical solutions of the equations of motion show behaviour qualitatively consistent with

experiments, but an augmented variant of contour friction gives the closest quantitative agree-

ment. The continued rotation of the disk can be explained by the presence of a discontinuity in

the contour friction formulation. We propose that the disk loses contact and continues to rotate,

supported by a thin layer of air. After making contact with the base-plate, Coulomb friction

quickly brings the disk to a halt.

In the remainder of this introduction we discuss the existing literature surrounding the

rocking can phenomenon and Euler’s disk, before giving an outline of the thesis in Section 1.5.
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CHAPTER 1. INTRODUCTION

1.1 Rotating bodies

It may be argued that rotating bodies have been studied informally since the invention of the

wheel in 4000 BCE. However, rotational dynamics rarely make for easy problems. For example,

consider the most basic three-dimensional rotational problem: spinning tops. These are not

integrable in general, but special cases have been analysed by the mathematical giants Euler,

Lagrange and Kovalevskaya [43, 63, 65]. The problem of rolling motion was seriously considered

towards the end of the 19th century in mathematical studies undertaken by Chapylgin [25],

Vierkandt [95], Appell [10] and others.

Figure 1.4: A rattleback [5]. When spun the
rattleback wobbles to a halt before reversing
direction.

Figure 1.5: The tippe top.

More than two hundred years after Chaplygin [25], rolling bodies are still the subject of

academic study. Many of the simplest rotating systems including the rattleback, the tippe top and

the mysterious spinning cylinder have only recently been afforded a mathematical explanation.

A rattleback, pictured in fig. 1.4, exhibits ‘spin reversal’ where, upon spinning, the rattleback

will slow, stop and then start spinning in the opposite direction [24]. Often such motion is

chiral, occurring in only one direction, though bidirectional rattlebacks do exist. The behaviour

is attributed to a ‘misalignment between the mass distribution and the ellipsoidal shape of the

bottom of the rattleback’ [24]. Borisov and Mamaev [18] discovered that the rattleback exhibits

chaotic dynamics.

The aptly named tippe top in fig. 1.5 consists of a truncated sphere connected to a stem. When

spun briskly, the tippe top wobbles and tips over until the stem makes contact with the ground.

The tippe top then flips upside-down, balancing about the stem rather than the spherical base.

Cohen’s [29] entertaining paper studies the dynamics of the tippe top and suggests it is friction

that causes the inversion, a claim upheld by Or [75]. A similar problem, the tippedisk is studied

by Sailer and Leine [85] and shown in fig. 1.6. With the hole placed upwards, the spinning motion
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is unstable and quickly switches to a configuration with the hole oriented downwards. This is

reminiscent of the spinning egg phenomenon where, upon spinning, a hard-boiled egg rises up

about its narrow end.

A final example involves even simpler geometry, a cylinder. Jackson et al. [57] analysed the

so-called ‘mysterious spinning cylinder’ with two marks at either end (shown in Figure 1.7). When

spun, only one of these marks is visible. The other is repeated periodically around the circle

traced out by the cylinder. The occurrence is due to a line of zero velocity points from the point

of contact through the centre of mass to the tip of the rod. The mark ‘X’ can only be seen when

directly above the contact point, far from the zero velocity line. It is therefore moving too quickly

to be visible. Meanwhile, the mark ‘O’ can only be seen when facing upwards, very close to the

zero velocity line. By contrast, it moves slowly and is visible. Six copies of ‘O’ appear due to the

1:6 ratio of the cylinder’s diameter to length. Such rotational toy problems are celebrated in the

article by Featonby [39] entitled ‘Dare we teach tops?’, the sentiments of which are echoed in this

thesis.

Figure 1.6: A tippedisk, figure reproduced
from [85].

Figure 1.7: The mysterious spinning cylin-
der, reproduced from [57]. When the cylin-
der is spun with a downwards snapping mo-
tion at ‘X’ only one of the symbols is visible.

1.2 The rocking can

Chapter 2 of this thesis tackles the rocking can phenomenon which is intimately connected to

the mysterious spinning cylinder. Srinivasan and Ruina performed a comprehensive analysis

of the phenomenon in their 2008 paper [87]. It was found experimentally that the angle of

turn ∆ψ≈ 217◦. They also note that the can may rotate clockwise or anticlockwise exhibiting a

sensitive dependence on the initial conditions. In addition to experiments, Srinivasan and Ruina

[87] derived the equations of motion for the can rolling without slip on the horizontal plane.

Numerical simulation of the equations exposed a formal relationship between two dynamical

variables, also employed by Vassiliou et al. [94] in their study of cylindrical structures during
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earthquakes. In this thesis we rigorously derive this relationship and give physical justification

for its existence. In their formal analysis, Srinivasan and Ruina [87] gave the following expression

for the angle of turn

∆ψ=π
√

A+mR2 +mH2

A+mH2 ,(1.1)

where A is the moment of inertia of the can around the non-symmetry axes and H and R are

the height and radius of the can respectively. The cylinder characteristics A, R and H can be

varied to predict a wide range of ∆ψ. For a homogeneous disk ∆ψ=πp5, or 402◦ more than a full

rotation. A tall cylinder has the minimum angle of turn ∆ψ≈π and simply rocks back and forth

in the manner of the rocking block analysed by Housner [52]. Later work by Srinivasan et al. [86]

examined the dynamics of the rocking can with a slight asymmetry in the mass distribution and

found chaotic motion.

Cushman and Duistermaat [33] studied the rolling behaviour of the thin disk with H = 0. They

found the same angle of turn and gained information about its direction. Batista [13] explored the

colliding motions of the thick disk with the plane using a similar method to Chapter 2: reduction

and subsequent integration of the equations of motion. The collisions were analysed assuming

elastic impacts, but Batista [13] did not discuss the angle of turn phenomenon nor its dynamics.

1.3 Euler’s disk

Euler’s disk has received popular interest, appearing in the television series ‘The Big Bang

Theory’ 1 as well as many informative YouTube videos most notably by ‘stand-up mathematician’

Matt Parker 2. At the time of writing, some videos have received upwards of 5 million views, a

testament to the striking nature of the motion. We first review the dissipation-free case.

1.3.1 The dissipation-free disk

A large body of work exists studying the behaviour of rolling disks in a conservative setting

[20, 76, 79, 88, 92]. There are two classes of dissipation-free motion, given by zero and sufficient

Coulomb friction. In the absence of friction the disk slips without loss of energy. For sufficiently

rough surfaces, the disk rolls without slip and no energy is dissipated. O’Reilly [76] studied a thin,

upright, rolling disk with both zero and sufficient friction and identified pitchfork bifurcations in

the motion. Rolling a penny on a horizontal surface in a straight line is stable at high angular

velocities, but as the speed decreases the rolling motion becomes unstable and the penny topples

to the left or right. It is observed that the critical angular velocity is larger in the absence of

friction and similar bifurcations are found for the vertically spinning disk. In addition, O’Reilly

1Season 10, episode 16.
2https://www.youtube.com/watch?v=8pSLffliCk0
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1.3. EULER’S DISK

[76] identified so-called ‘steady motions’ where the angle of inclination remains constant. Colliding

motions where the disk impacts on the horizontal plane with a ‘slap’ are analysed.

Paris and Zhang [79] also studied the thin, rolling disk and computed its steady motions. They

calculated the amplitude and frequency of the oscillations when the disk is perturbed from the

steady motions. Stanislavsky and Weron [88] also computed these oscillations and paid particular

attention to the nonlinear oscillations that occur far from the steady motions. The amplitude and

frequency of the oscillations are linked to both the whirring noise emitted by the disk and the

dissipation mechanism.

In experiments, Takano et al. [92] placed the disk on a vibrating plate and achieved sustained

motion. Numerical simulations suggested that a rolling disk still stops despite the vibrating plate,

but if the disk slips then sustained motion is possible. However, in the absence of an energy input

Euler’s disk always comes to a halt. The manner and cause of this halt has been at the centre of

the debate concerning Euler’s disk since the turn of the millennium.

1.3.2 Energy loss in Euler’s disk

In the past two decades there has been a great deal of discussion concerning the abrupt stop

of Euler’s disk. No agreement has been reached on exactly what happens in the final stages of

the motion nor the cause of the halt. The energy profile of the disk has been estimated from

experimental data and shows a clear power-law form [23, 68, 71]

E(t)= Ae(t0 − t)n,(1.2)

where Ae is a multiplicative constant, t0 is the time of the stop and n is the energy exponent.

Experimental estimates for n lie in the range [0,1] resulting in a sharp decrease to zero energy,

accounting for the abrupt nature of the halt. The precession and contact point velocity of the

disk approach a finite-time singularity as t → t0 producing the characteristic whirring noise [36].

However, Moffatt [74] noted that ‘nature abhors a singularity and some physical effect must

intervene to prevent its occurrence’.

A number of experiments have been performed that track the state variables of the disk to

estimate the energy exponent [23, 68, 71]. Ma et al. [71] measured the variables using a pair

of synchronised high-speed cameras and found that n ≈ 2/3. Experiments by Caps et al. [23]

employed a laser to measure the inclination of the disk for an estimate of n ≈ 2/3. Finally, Leine

[68] used a single high-speed camera to film the disk’s motion and found n ≈ 2/3 for times t ≪ t0

and n ≈ 1/2 as t → t0.

Despite these experiments, the energy dissipation mechanism that brings the disk to a halt

is not fully understood. Authors typically take a candidate dissipation mechanism and then

compute the energy exponent n. Although many mechanisms may remove energy from Euler’s

disk, the mechanism with the smallest n is dominant as t → t0. Moffat [74] proposed that viscous

dissipation in the layer of air between the disk and the base-plate is the dominant dissipation
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mechanism. Energy considerations in addition to a suite of assumptions gave a power law of the

form eq. (1.2) with n = 1/3. This estimate is rather too low when compared with experimental

data. Subsequent analysis by Bildsten [15] revised this estimate upwards to n = 4/9.

Borisov et al. [17] performed experiments examining the retrograde motion of rolling disks

and rings. Three experiments were performed: the ring was spun without modifications, with

the hole sealed, and in a vacuum. No major differences in behaviour were observed between

experiments. Similar experiments by van den Engh et al. [93] span a magnetic Dutch 2.5 guilder

coin in a vacuum noting no qualitative difference in behaviour. Note that this does not exclude

quantitative differences in behaviour during the final stages of the disk’s motion that could be

attributed to air resistance.

Caps et al. [23] and Petrie et al. [80] suggested that sliding friction may be the major source of

energy dissipation. In most mechanical problems this is a safe assumption, but analysis by Leine

[68] showed that Coulomb friction is unable to bring the disk to a halt, let alone be the dominant

mechanism. Caps et al. [23] noted that different materials give slightly different values of n.

This is also seen in the experiments by Ma et al. [71]. In Chapter 3 we investigate the material

dependence of n.

It is frequently argued that a form of rolling friction brings the disk to a halt. However,

in three-dimensions a body has three independent angular velocities which give rise to many

possible variants and combinations of rolling frictions. Ma et al. [70, 71] propose a viscous

friction model proportional to the square of an angular velocity, and obtain good agreement with

experiments for the whole motion. Three stages of motion are identified for Euler’s disk: 1) A fast

sliding stage where sliding friction dominates; 2) A slow creeping stage where both sliding and

rolling friction dominate; 3) A purely rolling stage where rolling friction dominates. However,

sliding motion is difficult to observe experimentally because the disk is almost stationary in the

final stages of the disk’s motion.

Cross [31, 32] also asserted that rolling friction is responsible, stating that ‘the sudden stop

appears to be due to a rapid increase in the coefficient of rolling friction’. Cross [32] suggested

that asperities in the surface may cause the increase. As the disk falls closer to the plane it comes

into contact with asperities over a wider contact region. Kwang-Hua [28] suggested that Cross

should consider deformations instead of asperities. In Chapter 4, we do so by relaxing the rigid

body assumption and derive new rolling frictions in a contact region approach.

Le Saux et al. [67] numerically analysed the disk subject to a number of rolling frictions and

noted that viscous and dry contour friction, as well as dry classical rolling friction, resulted in a

finite-time halt of the disk. Viscous classical rolling friction and dry Contensou friction [30] gave

an asymptotic decrease in energy, such that the disk does not stop in finite time. Subsequently,

Leine [68] reviewed and collated different dissipation mechanisms for the disk. Dry and viscous

contour friction gave promising estimates for n: 2/3 and 1/2 respectively. It is tentatively suggested

by Leine [68] that a dry contour friction followed by a viscous contour friction may explain the
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motion of Euler’s disk.

Mechanisms that are not based on a variant of friction have been proposed. Villaneuva [96]

suggested that vibrations in the disk may cause loss of contact just before the halt. Kessler and

O’Reilly [60] agreed, and proposed that excitation of the modes of vibration in the disk account

for the whirring sound and the eventual loss of contact with the plane. However, it is not clear

that energy loss due to the vibration is a significant factor.

Baranyai and Varkonyi [11] discussed a dissipation mechanism based on imperfections of the

disk. Supposing a polygonal disk, Baranyai and Varkonyi [11] discretised the disk’s motion from

one impact to the next. At each impact a proportion of the energy is dissipated via a coefficient of

restitution. Eventually, the disk may have more than one point of contact or even lose contact

with the base-plate entirely. Self-similar motion, whereby an impact at one vertex is followed by

the next vertex along the contour of the polygonal disk, is shown to have an energy power-law

exponent of n = 2. Thus it falls outside the range of experimental estimates. Baranyai and

Varkonyi [11] noted that ‘imperfections may affect energy dissipation during the last few tenths

of a second’, which could be the cause of the rattling noise that some authors have noticed.

Finally, loss of contact is predicted by Borisov et al. [19] in a pleasing experiment. Current is

passed through the disk and base-plate and when contact is lost, the circuit is broken. With this

method, an interval of no-contact lasting around 10-40 ms was observed at the halt. Prior to the

halt, many ‘micro-losses’ of contact are detected, each lasting for no more than 5 ms. We give an

explanation for the final loss of contact in Chapter 4.

1.4 Applications

Stefanou et al. [89] examined the dynamics of tall frustra rolling on a horizontal plane, with

applications to ancient classical columns excited by earthquakes. Two types of motion were

identified: ‘in-plane’ rocking and ‘out-of-plane’ wobbling. It was shown that collision with the

plane takes place under certain specific initial conditions. Otherwise, in the absence of dissipation

the cylinder periodically rocks between a maximum and minimum angle. Burger et al. [22]

also investigated tall cylindrical structures, subject to a ground forcing designed to mimic an

earthquake. Similarly, Aik et al. [61] and Vassiliou et al. [94] studied tall cylindrical structures as

extensions of Housner’s planar rocking block [52], paying particular attention to the overturning

conditions, an important engineering consideration. The analysis of the rocking can in Chapter 2

could be used to inform future work in cylindrical structures.

Clearly, rolling contact and rolling friction is an area of great engineering concern: wheels,

rollers and bearings are ubiquitous. The unknown dissipation mechanism causing the halt of

Euler’s disk may have implications for rolling friction. Rolling friction is an empirical area of

research and new analytic models may shed light on other previously unknown features. For

example, the rolling behaviour of tyres is commonly described by the empirical ‘magic formula
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tyre model’ [77].

Dynamical models of phenomena, such as wheel shimmy [44, 91], are dependent on the nature

of the rolling contact as noted by Le Saux et al. [67]. Often, friction models are non-smooth and

in three-dimensions may result in codimension two and even codimension three discontinuity

sets [8, 9, 27]. In these cases the form of rolling friction may be particularly important.

1.5 Outline

Chapter 2 discusses the rocking can phenomenon introduced by Srinivasan and Ruina [87]. We

reduce the equations of motion to a single, second order, nonlinear ODE describing the inclination

of the can. A rigorous matched asymptotic description of the motion is given. The outer solution

describes the inverted pendulum behaviour of the can as it rocks down. The inner solution

contains the angle of turn phenomenon where the can undergoes the impact-like bouncing motion.

This description yields expressions for the dynamical variables during the bounce, enabling an

exploration of the characteristics of the rocking can phenomenon. These include the direction of

the angle of turn, the contact point dynamics and the feasibility of the motion.

In Chapter 3, we present two sets of experiments concerning Euler’s disk. In the first experi-

ment, we spin the disk on a number of different materials and extract the data from the footage.

We estimate the parameters of the power law, eq. (1.2), from the data and uncover material

dependence of the energy exponent. In the second set of experiments, we film the disk from above

and the side and discover that the disk continues to rotate after falling flat. The experiments are

repeated on the concave base-plate. We discuss both experiments and their consequences for the

dominant dissipation mechanism.

In Chapter 4 we work towards an explanation for the disk’s motion that agrees with the

experimental results from Chapter 3 and the literature. We derive the equations of motion subject

to both Coulomb friction and unspecified dissipative moments. A review of the commonly used

dissipation mechanisms is given and we derive new mechanisms based on a relaxation of the

rigid body assumption. Numerical analysis suggests that a variant of contour friction can explain

the motion of Euler’s disk observed in experiments. However, we do not discount air resistance as

a dominant mechanism for flat base-plates. For the concave base-plate, it appears that contour

friction is sufficient. We explain the disk’s continued rotation after falling flat by a loss of contact

and a supportive layer of air. After making contact with the base-plate, Coulomb friction brings

the disk to a halt. Analysis of both post-falling flat stages are in agreement with the experimental

results for the flat and concave base-plates in Chapter 3.

Finally, concluding remarks are given in Chapter 5.
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2
THE ROCKING CAN

2.1 Introduction

Consider an empty food can, placed on a horizontal, hard surface and balanced about a

point on its rim. When the can is released, perhaps with a small push along the centre

line (fig. 2.1a), it rocks downwards in the manner of an inverted compound pendulum,

pivoting about the contact point. The rocking motion continues until the can is almost flush with

the surface, at which point the can appears to bounce and rock back up again. During the bounce

the contact point moves rapidly around the rim of the can (fig. 2.1b). However, the can does not

rock back up diametrically opposed to the starting direction (fig. 2.1c). In fact the can rises up

pointing in one of two directions. Experiments by Srinivasan and Ruina [87] determined that the

can rotates either clockwise or anticlockwise, moving through an angle ∆ψ dubbed the ‘angle of

turn’. For the specific can studied by Srinivasan and Ruina [87], the experimental angle of turn

was found to be approximately ±217◦. These hand-performed experiments produced repeatable

estimates for the angle of turn, suggesting that it depends not on the initial conditions imparted

by the push, but the physical characteristics of the can. However, the sign of angle of turn is

determined by the initial conditions and there exists a trajectory separating the clockwise and

anticlockwise motions. This singular trajectory ends in an impact where all points on the can’s

rim contact the plane simultaneously. Differences in initial conditions and small disturbances

mean such an impact is not seen in experiments and the can falls either to one side or the other.

In addition to their experiments, Srinivasan and Ruina [87] studied the rocking can problem

analytically. Employing small angle approximations and formal assumptions on the dynamics,

they computed the angle of turn for a rotationally symmetric rigid body with a circular base. As

a precursor to the rocking can problem, Cushman and Duistermaat [33] studied the nearly flat
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falling motions of a thin disk and uncovered the bouncing behaviour, along with the angle of

turn and its sign. Batista [13] explored the colliding motions of a partially linearised thick disk.

Upon integration, collisions with the plane are shown to be dependent upon two constants of

integration. Conditions for loss of contact were also determined. However, physical definitions of

the integration constant are not given, nor is an analysis of the rocking can phenomenon. Further

work by Srinivasan [86] showed that breaking the symmetry of the can with a small off-centre

point mass results in chaotic motion.

In this chapter we use asymptotics to study the same rocking can problem introduced by

Srinivasan and Ruina [87]. We consider a rotationally symmetric can rolling and spinning on

a horizontal plane with coefficient of friction µ. Particular attention is paid to the motion with

small angular momenta that give rise to the rocking can phenomenon.

In Section 2.2 we rederive and non-dimensionalise the equations of motion for the can. The

subsequent section studies the equations of motion and determines the static equilibria and

steady motions along with their stability properties. Section 2.4 details the reduction of the

equations of motion from a system of six, first order ODEs to one, singularly perturbed, planar

ODE, eq. (2.63).

In Section 2.5 we carry out asymptotic analysis for the reduced equation of motion. Matched

asymptotics applied to the singularly perturbed differential equation yields approximate solutions

to the rocking can problem. Considering the regular perturbation problem gives the outer solution.

The inner solution is found in the region where the outer solution breaks down. In the case of the

can, we find that the outer solution describes the slow, pendulum-like motion as the can rocks

down. Close to the flat configuration, the inner solution captures the fast bouncing motion. The

two solutions evolve on different time-scales that are visible in tabletop experiments. The initial

downward pivoting is slow relative to the fast bounce as the can falls almost flat. Such differences

in the time scales indicate a slow-fast system, but the equation of motion is in non-standard form

[97]. Therefore, traditional techniques from multiple time scale dynamics will struggle, as they

require the use of Geometric Singular Perturbation Theory (GSPT) and blowup [64]. By studying

the problem with a matched asymptotic approach we gain a uniformly valid approximation for

the dynamics and make rigorous the formal assumptions of Srinivasan and Ruina [87].

Section 2.6 contains analysis of some properties of the rocking can phenomenon. We compute

the angle of turn and obtain the same expression as Srinivasan and Ruina [87]. Furthermore,

we compute the condition for the can to fall clockwise or anticlockwise, extending the work

of Cushman and Duistermaat [33] from the thin disk to the can. Numerical simulations with

a variety of initial conditions corroborate the condition. Cushman and Duistermaat [33] also

explore the shapes traced out by the contact locus as a disk rolls. For the rocking can problem,

we find that the contact locus moves in a circle at a variable speed, spending more time in some

positions than others. For other initial conditions, a range of behaviours are visible including

cusp-like and petaloid patterns.

12



2.2. DERIVATION OF THE EQUATIONS OF MOTION

a) b) c)

top view

side view

∆ψ
push

push

Figure 2.1: The angle of turn phenomenon, repeated from fig. 1.2. a) The can begins tilted about a
point on the rim given by the black circle. On release, the can falls down. b) As the can approaches
the flat state the contact point rapidly races around the rim of the can. c) The can rises up again,
pivoting about the contact point. The contact point has moved through an angle ∆ψ around the
rim of the can.

Finally, we test the feasibility of the angle of turn phenomenon by computing a lower bound

for the coefficient of friction. This bound depends only upon the physical characteristics of the

can and not the initial conditions. The large angles of turn mentioned by Srinivasan and Ruina

[87] require very large coefficients of friction which renders them infeasible. The new analytic

results are confirmed with numerical simulations, performed in MATLAB.

2.2 Derivation of the equations of motion

The dynamics of a disk rolling on a horizontal plane have been studied since Appell [10], Korteweg

[62] and Vierkandt [95] and perhaps even earlier. More recently, the equations of motion for a

can rolling on a rough horizontal plane have been derived by Srinivasan and Ruina [87], Leine

[68], Ma et al. [71] and Borisov et al. [17]. Here we establish our notation and rederive equations

in the manner of Srinivasan and Ruina [87].

The can, shown in fig. 2.2, is a rigid, rotationally symmetric cylinder with height 2H, radius

R and moment of inertia tensor I = diag(A, A,C), where C is the moment of inertia about the

symmetry axis and A is the moment of inertia about the non-symmetry axes. The can moves on a

rough horizontal plane with a coefficient of Coulomb friction µ, that is assumed large enough to

ensure rolling motion (an assumption investigated in Section 2.6). A normal reaction force, N,

and friction force, F, act at the contact point, P.

To describe the orientation of the cylinder, we require three reference frames: the global

13



CHAPTER 2. THE ROCKING CAN

frame G, the body frame B and an intermediary frame I . The frames are defined by Euler angles

specifying successive rotations. In the global frame, the axes are aligned with the horizontal

plane. Rotation by ψ, the precession angle, around the zG axis gives the intermediary frame I .

Next, rotation by φ, the nutation angle, about the yI axis brings the can into the body frame B. A

final rotation θ, the rotation angle, about the zB axis is aligned with the symmetry axis of the

cylinder. The rotations are shown in fig. 2.2 and the 3×3 rotation matrices converting frame i to

frame j are given by Ri j

RGI =


cosψ sinψ 0

−sinψ cosψ 0

0 0 1

 , RIB =


cosφ 0 sinφ

0 1 0

−sinφ 0 cosφ

 .(2.1)

G I B

R

H

G

zG

xG
yG

ψ̇
zI

xI

yI

ψ

φ̇

zB

xB

yB
N

F

P

φ

θ̇

Figure 2.2: Rocking can setup. The three reference frames: the global G, intermediate I and body
frame B, are given by the successive rotations ψ and φ.

Applying Newton’s second law to the can linearly and rotationally gives the equations of

motion

maGG =−mgẑG +NG +FG ,(2.2)

IΩ̇B +ωB × IΩB =GPB ×RGB
(
NG +FG

)
,(2.3)

where the superscripts indicate the reference frame of the vector. The vector ẑG denotes a

unit vector in the zG axis. Other unit vectors are defined analogously. The vector from the

centre of mass, G, to the contact point, P, is given by GPB = (−R,0,−H)⊺. The acceleration

of the centre of mass is aG = (ẌG , ŸG , Z̈G)⊺. The angular velocity vector in the body frame is

ΩB = (ψ̇sinφ,−φ̇,ψ̇cosφ+ θ̇)⊺ and ωB = (ψ̇sinφ,−φ̇,ψ̇cosφ)⊺ is the angular velocity of the body

frame about the global frame. The linear force balance, eq. (2.2), is expressed in the global frame.

The moment balance, eq. (2.3), is expressed in the body frame, because the moment of inertia

tensor, I, is aligned with the can’s axes.
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2.2. DERIVATION OF THE EQUATIONS OF MOTION

The rolling without slip constraint provides the necessary information to determine the

contact forces N and F. Rolling motion is defined by zero velocity at the contact point, hence

VG
P =VG

G +RBG
(
ΩB ×GPB

)
= 0,(2.4)

where V P and VG are the velocities of the contact point and centre of mass respectively. We

compute the components of the velocity of the centre of mass by expanding eq. (2.4)
ẊG

ẎG

ŻG


G

=


−cosψ(φ̇(R sinφ+H cosφ)−sinψ(ψ̇(R cosφ−H sinφ)+Rθ̇)

cosψ(ψ̇(R cosφ−H sinφ)+Rθ̇)−sin(ψ)(φ̇(R sinφ+H cosφ))

φ̇(R cosφ−H sinφ)

 .(2.5)

Differentiating the velocities in eq. (2.5) yields the equations of motion for the position of the

centre of mass

ẌG =(−(R sinφ+H cosφ)φ̈− (R cosφ−H sinφ)
(
ψ̇2 + φ̇2)−Rθ̇ψ̇

)
cosψ(2.6a)

+ (−(R cosφ−H sinφ)ψ̈−Rθ̈+2(R sinφ+H cosφ)φ̇ψ̇
)
sinψ,

ŸG =(
(R cosφ−H sinφ)ψ̈+Rθ̈−2(R sinφ+H cosφ)φ̇ψ̇

)
cosψ(2.6b)

+ (−(R sinφ+H cosφ)φ̈− (R cosφ−H sinφ)
(
ψ̇2 + φ̇2)−Rψ̇θ̇

)
sinψ,

Z̈G =φ̈(R cosφ−H sinφ)− φ̇2(R sinφ+H cosφ).(2.6c)

Substituting the accelerations into the force balance, eq. (2.2), determines the normal and friction

forces

Fx =m
(−(R sinφ+H cosφ)φ̈− (R cosφ−H sinφ)

(
ψ̇2 + φ̇2)−Rθ̇ψ̇

)
cosψ(2.7a)

+m
(−(R cosφ−H sinφ)ψ̈−Rθ̈+2(R sinφ+H cosφ)φ̇ψ̇

)
sinψ,

Fy =m
(
(R cosφ−H sinφ)ψ̈+Rθ̈−2(R sinφ+H cosφ)φ̇ψ̇

)
cosψ(2.7b)

+m
(−(R sinφ+H cosφ)φ̈− (R cosφ−H sinφ)

(
ψ̇2 + φ̇2)−Rψ̇θ̇

)
sinψ,

N =mg+mφ̈(R cosφ−H sinφ)−mφ̇2(R sinφ+H cosφ),(2.7c)

where Fx and Fy are the components of the friction force F in the xG and yG axes. The scalar

normal force, N, is given by N = NẑG . Substituting the contact forces into the moment balance,

eq. (2.3), determines the unknown torques GPB ×RGB
(
NG +FG

)
, and hence the equations of

motion for the orientation of the disk [87](
(A+mH2)sinφ−mHR cosφ

)
ψ̈−mHRθ̈ = (C−2A−2mH2)ψ̇φ̇cosφ(2.8a)

+Cφ̇θ̇−2mHRψ̇φ̇sinφ,(
mR2 +mH2 + A

)
φ̈= (

(A+mH2 −C−mR2)sinφcosφ−mRH cos(2φ)
)
ψ̇2(2.8b)

−mg(R cosφ−H sinφ)− (
(C+mR2)sinφ+mRH cosφ

)
θ̇ψ̇,(

(C+mR2)cosφ−mRH sinφ
)
ψ̈+ (C+mR2)θ̈ = Cψ̇φ̇sinφ+2mRψ̇φ̇(R sinφ+H cosφ).(2.8c)
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CHAPTER 2. THE ROCKING CAN

Together, the linear and rotational equations of motion, eqs. (2.6) and (2.8), determine the state

of the disk. We rescale the lengths by R and the moments of inertia by mR2, introducing

h = H
R

, x = XG

R
, y= YG

R
, z = ZG

R
, a = A

mR2 , c = C
mR2 .(2.9)

The choice of R to non-dimensionalise lengths is made to avoid large quantities when considering

thin disks where 0< H ≪ R. We also scale t by
√

R/g and overload the notation so that the dot

notation means differentiation with respect to the scaled time. We write Φ= φ̇, Ψ= ψ̇ and Θ= θ̇.

Then, the dimensional equations of motion for the centre of mass, eq. (2.6), may be written in

non-dimensionalised form

ẍ =(−(sinφ+hcosφ)Φ̇− (cosφ−hsinφ)Ψ2 −ΘΨ− (cosφ−hsinφ)Φ2)
cosψ(2.10a)

+ (−Ψ̇(cosφ−hsinφ)− Θ̇+2(sinφ+hcosφ)ΦΨ
)
sinψ,

ÿ=(
(cosφ−hsinφ)Ψ̇+ Θ̇−2(sinφ+hcosφ)ΦΨ

)
cosψ(2.10b)

+ (−(sinφ+hcosφ)Φ̇− (cosφ−hsinφ)Ψ̇−ΨΘ− (cosφ−hsinφ)Φ2)
sinψ,

z̈ =Φ̇(cosφ−hsinφ)−Φ2(sinφ+hcosφ).(2.10c)

Similarly, we non-dimensionalise the rotational equations of motion, eq. (2.8)

Ψ̇sinφ=kcPΦΘ+ ((kcP −2)cosφ−hksinφ)ΦΨ,(2.11a)

Θ̇sinφ=(−kcP cosφ+hksinφ)ΦΘ+ (−kcP cos2φ−kaP sin2φ+hksin2φ+2)ΦΨ,(2.11b)

Φ̇(aP +1)=((aP − cP )sinφcosφ−hcos2φ)Ψ2 − (cP sinφ+hcosφ)ΘΨ+ (hsinφ−cosφ),(2.11c)

φ̇=Φ.(2.11d)

where the cyclic equations ψ̇=Ψ and θ̇ =Θ have been discarded. The variables x, y and z do not

appear in the equations of motion, eq. (2.11) and may be solved for separately. The constants

aP = a+h2, cP = c+1,(2.12)

are the scaled moments of inertia a and c taken about the contact point P. We also introduce the

quantity

k = c
a+ caP

,(2.13)

for brevity. Throughout this chapter, we consider an empty food can with mass m = 0.043kg,

height H = 5.45×10−2 m, radius R = 3.7×10−2 m, and moments of inertia A = 6.97×10−5 kgm2

and C = 5.89×10−5 kgm2. The moments of inertia are given by the sum of the contributions from

the hollow cylinder and the top and bottom faces. The scaled parameters are

a = 0.727, c = 0.615, aP = 2.897, cP = 1.6156, h = 1.473, k = 0.245.(2.14)
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φ

ψ

θ

Φ

Ψ

Θ

t

t

t

t

t

t

Figure 2.3: Numerical solution of the non-dimensionalised equations of motion, eq. (2.11). Initial
conditions and material parameters are given in eqs. (2.14) and (2.15) respectively.

Unless otherwise stated, in this chapter we consider initial conditions that give rise to the rocking

can phenomenon

(ψ,ψ̇,φ, φ̇,θ, θ̇)= (0,0.1001,π/100,0,0,−0.1000).(2.15)

Numerical solutions of eq. (2.11) are shown in fig. 2.3. The numerics were performed in MATLAB

using ODE15S to cope with the stiff nature of the ODEs. The nutation angle, φ exhibits bouncing

behaviour, and the reversal of the angular velocity is visible in the sawtooth profile of the φ̇ plot.

Fast changes in the other variables can also be seen at small φ. The angle of turn, |∆ψ|, is the

size of the step-like change in ψ, here observed to be 209◦. These step changes give rise to the

large spikes in the angular velocities, Ψ and Θ. The abrupt, almost discontinuous changes are

indicative of slow-fast dynamics, which we study via matched asymptotics in Section 2.5. In the

next section, we examine the equilibria and steady motions of eq. (2.11).

2.3 Equilibria and steady motions

In this section, we locate the equilibria and steady motions of eq. (2.11) and determine their

stability. Physically, we expect an equilibrium Sstatic of eq. (2.11) when the can is balanced on its
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a)

φ∗

b)

φ∗

Θ
Ψ

c)

φ

Θ
Ψ

Figure 2.4: Side view of the different steady motions. a) In Sstatic the can is static and balanced
on its rim at φ∗ = arctan(1/h). b) The can is balanced on its rim, but rolling with Θ and Ψ given
by Sbal eq. (2.20). c) The can is inclined at a constant angle φ and rolling with Θ and Ψ given by
Ssteady eq. (2.23).

rim and stationary

Sstatic =
{
(Ψ,Θ,Φ,φ)= (0,0,0,φ∗)

}
,(2.16)

where φ∗ = arctan(1/h). All the angular velocities are zero and the can is tilted at the balancing

angle as in fig. 2.4a. The Jacobian, evaluated on this equilibrium, has one positive, one negative

and two zero eigenvalues, indicating that Sstatic is a non-hyperbolic saddle. This is to be expected;

when balanced, the can shares similarities with a planar inverted compound pendulum. Note

that ψ and θ, the cyclic variables, may take any value. Sstatic is the only static equilibrium of the

system.

In fact, we may use the static equilibrium to explore the system further. Setting Ψ=Θ= 0,

yields an integrable subsystem of eq. (2.11), where the can is not spinning or rolling, but only

pivoting about its rim

φ̈= hsinφ−cosφ
aP +1

,(2.17)

which exactly describes the dynamics of a planar inverted compound pendulum. Making the

transformations

τ=
√

h2 +1
aP +1

t, φ= x+arctan(1/h),(2.18)

gives the ODE, ẍ = sin(x). The solution is [98]

x =±
∫

(−2cosτ+C1)−1/2dτ+C2,(2.19)
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with integration constants C1 and C2. The solution passes straight through φ= 0, and the can

impacts the plane at all points on its rim simultaneously. The rocking can phenomenon in fig. 2.3

is not observed if Ψ=Θ= 0, indicating that the problem is singularly perturbed.

