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ABSTRACT

This thesis investigates quantum foundations, evaluating and leveraging this area for the
development of quantum technologies. It also demonstrates the usefulness of quantum
technologies for experimentally testing foundational hypotheses. It does this by looking

at two areas within foundations: counterfactual communication, and extensions of quantum
mechanics.

The thesis first focuses on counterfactual communication, and its antecedent, interaction-free
measurement. It evaluates the philosophical and foundational issues surrounding these novel
developing technologies, such as whether they are counterfactual (by various proposed criteria),
and whether they are quantum. It also gives potential practical applications for which we can
employ these technologies, such as to transfer quantum information, or to image delicate samples
without damaging them.

The thesis then investigates extensions of quantum mechanics: specifically those which allow
us to regain Bell-locality by weakening statistical independence. These extensions—which could
act as a path to unifying quantum mechanics with general relativity—give predictions differing
from standard quantum mechanics on scales only recently made accessible (e.g., using noisy
intermediate-scale quantum devices). It then discusses possible experiments which would allow
us to test these predictions empirically.

The work in this thesis contributes to the underpinning science of quantum technologies,
showing how quantum foundational ideas can be adapted into quantum technological applications.
It also shows quantum technologies can benefit quantum foundations—how these technologies can
be utilised to test foundational hypotheses, and demonstrate foundational principles. Therefore,
this work demonstrates the interplay between quantum foundations and quantum technologies—
an often neglected, but vital, part of both of these fields.
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detector. If this clicks, the protocol is aborted; if not, the photon goes into D1 [Noh09]. 28

xvii



LIST OF FIGURES

2.7 Michelson form of Salih et al’s protocol for counterfactual communication [Sal+13b].

Each PBS reflects any vertically-polarised (V ) light, and transmits any horizontally-

polarised (H) light. The HWPs rotate polarisation between horizontal and vertical

polarisation unitarily, by an angle of either π/2M (the HWPs before each outer inter-

ferometer) or π/2N (the HWPs before each inner interferometer). To send a ‘1’-bit, Bob

blocks (in this implementation, sets his switchable mirror to transmit, so anything

crossing to his side of the channel goes to his loss detector (DL)). To send a ‘0’-bit, he

doesn’t block (in this implementation, sets his switchable mirror to reflect). Switchable

mirrors are used to repeat the interferometer for M outer cycles of N inner cycles. In

general M ≥ 2, N ≥ 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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channel, each inner interferometer outputs into loss channels (here, the DLs). This

means the interferometer on the outer arm (starting with the red beamsplitter) always

outputs at D0, unless the photon is lost. However, when Bob blocks, waves coming

out of the inner interferometer chain negatively interfere at the final beamsplitter,

causing the photon to go to D1, if it stayed at Alice. The beam-splitting values given

in this example make the losses equal, for two inner interferometers, regardless of

whether or not Bob blocks his path (sends bit-value ‘1’ or ‘0’). We discuss this further

in Subsection 2.4.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Two-State Vector Formalism analysis of Salih et al’s polarisation-based single-outer-

cycle protocol for counterfactual communication. Bob communicates with Alice by

turning off/on his switchable mirrors to determine whether the photon goes to D1 or

D0 respectively. We specify the polarisation, given it determines direction of travel

through the PBSs. The forwards- and backwards-travelling states do not overlap

anywhere on the inner interferometer chain when there is a detection at D0, meaning,

by weak value approaches, the particle detected at D0 was never at Bob. This means

Bob’s ability to communicate with Alice is not explained by weak value approaches

any more than it is by standard quantum mechanics. We reinforce this analysis

experimentally in Section 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
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4.1 Schematic setup for our one cycle implementation of Salih et al’s 2013 counterfactual

communication protocol (see [Sal+13b] and Subsection 2.4.3). All beamsplitters are

PBSs, transmitting H-polarised and reflecting V -polarised light. We want to know
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detector D0 at the bottom, rather than immediately after the topmost PBS, so that

the setup exactly includes the equivalent of one cycle of Salih et al’s Michelson-type
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light that goes to Bob’s mirrors ends up at either D0 or D1. . . . . . . . . . . . . . . . . 58

4.4 Postselection success and accuracy probabilities. The total postselection survival

probability (blue), and probability of postselected correct outcome, PC (orange), for a
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4.5 Aharonov and Vaidman’s protocol overlaid with a counterfactuality-violating history.

The modified protocol proposed by Aharonov and Vaidman in [AV19], of which we show

one cycle, cannot be said to be counterfactual from a consistent histories viewpoint.

This can be seen from the series of projections, or history, highlighted in blue. The thin

vertical lines represent non-polarising beamsplitters, thick vertical lines represent

mirrors, and the blue path shows an example of a history where, when Bob doesn’t

block, the photon travels to Bob and back to Alice’s relevant detector with nonzero
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5.1 Our exchange-free Phase Unit, which applies a phase determined by Bob to Alice’s
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5.4 Quantum circuit diagram, showing how a 3-qubit gate applying a controlled-controlled

unitary U can be constructed from two-qubit gates along with single-qubit gates,
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5.9 Average fidelity for exchange-free telecloning using the exchange-free controlled-Z

gate described above, plotted for different numbers of outer (M) and inner (N) cycles.

Fidelity is calculated for an imperfect trapped-atom at Bob that fails to reflect an

incident photon 34% of the time when it should reflect, and fails to block the photon

8% of the time when it should block. Fidelity is averaged over 100 points evenly

distributed on the Bloch sphere of possible states Alice could send. . . . . . . . . . . . 84

6.1 A standard set-up for ghost imaging. Position-and-momentum-entangled photons are

generated in pairs at the SPDC source from a laser beam, with conjugate polarisations

(i.e. always in pairs of horizontal and vertical polarisation). A PBS sends the vertically

polarised photon to an Intensified Charge-Coupled Device (ICCD) camera (which

records in high resolution its arrival position), and sends the horizontally-polarised

photon via a sample to be imaged, to a bucket detector (DB). By recording coincidences

between the detections at the ICCD and the bucket detector, the sample can be “ghost

imaged”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xxii



LIST OF FIGURES
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9.1 Illustration of sampling procedure. Left: The square represents the space Smath
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““The difficulty is, of course, that you don’t have to settle these issues,” Weinberg continues.

“I’ve had a whole career without knowing what quantum mechanics is. I tell this story in one of

the books that my colleague Philip Candelas was referring to a graduate student whose career

essentially disintegrated, and I asked what was wrong and he said, ‘He tried to understand

quantum mechanics.’ He could have had a perfectly good career without it. But getting into the

fundamentals of quantum mechanics is a losing game.””

Sabine Hossenfelder (quoting Steven Weinberg, quoting himself, quoting Philip Candelas),

“Lost in Math” (2018)

([Hos18])
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INTRODUCTION

This Chapter goes over the motivation for this thesis, as well as the practical details of its

layout.

1.1 Motivation

Quantum foundations is the field of investigating, analysing, and extending the underpinning

principles of quantum mechanics and quantum field theory. Work in this field often focuses on

those ideas which are paradoxical when considered from a classical (non-quantum) perspective

[Adl21b].

Quantum technologies is the field of adapting quantum phenomena towards practical appli-

cations. This involves applying the knowledge gained through quantum research to engineer

devices or protocols to solve real-world problems, with advantages over classical solutions [DM03].

Such tecxhnologies range from tailor-built quantum components in the lab (e.g. single quantum

dots or micro-ring resonators), to full Noisy Intermediate-Scale Quantum (NISQ) devices formed

of dozens of interlinked qubits, which can be used to implement quantum circuits but not yet

perform full quantum error correction protocols (as is the current state of the art in quantum

computing).

This thesis illustrates the interrelation between quantum foundations and quantum technolo-

gies: quantum foundations uncovers new phenomena that can be used to develop new quantum

technologies, while quantum technologies allow us to experimentally test models proposed in

quantum foundations. Most quantum technologies were originally based on quantum founda-

tional work. For instance, quantum key distribution was developed from the uncertainty principle

and no-cloning theorem [BB84; WZ82], quantum computation (by Deutsch’s own account) was

developed from quantum parallelism and interference [Deu85], and quantum metrology was

3



CHAPTER 1. INTRODUCTION

developed from consideration of quantum measurement and back action, and the leveraging of

entanglement and squeezing [GLM04]. However, this thesis focuses on two key areas, which

act as case studies for the interrelation between quantum foundations and developing quantum

technologies: counterfactual communication, and statistical independence-violating extensions of

quantum mechanics.

Quantum mechanics is notoriously counterintuitive, and very few quantum effects are as

counterintuitive as interaction-free measurement [EV93]. Quantum technology development

leverages counterintuitive non-classical effects to achieve advantage over classical solutions to

problems. Counterfactual communication [Sal+13b] (a derivative of interaction-free measure-

ment) is a natural candidate on which to base new quantum technology protocols. Existing work

applies counterfactual communication for technical benefits, which this thesis extends to both

counterfactual communication of quantum information, and counterfactual ghost imaging (a

form of metrology). This shows how quantum foundations can provide new and useful forms of

quantum technology.

Quantum mechanics has many differing interpretations and extensions. Models which violate

statistical independence are often ignored by the scientific community, despite their ability to

replicate the predictions of quantum mechanics. An advantage of such models is that they are

based on local hidden variables [HP20], even though local hidden variables are often (wrongly)

thought prohibited by Bell’s theorem [Tea22; HH22c]. These models could also help us resolve two

of the biggest problems with quantum mechanics: the measurement problem, and the unification

of quantum mechanics with general relativity. These models are often discounted, as they are

assumed to make identical predictions to standard quantum mechanics (i.e., only be interpreta-

tions), such that there is no way to experimentally test them. However, this is not necessarily

true for those that extend quantum mechanics [Hos11]. This thesis proposes experiments using

current and potential/developing quantum technologies to empirically distinguish the predictions

of these extensions from standard quantum mechanics.

By looking at these two areas—counterfactual communication, and statistical independence-

violating extensions of quantum mechanics—this thesis demonstrates the interplay between

quantum foundations and quantum technologies: quantum foundations seeding the underpinning

ideas which can be developed into quantum technologies, and current and hypothetical quantum

technologies providing the means to experimentally test foundational ideas.

A recent move in the philosophy of science, referred to as philosophy of science in practice,

considers not just the structure and content of scientific theories, but also the methods by

which science advances, such as experimentation, model-making, and data analysis [Ank+11]. An

approach within this, called philosophy-of-science in practice (distinguished by the hyphens) seeks

to bring together philosophers and scientists to consider philosophical problems within a given

field, such as background assumptions, or idealisations made when moving from experiments to

theory [BL13]. This approach is also known as philosophy in science [Pra+21]. Given this thesis
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was co-supervised by a researcher in experimental quantum optics and a researcher in philosophy

of science, it provides a unique example of philosophy-of-science in practice. Within quantum

physics, most interaction with philosophers is done by deeply foundational theorists, who often

could arguably be called philosophers themselves. This explains why most philosophical analysis

of quantum mechanics/quantum field theory examines abstract theory and interpretation, rather

than the practical observation of quantum phenomena. By fostering philosophical engagement

with a prominent experimentalist, this thesis breaks ground on a new area of collaborative

research. We expect philosophical analysis of quantum experimental practice to bring insights

to the problems of quantum mechanics, by showing where certain theoretical abstractions and

assumptions fall apart.

The use of scientific research within this thesis as case studies supporting a philosophical

point also constitutes philosophy of science in practice, as it involves doing science, to then inform

research into how science is done. This activity falls within another subdivision of philosophy of

science in practice, called philosophy of science-in-practice (again, distinguished by the hyphens);

this analyses science-in-the-making and the practice of scientific research, in a way similar to

modern history of science. The way this thesis performs substantive scientific research with

input from both scientists and philosophers, but also uses that as case studies for a philosophical

argument, therefore illustrates both of these trends in philosophy of science in practice.

1.2 Thesis outline

This section gives an overview of the chapters of this thesis. Given academia is inherently

collaborative, the articles on which each chapter is based are all multi-author. Therefore, the Dec-

laration of Contribution box at the start of each chapter gives the candidate’s specific contribution

to the work therein.

This thesis is formed of two parts:

Part I introduces interaction-free measurement and counterfactual communication. It looks

at foundational issues affecting these effects, and considers practical applications of these for

new quantum technologies (Chapters 2, 3, 4, 5, and 6).

Part II looks at extensions of quantum mechanics—specifically those which violate statistical

independence. It first reviews why we might want to extend quantum mechanics, surveying

Bell’s theorem, then the measurement problem and proposed solutions to it (Chapter 7). It then

looks at whether the wavefunction should be interpreted epistemically or ontically, and how

this relates to the task of extending quantum mechanics (Chapter 8). Finally, it investigates

extensions of quantum mechanics where the wavefunction is interpreted epistemically, as some

limited representation of underlying (statistical independence-violating) dynamics (Chapters 9).

Finally, Chapter 10 summarises both of these parts, looks at interesting potential extensions

of and future directions for the work presented in this thesis, and relates the work presented
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back to the interplay between quantum foundations and quantum technologies.

The Appendices consider another area of interplay between developing quantum technologies

and quantum foundations—weak values. This builds on work presented in Chapters 2 and 3.

However, it moves away from looking at weak values in the context of identifying the path of a

quantum particle, to instead look more broadly at the foundational issues around weak values.

This work is still very much ongoing, so has been presented as Appendices rather than as part of

the main body of this thesis.

1.2.1 Part I: Interaction-Free Quantum Technologies

Chapter 2 introduces the requisite background for the part of this thesis looking at counterfac-

tual communication. It first covers methods proposed to evaluate the path of a quantum particle

(Section 2.2); before examining the history of interaction-free measurement and counterfactual

communication (Section 2.4) This Chapter serves as a literature review for Part I of this thesis.

Chapter 3 looks more closely at the weak trace approach to the position of a quantum particle

first introduced in Subsection 2.2.3, and other similar weak value-based approaches to the path

of a quantum particle. Specifically, it shows these approaches do not allow us to see the path of

a quantum particle between measurements. It does this by first showing that taking the weak

value of the position projection operator will always involve disturbing the system, and so causing

some sort of measurement (Section 3.3). It then shows there is no reason to associate a non-zero

weak value of the position projection operator along a given path with the quantum particle being

present on that path (Section 3.4). This Chapter is based on the preprint paper, Do weak values

show the past of a quantum particle? [HRL21].

Chapter 4 discusses properties of counterfactual communication. Section 4.2 challenges

the claim that counterfactual communication is impossible, even for post-selected quantum

particles. It does this by proposing a counterfactual scheme where, by the criteria discussed

in Section 2.2, none of the photons that contribute information about the message sent travel

between the communicants. It demonstrates counterfactuality experimentally by means of weak

measurements (Subsection 4.2.4), and conceptually using consistent histories (Subsection 4.2.3).

Section 4.3 then shows that full counterfactual communication is an exclusively quantum effect.

It does this by first introducing the logical form of classical counterfactual communication

(Subsection 4.3.1), then deriving a sufficient condition for a protocol of this sort to be considered

quantum (Subsection 4.3.2. Subsection 4.3.3 then shows that the two protocols which meet our

criteria for full counterfactuality both meet our condition for being quantum. This indicates full

counterfactual communication is inherently quantum, despite previous assertions to the contrary.

This work illustrates how quantum foundations can be useful for the deeper evaluation and

analysis of the properties of (hypothetical/developing) quantum technologies. This Chapter is

based on the published papers, The laws of physics do not prohibit counterfactual communication

[Sal+22], and How quantum is quantum counterfactual communication? [HLR21].
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Chapter 5 is the first chapter introducing new protocols using counterfactual communication

for technological benefit. Specifically, Section 5.2 first gives a protocol for Bob to apply a phase

between the H and V components of Alice’s photon (Subsection 5.2.1). It then uses this as the

basis for Bob to apply any single-qubit unitary onto Alice’s state, entirely counterfactually, and

gives a demonstration of how to use this to apply quantum algorithms (Subsection 5.2.2). Section

5.3 gives a protocol for performing quantum computation counterfactually—this time in the form

of a controlled-phase gate, whereby Bob’s qubit controls whether or not a phase is applied to Alice’s

qubit (Subsection 5.3.1). It then uses the entangling properties of the simplest form of this gate (a

controlled-Z gate) to show how to perform quantum teleportation and telecloning counterfactually

(Subsection 5.3.2). These protocols both serve as examples of quantum technological developments

rooted in quantum foundational principles (counterfactual communication, entanglement, and

teleportation). This Chapter is based on the published paper, Exchange-free computation on an

unknown qubit at a distance [Sal+21], and the preprint, Deterministic teleportation and universal

computation without exchanging particles [Sal+20].

Chapter 6 extends counterfactual communication in a different direction—metrology. Specifi-

cally, Section 6.2 gives a protocol for enhancing the efficacy of ghost imaging, by making use of

counterfactuality to image the object without any photons hitting it. Section 6.3 then discusses

its efficacy, by comparing Signal-to-Noise Ratio (SNR), SNR per photon-object interaction, and

visibility to that of ideal ghost imaging, both for ideal and realistically-lossy components. It

discusses potential extensions of counterfactual ghost imaging, specifically to computational and

phase-resolving ghost imaging. This shows how quantum foundational ideas can be adapted to

provide real, useful quantum technological protocols. This Chapter is based on the published

paper, Counterfactual ghost imaging [HR21b].

1.2.2 Part II: Extensions of Quantum Mechanics

Chapter 7 goes over the background necessary for this part of the thesis, which looks at

(statistical independence-violating) extensions of quantum mechanics. For this, Section 7.2 de-

scribes Bell’s Theorem: Subsection 7.2.1 describes the EPR paradox, Subsection 7.2.2 derives a

Bell inequality (the Clauser-Horne-Shimony-Holt (CHSH) inequality) and shows how quantum

mechanics violates this inequality, Subsection 7.2.3 describes experimental tests of Bell’s theorem

and loopholes in those experiments, and Subsection 7.2.4 gives the assumptions necessary to

formulate Bell inequalities. Subsection 7.2.5 then looks in more depth at the statistical inde-

pendence assumption specifically, and extensions of quantum mechanics where this is violated.

Secondly, Section 7.3 looks at the measurement problem in quantum mechanics. Subsection 7.3.1

first goes over the axioms of quantum mechanics, then Subsection 7.3.2 shows how these lead to

the measurement problem. Subsection 7.3.3 identifies the properties a theory needs to solve the

problem. Subsection 7.3.4 shows not only that no current interpretation of quantum mechanics

solves the problem, but that, being interpretations rather than extensions of quantum mechanics,
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they cannot solve it. Subsection 7.3.5 finally discusses why statistical independence-violating

extensions of quantum mechanics make good candidates for solving this problem, and why it is

worth trying to solve this problem. This chapter serves as a literature review for Part II of this

thesis. Parts of the first half of this chapter (Section 7.2) are based on the published paper, Bell’s

theorem allows local theories of quantum mechanics [HH22c]. The second half of this chapter

(Section 7.3) is based on the published paper, What does it take to solve the measurement problem?

[HH22b].

Chapter 8 first argues in Section 8.2 that nothing about the informal ideas of epistemic and

ontic interpretations rules out wavefunctions representing both reality and knowledge. This

is despite these terms being commonly associated in quantum foundations with the formal

definitions given by Harrigan and Spekkens, for the wavefunction in quantum mechanics being ψ-

ontic or ψ-epistemic in the context of the ontological models framework. These formal definitions

are contradictories, so that the wavefunction can be either ψ-epistemic or ψ-ontic, but not both.

Subsection 8.2.1 first goes over the intuitive ideas of the wavefunction being ontic or epistemic,

before Subsection 8.2.2 looks at the Harrigan-Spekkens definitions, and the Ontological Models

Framework on which they are based, and Subsection 8.2.3 analyses their definitions with respect

to the intuitive ideas of ontic and epistemic. Subsection 8.2.4 shows that the implications of no-go

theorems on the wavefunction being epistemic, such as the Pusey-Barrett-Rudolph theorem,

may need rethinking in light of this analysis. Section 8.3 then argues that the ψ-ontic/epistemic

distinction fails to properly identify ensemble interpretations, where the wavefunction predicts

probabilities of possible measurement outcomes, but not which individual outcome is realised in

each run of an experiment. Subsection 8.3.1 therefore proposes a more useful categorisation, for

models where the wavefunction describes an ensemble of states with different values of a hidden

variable—ψ-ensemble models. Subsection 8.3.2 illustrates how these are different from Harrigan

and Spekkens’s psi-ensemble models, then Subsection 8.3.5 shows that all local ψ-ensemble

interpretations which reproduce quantum mechanics violate Statistical Independence. Finally,

Subsection 8.3.6 explains how this interpretation helps make sense of some otherwise puzzling

phenomena in quantum mechanics, such as the delayed choice experiment, the Elitzur-Vaidman

Bomb Tester, and the Extended Wigner’s Friends Scenario. This Chapter is based on the published

papers, Could wavefunctions simultaneously represent knowledge and reality? [HRL22], and The

wave function as a true ensemble [HH22a].

In Chapter 9, Section 9.2 first points out that the common interpretation of Statistical Inde-

pendence violations, as correlations between the measurement settings and the hidden variables

(which determine the measurement outcomes), is at best physically ambiguous and at worst

incorrect. The problem with the common interpretation is that Statistical Independence might be

violated because of a non-trivial measure in state space, a possibility Subsection 9.2.1 calls “super-

measured” and elaborates on. Subsection 9.2.2 shows how this allows the violation of the CHSH

inequality. Subsection 9.2.3 describesInvariant Set Theory (IST), and show it as an example of a
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supermeasured theory that violates the Statistical Independence assumption in Bell’s theorem

without requiring correlations between hidden variables and measurement settings (physical

statistical independence). Section 9.3 then identifies points of difference between IST and stan-

dard quantum theory, and evaluates if these would lead to noticeable differences in predictions

between the two theories. From this evaluation, Subsection 9.3.1 gives a number of experiments,

based on points of difference between the predictions of IST and standard quantum mechanics

around entanglement limits, continuous variables (Subsection 9.3.2), and gravitationally-induced

decoherence (Subsection 9.3.3). If undertaken, these experiments would allow us to investigate

whether standard quantum mechanics or IST best describes reality. These tests can also be

deployed on theories sharing similar properties (e.g. Penrose’s gravitational collapse theory). This

work shows how developing quantum technologies can be used to test foundational ideas. This

chapter is based on the published paper, Supermeasured: Violating Bell-Statistical Independence

without violating physical statistical independence [HHP22], and the preprint, Experimental

Tests of Invariant Set Theory [HPR21].

This thesis ends with Chapter 10, which summarises the work presented in each chapter

(Section 10.1), discusses future potential directions for research (Section 10.2), and finally ties

the thesis back to the general broad theme of the interplay between quantum foundations and

quantum technologies (Section 10.3).

1.2.3 Appendix: Weak Values

The appendix looks at another case study area for the interaction between quantum foun-

dations and developing quantum technologies—weak values. While we have refrained from

including this work as part of the thesis proper, weak values still serve as a useful demonstration

of how a foundational idea can be applied for technological benefit (for weak values, mainly in

the fields of metrology and state tomography), and how insights from these practical applications

can feed back into our foundational understanding of these deeper underpinning ideas.

Chapter A shows what issues can come about when weak measurement is misinterpreted. In

a recent paper (Scheme of the arrangement for attack on the protocol BB84, Optik 127(18):7083-

7087, Sept 2016), Khokhlov proposed a protocol for using weak measurement to attack BB84.

This paper claimed the four basis states typically used could be perfectly discriminated, and so an

interceptor could obtain all information carried. We show this attack fails when considered using

standard quantum mechanics, as expected - such “single-shot" quantum state discrimination

is impossible, even using weak measurement. This Chapter is based on the published paper,

Comment on “Scheme of the arrangement for attack on the protocol BB84” [HR21a].

Chapter B shows how to experimentally detect the dynamical quantum Cheshire cat proposed

by Aharonov et al (Nat Commun 12, 4770 (2021)). In practice, to make the effect detectable, the

initial state is biased by adding/subtracting a small probability amplitude of the orthogonal state

which travels with the disembodied property. This biasing, which can be done either directly or
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via weakly entangling the state with a pointer, provides a reference with which we can measure

the evolution of the state. We thereby show that this effect is different from counterfactual

communication, which provably does not require any field to travel between communicating

parties when information is sent. This Chapter is based on the preprint, Is the dynamical

quantum Cheshire cat detectable? [HLR22].
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“It’s real! For real!”

“What? No. That doesn’t make sense.”

“It’s your math, man. Check it.”

“It’s... whoa. Whoa. Duuuuuuuude.”

God learns of the Elitzur-Vaidman bomb tester.

Zach Weinersmith,

SMBC Comics (2019)

(“Duuude”, [Wei19])
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2
COUNTERFACTUAL COMMUNICATION BACKGROUND

Declaration of contribution: This is an introductory chapter and contains no new

research material. This chapter is based on the introduction and appendix of the published

article How Quantum is Quantum Counterfactual Communication? [HLR21]. This was

conceived and written by myself, supervised and edited by Prof James Ladyman and Prof

John Rarity. An initial draft of that article was submitted as an extended essay for the

Project Unit PHILM0008, a 20-credit unit contributing towards the MSci in Physics and

Philosophy at the University of Bristol in 2019. However, it was developed significantly

after this.

Subsection 2.2.3 is also based on the preprint article Do weak values show the past of a

quantum particle? [HRL21]. This was conceived and written by myself, supervised and

edited by Prof James Ladyman and Prof John Rarity.

The description of Salih et al’s 2013 protocol in Subsection 2.4.3 is also based on the

published article Exchange-Free Computation on an Unknown Qubit at a Distance [Sal+21].

This was conceived by myself and Mr Hatim Salih in discussion with Prof Terry Rudolph.

The manuscript was co-written by myself and Mr Salih, under the supervision of Prof John

Rarity. Further discussion and edits were done by all authors (Mr Salih, myself, Dr Will

McCutcheon, Prof Rudolph, and Prof Rarity).

2.1 Chapter Introduction

This Chapter lays out necessary background for Part I of the thesis. We focus on coun-

terfactual communication, and other developing interaction-free quantum technologies.

We first look at approaches proposed to determine the path(s) via which a quantum
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particle travelled. These allow us to evaluate whether or not particles cross the communication

channel between two communicants, and so whether or not a given protocol for communication is

counterfactual. This also involves introducing weak values and Vaidman’s weak trace approach

to the path of a quantum particle, which we discuss and evaluate in more detail in Chapter 3.

We then describe the history of interaction-free measurement, from Elitzur and Vaidman’s

initial protocol (the Elitzur-Vaidman Bomb Tester), to Kwiat et al’s combination of this with the

quantum Zeno effect, to counterfactual computation and imaging protocols based on this. Finally,

we look at counterfactual communication proper, introducing and contrasting protocols proposed

so far, in preparation for analysis in Chapter 4.

This Chapter traces the development of counterfactual quantum protocols, from Elitzur and

Vaidman’s initial foundational proposal, to experimentally-demonstrated protocols for commu-

nication, computation and imaging. This illustrates how, over thirty years, something initially

viewed as a foundational curiosity can be leveraged for technological benefits. Therefore, this

chapter serves as an example of the first part of the interplay between quantum foundations and

quantum technologies—foundational ideas inspiring new/hypothetical quantum technologies. The

rest of Part I evidences this interplay further, as we both foundationally analyse and practically

develop these counterfactual and interaction-free quantum technologies.

2.2 Path of a Quantum Particle

This first section describes approaches proposed to determine whether a quantum particle has

been in a given spatial region. Such foundational work is intrinsically linked to counterfactual

communication: “counterfactual” here referring to the two parties communicating without any

quantum particles crossing the channel between them. Analysis of these approaches will therefore

allow us to establish whether a protocol is actually counterfactual.

2.2.1 Initial Approaches

When considering the path traversed by a quantum particle, our first instinct is to treat the

particle as spatially localised. This models it as travelling along a single path, from its point

of origin to its destination. However, quantum phenomena are not solely point-like, but also

have wave-like properties, as the Two-Slit Experiment shows [You04]. This means we cannot

necessarily treat them as spatially localised. Therefore, we need a criterion for counterfactuality

that takes into account quantum phenomena.

Based on this need for a better criterion, a common view posed is to claim communication

between two communicants Alice and Bob can only be counterfactual if no information can pass

between Alice and Bob. By this criterion, counterfactual communication is inherently impossible,

as any successful communication will involve the transfer of information. This view is the one

often presented upon first hearing about quantum counterfactual communication. However,
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as we will show in Chapter 4, there are many classical communication protocols which are

considered counterfactual, despite not fulfilling this criterion. Penrose defined a counterfactual

as an event which “might have happened, although did not in fact happen" [Pen94]. By this

definition, counterfactual communication means inferring from the non-occurrence of something

which could have occurred. Such an inference obviously transmits information (see Chapter 4 for

examples of this). Therefore, there is no reason to only call communication counterfactual if no

information can be transferred. Counterfactual communication is demonstrably possible—we

just wish to know whether quantum counterfactual communication is an extension of it.

Our first non-classical approach to a particle’s location involves considering the entire quan-

tum mechanical description of the system. We can do this by looking at the density matrix. This

provides all the information that exists (according to standard quantum mechanics) about a

particle at a given moment. By associating entries in the density matrix with physical positions,

we can see the spread of the particle’s possible locations. However, some parts of the density

matrix correspond to paths lost when the wavefunction is collapsed at the protocol’s end, and

so information not being sent. We need some way to sort these possible paths into those the

particle could have been on when information is sent, and those it was on when information is

not sent. This requires post-selection (identification of paths by their final state), rather than

solely pre-selection (identification of paths by initial state).