Sbal is the set of all steady motions with the can balanced at φ=φ∗ (as in fig. 2.4 b)

Sstatic ⊂ Sbal =
{
(Ψ,Θ,Φ,φ)= (Ψ,Θ,0,φ∗)

}
,(2.20)

where it is required that Ψsinφ∗ (
(a− c)cosφ∗Ψ− cΘ

) = 0 from eq. (2.11c). If Ψ = 0, then the

steady motion corresponds to the can rolling in a straight line. Sbal has two non-zero eigenvalues,

which may be real or imaginary,

λ12 =±
√p

h2 +1−Θ2cP hk(h+ cP )
aP +1

,(2.21)

and two zero eigenvalues. Setting Θ = 0 in eq. (2.21) recovers the eigenvalues for the static

equilibrium, eq. (2.16). We see that for

Θ2 >Θ2
c =

p
h2 +1

hkcP (h+ cP )
,(2.22)

the steady motion Sbal, is centre-like and otherwise it is saddle-like. Therefore, there is a critical

rolling speed Θc, faster than which the rolling motion will persist. For a thin disk, the critical

rolling speed has been explored by Przybylska and Rauch-Wojciechowski [81], Paris and Zhang

[79] and O’Reilly [76]. Non-zero Ψ in Sbal gives a 1-D manifold of spinning and rolling solutions

with Θ = (a− c)cosφ∗Ψ/c. Steady rolling motions also occurs for angles of φ other than the

balancing angle φ∗. Requiring only that Φ= 0, we obtain the set of all steady motions

Sbal ⊂ Ssteady =
{
(Ψ,Θ,Φ,φ)= (Ψ,Θ,0,φ)

}
,(2.23)

where

((aP − cP )sinφcosφ−hcos2φ)Ψ2 − (cP sinφ+hcosφ)ΘΨ+ (hsinφ−cosφ)= 0.(2.24)

The set, Ssteady, shown in fig. 2.4c, is a 2-D manifold comprising all possible steady motions.

In addition to steady motions at small φ, there exist equilibria for φ > φ∗ where the can is

‘overbalanced’. These equilibria are central to the ‘mysterious spinning cylinder’ explored by

Jackson et al. [57], which consists of a slender cylinder undergoing a steady motion close to

φ≈π/2. Upon spinning, symbols drawn on the cylinder disappear or appear to remain stationary

depending on their position. An example of an overbalanced steady motion is obtained by setting

φ=π/2, Ψ=Θ=±
√

h/(cP −h).

The can rolls in a circle for all steady motions, Ssteady. The x and y velocities of the centre of

mass are given in unscaled form in eq. (2.5). Applying the scalings from eq. (2.9), we obtain

ẋ =− (Φ(sinφ+hcosφ)cosψ− (Ψ(cosφ−hsinφ)+Θ)sinψ,(2.25a)

ẏ=(Ψ(cosφ−hsinφ)+Θ)cosψ− (Φ(sinφ+hcosφ))sinψ.(2.25b)
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On Ssteady the nutation angle φ and the angular velocities Ψ and Θ are constant. Therefore,

Φ= dΨ
dt = dΘ

dt = 0 and we integrate for the position of the centre of mass

x(t)= Ψ(cosφ−hsinφ)+Θ
Ψ

cos(Ψt),(2.26a)

y(t)= Ψ(cosφ−hsinφ)+Θ
Ψ

sin(Ψt),(2.26b)

showing circular motion with radius

rcirc =
∣∣∣∣Ψ(cosφ−hsinφ)+Θ

Ψ

∣∣∣∣ .(2.27)

IfΨ(cosφ−hsinφ)+Θ= 0, then the centre of mass does not move. Steady motions with the centre

of mass at rest are called ‘stationary motions’. A can undergoing stationary motion experiences

no friction force. Therefore, this particular steady motion is shared with the frictionless can.

Requiring that rcirc = 0 in Ssteady, eq. (2.23), gives the 1-D set of frictionless orbits

Srest =
{
(Ψ,Θ,Φ,φ)= (Ψ,Θ,0,φ)

}
,(2.28)

where

Ψ2 = cosφ−hsinφ
asinφcosφ+ chsin2φ

, Θ=−Ψ(cosφ−hsinφ).(2.29)

The set Srest only exists for φ<φ∗. Stationary motion is discussed by McDonald and McDonald

[73] and Le Saux et al. [67] and has consequences for the analysis of Euler’s disk in Chapter 4.

In the next section, we reduce the equations of motion, eq. (2.11), to a single second order ODE,

eq. (2.63).

2.4 Reduction of the equations of motion

There is additional structure that can be exploited in the equations of motion, eq. (2.11). Take the

equations of motion for Θ and Ψ, eqs. (2.11a) and (2.11b), divide by Φ= dφ
dt and then apply the

chain rule

dΨ
dφ

sinφ= kcPΘ+ (
(kcP −2)cosφ−hksinφ

)
Ψ,(2.30a)

dΘ
dφ

sinφ= (−kcP cosφ+hksinφ)Θ+ (−kcP cos2φ−kaP sin2φ+hksin2φ+2)Ψ.(2.30b)

Equation (2.30) is a closed subsystem of eq. (2.11), so integration will yield conserved quantities

which may be used to reduce the number of variables. To solve eq. (2.30) we firstly, differentiate

eq. (2.30a) with respect to φ

Ψ′′ = kcPΘ
′

sinφ
− kcPΘcotφ

sinφ
−

(
kcP −2
sin2φ

)
Ψ+ ((kcP −2)cotφ−hk)Ψ′,(2.31)
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where []′ indicates differentiation with respect to φ. We eliminate Θ′ using eq. (2.30b) and

rearrange eq. (2.30a) to eliminate Θ, leaving

Ψ′′+3cotφΨ′− (2+k+khcotφ)Ψ= 0,(2.32)

a regular, singular ODE, also derived by Batista [12, (6)] with different notation. A solution exists,

in terms of hypergeometric functions

Ψ(φ)= C1

sin(φ)3/2 (cot(φ)+ i)−
p
ρ̄(cot(φ)− i)

p
ρ×(2.33)

2F1

(p
ρ− 1

2
−√

ρ̄,
p
ρ+ 3

2
−√

ρ̄;1−2
√
ρ̄,

1
2
− i

2
cotφ

)
+ C2

sin(φ)3/2 (cot(φ)+ i)
p
ρ̄(cot(φ)− i)

p
ρ×

2F1

(p
ρ+ 3

2
+√

ρ̄,
p
ρ− 1

2
+√

ρ̄;1+2
√
ρ̄,

1
2
− i

2
cotφ

)
.

where ρ = 1
16 (9+4(2+k)+4ikh), ρ̄ is the complex conjugate and 2F1 is the hypergeometric

function. The presence of sin(φ)−3/2 suggests a singular dependence of Ψ on φ. It is known

that ‘Numerical evaluation of the Gauss hypergeometric function. . . is notoriously difficult’ [35],

especially for complex arguments. We evaluate the solution, eq. (2.33), using MATLAB’s implemen-

tation HYPERGEOM. This analytic solution is shown alongside the numerical solution to the full

equations of motion, eq. (2.11). A strong dependence of Ψ on 1/φ2 is observed in both solutions.

However, eq. (2.33) is not very informative, so we turn to other solution methods. For our can, the

maximum angle attained is the balancing angle φ∗ = arctan(1/h)≈ 34◦. Furthermore, the rocking

can phenomenon occurs when φ is at a minimum. Therefore φ is assumed to be small and we

solve eq. (2.32) with a Frobenius series.

2.4.1 Frobenius series solution

For brevity, we define γ= 2+k and β= kh and the subsystem, eq. (2.32), becomes

Ψ′′+3cotφΨ′− (γ+βcotφ)Ψ= 0.(2.34)

The singular point at φ= 0 is regular as both φ(3cotφ) and φ2(γ+βcotφ) have valid Taylor series

expansions. We assume a Frobenius series solution at φ= 0

Ψ(φ)=
∞∑

n=0
pnφ

n+r,(2.35)

for n ∈N. Differentiating the series, eq. (2.35), and substituting into eq. (2.34) gives∑
pn(n+ r)(n+ r−1)φn+r−2 +3cotφ

∑
pn(n+ r)φn+r−1 − (γ+βcotφ)

∑
pnφ

n+r = 0,(2.36)

where the series expansion of cotφ is given by

cotφ=φ−1 − φ

3
− φ3

45
+O

(
φ5)

.(2.37)
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log(Ψ)

log(φ)
Figure 2.5: Comparison of numerical solutions to the equations of motion eq. (2.11), and the
analytic solution of the integrable subsystem, eq. (2.33). The solutions agree and show a clearΨ∝
1/φ2 dependency. Initial conditions and material parameters are given in eqs. (2.14) and (2.15)
respectively. The Ψ′ initial condition is computed from eq. (2.30a).

To obtain the indicial equation, we match the leading order terms O
(
φr−2)

, in eq. (2.36), given by

n = 0

p0r(r−1)+3p0r = 0.(2.38)

To obtain a non-trivial solution we require p0 ̸= 0. Therefore r1 = 0 and r2 =−2 and two series

solutions exist for eq. (2.34), one for each root. As r1 and r2 differ by an integer we expect the

presence of log terms in the r2 solution. Beginning with r1 = 0, we suppose a solution

Ψ0(φ)=
∞∑

n=0
pnφ

n.(2.39)

which upon substitution into eq. (2.34) yields∑
pnn(n−1)φn−2 +3cotφ

∑
pnnφn−1 − (

γ+βcotφ
)∑

pnφ
n = 0.(2.40)

Equating the orders determines the coefficients, pn, of the series

φ−2 : 0= 0,(2.41)

φ−1 : p1 = p0β

3
,

φ0 : p2 = p0
β2 +3γ

24
,

φ1 : p3 = βp0(β2 +11γ)
360

.
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The arbitrary constant p0 is determined by the initial conditions. The first series solution is

Ψ0(φ)= p0

(
1+ β

3
φ+ β2 +3γ

24
φ2 + β(β2 +11γ)

360
φ3

)
+O

(
φ4)

,(2.42)

where higher order terms in the expansion may be computed if desired. The second series solution

for r2 =−2 has the form

Ψ2(φ)= DΨ1(φ) log(φ)+
∞∑

n=0
qnφ

n−2(2.43)

where D is a constant, determined in the process of equating orders. Both q0 and q2 are arbitrary

constants: q2 because it corresponds to multiples of the other solution Ψ0(φ) and q0 because it is

determined by the initial conditions. Inserting the series eq. (2.43). into eq. (2.34) gives[
DΨ′′

0 logφ+ 2DΨ′
0

φ
− DΨ0

φ2 +∑
qn(n−2)(n−3)φn−4

]
(2.44)

+3cotφ
[
DΨ′ logφ+ DΨ0

φ
+∑

qn(n−2)φn−3
]
+ (γ+βcotφ)

[
DΨ0 logφ+∑

qnφ
n−2]= 0.

We discard all the logφ terms as they satisfy the original ODE eq. (2.34), leaving[2DΨ′
0

φ
− DΨ0

φ2 +∑
qn(n−2)(n−3)φn−4

]
(2.45)

+3cotφ
[

DΨ0

φ
+∑

qn(n−2)φn−3
]
− (γ+βcotφ)

[∑
qnφ

n−2]= 0.

Expanding and equating orders determines the coefficients, qn of the series solution

φ−4 : 0= 0,(2.46)

φ−3 : q1 =−βq0,

φ−2 : (β2 −γ+2)q0 +2D p0 = 0,

φ−1 : (−γ+1)q1 + β

3
(q0 −3q2)+4D p1 +3q3 = 0.

The first order is trivial, because r2 satisfies the indicial equation. The second order gives q1.

The third order gives D, the coefficient of the log term. At the fourth expansion, we obtain q3 in

terms of known coefficients and similarly for higher orders. Setting the arbitrary constant q2 = 0,

we construct the second solution

Ψ2(φ)= −q0(β2 −γ+2)
2p0

Ψ0(φ) logφ+ q0

(
1
φ2 − β

φ
− 1

9
β

(−2β2 +5γ−6
)
φ

)
+O

(
φ2)

.(2.47)

Again, higher order terms may be computed if desired. The general solution to eq. (2.34) is given

by a linear combination of the two solutions Ψ0(φ) and Ψ2(φ)

Ψ(φ)=B0Ψ0(φ)+B−2Ψ2(φ),(2.48)
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where we have replaced p0 and q0 with B0 and B−2. We truncate the solution eq. (2.48) to order

O
(
φ2)

and replace the original parameters β= kh and γ= 2+k

Ψ(φ)=B0

(
1+ kh

3
φ

)
− B−2((kh)2 −k)

2

(
1+ kh

3
φ+ (kh)2 +6+3k

24
φ2

)
logφ(2.49)

+B−2

(
1
φ2 − kh

φ
− 1

9
kh

(−2(kh)2 +4+5k
)
φ

)
+O

(
φ2)

.

As predicted by the analytic solution shown in fig. 2.5, Ψ has a φ−2 dependence at leading order.

In the next subsection we compute the analogous series solution for Θ.

2.4.2 Computing the series solution for Θ

With a series solution forΨ(φ) in eq. (2.49), we recall that Θ andΨ are related through eq. (2.30a).

Therefore, we compute the series solution for Θ(φ) by rearranging eq. (2.30a)

Θ= sinφ
kcP

(
Ψ′− ((kcP −2)cotφ−hk)Ψ

)
.(2.50)

Then we insert the solution for Ψ(φ), eq. (2.49), and its derivative Ψ′(φ). We expand the trigono-

metric functions and keep terms up to but not including O
(
φ

)
.

Θ(φ)=− B−2

φ2 + B−2kh
φ

+ −9B−2h2k2 + ((4cP +3)B−2 −6B0cP )k+12B0 −4B−2

6kcP
(2.51)

+B−2
h2k−1

2cP

(
(cP k−2)+ kh(cP k−6)

3
φ

)
logφ+O

(
φ

)
.

Discarding O
(
φ2 logφ

)
terms in eq. (2.49), the series solutions for Ψ and Θ read

Θ(φ)= −B−2

φ2 + B−2kh
φ

+Θ00 + (Θl0 +Θl1φ) logφ,(2.52a)

Ψ(φ)= B−2

φ2 + −B−2kh
φ

+Ψ00 + (Ψl0 +Ψl1φ) logφ(2.52b)

For the first two orders, the two expansions are equal, but have opposite sign, suggesting

Θ+Ψ=O (1). The unspecified coefficients Θ00, Θl0, Θl1, Ψ00, Ψl0 and Ψl1 in eq. (2.52) are given

in Section A.1. Equation (2.52) represents an improvement on the formal relations found by

Srinivasan and Ruina [87, (7) and (9)] as bothΨ(φ) and Θ(φ) may be expanded to arbitrary orders

of φ. In section 2.4.4, we use eq. (2.52) to eliminate Ψ(φ) and Θ(φ) from the equations of motion,

eq. (2.11), in favour of the conserved quantities B0 and B−2. However, B0 and B−2 are determined

by the initial conditions, eq. (2.15). In the next subsection, we compute B0 and B−2 in terms of

these initial conditions and give physical justification for their existence.

2.4.3 Computing the conserved quantities B0 and B−2

The two integration constants B0 and B−2 are conserved quantities, which generally have

physical meanings in mechanical systems. Furthermore, their values are required for numerical
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simulations. To determine B0 and B−2, we require initial conditions for eq. (2.34). However, the

only initial conditions are those supplied to the original rocking can problem: Ψt=0, Θt=0, φt=0

and Φt=0. Therefore, we compute Ψ′ in terms of Ψ, Θ and φ from eq. (2.30a), assuming small φ

Ψ′ = kcP (Ψ+Θ)−2Ψ
φ

−hkΨ+ kcP (Θ−2Ψ)+4Ψ
6

φ+O
(
φ3)

.(2.53)

The initial condition, Ψ′
t=0, is given by evaluating eq. (2.53) at t = 0. Differentiating eq. (2.49)

with respect to φ we obtain two simultaneous equations for B0 and B−2

Ψt=0 = B0Ψ0(φt=0)+B−2Ψ2(φt=0),(2.54a)

Ψ′
t=0 = B0Ψ

′
0(φt=0)+B−2Ψ

′
2(φt=0).(2.54b)

We solve for B0 and B−2 and obtain a series solution in terms of the initial conditions

B0 =kcP

2
(Θt=0 +Ψt=0)− hk2cP

2
(Θt=0 +Ψt=0)φt=0,(2.55)

− h2k2 −k
4

(kcP (Θt=0 +Ψt=0)−2Ψt=0)φ2
t=0 log(φt=0)+O

(
φ2

t=0
)

B−2 =− kcP

2
(Θt=0 +Ψt=0)φ2

t=0 +Ψt=0φ
2
t=0 +O

(
φ3

t=0
)
.(2.56)

As conserved quantities B0 and B−2 should remain constant throughout the motion of the can.

In fig. 2.6 we plot the expressions for B0 and B−2 in eqs. (2.55) and (2.56), computed from the

numerical solution in fig. 2.3. The values of B0 and B−2 are not conserved exactly, due to the

truncation of the series, but the fluctuations are small, justifying the inclusion of an additional

order in eq. (2.55). Including more terms in the expansions reduces the fluctuations even further.

For a physical understanding of the meaning of B0 and B−2 eqs. (2.55) and (2.56), compare

with the angular momentum about the global z axis, zG , and the body z axis, zB

HB
z = c(Ψcosφ+Θ)≈ c(Ψ+Θ)− cΨφ2

2
+O

(
φ4)

,(2.57)

HG
z = aΨsin2φ+ ccosφ(Ψcosφ+Θ)≈ c(Ψ+Θ)+

(
− c

2
(Ψ+Θ)+

(
a− c

2

)
Ψ

)
φ2 +O

(
φ4)

(2.58)

We notice that B0 ∝∼ HB
z and B−2 ∝∼ HB

z −HG
z at leading order, suggesting that they correspond to

components of angular momentum. In the frictionless case, the angular momenta HB
z and HG

z

are conserved exactly and emerge naturally in the Lagrangian formulation of the equations of

motion (see Section A.2). To understand why they are conserved, consider fig. 2.7: without friction

the only contact force is the normal force N, acting in the same plane as zB and zG . Therefore,

these components of angular momentum must be conserved in the frictionless case.

Upon including friction, the conserved quantities no longer correspond exactly to the angular

momenta, but approximately so. It is possible to offer some insight as to why. In the slipping

case, it is clear why HB
z and HG

z are conserved: there are no frictional forces providing a moment

to affect them. In the rolling case, friction affects the angular momenta, as shown in fig. 2.7.
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Figure 2.6: The conserved quantities B0 and B−2 computed from the non-dimensionalised equa-
tions of motion eq. (2.11). Small oscillations are visible, due to the truncation of eqs. (2.55)
and (2.56). Initial conditions and material parameters are given in eqs. (2.14) and (2.15) respec-
tively.

Shifting the friction force into the intermediate frame I , the component FI
x points in the radial

direction. Its line of action intersects with both the cans symmetry axis zB and the global vertical

zG axis, effecting no change in HB
z and HG

z . However, the component FI
y acts in the tangential

direction and can affect the angular momentum. It is given by

FI
y = (RGIFG ) · ŷI = mgkΦ(aΨsinφ+ ch(Ψcosφ+Θ)).(2.59)

At small φ, the size of the tangential friction is proportional to Θ+Ψ, in turn proportional to

B0 at leading order. If B0 is also small, then the effects of the tangential force on the angular

momenta are small and the angular momentum is conserved. We proceed to reduce the equations

of motion, eq. (2.11), using the conserved quantities B0 and B−2.

2.4.4 The reduced equations of motion

We substitute the series solutions for Ψ and Θ, eq. (2.52), into the equation of motion for φ,

eq. (2.11c), to obtain a single, second order, nonlinear ODE

φ̈=a3

φ3 + al2 logφ
φ2 + a2

φ2 + al1 logφ
φ

+ a1

φ
+all(logφ)2 +al0 logφ+a0 −1+O

(
φ(logφ)

)
,(2.60)

where the cosφ and sinφ terms have been replaced by their series expansions. All coefficients ai j

are bivariate quadratics in B0 and B−2, containing only B2
0, B2

−2 and B0B−2 terms. The coefficients

depend on the can’s material parameters h, k, aP and cP . We have also rescaled time by
p

aP +1
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FI
y

FI
x

N

G

Ψ Θ

zB

zG

Figure 2.7: The contact forces on the can. The lines of action of both N and FI
x intersect with

the axes zG and zB and, therefore, cannot affect the angular momenta about those axes. Only
the tangential component of friction FI

y can affect the angular momenta and this is shown to be
small in eq. (2.59).

and overloaded the [̇] notation. The leading order coefficient, a3 = B2
−2aP , is positive and higher

order coefficients are consigned to Section A.3.

The angle of turn phenomenon occurs when the can is released as in fig. 2.1, with some

angular momentum in the yI direction, but only a small component of angular momentum in

the other two axes. This implies that B0 and B−2 are small. Setting B0 = B−2 = 0 in eq. (2.60)

results in φ̈=−1, the linearised, scaled, version of the inverted pendulum discussed in eq. (2.17).

Instead, let both B0 and B−2 be small and of the same order. Specifically, introduce ϵ, a small

parameter such that

|B−2| = ϵ1/2,(2.61)

B0 = ζϵ1/2,(2.62)

where ζ=O (1) and 0< ϵ≪ 1. Then, upon discarding the O
(
φ logφ

)
terms we obtain

φ̈=ϵ
(

a3

φ3 + al2 logφ
φ2 + a2

φ2 + al1 logφ
φ

+ a1

φ
+all(logφ)2 +al0 logφ+a0

)
−1,(2.63)

the governing equation for the remainder of this chapter. We have extracted a factor of ϵ from

each ai j and overloaded the notation, such that a3 = aP . Note that eq. (2.63) is a Hamiltonian

27



CHAPTER 2. THE ROCKING CAN

system. In Section A.4, we compute the Hamiltonian and show numerically that there exist closed

curves corresponding to periodic orbits.

In figure 2.8, we compare the numerical solutions of the exact equations, eq. (2.11), with the

reduced equation obtained using the Frobenius series, eq. (2.63). The initial conditions, eq. (2.15),

fix the values of ϵ= 1.43×10−10 and ζ= 0.40. The reduced equation, eq. (2.63), show some drift in

the period after the second oscillation. The error arises due to the discarded O
(
φ logφ

)
terms.

The truncation also removes the equilibrium, Sstatic, where the can is balanced on the rim at

φ = φ∗ = arctan(1/h). Therefore, in eq. (2.63) the can is unable to overturn. These errors are

unimportant for the angle of turn phenomenon, which occurs at small φ≪φ∗. Small differences

in the extremal values of Ψ and Θ are also visible.

Figure 2.9 shows solutions of eq. (2.63) for different values of ϵ. For large ϵ, we see almost

sinusoidal oscillations in φ and an oval shaped phase portrait. We reconstruct Ψ from the

numerical solution using eq. (2.52b), giving a small, smoothed spikes around the minima of φ. As

we decrease ϵ, the solutions get sharper, the nutation angle φ exhibits the bouncing behaviour

and ψ shows the step-like increases that correspond to the angle of turn. This behaviour indicates

that ϵ mediates the angle of turn phenomenon. The phase portrait shows clearly the repulsion

from the singular line φ= 0 due to the φ−3 term in eq. (2.63).

Equation (2.63) is similar in form to the system uxx = λ
(1+u)2

(
1− ϵ2

(1+u)2

)
studied by Iuorio et

al. [54]. This singularly perturbed boundary-value problem describes the behaviour of a micro-

electro-mechanical system or MEMS. Iuorio et al. study the system using geometric singular

perturbation theory and blowup to resolve the singularity at u =−1. The ‘bouncing’ or ‘touchdown’

solutions obtained in their Figure 2 are closely related to φ time series in fig. 2.8.

The reduced system, eq. (2.63), also bears similarities to the ODEs studied by Lazer and

Solimini [66], and Rojas and Torres [83]. These ODEs are characterised by repulsive singularities

and have the form ü−1/uα = h(t). Lazer and Solimini [66] show that such systems have periodic

solutions, while Rojas and Torres [83] show that the solutions experience elastic collisions with

the singularity. Trajectories approach u = 0 zero and then veer away with a sharp change in

derivative, as in fig. 2.9.

2.5 Asymptotic analysis

In this section we study the reduced equation of motion, eq. (2.63), using a matched asymptotic

expansion [49]. A slow-fast approach is also possible, but the system is in non-standard form [97]

and requires more advanced techniques from GSPT and blowup [64].

The small parameter, ϵ, loosely represents an amount of angular momentum in the vertical,

zG , and symmetry, zB , directions. When ϵ is small, the rocking can has two obvious regimes: one

at large φ, where the can acts like a compound pendulum (the outer region), and one at small φ,

where the bounce occurs (the inner region). Matching the two solutions yields a uniformly valid
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t t

Ψ

φ

Θ

Φ

Figure 2.8: Numerical comparison of the exact equations of motion, eq. (2.11), (solid green) and
the reduced equation, eq. (2.63), (dashed orange). For fair comparison the additional time scaling
t =p

aP +1τ in eq. (2.63) is reversed. Initial conditions and material parameters are given in
eqs. (2.14) and (2.15) respectively.

solution for one half period of the motion.

2.5.1 The outer solution

The outer problem in a matched asymptotics is given by assuming a regular perturbation. The

system is subject to initial conditions, φ(0)= I/2 and φ̇(0)= 0, where the factor of 1/2 simplifies the

algebra. These initial conditions are consistent with those in eq. (2.15) for I =π/50. We propose a

regular asymptotic expansion of φ in the small parameter ϵ

φ(t)∼φ0(t)+ϵφ1(t)+O
(
ϵ2)

.(2.64)

Upon substitution of the expansion into the reduced equation of motion, eq. (2.63), the leading

order problem is given by the O (1) terms

φ̈0 =−1.(2.65)
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Ψ
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ψ

φ

Figure 2.9: Numerical solutions of the reduced equation of motion, eq. (2.63), with ϵ= 10−8 (green
solid), 6.4×10−7 (orange dashed) and 4×10−6 (blue dotted) and ζ = 1. Initial conditions are
(φ,Φ)= (π/100,0). The material parameters are given in eq. (2.14).

It describes the can falling under a scaled gravity. The solution after applying the initial conditions

is

φ0(t)= I − t2

2
,(2.66)

which gives the expected quadratic form. In the absence of angular momentum in the zB and zG

directions, we expect the disk to fall flat at t =p
I =√

φ(0)/2.

Balancing the O (ϵ) terms yields the next order of approximation

φ̈1(t)= a3

φ3
0
+ al2 logφ0

φ2
0

+ a2

φ2
0
+ al1 logφ0

φ0
+ a1

φ0
+all(logφ0)2 +al0 logφ0 +a0,(2.67)

and substituting in the leading order solution, eq. (2.66), gives the O (ϵ) problem for φ1

φ̈1 = 8a3

(I − t2)3 +
4al2 log

(
I−t2

2

)
(I − t2)2 + 4a2

(I − t2)2 +
2al1 log

(
I−t2

2

)
I − t2 + 2a1

I − t2(2.68)

+all log2
(

I − t2

2

)
+al0 log

(
I − t2

2

)
+a0,
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subject to the initial conditions, φ1(0)= φ̇1(0)= 0. The RHS of eq. (2.68) is only a function of t and,

therefore, each term may be integrated separately. To simplify the integration, we scale time

such that t =p
Iτ and then use the properties of logarithms to give

φ̈1 = b3

(1−τ2)3 + bl2 log(1−τ2)
(1−τ2)2 + b2

(1−τ2)2 + bl1 log(1−τ2)
1−τ2 + b1

(1−τ2)
(2.69)

+bll log2(1−τ2)+bl0 log(1−τ2)+b0,

where the additional factors have been absorbed into the new coefficients, bi. The highest order

coefficient is b3 = 8aP /I2 and the rest are given in Section A.5. The solution to the O (ϵ) problem

is written

φ1(τ)=
3∑

i=0
bi Ji(τ)+

2∑
n=0

bl i Jl i(τ)+bll Jll(τ),(2.70)

where

Ji =
∫ ∫

1
(1−τ2)i dτdτ,(2.71a)

Jl i =
∫ ∫

log(1−τ2)
(1−τ2)i dτdτ,(2.71b)

Jll =
∫ ∫

log2(1−τ2)dτdτ,(2.71c)

and each individual integral is evaluated in Section A.6. Many of the integrals involve log terms

can be evaluated in terms of the dilogarithm Li2(τ), defined by the power series

Li2(τ)=
∞∑

n=1

τn

n2 .(2.72)

Therefore the entire outer solution up to and including O (ϵ) terms is

φ(t)∼ I − t2

2
+ϵ

(
3∑

n=0
bi Ji

(
tp
I

)
+

2∑
n=0

bl i Jl i

(
tp
I

)
+bll Jll

(
tp
I

))
+O

(
ϵ2)

.(2.73)

Particularly important is the term J3, for which the integral is

J3 =
∫ ∫

1
(1−τ2)3 dτdτ= 1

8(1−τ2)
+ 3τ

8
arctanh(τ)(2.74)

= I
8(I − t2)

+ 3t

8
p

I
arctanh

(
tp
I

)
.

As t →p
I, the first term of eq. (2.74) grows larger than the O (1) solution, (I − t2)/2. Therefore, a

change in the dominant balance occurs and the outer solution is not valid as t →p
I. As stated in

Section 2.3, the problem is singularly perturbed because the regular asymptotic series, eq. (2.64),

is not valid over the whole domain. The O (1) term in the outer solution, eq. (2.73), gives the

solution to the problem with no vertical angular momentum and the O (ϵ) term gives a small

correction. A plot of the outer solution is shown in fig. 2.10, showing the quadratic fall.
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2.5.2 The inner solution

The inner solution to a matched asymptotic problem is the solution in the region where the outer

solution fails. In this case, the outer solution, eq. (2.73), fails as t →p
I. We propose a scaling of

the equation of motion, eq. (2.63), such that φ= δϕ and t = ηT +p
I in the inner region where

both η and δ are small quantities. The shift in t centres the inner time, T, on the breakdown of

the asymptotic balance. After applying the scalings we obtain

δ

η2ϕ
′′ =ϵ

(
aP

δ3ϕ3 + al2 logδϕ
δ2ϕ2 + a2

δ2ϕ2 + al1 logδϕ
δϕ

+ a1

δϕ
+all(logδϕ)2 +al0 logδϕ+a0

)
−1,(2.75)

where []′ now denotes differentiation with respect to T. To balance the derivative term and the

ϕ−3 term, we require

δ

η2 ∼ ϵ

δ3 .(2.76)

To remove the constant term, −1, we require it to be dominated by the ϕ−3 term, necessitating
ε
δ3 ≫ 1 such that δ= o

(
ε1/3)

. However, choosing δ= ϵ1/3 and η= 1 removes the derivative term

from the dominant balance, leaving an algebraic equation. We therefore require the time scaling

η, which leads to a set of allowable scalings. To map with the outer region, δ and η should be the

same scale, as t and φ are both O (1) in the outer region. Setting δ= η gives δ= η= ε1/2 in the

asymptotic balance, eq. (2.76). Therefore, the inner scaling is

φ= ε1/2ϕ, t =
p

I +ε1/2T.(2.77)

Applying the scalings to the equation of motion, eq. (2.63), and multiplying through by ϵ1/2 gives

the inner problem

ϕ′′ =a3

ϕ3 +ϵ1/2 al2 logϵ1/2ϕ

ϕ2 +ϵ1/2 a2

ϕ2 +ϵal1 logϵ1/2ϕ

ϕ
+ϵa1

ϕ
+ϵ3/2all

(
logϵ1/2ϕ

)2
(2.78)

+ϵ3/2al0 logϵ1/2ϕ+ϵ3/2a0 −ε1/2,

which may now be solved by a regular asymptotic series, ϕ∼ϕ0 +ϵ1/2ϕ1 +O (ϵ). Only the leading

order problem is required

ϕ′′
0 = ap

ϕ3
0

.(2.79)

Equation (2.79) is equivalent to the equation found by Srinivasan and Ruina [87, (13)] in their

treatment of the rocking can problem. The solution is

ϕ(T)=
√

P2 +
(papT −Q

)2

P2 +O
(
ϵ1/2 logϵ

)
,(2.80)

where P and Q are integration constants. Both initial conditions have already been used when

determining the integration constants for the outer solution. Therefore, P and Q must be deter-

mined by matching with the outer solution.
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2.5.3 Matching the outer and inner solutions

In the previous subsections we obtained two, approximate, analytic solutions to the equation

of motion, eq. (2.63). The outer approximation is valid for 0< t ≪p
I and large φ and the inner

approximation is valid for 0≪ t <p
I at small φ. In this section we match the two solutions to

obtain a uniformly valid solution for one half period of the motion. We appeal to Van Dyke’s

matching rule [49], which is commonly stated as

EnHmφ= HmEnφ,(2.81)

where En refers to the outer limit of the solution φ as ϵ→ 0, while keeping the outer variable

φ fixed and retaining n+1 terms. Hm refers to the inner limit as ϵ → 0, keeping the inner

variable ϕ fixed and retaining m+1 terms. The left side of eq. (2.81) is obtained by computing the

inner solution to m+1 terms and converting to outer variables. We then take the limit as ϵ→ 0,

retaining n+1 terms. Repeating the process in reverse gives the right hand side. Requiring both

sides to be equal matches the inner and outer solutions and determines the integration constants

P and Q.

In eq. (2.80), we have computed the inner solution to one term (m = 1). To write the inner

solution in outer variables, we apply the reverse transformation to eq. (2.77), ϕ = ϵ−1/2φ and

T = ϵ−1/2(t−p
I)

φ∼ ϵ1/2

√√√√
P2 +

(
ϵ−1/2pap(τ2 −

p
I)−Q

)2

P2 .(2.82)

Expanding, taking the limit as ϵ→ 0 and retaining two terms (n = 2) gives the LHS of Van Dyke’s

matching rule

E2H1φ=
pap(

p
I − t)

P
+ε1/2 Q

P
+O (ϵ) .(2.83)

Two terms of the inner solution written in the outer variables are required for both matching

constants P and Q to appear.

We computed the outer solution, eq. (2.73), to two terms. Writing the outer solution in inner

variables using eq. (2.77), then expanding it to a single order gives

H1E2ϕ=−
p

IT − aP

2I5/2T
+O

(
ϵ1/2 logϵ

)
,(2.84)

where the first term −pIT arises due to the leading order approximation φ0 and the second term

arises due to the J3 term. When written in equivalent variables the left and right hand sides of

eq. (2.81), eqs. (2.83) and (2.84), should match. Writing eq. (2.84) in outer variables and equating

with eq. (2.83) gives

E2H1φ=
pap(

p
I − t)

P
+ϵ1/2 Q

P
=−

p
I(t−

p
I)−ϵ ap

2I5/2(t−p
I)

= H1E2φ.(2.85)
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Matching orders of ϵ determines P and Q

P =
√

aP

I
, Q = 0.(2.86)

Therefore the one term, matched inner solution is

ϕ=
√

ap

I
+ IT2.(2.87)

To construct a uniformly valid solution for 0< t <p
I, we add the inner and outer solutions and

subtract the common form in the overlap. The common form is −pI(
p

I − t), given by inserting

the values of P and Q into eq. (2.85). The uniformly valid solution to the governing equation

eq. (2.63) is

φ∼ I − t2

2
+ϵ1/2

√
ap

I
+ Iϵ−1(t−

p
I)2 +

p
I(t−

p
I)(2.88)

=−
(p

I − t
)2

2
+

√
ϵap

I
+ I(t−

p
I)2.