2.2.2 Consistent Histories

To resolve this, we could apply Griffiths’ Consistent Histories approach to the task of iden-

tifying the path of a quantum particle [Gri84]. The Consistent Histories approach involves

considering histories: tensored chains of projectors, each representing a way the system under

consideration could evolve. A family is a set of these histories, that form a projective decom-

position of the identity operator over the whole evolution time. By refining certain projectors

(replacing them with projectors summing to them), we can model a situation. These histories

are consistent if they all mutually commute—if they do not, the Consistent Histories approach

claims it is meaningless to ask which history was the ‘correct’ model for the system’s evolution,

as we cannot assign positive relative probabilities to the different evolutions [Gri19].

Therefore, we can explicitly say a particle has not gone between Alice and Bob according to

the Consistent Histories approach when all histories where it both travels between the two, and

information is sent, have probability zero. This requires us to analyse all histories in this family,

as Griffiths does for several protocols [Gri16]. In essence, if a particle can go between Alice and

Bob when information is transmitted, by Consistent Histories it is not counterfactual; if not all the

histories in the family are consistent with one another, then by the Consistent Histories approach

it is meaningless to talk about the counterfactuality of the situation. Therefore, a protocol is only

explicitly counterfactual by the Consistent Histories criterion, if we have a consistent family of

histories, where all histories where the particle travels between Alice and Bob and information
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is sent have probability zero, and there still exists a history where information is sent between

Alice and Bob. We show a protocol which meets this condition in Chapter 4.

2.2.3 Weak Trace

Next, we consider the weak trace approach to the path of a quantum particle, alongside

other related approaches (those which use weak values to infer the path of a quantum particle).

Weak values are derived from weak measurement [AAV88], which examines the state between

measurements, without collapsing it. Weak measurement involves lightly coupling a system to a

measuring device. While little information is gathered by one measurement, many measurements

on identically-prepared systems will generate a probability distribution. This contrasts with Von

Neumann measurements, which cause a system to collapse into an eigenstate of the measured

operator. Weak measurement allows us to collect information that would be lost were the system

strongly measured [TC13]. We can interpret the probability distribution given by weak measuring

the evolution from an initial state as evaluating all forward-evolving paths from that state.

However, rather than working forwards, can also work back from a given result (post-select),

to investigate the paths through which the system may have evolved. If we pre- and post-select

like this, we obtain a weak value.

Aharonov et al defined the weak value Ow of an operator Ô [AAV88], where

(2.1) Ow = 〈Ô〉w =
〈
ψ f

∣∣Ô
∣∣ψi

〉
〈ψ f |ψi〉

As this weak value increases as 〈ψ f |ψi〉 goes to zero, weak value protocols are used in

metrology to amplify signals from delicate results so they can be observed experimentally

[Dix+09; JMH14; HBL17]. This is at the expense of postselection reducing success probability.

Weak values however also lead to a range of paradoxes [AR05].

To experimentally observe the quantity we define in the expression in Eq. 2.1, we first couple

our initial system
∣∣ψi

〉
to our initial pointer state,

∣∣φ〉
, by weakly measuring them with the probe

Hamiltonian Ĥ = λÔ⊗ P̂d/T for small coupling constant λ and state-probe interaction time T.

This produces the state

∣∣ψw
〉= e−

iĤT
ℏ

∣∣ψi
〉⊗ ∣∣φ〉

= e−
iλ
ℏ Ô⊗P̂d

∣∣ψi
〉⊗ ∣∣φ〉(2.2)

where P̂d is the momentum of that pointer. We then strongly measure this weak-measured state∣∣ψw
〉

with the operator

(2.3) F̂1 =
∣∣ψ f

〉〈
ψ f

∣∣⊗ Îd
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Assuming P̂d has Gaussian distribution around 0 with low variance (so X̂d, the position of

the pointer, has Gaussian distribution with high variance),

e−
iλ
ℏ Ô⊗P̂d =

∞∑
k=0

(− iλ
ℏ

Ô⊗ P̂d
)k/k!

=1− iλ
ℏ

Ô⊗ P̂d +O (λ2)≈1− iλ
ℏ

Ô⊗ P̂d

(2.4)

so this strong measurement gives the result∣∣ψ f
〉〈
ψ f

∣∣ e−
iλ
ℏ Ô⊗P̂d

∣∣ψi
〉⊗ ∣∣φ〉

≈ ∣∣ψ f
〉〈
ψ f

∣∣ (1− iλ
ℏ

Ô⊗ P̂d)
∣∣ψi

〉⊗ ∣∣φ〉
= ∣∣ψ f

〉⊗〈ψ f |ψi〉(1− iλ
ℏ

OwP̂d)
∣∣φ〉

≈ ∣∣ψ f
〉⊗〈ψ f |ψi〉e−

iλ
ℏ OwP̂d

∣∣φ〉
(2.5)

This means the position of our initial pointer state
∣∣φ〉

, acting as our “readout needle", shifts,

with measurement of the pointer position giving a read-out value (〈x〉−a). For an initial Gaussian

pointer state, this shift causes the average position to move from 〈x〉 to (〈x〉 − a) due to the

application of the effective operator 1− iλOwP̂d/ℏ. a is distributed over a wide range of values

for many repeats, but the distribution of “a"s will be a Gaussian centred on (the real part of)

λOw. Peculiarly, this weak value Ow can be very far from any of the eigenvalues of Ô, or even

imaginary [AAV88; TC13; Dre+14]. This is odd, given this weak value appears in exactly the

place in the equation that an eigenvalue of Ô would for a Von Neumann measurement (where the

variance of X̂d on the measured state is vanishingly small). This led to the belief that the weak

value Ow represented some fundamental value of the operator Ô between measurements. (Note

that it has recently been shown that weak values can be disconnected from weak measurements,

and obtained using strong or projective measurements [CP18; Wag+23] Further, while above we

give the conventional way weak values are obtained experimentally, this process is only one of

the many ways weak values can be defined.)

Consider a case where the weak value of either the spatial projection operator, or an operator

formed by multiplying the spatial projection operator with the operator for some property of a

particle, along a certain path was non-zero for a given
∣∣ψi

〉
and

〈
ψ f

∣∣. Vaidman argues we should

interpret this as meaning a particle was on that path and left a weak trace along it, on two

grounds [Vai13a]. First, if it were a strong measurement, an operator containing the spatial

projection operator having non-zero eigenvalues would be sufficient for a quantum particle to

be present, so correspondingly a non-zero weak value of this operator is a weak trace of particle

presence. Secondly, if a particle was present in a region, it should have non-zero interaction

with the local environment (as reflected by the subtle decoherence its state would undergo), and

so leave a “trace” along its local path. While this interaction is weak, which it must be so that

the environmental coupling does not collapse position superpositions in the way a projective
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Figure 2.1: Nested-interferometer model, used by supporters of weak value approaches to discuss
cases where the Two-State Vector Formalism contradicted “common-sense" continuous-path
approaches [Vai13a]. Though no forward or backwards travelling path goes from the source, to
Bob (along path C) and into D2, they do overlap over C, meaning there is a weak trace at Bob.
This illustrates the peculiar property of the TSVF where particles can jump between regions (e.g.
between the inner interferometer and the outer arm) [Vai13a].

measurement would, supporters of the weak trace approach claim it is still in principle detectable

(i.e., the interaction would be of the same order of magnitude as λ), and so the interaction would

be equivalent in scale to that required to give a non-zero weak value of an operator containing

the spatial projection operator along that path.

Due to their interrelatedness, we can graphically show where the spatial projection operator

has a non-zero weak value through the Two-State Vector Formalism (TSVF). Aharonov et

al developed the TSVF [ABL64], which considers both the backwards and forwards-evolving

quantum states, rather than just the forward as in standard quantum mechanics. (A similar

intuition led Watanabe to develop the Double Inferential-state Vector Formalism [Wat55].) For

some operator Ô, the forwards travelling initial state
∣∣ψi

〉
, and the backwards travelling final

state
〈
ψ f

∣∣, the TSVF gives out a conditional probability amplitude
〈
ψ f

∣∣Ô
∣∣ψi

〉
, where

〈
ψ f

∣∣ ∣∣ψi
〉

is referred to as the Two-State Vector. This conditional probability amplitude is of the same form

as the numerator of the weak value. Therefore, we can use the TSVF to graphically plot where
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the weak value of an operator containing the spatial projection operator is nonzero. This involves

plotting the forward-evolving state (possible paths the particle could have travelled via from its

original position) and the backwards-evolving state (possible locations the particle could have

come from to reach its final position).

If an operator returns a non-zero TSVF value, there is to O (λ) a weak trace along the path it

describes. If we trace the paths a quantum particle could evolve along from its initial, and those

it could have come from to get to its final, state, there is a weak trace where they overlap—so we

cannot say the particle was not there [Vai13a].

The nested-interferometer model (Fig. 2.1) was identified as a case where the Two-State

Vector Formalism contradicted “common-sense" continuous-path approaches [Vai13a]. The inner

interferometer is balanced such that a photon entering from arm D exits to detector D3. Con-

sequently, the outer interferometer is unbalanced, so there is an equal probability of a photon

introduced from the source ending in D1 or D2. When the photon ends at D2, common sense

would tell you it must have travelled via path A. This is as, had it travelled via D into the inner

interferometer, it could not have exited onto path E, or reached D2. However, supporters of the

weak trace approach claim, while the photon never travelled paths D or E, it travelled along

paths B and C as well as along path A.

However, this has unintuitive results. If one accepts the weak trace as a valid indicator of a

particle’s path, this leads to peculiarities. While, with Consistent Histories, a path needs to link

the initial and final states, here, it only requires that paths from the initial and final states overlap

at some point. This means Bob can have a weak trace on his side of the transmission channel,

without any in the channel itself. Danan et al demonstrated this using weak measurements in

nested Mach-Zehnder Interferometer (MZI) [Dan+13]. However, Peleg et al claim these peculiar

results don’t contradict standard quantum theory [PV18].

There are cases where the Weak Trace Approach entails that a particle was present on a path,

despite the spatial projection operator for that path having weak value zero. An example of this

is Aharonov et al’s quantum Cheshire cat (Fig. 2.2).

In the quantum Cheshire cat protocol, an H-polarised single-photon is emitted from the

source and passed through a 50:50 beamsplitter, such that it is effectively preselected in the state

(2.6) |Ψ〉 = (i |L〉+ |R〉) |H〉 /
p

2

Similarly, a Half-Wave Plate (HWP) and a phase rotator (applying a phase rotation of π/4—i.e.,

a factor of i) are put on the right-hand path. After these, the left and right paths recombine

at another 50:50 beamsplitter before passing through a Polarising Beam-Splitter (PBS). This

transmits H-polarised light and reflects V -polarised light. By postselecting on the photon arriving

at detector D1, this effectively postselects on the photon being in the state

(2.7) |Φ〉 = (|L〉 |H〉+ |R〉 |V 〉) /
p

2

21



CHAPTER 2. COUNTERFACTUAL COMMUNICATION BACKGROUND

Figure 2.2: Aharonov et al’s quantum Cheshire cat. See Subsection 2.2.3 for description of
protocol.

Taking the weak value of the spatial projection operators ΠL = |L〉〈L| and ΠR = |R〉〈R| gives

ΠL
w = 1, ΠR

w = 0. However, if we define the circular polarisation operator

(2.8) ±σ= |+〉〈+|− |−〉〈−| = i |V 〉〈H|− i |H〉〈V |

and the compound operators ±σR =ΠR
±σ and ±σL =ΠL

±σ, we see that the weak values of these

compound operators are ±σL
w = 0, ±σR

w = 1.

Aharonov et al take this to mean, while the photon travels on the left path in the postselected

scenario, its polarisation travels on the right path.

However, Vaidman claims a particle is present along a path even when the weak value of

the spatial projection operator along that path is zero, so long as the weak value of some other

operator multiplied by the spatial projection operator is nonzero. In the quantum Cheshire cat,

this is satisfied by the nonzero weak value of the spin along the right-hand path [Vai13a]. This

Weak Trace Approach also agrees with an approach recently given, which is informed by Fisher

Information [WCV21].

We discuss issues with Vaidman’s Weak Trace Approach, and other approaches where weak

values are used to infer the path of a quantum particle (as Aharonov et al do in [Aha+13]) in
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Figure 2.3: The Elitzur-Vaidman Bomb Tester. A photon is emitted from the source (top-left),
enters the balanced MZI, and travels in along an equal superposition of both paths. If the bomb
is faulty, the photon recombines at the second beam-splitter, and always enters D1. If the bomb
works, and is activated, it destroys the experiment. If the bomb would work, but the photon went
down the bomb-free path, the photon has a 50:50 chance of going to either detector.

Chapter 3. We then show counterfactual communication is possible by the weak trace criterion in

Chapter 4.

2.3 Interaction-Free Measurement

In this Section, we go through the history of interaction-free measurement, from the Elitzur-

Vaidman bomb tester [EV93], via Kwiat et al’s combination of this with the quantum Zeno effect

[Kwi+99], to interaction-free metrology and counterfactual computation, as proposed by White

et al and Hosten et al respectively [Whi+98; Hos+06]. These illustrate the progress made in

adapting interaction-free measurement to practical settings, before we introduce counterfactual

communication in the next Section.
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2.3.1 Elitzur-Vaidman Bomb Tester

All interaction-free measurement protocols stem from the Elitzur-Vaidman Bomb Tester

[EV93]. This was based on the idea, proposed by Renninger and Dicke, that a negative measure-

ment could still change the wavefunction of a quantum object, even if there was no mechanism by

which the measuring device could interact with the (absent) object [Ren60; Dic81]. Renninger’s

original thought experiment, based on the Mott Problem [Mot29], had an alpha particle emitted

which would go to one of two hemispherical detectors. Assuming the detectors are 100% efficient,

the lack of a detection in one tells us the particle would be detected by the other. Therefore, if

we remove one of the detectors, the remaining one not clicking causes the particle’s wavefunc-

tion to go from being spherical to being a hemisphere. The absence of a detection changed the

wavefunction of the particle. Dicke later applied the same logic to the case of a particle being

imaged optically, where the non-scattering of a photon from the particle appears to transfer

momentum and energy to the particle, by changing its wavefunction. However, Elitzur and

Vaidman simplified this paradox from continuous-variable position and momentum-space to a

simple interferometric set-up, to more effectively illustrate the peculiarity of this behaviour.

In the Elitzur-Vaidman Bomb Tester (Fig. 2.3), an MZI has a potentially faulty bomb along

one of its paths. This can only be detonated by a non-demolition single-photon detection on that

path.

If the photon goes along the bomb’s side of the MZI (and the bomb works), it detonates, and

the photon (and everything else) is destroyed. If the bomb is faulty, the photon travels to the

merging beamsplitter normally, and is always detected at D1. However, if the photon goes along

the other side, the bomb working changes the interference pattern. This makes the photon able

to go to D2, which it previously couldn’t access. This allows us to test if the bomb would have

worked, without detonating it, when the bomb is on the path the photon could have, but did

not, travel down. Unlike classical counterfactual communication, both options are transmitted

counterfactually—the photon’s path is from the source to the detectors without going via the

object (bomb) under evaluation. However, it is not necessarily always counterfactual. This is as,

while the photon can carry the information without going via the bomb, it does not necessarily

have to. For 50:50 beamsplitters, as in Fig. 2.3, if the bomb works, it has a 50% chance of blowing

up. This leaves a 25% chance of the photon going to D1 (giving an incorrect reading), and only a

25% chance of the photon going to D0 (giving a correct reading, interaction-free). Therefore the

Bomb-Tester is not fully counterfactual.

2.3.2 Chained-Interferometer Interaction-Free Measurement

Soon after Elitzur and Vaidman’s initial proposal, Kwiat et al developed an adaption of the

Bomb Tester. By using a chain of interferometers to repeatedly probe the bomb, the probability of

the bomb detonating could be made arbitrarily small, as the number of interferometers in the

chain increased (see Fig. 2.4). Further, this adaption removed any chance of erroneous clicks, so
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Figure 2.4: Kwiat et al’s chained-interferometer version of the Elitzur-Vaidman Bomb Tester
[Kwi+95].

long as there were two or more interferometers in the chain. This allows perfect discrimination of

the state of the bomb from the detector the photon arrived at.

This adaption was based on combining the Elitzur-Vaidman protocol with the quantum Zeno

effect proposed by Misra et al [MS77]. The quantum Zeno effect involves the use of repeated

probing of a system (either directly via measurement or indirectly via coupling to a larger envi-

ronment) to inhibit unitary evolution. They treat the interaction between photon and bomb as a

probing measurement, where otherwise the unitary evolution slowly increases the probability

amplitude for the photon being on the “bomb’s side” of the interferometer from zero by a small

amount each interferometer. This interruption ensures (in the limit of a large number of interfer-

ometers) that the photon stays on the bomb-free side of the interferometer, if the bomb would

work.

2.3.3 Interaction-Free Metrology

A natural use for interaction-free measurement is low-energy metrology—imaging an object,

trying to resolve a given level of detail, while reducing light (or optically-transmitted energy)

incident on the imaged object to as low as possible. Therefore, it is unsurprising this use for

interaction-free measurement was quickly suggested by Kwiat et al [KWZ96], and then rapidly

performed by White et al [Whi+98]. While White et al’s initial experiment only used a single
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Figure 2.5: Hosten et al’s protocol for counterfactual computation [Hos+06].

interferometer, Kwiat et al demonstrated a multi-interferometer Michelson form of the protocol

one year later [Kwi+99]. Due to tuning, even the single-interferometer form was effective for

low-energy-flux imaging of the one-dimensional profiles (widths) of a large number of objects (e.g.,

metal wires, cloth threads, and human hairs). The multi-interferometer form had even higher

efficiency, despite being limited by the high losses caused by the the imperfect optical components

of 25 years ago: 2/3 of the photons imaging the opaque object were measured interaction-free.

Considering this was only 6 years after Elitzur and Vaidman’s initial paper was published, this

shows how quickly focused effort by quantum technology researchers can leverage practical

benefit out of a foundational curiosity.

2.3.4 Counterfactual Computation

The next key innovation in interaction-free measurement was obtaining the result of a

computation performed by a quantum computer, without said computer ever “running” (e.g., for

an optical computer, having photons run through it). This was proposed by Jozsa and Mitchison

[Joz99; MJ01] as a theoretical possibility allowed by the counterfactual protocols discussed above.

However, it was also conjectured in the latter paper that this form of counterfactual computation

could never be leveraged for gain, as the probability of this form of counterfactual inference would

be limited to below the information gained by a random guess.

However, counterfactual computation was then experimentally performed by Hosten et al

to perform Grover’s search algorithm counterfactually [Hos+06]. This used a set-up similar to

26



2.4. QUANTUM COUNTERFACTUAL COMMUNICATION PROTOCOLS

Fig. 2.5. At the time, this was the most accurate realisation performed so far of Grover’s search

algorithm (with only 2.6% error, albeit only 31.9% efficiency). This showed it was possible to

violate Jozsa’s conjectured limits on information obtainable through counterfactual computation,

by proposing extending the experiment to use the quantum Zeno effect. This involved combining

multiple interferometers of the form given in Fig. 2.5 to allow the theoretical inference probability

of the computation result to go to unity. However, this was not performed experimentally, possibly

due to potential losses from imperfect components.

This shows the benefits of even the single-interferometer counterfactual computation protocol,

above and beyond other contemporary implementations of Grover’s search algorithm. This yet

again shows how a foundational curiosity was leveraged for technological gain.

2.4 Quantum Counterfactual Communication Protocols

In this Section, we move from general interaction-free and counterfactual protocols, to look

more specifically at Quantum Counterfactual Communication. Since Elitzur and Vaidman first

discovered quantum counterfactuality [EV93], and Kwiat et al allowed loss to be made effectively

nil [Kwi+95], researchers have tried to exploit it for communication. Despite this, all protocols

until recently fell into three broad categories: where communication is counterfactual only for

one bit-value; where photons travel between Alice and Bob, but in the opposite direction to the

information passed between them; and where no photons pass between Alice and Bob when

information flows, but the error/loss rates vary with the bit-value Bob sends.

2.4.1 Counterfactual only for One Bit-Value

Here, the protocol is counterfactual for one bit-value, but the photon goes between Alice and

Bob for the other. The first of this type of protocol, and indeed the first quantum counterfactual

communication protocol proposed1, was Noh’s (Fig. 2.6) [Noh09]. For matched polarisations, if

Alice gets a click, the photon has remained on her side. However, for orthogonal polarisations,

it has both been to, and returned from, Bob—so is not counterfactual. Despite this, the work

generated a lot of interest [SW10; Yin+10; JSL11; Ren+11; Bri+12; Liu+12; Yin+12; ZWT12a;

ZWT12b; SSS13a; SSS13b; LWL13; Zha+13; Li14; Liu+14; SSS14; SS15; WLZ16; Yan+16; SY17;

SS13]. While plenty of these focus on reducing loss by reducing the proportion of the photon sent

to Bob [SW10], this must be non-zero for the protocol to function. Therefore, the protocol will

never be fully counterfactual.

This protocol having a limited maximum efficiency is not a serious drawback for its purpose,

since the shared information it provides is random. This means failed attempts can be discarded

during post-processing. However, this led others to wonder whether efficient, deterministic

communication was possible, without particles crossing the communication channel.

1Barring Guo’s E-V Bomb Tester adaption, where photons travel between Alice and Bob for both bit-values [GS99].
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Figure 2.6: Noh’s counterfactual cryptography protocol. Alice randomly polarises a photon either
H or V -polarised. This photon passes through a beam-splitter, with one of the outputs going to
Bob. Bob uses a H/V PBS and delay to time-separate the two possible polarisations arriving at
him. He picks one to reflect and one to absorb. If the photon is the same polarisation Bob chose to
reflect, it reflects back, and interferes into Alice’s D2. However, if the photon is the polarisation
he chose to absorb, it is sent into his detector. If this clicks, the protocol is aborted; if not, the
photon goes into D1 [Noh09].

2.4.2 Information and Photon Travel in Opposite Directions

In the next type of protocol, the photon can cross the channel, but in the opposite direction

to the information being sent. For one bit-value, the photon destructively interferes across the

quantum channel, keeping it at Alice. For the other, the photon constructively interferes, allowing

it through to Bob. Depending on whether she detects a photon, Alice can determine which bit

Bob sent.

The only protocol of this type is Arvidsson-Shukur et al’s. They propose a device formed of

chained MZI. These use the Quantum Zeno effect to keep the photon at Alice if Bob blocks (for

many interferometers), and force it to go to Bob if he does not [AB16]—identically to Kwiat et al’s

Interaction Free Measurement protocol [Kwi+95]. This leads to a high chance of Alice wrongly

believing Bob did not block, due to the necessarily finite number of interferometers causing some

chance of Bob’s blocker absorbing the photon. Further, the photon still travels at the same time as

the information. Waves carrying information in the opposite direction to which they are travelling

is a well-known classical phenomenon [Vai19]. Therefore, this protocol only seems quantum

when you consider light as local—where, for one possibility, the photon travels from Alice to Bob.
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This obviously creates a weak trace at Bob, and so is not counterfactual. Arvidsson-Shukur et

al attempt to advocate their protocol by saying it tolerates error better than others [AGB17].

Similarly, they call other protocols classical by using a model of classicality where Alice and Bob

having extra, non-trivial resources (e.g. a shared clock) [AB19]. However, they give no reason to

view their protocol as true quantum counterfactual communication. Therefore, Calafell et al’s

experimental realisation of this protocol just demonstrates classical counterfactuality [Cal+19].

2.4.3 Photon only Travels Erroneously

The next set of protocols have Alice receiving a photon for both bit values, which has never

been to Bob. This means the photon cannot go to Bob when Alice gains information, as then Alice

would be unable to see what was sent. When a photon goes to Bob, the protocol is aborted and

repeated. This creates a source of loss.

The first subtype of these protocols are those where this loss varies depending on the bit-value

Bob is trying to send. This leads us to ask if Alice can, by knowing loss probabilities, guess the

bit Bob sends solely based on whether any of her detectors click. This would make these protocols

the same as the last category. We can also ask if this post-selection is to blame for any peculiar

effects observed, even with post-selection enforced according to the protocol.

The first protocol of this sort proposed was Salih et al’s 2013 protocol. This was also the first

protocol claiming to be fully counterfactual for both bit values [Sal+13a; Sal+13b]. It is formed of

a chain of outer interferometers, each containing a chain of inner interferometers (see Fig. 2.7).

We define the Bloch sphere for polarisation with poles |H〉 and |V 〉, and rotations

(2.9) R̂x(θ)=
(

cos
(
θ
2
) −isin

(
θ
2
)

isin
(
θ
2
)

cos
(
θ
2
) )

= e−iθσ̂x/2

(2.10) R̂y(θ)=
(
cos

(
θ
2
) −sin

(
θ
2
)

sin
(
θ
2
)

cos
(
θ
2
) )

= e−iθσ̂y/2

(2.11) R̂z(θ)=
(
e−iθ/2 0

0 eiθ/2

)
= e−iθσ̂z/2

for Pauli matrices σ̂x,y,z.

We think of the detectors as being placed far enough, such that they perform no measurement

before the photon had had time to exit the protocol. Any photonic component travelling towards

either detector can thus be thought of as entering a loss mode. This means, if the photon exits

the protocol successfully, it cannot have taken the path towards that detector, and the detector

will not register a click.

We first go over the protocol for an arbitrary outer interferometer cycle. A photon of state

a |H〉+b |V 〉 enters an outer interferometer through a HWP tuned to apply a R̂y(π/M) rotation.

The photon then enters a PBS, which transmits H-polarised light, but reflects V -polarised.
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Figure 2.7: Michelson form of Salih et al’s protocol for counterfactual communication [Sal+13b].
Each PBS reflects any vertically-polarised (V ) light, and transmits any horizontally-polarised (H)
light. The HWPs rotate polarisation between horizontal and vertical polarisation unitarily, by an
angle of either π/2M (the HWPs before each outer interferometer) or π/2N (the HWPs before each
inner interferometer). To send a ‘1’-bit, Bob blocks (in this implementation, sets his switchable
mirror to transmit, so anything crossing to his side of the channel goes to his loss detector (DL)).
To send a ‘0’-bit, he doesn’t block (in this implementation, sets his switchable mirror to reflect).
Switchable mirrors are used to repeat the interferometer for M outer cycles of N inner cycles. In
general M ≥ 2, N ≥ 2.

The V -polarised component circles through a series of N inner interferometers. In each, it goes

through a HWP tuned to apply a R̂y(π/N) rotation, then through another PBS. The H-polarised

component from this PBS passes across the channel, from Alice to Bob, who can choose to block or

not block, by switching on or off his switchable mirror. If he blocks, this H-polarised component

goes into a loss mode towards Bob’s detector DL; if not, it returns to Alice’s side, recombines at

another PBS with the V -polarised component, then enters the next inner interferometer. After

the chain of N inner interferometers, the resulting components are then passed through one

final PBS, sending any H-polarised component that has been to Bob into a loss mode towards

Alice’s detector DL. Surviving V -polarised components are recombined at another PBS with the

H-polarised component from the delay arm of the outer interferometer. Importantly, neither DL

clicking ensures that the photon has not been to Bob.

Each inner interferometer applies R̂y(π/N). If Bob doesn’t block, the rotations sum to

ÛN
NB = (e−iπσ̂y/2N )N = e−iπσ̂y/2 = R̂y(π)(2.12)
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Therefore, the state after the inner interferometer chain is

|V 〉I → ÛN
NB |V 〉I = |H〉I →Loss(2.13)

This means the V -polarised component becomes H-polarised, and enters the loss mode

towards detector DL after the final PBS. Ergo, if Bob doesn’t block, the only component of the

wavefunction exiting the outer interferometer is the H-polarised one that went via the outer arm.

Similarly, if Bob blocks for all inner interferometers,

ÂN
B =

[
e−iπσ̂y/2N

(
1 0

0 0

)]N

=
(

cos( π
2N )N 0

cos( π
2N )N−1 sin( π

2N ) 0

)(2.14)

Therefore, the state after an outer interferometer is

|V 〉I →ÂN
B |V 〉I

=cos
( π

2N
)N |V 〉I +cos

( π

2N
)N−1

sin
( π

2N
) |H〉I

→cos
( π

2N
)N |V 〉+Loss

(2.15)

meaning some V -polarised component exits the outer interferometer.

If Bob doesn’t block, the outer cycle applies(
1 0

0 0

)
e−iπσ̂y/2M(2.16)

If he does block, the outer cycle applies(
1 0

0 cos
(
π

2N
)N

)
e−iπσ̂y/2M(2.17)

Salih et al’s protocol consists of M chained copies of this outer interferometer. The state

entering the first outer interferometer is a H-polarised photon. The output from this first outer

interferometer is the input for the second, the output from the second is the input for the third,

and so on. After the Mth outer interferometer, Salih et al use a final PBS to split the photon into

H- and V -polarised components.

As Alice applies a R̂y(π/M) rotation at the start of each outer interferometer, if Bob doesn’t

block, the state of the photon after M outer cycles is

cos
( π

2M
)M |H〉(2.18)

Therefore, if the photon isn’t lost, it remains H-polarised. However, if Bob blocks, the photon

after M outer cycles (as N →∞) becomes V -polarised.

31



CHAPTER 2. COUNTERFACTUAL COMMUNICATION BACKGROUND

If Bob does not block, the chain of N ‘π/N ’ rotations turn the V -polarised component in the

inner interferometer chain to H, and so anything in the inner chain is sent to a loss channel DL.

This means Alice can only receive the photon if it went via her outer path, and so arrived at her

D0. If Bob blocks his paths, he absorbs this inner-chain H-polarised light. Therefore, the light is

continually reset to V -polarised at the end of each inner interferometer. This stays on Alice’s side,

and reaches her D1 as a V -polarised photon, having never travelled to Bob. A small number of

photons are absorbed at Bob, reducing the efficiency. The probability of this happening decreases

as M and N increase.

The only way Alice’s D1 can click is if Bob blocks; and in the infinite limit of chained outer

cycles, the only way her D0 can click is if he doesn’t. Unlike the classical case, both the ‘0’ and

‘1’ bit-values are received without energy transfer across the channel, and so both are sent

counterfactually.