The inner, outer and matched solutions are shown in fig. 2.10 for the standard initial conditions

eq. (2.15). It can be seen that the outer solution has a quadratic form and passes straight

through φ= 0. The inner solution is backwards asymptotic to φ=p
I(t−p

I), but as the solution

approaches t =p
I the trajectory veers away from φ= 0.

The uniformly valid solution fails after t =p
I. However, the governing equation eq. (2.63),

is a periodic, time reversible ODE, so, if required, a solution for all time may be constructed by

reflecting and repeating the matched solution, eq. (2.88).

2.5.4 Reconstructing the state variables

In the previous section we obtained a matched solution to the rocking can problem. We now

reconstruct the remaining state variables in the inner region where the bounce takes place.

Recall the series solution forΨ(φ), eq. (2.52b). We compute the inner solution forΨ by shifting

to the inner variables, eq. (2.77). The time scaling, t =p
aP +1T, from eq. (2.60) must also be

applied

1p
aP +1

dψ
dT

= sign(B−2)
ϕ2 − ϵ1/2 sign(B−2)kh

ϕ
+O (logϵ) ,(2.89)

To obtain dψ
dT as a function of the inner time T, we insert the inner solution, eq. (2.80), and take

the leading order term in ϵ. It is not possible to retain any higher order terms because eq. (2.80)

only includes terms of O (1)

dψ
dT

=
p

aP +1sign(B−2)( a3
I + IT2

)(2.90)
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t t

φ φ

Figure 2.10: Comparison of inner eq. (2.80), outer eq. (2.73), matched eq. (2.88), and numeric
solutions of the reduced equation of motion, eq. (2.63). Left: the time series for 0< t <p

I = 0.2507.
The matched and numeric solutions lie on top of one another. Right: the time series for 0.247<
t < 0.251 showing the divergence of the outer solution from the matched and numeric solutions.
Initial conditions and material parameters are given in eqs. (2.14) and (2.15) respectively. The
small parameter ϵ= B2

−2 = 1.43×10−10 and I =π/50.

This solution is only valid for 0 < t <p
I, or equivalently T < 0. However, RHS of eq. (2.90) is

symmetric about T = 0, so we may look at positive and negative T. The maximum angular velocity
dψ
dT is attained at T = 0 and in the non-dimensionalised scalings of eq. (2.63) it reads

dψ
dt max

= I
p

aP +1sign(B−2)
ϵ1/2aP

.(2.91)

The presence of ϵ1/2 causes the large spikes visible in fig. 2.8. For the standard parameter

values and initial conditions, eqs. (2.14) and (2.15), the maximum value of dψ
dt = 3449. Numerical

integration of the full, non-dimensionalised equations eq. (2.11) gives dψ
dt = 3575. The error is to

be expected due to the small φ and small ϵ approximations. The same procedure of transforming
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and scaling is applied to the Θ expression, eq. (2.52a)

dθ
dT

=−
p

aP +1sign(B−2)( a3
I + IT2

) =−dψ
dT

,(2.92)

where we see that dθ
dT and dψ

dT are identical but opposite in sign. The two angles ψ and θ are

determined by integration of eqs. (2.90) and (2.92). First, ψ

ψ(T)=
∫ p

aP +1sign(B−2)
a3
I + IT2 dT =

p
aP +1sign(B−2)

aP
arctan

(
ITp
aP

)
+Cψ,(2.93)

and secondly, θ

θ(T)=−
p

aP +1sign(B−2)
aP

arctan
(

ITp
aP

)
+Cθ,(2.94)

where Cψ and Cθ are integration constants. We compute dϕ
dT by differentiating the inner solution

eq. (2.80)

dϕ
dT

= IT√
a3
I + IT2

,(2.95)

thus completing the set of angular velocities and positions describing the can’s motion during

the bounce. The presence of arctan in eqs. (2.93) and (2.94) cause the angles ψ and θ to exhibit a

fast change over the bounce, and resemble smoothed step functions. The size of the step is equal

to the angle of turn ∆ψ. The scaled angle ϕ evolves according to a smoothed modulus function,

avoiding ϕ= 0. In unscaled variables the minimum angle reached by φ is φmin =√
ϵap/I.

2.6 Physical phenomena

The rocking can phenomenon consists of a slow, inverted pendulum-like rock downwards, before a

fast bouncing motion where the state variables undergo an abrupt change in value. In Section 2.5

these two motions were separated into the outer and inner regions respectively. In this section

we use the expressions for the state variables in the inner region to understand the physical

behaviour of the can as it undergoes the bounce. We explore the angle of turn and its sign, the

motion of the contact point and the coefficient of friction required for the phenomenon.

2.6.1 The angle of turn

The angle of turn, ∆ψ, is defined as the change in the precession angle ψ over the bounce. We

compute ∆ψ from the inner solution for ψ, eq. (2.93). Recalling that the solution is only valid for

T < 0, but appealing to the symmetry of eq. (2.90), the angle of turn is

∆ψ= 2(ψ(T = 0)−ψ(T =−∞))=π
√

aP +1
ap

sign(B−2).(2.96)
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In the case of large aP then |∆ψ|→π, the minimum value of the angle of turn. It is interesting

that the can rotates by at least π before rising back up, regardless of the material parameters. In

the case of small aP then |∆ψ|→∞, suggesting that the can completes many revolutions before

rising back up. The feasibility of such a large angle of turn is discussed in Section 2.6.3. Reverting

to unscaled units, the size of the angle of turn is

∣∣∆ψ∣∣=π
√

A+mH2 +mR2

A+mH2 ,(2.97)

agreeing with the work of Srinivasan and Ruina [87], which used formal assumptions on ψ, θ and

φ to reduce the problem. For the empty food can we calculate |∆ψ| = 209◦ or 29◦ past the centre

line; the solution of the non-dimensionalised equations of motion in fig. 2.3 also show jumps of

|∆ψ| = 209◦. The difference in |∆ψ| with respect to Srinivasan and Ruina [87] is attributed to the

differences in the can’s parameters, eq. (2.14).

Equation (2.96) also contains information about the direction of the angle of turn, through

sign(B−2). The dividing line between the clockwise and anticlockwise rotating solutions has been

investigated for the thin disk by Cushman and Duistermaat [33], who find a ‘codimension one

semi-analytic subset F of the phase space such that the disk falls flat in finite time’. Falling

flat corresponds to the singular solution described in eq. (2.17), where the entire rim of the disk

contacts the plane simultaneously. Recall the expression for B−2, eq. (2.56)

B−2 =−kcP

2
(Θ0 +Ψ0)φ2

0 +Ψ0φ
2
0 +O

(
φ3

0
)

(2.98)

Disregarding O
(
φ3

0
)

terms, the sign of B−2 is determined by whether the initial conditions lie to

the left or the right of the dividing line

Θ(0)=
(

2
cP k

−1
)
Ψ(0).(2.99)

Close to this line, the asymptotic series of φ0 in eq. (2.98) breaks down and we should consider

higher order terms. In fig. 2.11, we test the boundary, (2.99), numerically by solving the equations

of motion, eq. (2.11), for different initial conditions and noting to which side the disk falls. A

green square indicates that the can falls clockwise and orange indicates that the can falls in the

anticlockwise direction.

2.6.2 The contact locus

As the can approaches the bounce, the instantaneous contact point races quickly around the rim

of the can. Cushman and Duistermaat [33], numerically integrate the equations of motion for

the thin disk and plot the paths traced out by the contact locus. Using the inner solutions in

section 2.5.4, we analytically investigate the paths for the thick disk.

The instantaneous contact point P is stationary due to the rolling constraint. It is located

at GPB in the body frame. To see the movement of this contact point over the horizontal plane
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Θ

Ψ

Figure 2.11: Numerical validation of the boundary eq. (2.99), between clockwise and anticlockwise
falling trajectories. The unscaled initial conditions are (ψ̇,φ, φ̇, θ̇)= (ψ̇(0),π/100,0, θ̇(0)), and both
ψ̇(0) and θ̇(0) are varied. The corresponding square is coloured orange if ∆ψ< 0 and the can falls
anticlockwise. A square is coloured green if ∆ψ> 0 and the can falls clockwise. The black line is
the analytical prediction for the boundary, eq. (2.99).

xl

xl
xl

Θ

Θ

Θ

Figure 2.12: The instantaneous contact point, P, is fixed with respect to the can and stationary
at the moment of contact. The path that the instantaneous contact point traces out as the can
moves over the plane is called the contact locus, xl .

we introduce the contact locus xl . As the can rolls, the contact locus, xl traces out a path on

the horizontal plane. It is not fixed to a point on the can, but instead follows the contact point.
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Subtracting the rotation in θ from the can’s angular velocity, we compute the velocity of the

contact locus, V l ensuring that xl remains in contact with the plane

VG
l =VG

g +RBG
(
(ΩB −ΘẑB)×GPB

)
.(2.100)

The centre of mass velocity is given in eq. (2.5) and we apply the scalings, eq. (2.9), to non-

dimensionalise. The velocity of the contact locus over the horizontal plane is

dxl

dt

G
=Θ

(
−sinψ

cosψ

)
.(2.101)

Converting to inner variables and noting that dψ
dT =− dθ

dT from eq. (2.92)

dxl

dT

G
=−dψ

dT

(
−sinψ

cosψ

)
,(2.102)

which is integrable. Therefore, the leading order, inner solution for the contact locus describing

the path traced out by the can is

xl(T)=−cos
(p

aP +1sign(B−2)
aP

arctan
(

ITp
aP

)
+Cψ

)
+Cxl ,(2.103a)

yl(T)= sin
(p

aP +1sign(B−2)
aP

arctan
(

ITp
aP

)
+Cψ

)
+Cyl ,(2.103b)

where Cxl and Cyl are constants of integration related to the initial position of the contact locus.

Therefore, during the bounce the contact locus moves in a circular trajectory with radius 1. The

size of the circular arc traced out by the contact locus is |∆ψ|.
To understand how the contact locus moves in the outer region we recall the series solutions

for Θ(φ) and Ψ(φ), eqs. (2.52a) and (2.52b). Rescaling time T by 1p
aP+1 brings the series into the

same scale as eq. (2.63). Then, inserting the outer solution, eq. (2.73), and discarding the O (ϵ)
terms we obtain

dψ
dt

= 4ϵ1/2 sign(B−2)
p

aP +1
(I − t2)2 =−dθ

dt
.(2.104)

Integrating gives the outer solution for ψ(t)

ψ(t)= 2ϵ1/2 sign(B−2)
√

aP +1
(

t
I(I − t2)

+arctanh
(

tp
I

))
+Cψ,(2.105)

and inserting this into the contact locus equation, eq. (2.101), gives

xl(t)=−cos
(
2ϵ1/2 sign(B−2)

√
aP +1

(
t

I(I − t2)
+arctanh

(
tp
I

))
+Cψ

)
+Cxl ,(2.106a)

yl(t)= sin
(
2ϵ1/2 sign(B−2)

√
aP +1

(
t

I(I − t2)
+arctanh

(
tp
I

))
+Cψ

)
+Cyl .(2.106b)
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The presence of the small parameter in eq. (2.106) suggests that the contact locus position barely

changes in the outer solution until the asymptotic balance is broken as t →p
I. For small ϵ, the

contact locus trajectories are circular with large arcs in the inner solution and small arcs in the

outer solution. The numerical solutions of eq. (2.11) in fig. 2.13a show exactly this behaviour.

Sections of the trajectory where φ is large are plotted in red showing that the majority of the

motion occurs in the inner region at small φ.

In Cushman and Duistermaat’s [33] study of the thin disk with H = 0, the contact locus

rotates clockwise at small φ. After overturning at φ>π/2, the disk then rotates anticlockwise (or

vice versa). The thick disk cannot overturn without having multiple points of contact, therefore

we restrict φ ∈ (0,π/2). The change in rotation direction is not visible in the inner and outer

solutions presented in eqs. (2.103) and (2.106), both solutions rotate clockwise if sign(B−2) > 0

and anticlockwise otherwise.

Figure 2.13 also shows the contact locus trajectory for three other sets of initial conditions.

The trajectories are calculated numerically using the non-dimensionalised equations of motion,

eq. (2.11). The variety of different types of motion is evident, but note that at small φ, shown in

blue, all trajectories appear to be circular arcs. Figure 2.13b shows motion with initial conditions

just off the balancing angle φ∗ = arctan(1/h) with a large θ̇. The can rolls in a straight line before

falling almost flat, turning around and repeating, producing a spirographic, flower-like pattern.

Such a pattern cannot be seen in the reduced system (2.63), because it requires the presence of

the saddle equilibrium at φ∗ = arctan(1/h) which is destroyed when discarding O
(
φ

)
terms.

In fig. 2.13c the initial conditions are small φ, but with large ϵ. We see a roughly circular

trajectory, but with wobbles caused by the large vertical angular momentum ϵ. In fig. 2.13c, the

initial conditions are small φ with large θ̇ and ϵ. Close to the boundary defined by eq. (2.99), we

see circular movement, but along the top we see small cusp-like projections from the circle where

the can reverses its direction. These trajectories have some striking patterns, but our analysis

only applies to the circular trajectory in fig. 2.13a.

Further work is required to explain the cusp-like trajectories of the simulation in fig. 2.13d.

Figure 2.13d also raises another question: for what initial conditions does the can’s position

remain bounded? If the initial conditions belong to the steady motion Sbal, eq. (2.23), with Ψ= 0,

then the can rolls in a straight line with velocity RΘ and the position is unbounded. In fig. 2.12d,

the contact locus appear to be prescribe a larger circle, but it is unclear if the position remains

bounded. In the case of the thin disk, Borisov et al. [20] show that the contact locus is bounded

for almost all initial conditions.

2.6.3 The coefficient of Coulomb friction

To ensure the equations of motion, eq. (2.11), are valid we require that the coefficient of Coulomb

friction µ > |F(t)|/N(t) for all time. The maximum value of |F|/N is the required coefficient of

Coulomb friction between the can and the surface. Srinivasan and Ruina [87, fig. 5] find sharp
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xp

yp

a) b)

c) d)

Figure 2.13: Contact locus trajectories for different initial conditions. Portions of a trajectory
where φ is small compared to the initial condition are coloured blue (φ < φ0/10). To obtain
the trajectories the contact point velocity eq. (2.101) is integrated numerically using solutions
of eq. (2.11). The unscaled initial conditions are: a) as in eq. (2.15), b) (ψ̇,φ0, φ̇, θ̇) = (0,φ∗−1×
10−5,0,2), c) (ψ̇,φ, φ̇, θ̇)= (0.72667,π/100,0,7) and d) (ψ̇,φ, φ̇, θ̇)= (1.7267,π/100,0,7). The material
parameters are given in eq. (2.14).

changes in the friction ratio |F|/N when solving the equations of motion. The required coefficient

of Coulomb friction appears to remain finite despite its singular appearance. In this section we

investigate the dependence of the friction ratio on the material characteristics of the can.

The contact forces Fx, Fy and N are computed in eqs. (2.7a) to (2.7c). The ratio |F|/N is

|F|
N

=
√

F2
x +F2

y

N
,(2.107)

and in non-dimensionalised variables

|F|
N

=
√(
Φ̇(sinφ+hcosφ)+ΘΨ+ (Φ2 +Ψ2)(cosφ−hsinφ)

)2 + (
Ψ̇(cosφ−hsinφ)+ Θ̇−2ΦΨ(sinφ+hcosφ)

)2

1+ Φ̇(cosφ−hsinφ)−Φ2(sinφ+hcosφ)
.

(2.108)

In fig. 2.14, we plot the friction ratio, eq. (2.108), during the can’s motion. Similar behaviour to

Srinivasan and Ruina [87, fig. 5] is observed, but it differs due to the choice of parameter values

and initial conditions. In fig. 2.14, we colour the inner region blue, for φ<φ0/10, and we colour
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t

|F|/N

Figure 2.14: The ratio of friction to normal force versus time. The plot is coloured blue if the can
is close to the bounce and φ < φ0/10. The data is obtained by solving the equations of motion,
eq. (2.11), with initial conditions and material parameters from eqs. (2.14) and (2.15) respectively.

the outer region red. In this case, the outer region requires less friction than the inner region.

This is not true for all initial conditions and parameter values. The outer region may require a

higher coefficient of friction than the inner region, particularly if the initial conditions have large

Φ. The peak of the ratio |F|/N in fig. 2.14 is 0.508, suggesting that if µ> 0.508 the can will roll

without slip. This quite a large coefficient of friction, suggesting that the can may slip.

We write the friction ratio, eq. (2.108), in inner variables and insert the inner solutions,

eqs. (2.87), (2.90) and (2.92), along with their derivatives. Expanding and keeping only the

leading order term in ϵ gives an approximate lower bound on the required coefficient of friction

|F|
N

≈ h
aP

= mRH
A+mH2 .(2.109)

There is no time dependence in eq. (2.109), it must appear at higher orders of ϵ. Equation (2.109)

predicts a required coefficient of friction of µreq = 0.508, agreeing with the numerical value. We

note that this lower bound on the required coefficient of friction is indeed finite, as suggested by

Srinivasan and Ruina [87], despite the sharp appearance in fig. 2.14. Unexpectedly, there is no

dependence of the ratio |F|
N on the initial conditions in eq. (2.109). Again, the dependence is likely

to appear at higher orders of ϵ.

In Section 2.6.1, the expression for the angle of turn |∆ψ| predicts arbitrarily large values,

resulting in many complete rotations of ψ. Large angles of turn are predicted if the non-symmetry
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moment of inertia about the contact point, aP , is small. However, small aP in eq. (2.109) results

in a large required coefficient of friction, rendering large angles of turn infeasible. This explains

why large angles of turn are not seen in practice: the can slips.

For a uniform density cylinder, R, H, C and A are not independent quantities and the required

coefficient of friction may be simplified further

|F|
N

≈ RH
1

12 (3R2 +H2)+H2
= 12h

3+13h2 .(2.110)

Therefore for a uniform density cylinder the maximum required coefficient of friction is µ= 0.96,

occurring when h =p
39/13≈ 0.48. A coefficient of µ= 0.96 is not one easily achieved in tabletop

experiments.

2.7 Discussion and conclusion

In Section 2.2, we rederived the equations of motion for a can rolling on a rough, horizontal

plane. The equilibria and steady motions of the equations are examined and the problem is

reduced to a second order ODE using a small angle approximation. Two approximately conserved

quantities B0 and B−2 are found that correspond to angular momenta about the global vertical

and symmetry axes, justifying the formal assumptions made by Srinivasan et al. [87, (7) and

(9)]. Setting B0 = B−2 = 0 is a singular perturbation, prompting the introduction of the small

parameter ϵ = B2
0. The singular limit, ϵ = 0, yields a flat-falling solution, which is studied by

Cushman and Duistermaat [33] for the thin disk.

Two distinct regimes are visible when reproducing the rocking can phenomenon. Therefore,

we split the problem into inner and outer regions using a matched asymptotic approach, taking

advantage of the small parameter ϵ. In the outer region the can’s dynamics evolve according to

an inverted pendulum, while the inner region contains the dynamics underpinning the angle of

turn phenomenon.

Solving the inner problem results in approximate solutions for all the variables of the can,

enabling exploration of the characteristic features of the angle of turn phenomenon. We compute

the minimum angle φmin achieved by the disk and the maximum angular velocity ψ̇max attained

over the bounce. We recompute the angle of turn |∆ψ| derived by Srinivasan and Ruina [87] and

gain more information about the direction of the angle of turn. This extends the work of Cushman

and Duistermaat [33] to a thick disk with H ̸= 0. The key characteristics of the dynamics are

confirmed by numerical solutions of the full, nonlinear equations, eq. (2.11), in MATLAB. We

examine the motion of the contact locus and see a range of different trajectories, from circular to

petaloid motion and even cusp-like behaviour. However, at small φ and ϵ all trajectories of the

contact locus are circular.

Finally, we examine the friction ratio, eq. (2.108), over the course of the motion. Previous

analysis by Srinivasan and Ruina [87] shows sharp changes in the ratio over the bounce. Using
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the inner solutions we obtain an approximate lower bound for the required coefficient of friction

to avoid slip. We see that for small ϵ and φ the lower bound is independent of the initial conditions

and dependent only on the material characteristics of the can. For the empty food tin considered

in this chapter, a coefficient of friction µ≈ 0.508 is required to avoid slipping.

The tabletop experiments of Srinivasan and Ruina [87] show reasonable agreement for the

size of the angle of turn. Slow-motion video footage similar to that presented in Chapter 3 may

provide the necessary data to corroborate analytic estimates of φmin and ψ̇max. It may also be

possible to detect the presence of slipping events.

An interesting extension to the rocking can problem is the addition of a forced horizontal

plane, considered in the context of Euler’s disk by Takano et al. [92]. In the planar case, Hogan

[50] explored the dynamics of a rigid rectangular block rocking and impacting with a sinusoidally-

forced horizontal plane. The system contains a range of dynamical behaviour including period-

doubling cascades. If excited by seismic activity, three-dimensional structures such as classical

columns or grain silos may undergo similar behaviour to both the rocking can and the rocking

block. The literature concerning these structures [89, 94] may benefit from the approach in this

work.
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3
EXPERIMENTAL ANALYSIS OF EULER’S DISK

3.1 Introduction

The commercial Euler’s disk consists of a small, heavy, polished, steel disk and an accom-

panying concave, mirrored base-plate. An example is shown in fig. 1.3. The bottom rim

of the disk is gently curved, ensuring smooth contact with the base-plate, while the top

rim is sharper. The designs around the cylindrical and top faces produce striking patterns as

the disk spins. The concavity of the base-plate keeps the spinning disk confined to a central

area of the plate. It also increases the duration of the motion by providing a smooth surface for

the disk to roll upon. A technical diagram of the disk on a horizontal plane is shown in fig. 3.1.

The orientation of the disk is specified by the Euler angles ψ, φ and θ. The first angle ψ, the

precession angle, describes a rotation around the global vertical axis, zG . The second angle φ, the

nutation angle, describes a rotation about the intermediate frame axis yI and the third angle θ,

the rotation angle, describes a rotation around the body vertical axis zB .

Contrary to its name, Euler’s disk was invented by Joseph Bendik in 1987 [14]. Bendik spun

polishing chucks on a hard desk and noted the long duration of the motion: around thirty to forty

seconds. Captivated, Bendik sought disks that would spin for even longer. After prototyping, the

commercial Euler’s disk was born, which can spin for times in excess of two minutes. The Euler

moniker is attributed to the great Leonhard Euler for his interest in spinning and rolling (or

spolling) bodies. Indeed, the moniker is particularly appropriate, given that most analyses make

use of both Euler angles and Euler’s equations.

On spinning the disk about the vertical, it remains upright for some time. After a while the

disk ‘falls’ and it adopts a more horizontal attitude. As the nutation angle φ with respect to the

horizontal plane decreases, the disk rolls faster and faster. Towards the end of the motion, the
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Figure 3.1: Technical diagram of Euler’s disk. The three reference frames, the global G, interme-
diate I and body frame B are given by successive rotations ψ and φ. The vectors G and P refer
to the positions of the centre of mass and the contact point respectively.

disk is almost flat and spinning very quickly. The contact point races over the base-plate at a

speed of up to 60 kmh−1 causing a whirring rattling noise. The sound increases in pitch as φ

decreases further. Finally, the disk halts abruptly and falls flat.

The equations of a dissipation-free disk spinning on a horizontal plane have been generally

understood since the research of Korteweg, Appell, Vierkandt and Chapylgin [10, 25, 62, 95]

around the end of the 19th century. However, the specific problem of Euler’s disk is focused on

the final moments of the disk’s motion. Counterintuitively, the disk appears to spin faster and

faster before an abrupt stop. The velocity of the contact point approaches a singularity in a

continuous analogue to the chattering ping pong ball which, when dropped onto a hard surface,

undergoes successive impacts with decreasing intervals. For the case of the ping pong ball, the

dissipation mechanism which removes energy from the system is clear: impacts. For the disk, it

is less obvious; there are many candidates: Coulomb friction, rolling friction, elasticity, impacts,

and even vibrations [11, 32, 68, 96]. Coulomb friction, the go-to candidate for dissipation in

mechanical systems has been discounted for being unable to bring the disk to a halt [68].

Euler’s disk has been analysed experimentally many times. The halt is a simple phenomenon

to replicate but it is difficult to obtain meaningful data due to the high frequency and small

amplitude of the disk at the end of the motion. Air resistance was proposed by Moffatt [74] in

2000 as the dissipative mechanism that brings the disk to a halt. Subsequently, van den Engh

et al. [93] and Borisov et al. [17] spun disks in a vaccuum and observed the same qualitative

behaviour. Note that these experiments do not necessarily mean that Moffatt was mistaken, other

dissipation mechanism may also bring the disk to a halt with the same qualitative appearance as

air resistance. Many other experiments have been performed over the next two decades. In two

simple experiments, Borisov et al. [19] showed that the disk actually loses contact with the plane.

The final loss of contact is very short, lasting between 12 and 40 ms. Other experiments are more

conventional. Ma et al. [71] filmed the disk’s motion using two high-speed cameras, reconstructed

all the state variables and concluded that a form of rolling friction is the most likely culprit for

the dissipation mechanism. Leine [68] and Cross [32] also filmed the disk with a high-speed

camera and reconstructed some of the state variables. Leine’s analysis [68] pointed to the contour
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friction variant of rolling friction as the dominant mechanism [68]. Cross [32] suggested that as

the disk falls flatter, it comes into contact with more ‘high spots’ in the base-plate, resulting in a

rolling friction that depends on the nutation angle, φ.

Dissipation mechanisms explored in the literature predict that the energy decreases according

to a power law, eq. (3.2), with a parameter-free energy exponent, n. For example, the energy

exponent associated with clasical rolling friction is n = 2 [68], resulting in a quadratic decrease

in energy regardless of material parameters. Leine [68] remarks that ‘the results were always

qualitatively similar’ when spinning the disk on glass and aluminium base-plates. Ma et al. [71]

also spun the disk on glass and noted the same behaviour, albeit with slightly different exponents.

Finally, Caps et al. [23] spun the disk on glass, plastic and aluminium and found different energy

exponents. This suggests that n does have some material dependence, in contrast to analytical

calculations.

In this chapter we present the results of two sets of experiments focused on the disk’s final

moments. The first experiment in Section 3.2 examines the effect of the base-plate material on

the energy profile of the disk. We spin the commercial Euler’s disk and a similarly sized brass

disk on eight base-plates of different materials, including the mirrored concave base-plate, then

extract the energy from the footage. Fitting the experimental energy to the power law, eq. (3.2),

determines the energy exponent. For a stainless steel base-plate, we find that the energy exponent

agrees with [68], but it varies by as much as 0.24 depending on the base-plate material.

The second experiment, presented in Section 3.3, was motivated by an observation in the

first experiment. On viewing the footage, it appeared that the disk continued to rotate about the

vertical axis after falling flat. Such continued rotation may invalidate the so-called ‘stationary

rolling’ assumption employed in mathematical analysis of Euler’s disk [11, 67, 68, 74]. Stationary

rolling motion, sometimes known as adiabatic [74] or precession-free [11] motion, refers to rolling

motion where the centre of mass is stationary. It is often applied in a quasi-static form, and

the disk is assumed to ‘slowly drift(s) along this 1-parameter family of steady rolling solutions’

[11, 68] as it comes to a halt. This assumption is particularly advantageous because it reduces

the dimensionality of the equations of motion. For Euler’s disk, a 3D rigid body with six degrees

of freedom, any simplification, approximation or assumption is vital to analysis.

We use a mirror to film both the top and side of the disk and mark the top face of the disk to

track the rotation as it spins. The footage suggests that the disk continues to rotate after falling

flat. Furthermore, there is a qualitative change in the vertical rotation after the disk falls flat,

suggesting that the continued rotation corresponds to a different type of motion. The length of

time that the disk rotates can be extended by lubricating the surface with oil and decreased by

spinning the disk on the concave base-plate. Therefore, on flat base-plates, it would appear that

the disk is briefly supported by a thin layer of fluid before making contact and sliding to a halt.

By contrast, on the concave base-plate, the disk falls flat and is immediately brought to a halt by

Coulomb friction.
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3.2 A material dependent energy exponent

In this section we examine the effect of the base-plate material on the motion of Euler’s disk,

challenging the analytical result that the energy exponent is parameter-free [36, 68, 73]. First,

we discuss the power law used to describe the energy of the disk. We then estimate the energy of

the disk analytically, in terms of its state variables, before describing the experimental setup.

In section 3.2.4, we extract the state variables from the slow-motion footage. The disk’s energy

is then estimated from the experimental data and used to fit the parameters of the power law.

Finally, we analyse the results of the experiments in Section 3.2.6.

3.2.1 The energy exponent

The search for the dominant dissipation mechanism can be traced back to Moffatt [74], who

analysed the disk in terms of energy. Mofatt proposed that at small nutation angles, φ, the energy

dissipation is caused by a viscous layer of air between the disk and the base-plate, resulting in a

decrease in energy of the form

E(t)∝ (t0 − t)
1
3 ,(3.1)

where t0 is the time of the abrupt stop (subsequent analysis by Bildsten [16] revised the exponent

upwards to n = 4/9). Moffatt [74] showed that this theory breaks down before the finite-time

stop, noting that ‘nature abhors a singularity’. This seminal analysis sparked a number of works

examining other mechanisms.

Many of the attempts to explain the disk’s motion involve finding an energy power law of the

form

E(t)= Ae(t0 − t)n,(3.2)

where n is the energy exponent and Ae is a multiplicative constant. In general, Ae is dependent

on the material parameters, such as the coefficient of Coulomb friction, radius of the disk, etc. On

the other hand, n is typically determined by the form of the dissipation mechanism. Figure 3.2

compares the energy profile for a number of different values of n. All experimental evidence

predicts n < 1 resulting in a perpendicular decrease to zero energy, rather than tangential

decrease for n > 1 [32, 68, 71]. The perpendicular decrease in energy causes the halt to appear

abrupt.

The key question for Euler’s disk is, What mechanism brings the disk to a halt? The mecha-

nism with the smallest energy exponent dominates the dissipation and therefore can be credited

with bringing the disk to a halt. The term ‘dominant’ is used here in the asymptotic sense. The

rate of energy loss is given by differentiating eq. (3.2)

dE(t)
dt

=−nAe(t0 − t)n−1.(3.3)
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Figure 3.2: Comparison of different energy exponents in the power law, eq. (3.2). Experiments
predict n < 1 for a perpendicular decrease in energy. Here t0 = 0.

Clearly, if n < 1 the rate of energy loss is singular at t = t0. Therefore a mechanism with a

lower energy exponent, n, dominates other mechanisms with larger n as t → t0. For example,

n = 1/3 dominates the other power laws in fig. 3.2. Much analysis has focused on finding the

dissipation mechanism with the smallest exponent, but n must agree with the data gathered

from experiments.

3.2.2 Estimating the energy of Euler’s disk

The total energy of the disk is the sum of the linear and rotational kinetic energies and the

potential energy

E = m(VG ·VG)
2

+ IΩ ·Ω
2

+mg(R sinφ+H cosφ),(3.4)

where VG = (ẊG , ẎG , ŻG)⊺ is the velocity of the centre of mass, Ω= (ψ̇sinφ,−φ̇,ψ̇cosφ+ θ̇)⊺ is the

angular velocity of the disk and [̇] indicates differentiation with respect to time. I= diag(A, A,C) is

the moment of inertia tensor for the disk and A and C are the components about the nonsymmetry

and symmetry axes respectively. For Euler’s disk, m = 0.443kg, R = 0.0381m and H = 0.00635m

and, for the brass disk, m = 0.421kg, R = 0.04m and H = 0.005m. The moments of inertia are

given by A = m
12

(
3R2 +H2)

and C = mR2

2 .

Estimating the energy requires knowledge of the state variables, not all of which are com-

putable from the experimental footage. Therefore, some assumptions are required. Firstly, it is
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assumed that the disk is rolling, so the contact point P has zero velocity. Rather than recompute

the velocity of the centre of mass, we note that when rolling, Euler’s disk is identical to the

rocking can studied in Chapter 2. The velocity of the centre of mass is given in eq. (2.5), repeated

here

ẊG =−φ̇cosψ(R sinφ+H cosφ)− ψ̇sinψ(R cosφ−H sinφ)−Rθ̇sinψ,(3.5a)

ẎG =−φ̇sinψ(R sinφ+H cosφ)+ ψ̇cosψ(R cosφ−H sinφ)+Rθ̇ cosψ,(3.5b)

ŻG = φ̇(R cosφ−H sinφ).(3.5c)

Substituting eq. (3.5) and Ω into the energy, eq. (3.4), gives

E = φ̇
2

2
(
A+mH2 +mR2)+ C

2
(
θ̇+ ψ̇cosφ

)2 + m
2

(
R(θ̇+ ψ̇cosφ)−Hψ̇sinφ

)2(3.6)

+ A
2
ψ̇2 sin2φ+mg

(
R sinφ+H cosφ

)
.

Knowledge of ψ̇, θ̇, φ and φ̇ is still required to compute the energy. Therefore, we assume that

the disk undergoes stationary rolling motion, such that the centre of mass has zero velocity√
Ẋ2

G + Ẏ 2
G = ψ̇(R cosφ−H sinφ)+Rθ̇ = 0(3.7)

and φ̇= 0 from eq. (3.5). The stationary rolling motion assumption will be investigated further in

Section 3.3, but here it is used to eliminate φ̇ and θ̇ from the energy, eq. (3.6). Subtracting the

potential energy mgH, ensures that E = 0 when the disk comes to a halt. Hence,

E =C
2

(
H
R
ψ̇sinφ

)2
+ A

2
ψ̇2 sin2φ+mg(R sinφ+H cosφ)−mgH.(3.8)

Therefore, to estimate the energy exponent, it suffices to obtain only φ and ψ from experiments.

Numerical differentiation gives ψ̇. The other quantities, A, m, R and H are known constants.

3.2.3 Experimental set up

To obtain the relevant dynamical variables, φ and ψ, we film Euler’s disk in 480fps, 720×1280px

footage on a OnePlus 6T smartphone. The curved surface and top face of the disk are wrapped in

white paper and masking tape to dull reflections and provide contrast with the background. The

bottom surface is untouched to avoid interfering with the rolling motion.

In fig. 3.3, the camera captures the front elevation of Euler’s disk at rest on a 30×30×0.3cm,

flat, mild-steel base-plate. The base-plate rests on a silicone mat to dampen vibrations and keep

it fixed. Although spun by hand, care was taken to spin the disk in approximately the same way

each time. A single frame of the disk in motion is shown in fig. 3.4.
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xl xr

zt

zbase

Figure 3.3: A single frame of the footage showing Euler’s disk at rest on mild steel. The manually
identified edge points, xl , xr, zt and zbase are shown in green. The disk is flush with the base-plate
and zrim = 0.

Figure 3.4: Euler’s disk in motion on the mild-steel base-plate, roughly 0.5 s before the halt.
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zrim (t)

t

a) b) c) d)

Figure 3.5: The variable zrim denotes the height of the bottom rim of the disk along the centre
line. As the disk rotates zrim increases and decreases. In c) zrim reaches a maximum and the disk
is facing the camera.

3.2.4 Extracting data from the footage

There are a number of methods to compute φ and ψ from the footage. Some authors have filmed

from different angles and fitted ellipses to the top face, or tracked markings on the disk [68, 70].