However, Vaidman claimed this was not counterfactual, when assessed by the Weak Trace

criterion (see Subsection 2.2.3) [Vai13a]. He claimed the TSVF gives a weak trace on Bob’s

side of the channel when Bob does not block, meaning we cannot say the photon was not there

[Vai14a; Vai16b]. However, this is only for the simplest (polarisation-free) form of the protocol.

The polarisation-based form (as shown in Fig. 2.7 and [Sal+22]) avoids a weak trace on Bob’s side.

It does this by ensuring the only waves that go to Bob are H-polarised, which are lost via D3 on

Bob’s side, restarting the protocol [Sal+14]. Then, when Bob does not block, the differences in

polarisation between the forward- and backward-travelling states keep them separate on Bob’s

side—giving no Weak Trace there. In Chapter 4, we demonstrate this through weak measurement,

by applying Danan et al’s method [Dan+13] to a single outer cycle version of Salih et al’s protocol,

and show there is no weak trace from Bob’s side visible at Alice’s detectors.

Griffiths also claimed the protocol is not counterfactual by Consistent Histories, as a history

with a non-zero probability could be traced to Bob’s side and back when Bob does not block [Gri16;

Gri84; Gri17]. However, again, Griffiths only considered physical paths, rather than polarisations:

these provide an extra degree of freedom [Sal18a]. Griffith later showed, when using more than

one outer cycle, the family became inconsistent, and so calling the protocol counterfactual was

meaningless [Gri18]. However, Salih notes the final outer cycle is counterfactual, while identical

earlier ones are meaningless, which seems paradoxical [Sal18c].

Once Salih et al published their protocol, various demonstrations and implementations

began to appear [Cao+14; Guo+14b; Guo+14a; Sal14b; ZZL14; SP14; Zub+14; Che+15a; Che+15b;

Guo+15; SS15; ALZ16; Che+16; Sal16; Cao+17; Guo+17; Guo+18; Sal18b; Liu+18; ZJS18; Sal18c;

Han+19; HR21b; Sal+21; Sal+20]. While many of these don’t make use of polarisation, some do.

Zhang et al proposed a protocol, based on Salih et al’s, for probabilistic counterfactual commu-

nication. Their protocol is not always counterfactual, but they claim the chance of the photon

being at Bob can be reduced to nil, and losses (from noise/blocking) are lower [Zha17]. However,

they assume photons only trace one path, which isn’t always true—so it is not counterfactual.
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Vaidman originally claimed counterfactual communication of both bit-values was impossible.

However, at roughly the same time as Salih et al defended their protocol using polarisation,

he, alongside Aharonov, released a protocol allowing just this [AV19]. This method is effectively

the same as in Salih et al’s original protocol. However, to avoid a weak trace in this set-up,

without using a polarisation degree of separation, at least two inner interferometers are needed.

Alongside this, Aharonov and Vaidman make repeated reference to a double-sided mirror in the

protocol. However, all this does is connect the two inner interferometers, and fold the outer path

to reduce physical space used. Therefore, it is irrelevant to the protocol’s counterfactuality. Also,

we show in Subsection 4.2.5 and [Sal+22] that this protocol is not counterfactual by Consistent

Histories.

There has only been one protocol published so far where Alice’s probability of losing her

photon is the same regardless of the bit-value Bob is trying to send: Vaidman’s [Vai19].

Shortly after publishing the above protocol with Aharonov, Vaidman created another weak

trace-free counterfactual communication protocol. For one outer cycle, this protocol avoids the

risk of an erroneous reading that Salih et al’s, and their earlier, protocol has. It is again based on

a chained MZI set-up, but uses interference from light passing through the inner interferometer

chain to alter which detector the photon ends up at when Bob blocks (see Fig. 2.8). This allows

Alice, when she receives a bit, to be certain it is the same value Bob sent. Another benefit of the

protocol is that, for certain beam-splitter values, losses were the same whether or not Bob blocked.

This means Alice cannot infer if Bob blocked, just based on if she receives a photon. Therefore, the

protocol cannot be reduced to the information and photon travelling simultaneously, in opposite

directions. However, it remains to be seen if it is counterfactual by the Consistent Histories

criterion.

2.5 Chapter Conclusion

In this Chapter, we provided the background for the work in the first Part of this thesis. This

has involved two threads. First, we looked at the foundational approaches proposed to allow us to

evaluate the path travelled by a quantum particle. Some of these approaches allow us to make

claims as to the presence or absence of a quantum particle, when standard quantum mechanics

remains silent on the matter. Some also make claims which seem to contradict our intuitions

as to the path such a particle could have taken (e.g., Vaidman’s weak trace approach, which we

analyse in Chapter 3).

Secondly, we looked more historically at the evolution of interaction-free and counterfactual

developing quantum technologies (or rather devices and protocols which may in future lead to

quantum technologies). We spanned from their initial foundational roots in the Elitzur-Vaidman

Bomb Tester, to developed, experimentally-tested protocols, such as Hosten et al’s 2006 protocol

for counterfactual computation, and Salih et al’s 2013 protocol for counterfactual computation.
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Figure 2.8: Vaidman’s protocol for counterfactual communication [Vai19]. Unlike Salih et al’s
protocol, this protocol does not use polarised light, instead using ordinary (non-polarising)
beamsplitters. Through these beamsplitter, when Bob doesn’t block his side of the channel, each
inner interferometer outputs into loss channels (here, the DLs). This means the interferometer
on the outer arm (starting with the red beamsplitter) always outputs at D0, unless the photon is
lost. However, when Bob blocks, waves coming out of the inner interferometer chain negatively
interfere at the final beamsplitter, causing the photon to go to D1, if it stayed at Alice. The
beam-splitting values given in this example make the losses equal, for two inner interferometers,
regardless of whether or not Bob blocks his path (sends bit-value ‘1’ or ‘0’). We discuss this further
in Subsection 2.4.3.
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We will move to examine the properties of counterfactual communication in Chapter 4, and Salih

et al’s protocol will specifically form a key primitive element for the counterfactual quantum

information transfer protocols we propose in Chapter 5 and the counterfactual ghost imaging

protocol we propose in Chapter 6.

By showing how counterfactual and interaction-free technologies evolved from their foun-

dational beginnings to applied, experimentally-testable protocols ripe to be applied to practical

scenarios, this Chapter illustrated how new quantum technologies can be developed from what is

initially purely foundational research. This helps show how the fields of quantum foundations

and quantum technologies interact, and so the interplay between the two areas. This interaction

is continued in the rest of this Part, where we foundationally evaluate and practically develop

these counterfactual and interaction-free technologies, reaffirming the interplay between the two

fields.
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3
DO WEAK VALUES SHOW THE PAST OF A QUANTUM PARTICLE?

Declaration of contribution: This chapter is based on the preprint article Do weak

values show the past of a quantum particle? [HRL21]. This was conceived and written by

myself, supervised and edited by Prof James Ladyman and Prof John Rarity.

3.1 Chapter Introduction

According to weak value approaches to particle presence, non-zero weak values show

where a quantum particle has been, even when this would normally be impossible due

to the pre- and post-selected states not being eigenstates of spatial projection operators

[Dan+13; Vai14b]. Despite weak values only being defined over ensembles, in these approaches,

inferred particle presence is attributed to individual particles.

One such approach is the Weak Trace Approach, according to which particles leave traces

along the paths they traverse, due to interaction (coupling) with the environment, and such a

trace is left even when this interaction is insufficient to count as a projective measurement. A non-

zero weak value of an operator on a path (weak trace) is taken to show that an individual particle

travelled along that path [Vai13a] even in the limit of this interaction (coupling) vanishing.

According to this approach there is a weak trace in a region when any operator formed by the

product of the spatial projection operator for that region with an operator for a property of the

particle (e.g. spin) has a non-zero weak value. This can happen even if the weak value of the spatial

projection operator itself is zero. Weak traces are supposed to give us more information about the

particle than von Neumann measurement of the spatial projection operator would allow. The Weak

Trace Approach even allows discontinuous particle trajectories, hinting at a mechanism by which

seemingly disconnected events can affect one another, such as in counterfactual communication
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[Sal+13b]. Therefore, this approach has been controversial [LAZ13; Vai13b; Eng+17; Gri16; Vai17;

Gri17; Sal18a; Gri18; Has+16; Vai16d].

Another approach connecting weak values and particle presence, implicit in the quantum

Cheshire cat [Aha+13], requires that the spatial projection operator in a specific location has

a non-zero weak value for us to say the particle was present at that location. In the quantum

Cheshire cat [Aha+13] (see Subsection 2.2.3 and Fig. 2.2), these approaches come apart since

the weak value of the spatial projection operator on a path can be zero, but the weak value of

the spin operator times the spatial projection operator non-zero—in these cases, according to

the Weak Trace Approach the particle was on the path with a zero weak value for the spatial

projection operator, contrary to [Aha+13].

This Chapter first looks specifically at the Weak Trace Approach, building on Section 2.2.3.

It is argued in [PV18] that the Weak Trace Approach is justified because there is some non-

vanishing local interaction between the quantum particle and its environment along whatever

path it travels [PV18]. This implies the weak value of the spatial projection operator along a

path should always be non-zero whenever a particle travels along that path, and so the particle

was not present if the weak value of the spatial projection operator is zero. However, there are

cases where according to the Weak Trace Approach a particle is present on a path, despite the

spatial projection operator for that path having weak value zero (e.g. in the quantum Cheshire

cat set-up).

We then investigate four key issues with weak value approaches.

First, even weak measurements disturb a system, so any approach relying on such a pertur-

bation to determine the location of a quantum particle will only describe this disturbed system,

not a hypothetical undisturbed state. We highlight this using the case of a balanced interfer-

ometer tuned to have destructive interference (i.e. no light exiting at its dark port) where such

a perturbation changes the nature of the system. The unperturbed state is the vacuum, while

the perturbed state has light present. While the measurement effect can be made arbitrarily

small, this is not the same as removing it entirely. Further, we show attempts to respond to this

line of argument by saying there are no completely unperturbed systems, as weak interactions

are ubiquitous in nature (as in [PV18]), raises questions about why weak value approaches only

associate presence with the part of this interaction which is of the same order of magnitude as

the coupling between system and environment.

Secondly, even assuming no disturbance, there is no reason to associate the non-zero weak

value of an operator containing the spatial projection operator with the classical idea of ‘particle

presence’. Indeed, in some situations, just taking the weak value gives features inconsistent

with classical ideas associated with a particle being present (e.g., giving discontinuous particle

trajectories, or particles not being in coarse-grainings of their location).

Thirdly, weak values are only measurable over ensembles, and so to infer properties of

individual particles from values of them is problematic at best.

38



3.2. THE WEAK TRACE APPROACH

Finally, weak value approaches to the path of a particle do not give us any new physics beyond

standard quantum theory [Vai96], to explain the causes of counterintuitive quantum effects (or

even the paradoxes the approach itself creates). They assume a connection between particle

presence and weak values without contributing testable new physics.

We also then show that experiments which purportedly support these weak values approaches,

do not provide support for these approaches, with their results being replicable using classical

electrodynamics. (This is as, due to their design, these experiments can only give results cor-

responding to the magnitudes of the weak values, rather than showing the phases—negative,

imaginary or complex weak values being required for the treatment to be necessarily non-

classical).

While this Chapter does not directly introduce any new quantum technological developments,

the analysis of weak values approaches to the past of a quantum particle (such as the Weak Trace

Approach) relates heavily to how best to quantify if a given counterfactual communication protocol

is in fact counterfactual. Further, this Chapter links heavily to weak values, a foundational tool

which can provide real technological benefit. We discuss weak values in more depth in the

Appendix, as an example of the interplay between quantum foundations and developing quantum

technologies.

3.2 The Weak Trace Approach

In this section, we look specifically at issues with the Weak Trace Approach, where there can

be a weak trace even if the weak value for the spatial projection operator is zero, so long as the

weak value of some compound operator formed from the product of the spatial projection operator

with another operator is nonzero.

If the justification for the Weak Trace Approach is the non-vanishing local interaction, as in

[PV18], then, if a quantum particle travels along a path, either: the weak value of the spatial

projection operator on that path should be non-zero; or we should consider the higher-order terms

in λ, as they would indicate additional information about the path on which the particle travelled;

or we should say a non-zero weak value for the spatial projection operator is sufficient, but not

necessary, to indicate the presence of a quantum particle, as this non-vanishing local interaction

can exist along a path without there necessarily being a non-zero weak value for this operator.

Hence, the Weak Trace Approach implicitly requires this third option, which raises the question

of how it can be used to infer that particles were never present in some specific regions (see the

nested interferometer, below). However, it could be that unlike the specific case of the weak value

of the spatial projection operator, there existing at least one operator formed of the product of the

spatial projection operator for a location and some other operator, with a non-zero weak value, is

both a necessary and a sufficient condition for particle presence at that location. Further, it could

be that in the nested interferometer case, this condition cannot be met at certain points, so the
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particle was not there according to the Weak Trace Approach.

While such an argument resolves any formal contradiction in associating a non-zero weak

value for the product of some operator with the spatial projection operator with presence, even

when the weak value of the spatial projection operator is zero, this still seems peculiar. A key

part of the motivation behind weak value approaches is some assumption that the weak value

of an operator tells us something about the property associated with that operator, similarly to

an eigenvalue obtained by measuring that operator. By this assumption, while measuring the

weak value of a spatial projection operator infers some information about whether the particle

was at the location corresponding to that operator, measuring the weak value of some product

of the spatial projection operator with some other operator corresponding to a property of the

particle only infers some information about that property at that location. It requires the separate

assumption that a property of a particle cannot be disembodied from that particle to then use the

nonzero weak value of such a product operator to then infer about the particle’s location.

3.3 Issues with the Weakness Assumption

The process of weak measurement and strong postselection given above leads to a small shift

in the position Xd of our pointer system
∣∣φ(x)

〉
, with an average value

(3.1) a =λRe(Ow)<<∆Xd

Performing the measurement on a pre-and-postselected ensemble of N particles allows mea-

surement of the shift to precision ∆Xd/
p

N. Therefore, according to the Weak Values Approach,

as long as N > (∆Xd)2O (λ−2), the presence of the particle is revealed. This is still however a

coupling—so long as λ ̸= 0, there is measurement. This is as it must be, because Busch’s Theorem

says we cannot gain information about the state of the system without disturbing it [Bus09].

This is in tension with with the Weakness Assumption inherent to weak measurement—that

if we measure weakly enough, we can effectively see how the system behaves when it is not

measured. As argued above, weak interaction is still interaction and so disturbs the system (albeit

negligibly so for some purposes). As long as there is a non-zero coupling, as in all weak value

experiments, the ‘negligibly’ small disturbance is still a disturbance, and there are differences in

observable effects between small coupling and no coupling (see [HLR22] for an example of such a

difference).