For the experiment, we use a less computationally intensive method to compute φ. First, we

find zrim (t), the instantaneous height of the midpoint of the bottom rim above the base-plate, as

shown in fig. 3.5. At maxima of zrim (t) the orientation of the disk is known, as shown in fig. 3.6.

We compute φ using trigonometry

φ= sin
( zrim

2R

)
.(3.9)

φ

2R

zrim

camera view

Figure 3.6: Orientation of the disk at maxima in zrim corresponding to a side view in fig. 3.5c.

To extract zrim (t), we consider the disk after it has come to a halt in fig. 3.3. We compute

the final position of the disk by manually finding the pixels corresponding to the left and

rightmost edges of the bottom of the disk, denoted xl and xr. The centre line of the disk is

(xcentre, z)= ((xr − xl)/2, z). In the resting state of fig. 3.3, the disk is flush with the base-plate and

the intersection of the centre line with the bottom rim occurs at z = zbase, the height of the base-

plate. In preceding frames, where the disk is in motion, such as fig. 3.4, it is assumed that the disk
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has barely moved horizontally and the intersection corresponds to the position of the midpoint of

the bottom rim, zint(t). This is the aforementioned stationary rolling assumption, eq. (3.7). It is

not valid for times long before the halt, but close to the halt it is a reasonable approximation. The

height of the midpoint above the base-plate is given by computing zrim (t)= zint(t)− zbase for every

frame of the footage.

Figure 3.7: A single frame of the footage, showing the disk on mild steel base-plate. The pixels
are converted from RGB to binary with a threshold of γ= 0.35

To find the intersection of the centreline with the bottom edge, we must first find the bottom

edge of the disk. We convert each frame to black and white, thresholding on the intensity of

the RGB image. Pixels are coloured white if the mean RGB value (1/3)(R/256+G/256+B/256)

is greater than some threshold γ ∈ [0,1] and coloured black otherwise. Differences in light

levels, position of the disk and base-plate colours mean that the threshold is not constant for

all experiments. In fig. 3.7, an intensity threshold of γ= 0.35 is used which clearly outlines the

bottom of the disk. There is a large patch of white in the bottom left of the figure, caused by

the reflection of the disk in the steel, but we only require a clean image close to the centre line,

(xcentre, z).

Applying MATLAB’s edge detection procedure1 on the black and white frame yields fig. 3.8,

where the outline of the disk is clearly visible. The vertical position of the rim, zrim (t) is given by

the intersection of bottom edge with the centre line shown in green in fig. 3.8. For other base-plate

materials, such as acrylic and Teflon, the base-plate is white. We rely on the shadow beneath

the disk to give the necessary contrast to detect the bottom rim, as shown in fig. 3.9. In that

1edge, Copyright 1992-2020 The MathWorks, Inc.
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Figure 3.8: A single frame of the footage on the mild steel base-plate after applying edge detection.
The height of the bottom rim is given by the green dot which is located at the intersection of
centre line and the bottom rim of the disk.

Figure 3.9: A single frame of the footage showing Euler’s disk at rest on a Teflon base-plate. The
light coloured base-plate requires a different approach to identify the rim of the disk. The shadow
between the base-plate and the disk provides the required contrast.
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case there are two edges: the beginning of the shadowed region and the beginning of the disk.

Therefore, for light coloured base-plates, we compute zrim (t) using the intersection of the centre

line with the second edge from the bottom.

Computing zrim (t) for each frame gives fig. 3.10. Just after release, the disk can move

considerably from side to side, violating the stationary rolling assumption. Oscillations in the

envelope of zrim between frames 0 and 1000 are visible, but it is unclear if these are due to

the lateral movement of the disk. Towards the end of the motion the lateral movement has

disappeared. Therefore, we only focus on the final 0.5 s of the motion, with the additional benefit

of cutting down on computation time.

Frame

zrim [px]

Figure 3.10: The vertical position of the bottom edge of the disk in pixels. Footage was filmed at
480fps capturing about 3 s of motion.

To convert zrim (t) from pixels to metres, we compute the size of a single pixel. Disregarding

error due to the elevated perspective of the camera, the length of the centre line from zt to zbase

in fig. 3.3 is equal to the height of the disk, 2H. Therefore the vertical length of a single pixel is

δ= 2H
zt − zrim

,(3.10)
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defining the resolution of the data and thus the minimum detectable amplitude of oscillations.

The resolution δ is not fixed for every experiment, because the disk may wander in the course of its

motion and halt closer or further from the camera. For the experiment in fig. 3.3, δ= 6.58×10−5m,

or roughly 1/20th of a millimetre.

Multiplying by δ converts the zrim (t) data from pixels to metres and the frame number is

converted to time using the frame rate of 480fps. The stopping time, t0, is easily identified in

fig. 3.10, occurring at frame 1486, or t0 = 3.096s. All data points after t0 are discarded and time

is shifted so that the disk stops at t = 0. Finally we discard data points before t =−0.5s to capture

only the end of the motion.

t [s]

zrim [m]

Figure 3.11: The vertical height of the bottom edge of the disk during the last 0.5 s of the motion.

The resultant zrim (t) data, plotted in fig. 3.11, shows oscillations increasing in frequency

and decreasing in amplitude. Even in zrim (t) the abrupt nature of the stop is visible. The disk

completes roughly 20 oscillations in the final 0.5s, giving an average frequency of 40 Hz. The final

oscillation has an instantaneous frequency of 72 Hz. This is less than the estimates of McDonald

and McDonald [73], but likely due to the differences in sampling rate and resolution. During the

final oscillation, the contact point is moving at 17 ms−1 or around 60 kmh−1.

In the final oscillation shown in fig. 3.11, peaking around t =−0.006s, the rim is only 0.2 mm
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above the base-plate. Such small oscillations are close to the resolution of the data δ, resulting in

rough data. Furthermore, the high frequency of the oscillations caused some of the peaks and

troughs to be truncated by the time sampling. This is ignored in the subsequent analysis, but

could be mitigated by an appropriate smoothing.

3.2.5 Computing the state variables φ and ψ

While zrim (t) carries useful information, φ and ψ̇ are required to estimate the energy in eq. (3.8).

At each peak of zrim (t), the underside of the disk faces the camera directly, as in fig. 3.6, and the

nutation angle of the disk, φ, is given by eq. (3.9).

φ [rad]

t [s]
Figure 3.12: Reconstruction of φ from the
experiment footage.

ψ [rad]

t [s]
Figure 3.13: Reconstruction of ψ from the
experiment footage.

This sampling reduces the time resolution of the data from one data point every 1/480th

of a second to one data point per peak in zrim (t). Improvements are discussed in Section 3.2.7.

Between each peak, the disk precesses by 2π. Therefore we compute ψ by incrementing 2π each

peak in zrim (t). Alternatively, the resolution may be doubled by incrementing ψ by π each peak or

trough. As with zrim (t), we zero the ψ time series such that the motion ends at ψ= 0. McDonald

& McDonald [73] determine ψ by the same method. The φ and ψ data are shown in figs. 3.12

and 3.13. In fig. 3.12, we see the classic perpendicular decrease in φ that has been observed in

other experiments [68, 71]. The φ variable does not appear to oscillate, but this may be due to

the sampling frequency.

We require ψ̇ to estimate the energy of the disk. The derivative at a time ti is estimated using

the slope of the succeeding line segment

dψi

dt
≈ ψi+1 −ψi

ti+1 − ti
.(3.11)

We compute the energy using eq. (3.8) and show the results in fig. 3.14. Note the similarity with

the φ time series which suggests that the potential energy dominates the energy.

To determine the energy exponent, n, we fit the power law, eq. (3.2), to the energy in fig. 3.14.

By shifting time so that the stop occurs at t = 0, the energy power law is simply E = Ae tn.
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t [s]

E [J]

Figure 3.14: The energy power law that best fits the experimental data. We fit E = Ae tn to the
experimental energy data using a least squares approach. The fit has Ae = 0.0063 and n = 0.502,
very close to square root-like behaviour.

Minimising the squared error between the experimental energy and the power law gives estimates

for Ae and n. In fig. 3.14, the fit for this experiment is shown with Ae = 0.0063 and n = 0.502

which shows a good agreement with the literature [68, 73].

3.2.6 Results

Due to the noise in the data we repeat the experiment twelve times on base-plates made of mild

steel, stainless steel, pine, oak, acrylic, Teflon and silicone to determine if the energy power law

depends on the material of the base-plate. We also spin the disk on the concave base-plate that

accompanies the commercial Euler’s disk.

These materials were chosen for their wide range of physical properties. For example, mild

and stainless steel have a very high Young’s modulus, 210 GPa and 180 GPa respectively, while

silicone and Teflon have a much lower Young’s modulus, 0.4 GPa and 0.0793 GPa respectively.

Other material values are shown in table 3.1.

Accurate values of the coefficient of Coulomb friction are difficult to find and dependent upon
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Material Poisson ratio, ν YM, GPa µ

mild steel 0.303 210 0.147
stainless steel 0.305 180 0.134

oak 0.369 11 0.181
pine 0.335 9 0.201

acrylic 0.37 3.2 0.204
Teflon 0.42 0.4 0.094

silicone 0.5 0.0793 0.373

Table 3.1: Table of base-plate material properties [34, 37, 38, 41, 72]. Coefficient of Coulomb
friction, µ, is calculated from data obtained in an inclined plane experiment. The concave base-
plate is omitted.

the surface finish of both the disk and the base-plate material. To obtain approximate values we

repeat the classical experiment of a block on an inclined plane. We place Euler’s disk on each

base-plate and tilt the base-plate until slipping occurs. The angle of the base-plate, α, at the onset

of slip determines the coefficient of Coulomb friction via µ= tanα. The average coefficients of

Coulomb friction after 10 repeats are recorded in table 3.1. Teflon has a famously low coefficient of

Coulomb friction, measured to be µ= 0.094, while silicone has the largest coefficient at µ= 0.373.

The energy exponents for each set of experiments are shown in a box plot in fig. 3.15. All

the exponents lie in the range n ∈ [0,1]: the perpendicular decrease in energy is common to all

base-plates. However, there are differences between the materials. For example, the mean energy

exponent for silicone is n = 0.69 while for mild and stainless-steel it is n = 0.49 and n = 0.45

respectively. There is no overlap between the box plots for steel and silicone suggesting that the

difference in material properties translates to a difference in energy exponent. It remains to be

seen which material properties affect the motion of the disk. We discuss four properties: Young’s

Modulus, Poisson’s ratio, coefficient of Coulomb friction and surface roughness.

Figure 3.16 shows the variation of n as a function of the material parameters. Young’s

modulus measures the stiffness of a solid and is defined as the ratio of stress to axial strain. A

material with a large Young’s modulus is difficult to extend or compress. Although frequently

modelled as rigid bodies, the disk and base-plate are not perfectly rigid. Instead of contacting

the base-plate at a point, the disk touches the base-plate over a contact region. The size of this

contact region is partly determined by the material’s Young’s modulus [58]. Stiffer materials with

larger Young’s moduli have smaller contact regions [58] and smaller contact regions result in

decreased rolling resistance. Correspondingly, a rough negative trend of n with Young’s modulus

is visible in fig. 3.16a.

Poisson’s ratio is defined as the ratio of transverse to axial strain. In the elastic Hertzian model

of contact, Poisson’s ratio also affects the size and shape of the contact region [58]. Figure 3.16b

shows the energy exponent, n, as a function of the Poisson’s ratio. Unlike Young’s Modulus, we

see a positive trend, suggesting that larger Poisson’s ratios give rise to larger exponents.
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Figure 3.15: Box plots of the energy exponent, n, estimated from experiments. Euler’s disk was
spun twelve times on each base-plate material. Materials are ordered by decreasing Young’s
modulus, except for the concave base-plate for which the Young’s modulus is not known. Outlier
shown in red.

Teflon was included in the experiments for its low coefficient of Coulomb friction but the

exponent does not stand out in fig. 3.15. In fig. 3.16c there is a similar weak positive trend when

compared to the Poisson’s ratio. It is perhaps surprising that a trend is visible. If as assumed, the

disk is rolling at the end of the motion, then the coefficient of friction does not affect the energy

dissipation. Even if the disk does slip, Coulomb friction has been shown to be dominated by other

dissipation mechanisms [68].

It is likely that surface roughness affects the energy exponent. Mild and stainless steel are

similar materials, but the base-plates have differing finishes. The stainless steel base-plate

has a far smoother finish, possibly translating into a lower energy exponent. However, the two

exponents for mild and stainless steel are too close to draw conclusions.

A possible reason for silicone’s large exponent is its short spinning time. A short spinning

time means that the 0.5 s sample may capture other dissipation mechanisms as well, not just

the dominant mechanism. For example, if the sample length is the whole motion, from release to
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Coefficient of Coulomb friction

Poisson’s ratio

Young’s modulus [GPa]

E
ne

rg
y

ex
po

ne
nt

,n

c)

b)

a)

Figure 3.16: Plots of the energy exponent, n, as a function of the material parameters. Young’s
modulus in log scale shows a negative trend, while Poisson’s ratio and the coefficient of Coulomb
friction show a positive trend. The concave base-plate is not included.

halt, then the energy loss at the beginning of the motion may be almost entirely due to classical

rolling friction with an exponent of n = 2. Towards the end of the motion, the mechanism with the

lowest n will dominate, but the fit may be skewed by classical rolling friction, thereby increasing

the apparent energy exponent. Leine [68], noted that n = 2/3 for t ≪ t0 and n = 1/2 for t ≈ t0, and

suggested that dry and viscous contour friction are capable of explaining the motion. Although not

possible for these data, it would be interesting to compute the energy exponent, n, for different

sample lengths, e.g. 1 s, 0.1 s. A shorter sample length would not contain enough data points for

an accurate fit and longer sample lengths run into the problem of frame skips in the data, an

issue discussed further in Section 3.2.7.

The disk spins for the longest time on the concave base-plate, which has a relatively large

energy exponent, n = 0.62. This could be due to the base-plates’ material properties. An alternative

explanation is that the flat base-plates experience dissipation due to a thin layer of air between

the disk and base-base-plate. Bildsten [16] estimated that the energy exponent for this air

resistance mechanism is n = 4/9 [16]. The concave base-plate does not experience the air resistance

61



CHAPTER 3. EXPERIMENTAL ANALYSIS OF EULER’S DISK

mechanism due to the large gap between the disk and the base-plate, resulting in a larger

observed energy exponent. We are further encouraged by the proximity of n = 0.62 to the estimate

of dry contour friction n = 2/3. This suggests that dry contour friction dominates on the concave

base-plate, but further investigation is required.

Material combination s. steel oak pine acrylic Teflon silicone concave

m.steel 0.1123 0.0003 0.0018 0.0075 0.0017 0.000 0.000
s. steel 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

oak 0.2248 0.0556 0.4900 0.0019 0.2749
pine 0.4097 0.6541 0.000 0.0123

acrylic 0.2476 0.000 0.0012
Teflon 0.0004 0.0721

concave 0.0085

Table 3.2: Comparison of p-values between energy exponents for different materials in fig. 3.15.
Comparisons with a p-value less than 0.0018 are highlighted blue, suggesting that there is a
statistically significant difference between these materials.

We apply a two-sample t-test for equal means to each pair of materials to determine if the

difference in the mean energy exponent is statistically significant. The p-value describes the

likelihood that the two sets of experimental data have the same mean values of energy exponent.

Multiple samples are compared, so we apply the Bonferroni correction [84] to reduce the number

of false positives. The correction divides the original critical p-value of 0.05 by the number of

unique comparisons, 28, to give the critical p-value, p = 0.0018. The results of the statistical

tests are shown in table 3.2. Silicone differs from almost all other materials, as do stainless and

mild steel. The other materials, oak, pine, acrylic and Teflon do not have statistically significant

differences in means.

We may be sure that the differences in energy exponent for the steel base-plates is not due to

randomness or noise in the experimental measurements. The question for the analytic models in

Chapter 4 is, Where does the material dependence come from?

3.2.6.1 Effect of the disk’s rim on the energy exponent

The commercial Euler’s disk has a rounded bottom rim, facilitating smooth contact with the

base-plate. The top rim of the disk is much less rounded. Therefore, repeating the experiments

with the disk upside-down gives an easy comparison between the two rims. The same experiments

were also performed with a brass disk mentioned in section 3.2.2. Machined on a CNC router, it

has approximately the same size and weight as Euler’s disk, but with an even sharper rim. The

results can be found in Tables B.2 and B.3. A sharper rim results in a narrower contact region,

and may affect the energy exponent. The concave base-plate was omitted to avoid scratches from

the brass disk.
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A collection of the results is shown in fig. 3.17. It is difficult to see any correlation between

sharpness of edge and exponent. The energy exponent for the brass disk is very similar to Euler’s

disk despite the material and physical differences. Again, we perform a two-sample t-test for

equal means between disks, keeping the material constant. The p-values are shown in Table 3.3.

Again, we apply a Bonferroni correction to the critical p-value. The number of comparisons is

21, three per base-plate material for each of the seven materials (the concave base-plate was

omitted to avoid scratches). Therefore, the critical p-value is p = 0.05/21= 0.0024. There is only

one case in Table 3.3 where the difference in means is statistically significant: the brass and

flipped Euler’s disk on the oak base-plate. This suggests that the sharpness of rim is not an

important factor in determining n.

Material combination Euler & Brass Euler & Euler flipped Euler flipped & Brass

mild steel 0.0252 0.0208 0.8258
stainless steel 0.1232 0.7246 0.0319

oak 0.0408 0.3982 0.0024
pine 0.0110 0.0027 0.6723

acrylic 0.7054 0.0303 0.1046
Teflon 0.1353 0.4736 0.1452

silicone 0.0443 0.1352 0.3668

Table 3.3: Comparison of p-values between energy exponents for different materials in fig. 3.17.
Combinations with a p-value less than 0.0024 are highlighted blue, denoting statistically signifi-
cant differences between disks.

3.2.7 Issues and improvements to the experiments

The experiment was limited by the temporal resolution of the data. By only computing φ and

ψ once per oscillation in zrim (t), many potential data points are discarded. For example, in

fig. 3.11, there are 20 oscillations in the final 0.5 s corresponding to 20 data points in fig. 3.12.

Compare this with the 240 frames captured in the same time. To compute φ every frame requires

a more involved setup, but could be achieved by an improved data analysis algorithm or another

synchronised camera. However, the simplicity and robustness of the approach enabled many

repeats for statistical analysis.

Another issue is the lack of knowledge of all the state variables. We use the stationary rolling

assumption to eliminate θ̇ from the energy in eq. (3.8). However, as seen in Section 3.3, the

stationary rolling assumption may not be accurate. An improved experiment might compute θ

directly, eliminating the need for the simplifying assumption. This issue could also be solved by

filming the disk with multiple, synchronised cameras and then making use of markings on the

disk to determine the rotation angle θ.

The disk’s horizontal position drifts in the course of its motion. This is most obvious in the

footage on a stainless steel base-plate. The drift slows towards the end of the motion, so it is
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Figure 3.17: Box plots of the energy exponent, n, for the Euler’s disk, flipped Euler’s disk and the
brass disk experiments. The raw data is given in Section B.

assumed that the disk is oscillating in place for the final 0.5 s before the halt. Small errors in the

position of the disk are unimportant, because the middle of the rim of the disk appears very flat

to the camera (fig. 3.8) so any lateral movement results in only a small error. If the position of the

disk could be computed at each frame then good quality data could be obtained for the entirety of

the disk’s motion and not just the final 0.5 s.

The footage suffered from occasional frame skips due to the camera’s inability to cope with

the quantity of data being produced. This is a common issue with slow-motion cameras where

the limiting factor is the bandwidth required to save the data. A trade-off between resolution

and frame-rate takes place. The issue was mitigated by simply repeating the experiment if

any frame-skips were visible in the final 0.5 s. The peak of zrim (t)’s final oscillation was 3.7px,

averaged over all the experiments, which is practically at the limit of the camera’s capability,

suggesting that the experiment might benefit from higher resolution cameras. Purpose-made

slow-motion cameras with higher resolutions and frame-rates would eliminate these issues.

Flickering lights at 50 Hz due to the mains power supply was visible in the footage. Flicker-free

lights were obtained for Section 3.3.
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3.3 Continued vertical rotation experiments

On viewing the final frames in the experiments of the previous section, it was noticed that the

disk appears to continue to rotate about the vertical axis after falling flat. If true, there are a

number of consequences for Euler’s disk. Firstly, the presence of continued rotation invalidates

the stationary rolling approximation eq. (3.7). This is explored further in Chapter 4. Secondly,

the rotation agrees with the experiments of Borisov et al. [19], which predict that the disk loses

contact with the base-plate at the halt. Thirdly, it suggests slippage: if the disk falls flat and

continues to rotate then it is Coulomb friction that must remove the remaining energy and bring

the disk to a stop.

In this section, we perform an experiment to isolate the continued rotation. We expose the

vertical rotation by drawing a strip across the diameter of the top of the disk and filming the disk

from above. By appropriate placement of a mirror, we track the rotation and inclination of Euler’s

disk simultaneously. A diagram of the experimental setup is shown in fig. 3.18 and fig. 3.19 shows

a single frame of the footage. We proceed to compute the rotation of the strip in terms of the state

variables. Then in section 3.3.2, we outline the data extraction before discussing the results in

section 3.3.3.

m
ir

ro
r

side view

to
p

vi
ew

base-plate

zrim

2R

φ

camera

Figure 3.18: Experimental set up for the vertical rotation experiments. Footage is captured from
above. A frame is shown in fig. 3.19.
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xG

yG

β

Figure 3.19: Frame from the vertical rotation experiments on stainless steel. The image contains
two views of the disk: the top view shows the disk from the side through the mirror and is used
to compute φ in the manner of Section 3.2. The bottom shows the plan view of the disk. The red
strip is used to calculate the vertical rotation, β̇. The black tape placed on the base-plate was
used to increase contrast.
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3.3.1 Rotation of the strip

To break the rotational symmetry of the disk, a red strip is drawn across the diameter of the

disk. Let β be the angle that the strip makes with the xG axis in fig. 3.19. The angle β does not

correspond exactly to the disk’s rotation about its symmetry axis, because the angle of the strip

seen by the camera changes as φ increases or decreases. Therefore, we must compute β in terms

of the state variables φ, ψ and θ. We define the top face of disk, D, in polar coordinates. The

radius is parametrised by r and the angle by α

D = {
(r cosα, rsinα,2H)⊺|0< r < R,−π<α<π}

.(3.12)

The strip, L, is aligned with an initial angle α=β0 and stretches across the diameter of the disk

such that

L = {
(r cosβ0, rsinβ0,2H)⊺|−R < r < R

}
.(3.13)

The orientation of the disk in fig. 3.1 was determined up to the final rotation, θ. The strip is

fixed to the disk and rotates with θ in the final frame F , but it is filmed by the camera in the

global frame G. Therefore, we must shift the strip from the frame F to G. The rotation matrices

defining successive transformations between frames are

RGI =


cosψ sinψ 0

−sinψ cosψ 0

0 0 1

 , RIB =


cosφ 0 sinφ

0 1 0

−sinφ 0 cosφ

 , RBF =


cosθ sinθ 0

−sinθ cosθ 0

0 0 1

 .(3.14)

The combined rotation from G to F is given by the composition

RGF =RBFRIBRGI ,(3.15)

and the rotation from F to G is given by the inverse matrix RFG =R−1
GF . The position of the strip

in the global frame is

LG =RFGL.(3.16)

Filming from above, the camera views a projection of LG in the xG -yG plane. The xG and yG

components of LG are

LG
x =(cosθ cosφcosψ−sinθsinψ)r cosβ0 + (−sinθ cosφcosψ−cosθsinψ)rsinβ0(3.17)

−2H sinφcosψ,

LG
y =(cosθ cosφsinψ+sinθ cosψ)r cosβ0 + (−sinθ cosφsinψ+cosθ cosψ)rsinβ0(3.18)

−2H sinφsinψ,
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where r ranges over the diameter of the disk [−R,R]. The angle, β, that the strip makes with the

xG axis is

β=arctan

(
LG

y |r=R −LG
y |r=−R

LG
x |r=R −LG

x |r=−R

)
,(3.19)

=arctan
(

sinψcosφ(sinθsinβ0 −cosβ0 cosθ)−cosψ(sinθ cosβ0 +sinβ0 cosθ)
cosψcosφ(sinθsinβ0 −cosβ0 cosθ)+sinψ(sinθ cosβ0 +sinβ0 cosθ)

)
.

The dependence on the height of the disk, H, has disappeared and does not affect the angle β.

Applying multiple angle formulae to eq. (3.19) gives

β= arctan
(

tanψcosφ+ tan(θ+β0)
cosφ− tanψtan(θ+β0)

)
.(3.20)

Differentiating eq. (3.20) with respect to time yields the angular velocity of the strip

β̇=ψ̇+ φ̇sinφsin(θ+β0)cos(θ+β0)+ θ̇ cosφ
1−sin2φcos2(θ+β0)

,(3.21)

then taking a small φ approximation we obtain

β̇= ψ̇+ θ̇+O
(
φ2)

.(3.22)

As one would expect the angular velocity of the strip is approximately the same as the angular

velocity of the disk about the zG axis, ωG
z = ψ̇+θ̇ cosφ. Therefore, β̇ may be thought of as an O

(
φ2)

approximation to the global vertical angular velocity. Computing ψ, as described in Section 3.2,

would enable a complete description of the state of the disk through β≈ψ+θ. However, the zrim (t)

data obtained in the following experiment has larger errors caused by a decrease in resolution. In

Section 3.3, the disk was roughly 200px tall from rim to rim, while in fig. 3.19 the disk is about

100px tall.

In the next section, we compute β and φ from the experimental data and show that the disk

continues to rotate after it has fallen flat.

3.3.2 Extracting data from the footage

Filming the disk in portrait with a mirror allows both φ and β to be obtained simultaneously

avoiding the need for two synchronised cameras. For each experiment, the frame in fig. 3.19 is

split into two images and analysed separately. The top portion of the frame views the disk from

the side and is analysed as in Section 3.3, giving both φ and ψ. Due to the reduction in resolution,

the derivatives are noisy and not computed. The bottom portion of the frame views the disk from

above showing the strip.

To compute the angle β, we extract the pixels corresponding to the strip. The intensity of the

frame is normalised by the mean RGB value of the pixels in the image, mitigating the changes in

ambient light levels due to the oscillating top face of the disk. The individual RGB components of
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the image are thresholded to produce a binary image. The red strip is characterised by high red

and low blue and green values suggesting the following filter1 if R(i, j)> rthresh and G(i, j)< gthresh and B(i, j)< bthresh

0 otherwise
(3.23)

A pixel is assigned a value of 1 if it passes all the thresholds and a value of 0 if not. Applying

this filter to fig. 3.19 results in a binary image of the strip. As with the intensity threshold in

Section 3.2, the colour thresholds, rthresh, bthresh and gthresh all require adjustment between

experiments. After filtering, some frames contained a small number of isolated white pixels that

did not correspond to the strip. To remove them we compute the largest connected component of

pixels in the image using the MATLAB function BWCONNCOMP. The erroneous isolated pixels are

discarded, leaving just the pixels corresponding to the red strip in fig. 3.20.

Having isolated the strip, we compute the angle β with respect to the horizontal. Consider

the pixels in the connected component as a set of data points with x and y values equal to their

position in the image. The obvious method to compute the angle of the strip is least squares

regression, which solves for the line passing through the strip that minimises the sum of the

squared errors in the y direction. However, least squares suffers from difficulties when the strip

is aligned with the y axis.

Instead, we use Principal Component Analysis (PCA) [59], which computes a series of orthog-

onal vectors that correspond to the directions with maximum variation in the data. The first

principal component, v, is aligned with the long axis of the strip, the direction with the most

variation. This component defines a line that minimises the sum of the squared perpendicular

(rather than y) distances from the pixels [59]. The second principal component is orthogonal to

the first and aligned with the short axis of the strip. Both principal components are plotted in

fig. 3.20. To compute the angle of the strip, β, we take the arctan of the x and y components of

the first principal component, v

β= arctan
(vy

vx

)
.(3.24)

However, vy
vx

is discontinuous. At each vx = 0, we increment β by ±π depending on direction of

rotation to ensure β is continuous. The time series in β is shown in fig. 3.21, where β is shifted

such that the disk stops at β= 0.

The β data has a far higher temporal resolution than the φ data in Section 3.2 because a new

data point is produced at every frame rather than every oscillation of the disk. To estimate the

spatial resolution, we zoom in on the end of motion, as shown in fig. 3.22. After the disk has come

to a halt in fig. 3.22, the noise in β is roughly on the order of 5×10−3 rad or 3/100th of a degree.

The last half second of zrim data is shown in fig. 3.23. The reduction in resolution results in worse

quality data compared to fig. 3.11 in the experiments of Section 3.3.

The end of the motion is difficult to determine. To estimate it, we choose a point in fig. 3.22

after which β has certainly settled down. For example, we may safely say that the disk has
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Figure 3.20: The bottom image of fig. 3.19 after filtering according to eq. (3.23) and removing the
isolated pixels with BWCONNCOMP. The first principal component, aligned with the long axis
of the strip, is shown in green. The second principal component, aligned with the short axis, is
shown in orange.

come to a halt by t = 6.92s in fig. 3.22. Take a band in β, defined by the maxima and minima

of the angle after t = 6.92s. When the trajectory first intersects with this band, it is assumed

the disk has stopped. After the intersection, β is as large as the noise, so further measurements

are meaningless. The band is shown in fig. 3.22. The blue circle shows the first intersection with

the band at t = 6.879s. This time is denoted tβ, the stopping time for β. This extra stopping

condition is not necessary when calculating the stopping time for φ, tφ because of the discrete

nature of zrim . For example, in fig. 3.23, there are no more fluctuations in zrim after tφ = 6.833s.

The disk therefore continues to rotate for tβ− tφ ≈ 0.05s. The difference in β and φ stopping times

is explored further in Section 3.3.3 and fig. 3.27.

We also compute the angular velocity of the strip, β̇ by numerically differentiating β with
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β [rad]

t [s]

Figure 3.21: Time series of β extracted from the experimental footage.

eq. (3.11). The resultant data, shown in fig. 3.24, is rather rough, but the number of data points

obtained means it is possible to smooth the data. We smooth β with a 5-point moving average

and then numerically differentiate to give β̇, also shown in fig. 3.24. Comparing the smoothed

and unsmoothed time series during the final 0.5s in fig. 3.25, the smoothed data captures all of

the relevant behaviour.

Note the large spikes at t ≈ 0.1, 0.3 and 2.7 in fig. 3.24. These spikes appear due to frame

skips occurring in the footage, the small jumps in β are just visible in fig. 3.21 at the same times.

The skips do not affect the analysis as none are present during the last half second of the motion.

In fig. 3.26, we show the smoothed β̇ for the last half second of the motion and plot the

stopping times tβ and tφ. Not only are the stopping times unequal, suggesting that the disk

continues to rotate after falling flat, but they divide β̇ into two qualitatively different sections.

Prior to tφ, there are oscillations in β̇, but after tφ, there is a short constant section before a

decrease towards β̇= 0. The small increase in β̇ that is visible after the stopping time, tβ, is due to

the 5-point moving average. We may be sure that this effect is not due to the smoothing, because

there are 21 frames between tφ and tβ, larger than the window of the 5-point moving average. We

repeat the experiment on mild and stainless steel base-plates, both lubricated and unlubricated
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β [rad]

t [s]

Figure 3.22: The end of the motion is taken to be the first intersection of β with the band
defined by the maxima and minima of β after t = 6.92s when the disk has settled. The blue dot
denotes this intersection. The maxima and minima also define the size of the noise, here roughly
5×10−4 rad.

with a general purpose oil. We also perform the experiment on the concave base-plate.

3.3.3 Results

To explore the difference in stopping times we plot both β and zrim (t) in fig. 3.27. It appears that

the angle of the strip is still changing even after the disk has fallen flat. There is time for three

more oscillations of zrim (t), but, following the trend line, the disk should have fallen flat well

before it stops spinning vertically.

In fig. 3.28, we show β̇ from six experiments on the unlubricated stainless steel base-plate.

Just as in fig. 3.26, the β̇ dynamics appear to change at t = tφ. Before t = tφ, β̇ is oscillatory

and slowly decreasing. There is some variation between the size of the oscillations: for example,

fig. 3.28b has oscillations of size about 0.4 rads−1, while the fig. 3.28c has oscillations around

1.1 rads−1 in size. After t = tφ, there is a qualitative change and β̇ appears constant for a small

period of time before decreasing to zero. Similar results were obtained for the mild steel base-
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zrim [m]

t [s]

Figure 3.23: The zrim data from the continued rotation experiments.

β̇ [rad/s])

t [s]
Figure 3.24: Unsmoothed and smoothed β̇ time
series. Three frame skips are visible at t ≈ 0.1,
0.3 and 2.3.

β̇ [rad/s]

t [s]
Figure 3.25: Unsmoothed and smoothed time
series of β̇ during the last 0.5 s.

plate.

If the disk has fallen flat but continues to rotate, one would expect that lowering the coefficient

of Coulomb friction of the base-plate might increase tβ− tφ. The experiments on a stainless steel

73



CHAPTER 3. EXPERIMENTAL ANALYSIS OF EULER’S DISK

β̇ [rad/s]

t [s]

Figure 3.26: The smoothed angular velocity β̇ during the last second of the data. The circles
correspond to the stopping times tφ (blue) and tβ (red).

base-plate, lubricated with general purpose oil, result in fig. 3.29. The time series look very similar

to the unlubricated case, but the interval tβ− tφ has increased and the constant portions are more

visible. Figure 3.29c is an outlier caused by an abundance of lubricant; the disk fell flat and slid

on a thin film of oil. Again, similar results were obtained for a lubricated mild steel base-plate.

The mean interval, tβ− tφ, is 0.0403 s and 0.0600 s for unlubricated and lubricated stainless

steel respectively (after discarding the outlier). For the mild-steel base-plate the intervals were

0.0385 s and 0.0431 s. In both cases, the interval increases. The 50% increase in tβ− tφ for the

stainless steel versus the 12% increase for mild steel is perhaps due to the differences in surface

roughness allowing for more effective lubrication.

On repetition with the concave base-plate in fig. 3.30, the mean interval is tβ− tφ = 0.0058s,

far shorter than the other two base-plates. This interval is less than three frames in length. The

discrepancy between the flat and concave base-plates can be explained by supposing that after

falling flat, the disk is briefly supported by a layer of air. When supported by a thin film of air,

there is negligible resistance to the continued rotation, resulting in the constant section of β̇,

observed in fig. 3.29. Then, when the disk makes contact with the base-plate, the rotation is
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β [rad] zrim [m]

t [s]

Figure 3.27: Comparison of the β and zrim experimental data. The disk appears to have fallen
flat before β comes to a halt.

brought to a halt by Coulomb friction. In the case of the concave base-plate, it is not possible

for the disk to trap a thin layer of air. The disk makes contact immediately then slips to a halt,

explaining the shorter interval.

This sequence of events is supported by fig. 3.31, in which we plot β̇ after the disk has fallen

flat at t = tφ. To compare the experiments, we scale the initial angular velocity β̇(tφ) and the

interval, tβ− tφ. The constant section is visible from τ=−1 to τ=−0.3, before a linear decrease

towards zero angular velocity. This supports the presence of an contactless phase, followed by a

Coulomb-governed slip to a halt.