According to popular interpretations of weak values they exist in the absence of measurement

and perturbation [Aha+17; Aha+18; Vai96]. However, this is clearly not the case [Sve13; Wie14;

Sal15; Sve15; BV17; Kas17; Sve17; Ips22; HLR22]. To defend against this point [PV18] explicitly

abandons the Weakness Assumption, saying, “in a hypothetical world with vanishing interaction

of the photon with the environment, [the Weak Trace definition] is not applicable, but in the

real world there is always some non-vanishing local interaction. Unquestionably, there is an

unavoidable interaction of the photon with the mirrors and beam splitters of the interferometer".
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This statement, while formally correct and sufficient to avoid the issues associated with

the Weakness Assumption, raises questions about why we should only consider the part of the

weak trace which is of O (λ), especially when considered in the context of the approach taken

practically in obtaining spatial weak values. If the purpose of weak value approaches is to identify

the non-vanishing interaction a quantum particle has with its environment, to trace its path,

then a definition of this trace which neglects some of these non-vanishing local interactions is

only telling us part of the story. Weak value approaches only consider the first-order trace, as

per the approximation given in Eq. 2.4, due to the supposedly vanishing nature of the terms

of second-order or higher in λ. Despite this, [PV18] specifically says that these environmental

terms provide non-vanishing local interaction. A typical photon interaction with a mirror for

instance transfers of order 10−33 of its energy per reflection (for a 1500nm-wavelength photon

and a 1 gram mirror), a suitably weak interaction that is mostly safely ignored. Hence even the

higher order terms are many orders of magnitude larger than the strongest perturbation from

the environment in optics experiments, and so the invoking in [PV18] of the weak interaction

naturally left by the quantum object on its surroundings, while still having the weak trace ignore

higher-order terms, seems more an attempt to avoid the issues with the Weakness Assumption

than a physically well-motivated argument for believing the weak trace tells us everything about

the location of a quantum particle.

It could be argued that this is more an objection to the experimental methods used to detect

spatial weak values than the application of the concept itself—however, it is consideration of

these experimental methods that is taken to motivate neglecting the higher-order terms (due to

their comparative undetectability)—so therefore, if we are instead looking more theoretically at

the non-vanishing local interactions, we should associate presence with all terms, rather than

just the first order terms in λ.

The need to consider higher-order coefficients of λ has also been discussed in [PC17; ACT18;

GC18; Wae+22].

3.4 Do weak values reveal particle presence?

In this Section, we argue that, even assuming no disturbance, there is no reason to associate

the non-zero weak value of the spatial projection operator with the classical idea of particle

presence. To make this argument, we first give a key assumption for this section—that presence

is a property typically ascribed to classical particles, and so any attempt to form a definition

of presence for quantum particles should correspond to our intuitions about classical presence,

unless we have a good reason for it to deviate from this.

The classical conception of a particle presence—being present at a certain place at a certain

time—can be characterised as follows:

i). Every particle is located in space at all times.
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ii). Particles cannot be on more than one path simultaneously.

iii). Particle trajectories are continuous (or at least as continuous as space is) so particles cannot

get from one place to another without passing through the space in between.

iv). Particles interact with other objects/fields local to their location.

v). If a particle is on a path at a given time, and that path is within some region, then the

particle is also located in that region at that time.

vi). If a particle’s property is at a location, the particle must be at that location too.

In standard quantum mechanics, when a particle is in an eigenstate of a position operator,

then it is attributed a position. However, quantum particles can be in superpositions of position

eigenstates. Whether they then have positions at all, or even have two positions at once, is

contentious and interpretation-dependent. To require that there is always some location at

every time where conditions (i) and (ii) are satisfied is to advocate a hidden variable approach

to quantum mechanics, where the hidden variable is the particle’s location. However, despite

quantum tunnelling and other phenomena, a reformulation of condition (iii) still applies in so far

as the probability current of quantum particles evolving according to the Schrödinger equation

obeys a continuity equation. (iv-vi) are also compatible with standard quantum mechanics.

Particles that are not in an eigenstate of one of the spatial projection operators demarcating

coarse-grained locations of interest (e.g. specific paths in a nested-interferometer experiment)

can nonetheless have nonzero weak values for any of those spatial projection operators (or any

composite operators formed of any of those spatial projection operators multiplied by some other

operator). Perhaps a condition for a particle being present at a location in a quantum context is

that it has a non-zero weak value for an operator containing the spatial projection operator at

that location. Whenever a particle satisfies condition (ii), it also satisfies this condition, as its

forwards and backwards-travelling states always overlap. However, this can only be a necessary

condition for particle presence in the sense of (i) to (vi) above, rather than a sufficient condition,

as there are cases where:

1). A particle has a non-zero weak value of an operator containing the spatial projection

operator at a location, but has no continuous path to/from this location.

2). A particle has a non-zero weak value of an operator containing the spatial projection

operator at a location, but a weak value of zero for an operator containing the spatial

projection operator at a coarse-graining of that location (e.g. having a non-zero weak value

of an operator containing the spatial projection operator on path B, and a non-zero weak

value of an operator containing the spatial projection operator on path C, but a weak value

of zero for an operator containing the spatial projection operator for the space composed of

paths B and C).
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3). A particle has a weak value of zero for the spatial projection operator along a certain path,

yet has a non-zero weak value for some other operator (e.g. the spin operator in a given

direction) multiplied by the spatial projection operator along that path (e.g. in the quantum

Cheshire cat set-up).

Using the two-state vector formalism and weak value tools, we can quantitatively analyse

the nested interferometer set-up to show Point (2). We first define the forwards-travelling initial

vector and backwards-travelling final vector by the paths via which they evolve:

∣∣ψi
〉= p

2 |A〉+ |B〉+ |C〉
2〈

ψ f
∣∣= p

2〈A|+〈B|−〈C|
2

(3.2)

Using these, and defining the spatial projection operator for arm A as P̂A = |A〉〈A| (similarly

for B and C), we get the weak values as [Vai13a]:

〈P̂A〉w =
〈
ψ f

∣∣ |A〉〈A| ∣∣ψi
〉

〈ψ f |ψi〉
= 1

〈P̂B〉w =
〈
ψ f

∣∣ |B〉〈B| ∣∣ψi
〉

〈ψ f |ψi〉
= 1

2

〈P̂C〉w =
〈
ψ f

∣∣ |C〉〈C| ∣∣ψi
〉

〈ψ f |ψi〉
=−1

2

(3.3)

However, if we want to see if the particle was present in the inner interferometer as a whole

(as in either arm B or C), we define P̂BC = |B〉〈B|+|C〉〈C|, as we are allowed to do since projectors

in standard quantum mechanics are linear. We find

〈P̂BC〉w =
〈
ψ f

∣∣ (|B〉〈B|+ |C〉〈C|) ∣∣ψi
〉

〈ψ f |ψi〉
= 1

2
− 1

2
= 0

(3.4)

If we assumed a non-zero weak trace implies particle presence, this would mean the photon

was never in the inner interferometer (made up of arms B or C) overall. ([Vai96; Ben+17]

explicitly say that weak values obey the sum rule, and so allows us to say 〈P̂BC〉w must equal

〈P̂B〉w +〈P̂C〉w.) Taken separately the summands are taken to mean that the particle was in arm

B, and was in arm C, respectively, yet the sum being 0 is taken to mean that the particle is not in

their union (i.e., not in the inner interferometer at all); this seems incoherent. (Aharonov et al

consider a similar scenario in their three-box experiment, and also discuss this idea of negative

weak value in the equivalent of arm C cancelling the positive weak value in the equivalent of arm

B [Aha+17]. This usefulness of considering the sign of the weak value for resolving paradoxes is

also discussed in [Wae+22].) This illustrates the importance of the sign of the weak values, which

the Weak Trace Approach, and the graphical form of the TSVF (as in Fig. 2.1), neglect.
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For weak value experiments aiming to distinguish which-path information, we can link this

to the Visibility-Distinguishability Inequality [JSV95; Eng96],

(3.5) D2 +V 2 ≤ 1

where D is the distinguishability of which path the light travelled, and V is the fringe-visibility

at the output of the interferometer. Therefore, doing anything which would increase the dis-

tinguishability between the two paths (e.g. placing different tags on B and C) will affect the

interference pattern at the BCE beamsplitter. Given perfect interference is required to ensure all

light that enters the inner interferometer from D exits into D3, anything causing distinguishabil-

ity between paths B and C will allow light to leak through onto E, and cause a trace to show in

D2. Therefore, it will never be showing what would happen in an unperturbed system.

Given Eq. 3.5, 〈P̂BC〉w is a far better measure of whether light reaching D2 was ever in the

undisturbed inner interferometer. This is as measuring 〈P̂BC〉w does not cause distinguishability

between paths B and C in the inner interferometer, and so does not affect the interference pattern

required to output all inner interferometer light into D3. 〈P̂BC〉w being 0 provides support for a

‘common-sense’ path (i.e. light only travelling via A to reach D2) in an unperturbed system.

An argument against looking at the weak value of the projector over multiple paths (e.g.

P̂BC) specific to the Weak Trace Approach is that the weak trace is only defined as the effect of

the particle on the environment local to it—and combining the two weak values for these two

paths is not a local operation, so does not indicate anything about the weak trace. However, this

still goes against classical ideas of presence, given it shows that the presence in each of the two

arms must have opposite sign, so they can cancel when added, and so implies that being realist

about weak values implying presence requires being realist in some way about negative presence.

This negative presence is yet another way the kind of presence that is attributed by weak value

approaches differs from classical presence.

Point (3) seems to support the Weak Trace Approach to particle presence, whereby a non-zero

weak value of any operator corresponding to a property of the particle, multiplied by the spatial

projection operator along a path, implies the particle was present along that path. However, as

we saw in Section 3.2, taking this to imply presence even when the weak value of the spatial

projection operator alone is zero, contradicts the argument in [PV18] that the weak trace comes

from the necessarily nonzero interaction between a particle and its environment, given if this

were the case, we would expect a particle to necessarily have a nonzero weak value for the

spatial projection operator for any path along which it travels. This is a dilemma for weak value

approaches—they either contradict the rationale for weak values indicating particle presence, or

imply that a particle’s properties are not necessarily in the same location as that particle.

From these three points, we see that the “nonzero weak value for an operator containing

the spatial projection operator” condition can be satisfied while the conditions for a particle

being present at a location are not satisfied. Therefore, it is not a sufficient condition for particle

presence in the standard sense of the term.
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3.5 Weak values are only defined over ensembles

It is important to note that the weak value approach to particle presence is used to attribute

presence to individual particles. This is despite the experimental results of measurements of

weak values necessarily being produced by ensembles, because weak values are obtained by post-

selection. It is non-obvious that we can go from facts about ensembles to facts about individual

elements of that ensemble. As an example, we see that one can have a weak value of the velocity

of electrons in a given set-up that is greater than the speed of light in a vacuum [RA02; Sol+04;

AP04]. However, this does not necessarily mean than any of the individual electrons in the

ensemble used to obtain this weak value travelled at superluminal speeds—as otherwise this

would be a violation of special relativity. Instead, similar to how group velocities of wavepackets

can be superluminal despite the phase velocity (or velocity of the components) being below c,

this superluminal weak value for speed is a fact only about the ensemble, rather than any of its

constituents. Similarly, there is no reason to infer facts about the presence of individual quantum

particles from weak values of operators containing the spatial projection operator.

Note, recent work has shown anomalous weak values can be observed using single-particle

detection [Reb+21]—however, this requires the pre- and postselected states to be protected, which

effectively involves re-initialising the preselected state on the particle after coupling. This process

is could be described as still considering an ensemble of results, just embodied on the same

particle at different times, rather than different particles at the same time.

3.6 Why adopt weak value approaches to particle presence?

Weak value approaches are intended to provide more (interpretational) information about

the underlying state of the system than standard quantum mechanics. Vaidman [Vai13a] says

that an issue with Wheeler’s “common-sense" approach to particle trajectories [Whe78], is that it

is entirely operational: not telling us anything about the underlying mechanisms at work, just

the final result. Similarly, [Vai13a] says “the von Neumann description of the particle alone is

not sufficient to explain the weak trace”—implying weak value approaches provide something

more than the standard von Neumann approach does. We however turn this criticism back on

weak value approaches – they do not tell us anything about the underlying system either, beyond

standard quantum mechanics.

A key motivation for weak value approaches is to explain how the results of interference

are affected by changes to disconnected regions. They are intended to show that phenomena

such as Wheeler’s Delayed Choice, or Salih et al’s Counterfactual Communication protocol

[Sal+13b; HLR21] and related effects [Sal16; Sal18c; HR21b; Sal+21; Sal+20] are not as “spooky"

as they appear [Vai14a; Vai15; Vai16b; Vai19]. Salih et al however have shown that in their

communication protocol, the weak value of the spatial projection operator (or any compound

operator including the spatial projection operator) at Bob is always zero when Alice receives the
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Figure 3.1: Two-State Vector Formalism analysis of Salih et al’s polarisation-based single-outer-
cycle protocol for counterfactual communication. Bob communicates with Alice by turning off/on
his switchable mirrors to determine whether the photon goes to D1 or D0 respectively. We specify
the polarisation, given it determines direction of travel through the PBSs. The forwards- and
backwards-travelling states do not overlap anywhere on the inner interferometer chain when
there is a detection at D0, meaning, by weak value approaches, the particle detected at D0 was
never at Bob. This means Bob’s ability to communicate with Alice is not explained by weak value
approaches any more than it is by standard quantum mechanics. We reinforce this analysis
experimentally in Section 4.2.

46



3.7. DANAN ET AL’S EXPERIMENT DOES NOT SUPPORT WEAK VALUE APPROACHES

quantum particle (see Fig. 3.1, and Section 4.2 and [Sal+22]). Aharonov and Vaidman have also

given an altered protocol for counterfactual communication where the weak value of the spatial

projection operator (or any compound operator including the spatial projection operator) at Bob

is zero [AV19; WCV21]. Each of these results show that weak value approaches do not explain

this phenomenon.

While suggesting a time-symmetry to quantum processes through the TSVF, weak value

approaches do not imply any new physics beyond standard quantum theory [Vai96], to explain

the causes of counterintuitive quantum effects when there is a nonzero weak value of the spatial

projection operator. These approaches simply assume the particle was present wherever the

weak value of an operator containing the spatial projection operator is nonzero. Hence they posit

particle presence but contribute nothing testable to our physics. This label confuses matters

by oversimplifying a complex concept: what it means for a specific particle to be sequentially

“present" at a two specific places in quantum field theory. It also causes a number of paradoxes by

itself, such as the discontinuous photon trajectories in the nested interferometer set-up above.

3.7 Danan et al’s experiment does not support weak value
approaches

In this Section, we describe issues with Danan et al’s experiment, which they claim provides

evidence for weak value approaches to the past of a quantum particle. Danan et al had mirrors

MA, MB, MC, MD and ME on Fig. 2.1 each oscillate at a different frequency, and sent weak

coherent pulses through the arrangement, to probe where, supposedly, a photon had been. This

involved recording the position over time of the beam centroid detected at D2, taking the Fourier

transform of this, and cross-referencing each frequency peak with its respective mirror [Dan+13].

Zhou et al repeated the experiment and obtained the same results [Zho+17]. Both Danan et al

and Zhou et al showed only peaks corresponding to the frequencies of MA, MB and MC, which

they claim shows photons never travel by paths D or E, and proves Vaidman’s hypothesis. It is

debatable however if this is a weak value experiment, or if it shows the validity of weak value

approaches.

The nested-interferometer experiment in Fig. 2.1 requires perfect interference at the beam-

splitters splitting and recombining paths B and C, to ensure no photons travel along paths D or

E. Experimentally, it is vital to preserve the interference pattern (i.e., to ensure paths B and C

negatively interfere at the ports leading to path D and E) to ensure photons do not travel along

path D and E in the postselected case. We can see this by considering the protocol by standard

quantum mechanics (not including postselection) where half of the photons will travel via path

D and enter the inner interferometer. In this situation, if B and C don’t interfere destructively

for port E on the BCE beamsplitter, photons will leak out via path E, and enter detectors D1

and D2. Obviously photons will then have travelled via paths D and E to get to D2. Danan and
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Vaidman both claim we know no photons have travelled via paths D and E when we don’t observe

the mirror oscillation from MD or ME on the output at D2, and the intensity detected at D3

remains constant.

This ignores however the difference in scale between the effects of oscillations on the com-

bined beam travelling to/from the inner interferometer (that caused by MD or ME), and the

interference-altering oscillations when the beam is split (that caused by MB and MC) [Has+16].

By definition, the raw oscillations have to be small, in order for the perturbation to count as a

weak measurement, but small compared to the beam diameter at D2 (O (10−3m)) is very different

to small compared to the wavelength of the photon used (O (10−6m). (This difference in scale is

well known, and is key to homodyne detection). Therefore, the oscillations from mirrors MD and

ME are not of the scale of the oscillations from MB and MC—but this does not mean photons

didn’t travel along paths D or E.

To quantify this, Danan et al say the oscillating mirrors each caused an angular change

of 300nrad. They do not give the dimensions of the inner interferometer, but assuming it is of

O (10−1)m, the change in position on the recombining beamsplitter in the inner interferometer is

roughly 30nm. Given the beam had wavelength 785nm, this is a comparatively large change in

interference, allowing 1/50 of the light going into the inner interferometer via D to exit via E.

One would expect this to show up on detector D3. Danan et al unfortunately do not show us the

detected spectrum from D3.

Further, by showing that classical optics also predicts to first order oscillations from MA, MB

and MC, but not from MD or ME, if light went via D and E, Danan et al make our point for

us—their experiment gives us no reason to believe light can discontinuously “hop” into the inner

interferometer without travelling through arms D and E. Saldanha, and Potǒchek and Ferenczi,

both give the same analysis of Danan et al’s results being obtainable using classical optics,

with light slipping through when the oscillations at MB and MC unbalance the interferometer

[Sal14a; PF15; Vai16a].

This analysis is reinforced by that of Salih [Sal15; Dan+15], Wieśniak [Wie14], and Svensson

[Sve13; Sve15; BV17; Sve17], who all independently show that, if MB and MC oscillate at the

same rate, their respective oscillation patterns on D2 disappear, as the interferometer is kept

balanced. Similarly, Alonso and Jordan show that adding a Dove prism to the set-up along path

C, while still balancing interferometer CD, allows the oscillations at MD to be seen. This yet

again proves the visibility of MB and MC, but not MD and ME, to be the result of differences in

scale of oscillation effect, rather than light never passing along D or E [AJ15].

Supporters of weak value approaches claim this invalidates the experiment, by conceding

that the Danan et al experiment isn’t a direct measurement of the trace left by the photon [VT18].

This however makes our point for us: the experiment isn’t a real measurement of a weak value,

and so it contributes little to confirming or denying weak value approaches.
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3.8 Chapter Conclusion

This Chapter investigated four issues with both the Weak Trace Approach, and other ap-

proaches where a nonzero weak value of the spatial projection operator is implicitly assumed

to indicate the presence of an individual quantum particle. First, we have shown even weak

measurements disturb a system, so any approach relying on such a perturbation to determine

the location of a quantum particle will only describe this disturbed system, not a hypothetical

undisturbed state. Secondly, we have shown even assuming no disturbance, there is no reason

to associate the non-zero weak value of an operator containing the spatial projection operator

with the classical idea of ‘particle presence’. Thirdly, we have discussed that weak values are

only measurable over ensembles, and so to infer properties of individual particles from values of

them is problematic at best. Finally, we have shown that weak value approaches to the path of

a particle do not contribute any new physics—the assumption of a connection between particle

presence and weak values does not give us anything testable. This is not to say that weak values

are not useful in general—as discussed, they are very useful in metrology [Dix+09; JMH14;

HBL17]—but that these approaches specifically are not useful for helping identify the past path

of quantum particles.

This Chapter did not directly introduce any new quantum technological developments. How-

ever, its analysis of weak values approaches to the past of a quantum particle relates to how

to evaluate whether a given counterfactual communication protocol is in fact counterfactual.

Alongside this, it discussed weak values, a foundational tool which can provide real technological

benefit. We give weak values as an example of the interplay between quantum foundations and

developing quantum technologies in the Appendix.
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PROPERTIES OF COUNTERFACTUAL COMMUNICATION

Declaration of contribution: This chapter is based on two published articles—The laws

of physics do not prohibit counterfactual communication [Sal+22] and How Quantum is

Quantum Counterfactual Communication? [HLR21].

The laws of physics do not prohibit counterfactual communication was conceived by Mr

Hatim Salih and Dr Will McCutcheon, under the supervision of Prof John Rarity. My

contribution comprised designing and performing the experiment in Section 4.2.4, co-

writing and editing the manuscript, and leading in responding to referees’ comments while

the paper was at review.

How Quantum is Quantum Counterfactual Communication? was conceived and written by

myself, supervised and edited by Prof John Rarity and Prof James Ladyman. An initial

draft of what would become this article was submitted as an extended essay for the

Project Unit PHILM0008, a 20-credit unit contributing towards the MSci in Physics and

Philosophy at the University of Bristol in 2019. However, it was developed significantly

after this.

4.1 Chapter Introduction

This Chapter looks at foundational issues related to counterfactual communication. First,

we investigate whether truly counterfactual communication is actually possible, by con-

sidering whether we can design a protocol which meets both the weak trace [Vai15;

Vai14a; Sal+14] and consistent histories [Gri84; Gri16] criteria for counterfactuality introduced

in Chapter 2. This involves experimentally demonstrating that there is no weak trace crossing

the channel between Alice and Bob when information is communicated. Secondly, we look at
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whether Salih et al’s counterfactual communication protocol is inherently quantum, or whether

truly counterfactual communication of both bit-values can be performed classically.

This Chapter gives examples of how we can foundationally investigate developing quantum

technologies, to evaluate their properties, and whether they meet claims associated with them.

Further, it gives an example of how we can use more developed technologies (here, optical

technologies such as weak coherent laser light, micro -electro-mechanical system (MEMS) mirrors,

and quadrant position-sensing photodetectors) to test foundational properties (here, whether

or not there is a weak trace left across the communication channel) of developing quantum

technologies (here, counterfactual communication) based on foundational ideas (here, interaction-

free measurement). This demonstrates repeated interaction between quantum foundations and

quantum technologies.

4.2 The laws of physics do not prohibit counterfactual
communication

4.2.1 Setup

Our aim in this Section is not to construct an efficient communication protocol, with each bit

carried by a single photon, but rather to construct a communication protocol where:

i). Alice can determine Bob’s bit choice with arbitrarily high accuracy, and;

ii). It can be shown unambiguously that Alice’s post-selected photons have never been to Bob.

Similarly, our purpose here is not to construct a secure communication protocol—an eaves-

dropper may be able to exploit our protocol to obtain the information Bob sends without Alice or

Bob realising.

Consider our proposed protocol setup in Fig. 4.1, which includes the equivalent of one outer

cycle of Salih et al’s (Michelson-type) protocol (see 2.4.3) laid-out sequentially in time, as in

[Sal18a]. The two underlying principles here are interaction-free measurement [EV93] and the

quantum Zeno effect [MS77]. Here’s how the setup works. Alice sends a H-polarised photon

from photon source S, whose polarisation is then rotated by the action of polarisation rotator

HWP1, before the PBS passes the H part along arm A, while reflecting the V part along arm D.

(All PBSs transmit H and reflect V .) The V -polarised component in D then encounters a series

of polarisation rotators HWP2, each affecting a small rotation, and thePBS, whose collective

action is to rotate polarisation from V to H, if Bob does not block the transmission channel. In

this case, this component is passed straight towards detector D3. In this case the only way a

photon can be detected at Alice is if it has travelled along arm A instead, in which case it passes

through two consecutive PBSs and is detected in D0 (bit value ‘0’). What happens if Bob blocks

the transmission channel? Provided that the photon is not lost to Bob’s blocking devices, the part

of the photon superposition that was in arm D at time t1 is now, after last HWP2, in arm D,

V -polarised. It is then reflected by two consecutive PBSs on its way towards detector D1. A click
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Figure 4.1: Schematic setup for our one cycle implementation of Salih et al’s 2013 counterfac-
tual communication protocol (see [Sal+13b] and Subsection 2.4.3). All beamsplitters are PBSs,
transmitting H-polarised and reflecting V -polarised light. We want to know if photons detected
at Alice’s D0 have been to Bob on the right-hand side. We place detector D0 at the bottom, rather
than immediately after the topmost PBS, so that the setup exactly includes the equivalent of one
cycle of Salih et al’s Michelson-type protocol laid-out sequentially in time [Sal18a]. This allows
the conclusions drawn for this one cycle to be applicable to any of the concatenated cycles from
the 2013 counterfactual communication protocol.
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at detector D1 corresponds uniquely to Bob blocking the channel. But there’s a chance that the

photon component that has travelled along A causes detector D0 to incorrectly click. For example,

given that Alice had initially rotated her photon’s polarisation after time t0 such that it is in arm

A with probability 1/3, and in arm D with probability 2/3, and given a large number of HWP2s

such that the chance of losing the photon to Bob’s blocking device is negligible, then it is straight

forward to calculate that the accuracy of detector D0 is 75%, in contrast to 100% accuracy for D1,

with half the photons being lost on average. Importantly, accuracy can be made arbitrarily close

to 100%, by HWP1 initially rotating the photon’s polarisation closer to V , at the expense of more

photons being lost.

Note, the postselection in the protocol is passive—it happens without any classical communi-

cation with Bob. The post-selection process is simply the photons arriving at Alice’s detectors

D0 or D1. The protocol works because when Bob blocks a lot more photons arrive in D1 than D0.

When Bob doesn’t block, all detections are in D0, having arrived directly from Alice. D3 is not

actually needed for the communication, and is simply a loss channel. In both cases where Alice

gets information, the photon stays in her lab, and so a) provably never goes to Bob, and b) has

been postselected with no communication coming from Bob.

4.2.2 Demonstrating Counterfactuality

Now we turn to the question of whether Alice’s post-selected photon has ever been to Bob. It

is accepted that for the case of Bob blocking the transmission channel, Alice’s photon could not

have been to Bob—otherwise the photon would have been absorbed by Bob’s blockers (which act

as loss modes from path C in this protocol. It is the case of Bob not blocking the channel that is

interesting.

4.2.3 Consistent Histories

We first consider the question from a Consistent Histories viewpoint, building on the analysis

in [Sal18a]. While we do not unreservedly advocate the Consistent Histories Interpretation, we

still engage with it here within the frame of Consistent Histories, as it has been used by Griffiths

to question the counterfactuality of counterfactual communication protocols [Gri16]. See [Gri19]

for a thorough explanation of Consistent Histories. By constructing a family Y of consistent

histories (which we will shortly explain the meaning of) between an initial state and a final state,

that includes histories where the photon takes path C, we can ask what the probability of the

photon having been to Bob is. Our setup allows us to do just that.

Y :S0 ⊗H0 ⊙ {A1 ⊗ I1,D1 ⊗ I1}⊙
{A2 ⊗ I2,B2 ⊗ I2,C2 ⊗ I2, }⊙
{A3 ⊗ I3,B3 ⊗ I3,C3 ⊗ I3, }⊙F4 ⊗H4
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where S0 and H0 are the projectors onto arm S and polarisation H, respectively, at time t0.

A1 and I1 are the projectors onto arm A and the identity polarisation I at time t1, etc. The

curly brackets contain different possible projectors at that given time. A history then consists

of a sequence of projectors, at successive times. This family of histories therefore consists of

a total of 18 histories. For example, the history (S0 ⊗ H0)⊙ (A1 ⊗ I0)⊙ (A2 ⊗ I2)⊙ (A3 ⊗ I3)⊙
(F4 ⊗H4) has the photon travelling along arm A on its way to detector D0. Each history has an

associated chain ket, whose inner product with itself gives the probability of the sequence of events

described by that particular history. Here’s the chain ket associated with the history we just

stated, |S0 ⊗H0, A1 ⊗ I1, A2 ⊗ I2, A3 ⊗ I3,F4 ⊗H4〉 = (F4 ⊗H4)T4,3(A3 ⊗ I3)T3,2(A2 ⊗ I2)T2,1(A1 ⊗
I1)T1,0 |S0H0〉, where T1,0 is the unitary transformation between times t0 and t1, etc. By applying

these unitary transformations and projections, we see that this chain ket is equal to, up to a

normalization factor, |F4H4〉.
A family of histories is said to be consistent if all its associated chain kets are mutually orthog-

onal. It is straight forward to verify that for the family Y above, each of the other 17 chain kets is

zero. For example, the chain ket |S0 ⊗H0,D1 ⊗ I1,C2 ⊗ I2, I3 ⊗ I3,F4 ⊗H4〉 = (F4 ⊗H4)T4,3(I3 ⊗
I3)T3,2(C2 ⊗ I2)T2,1(D1 ⊗ I1)T1,0 |S0H0〉 = (F4 ⊗ H4)T4,3(I3 ⊗ I3)T3,2(C2 ⊗ I2)T2,1 |D1V1〉 = (F4 ⊗
H4)T4,3(I3 ⊗ I3)T3,2 |C2H2〉 = (F4 ⊗H4)T4,3(|C3H3〉+ |B3V3〉)= (F4 ⊗H4)(|G4V4〉+ |J4H4〉), up to a

normalization factor. Because projectors F4, G4, and J4 are mutually orthogonal, this chain ket

is zero.

Family Y is therefore consistent.

This means, using Y , we can ask the question of whether the photon has been to Bob.

Consistent Histories gives a clear answer: Since every history in this family, except the one where

the photon travels along arm A, is zero, we can conclude that the photon has never been to Bob.

(Note that, when considering the time evolution of histories ending up at D1, we can get a

non-zero ket for ones where the photon travels to Bob, e.g. a history where the photon is on path

C at time t2. However, for the case in question where Bob doesn’t block, we know that except

for experimental imperfections, only detectors D0 and D3 can click—in other words detector D1

never clicks. This is because the coherent evolution in the inner interferometer-chain ensures

that any photon exiting the chain is H-polarised, and as such cannot go to D1. We therefore apply

postselection to “manually” exclude all unphysical histories ending at D1. We caution that this is

only possible as this detection forms a final measurement.)