In Chapter 4, we analyse this post-flat falling phase analytically.

3.4 Discussion and conclusions

In Section 3.2, we investigated the dependence of the energy exponent, n, on the base-plate

material. We spun the Euler’s disk and the brass disk on different materials and estimated the

energy. It was shown that the energy exponent does vary and therefore must depend upon the
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β̇ [rad/s]

t [s]

a) b)

c) d)

e) f)

Figure 3.28: Six time series of β̇ from the experiments of Euler’s disk on stainless steel. The blue
dot is placed at t = tφ and the red dot at t = tβ.

material. All materials gave n < 1, suggesting the finite-time abrupt halt is ubiquitous. Therefore,

the dynamics look qualitatively the same for each material. However, the mean exponents

varied from n = 0.69 for the silicone base-plate to n = 0.45 for the stainless steel base-plate. It

appears that harder, smoother materials tend to have a lower exponent, but more thorough

experiments are required to understand the dependence. We do not see a clear dependence of n

on the sharpness of the disk’s rim.

Typically, dissipation mechanisms give rise to different energy exponents through differing

dependencies on the nutation angle, φ. Variation in the energy exponent, n, with the base-plate

material suggests that the dissipation mechanism’s dependence on φ could have a material

component. This is not something that has been explored in the literature, where dissipation

mechanisms have a constant energy exponent [68].

Alternatively, the variation might be due to the experimental sample period of 0.5s. Different

exponents are known to be visible at different time scales, possibly caused by multiple dissipation

mechanisms acting at once. Leine [68] observed in experiments that the exponent is 1/2 or

2/3, depending on whether the sample is at t ≪ tφ, or t ≈ tφ respectively. The estimates of Ma

et al. [71] predict n = 0.6 to 0.7 for a sample window of 3 s. The exponents for stainless steel,

n = 0.45 and silicone n = 0.69 are close to these observed values, 1/2 and 2/3. Such exponents
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β̇ [rad/s]

t [s]

a) b)

c) d)

e) f)

Figure 3.29: Six time series of β̇ from the experiments of Euler’s disk on lubricated stainless steel.
The blue dot is placed at t = tφ and the red dot at t = tβ.

β̇ [rad/s]

t [s]

a) b)

c) d)

e) f)

Figure 3.30: Six time series of β̇ from the experiments for Euler’s disk on the concave base-plate.
The blue dot is placed at t = tφ and the red dot at t = tβ.
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scaled β̇

τ

Figure 3.31: The behaviour of β̇ in the interval tφ < t < tβ. Time, τ has been scaled by the tφ
and β̇ has been scaled by β̇(tφ). A flat section from τ=−1 to τ=−0.4 is visible, succeeded by a
decreasing section until the stop at τ= 0. Trajectories may not reach β= 0 due to the stopping
condition in fig. 3.22. The concave base-plate is excluded due to insufficient data points.

could be caused by viscous and dry contour friction respectively [68]. However, air resistance

predicts an energy exponent of n = 4/9 [15], close to the experimental value of n for stainless steel.

Unexpectedly, the concave base-plate was found to have the second largest energy exponent of

n = 0.62, despite the long spinning times. Perhaps this larger than expected energy exponent

can be explained by the gap between the disk and base-plate, which excludes the air resistance

mechanism.

In Section 3.3, we examined the angular velocity of the disk about the vertical axis. The

experiment was motivated by the slow-motion footage in Section 3.2, which appeared to show

the disk continuing to rotate after falling flat. Tracking a strip drawn on the top face of the disk

corroborates this. Estimates from experiments suggest that the disk continues to rotate for about

tβ− tφ =0.04 s after falling flat. This phenomenon is repeatable and augmentable by lubrication

of the surface. The dynamics of β̇, the angular velocity of the strip, appear to change qualitatively

after the disk has fallen flat, as seen in figs. 3.28 and 3.29. The oscillations in β̇ are no longer
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possible after the disk has fallen flat.

We propose that the disk loses contact with the plane at t = tφ, before being supported by a

layer of fluid. Then, upon making contact with the base-plate the disk is brought to a halt by

Coulomb friction. The final loss of contact has been observed before by Borisov et al. [19], lasting

for up to 0.04 s and agreeing with the experiments in Sections 3.2 and 3.3.

In comparison to air, oil has a much higher viscosity. Therefore, one would expect the duration

of the contactless phase to be longer on the lubricated base-plate. Oil also reduces the coefficient

of friction, so after making contact the disk should rotate for longer. This is the case in fig. 3.29

and fig. 3.28, where lubrication results in a 50% increase in post-falling flat spinning time for

the stainless steel base-plate and a 12% increase for the mild steel base-plate. The hypothesis of

a loss of contact is supported by the experiments on the concave base-plate, where the interval

between falling flat and and coming to a halt is only 0.0058 s. The geometry of the base-plate

removes the possibility of a thin, supporting layer of fluid. The disk makes contact immediately

and Coulomb friction brings it to a halt. This is strong evidence for the presence of air-related

factors that affect the motion of the disk.

These findings give rise to a few observations. If the disk is still rotating when it falls flat,

then the stationary rolling assumption, eq. (3.7), is violated. In addition, the disk may not even

roll in the final stages. The disk slips after making contact, so it seems wise to reinvestigate the

assumption that the disk is rolling prior to the halt. It is obvious that, if there is slip, then the

amount must be very small, as it is not visible to the naked eye or in the footage.

The key problem for Euler’s disk is determining the dissipation mechanism that brings it to

a halt. The dissipation mechanism must be compatible with the observed behaviour. From the

results in this chapter, we refine the desired dissipation mechanism. It is already known that,

on stainless steel, the disk undergoes an abrupt finite-time stop with an approximate energy

exponent of n = 0.45. It is also known that the disk loses contact with the base-plate [19]. We now

require that the candidate dissipation mechanism predicts energy exponents with a material

dependence and continued rotation of the disk after falling flat.

In the next chapter we search for an analytical explanation for the motion of Euler’s disk.

We derive the equations of motion, subject to a number of candidate dissipation mechanisms.

Numerical analysis of these equations allows relaxation of the stationary rolling assumption and

quantitative comparisons with the experimental data in this chapter. Additionally, we provide an

analytical explanation for the observed post-falling flat motion.
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THE HALTING OF EULER’S DISK

4.1 Introduction

In Chapter 1 and Section 3.1, we discussed the halting of Euler’s disk and its associated

literature. We begin this chapter with a short review of the phenomenon and the relevant

findings of Chapter 3, before exploring Euler’s disk numerically and analytically.

When a coin is spun on a hard, smooth surface it quickly and loudly rattles to a stop. The rate

of rotation increases as the coin approaches the halt, resulting in a whirring noise followed by a

sudden bang. The effect is magnified in Euler’s disk, a desk toy machined out of steel. Euler’s disk

is accompanied by a concave, mirrored base-plate and holographic decorations. The decorations

produce striking patterns during the high frequency motion and the base-plate serves as the

hard, smooth surface for the disk to roll upon. Upon release, Euler’s disk continues to spin

for durations of around two minutes. The rotation and speed of the contact point approach a

finite-time singularity, which is avoided by the sudden and abrupt halt.

Moffatt’s seminal work [74] attributed the abrupt stop to a thin layer of air between the

disk and base-plate, removing energy from the system via viscous dissipation. In subsequent

experiments, by van den Engh et al. [93] and Borisov et al. [17], the disk was spun in a vacuum

and the same qualitative behaviour was observed. Such observations do not necessarily invalidate

Moffatt’s findings, but may suggest that different dissipation mechanisms dominate in different

regimes. Experiments by Ma et al. [71], Cross [32], Leine [68] and others all observe the same

behaviour: an abrupt halt with a decrease in energy that closely follows a power law, eq. (1.2),

governed by the energy exponent n.

It was found in the experiments of Chapter 3 that n ∈ [0.45,0.69] depending on the material

of the base-plate. The energy shows square-root-like behaviour, gently decreasing before dropping
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abruptly to zero. The central question surrounding Euler’s disk is: what physical mechanism

can produce such a decrease in energy? Many mechanisms have been considered: air resistance,

rolling friction, impacts, Coulomb friction, etc. With appropriate assumptions, energy power

laws can be derived from most mechanisms. The mechanism that predicts the smallest value

of n is dominant, as it results in the largest rate of dissipation as the disk approaches the halt.

However, the mechanism must also agree with the experimentally determined values of n and

other qualitative features of the motion.

In the second experiment of Section 3.3, we filmed the motion from two angles, the top and

the side to obtain information about the vertical rotation as the disk approached the halt. The

disk appears to fall flat before the vertical rotation has stopped, implying continued rotation. This

finding casts doubt on the applicability of the assumption of ‘stationary rolling motion’, where the

disk rolls with the centre of mass approximately stationary [11, 68, 74]. Differences in behaviour

were observed between the disk spinning on the flat and concave base-plates, suggesting that the

presence of air may affect the motion. A candidate dissipation mechanism must explain, or at

least be consistent with these findings.

Different narratives describing the stages of motion have been proposed. Leine [68] noted that

the energy resembles different power laws at different time scales. It was tentatively suggested

that dry contour friction (n = 2/3) followed by viscous contour friction (n = 1/2) could explain the

behaviour of Euler’s disk. Borisov et al. [19] finds that the disk loses contact with the base-plate

and does so in phases. The first phase is repeated microlosses of contact, before a phase of

constant contact followed by a lift-off at the halt. Ma et al. [70] find that the disk appears to pass

through a fast sliding stage, where ‘sliding friction plays a dominant role in dissipating energy’,

followed by a slow creeping stage where both ‘sliding and rolling frictions dissipate the energy’.

Finally, the disk undergoes a purely rolling stage where rolling friction dominates. Kessler and

O’Reilly [60] suggest that vibrations in the disk and base-plate result in a loss of contact with

the surface, then the subsequent impacts bring the disk to a halt. Numerical simulations by

Le Saux et al. [67] examine combinations of friction models and find periods of slip and stick

interspersed throughout the motion. In this chapter, we attempt to unify these narratives with

the experimental results from Chapter 3.

In Section 4.2, we derive the equations of motion for Euler’s disk subject to Coulomb friction

and an unspecified dissipative moment. Coulomb friction is discontinuous and gives rise to

two states, rolling and slipping. We derive the equations for these states in Section 4.2.2 and

Section 4.2.3 respectively. The transitions between the two states are defined and the equations

non-dimensionalised. Then, in Section 4.3, we analyse the disk subject to Coulomb friction in the

absence of a dissipative moment.

In Section 4.2, we rederive the various rolling frictions discussed by Leine [68]. Then, in

Section 4.5, we derive new rolling frictions via a relaxation of the rigid body assumption, finding

equivalences with classical rolling friction and contour friction. We compute the associated energy
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exponents for each mechanism in Section 4.6 and analyse the dynamics of the disk subject to

Coulomb friction and contour friction, the most likely mechanism. We compare the numerical

results with the experimental results.

Section 4.8 provides an explanation for the dynamics of the disk during the final 0.05 s of its

motion. In Section 3.3, it was observed that the disk falls flat but continues to rotate. We find

good agreement with the experiments by assuming a contactless phase, where the disk rests on

a lubricating layer of air, followed by a Coulomb friction-governed phase where the disk is in

contact with the base-plate. We discuss the results and conclude in section 4.9.

4.2 Derivation of the equations of motion

In this section, we derive the equations of motion for Euler’s disk rolling on a rough, horizontal

plane. The disk experiences both Coulomb friction and rolling friction. The configuration and

notation is the same as Chapter 2. The disk is a rigid, rotationally symmetric cylinder with height

2H, radius R and mass m, as shown in fig. 4.1. The moment of inertia tensor is I= diag(A, A,C),

where C = mR2

2 and A = m
12

(
3R2 +H2)

are the moments of inertia about the symmetry and non-

symmetry axes respectively. The rim of the disk contacts the plane at a point P, where the contact

forces N and F act. Additionally, the dissipative moment applies a torque Q. This system is a

generalisation of the rocking can, studied in Chapter 2, and is subject to external forces and

moments that reduce the energy. The disk is allowed to slip if the friction ratio |F|/|N| grows too

large.

G I B

R

2H G

zG

xG
yG

ψ̇
zI

xI

yI

ψ

φ̇

zB

xB

yB

P

N

F

φ

θ̇

Figure 4.1: Technical diagram of Euler’s disk, reproduced from fig. 3.1. The three reference frames
global G, intermediate I and body frame B are given by successive rotations ψ and φ. The vectors
G and P refer to the positions of the centre of mass and the contact point respectively.

A three-dimensional rigid body has six degrees of freedom. To describe the disk, we select

three coordinates, XG , YG and ZG , to specify the position of the centre of mass and three Euler

angles ψ, φ and θ to specify the orientation. The angles are defined by successive rotations about

different axes, see fig. 4.1. The global reference frame G, is fixed with respect to the horizontal

plane. Rotating by the precession angle, ψ, around the zG axis yields the intermediate frame,

I . Rotating I around the yI axis by the nutation angle, φ, gives the body frame, B. The final

frame, F , is given by rotating about the zB axis by the rotation angle, θ. The transformations are
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defined by rotation matrices, Ri j, that convert from frame i to j

RGI =


cosψ sinψ 0

−sinψ cosψ 0

0 0 1

 , RIB =


cosφ 0 sinφ

0 1 0

−sinφ 0 cosφ

 , RBF =


cosθ sinθ 0

−sinθ cosθ 0

0 0 1

 .(4.1)

Successive transformations are given by composition. A force and moment balance yields the

equations of motion

maGG =−mgẑG +NG +FG ,(4.2a)

IΩ̇B +ωB × IΩB =GPB ×RGB
(
NG +FG

)
+QB ,(4.2b)

where aG is the linear acceleration of the centre of mass, ΩB = (ψ̇sinφ,−φ̇,ψ̇cosφ+ θ̇)⊺ is the

angular velocity vector of the disk and ωB = (ψ̇sinφ,−φ̇,ψ̇cosφ)⊺ is the angular velocity of the

frame B. The vector GPB = (−R,0,−H)⊺ is the displacement of the contact point, P, from the

centre of mass, G. The external force, F, is due to friction and the torque Q represents the

dissipative moment. The vector ẑG denotes a unit vector in the zG direction. Other unit vectors

are defined analogously. The normal force acts in the vertical direction, such that N = NẑG .

It is simplest to examine the force balance, eq. (4.2a), in the global frame G and the moment

balance eq. (4.2b) in the body frame B frame due to the alignment of the moment of inertia tensor

with the disk. To determine the unknown contact forces F, N and Q in the equations of motion,

eq. (4.2), we define Coulomb friction and the dissipative moment.

4.2.1 Dissipative forces

There are two dissipative terms in eq. (4.2), F and Q, representing Coulomb friction and a rolling

friction respectively. Sliding friction resists relative velocity between two bodies and many models

exist such as dry, viscous, Stribeck, etc. In this chapter, we employ the most well known model,

Coulomb friction, which gives rise to two states: slip and stick. The system is slipping if the

contact point is moving with respect to the surface, and sticking if the contact point is stationary

with respect to the surface. For the disk, the sticking state refers to rolling, sometimes referred to

as ‘rolling without slip’.

In Chapter 2, it was assumed that the coefficient of Coulomb friction, µ, was large enough

to prevent slip. In this chapter, that assumption is relaxed and we allow the disk to slip if the

friction ratio |F|/N grows larger than µ. For planar bodies, Coulomb friction is defined by

F

=−µN sign(VP ) if |VP | > 0

∈ [−µN,µN] if |VP | = 0
,(4.3)
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where VP is the velocity of the contact point.1. Coulomb friction provides a constant force that

opposes the contact point velocity. If this velocity is zero, then Coulomb friction provides a force in

the range −µN < F <µN to keep the contact point stationary. The additional information needed

to determine F is supplied by the constraint VP = 0. For bodies in 3D, spatial Coulomb friction

may act in any direction tangent to the plane of intersection between the two bodies

F

=−µNV̂ P if |V P | > 0

∈
{
F

∣∣∣ |F| ≤µN
}

if |V P | = 0
,(4.4)

where V P is now the contact point velocity vector. As in the planar case, if the body is slipping

then F acts in the opposite direction to the contact point velocity with magnitude µN. If the

body is rolling, then V P = 0 and the friction force is determined by the constraint V P = 0, subject

to the condition that its magnitude cannot be greater than µN. Coulomb friction contains an

isolated codimension-2 discontinuity at ẊP = ẎP = 0. The stability of the transitions from slipping

to rolling behaviour and vice versa have been studied by Cheesman et al. [27] and Antali and

Varkonyi [7].

Like sliding friction, rolling friction has many different formulations and we leave derivation

of specific models to Section 4.4 and Section 4.5. In this chapter, we consider the class of rolling

frictions that give rise to a torque, Q, of the form

Q =−ηNR


qx

qy

qz

 ,(4.5)

where η is the coefficient of rolling friction and R is the radius of the disk, present to ensure that

Q represents a torque instead of a force. Not all dissipation mechanisms can be placed in the form

of eq. (4.5): vibrations, impacts and air resistance, for example, are unlikely to take this form.

The components qx, qy and qz are specific to the dissipation mechanism and will be determined

in Sections 4.4 and 4.5. Furthermore, these components may contain discontinuities similar to

Coulomb friction in eq. (4.4). For rolling friction, we are only concerned with the dynamics off the

discontinuity set as the dynamics on the discontinuity set do not dissipate energy. We proceed to

derive the rolling and slipping equations of motion of Euler’s disk.

4.2.2 The rolling subsystem

The rolling equations of motion, in the absence of a dissipative moment, are identical to the rock-

ing can equations, eq. (2.8). Here, we briefly derive the equations of motion with the dissipative

moment. The rolling constraint requires that the contact point has zero velocity

VG
P =VG

G +RBG
(
ΩB ×GPB

)
= 0,(4.6)

1ODEs with such terms as eqs. (4.3) and (4.4) are called differential inclusions. In the case of Coulomb friction,
these ODEs are called Filippov systems [40] In this chapter, we retain the slipping and rolling definitions and avoid
conflicting terminology from non-smooth dynamics and Filippov systems.
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where VG = (
ẊG , ẎG , ŻG

)⊺ is the velocity of the centre of mass. We expand the rolling constraint,

eq. (4.6), componentwise to obtain the velocities of the centre of mass

ẊG =(−R sinφ−H cosφ)φ̇cosψ− (R(ψ̇cosφ+ θ̇)−Hψ̇)sinψ,(4.7a)

ẎG =(−R sinφ−H cosφ)φ̇sinψ+ (R(ψ̇cosφ+ θ̇)−Hψ̇)sinψ,(4.7b)

ŻG =(R cosφ−H sinφ)φ̇,(4.7c)

identical to eq. (2.5). Differentiation with respect to time gives the equations of motion for the

centre of mass, equivalent to eq. (2.6)

ẌG =(−(R sinφ+H cosφ)φ̈− (R cosφ−H sinφ)(ψ̇2 + φ̇2)−Rθ̇ψ̇
)
cosψ(4.8a)

+ (−ψ̈(R cosφ−H sinφ)−Rθ̈+2(R sinφ+H cosφ)φ̇ψ̇
)
sinψ,

ŸG =(
(R cosφ−H sinφ)ψ̈+Rθ̈−2(R sinφ+H cosφ)φ̇ψ̇

)
cosψ(4.8b)

+ (−(R sinφ+H cosφ)φ̈− (R cosφ−H sinφ)(ψ̇2 + φ̇2)−Rψ̇θ̇
)
sinψ,

Z̈G =φ̈(R cosφ−H sinφ)− φ̇2(R sinφ+H cosφ).(4.8c)

We substitute the accelerations into the force balance, eq. (4.2a), to determine the normal and

friction forces, as given in eq. (2.7),

Fx =m
(−(R sinφ+H cosφ)φ̈− (R cosφ−H sinφ)(ψ̇2 + φ̇2)−Rθ̇ψ̇

)
cosψ(4.9a)

+m
(−ψ̈(R cosφ−H sinφ)−Rθ̈+2(R sinφ+H cosφ)φ̇ψ̇

)
sinψ,

Fy =m
(
(R cosφ−H sinφ)ψ̈+Rθ̈−2(R sinφ+H cosφ)φ̇ψ̇

)
cosψ(4.9b)

+m
(−(R sinφ+H cosφ)φ̈− (R cosφ−H sinφ)(ψ̇2 + φ̇2)−Rψ̇θ̇

)
sinψ,

N =mg+mφ̈(R cosφ−H sinφ)−mφ̇2(R sinφ+H cosφ),(4.9c)

where Fx and Fy are the xG and yG components of F. Substituting the contact forces, eq. (4.9), into

the moment balance, eq. (4.2b), determines the external torque and subsequently, the equations

of motion for the rolling disk(
(A+mH2)sinφ−mHR cosφ

)
ψ̈−mHRθ̈ = (C−2A−2mH2)ψ̇φ̇cosφ(4.10a)

+Cφ̇θ̇−2mHRψ̇φ̇sinφ+Qx,(
mR2 +mH2 + A

)
φ̈= (

(A+mH2 −C−mR2)sinφcosφ−mRH cos(2φ)
)
ψ̇2(4.10b)

−mg(R cosφ−H sinφ)− ((C+mR2)sinφ+mRH cosφ)θ̇ψ̇−Q y,

(C+mR2)(ψ̈cosφ+ θ̈)−mRHψ̈sinφ= (
(C+2mR2)sinφ+2mRH cosφ)

)
ψ̇φ̇+Qz,(4.10c)

ẌP = 0,(4.10d)

ŸP = 0,(4.10e)

where Qx, Q y and Qz are the xG , yG and zG components of the external torque Q. We have

appended the trivial differential equations for the contact point for a complete description of
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the disk (the z component is not required due to the unilateral constraint). In the absence of a

dissipative moment, Q, eq. (4.10) reduces to the rocking can, eq. (2.8). In the next subsection we

derive the equations of motion for the slipping subsystem.

4.2.3 The slipping subsystem

If the disk is slipping, the friction force is given by

F =−µN
V P
|V P |

= − µN√
Ẋ2

P + Ẏ 2
P


ẋP

ẏP

0

 ,(4.11)

and depends upon on the normal force, N. We compute the normal force by considering the

unilateral constraint, ZP = 0, ensuring that the disk does not penetrate the plane

ZG = R sinφ+H cosφ.(4.12)

Differentiating eq. (4.12) twice with respect to time and inserting into the ZG component of the

force balance, eq. (4.2a), yields the normal force

N = mg+m(R cosφ−H sinφ)φ̈−mφ̇2(R sinφ+H cosφ).(4.13)

The contact forces, F and N, are now known and we compute the equations of motion for the

orientation of the disk by expanding the moment balance, eq. (4.2b), componentwise

Aψ̈sinφ+2Aψ̇φ̇cosφ−Cφ̇(θ̇+ ψ̇cosφ)−H(−Fx sinψ+Fy cosψ)−Qx = 0,(4.14a)

Aφ̈+Cψ̇(θ̇+ ψ̇cosφ)sinφ− Aψ̇2 sinφcosφ(4.14b)

− (Fx cosψ+Fy sinψ)(R sinφ+H cosφ)+N(R cosφ−H sinφ)+Q y = 0,

Cθ̈+Cψ̈cosφ−Cψ̇φ̇sinφ+R(−Fx sinψ+Fy cosψ)−Qz = 0.(4.14c)

The equations of motion for the position of the disk are still required. These are best expressed in

terms of the contact point rather than the centre of mass, due to the dependence of friction on the

contact point velocity, V P . The velocity of the contact point is

VG
P =VG

G +RBG
(
ΩB +GPB

)
.(4.15)

Again, by expanding componentwise and differentiating with respect to time we obtain the

accelerations of the contact point

ẌP =(
ψ̈(R cosφ−H sinφ)−2ψ̇φ̇(R sinφ+H cosφ)+Rθ̈

)
sinψ(4.16a)

+ (
φ̈(R sinφ+H cosφ)+ (ψ̇2 + φ̇2)(R cosφ−H sinφ)+Rψ̇θ̇

)
cosψ+ ẌG ,

ŸP =− (
ψ̈(R cosφ−H sinφ)−2ψ̇φ̇(R sinφ+H cosφ)+Rθ̈

)
cosψ(4.16b)

+ (
φ̈(R sinφ+H cosφ)+ (ψ̇2 + φ̇2)(R cosφ−H sinφ)+Rψ̇θ̇

)
sinψ+ ŸG ,
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where the Z̈P equation has been discarded due to unilateral constraint, eq. (4.12). The force

balance, eq. (4.2a), determines the centre of mass accelerations

ẌP =(
ψ̈(R cosφ−H sinφ)−2ψ̇φ̇(R sinφ+H cosφ)+Rθ̈

)
sinψ(4.17a)

+ (
φ̈(R sinφ+H cosφ)+ (ψ̇2 + φ̇2)(R cosφ−H sinφ)+Rψ̇θ̇

)
cosψ+Fx/m,

ŸP =− (
ψ̈(R cosφ−H sinφ)−2ψ̇φ̇(R sinφ+H cosφ)+Rθ̈

)
cosψ(4.17b)

+ (
φ̈(R sinφ+H cosφ)+ (ψ̇2 + φ̇2)(R cosφ−H sinφ)+Rψ̇θ̇

)
sinψ+Fy/m.

Equations (4.14) and (4.17) describe the orientation and position of the can in the slipping state.

In the next subsection we define the transitions between rolling and slipping states.

4.2.4 The rolling-to-slipping transition and vice versa

Together the rolling, eq. (4.10), and the slipping subsystems, eqs. (4.14) and (4.17), determine

the dynamics of Euler’s disk. However, it remains to define the transition between rolling and

slipping and vice versa. The rolling-to-slipping transition occurs when the friction force required

to keep the disk rolling becomes too large. In other words, when trajectories of the rolling system

hit the discontinuity set, Srs, defined by

Srs =
{

X
∣∣∣ ∣∣F(X )

∣∣
N(X )

=µ
}

,(4.18)

where X = (ψ,ψ̇,φ, φ̇,θ, θ̇, XP , ẊP ,YP , ẎP )⊺ is the vector of state variables and the contact forces

F and N are given in eq. (4.9). When transitioning from rolling to slipping the disk begins to slip

on the horizontal plane in the direction opposing friction

V slip =
(
cosξ

sinξ

)
,(4.19)

where ξ= arctan(Fy/Fx)−π, as shown in fig. 4.2.

The slipping-to-rolling transition occurs when the contact point velocity equals zero

Ssr =
{

X
∣∣∣√Ẋ2

P + Ẏ 2
P = 0

}
.(4.20)

Other issues with the transitions arise when solving the equations numerically, but these are

dealt with in Section 4.3.1.

4.2.5 Non-dimensionalisation and reduction of the equations of motion

We non-dimensionalise the equations of motion with the same scalings used for the rocking can,

eq. (2.9), which are repeated here

h = H
R

, xP = XP

R
, yP = YP

R
, z = ZP

R
, a = A

mR2 , c = C
mR2 , τ=

√
g
R

t.(4.21)
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F

V slip
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ξI
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Figure 4.2: When the disk transitions from rolling to slipping, we compute the friction force F
and let the disk slip in the opposite direction. This direction is defined by the slipping angle,
ξ= arctan

(
Fy/Fx

)−π, measured with respect to xG . In the intermediate frame this angle is ξI ,
measured with respect to the xI axis.

First we apply the scalings to the rolling subsystem eq. (4.10), overloading the notation so that

[̇] refers to differentiation with respect to the new time, τ. We also insert the rolling friction

definition for Q from eq. (4.5) to obtain(
ap sinφ−hcosφ

)
ψ̈−hθ̈ =(c−2ap)ψ̇φ̇cosφ+ cφ̇θ̇−2hψ̇φ̇sinφ−ηqxn(φ, φ̇, φ̈),(4.22a) (

ap +1
)
φ̈=(

(ap − cp)sinφcosφ−hcos(2φ)
)
ψ̇2 − (cp sinφ+hcosφ)θ̇ψ̇(4.22b)

− (cosφ−hsinφ)+ηqyn(φ, φ̇, φ̈),

(cp cosφ−hsinφ)ψ̈+ cpθ̈ =
(
(cp +1)sinφ+2hcosφ)

)
ψ̇φ̇−ηqzn(φ, φ̇, φ̈),(4.22c)

ẍP =0,(4.22d)

ÿP =0,(4.22e)

where n(φ, φ̇, φ̈)= N/mg in scaled variables.

n(φ, φ̇, φ̈)= 1+ φ̈(cosφ−hsinφ)− φ̇2(sinφ+hcosφ).(4.23)

Next, we manipulate eq. (4.22) so that only a single second derivative appears on the left-hand

side. We also introduce the constant k = c/(cap+a) for brevity and the functions g i which describe

the dissipation free dynamics. The definitions are given in Section C.

φ̈=gφ+
ηqyn(φ, φ̇, φ̈)

ap +1
,(4.24a)

ψ̈=gψ− ηkn(φ, φ̇, φ̈)
csinφ

(cpqx +hqz),(4.24b)

θ̈ =gθ− ηkn(φ, φ̇, φ̈)
c

(
qx(h− cp cotφ)+ qz(ap −hcotφ)

)
,(4.24c)

ẍP =0,(4.24d)

ÿP =0.(4.24e)
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However, eq. (4.24) is still implicit due to the normal force, n(φ, φ̇, φ̈), which depends upon φ̈.

Numerical solutions therefore require the use of slower, less accurate, implicit solvers such as

ODE15i. We substitute the normal force, eq. (4.23), into the φ̈ equation, eq. (4.24a) and solve for

φ̈

φ̈= gφ(ap +1)+ηqy(1− φ̇2(sinφ+hcosφ))
ap +1−ηqy(cosφ−hsinφ)

,(4.25a)

ψ̈=gψ− ηkn(φ, φ̇, φ̈)
csinφ

(cpqx +hqz),(4.25b)

θ̈ =gθ− ηkn(φ, φ̇, φ̈)
c

(
qx(h− cp cotφ)+ qz(ap −hcotφ)

)
,(4.25c)

ẍP =0,(4.25d)

ÿP =0.(4.25e)

These equations are not quite in explicit form, but when solving numerically, we first compute φ̈

explicitly in eq. (4.25b). Then, n(φ, φ̇, φ̈) is determined by eq. (4.23) for the remaining equations,

enabling the use of stiff solvers such as ODE15S. To save space, we do not substitute n(φ, φ̇, φ̈)

into the other components of eq. (4.25). Equation (4.25) is the governing equation for the rolling

dynamics.

We now apply the same scalings to the slipping subsystem, eqs. (4.14) and (4.17),

aφ̈=(a− c)cosφsinφψ̇2 − csinφψ̇θ̇+ηnqy + ( fx cosψ+ f y sinψ)(hcosφ+sinφ)(4.26a)

− (cosφ−hsinφ)n(φ, φ̇, φ̈),

asinφψ̈=cθ̇φ̇− (2a− c)cosφψ̇φ̇+h(− fx sinψ+ f y sinψ)−ηqxn(φ, φ̇, φ̈),(4.26b)

acsinφθ̈ =((ca− c2)cos2φ+ ca)ψ̇φ̇− c2θ̇ cosφ+η(cqx cosφ−aqz sinφ)n(φ, φ̇, φ̈)(4.26c)

+ (sinψ fx − f y cosψ)(chcosφ+asinφ),

ẍP =(
ψ̈(cosφ−hsinφ)−2ψ̇φ̇(sinφ+hcosφ)+ θ̈)

sinψ(4.26d)

+ (
φ̈(sinφ+hcosφ)+ (ψ̇2 + φ̇2)(cosφ−hsinφ)+ ψ̇θ̇)

cosψ+ fx,

ÿP =− (
ψ̈(cosφ−hsinφ)−2ψ̇φ̇(sinφ+hcosφ)+ θ̈)

cosψ(4.26e)

+ (
φ̈(sinφ+hcosφ)+ (ψ̇2 + φ̇2)(cosφ−hsinφ)+ ψ̇θ̇)

sinψ+ f y,

accompanied by the scaled friction forces

fx =−µn(φ, φ̇, φ̈)
ẋP√

ẋ2
p + ẏ2

p

,(4.27a)

f y =−µn(φ, φ̇, φ̈)
ẏP√

ẋ2
p + ẏ2

p

.(4.27b)

A transformation of the contact point velocities from the global to the intermediate frame removes
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the sinψ and cosψ terms from eqs. (4.26d) and (4.26e). This transformation is

ẋ = ẋp cosψ+ ẏp sinψ,(4.28a)

ẏ=−ẋp sinψ+ ẏp cosψ,(4.28b)

which, upon differentiation, yields the new equations of motion for the contact point position

ẍ = ẍp cosψ+ ÿp sinψ+ ψ̇ ẏ,(4.29a)

ÿ=−ẍp sinψ+ ÿp cosψ− ψ̇ẋ.(4.29b)

Applying the transformation, (4.28), to the slipping equations of motion, eq. (4.26), gives

aφ̈=(a− c)cosφsinφψ̇2 − csinφψ̇θ̇−µn(φ, φ̇, φ̈)
ẋ√

ẋ2 + ẏ2
(hcosφ+sinφ)(4.30a)

− (cosφ−hsinφ)n(φ, φ̇, φ̈)+ηqyn(φ, φ̇, φ̈),

asinφψ̈=cθ̇φ̇− (2a− c)ψ̇φ̇cosφ−µhn(φ, φ̇, φ̈)
ẏ√

ẋ2 + ẏ2
−ηqxn(φ, φ̇, φ̈),(4.30b)

acsinφθ̈ =((ca− c2)cos2φ+ ca)ψ̇φ̇− c2θ̇φ̇cosφ+η(cqx cosφ+aqz sinφ)n(φ, φ̇, φ̈)(4.30c)

+µn(φ, φ̇, φ̈)
ẏ√

ẋ2 + ẏ2
(chcosφ+asinφ),

ẍ =φ̈(sinφ+hcosφ)+ (ψ̇2 + φ̇2)(cosφ−hsinφ)+ ψ̇θ̇− µn(φ, φ̇, φ̈)ẋ√
ẋ2 + ẏ2

+ ψ̇ ẏ,(4.30d)

ÿ=− ψ̈(cosφ−hsinφ)+2ψ̇φ̇(sinφ+hcosφ)− θ̈− µn(φ, φ̇, φ̈) ẏ√
ẋ2 + ẏ2

− ψ̇ẋ.(4.30e)

We introduce the functions hi to describe the dissipation-free components of the slipping motion

φ̈=hφ+ n(φ, φ̇, φ̈)
a

(
ηqy −µ ẋ√

ẋ2 + ẏ2
(hcosφ+sinφ)− (cosφ−hsinφ)

)
,(4.31a)

ψ̈=hψ− n(φ, φ̇, φ̈)
asinφ

(
µh

ẏ√
ẋ2 + ẏ2

−ηqx

)
,(4.31b)

θ̈ =hθ+ n(φ, φ̇, φ̈)
acsinφ

(
ηcqx cosφ−ηaqz sinφ+µ ẏ√

ẋ2 + ẏ2
(chcosφ+asinφ)

)
,(4.31c)

ẍ =φ̈(sinφ+hcosφ)+ (ψ̇2 + φ̇2)(cosφ−hsinφ)+ ψ̇θ̇− µn(φ, φ̇, φ̈)ẋ√
ẋ2 + ẏ2

+ ψ̇ ẏ,(4.31d)

ÿ=− ψ̈(cosφ−hsinφ)+2ψ̇φ̇(sinφ+hcosφ)− θ̈− µn(φ, φ̇, φ̈) ẏ√
ẋ2 + ẏ2

− ψ̇ẋ.(4.31e)

The definitions of hi are given in Section C. Again, we make the φ̈ component explicit by

eliminating n(φ, φ̇, φ̈) from eq. (4.31a). Then n(φ, φ̇, φ̈) is determined by eq. (4.23) for the other
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equations

φ̈=hφ+ (1− φ̇2(sinφ+hcosφ)) fφ
a− (cosφ−hsinφ) fφ

,(4.32a)

ψ̈=hψ− n(φ, φ̇, φ̈)
asinφ

(
µh

ẏ√
ẋ2 + ẏ2

−ηqx

)
,(4.32b)

θ̈ =hθ+ n(φ, φ̇, φ̈)
acsinφ

(
ηcqx cosφ−aηqz sinφ+µ ẏ√

ẋ2 + ẏ2
(chcosφ+asinφ)

)
,(4.32c)

ẍ =φ̈(sinφ+hcosφ)+ (ψ̇2 + φ̇2)(cosφ−hsinφ)+ ψ̇θ̇− µn(φ, φ̇, φ̈)ẋ√
ẋ2 + ẏ2

+ ψ̇ ẏ,(4.32d)

ÿ=− ψ̈(cosφ−hsinφ)+2ψ̇φ̇(sinφ+hcosφ)− θ̈− µn(φ, φ̇, φ̈) ẏ√
ẋ2 + ẏ2

− ψ̇ẋ.(4.32e)

The function fφ represents the contact forces affecting φ and the definition is given in Section C.

Setting µ = η = 0 in eq. (4.32) recovers the dissipation-free, frictionless, slipping system. The

rolling and slipping systems in eq. (4.25) and eq. (4.32) are the governing equations for this

chapter. By inserting different expressions for q = (qx, qy, qz)⊺, it is possible to numerically

analyse different dissipation mechanisms.

Before proceeding to the analysis, we scale the transitions between rolling and slipping states.

The rolling-to-slipping transition, eq. (4.18), becomes

Srs =

X
∣∣∣∣ |F|

N
=

√(
f Ix

)2 + (
f Iy

)2

1+ φ̈(cosφ−hsinφ)− φ̇2(sinφ+hcosφ)
=µ

 ,(4.33)

where f Ix and f Iy are the components of the scaled friction force in the intermediate frame I

f Ix =−(sinφ+hcosφ)φ̈− (cosφ−hsinφ)ψ̇2 − θ̇ψ̇− (cosφ−hsinφ)φ̇2,(4.34a)

f Iy =−ψ̈(cosφ−hsinφ)− θ̈+2(sinφ+hcosφ)φ̇ψ̇.(4.34b)

The initial direction of slip is now determined by the angle the friction force makes with the xI

axis

vslip =
(
cosξI

sinξI

)
(4.35)

where ξI = arctan
(
f Iy / f Ix

)
−π, as shown in fig. 4.2. The slipping-to-rolling discontinuity surface

is almost unchanged and reads

Ssr =
{

X
∣∣∣√ẋ2 + ẏ2 = 0

}
.(4.36)

The variables ψ, θ, x and y are cyclic because they do not appear in the governing equations,

eqs. (4.25) and (4.32), or the transition rules. Therefore, rather than five second-order ODEs,
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4.3. COULOMB FRICTION ANALYSIS

the system may be reduced to six first-order ODEs. However, we retain the cyclic variables for

comparison with experimental data.

Having defined the equations of motion, along with the transitions between rolling and

slipping states, we proceed to analyse the Euler’s disk subject only to Coulomb friction.

4.3 Coulomb friction analysis

In this section, we explore the motion of Euler’s disk in the presence of Coulomb friction and no

additional dissipation mechanism. To obtain these equations of motion, we simply set η= 0 in

eqs. (4.25) and (4.32).

McDonald and McDonald [73] suggest that Coulomb friction is insufficient to bring the disk to

a halt. We confirm this for the disk in the rolling case. Then, we numerically solve the equations

of motion with experimentally determined initial conditions to determine the behaviour of the

disk when slipping occurs. We then discuss Painlevé paradoxes and their applicability to Euler’s

disk.

Equation (4.25), with η= 0, is identical to the equations of motion for the rocking can, eq. (2.11).

It was shown in Section 2.3 that these equations have an equilibrium, or steady motion, given by

Sbal ⊂ Ssteady =
{
(ψ̇, θ̇, φ̇,φ, ẋ, ẏ)= (ψ̇, θ̇,0,φ,0,0)

}
,(4.37)

subject to the condition

((ap − cp)sinφcosφ−hcos2φ)ψ̇2 − (cp sinφ+hcosφ)θ̇ψ̇+ (hsinφ−cosφ)= 0,(4.38)

where the cyclic variables ψ, θ, x and y have been discarded. On this equilibrium the disk rolls at

a fixed angle φ with constant angular velocities ψ̇ and θ̇. Setting φ̇= 0 in the equations of motion,

eq. (4.25), recovers the condition eq. (4.38). If the coefficient of Coulomb friction is sufficient

that the disk does not slip, then the can will continue to roll indefinitely, even in the presence of

Coulomb friction. Furthermore, there exists a special steady motion where the centre of mass is

at rest, called stationary rolling motion, given in eq. (2.28), and repeated here

Srest =
{
(ψ̇, θ̇, φ̇,φ, ẋ, ẏ)= (ψ̇, θ̇,0,φ,0,0)

}
,(4.39)

with the additional requirements

ψ̇2 = cosφ−hsinφ
asinφcosφ+ chsin2φ

, θ̇ =−ψ̇(cosφ−hsinφ).(4.40)

By Newton’s second law, if the centre of mass is stationary then there is no applied friction force.

Therefore, there exists a steady motion for all values of µ and Coulomb friction is unable to

generically bring the disk to a halt. However, it is not known if Coulomb friction is capable of

bringing the disk to a halt in other circumstances. For example, if initial conditions prescribe

slipping or the friction ratio |F|/N becomes too large. To investigate, we numerically solve the

equations of motion, eqs. (4.25) and (4.32), with η= 0.
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4.3.1 Numerical simulations with Coulomb friction

We solve the equations of motion, eqs. (4.25) and (4.32), using MATLAB’s ODE15S, an adaptive

time-step solver capable of dealing with stiff ODEs. The absolute tolerance is set to 10−13 and

event functions are used to detect slipping-to-rolling transitions and vice versa. A similar scheme

is used by Ma and Liu [70] and Kessler and O’Reilly [60]. The integration is halted in three cases:

1. φ becomes too small. If φ< 10−10, we judge the disk to have fallen flat.

2. The integration has surpassed a predetermined time interval, t > Tend.

3. The integration crosses the rolling friction discontinuity set, detected to an accuracy of

10−10.

The rolling-to-slipping, eq. (4.33), and slipping-to-rolling, eq. (4.36), transitions are also detected

to an accuracy of 10−10. These tolerances are less stringent than the absolute tolerance of 10−13

to ensure that no transitions or conditions are missed. In the rolling-to-slipping transition, the

end state of the rolling system is used as the initial conditions for the slipping system with an

additional slipping velocity, given by(
ẋ0

ẏ0

)
= 1.1×10−10vslip,(4.41)

where vslip is given in eq. (4.35). The factor of 1.1 ensures the system does not begin too close to

the slipping-to-rolling transition boundary, eq. (4.36).

When transitioning from slipping to rolling, we check that rolling is indeed feasible using

eq. (4.33). If it is, then we set ẋ = ẏ= 0 and solve the rolling system. If rolling is not feasible, then

the disk continues to slip and we compute the direction of initial slip as above. This ensures that

we avoid missing events where the disk slips through zero contact point velocity without rolling.

The materials parameters of Euler’s disk are given in Section 3.2.2 and repeated here

m = 0.443kg, H = 0.0635m, R = 0.0381m, A = 1.62×10−4 kgm2, C = 3.22×10−4 kgm2.

(4.42)

The coefficient of Coulomb friction of Euler’s disk on the stainless steel base-plate was measured

to be µ = 0.134 in Table 3.1. Initial conditions are computed from the data provided by the

experiments in Section 3.3. The disk was spun on a stainless steel base-plate, and filming from

the side, we obtained data for φ and ψ. Numerical differentiation gives rough estimates for φ̇ and

ψ̇. Filming from above, we also tracked the rotation of a strip drawn on the face of the disk. The

angular velocity of this strip was denoted by β̇ and a relationship, eq. (3.22), derived that enabled

estimation of θ̇. The initial conditions are given 0.5 s before the disk comes to a halt. In unscaled

variables they read

X0 =
(
ψ,ψ̇,φ, φ̇,θ, θ̇, x, ẋ, y, ẏ

)⊺ = (0,−188.5,0.0243,0,0,187.2,0,0,0,0)⊺ .(4.43)
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Figure 4.3: Numerical solution of the equations of motion, eqs. (4.25) and (4.32), with ICs and
parameter values from eqs. (4.42) and (4.43). Variables are unscaled. A brief period of slip is
visible before settling down to rolling motion.

The initial conditions for the cyclic variables x, y, ψ and θ are set to zero without loss of generality.

It is not possible to accurately compute the velocity of the contact point from the experiments,

so we check the feasibility of rolling using eq. (4.33) and find that the disk must slip. We then

compute the initial direction of slip and find ξI = 0 and the disk initially slips in the positive xI

direction.

The results of the numerical simulation are shown in fig. 4.3 in unscaled units for comparison

with later simulations and the experimental results. An initial period of slip lasts for around

0.02 s before a transition to rolling which continues for the remainder of the integration. The disk

does not come to a halt in fig. 4.3.

In fig. 4.4, we plot the friction ratio for the solution and find that, after the initial period of

slip, the required coefficient of friction remains low. The system does not slip again, suggesting

that the disk rolls indefinitely with these initial conditions.

It remains to be seen if the indefinite rolling behaviour occurs for all initial conditions. There

is known to be error in the estimates of the initial conditions. So, in fig. 4.5 we alter the initial

conditions such that ψ̇=−388.5 and θ̇ = 387.2, corresponding to releasing the disk with more

spin. Different behaviour is observed in the numerical solution, again, we see a period of contact
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|F|/N

t

Figure 4.4: The friction ratio, |F|/N, for the numerical solution in fig. 4.3. The short slipping
phase is shown in red. The disk then undergoes periodic rolling motion.

point movement in fig. 4.5 and apparent oscillatory behaviour. However, the disk is repeatedly

switching between slipping and rolling motion. This is clearly demonstrated in fig. 4.6, which

shows many small periods of slip when the friction ratio, |F|/N, the coefficient of Coulomb friction.

Each slipping phase dissipates energy, however, it does not appear to be bring the disk to a halt.

The long time limit appears to be a purely rolling phase, like in fig. 4.3.

Before discussing rolling frictions as the primary mechanism of dissipation, we must address

another mechanism by which Coulomb friction could bring Euler’s disk to a halt: the Painlevé

paradox.

4.3.2 The Painlevé paradox

Under certain conditions, a rigid body subject to Coulomb friction and unilateral constraints may

have none or multiple solutions. This is known as the Painlevé paradox. Specifically, Painlevé [78]

discussed a slender rod slipping along a rough surface, which was later analysed in detail by Génot

and Brogliato [42]. The paradox in two and three dimensions can be resolved by regularisation.

Allowing some compliance in the surface results in a so-called ‘impact-without-collision’, where

the disk lifts off to escape the paradox [26, 51]. For Euler’s disk, repeated lift-off followed by
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Figure 4.5: Numerical solution of the equations of motion, eqs. (4.25) and (4.32), with altered
initial conditions: ψ̇=−388.5 and θ̇ = 387.2 and a increased simulation time to make the many
small slipping phases visible. The material parameters are given in eq. (4.42).

|F|/N

t
Figure 4.6: The friction ratio, |F|/N, for the
numerical solution in fig. 4.5. Many slipping
sections are visible in red where |F|/N =
0.134.

φ

t
Figure 4.7: The time series of φ from the nu-
merical solution in fig. 4.5, with the slipping
sections in red and rolling in blue.

impacts with the plane represents a dissipation mechanism that could explain the losses of

contact found by Borisov et al. [19]. In this subsection, we determine if it is possible for Euler’s
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disk to experience a Painlevé paradox. Rather than the thin rod studied by Painlevé [78], Hogan

and Kristiansen [51] , and Cheesman et al. [26], we have a thick disk. This example is examined

by Ivanov [55] who finds that ‘in a neighborhood of stationary motions, detachments do not occur’.

Liu et al. [69] examine the Painlevé paradox for a ball impacting disk system and also find that

the Painlevé paradox does not occur at large values of φ. Here, we search for the Painlevé paradox

at all values of φ and consider the effect of rolling friction.

To determine if the Painlevé paradox can occur, we compute the normal force n(φ, φ̇, φ̈)

explicitly. We also insert the slipping ODE for φ̈, eq. (4.30a) to give

n(φ, φ̇, φ̈)= −b
p

= a−aφ̇2(sφ+hcφ)+ (cφ−hsφ)((a− c)sφcφψ̇2 − csφψ̇θ̇)

a+ (cφ−hsφ)2 + µẋ(hcφ+sφ)(cφ−hsφ)p
ẋ2+ ẏ2

−ηqy(cosφ−hsinφ)
,(4.44)

where we have borrowed notation from Cheesman et al. [26] and denoted the numerator by −b to

describe the scaled free acceleration. We denote the denominator by p where pn(φ, φ̇, φ̈) describes

the acceleration of the contact point due to the interaction with the surface. There exist four

distinct cases described by Cheesman et al. [26]:

• b < 0, p > 0 then n(φ, φ̇, φ̈)> 0 and the rod slips along the rough surface.

• b > 0, p > 0 then n(φ, φ̇, φ̈)< 0 and lift-off occurs.

• b < 0, p < 0 then n(φ, φ̇, φ̈)< 0 and both the free and contact accelerations act downwards,

inconsistent with the assumption of a rigid plane and solutions do not exist.

• b > 0, p < 0 then n(φ, φ̇, φ̈)> 0 but, because the free acceleration is upwards, lift-off is still

possible. Motion is indeterminate and solutions are non-unique.

To obtain a paradox, we require p < 0, but this may not be achievable for realistic values of µ. In

the absence of a dissipative moment, η= 0, we set p = 0 and solve for µ. First, we define a change

of variables for φ̄ which represents the angle that GP makes with respect to the horizontal plane

in fig. 4.1

sinφ+hcosφ=
√

h2 +1sin
(
φ̄

)
,(4.45a)

cosφ−hsinφ=
√

h2 +1cos
(
φ̄

)
.(4.45b)

Then p is reduced to

p = a+ (h2 +1)cos2 φ̄−µ(h2 +1)cos φ̄sin φ̄
ẋ√

ẋ2 + ẏ2
= 0.(4.46)

Dividing eq. (4.46) by a factor of the moment of inertia, a, gives

0= 1+λcos2 φ̄−µλcos φ̄sin φ̄
ẋ√

ẋ2 + ẏ2
,(4.47)
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where λ = (h2 +1)/a. Setting ẋ = −1, and ẏ = 0 makes the problem planar and maximises the

negative part of p. We obtain the same expression as Hogan and Kristiansen [51, (2.6)], but with

a shifted angle φ̄. The critical coefficient of Coulomb friction for the planar Painlevé paradox is

µp = 2
p

1+λ
λ

.(4.48)

For the commercial Euler’s disk h = 0.167 and a = 0.252 giving λ= 4.08 and µp = 1.11. This value

of the coefficient of Coulomb friction is much larger than those found in Table 3.1 and in the 3D

case, with (ẋ, ẏ) ∈R2, the required coefficient is even larger [26]. The Painlevé paradox has no

place in the Euler’s disk phenomenon and the loss of contact must arise due to other causes.

The additional term −ηqy(cosφ−hsinφ) in eq. (4.44) acts to make p more negative, reducing

the critical value of the coefficient of friction needed for a Painlevé paradox. However, rolling

friction is typically far weaker than sliding friction; η is orders of magnitude smaller than µ.

Therefore, the rolling term will only have a small effect on µp. In the next section, we derive

various rolling frictions and determine the components of the dissipative moments, qx, qy and qz.

4.4 Rolling friction formulations

It is clear that Coulomb friction is not the main driver of energy loss in Euler’s disk [68, 73]. We

turn to formulations of rolling friction to explain the abrupt halt of Euler’s disk and its power

law governed decrease in energy. Rolling contact and, by extension, rolling friction have many

engineering applications. Pacejka and Bakker [77] developed the so-called ‘magic formula tyre

model’ describing the slipping, self-righting and other dynamic properties of tyres. Euler’s disk

is far more rigid than rubber tyres and therefore requires a different physical description. In

the 19th century, Reynolds [82] experimented with cast iron rollers on glass and wood. It was

shown that slip occurs at the rear of the contact region, thus giving rise to rolling friction. Tabor

[90] performed experiments rolling a hard steel sphere over metal surfaces and measured the

amount of plastic deformation and also found slip. He posited that, even in metals, the source of

rolling resistance arises from elastic hysteresis losses. More recently, Ivanov [56] suggested that

rolling friction is inherently viscous, citing the example of a pencil rolling down an inclined slope.

Other, more complicated rolling friction models exist such as the viscoelastic model studied by

Goryacheva and Zobova [46]. Johnson [58] identifies three sources of energy dissipation in rolling

contact :

• Micro-slip and friction at the contact interface.

• Inelastic properties of the material.

• Roughness of the rolling surfaces.

To avoid overcomplication, we assume simple rolling friction models that straightforwardly

correspond to moments that oppose angular velocity, as in eq. (4.5). In planar systems, such as
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ω

R

N

Q

Figure 4.8: Planar rolling friction. The torque, Q, opposes the angular velocity, ω.

fig. 4.8, rolling friction is commonly modelled as an angular version of Coulomb friction in the

form of a torque, Q, that opposes an angular velocity, ω. In unscaled variables,

Q

=−ηRN(φ, φ̇, φ̈)sign(ω) if ω ̸= 0

∈ [−ηRN(φ, φ̇, φ̈),ηRN(φ, φ̇, φ̈)] if ω= 0
.(4.49)

Just as with Coulomb friction, eq. (4.49) contains a discontinuity at ω= 0. If ω ̸= 0, the system is

off the discontinuity set and provides a constant arresting moment, while if ω= 0, the system is

on the discontinuity set and rolling friction provides a moment that acts to keep ω= 0.

For a body rolling in three dimensions, the formulation of rolling friction becomes less clear.

There are three axes about which the body may roll and spin. A number of formulations have been

proposed: classical, contour, pivoting and rolling, along with viscous variants. The formulations

capture different effects: rolling motions compress the plane, while spinning motions shear the

plane. In three dimensions, Coulomb friction has an isolated codimension-2 discontinuity but,

with the right choice of rolling friction, one can obtain codimension-3 discontinuities [9].

In this work, we disregard the dynamics on the discontinuity set. Just as Coulomb friction

dissipates no energy when rolling without slip, rolling friction dissipates no energy when the

system is on the discontinuity set. Therefore, we assume rolling friction formulations consistent

with eq. (4.5), ignoring the differential inclusions. If required, the dynamics on the discontinuity

set could be found using the constraint ω = 0. In this chapter, we derive expressions for the

different formulations of rolling friction, before analysis in Section 4.6.

4.4.1 Classical rolling friction

Johnson [58] defines rolling contact as ‘relative angular motion between two bodies in contact

about an axis parallel to their common tangent plane’. Classical rolling friction assumes that
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there is a resistance to such rolling contact, that is, angular velocities about the xG and yG axes.

Angular velocity about the zG axis is called pivoting and is not considered in classical rolling

friction. We compute the angular velocity about the horizontal axes xG and yG

ωG
x =

(
RBGΩ

B
)
· x̂G =−sinφcosψθ̇+sinψφ̇,(4.50a)

ωG
y =

(
RBGΩ

B
)
· ŷG =−sinφsinψθ̇−cosψφ̇.(4.50b)

We construct classical rolling friction by finding the moment opposing the angular velocity and

dividing by the factor
√(

ωG
x

)2 +
(
ωG

y

)2
to ensure that the modulus of the moment is ηRN

QG =− ηRN(φ, φ̇, φ̈)√(
ωG

x

)2 +
(
ωG

y

)2


ωG

x

ωG
y

0

=− ηRN(φ, φ̇, φ̈)√
φ̇2 + θ̇2 sin2φ


−sinφcosψθ̇+sinψφ̇

−sinφsinψθ̇−cosψφ̇

0

 .(4.51)

Writing eq. (4.51) in the body frame, B, and non-dimensionalising, we obtain classical rolling

friction

QB =− ηn(φ, φ̇, φ̈)√
φ̇2 +sin2φθ̇2


−cosφsinφθ̇

−φ̇
θ̇sin2φ

 ,(4.52)

defining the components of q in the equations of motion eqs. (4.25) and (4.32)

q =


qx

qy

qz

=


−cosφsinφθ̇p
φ̇2+θ̇2 sin2φ

−φ̇p
φ̇2+θ̇2 sin2φ
θ̇sin2φp
φ̇2+θ̇2 sin2φ

.

(4.53)

Equation (4.52) agrees with the definition of rolling friction given by Leine [68], who neglects

the qy term as it is assumed that φ̇ is small. Note that eq. (4.52) defines the moment away

from the discontinuity at φ̇2 + θ̇2 sin2φ ̸= 0. If φ̇2 + θ̇2 sin2φ= 0, then the moment can take any

value |QB | ∈ [0,ηn(φ, φ̇, φ̈)] to oppose the angular velocity. A viscous version of the dissipation

mechanism assumes linear dependence on the angular velocity and can be obtained by discarding

the square-root term in eq. (4.52).

4.4.2 Pivoting friction

In contrast to classical rolling friction, pivoting friction assumes a resistance to spinning motion

or angular velocity about the zG . We compute the vertical angular velocity

ωG
z =

(
RBGΩ

B
)
· ẑG = ψ̇+ θ̇ cosφ.(4.54)
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After shifting to the body frame and non-dimensionalising, the dissipative moment is

QB =−ηn(φ, φ̇, φ̈)sign(ψ̇+ θ̇ cosφ)


sinφ

0

cosφ

 ,(4.55)

defined for ψ̇+ θ̇ cosφ ̸= 0, which agrees with Leine [68]. The components of q are defined analo-

gously to eq. (4.52). The zero of ψ̇+ θ̇ cosφ is a co-dimension one discontinuity.

4.4.3 General rolling friction

General rolling friction simply opposes the total angular velocity of the disk, without differentiat-

ing between rolling and pivoting motion

QB =−ηn(φ, φ̇, φ̈)Ω̂=− ηn√
ψ̇2 sin2φ+ φ̇2 + (ψ̇cosφ+ θ̇)2


ψ̇sinφ

−φ̇
ψ̇cosφ+ θ̇

 .(4.56)

This formulation has a co-dimension three discontinuity that occurs when φ̇= ψ̇= θ̇ = 0. Examples

of such discontinuities are discussed by Antali and Varkonyi [9]. Other formulations of rolling

friction can be constructed by weighted combinations of pivoting and classical rolling friction.

4.4.4 Contour friction

Contour friction differs to the previous formulations. Le Saux et al. [67] defines it as a moment

‘which models resistance against the movement of the contact point along the contour of the disk’.

We recall the movement of the contact point from eq. (2.100) in Chapter 2 repeated here

VG
P =VG

G +RBG
((
ΩB − θ̇ ẑB

)
×GPB

)
,(4.57)

which, when converted to the intermediate frame I , gives the unscaled contact point velocity

V I
p = (0,Rθ̇,0)⊺.(4.58)

Contour friction opposes the velocity of the contact point V P . Leine [68] derives the moment

through virtual power considerations. After placing in the body frame and non-dimensionalising

QB =−ηn(φ, φ̇, φ̈)sign(θ̇)


−cotφ

0

1

 .(4.59)

Contour friction, in contrast to previous mechanisms, is singular at φ= 0. Therefore, the strength

of the moment increases as the disk falls flat. In fact, the formulation is closely related to classical
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rolling friction. Contour friction may be obtained by neglecting the φ̇ term in eq. (4.52) and

multiplying by a factor of 1/sinφ. Contour friction also has a codimension-1 discontinuity

Dc =
{

X
∣∣∣ θ̇ = 0

}
,(4.60)

which has implications for the continued rotation of the disk, discussed further in Section 4.7.

In Section 4.5, we find a justification for the existence of contour friction by relaxing the rigid

body assumption.

4.5 Rolling frictions that arise from a contact region

The rolling friction formulations set out in Section 4.4 are phenomenological models designed

to describe behaviour in different rolling regimes. For the disk, there is no a priori reason to

choose one model over another. In this section, we derive rolling frictions for the disk by relaxing

the rigid body assumption. As seen in fig. 4.9, rolling friction requires the presence of a contact

region, a fact neglected in the phenomenological models of section 4.4. If the disk contacts the

plane at a point, then there is no distance over which to exert a dissipative moment. However,

the disk and the plane are not perfectly rigid: they deform and contact over an area known as the

contact region. The normal force is replaced by a normal pressure, p(x) over the contact region. If

the disk rolls, then the pressure distribution skews (fig. 4.9, right) resulting in a moment that

acts to slow the body down. In this section, we explore different contact region models and their

resulting dissipation mechanisms.

N

F

ω ω

N

F
p(x)

Figure 4.9: Rolling friction requires the presence of a contact region over which there is a skewed
pressure distribution, p(x).

4.5.1 Constant offset model

In the first instance, we assume the presence of a contact region with a skewed pressure distri-

bution. The normal force is offset by a small distance, δI = (U ,V ,0), from the rigid body contact

point limit, as shown in fig. 4.10. The offset opposes the motion of the disk. For example, if the

disk rolls such that G moves in the positive yI direction, then V must be positive to oppose the
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V

U
P

δ

P ′

G

xI

yI

Figure 4.10: Top view of the disk shown in white. An enlarged contact region is shown in blue.
The centre of pressure P ′ is offset by δ from the rigid body contact point P.

motion. The moment balance, eq. (4.2b), is altered such that

IΩ̇B −ωB × IΩB =GPB ×RGBFG + (GPB +δB)×RGBNG(4.61)

where we have assumed no changes in the friction force. The offset, δ, results in a dissipative

moment Q that acts to slow the disk down. The dissipative moment is given by

δB × (RGBNG )=QB =−n


−vsign(θ̇)cosφ

−usign(φ̇)

vsign(θ̇)sinφ

 ,(4.62)

where we introduce U = uR sign(φ̇) and V = vR sign(−θ̇) to non-dimensionalise and ensure that

u and v are the correct sign. Note that this formulation is similar to classical rolling friction in

eq. (4.52), reaching equality at φ̇= 0 or θ̇ = 0. The contact region is expected to be long and thin

as contact is made along the rim of the disk, hence we assume that qy = u = 0 to give

QB =−n(φ, φ̇, φ̈)vsign(θ̇)


−cosφ

0

sinφ

 ,(4.63)

in agreement with the classical rolling friction discussed by Leine [68]. The offset in the yI

direction, v, takes the place of the coefficient of rolling friction, η.
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yI

zI

φ=π/2 φ= arcsin(2/3) φ= arcsin(1/3)

Figure 4.11: As the disk’s angle of inclination decreases, the radius of curvature increases.

4.5.2 Curvature dependent offset model

Cross [31] noted that, if the offset distance, V , varies inversely with sinφ, then ‘the rate of fall

increases with time’. Therefore, we extend the constant offset model by assuming that the size

and shape of the contact region is dependent on the orientation of the disk. As the disk falls flatter,

the radius of curvature seen by the plane increases, resulting in a thinner, longer contact region,

as shown in fig. 4.11. We compute the radius of curvature at the contact point by considering the

bottom face of the disk flush with the plane in the intermediate frame I . The bottom rim of the

disk is parametrised by the angle α

(x, y, z)⊺ = (R cosα,R sinα,0)⊺.(4.64)

To tilt the disk upwards about the contact point we rotate by φ about the xI axis, by applying

the rotation matrix RIB. A translation upwards of R sinφ ensures contact at z = 0. The new

coordinates of the rim are

(x, y, z)⊺ = (R cosαcosφ,R sinα,R cosαsinφ+R sinφ)⊺.(4.65)

We project the transformed circle into the (y, z)I plane of fig. 4.11, giving

y2

R2 + (z−R sinφ)2

R2 sinφ2 = 1,(4.66)

an ellipse with z semi-axis dependent upon φ. The rim touches the plane at z = 0, at which point

the radius of curvature, seen by the plane in the yI axis is

Ry = R
sinφ

.(4.67)

As φ decreases, Ry increases, increasing the length of the contact region in the yI direction. The

width of the contact region in the xI direction is governed by the constant radius of curvature

of the edge of the disk, Rx, where Rx ≪ Ry. Therefore as a first approximation, we propose that

the size of the offsets in the centre of pressure are proportional to the curvatures, V ∝ Ry and

U ∝ Rx such that

V = kvR sign(θ̇)
sinφ

, U = kuR sign(φ̇),(4.68)

105



CHAPTER 4. THE HALTING OF EULER’S DISK

where kv and ku are constants of proportionality. Upon substitution of eq. (4.68) into eq. (4.62),

we obtain the dissipative moment arising due to a curvature dependent offset in the centre of

pressure

QB =−n(φ, φ̇, φ̈)


−kv sign(θ̇)cotφ

−ku sign(φ̇)

kv sign(θ̇)

 .(4.69)

This dissipation mechanism closely agrees with contour friction, eq. (4.59), and is identical in the

case of ku = 0, a reasonable approximation due to the difference in curvatures. If ku = 0, then kv

takes the role of η, the coefficient of rolling friction. However, as discussed in the next subsection,

the assumption V ∝ Ry appears to overestimate the length of the contact region.

4.5.3 Other contact region models

Thus far, we have ignored the shape of the contact region, assuming only that the centre of

pressure is shifted by an amount proportional to the radius of curvature of the disk. In this

subsection, we use Hertzian contact theory to determine the size and shape of the contact region

and inform our estimates of the offset δ. First, we give an overview of Hertzian contact, before

examining some common approximations. We follow Johnson’s [58] derivation of the contact

region for general profiles. The disk and plane are assumed to be smooth, static, frictionless and

elastic. The plane is modelled as an elastic half-space with zero curvature everywhere. The disk

has two principle radii of curvature: Ry = R/sin(φ) and Rx, aligned with the intermediate axes

yI and xI respectively. We approximate the distance, d, between the disk and the plane by

d(x, y)= x2

2Rx
+ y2

2Ry
,(4.70)

where (x, y)= (0,0) is the centre of the contact region. Cubic terms have been omitted due to the

assumption of a small contact region. Hertzian contact theory assumes an elliptic contact region

with semi-axes lengths a and b in the yI and xI axes respectively. The pressure distribution over

the contact region is assumed to be

p(x, y)= p0

(
1−

( x
b

)2 −
( y
a

)2
)1/2

,(4.71)

where p0 is the maximum pressure at the centre of the contact region. The three unknowns p0, a

and b are determined by the following set of three equations, adapted from Johnson [58, (4.26a),

(4.26b) and (4.27)], and originally derived by considering the surface displacements caused by the

pressure distribution eq. (4.71)

1
2Rx

= p0

E∗
b

e2a2 (K(e)−E(e)) ,(4.72a)

1
2Ry

= p0

E∗
b

e2a2

(
(a2/b2)E(e)−K(e)

)
,(4.72b)

P =(2/3)p0ab.(4.72c)
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In this quasi-static setting it is assumed that the total load, P, equals the weight of the disk, mg.

E∗ is a combined measure of the Young’s moduli mediated by the Poisson ratios

1
E∗ = 1−ν2

1

E1
+ 1−ν2

2

E2
.(4.73)

The eccentricity of the contact region, e, is given by

e =
(
1− b2

a2

)1/2

,(4.74)

for b < a. The functions K(e) and E(e) are complete elliptic integrals of the first and second kind,

respectively defined by

K(e)=
∫ 1

0

dt√
(1− t2)(1− e2t2)

, E(e)=
∫ 1

0

p
1− e2t2
p

1− t2
dt.(4.75)

Combining eq. (4.72), we eliminate p0 and insert the radii of curvatures, Rx and Ry = R/sinφ, to

obtain

R
Rx sinφ

=
a2

b2 E(e)−K(e)

K(e)−E(e)
,(4.76a)

1
2

(
sinφ
RRx

)1/2
= 3mg

2E∗a3e2

{(
(a/b)2E(e)−K(e)

)
(K(e)−E(e))

}1/2
.(4.76b)

It remains to solve eq. (4.76) for the unknown semi-axes a and b of the contact region as a

function of φ and other material constants. We may then compute the dissipative moment by

assuming an offset proportional to the length of the semi-axes,

δ=
(
U

V

)
∝

(
b

a

)
(4.77)

However, it is not possible to solve for a and b analytically because eq. (4.76) contain elliptic

functions. A number of different approximations have been developed for this purpose. We first

compute the semi-axes using the Greenwood approximation [47].

4.5.3.1 Greenwood approximation

Instead of an elliptic contact region, Greenwood [47] assumes an equivalent circular contact with

area πc2, and radius, c, given by the geometric mean of the contact region semi-axes c2 = ab. The

radius c and the maximum contact pressure p0 are determined by [47, (1)]

c = 3WRe

4E∗
1/3

, p0 = 3W
2πc2 .(4.78)

The effective radius of curvature, Re, is an average of the relative curvatures, κy = 1
2Ry

and

κx = 1
2Rx

[47, (2)]

Re =
(
κyκx

(κy +κx)
2

)−1/3
.(4.79)
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We require the semi-axes a and b of the ellipse, rather than their product c2 = ab. The ratio b
a

may be found using the asymptotic equation employed by Greenwood [47] and Johnson [58](
b
a

)
∼

(
κy

κx

)2/3
.(4.80)

By solving for a and b, substituting the disk curvatures κy = sinφ
2R and κx = 1

2Rx
and assuming

small φ, we obtain estimates for the size of the contact region

a =
(

3W
4E∗

)1/3 (
R

Rx sinφ

)(
2R2R2

x

R− xsin2φ+R sinφ

)1/9

∝φ−4/9,(4.81a)

b =
(

3W
4E∗

)1/3 (
Rx sinφ

R

)(
2R2R2

x

Rx sin2φ+R sinφ

)1/9

∝φ2/9.(4.81b)

The semi-axis a increases according to a singular power of φ, while the semi-axis b decreases.

Assuming that the offsets u and v are proportional to the semi-axes b and a respectively gives

u = kuφ
2/9,(4.82a)

v = kvφ
−4/9.(4.82b)

Compared with the curvature dependent offset model in Section 4.5.2, this estimate of the offset

v is much smaller as φ→ 0. This suggests that the linear dependence of the offset on the radius

of curvature in eq. (4.68) is an overestimate. This is also the case for the other Hertzian derived

models.

Substituting the offset into the constant offset dissipation mechanism eq. (4.62) yields

QB =−n(φ, φ̇, φ̈)


−kvφ

−4/9

−kuφ
2/9

kvφ
5/9

 .(4.83)

A warning must be issued, it is stated that ‘This method works well for mildly elliptical contacts’

[47]. However, we require very elliptical contacts, for which a ≫ b, suggesting that other contact

models might be more appropriate.

4.5.3.2 Brewe and Hamrock approximation

Brewe and Hamrock [21] consider an elliptic contact region, but approximate the value of the

elliptic integral and the semi-axis ratio k = a/b. The exact equations for the semi-axes are [47]

a =
(

3k2E(e)mgR
πE∗

)1/3

, b =
(

3E(e)WR
πkE∗

)1/3
(4.84)

where 1/R = κy +κx. The elliptic integral E(e) and semi-axis ratio are approximated by

k ≡ a
b
≈ 1.0339

(
κx

κy

)0.636
, E(e)≈ 1.0003+0.5968

(
κy

κx

)
.(4.85)
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Assuming small φ and that the offsets are proportional to the semi-axes yields

V ≈ kvφ
−0.424,(4.86a)

U ≈ kuφ
0.212.(4.86b)

Inserting into the offset dissipation mechanism eq. (4.62) gives the moment

QB =−n(φ, φ̇, φ̈)


−kvφ

−0.424

−kuφ
0.212

kvφ
0.576

 .(4.87)

A similar approximation by Hamrock and Brewe [48] corrects for errors at almost circular

contacts, which is not relevant for the very elliptical contacts considered here.

4.5.3.3 Winkler’s elastic foundation model

Instead of modelling the plane with an elastic half-space, the Winkler or mattress model described

in Johnson [58] assumes an elastic foundation of depth d f , resting on a rigid base. Shear forces

are neglected in this model. The boundary of the contact area is an ellipse with semi-axes

a = (2δRy)1/2, b = (2δRx)1/2, δ= 2d f mg
Kπab

(4.88)

where δ is the compression at the origin and K is the elastic modulus of the foundation. Inserting

Ry = R/sinφ, solving for a and b and assuming small φ gives

a =
p

2

(
P2d2

f R3

RxK2π2

)1/8

sin−3/8φ∝φ−3/8,(4.89a)

b =
p

2

(
P2d2

f R3
x

RK2π2

)1/8

sin−1/8φ∝φ1/8.(4.89b)

Assuming that the offset, δ is proportional to the length of the semi-axes and inserting into the

dissipation mechanism, eq. (4.62), gives

QB = n(φ, φ̇, φ̈)


kvφ

−3/8

kuφ
1/8

−kvφ
5/8

 .(4.90)

4.5.3.4 Cylindrical contact model

The final approximation considered is the cylindrical contact model. At small φ, the radius of

curvature in the yI direction is much larger than the radius of curvature in the xI direction

because Ry = R/sinφ≫ Rx. Therefore, we assume that the disk contacts the plane in a line instead

of an ellipse, reducing the problem to a planar one. Contact is modelled by ‘two dimensional
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contact of cylindrical bodies’ [58]. The plane is modelled by one cylinder with infinite radius of

curvature and the disk is modelled by a cylinder with radius of curvature R/sinφ. Johnson [58,

(4.43)] gives the formula for the length of the contact region

a =
√

4PR′

πE∗ =
√

4mgR
πE∗

1
sinφ

≈ kvφ
−1/2.(4.91)

resulting in the dissipation mechanism

QB = n(φ, φ̇, φ̈)


kvφ

−1/2

0

−kvφ
1/2

 .(4.92)

4.5.4 Hertzian derived models: Issues and improvements

The contact region models set out in Section 4.5.3 inherit many assumptions from Hertzian

mechanics. In all cases, the models are static and all dynamic effects of the disk rolling over the

plane are ignored. Effects such as viscoelasticity, elastic hysteresis and microslip are all neglected.

Furthermore, the size and shape of the contact region is predicated on a symmetric pressure

distribution between the disk and the plane, eq. (4.71). However, to provide a dissipative moment,

this pressure distribution must be skewed as in fig. 4.9.

In all models, friction is assumed to act identically to the point contact, rigid body limit.

However, the Hertzian contact model assumes that the plane is frictionless. We expect that

including friction, skewed pressure distributions and surface roughness in the Hertzian models

will affect the size and shape of the contact region and introduce microslip, but this is beyond the

scope of this thesis.

In the case of rolling frictions derived from viscoelasticity, the rolling resistance is governed

by the Deborah number, ζ = V T/a. A non-dimensional quantity, ζ represents ‘the ratio of the

relaxation time of the material to the time taken for an element to travel through the semi-contact

width’ [58]. The resistance to rolling is maximum when ζ= 1 and the body travels through the

contact region at the same rate as the surface relaxes. At lower speeds, the material relaxes

as the body rolls over it, while at higher speeds the material does not have sufficient time to

compress resulting in elastic-like behaviour. This is not an observation consistent with Euler’s

disk.

In the next section, we analyse, via energy methods, the rolling friction formulations set forth

in Sections 4.4 and 4.5.

4.6 The energy exponent

Many dissipation mechanisms are defined in Sections 4.4 and 4.5 and each has the potential to

explain the motion of Euler’s disk. Therefore, we require a means of comparison to differentiate
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between them. It is known from experiments that, as the disk comes to a halt, its energy decreases

according to a power law of the form

E(t)= Ae(t0 − t)n,(4.93)

where Ae is a multiplicative constant, t0 is the time of the halt and n is the energy exponent.

As noted in Section 3.2.1, an energy exponent of n > 1 results in a gentle, tangential decrease

towards zero energy, while n < 1 results in an abrupt, perpendicular decrease. All experimental

evidence from Section 3.2 and the literature [23, 32, 68, 71] indicates that n < 1. In Section 3.2,

it was found that n can vary from 0.45 to 0.69 depending on the material of the base-plate the

disk rolls on. Importantly, different dissipation mechanisms predict different energy exponents,

naturally leading to a method of comparison [23, 68, 71]. The mechanism with the lowest, n,

dominates the dissipation as t → t0 and can be said to bring the disk to a halt. However, the

dissipation mechanism must be consistent with with experimental data.

We compute the analytical energy exponent for the candidate mechanisms in Sections 4.4

and 4.5, in the manner of Leine [68]. The calculation relies on a number of assumptions, so we

also estimate the energy exponent from numerical solutions of the equations of motion. The total

energy of Euler’s disk is

E = m(VG ·VG)
2

+ IΩ ·Ω
2

+mg(R sinφ+H cosφ).(4.94)

To reduce eq. (4.94), we apply the non-dimensional scalings in eq. (4.21) and scale the energy by

E = ĒmgR and immediately drop the bar notation. We also assume the disk is rolling, such that

V P = 0, and insert the centre of mass velocity, eq. (4.7), along with the angular velocity, Ω

E =(−2hsinφcosφ+aP sin2φ+ cP cos2φ)
ψ̇2

2
+ (cP cosφ−hsinφ)ψ̇θ̇+ cP

θ̇2

2
(4.95)

+ (aP +1)
φ̇2

2
+hcosφ+sinφ.

The disk is assumed to be undergoing stationary rolling motion as defined in eq. (4.39). The

expressions for stationary rolling motion in eq. (4.40) are used to eliminate ψ̇ and θ̇. We also

subtract h, the scaled energy of the disk in the flat configuration, before finally assuming small φ

to give

E ≈ ch2 +3a
2a

φ,(4.96)

a linear relationship between the energy and the nutation angle, φ. The rate of energy dissipation

is given by the component of the angular velocity in the direction of the dissipative moment

Ė =QB ·ΩB .(4.97)
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For classical rolling friction, we substitute the dissipative moment QB derived in eq. (4.52)

Ė =− ηn(φ, φ̇, φ̈)√
φ̇2 +sin2φθ̇2


−cosφsinφθ̇

−φ̇
θ̇sin2φ

 ·


ψ̇sinφ

−φ̇
ψ̇cosφ+ θ̇

 ,(4.98)

and apply the stationary rolling assumption, while taking only the leading order term as φ→ 0

Ė =− ηn√
φ̇2 +sin2φθ̇2

(
φ̇2 + θ̇2 sin2φ)

)≈− ηp
a

√
φ,(4.99)

suggesting that the rate of energy dissipation is proportional to
√
φ. Other dissipation mecha-

nisms predict rates proportional to different powers of φ. Upon inserting the relationship between

φ and the energy, eq. (4.96), into eq. (4.99), we obtain a solvable differential equation for the

energy of the disk, subject to classical rolling friction

Ė =− ηp
a

√
2a

ch2 +3a
E.(4.100)

At t0, the disk is flat with zero energy. The initial conditions are E(t0) = 0, and we take the

non-trivial solution

E(t)= η2

2ch2 +6a
(t0 − t)2 ,(4.101)

which is in the form of the well-known power law, eq. (4.93). The energy exponent, n = 2,

suggests a tangential, quadratic decrease to zero energy, rather than the abrupt halt predicted

by experiments. We repeat this analysis for all dissipation mechanisms and give the results in

Table 4.1. For reference, Moffatt [74] computed n = 1/3 for air resistance, before a subsequent

revision by Bildsten [15] to n = 4/9.

Diss Mech. Ė ∝ E n numerical n

Classical rolling
p

E Ae(t0 − t)2 2.00 2.01
Pivoting

p
E Ae(t0 − t)2 2.00 2.13

General
p

E Ae(t0 − t)2 2.00 2.01
Contour 1/

p
E Ae(t0 − t)2/3 0.67 0.67

Constant offset
p

E Ae(t0 − t)2 2.00 2.00
Curv. dep. offset 1/

p
E Ae(t0 − t)2/3 0.67 0.67

Greenwood [47] E1/18 Ae(t0 − t)18/17 1.06 1.06
B & H [21] E0.076 Ae(t0 − t)1.08 1.08 1.09

Winkler [58] E1/8 Ae(t0 − t)8/7 1.14 1.15
Cylinder [58] E0 Ae(t0 − t) 1.00 1.00

Table 4.1: Dissipation mechanisms and their associated energy exponents. In some cases, the
analytic estimate is a slight underestimate when compared to the numerical estimate.
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Except for contour friction and its equivalent formulation, the curvature dependent offset,

all models predict n > 1 and do not give rise to the abrupt halt. It was noted in Section 4.5.3.1,

that the curvature dependent offset model overestimates the size of the offset when compared to

other, more realistic models of contact. However, as it predicts n < 1, contour friction is the most

credible of the mechanisms explored here.

We also compute numerical estimates of n in Table 4.1. These are found by numerically

integrating the equations of motion, eqs. (4.25) and (4.32), with each dissipation mechanism

according to the scheme outlined in section 4.3.1. The initial conditions are given in eq. (4.43). We

tune η, the coefficient of rolling friction to ensure that the motion ends at t0 = 0.5s. We compute

the energy using eq. (4.94) and fit the parameters of the power law, Ae, t0 and n, by minimising

the sum of the squared errors. In all cases, the analytic version of n is a slight underestimate

when compared to the numeric estimate. The disparity is a little larger for pivoting friction. The

coefficient of rolling friction, η, required to bring the disk to a halt in 0.5 s resulted in intersection

with the discontinuity set of pivoting friction (ψ̇+ θ̇ cosφ= 0). Therefore, we reduced η and the

trajectory avoided the discontinuity set. The disk came to a halt in 0.7 s; the longer sample size

perhaps explains the discrepancy.

We have not included any viscous mechanisms in Table 4.1 even though the viscous version

of a mechanism may result in a lower value of n. In a simple example of a pencil rolling down

a slope, Ivanov [56] observes that rolling friction must have a viscous component. However,

contact-mechanics-informed viscous mechanisms, such as those discussed by Goryacheva and

Zobova [46] and Hunter [53] lie outside the scope of this thesis, and we restrict ourselves to the

dry models obtained from a simple contact region.

In Section 4.7, we numerically analyse Euler’s disk subject to contour friction, the mechanism

with an energy exponent closest to the experimental observations.

4.7 Numerical analysis with Coulomb friction and contour
friction

Of the dissipation mechanisms considered in Sections 4.4 and 4.5, contour friction, or equivalently

the curvature dependent offset model, gives the best agreement with experiments. In this section,

we numerically solve the equations of motion for Euler’s disk subject to both contour and Coulomb

friction, a system was also studied by Le Saux et al. [67]. Figure 4.12 shows a number of variables

from the numerical solution with experimentally determined initial conditions, eq. (4.43). The

variable β̇, plotted in the bottom left of fig. 4.12, refers to the angular velocity of a strip drawn on

the face of the disk, as in the experiments of Section 3.3.1. The angular velocity, β̇, is related to

the state variables through eq. (3.21), reproduced here

β̇=ψ̇+ φ̇sinφsin(θ+β0)cos(θ+β0)+ θ̇ cosφ
1−sin2φcos2(θ+β0)

(4.102)
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Figure 4.12: The numerical solution of the equations of motion, eqs. (4.25) and (4.32), subject to
Coulomb friction and contour friction. The initial conditions are determined from experiments
and given in eq. (4.43). The coefficient of contour friction is η= 2.43×10−4 and other parameters
are given in Section 4.3.1.

where β0 is the initial angle of the strip. The angular velocity ωG
z , plotted in fig. 4.12 right, is

the angular velocity of the disk about the global vertical axis and is closely related to β̇, but

unaffected by the perspective of the camera angle in the experiments.

It is known from experiments that the disk falls flat 0.5 s after the initial conditions. As in the

previous section, we tune the coefficient of contour friction, η, to ensure the simulation ends at t =
0.5s. A value of η= 2.43×10−4 achieves this. The integration ends when the trajectory intersects

the discontinuity set of contour friction, Dc = {X | θ̇ = 0}, defined in eq. (4.60). This is the third

terminal condition of the integration scheme in section 4.3.1. The value of φ at the intersection is

3.1×10−5, which is smaller than the minimum observable angle, φ= arcsin(δ/2R)= 8.6×10−4, in

experiments.

There are a number of interesting features present in fig. 4.12: firstly, the abrupt decrease to

zero of ψ̇ and θ̇. They appear to be increasing towards a singularity, before quickly decelerating

towards zero. We suggest that there is a change in the dominant balance and the dissipation

mechanism dominates the equations of motion, snapping θ̇ to a halt. This behaviour is not seen

in the numerical analysis by Le Saux et al. [67], but a similar feature appears in Ma et al.
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[71]. At the instant of hitting the discontinuity surface, Dc, the disk has some residual angular

velocity, ψ̇=−0.051rads−1. Although not solved for numerically, we conjecture that the dynamics

are henceforth constrained to Dc, and the disk falls flat. Therefore, the discontinuity could

provide a mechanism for the disk to continue to rotate after falling flat, perhaps explaining the

experimental results in Section 3.3.

Secondly, we see oscillations in φ̇, followed by a sharp, short decrease just before the halt.

This is predicted by the relationship between the energy and φ in eq. (4.96). For n < 1, as t → t0,

the rate of energy loss and, consequently, φ̇ is singular. A trend towards large singular values

just prior to the halt is to be expected.

Finally, β̇ and ωG
z both have fast corrections at the start of the motion. This behaviour is due

to errors in the estimated initial conditions. It is possible that the variables are attracted towards

a slow manifold. By adjustment of the initial conditions, the fast corrections can be removed.

t

φ

Figure 4.13: Time series of φ for the numer-
ical solution subject to Coulomb friction and
contour friction and experimentally deter-
mined initial conditions. Slipping sections
are shown in red, rolling sections are shown
in blue.

t
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Figure 4.14: Distance of the numerical solu-
tion in fig. 4.12 from the stationary rolling
manifold, eq. (4.39). The large spike at the
end is due to the dissipation mechanism
bringing θ̇ to a halt.

In fig. 4.13, we show the time series for φ with the rolling and slipping sections highlighted.

The disk begins slipping, possibly due to errors in the initial conditions. It then undergoes a

period of rolling for roughly four oscillations, before slipping phases begin to appear. These phases

increase in length until, in the final few hundreds of a second, the disk is only slipping, contrary

to the narrative suggested by Ma et al. [71]. A similar sequence is noticed by Le Saux et al. [67].

If the disk is in slipping state at the end of the motion, then it is not undergoing stationary

rolling motion. We test the validity of the stationary rolling assumption [11, 68, 74] by computing

the Euclidean distance between each point on the trajectory and the stationary rolling manifold.

This distance is shown in fig. 4.14 and, although decreasing, it does not show the exponential

decay one would expect if the manifold was attractive. The large increase in distance at the end

is due to the dissipation mechanism driving the system towards θ̇ = 0, which is incompatible with
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the stationary manifold, resulting in a large error. Therefore, we discount the notion that the

disk undergoes ‘slow drift along a one parameter family of stationary rolling solutions’ [11].

4.7.1 Comparison with experimental data

φ

β̇

ψ̇

θ̇

t t

t t

a) b)

c) d)

Figure 4.15: Experimental time series (green) of Euler’s disk rolling on a stainless steel base-plate
in Section 3.3. The bottom left panel shows β̇ data captured at 480fps in dashed green. For fair
comparison, the sampled β̇ data is also shown, in solid green. The numerical solution of the
equations of motion, eqs. (4.25) and (4.32), subject to Coulomb and contour friction, is shown in
orange. Initial conditions are given in eq. (4.43), the material parameters in eq. (4.42) and the
coefficient of contour friction is η= 2.43×10−4.

In fig. 4.15, we overlay the numerical solution of fig. 4.12 with data obtained by spinning the

disk on the stainless steel base-plate in Section 3.3. In this experiment, the disk was filmed from

above and the side. A data point for φ is captured once for each 2π rotation in ψ. The time taken

to complete the 2π rotation is used to estimate ψ̇. The β data describes the rotation of the strip

drawn on the top face of the disk. It is captured every frame at 480fps and is smooth enough to

allow numerical differentiation. Numerically, β̇ is computed from eq. (4.102). For fair comparison

with the other variables in fig. 4.15, we plot the complete data for β̇ (dashed green), in addition to
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the data sampled at the same instants as φ (solid green).

The experimental sampling means the oscillatory behaviour of φ, ψ̇ and θ̇ is lost. Nevertheless,

we see a qualitative agreement for φ, ψ̇ and θ̇, with the error increasing towards the end of the

motion. This error is attributed to mismatch the energy exponents of contour friction. For Euler’s

disk rolling on stainless steel it was estimated in section 3.2 that n = 0.45, while contour friction

predicts n = 0.66.

The β̇ comparison in fig. 4.15c is less favourable. Although the experimental and numerical

means follow roughly the same trajectory, the amplitude of oscillations is far smaller in the

numerical solution than in the experiments. The amplitude of oscillations in the experiments,

shown in fig. 3.28, vary in size from around 0.3 rads−1 to 1.2 rads−1. We also plot the sampled β̇

data which tracks the lower envelope of the oscillations. The larger oscillations are caused by the

initial conditions, estimated from experiments in eq. (4.43).

The frequency of oscillations in β̇ also differs between the numerical solution and the exper-

iments. Again, the discrepancy is attributed to the initial conditions. The numerical solution

oscillates at roughly twice the frequency of the experimental data. We suggest that β̇ reaches a

maximum whenever the strip aligns with the contact point, occurring twice for every revolution

in ψ. In experiments, the oscillations in φ, introduced by the initial conditions, overwhelm this

behaviour and result in larger oscillations with half the frequency.

To address the mismatch in energy exponent between contour friction and experiments,

we formulate a more singular version of contour friction, heedless of a physical interpretation.

Requiring that the energy exponent is n = 0.45 implies that the rate of energy dissipation is

Ė ∝ E1.22. Such a rate is achieved by multiplying contour friction, eq. (4.59), by a factor of φ−0.722.

The result is a dissipation mechanism with n = 0.45, acting in the same direction as contour

friction.

The corresponding numerical simulation is shown in fig. 4.16. The coefficient of contour

friction is reduced to η= 1.1×10−5, ensuring that the disk stops after 0.5 s. We observe a much

better quantitative fit with the experimental results. All of ψ̇, θ̇ and φ track the experimental

data right up until the halt. The peak in ψ̇ and θ̇ is reduced, because the augmented contour

friction now dominates the equations before ψ̇ and θ̇ become so large. However, the β solution is

almost unchanged and the fast correction and a lack of oscillations remain.

Just as in figs. 4.12 and 4.15, the trajectory hits the discontinuity surface, Dc, at φ= 4.65×
10−4, leaving a residual angular velocity ψ̇=−0.14rads−1. Note that in eq. (4.102) the two angular

velocities, β̇ and ψ̇, coincide at φ= θ̇ = 0. The average residual angular velocity observed in the

experiments of fig. 3.28 is β̇=−0.23rads−1, very close to the numerical estimate of −0.14 rads−1

predicted by contour friction.

It remains to be seen if any physical reasoning exists for the augmented contour friction,

but we see good quantitative agreement with the state variables φ, ψ̇ and θ̇. Discrepancies in

β are attributed to errors in the estimates of the initial conditions. Figure 4.16 suggests that a
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Figure 4.16: Experimental time series (green) of Euler’s disk rolling on a stainless steel base-plate
from Section 3.3. The bottom left panel shows β̇ data captured at 480fps in dashed green. For
fair comparison, the sampled β̇ data is shown in solid green. Numerical solution of eqs. (4.25)
and (4.32) with Coulomb friction and a strengthened contour friction is shown in orange. Initial
conditions are from eq. (4.43) and the coefficient of contour friction is η= 1.1×10−5.

moment equivalent to augmented contour friction is the cause of the halt of Euler’s disk, but

the physical origin of the moment is unknown. As φ→ 0, the xB component of contour friction

dominates in eq. (4.59). It may well be the case that, rather than contour friction, a different

physical factor gives rise to a moment in the same direction with the correct strength. For

example, in Chapter 3 it was seen that the presence of air affects the motion of Euler’s disk

in its final moments. Bildsten’s [16] estimate of n = 4/9 for air resistance agrees closely with

our experimental estimates. Furthermore, it does not rely upon the arbitrary multiplication of

contour friction by φ−0.722 to obtain the correct, quantitative behaviour. However, the author is

not aware of any formulation of the moment due to air resistance for Euler’s disk, the derivation

of which falls outside the scope of eq. (4.49), and therefore, this thesis.

In the next section, we investigate the dynamics of the disk after it has fallen flat, during the

last 0.05 s of its motion.
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4.8 Post-falling flat dynamics

In the second experiment of Chapter 3 it was observed that, after the disk fell flat on the stainless

steel base-plate, it continued to rotate about the vertical axis. On the concave base-plate, the

disk fell flat and stopped rotating almost immediately. In this section, we propose an explanation.

In the numerical solutions, shown in fig. 4.16, the disk hits the discontinuity surface of contour

friction, Dc (fig. 4.17a). It then falls flat with residual angular velocity ψ̇. Then, if the base-plate

is flat, the thin layer of trapped air beneath the disk causes a loss of contact. Following the loss of

contact, the disk undergoes an air-lubricated, contactless phase fig. 4.17b, followed by a contact

phase governed by Coulomb friction, fig. 4.17c. Finally, the disk comes to a halt in fig. 4.17d. Such

a loss of contact agrees with Borisov et al. [19], who showed the disk loses contact at the end of

the motion.2

Flat base-plate

Concave base-plate

a) b) c) d)

Figure 4.17: The loss of contact on flat and concave base-plates. In a) the disk hits the discontinuity
surface, Dc, and falls flat with residual angular velocity ψ̇= β̇. In b) the disk loses contact due to
a thin layer of air between the disk and base-plate. This does not occur on the concave base-plate.
In c) the disk makes contact with the base-plate and slips to a halt. In d) The disk has come to
rest.

If the base-plate is concave, then there is no thin layer of trapped air. The large gap between

disk and base-plate, does not allow for the high pressure gradients necessary to support the disk.

The disk therefore skips the contactless phase in fig. 4.17b, immediately makes contact with the

base-plate and skids to a halt. In this section, we explore the two phases: contact and contactless

and compare with the experimental results of Section 3.3.

4.8.1 Contactless phase

If two bodies are separated by a thin film of viscous fluid, it can take a large force to pull them

apart. The force required to separate a disk from a horizontal plane, with a thin layer of viscous

2Other losses of contact during the motion can be explained by asperities in the base-plate and disk.
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fluid between the two, is given by [6, (7.50)]

F =−3πµairR4

2
Żb

Z3
b

,(4.103)

where Zb is the height of the disk above the plane and µair = 1.8×10−5kgm−1 s−1 is the viscosity

of the fluid, in this case air.

We consider the reverse problem: the disk begins at a height, Zb(0), above the plane with

initial velocity, Żb(0), what is the subsequent motion of the disk? The differential equation

governing the motion of the disk is3

mZ̈b =−3πµairR4

2
Żb

Z3
b

−mg.(4.104)

We wish to solve for the time taken for the disk to fall and make contact at Zb = 0. However, there

is no equilibrium in eq. (4.104) for the disk to approach; the layer of fluid repels the disk from the

surface. When the disk gets close enough to the base-plate, asperities and surface roughness take

affect and the disk makes contact.

Zb

t
Figure 4.18: The separation, Zb, between the disk and the plane in eq. (4.104). The initial
conditions are Zb(0)= 1×10−4m and Żb =−0.007ms−1.

We numerically solve eq. (4.104) with initial conditions Zb(0) and Żb(0) corresponding to

the height of the disk’s bottom face and its vertical velocity at the loss of contact. The initial

conditions are estimated from the final values of the experiments in Chapter 3. We assume

3Note the similarity of eq. (4.104) and the governing equation of the rocking can eq. (2.63), but with the additional
damping term Żb
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that after the disk encounters the discontinuity set, Dc, it loses contact with the base-plate. In

Section 3.2, we obtained data about the height of the disk’s bottom rim, zrim , which is of sufficient

quality for a rough estimate of Zb(0) and Żb(0). From the final peak in fig. 3.11, zrim = 2.0×10−4m.

Therefore the height of the centre of the bottom face of the disk is Zb(0)= 1.0×10−4m. Numerical

differentiation of φ in fig. 3.12 gives φ̇=−0.18rads−1. The vertical velocity of centre of the bottom

face is Żb(0)= φ̇R =−0.007ms−1.

The numerical solution is shown in fig. 4.18. The separation between the disk and the plane

decreases rapidly until around t = 0.01s, before slowing. As predicted, the singular point in

eq. (4.104) prevents Zb from reaching zero. However, at some value of Zb, surface roughness

takes effect and the disk comes into contact with the plane. Coulomb friction then brings the

disk to a halt. On stainless steel, the average time between the disk falling flat and coming to a

complete stop is tβ− tφ = 0.04s. It is encouraging that this simple model evolves on approximately

the same time scale. In addition, the time scale is consistent with the duration of loss of contact

observed by Borisov et al. [19] which lasts for between 12 and 40 ms.

In the case of the concave base-plate, the experiments in Section 3.3 observe only a small

interval tβ− tφ. Here, eq. (4.104) does not apply as the gap between disk and base-plate is not

small. Therefore, we expect the disk to contact the ground immediately.

4.8.2 Contact phase

xG

yG

α

β̇

F

r

Figure 4.19: Top view of the contact area between the disk and the plane. Coulomb friction acts
on the disk over the contact area, bringing the disk to a halt.

Once the disk has made contact with the base-plate, Coulomb friction acts on the face of
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the disk to bring the rotation, β̇, to a halt. To compute the time taken for the disk to come to a

halt, we consider the torque produced by Coulomb friction. Assuming uniform contact with the

base-plate, the plane exerts a constant pressure, ρ, over the contact area

ρ = mg
πR2 .(4.105)

The disk is slipping, so Coulomb friction acts at each point, as shown in fig. 4.19. The friction

force F acts over the contact region and opposes the relative velocity. Written in polar coordinates

F = −sign
(
β̇
)
µmg

πR2


−sinα

cosα

0

 ,(4.106)

where r ∈ [0,R] and α ∈ [0,2π) parametrise the contact region. The torque, T, about the centre of

the disk is given by integrating the resultant moment over the contact area

T =
∫ 2π

0

∫ R

0

(
r×F

)
rdrdα.(4.107)

where r = (r cosα, rsinα,0)⊺. Computing the cross product and the integral yields a torque in the

zG direction

TG
z = −2sign

(
β̇
)
µmgR

3
.(4.108)

Applying Newton’s second law to the disk with the applied torque gives

Cβ̈=−2sign
(
β̇
)
µmgR

3
,(4.109)

where C = mR2/2 is the moment of inertia about the disk’s symmetry axis. We note that the

torque acts to slow the disk down and cannot change the sign of β̇. Therefore sign(β̇)= sign(β̇(0)).

Integration of eq. (4.109) yields the angular velocity of the disk as a function of time

β̇=−2sign
(
β̇(0)

)
µmgR

3C
t+ β̇(0),(4.110)

showing that the disk decelerates linearly. The time taken for the disk to come to a halt is

tstop = 3C|β̇(0)|
2µmgR

.(4.111)

The parameter values in eq. (4.111) are given in Section 4.3.1. The stainless steel experiments in

Section 3.3 show that the average value of β̇ when the disk falls flat is −0.23rads−1. It is assumed

that the contactless phase does not affect the vertical rotation, so that β̇(0) = −0.23rads−1.

Equation (4.111) gives the stopping time, tstop = 0.0050s, approximately 1/200th of a second. This

is not long enough to account for the motion after the disk has fallen flat, experimentally observed

to last for 0.04 s, supporting the suggestion that the disk is supported by a thin layer of air before

coming to a halt.
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For the concave base-plate, the disk makes contact immediately. Rather than the whole

bottom face of the disk, it is just the rim of the disk in contact with the base-plate, resulting in a

torque

TG
z =−µmgR|β̇(0)|,(4.112)

an increased torque compared to uniform contact over the surface. Computed from the experi-

ments shown in fig. 3.30, the average residual rotational velocity on the concave base-plate is

β̇(0)=−0.19rads−1. The coefficient of Coulomb friction, µ, is unknown for the base-plate, so we

estimate with the same value as stainless steel, µ = 0.134. The stopping time on the concave

base-plate is

tstop = R|β̇(0)|
2µg

≈ 0.0033s.(4.113)

Although a rough estimate, this time is close to the experimentally computed interval, tβ− tφ =
0.0058s, itself close to the time resolution of the experiments, 0.002 s. For the flat base-plate, the

sum of the durations of the contact (0.005 s) and contactless (≈ 0.03s) phase are consistent with

the interval, tβ− tφ = 0.04s observed in experiments. Furthermore, the experimental results in

fig. 3.31 show two phases: a section of flat, constant β̇, corresponding to the contactless phase,

and a linear decrease to β̇ = 0, corresponding to the contact phase. Therefore, the evidence

suggests that air resistance does affect the motion of Euler’s disk in its final moments, though,

not necessarily in the manner predicted by Moffatt [74].

4.9 Discussion and conclusions

In this chapter we explored, analytically and numerically, the halting of Euler’s disk. We derived

the equations of motion for Euler’s disk subject to both Coulomb friction and unspecified dissipa-

tive moments. Due to the discontinuous nature of Coulomb friction, the equations of motion take

the form of rolling and slipping systems along with transition rules.

Analysis of the disk in the absence of a dissipative moment confirmed that Coulomb friction

alone is insufficient to bring the disk to a halt. In section 4.3.2, we proceeded to show that

the Painlevé paradox is not present in the Euler’s disk problem, but uncovered slipping-rolling

trajectories exhibiting interesting non-smooth phenomena.

In Sections 4.4 and 4.5, we derived a number of candidate dissipative moments to explain

the motion of Euler’s disk. Section 4.4 concentrated on well-known phenomenological dissipation

mechanisms such as classical rolling friction, while Section 4.5 derived contact-region based

mechanisms by relaxing the rigid body assumption. We find a correspondence between a curvature

dependent offset in the normal force and contour friction. For each dissipation mechanism, the

energy exponent, n, is derived both analytically and numerically.

We find, as did Leine [68], that contour friction predicts approximately the correct energy

exponent, n = 2/3. However, on some flat base-plates, contour friction does not appear to be
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CHAPTER 4. THE HALTING OF EULER’S DISK

the dominant factor. On the stainless steel base-plate, the experimental estimate is n = 0.45,

suggesting dry contour friction is insufficient and a different dissipation model may be more

appropriate. On the concave base-plate, it would appear that contour friction is sufficient, close to

the experimental estimate, n = 0.62. The difference in n between the flat and concave base could

be explained by the presence of a viscous contour friction, present only on the flat base-plates,

or Moffatt’s air resistance mechanism [74]. Despite the experiments of van den Engh et al. [93],

performed in vacuo: a qualitative difference in the motion might not be visible, but it might be

possible to detect quantitative differences in n due to air resistance.

In Section 4.7, we numerically solved the equations of motion for the disk subject to both

Coulomb friction and contour friction. Qualitative agreement with the experimental data is

obtained in fig. 4.15 but, quantitatively, the difference in energy exponent introduces errors.

Multiplying contour friction by a factor of φ−0.722 resulted in an augmented mechanism that acts

in the same direction as contour friction, but predicts the correct energy exponent. Numerical

solutions with the augmented contour friction in fig. 4.16 give much better quantitative agreement

with experiments. However, a physical reason for the additional factor of φ−0.722 is unknown.

We note that, for both contour friction and augmented contour friction, trajectories hit the

discontinuity set, Dc, just before the halt. Upon entering the sticking state, the disk is left

with some residual angular velocity, ψ̇ = −0.14rads−1, close to the experimental estimates of

−0.23rads−1. Therefore, the discontinuity in contour friction provides a mechanism for the

continued rotation of the disk after falling flat.

The numerical solutions predict that the disk slips, contrary to previous numerical analysis

[70]. At the end of the motion in fig. 4.13, the disk undergoes alternating periods of slipping and

rolling. Slipping behaviour is incompatible with the assumption of stationary rolling motion. In

fig. 4.14, we plot the distance from the trajectory to the stationary rolling manifold, eq. (4.39). The

error does not decay exponentially and in fact diverges towards the end of the motion, implying

that the disk does not undergo slow-drift along a one-dimensional manifold of stationary rolling

motions [11, 68].

In Section 4.8, we analyse the continued rotation of the disk after it has fallen flat. We

assumed the presence of two phases: a contactless phase, where the disk is supported by a thin

layer of air, followed by a contact phase where Coulomb friction brings the disk to a halt. We

find good agreement between experimental and predicted stopping times for flat base-plates.

Furthermore, Borisov et al. [19] observed a final loss of contact of approximately the same

duration. As expected, the experimental results for the concave base-plate are best explained by

a contact phase with no contactless phase.

We tentatively suggest the following explanation for the motion of Euler’s disk on a flat

base-plate. In agreement with Leine [68], the energy dissipation is first dominated by contour

friction (or similar variant) with n ≈ 2/3. Then, as the disk falls further, a stronger mechanism

with n ≈ 1/2 dominates. Depending on the multiplicative factor of the dissipation mechanism in
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eq. (4.93), the experimental data in fig. 3.15 reflects a weighted average of the energy exponents.

This gives rise to the observed dependence of n on the base-plate material. As mentioned, viscous

contour friction with n = 1/2 [68], or air resistance with n = 4/9 [16], are viable candidates for

the stronger mechanism. Considerable differences in energy exponents for the concave and flat

base-plates also suggest that air resistance may play a role.

As the disk enters the final stages of its motion, the dissipative moment grows in strength.

Trajectories are forced onto the discontinuity surface, Dc and the disk falls flat with some residual

angular velocity, ψ̇. Depending on the geometry of the base-plate, the disk loses contact and is

briefly supported by a thin, lubricating layer of air. The rotation continues until contact is made

and Coulomb friction brings the disk to a halt. If the base-plate is concave then the disk simply

falls flat with no contactless phase.

We believe that this explanation addresses many of the problems in the literature and agrees

with the narratives of Leine [68] and Borisov et al. [19]. It accounts for the apparent material

dependence of the energy exponent, the continued rotation, and even the loss of contact with the

base-plate.

4.10 Further work

The results of this chapter are verifiable experimentally. Repetition of experiments performed

in vacuo by van den Engh et al. [93], along with accurate computation of the energy exponent

should confirm if air resistance is the dominant mechanism for flat base-plates. The claim may

also be tested using flat and concave base-plates of the same material.

Experimentally determined quantities such as tstop in eq. (4.113) are close to the resolution of

the experiments in Chapter 3. Higher frame-rates and resolutions are therefore required. Addi-

tional synchronised cameras and improved data processing techniques may enable computation

of all the state variables. Such information may validate the observed slipping behaviour in

fig. 4.13 and the sharp changes of θ̇ and ψ̇ in fig. 4.12.

Moffatt [74] and Bildsten [16] derive the energy exponent for the disk subject to air resistance,

but a description of the associated moment is unknown. Numerical simulations of Euler’s disk

subject to a moment induced by air resistance might confirm or deny its presence when compared

with experimental data.

The rolling frictions, derived in Section 4.5.3 by relaxing the rigid body assumption, rely

on Hertzian contact mechanics. Therefore, they do not take into account any dynamic effects,

such as viscoelasticity. Goryacheva and Zobova [45, 46] and Hunter [53] studied dynamic models

of cylinders rolling and sliding on viscoelastic foundations. This is perhaps a starting point for

further study. The rolling frictions considered in this chapter also neglect Coulomb friction acting

over the contact region. Antali and Varkonyi [9] studied slipping and spinning bodies in the

presence of dry friction, taking into account the contact area. Their work might be applied to
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CHAPTER 4. THE HALTING OF EULER’S DISK

Euler’s disk to yield new insights into the rolling friction formulations, improving upon the

commonly used phenomenological models.

Finally, the equations of motion for Euler’s disk, eqs. (4.25) and (4.32), appear intractable, but

a more thorough analytic exploration may yield new understanding. The fast corrections, visible

in β̇ and ωG
z in fig. 4.12, hint at the presence of a slow manifold. Figure 4.14 suggests that this

manifold is not the stationary rolling solutions as previously assumed. If such a slow manifold

does exist then the system may be amenable to a slow-fast analysis. Furthermore, the sharp,

vertical profiles of θ̇ and ψ̇ in fig. 4.12 indicate a change in dominant balance, which could be

studied using matched asymptotics or slow-fast techniques.
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In Chapter 2, we analysed the rocking can problem. Srinivasan and Ruina [87, (7) and

(9)] first analysed the problem using formal relations arising from numerics to determine

the angle of turn. The numerical solutions also showed slow-fast behaviour [64]. Here, we

rigorously derived these formal relationships, exploiting the multiple scale behaviour to provide a

deeper understanding of the rocking can phenomenon. We reduced the equations of motion from

five, second order ODEs, eq. (2.8), to one, singularly perturbed, second order ODE, eq. (2.63), in

the nutation angle, φ. This equation has an exact solution in terms of the hypergeometric function,

eq. (2.33), that we eschewed in favour of a more tractable Frobenius series solution, eq. (2.49).

The integration constants B0 and B−2 describe conserved angular momenta and correspond to the

formal relationships, identified by Srinivasan and Ruina [87, (7) and (9)]. Physical justification

for B0 and B−2 was given in fig. 2.6.

The differences in scale in the numerical simulations of the rocking can are governed by the

small parameter ϵ in the reduced equation of motion, eq. (2.63). This small parameter is given by

ϵ= B2
−2 or, loosely speaking, a small amount of angular velocity in the global vertical or symmetry

axes, zG and zB, respectively. An appropriate scaling of time and φ separates the problem into

outer and inner regions. In the outer region, the can behaves as a perturbed inverted compound

pendulum, eq. (2.70), while in the inner region, the can exhibits the bounce as φ quickly switches

from decreasing to increasing in eq. (2.80). Using Van Dyke’s matching rule, we obtained a

uniformly valid solution, eq. (2.88), for one half-period of the motion.

The inner solution, eq. (2.80), enabled analysis of the bounce. After reconstructing the

behaviour of the state variables, we found the expected step-like behaviour in the rotation

angle θ, eq. (2.94), and the precession angle ψ, eq. (2.93), that results in the angle of turn

∆ψ. By recomputing ∆ψ, eq. (2.96), we gained information about its sign. Agreement with the
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full, nonlinear equations of motion is seen in fig. 2.11, extending the work of Cushman and

Duistermaat [33]. Other dynamic features of the phenomenon were also considered. In fig. 2.13,

the contact locus is observed to trace out circular arcs. For initial conditions that do not lead to

the rocking can phenomenon, petaloid shapes are observed, similar to the thin disk [33].

Finally, we computed the friction ratio, eq. (2.109), in the inner region to obtain an ap-

proximate upper bound on the required coefficient of Coulomb friction during the rocking can

phenomenon. We see that large ∆ψ requires prohibitively large coefficients of Coulomb friction.

In Chapters 3 and 4, we explored the related problem of Euler’s disk. Many different narratives

and mechanisms have been proposed to explain the sudden halt of Euler’s disk. In Chapter 3, we

carried out a series of experiments, probing the final stages of motion. Chapter 4 then combines

analytics and numerical simulations to explain the results of both our own experiments and

others’.

In Chapter 3, we investigated the halting of Euler’s disk through two experiments. The

first experiment measured the energy of Euler’s disk as it span on flat surfaces of different

materials. In previous experiments [23, 68, 71], it has been observed that the energy of Euler’s

disk decreases according to a power law eq. (1.2). However, analytic estimates for the energy

exponent, n, are parameter-free. One might expect that different material surfaces would give

rise to different values of n, therefore, we spun the disk on base-plates of different materials. The

disk was filmed from the side and the height of the rim of the disk above the base-plate was used

to determine φ, the nutation angle. By employing the approach of McDonald and McDonald [73],

we also obtained low-resolution data about ψ, the precession angle. We estimated the energy of

the disk using the stationary rolling assumption, eq. (3.7), during the final 0.5 s before the halt.

An estimate for the energy exponent, n, was obtained by fitting the energy to the power law. In

fig. 3.15, the results show a clear material dependence, confirmed by statistical tests in Table 3.2.

Energy exponents in the range n ∈ [0.45,0.69] are observed. The minimum value of n occurred on

the stainless steel base-plate and the maximum on the silicone base-plate. In general, materials

with higher Young’s moduli and lower coefficients of friction gave the lowest exponents, as shown

in fig. 3.16. On a concave base-plate, the observed energy exponent was n = 0.62, which is higher

than expected, given the longevity of the motion.

In the base-plate material experiments of Section 3.2, it was observed that the disk continued

to rotate after falling flat, inspiring a second set of experiments. This rotation was not visible

to the naked-eye, but can be seen in the slow-motion footage. Therefore, a strip was drawn on

the disk’s top face to facilitate tracking of the rotation about the vertical axis. An appropriately

angled mirror, as in fig. 3.18, allowed simultaneous tracking of φ and the strip without the need

for multiple synchronised cameras. We spun the disk on the stainless steel, the mild steel and

the concave base-plate. On the stainless and mild steel base-plates, mean intervals of 0.0403 s

and 0.0385 s respectively were observed between the disk falling flat and stopping rotating.

Lubrication of the surface extended this interval by up to 50%. A qualitative difference in the
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dynamics of the disk after falling flat is observed in fig. 3.28. However, when spinning the disk

on the concave base-plate, the interval was practically eliminated, lasting for only 0.0058s.

This strongly suggests the presence of a supportive layer of fluid between the disk and the flat

base-plate. We hypothesize that the disk loses contact with the surface and continues to rotate

while supported, before making contact with the base-plate and coming to a halt. This sequence

of events agrees with the loss of contact observed in experiments by Borisov et al. [19], for which

the durations were between 0.012 s and 0.04 s in length.

Chapter 4 analysed the halting of Euler’s disk analytically and numerically. We derived the

equations of motion of the disk, subject to Coulomb friction and another unspecified dissipation

mechanism, resulting in two sets of ODEs, eqs. (4.25) and (4.32), that describe the slipping and

rolling dynamics. The transition between states is governed by the codimension-2 discontinuity

of Coulomb friction [7, 27].

The system, subject only to Coulomb friction, is analysed in Section 4.3 and we confirm

the result that Coulomb friction is unable to bring the disk to a halt. On solving the system

numerically with initial conditions from experiments, eq. (4.43), the disk slips and then rolls

indefinitely fig. 4.4. Altering the initial conditions leads to a scenario where the disk repeatedly

switches between slipping and rolling, as shown in fig. 4.6. Although slipping is a dissipative

process, Coulomb friction was still unable to bring the disk to a halt, instead the motion tended

towards a rolling trajectory.

Dissipation mechanisms capable of bringing the disk to a halt are considered in Sections 4.4

and 4.5. We focussed on rolling friction mechanisms that can be written in a angular version

of Coulomb’s law, eq. (4.49), rather than impacts, vibrations, etc. We rederived some common

mechanisms examined by Leine [68], before deriving others through a relaxation of the rigid

body assumption. In fig. 4.10, we assumed a constant offset in the centre of pressure from the

rigid body, point contact limit, recovering classical rolling friction. Assuming instead that the

offset in pressure is dependent upon the curvature experienced by the base-plate, we recovered

contour friction discussed by [67, 68]. However, it appears that the curvature dependent offset

overestimates the size of the offset, and therefore, the strength of the moment. Inserting Hertzian

mechanics at the contact point yields weaker mechanisms, giving rise to n ≥ 1. All the mechanisms

considered are dry frictions and therefore contain a discontinuity when the appropriate angular

velocity is zero. It should be noted that these mechanisms are quasi-static and do not include

energy loss through dynamic factors such as hysteresis, viscoelasticity, microslip or other factors.

Developing a rolling friction model that includes these factors is an avenue for further work.

The equations of motion, eqs. (4.25) and (4.32), subject to these dissipation mechanisms are

solved numerically with initial conditions estimated from experiments at 0.5 s before the halt.

For each mechanism, the energy exponent, n, is estimated from the solution, before comparison

with analytical estimates in Table 4.1. The analytical estimate for n is slightly lower than the

numerical estimate, due to the deviation of the initial conditions from the stationary rolling
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manifold, a key assumption in the analytic estimate. The lowest value of n of the mechanisms

examined is n = 2/3, achieved by dry contour friction.

In Section 4.7, we analysed the disk subject to Coulomb and contour friction and the numeri-

cal solutions are shown in fig. 4.12 and the same results as Le Saux [67] are observed. Rolling

behaviour is followed by switching between rolling and slipping states. We compute the distance

to the stationary rolling manifold, plotted in fig. 4.14, and find that it does not attract solutions,

invalidating the commonly used stationary rolling assumption. Furthermore, contour friction

predicts that the disk slips rather than rolls at the end of the motion. Comparison of the numer-

ical solution with experimental data shows a good qualitative agreement. Better quantitative

agreement is given by augmenting contour friction to match the experimentally observed energy

exponent. This was achieved by multiplying contour friction by a factor of φ−0.722, heedless of any

physical interpretation.

In simulations of the augmented contour friction, shown in fig. 4.16, the trajectory hit the

discontinuity set of contour friction, Dc, defined by eq. (4.60). The intersection occurs when

the disk is almost flat, φ = 4.65× 10−4, and leaves the disk with residual angular velocity,

ψ̇=−0.14rads−1. This agrees with the angular velocity observed in when the disk falls flat in

experiments, ψ̇=−0.23rads−1. Therefore, the continued rotation of the disk can be explained by

the discontinuity of dissipation mechanism.

We suggest that, on flat base-plates, the disk loses contact with the base-plate after encoun-

tering the discontinuity. It is then briefly supported by a thin layer of air, trapped between the

disk and the base-plate. Using initial conditions determined from experiments, we estimate the

length of time it takes for the disk to make contact with the base-plate. The dynamics evolve on

the same timescale as predicted by the experiments in Chapter 3, on the order of 0.03 s. This loss

of contact duration agrees nicely with the jump of 0.012 s to 0.04 s occurring at the end of the

motion, predicted by Borisov et al. [19]. After falling flat and making contact with the base-plate,

Coulomb friction brings the disk to a halt in around 0.005 s on the flat base-plate. The whole

post-falling flat motion is predicted to take approximately 0.035 s, consistent with experimental

estimates.

In the case of the concave base-plate, there is no thin layer of air supporting the disk. After

falling flat, the disk immediately makes contact with the base-plate. Coulomb friction, acting

on the rim of the disk, predicts the stopping time tstop =0.0033 s, close to the experimentally

determined time of 0.0058 s.

The key problem of Euler’s disk is determining the mechanism by which energy is removed.

We proposed that for the concave base-plate, contour friction is a good candidate. Contour friction

not only provides a close match in energy exponent, but also provides a mechanism for the

continued rotation. However, on the flat base-plates, the prediction for dry contour friction is too

high (n = 2/3) and alternatives such as viscous contour friction (n = 1/2 [68]) or air resistance

(n = 4/9 [16]) should be investigated.
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If the disk is subject to multiple dissipation mechanisms with different coefficients and

exponents, then, at the end of the motion, the mechanism with the smallest exponent will

dominate in the asymptotic sense. However, in experiments, it is not possible to observe the motion

as the disk asymptotically approaches the halt; a sample must be taken. In the experiments

of Chapter 3, the sample period is the final 0.5 s of the motion. In this time, more than one

mechanism might contribute to the energy loss, resulting in an estimated energy exponent, n,

that is a compromise between mechanisms.

We propose that the whole motion lasts for a long time on the steel base-plates because the

coefficient of contour friction is low. This enables the dominant mechanism with n = 0.45 to be

seen in the final 0.5s. However, for the silicone base-plate, the coefficient of contour friction

is large, skewing the energy exponent estimate towards n = 2/3, that of contour friction. The

intermediate values as seen in the other base-plates in fig. 3.15 are a compromise between contour

friction and the dominant mechanism. This effect is noted by Leine [68], who observed that for

times long before the halt n = 2/3, while just before the halt n = 1/2, as the dominant mechanism

takes over.

However, the disk spins on the concave base-plate for a long time before stopping, suggesting

a low coefficient of contour friction. Therefore, we expect to see the exponent corresponding to

the dominant mechanism, but instead experiments predict n = 0.62, a value that is much larger

than the value for stainless steel, n = 0.45. We propose that the low exponents observed on the

steel base-plates are due to an air resistance based mechanism. If the dominant mechanism was

a rolling friction type mechanism such as a viscous contour friction, it would also be observed

in the concave base-plate. Furthermore, the results of experiments probing the post-falling flat

motion of the disk are in agreement with a supportive layer of air. Therefore, it must be the case

that air resistance has some effect on Euler’s disk. Although experiments by Borisov et al. [17]

and van den Engh et al. [93] discounted air resistance as a factor in spinning disks, perhaps it

should be revisited in the final stages of the motion of Euler’s disk.

Further work

In Chapter 2, we obtained new results for the rocking can. An experimental investigation of the

phenomenon that tracks the state variables throughout the motion should confirm the theoretical

predictions. Characteristics such as the maximum precession velocity eq. (2.91) and the friction

ratio |F|/N eq. (2.109) are good candidates for testing.

For Euler’s disk, we suggest a number of experiments. Firstly, multiple high speed cameras

are capable of providing enough information to compute all the state variables of the disk [71].

Focussing on the final stages of the motion, high-quality data may enable numeric computation

of the dissipative moment. By considering different sample lengths, it might be possible to gain

more information about the regimes in which different mechanisms dominate.
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Although disks and coins have been spun in a vacuum before, we are not aware of any

quantitative experiments estimating the energy exponent, n, for Euler’s disk in a vacuum

compared to atmospheric pressure. If air resistance is a factor, we would expect to observe

differences in n between the two scenarios. Furthermore, experiments in vacuo may confirm the

presence of a supportive layer of air in the final stages of the disk. Alternatively, one could spin

the disk on flat and concave base-plates of the same material and estimate the energy exponent.

There is also scope for further analytical work. In experiments, we examined the behaviour

of the disk on the concave base-plate and found the energy exponent to be larger than expected.

Derivation and analysis of the equations of motion for the disk on a concave base-plate may

confirm if this can be attributed to geometric effects or the dissipation mechanism.

Moffatt [74] and Bildsten [16] computed the energy exponent for the air resistance mechanism,

but the actual dissipative moment remains unknown. It is unlikely to be of the same form as

the rolling frictions, eq. (4.5), considered here and may predict different dynamics. Furthermore,

the commonly used rolling frictions such as classical, pivoting, and even contour friction are

phenomenological in nature. In Section 4.5.3, we derive new rolling frictions by considering a

contact region. These models are greatly simplified and effects that might be important, such

as friction over the contact region and viscoelasticity, are neglected. A first principles approach

towards rolling friction, in the manner of Antali and Varkonyi [9], may yield new insights for

Euler’s disk.

The numerical solutions for Euler’s disk subject to Coulomb and contour friction, shown in

fig. 4.12, exhibit fast corrections which may be indicative of slow-fast behaviour. Typically, in

slow-fast systems, the full problem can be split into the layer and reduced problems, each of lower

dimensionality. We have shown that the stationary rolling motion, shown in fig. 4.14, is not an

attractive slow manifold. As mentioned in Section 4.10, if such a slow manifold is identified then

perhaps Euler’s disk can be reduced to a more tractable problem.
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APPENDIX A

A.1 Coefficients in eqs. (2.49) and (2.51)

The coefficients of the series solution for Ψ(φ) and Θ(φ) are

Ψ00 = B0,

Ψl0 =
B−2((kh)2 −k)

2
,

Ψl1 =
B−2kh((kh)2 −k)

6
,

Θ00 =
2−kcp

kcp
B0 +

3k(cp +1)−4−9h2k2

6kcp
B−2

Θl0 =
B−2(h2k−1)

2cp
(cpk−2),

Θl1 =
B−2(h2k−1)

2cp

kh(cpk−6)
3

.

A.2 The frictionless case

In the frictionless case, for which µ= 0, the Lagrangian approach is more appropriate due to the

absence of the non-holonomic constraint on the contact velocity. The Lagrangian, L = T −V is

L= IΩ ·Ω
2

+ mVG ·VG

2
−mgZG .(A.1)
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Upon inserting the unilateral, no penetration constraint, ZG = R sinφ+H cosφ

L=A
2

(ψ̇2 sin2φ+ φ̇2)+ C
2

(ψ̇cosφ+ θ̇)2 + m
2

(φ̇(R cosφ−H sinφ))2(A.2)

+ m
2

(Ẋ2
G +mẎ 2

G)−mg(R sinφ+H cosφ).

The equations of motion are found using the Lagrangian equations for the generalised coordinates

q ∈ {φ,ψ,θ, ẊG , ẎG}

d
dt
∂L
∂q̇

− ∂L
∂q

= 0.(A.3)

The advantage of the Lagrangian approach is that the conserved quantities appear naturally

when there are cyclic coordinates. For example, ψ, θ, Ẋ g and ẎG only appear in the Lagrangian

as first derivatives, we therefore expect to obtain four conserved quantities given by integrating
d
dt

(
C(ψ̇cosφ+ θ̇)

)= 0,(A.4)

d
dt

(
Aψ̇sin2φ+C cosφ(ψ̇cosφ+ θ̇)

)= 0,(A.5)

d
dt

(
mẊG

)= 0,(A.6)

d
dt

(
mẎG

)= 0.(A.7)

Equations (A.6) and (A.7) simply state that the horizontal velocity of the centre of mass is

conserved. Integration of eqs. (A.4) and (A.5) yields two conserved quantities that refer exactly to

the angular momentum about the body symmetry axis zB and the the global axis zG

c(ψ̇cosφ+ θ̇)= HB
z ,(A.8)

aψ̇sin2φ+ ccosφ(ψ̇cosφ+ θ̇)= HG
z ,(A.9)

where HB
z and HG

z are determined by the initial conditions. The remaining equation of motion for

the nutation angle φ determines the motion of the can

(A+m(R cosφ−H sinφ)2)φ̈= mφ̇2(R sinφ+H cosφ)(R cosφ−H sinφ)+ ψ̇(A−C)sinφcosφ

(A.10)

−Cθ̇ψ̇sinφ−mg(R cosφ−H sinφ).

After applying the scalings from (2.9), we obtain

(a+ (cosφ−hsinφ)2)φ̈= φ̇2(sinφ+hcosφ)(cosφ−hsinφ)+ ψ̇2(a− c)sinφcosφ(A.11)

−cθ̇ψ̇sinφ−cosφ+hsinφ,

The cyclic variables, ψ̇ and θ̇, are eliminated using the conserved quantities, HB
z and HG

z

(a+ (cosφ−hsinφ)2)φ̈=φ̇2(sinφ+hcosφ)(cosφ−hsinφ)+ (HG
z −HB

z cosφ)(HG
z cosφ−HB

z )

asin3(φ)

(A.12)

−cosφ+hsinφ.
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A.3. COEFFICIENTS IN THE REDUCED EQUATION OF MOTION

The system has been reduced to a non-linear, planar ODE with no requirement of small φ. As in

the frictional case, we note that the singular dynamics occur only when HG
z = HB

z = 0. Therefore,

we introduce ϵ1/2 = |HB
z | and HG

z = ζHB
z and expand the trigonometric terms in small φ to give

φ̈= ϵ
(
α3

φ3 + α2

φ2 + α1

φ
+α0

)
+ hφ̇2 −1

a+1
,(A.13)

the slipping equivalent of the governing equation, eq. (2.63). However, the matched asymptotic

approach used in Section 2.5 may fail due to the presence of the φ̇2 term. An alternative solution

method might involve geometric singular perturbation theory.

A.3 Coefficients in the reduced equation of motion

The polynomial coefficients for eq. (2.60) are computed in Maple and consist of bivariate quadratics

in B0 and B−2

a3 =B2
−2ap,

a2 =−2
h

((−1/3+ (−3/4h2 +apcp
)
k2 + (−cp/2+1/4)k

)
B−2 +B0

)
B−2

kcp
,

a1 =2

(((
1/3+1/2h2k3ap−1/4k2h2 + (−ap/3−1/4)k

)
B−2 +B0 (apk−1)

)
cp−B−2h2k2 (

h2k−1
))

B−2

kcp
,

a0 = 1
2880kcp

[(−125cpk5 +1440k4)
B−2

2h5

−120k2B−2

((
34− 32cpk2

3

(
ap+ 11

128

)
+

(
293cp

12
+36

)
k
)

B−2 +B0 (kcp−84)
)

h3

+
([
−960+

(
−3200ap+135

)
cpk3 + (1280ap+5850)cpk2 + (−1032cp+720)k

]
B−2

2

−3840
[
−5/4+cp

(
ap+ 3

32

)
k2 +

(
−27cp

16
+3/8

)
k
]

B0B−2 −5760B0
2
)
h
]
.

The log coefficients are

al2 =
hB2 (

h2k−1
)

cp
,

al1 =− (
h2k−1

)
B2 (apk−1),

al0 =2
h

(
h2k−1

)
B

cp

((
− 5

12
+ (−3/4h2 +1/3apcp

)
k2 + (−cp/2+1/4)k

)
B+ A

)
,

all =− hk
(
h2k−1

)2 B2

2cp
.

The coefficients for the governing equation, eq. (2.63), are given by substituting B−2 = 1 and

B0 = ζ.
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A.4 Hamiltonian system

The governing equation for the rocking can, eq. (2.63), may be written as a planar Hamiltonian

system with generalised coordinate, φ, and generalised momentum, Φ

dΦ
dt

=− ∂H
∂φ

= ϵ
(

a3

φ3 + al2 logφ
φ2 + a2

φ2 + al1 logφ
φ

+ a1

φ
+all(logφ)2 +al0 logφ+a0

)
−1(A.14)

dφ
dt

=∂H
∂Φ

=Φ(A.15)

where H is the Hamiltonian given by integrating eqs. (A.14) and (A.15)

H(Φ,φ)= Φ
2

2
+φ−ϵ

(
ln2(φ)

(all

2
+allφ

)
+

(
al0 −2all −

al2

φ

)
ln(φ)+ (a0 −2all −al0)φ− a2 −al2

φ
− a3

2φ2

)(A.16)

The Hamiltonian surface H(Φ,φ) is shown in fig. A.1. We see an upwards sloping trough caused

by the non-singular terms, capped by the singularity near φ = 0. In general, closed contours

of the Hamiltonian indicate periodic orbits and these can be seen in fig. A.2, with many orbits

squeezed in close to the Φ axis. An equilibrium point exists in the centre of the phase portrait,

corresponding to the steady motion Ssteady, eq. (2.23). Note that the Hamiltonian is symmetric

with respect to the φ axis. This indicates the presence of a symmetry law in eq. (2.63), and also in

the full equations of motion eq. (2.11)

Φ→−Φ and t →−t(A.17)

Orbits above the φ axis move to the right, while orbits beneath the φ axis are identical but

move to the left. We therefore restrict our study to the upper half plane Φ> 0. The period of one

oscillation is given by

T = 2
∫ φ1

φ0

1
Φ

dφ,(A.18)

where φ0 and φ1 are the intersections of the contour with the line Φ= 0. These intersections can

be found from solutions of the Hamiltonian at Φ= 0 with a particular energy, E

E−φ+ϵ
(
ln2(φ)

(all

2
+allφ

)
+

(
al0 −2all −

al2

φ

)
ln(φ)+ (a0 −2all −al0)φ− a2 −al2

φ
− a3

2φ2

)
= 0

(A.19)

The presence of ln(φ) terms results in a transcendental equation which in general do not have

solutions in terms of elementary functions. From fig. A.1 we expect either two positive solutions,

φ0 <φ1, a single positive solution corresponding to the equilibrium or no solutions depending on

the value of E. The parametrisation of the solution surfaces by E gives the period

T =
p

2
∫ φ1

φ0

1√
E−φ+ϵ

(
ln2(φ)

( all
2 +allφ

)+ (
al0 −2all − al2

φ

)
ln(φ)+ (a0 −2all −al0)φ− a2−al2

φ
− a3

2φ2

)dφ.

(A.20)

136



A.4. HAMILTONIAN SYSTEM

φ

Φ

H

Figure A.1: The Hamiltonian surface,
eq. (A.19), with ϵ determined by the ini-
tial conditions and parameters in eqs. (2.14)
and (2.15) respectively. The sharp increase
in H near φ= 0 is due to the repulsive sin-
gularity.

φ

Φ

Figure A.2: Contour plot of the Hamiltonian
eq. (A.19), for E = 7.5× 10−4,1× 10−3,2×
10−3,3×10−3,4×10−3,5×10−3. Solutions of
eq. (2.63) follow the contours in a clockwise
direction.

In the case of ϵ= 0 we may compute the period T exactly

T|ϵ=0 =
p

2
∫ φ1

φ0

1√
h−φ

dφ.(A.21)

If ϵ= 0 then the can falls flat, reaching φ0 = 0. Furthermore, if the can is released from rest at

φ=φ1, then φ1 is the highest angle attained by the can and H=φ1. The period for such motion is

T|ϵ=0 = 2
√

2φ1.(A.22)

which agrees with the calculation for φ̈=−1 given by eq. (2.63) with ϵ= 0. In unscaled time, the

period is

T|ϵ=0 = 2

√
2φ1(A+mH2 +mR2)

mgR
.(A.23)

As might be expected, taller cans with larger H take a longer time to fall. Although it is simpler

to compute this leading order estimate of the oscillation period using eq. (2.63), the Hamiltonian

method of this section suggests a method for computing the period with non-zero ϵ.
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A.5 Coefficients in the outer problem

The coefficients in eq. (2.69) are

b3 = 8a3

I2 ,

bl2 =
4al2

I
,

b2 = 4a2

I2 + 4al2 log(I/2)
I

,

bl1 = 2al1,

b1 = 2a1 +2al1 log(I/2),

bll = all I,

bl0 = al0I +2all I log(I/2),

b0 = a0I +al0I log(I/2)+all I log2(I/2).

A.6 Integrals

The integrals for eq. (2.71). First the polynomial integrals

J1 =
∫ ∫

1
(1−T2)

dTdT = T arctanh(T)+ 1
2

ln(1−T2)(A.24)

J2 =
∫ ∫

1
(1−T2)2 dTdT = T

2
arctanh(T)(A.25)

J3 =
∫ ∫

1
(1−T2)3 dTdT = T2

8T2 −8
+ 3T

8
arctanhT(A.26)

and secondly the logarithmic integrals, computed in MATHEMATICA

Jl2 =
∫ ∫ log

(
1−T2)(

1−T2)2 dT dT =1
8

[
2(T +1)Li2

(
1−T

2

)
−2(T −1)Li2

(
T +1

2

)
−T log2(1−T)+T log2(T +1)(A.27)

−4
(
log(8)log(1−T)+ log(T +1)+ log(8−8T)−3+2log2(2)

)
+4log(4)log(1−T)

+2log(T +1)log(1−T)+ (T(log(16)−4)−2log(4))tanh−1(T)
]

Jl1 =
∫ ∫ log

(
1−T2)

1−T2 dT dT =1
4

[
2(T −1)Li2

(
1−T

2

)
−2(T +1)Li2

(
T +1

2

)
−2(T −1)log2(1−T)+ log2(1−T)(A.28)

+ (T +1)log2(T +1)+ (2(T −1)log(1−T)+ log(4)) log(1−T)−T log(1−T) log(4(1−T))

+ (T +1)log(4)log(T +1)+8−2log(4)
]

Jl0 =
∫ ∫

log
(
1−T2

)
dT dT =1

2

(
−3T2 +

(
T2 +1

)
log

(
1−T2

)
+4T tanh−1(T)

)
(A.29)

Jll =
∫ ∫

log2
(
1−T2

)
dT dT =1

2

[
4(T −1)Li2

(
1−T

2

)
−4(T +1)Li2

(
T +1

2

)
+14T2(A.30)

+ log(1−T)
(
−6T2 +2

(
T2 −1

)
log(T +1)+4(T −1)log(1−T)−2+ log(16)

)
+ (T −3)(T −1)log2(1−T)−2(T −1)log2(1−T)+ (T +1)2 log2(T +1)

−4T(log(2)−2)log(1−T)−2(T +1)(3T +1− log(4)) log(T +1)+16−8log(2)
]

Note the appearance of the dilogarithm Li2.
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In this appendix, we give the results of the base-plate material experiments in Section 3.2. In

Table B.1, we show experimentally determined energy exponents for Euler’s disk rolling on

different base-plates. The energy is estimated using eq. (3.8) for which the state variables are

calculated from the experimental data as described in Section 3.2.5. To determine the energy

exponent, n, we fit the power law eq. (3.2) to the experimental energy. In Tables B.2 and B.3,

we show the corresponding experimental results for the flipped Euler’s disk and the brass disk

respectively. The data is ordered by increasing n, rather than experimental repeat.

m. steel s. steel oak pine acrylic Teflon silicone concave

0.3766 0.3053 0.5027 0.4619 0.4909 0.4264 0.6159 0.5676
0.4075 0.4024 0.5224 0.5032 0.5102 0.5232 0.6173 0.5714
0.4124 0.4232 0.5553 0.5329 0.5202 0.5325 0.6381 0.5813
0.4552 0.4257 0.5685 0.5509 0.5238 0.5528 0.6409 0.5839
0.4808 0.4333 0.5691 0.5714 0.5293 0.5760 0.6617 0.5990
0.4820 0.4481 0.5857 0.5796 0.5323 0.5852 0.6690 0.6032
0.4978 0.4510 0.6038 0.5820 0.5371 0.5963 0.7029 0.6445
0.4992 0.4590 0.6144 0.5916 0.5498 0.6059 0.7348 0.64571
0.5020 0.4668 0.6151 0.5999 0.5917 0.6333 0.7547 0.6467
0.5463 0.4882 0.6422 0.6061 0.6123 0.6347 0.7620 0.6486
0.5698 0.5023 0.7015 0.6303 0.6165 0.6472 0.7751 0.7016
0.5936 0.5239 0.7137 0.6314 0.6274 0.6581 0.8942 0.7133

Table B.1: Experimentally determined energy exponents for Euler’s disk rolling on different
base-plate materials.
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m. steel s. steel oak pine acrylic Teflon silicone

0.4598 0.3638 0.5576 0.5788 0.5392 0.5479 0.6010
0.4792 0.3836 0.5763 0.5806 0.5563 0.5603 0.6178
0.5064 0.3991 0.5779 0.5980 0.5642 0.5662 0.6289
0.5255 0.4095 0.5931 0.6088 0.5655 0.5869 0.6317
0.5322 0.4129 0.5947 0.6169 0.5705 0.5979 0.6331
0.5471 0.4401 0.6033 0.6268 0.5874 0.6025 0.6612
0.5534 0.4421 0.6054 0.6343 0.5885 0.6037 0.6689
0.5578 0.4433 0.6393 0.6426 0.5933 0.6040 0.6774
0.5633 0.4675 0.6405 0.6543 0.6163 0.6052 0.6853
0.5666 0.4819 0.6527 0.6647 0.6271 0.6226 0.7142
0.5987 0.4924 0.6703 0.6705 0.6559 0.6258 0.7228
0.6445 0.5051 0.7190 0.6748 0.6638 0.6264 0.7263

Table B.2: Experimentally determined energy exponents for the flipped Euler’s disk rolling on
different base-plate materials.

m. steel s. steel oak pine acrylic Teflon silicone

0.4507 0.4189 0.4432 0.4777 0.4768 0.5763 0.5765
0.4516 0.4428 0.4489 0.5527 0.4901 0.5894 0.5896
0.5106 0.4450 0.4843 0.6112 0.5061 0.5925 0.6048
0.5181 0.4451 0.5122 0.6320 0.5444 0.5955 0.6256
0.5299 0.4545 0.5465 0.6331 0.5455 0.5964 0.6270
0.5311 0.4642 0.5663 0.6426 0.5529 0.5986 0.6423
0.5526 0.4808 0.5753 0.6637 0.5535 0.6145 0.6467
0.5637 0.4888 0.5809 0.6657 0.5836 0.6152 0.6662
0.5817 0.4982 0.5819 0.6673 0.6004 0.6163 0.6761
0.6019 0.4998 0.5902 0.6683 0.6061 0.6336 0.6809
0.6524 0.5098 0.6035 0.7097 0.6251 0.6400 0.6956
0.6544 0.5559 0.6077 0.7407 0.6515 0.6930 0.7365

Table B.3: Experimentally determined energy exponents for the brass disk rolling on different
base-plate materials.
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C.1 Additional functions in the equations of motion

Here we define the functions g i and hi used in derivation of the equations of motion eq. (4.25)

and eq. (4.32). First, the functions used in the rolling equations, eq. (4.25), which describe the

dissipation-free dynamics

gψ = ((kcp −2)cosφ−kh)ψ̇φ̇+ kcp

sinφ
θ̇φ̇,(C.1)

gθ = (−kcP cosφ+kh)θ̇φ̇+
(
−kcp cotφcosφ−kap sinφ+2khcosφ+ 2

sinφ

)
ψ̇φ̇,(C.2)

gφ = 1
ap +1

(
(ap − cp)sinφcosφ−hcos(2φ))ψ̇2 − (cpsinφ+hcosφ)θ̇ψ̇)− (cosφ−hsinφ)

)
.(C.3)

Next, the functions in the slipping equations, eq. (4.32)

hψ = cθ̇φ̇− (2a− c)ψ̇φ̇cosφ)
asinφ

,(C.4)

hθ = ((ca− c2)cos2φ+ ca)ψ̇φ̇− c2θ̇φ̇cosφ
acsinφ

,(C.5)

hφ = (a− c)cosφsinφψ̇2 − csinφψ̇θ̇
a

,(C.6)

fφ = ηqy −µ ẋ√
ẋ2 + ẏ2

(hcosφ+sinφ)− (cosφ−hsinφ),(C.7)

where the hi describe the slipping, dissipation-free dynamics and fφ describes the contact forces

on the disk when slipping.
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