It can straightforwardly be seen that any history containing any projector Ci, in any family of

histories with these start and end points (regardless of coarse/fine-graining), has zero probability

due to the final state projection F4 ⊗H4. Further, the only consistent families starting at S0 ⊗H0

and ending at F4 ⊗H4, in which projector Ci ⊗ I i is part of a consistent set at time ti, are coarse-

grainings of family Y with this same property (i.e. those where we replace {A1 ⊗ I1,D1 ⊗ I1} with

I1⊗ I1, or replace {A i ⊗ I i,Bi ⊗ I i,Ci ⊗ I i, } with {(I −C)i ⊗ I i,Ci ⊗ I i, } for times i = 2, i = 3, or both

i = 2 and i = 3). Therefore, for all relevant consistent families, we can conclude the photon has
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never been to Bob.

4.2.4 Weak Trace

We now ask the same question in the weak trace language (as introduced in Section 2.2.3

and discussed further in Chapter 3). While we do not unreservedly advocate this point of view

(which has been extensively analysed [AJ15; Sal15; Sal18a; HRL21]), we still engage with it here

within the frame of weak measurement, as it has been used to challenge the counterfactuality of

counterfactual communication protocols [Vai14a; Vai15; Vai16c], .

Let’s apply this to our setup. The pre-selected state is that of the photon in arm S, H-polarised.

And the post-selected state, for the case in question of Bob not blocking, is that of the photon

in F, also H-polarised. Consider weak measurements where Bob’s mirrors, MB1 and MB2, are

made to vibrate at specific frequencies, before checking if these frequencies show up at a detector

D0 capable of such measurement [Dan+13; Sal15; Dan+15]. The forward evolving state from

S is clearly present at Bob’s, because of the photon component directed by the action of HWP1

and PBS along arm D. What about the backward evolving state from F? A H-polarised photon

travelling from F will pass through the two consecutive PBSs along arm A, away from Bob.

Since, the forward evolving state and the backward evolving state do not overlap at Bob, a weak

measurement, at least as a first order approximation, will be zero.

We now show that any weak measurement at Bob will be zero—not just to a first order

approximation. Consider a weak measurement where Bob vibrates one or more of his mirrors (as

in Danan et al [Dan+13]). This disturbance will cause the part of the photon superposition in arm

D, after the last HWP2, which can only be V polarised, to be nonzero. This small V component

will be reflected by two PBSs towards D1, and crucially, away from detector D0. Bob’s action has

no way of reaching Alice’s post-selected state: The photon has never been to Bob.

We performed this experiment using a version of the setup in Fig. 4.1, which we show in

Fig. 4.2, with two inner M-Z interferometers within one outer cycle of Salih et al’s protocol.

The PBSs used are ThorLabs PBS251, and the HWPs used are ThorLabs AHWP05M-600—all

three half wave plates are tuned with their fast axis at an angle to the normal such that the

polarisation of the light is rotated by π/4 (i.e. H → (H+V )/
p

2). In this setup, the single photon

source is replaced by a continuous-wave diode laser [635nm ThorLabs LDM635], and the three

vibrating mirrors are micro-electro-mechanical systems (MEMS) mirrors [Hamamatsu S12237-

03P] weakly oscillating sinusoidally in the horizontal plane—Alice’s mirror (MA) at 29Hz, Bob’s

first mirror (MB1) at 13Hz, and his second mirror (MB2) at 19Hz (chosen so not to be harmonics

of each other). This oscillation is made sufficiently weak so as not to disturb the counterfactual

properties of the system. This was done by having maximal 0.01mm movement detected over a

5mm beam diameter at the detectors. The other mirrors in the set-up are all standard ThorLabs

MRA25-E02 mirrors. The detectors used for D0, D1 and D3 are segmented quadrant position-

sensing photodetectors [ThorLabs PDQ80A], sampled by a LeCroy Wavesurfer 452 at a rate of
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Figure 4.2: 3D depiction of experimental setup. This is derived from the setup in Fig. 4.2. MA , MB1
and MB2 are MEMS mirrors oscillating at different frequencies. If a frequency associated with
a given mirror is absent from the power spectrum at detector D0, then according to Vaidman’s
weak trace approach, we know that photons detected at D0 have not been near that mirror.

25KHz for 5 seconds. We applied a Fast Fourier transform to the position signal as a function of

time, to observe the spectrum of oscillation frequencies at D0, D1 and D3. As can be seen from

Fig. 4.3a, there is an oscillation at D0 from Alice’s mirror but not from either of Bob’s mirrors.

This shows that the weak measurement at Bob is zero, thus demonstrating experimentally the

counterfactuality of the protocol.

Note, in Fig. 4.3c, the peak for MB1 and its harmonic at D3 are larger than that for MB2, as

MB1 is further away from the detectors than MB2. Note also that the peak for MA in D1, shown

in Fig. 4.3b, is close to the noise level as it is an erroneous signal, caused by light from Alice’s

path leaking into D1. However, the fact we can see this error signal at D1 in Fig. 4.3b, but not

the error signals at D1 from MB1 and MB2, shows that in all cases only a negligible amount of

light (i.e. lower than noise) leaks from Bob back to Alice.
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Figure 4.3: Weak measurement tagging showing no weak trace from Bob’s mirrors at detector D0
or D1. Fourier transform of position with respect to time, of light beam incident on detectors D0
(a), D1 (b) and D3 (c). D0 and D1 show the oscillation from Alice’s mirror (at 29Hz), but unlike D3
do not show the oscillations from Bob’s two mirrors (at 13Hz and 19Hz, with a second harmonic
at 26Hz), proving via weak measurement that no light that goes to Bob’s mirrors ends up at
either D0 or D1.
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4.2.5 Discussion

Having shown that any photon detected by Alice at D0 or D1 will have never been to Bob,

we now look in depth at the probabilities of success, and Alice receiving the correct bit-value. In

each round of the proposed experiment Bob chooses a bit, X , he would like to communicate to

Alice. He blocks (does not block) his channel when X = 0 (X = 1). Alice then prepares a single

photon, passes it through the system and it is either detected in one of the detectors D0, D1 and

D3, or is lost to Bob’s blocking device. If Alice detects the photon in either D0 or D1, then the

round was successful and Alice assigns the estimated values X est = 0 and X est = 1 to detections

in D0 and D1 respectively. If the round was not successful another round is performed until she

obtains a successful outcome. The post-selected data she obtains displays clear communication

from Bob despite the fact that, as we have shown, the postselected photons never passed through

the communication channel to Bob. Furthermore, by tuning the initial HWP, the system can be

tuned to achieve a postselected success probability arbitrarily approaching unity, at the expense

of decreasing the post-selection probability.

We explore the success of the scheme in terms of the free parameter P, the raw probability

the photon would be found in the right half of the setup, determined by the setting of HWP1.

The raw conditional probabilities of detection in each of the detectors given Bob Blocking and

Not Blocking his side of the channel, for the infinite inner cycle version of the protocol, are: for

Blocking, of detection in D0 of 1−P, in D1 of P, and in D3 (lost) of 0; for Not Blocking, of detection

in D0 of 1−P, in D1 of 0, and in D3 (lost) of P.

We realise that, unlike some other communication protocols, this shows that our protocol has

an error chance that varies depending on whether Bob sends a 0-bit or a 1-bit. This, however,

is only a feature of the one-outer-cycle model form of counterfactual communication we give

here—where two or more outer cycles are used, the error probability in the protocol is 0, and so

doesn’t vary depending on bits sent (see Chapter 2 for more discussion on unequal bit error rates

in counterfactual communication).

Consider for now the limit in which the probability of losing the photon to Bob’s block-

ing apparatus vanishes. Since Bob’s strategy for not blocking only succeeds with probability

P(D0|NB)= (1−P), Alice must perform these tests many times to get a successfully postselected

event, so the raw probability that Bob was Blocking is greater than a half PB ≥ 1/2. This leads to

apparent communication in the postselected data since the conditional probability of Blocking

given detection events at D0 decreases.

We assume that on average Bob encodes as many zeros as he does ones. From the raw

detection probabilities, the probability of the protocol giving an outcome, that is the post-selection

succeeding, is (2−P)/2.

We then find the probabilities of the postselected detection events: the probability for detecting

in D0 when Blocking is (1−P)/2, and when Not Blocking is 1/2; the probability for D1 when

Blocking is P/2, and when Not Blocking is 0. Therefore after post-selection, the probability of
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Survives Postselection
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Figure 4.4: Postselection success and accuracy probabilities. The total postselection survival
probability (blue), and probability of postselected correct outcome, PC (orange), for a given bit
sent from Bob to Alice in the infinite inner-cycles case of the protocol, plotted against P, the
probability of the photon entering the inner interferometer chain.

correct outcome of Pc = (1+P)/2.

We see that in the limit P → 1 the protocol becomes deterministic, however the probability of

successful postselection goes to zero.

In Fig. 4.4 we plot the overall probability of successful postselected outcome and postselection

probability, for different values of the probability P of the photon entering the inner interferometer

chain. Notably, for P = 1/2 postselection succeeds (photon arrives at Alice) with 3/4 probability,

and, if it arrives, is correct (is the bit Bob sent) with 3/4 probability. Increasing P to 2/3, the

likelihood of successful postselection drops to 2/3 whilst the probability of being correct increases

to 5/6.

Finally, let’s illustrate our findings using an amusing scenario. Imagine an outcome-obsessed

lab director in charge of this experiment, who is quite happy firing Alice and Bob if a single run

of the experiment fails, replacing them with a fresh pair of experimentalists, to start all over, also

nicknamed Alice and Bob. The task for any Alice and Bob pair is to communicate a 16-bit message,

one bit at a time. Assume the experiment is set up such that the chance of any given run failing

is 1/4. Therefore, in order to successfully communicate the 16-bit message, the lab director has to,

on average, go through around 100 pairs of experimentalists—which the director secretly enjoys.
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Alice

Bob

A2 B2 C2

A3 B3 C3

F4

D1A1

G4

S0

Figure 4.5: Aharonov and Vaidman’s protocol overlaid with a counterfactuality-violating history.
The modified protocol proposed by Aharonov and Vaidman in [AV19], of which we show one
cycle, cannot be said to be counterfactual from a consistent histories viewpoint. This can be seen
from the series of projections, or history, highlighted in blue. The thin vertical lines represent
non-polarising beamsplitters, thick vertical lines represent mirrors, and the blue path shows an
example of a history where, when Bob doesn’t block, the photon travels to Bob and back to Alice’s
relevant detector with nonzero probability. See text for mathematical details.

Each new pair of experimentalists is provided with a new message. Eventually, a lucky Alice

and Bob manage to communicate their message (bit accuracy will be 75% on average.) Now the

question for the successful pair is: Has any of Alice’s photons been to Bob while communicating

the message? The answer, as we have shown, is an emphatic no.

Aharonov and Vaidman posted an interesting paper, around the same time this work was first

posted on the arXiv, conceding that counterfactual communication was possible, and suggesting a

way to modify a version of Salih et al’s 2013 protocol that does not use polarisation which satisfies

Vaidman’s weak trace criterion for communication to be counterfactual [AV19]. Their modification

has the effect of satisfying Vaidman’s weak trace criterion for counterfactuality for both bits. The

scheme has the advantage over ours of reducing the chance of a communication error caused by
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imperfect interference in the inner interferometers when Bob encodes bit 0, thus satisfying the

weak trace criterion even for erroneous bit-clicks, which we are not concerned about. However,

unlike the scheme we give above, their modification fails the Consistent Histories criterion for

counterfactuality [Gri84]. In Fig. 4.5 we give an example of a history where the photon goes to

Bob, where the associated chain-ket is nonzero. More precisely, take the histories family,

Y ′ :S0 ⊙ {A1,D1}⊙
{A2,B2,C2, }⊙
{A3,B3,C3, }⊙F4

(4.1)

The chain ket associated with the path highlighted in blue in Fig. 4.5 is

|S0,D1,C2,B3,F4〉 =
(F4)T4,3(B3)T3,2(C2)T2,1(D1)T1,0 |S0〉 =
(F4)T4,3(B3)T3,2(C2)T2,1 |D1〉 =
(F4)T4,3(B3)T3,2 |C2〉 = (F4)T4,3 |B3〉 = |F4〉

(4.2)

up to a nonzero normalization factor. Similarly, the chain ket associated with path A

|S0, A1, A2, A3,F4〉 =
(F4)T4,3(A3)T3,2(A2)T2,1(A1)T1,0 |S0〉 =
(F4)T4,3(A3)T3,2(A2)T2,1 |A1〉 =
(F4)T4,3(A3)T3,2 |A2〉 = (F4)T4,3 |A3〉 = |F4〉

(4.3)

is also nonzero up to a nonzero normalization factor. The two chain kets are not orthogonal,

which means that the family of histories is not consistent. The original Aharonov-Vaidman

setup therefore cannot be said to be counterfactual from a consistent histories point of view.

Nonetheless, we agree Aharonov and Vaidman’s modification presents important progress, as it

robustly passes the weak trace criterion for counterfactuality (as shown in [WCV21]). It has thus

been included as an additional element in various recent protocols proposed for counterfactual

communication (e.g. [Sal18c; Sal+21; Sal+20; HR21b]).

Likewise, Aharonov-Vaidman’s modification can be incorporated straightforwardly in our

present setup. The way to do this is by simply repeating the inner-cycles sequence, between the

arms marked D, twice. This would eliminate the weak trace even for erroneous detector-clicks

while still passing the consistent histories test.

In summary, we have shown both theoretically and experimentally that, given post-selection,

sending a message without exchanging any physical particles is allowed by the laws of physics.

4.3 How quantum is quantum counterfactual communication?

In Section 2.4, we went over the history of protocols for counterfactual communication, from

Noh’s initial attempt, to later proposals by Salih et al, Aharonov and Vaidman, and Vaidman.
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However, we are still left with one key question—what, if anything, makes these protocols

essentially quantum [Gis13]?

To answer this, we need to determine the underlying structure of classical counterfactual

communication for comparison (Subsection 4.3.1), and give a sufficient condition for a protocol to

be quantum (Subsection 4.3.2).

Subsection 4.3.3 then examines the quantum counterfactual communication protocols pro-

posed so far, to assess their non-classicality. We show what separates them from classical counter-

factual communication protocols and how they meet the condition for being quantum.

We identify two essential differences between classical and quantum counterfactual commu-

nication. The first is that only one bit-value (e.g. ‘0’) can be sent in a classical protocol without

matter or energy transfer associated with the bit being sent. The second is that the two-value

quantum protocols require wave-particle duality to be able to send either bit value of each bit

sent.

4.3.1 Classical Counterfactuality

Counterfactual communication long predates quantum mechanics. For instance, in the Sher-

lock Holmes story, Silver Blaze, Holmes infers a racehorse was abducted by its own trainer, as the

stable dog didn’t bark. As Holmes puts it, “the curious incident of the dog in the night-time" was

that the dog did nothing [Doy94]. A more recent fictional example is the Bat-Signal. If there were

a major crime being committed the Bat-Signal would appear in the sky, and so the Bat-Signal’s

absence counterfactually communicates to Bruce Wayne that all is well. Whenever we receive

information from a sign’s absence we are being signalled to counterfactually (e.g. the signal that

an engine’s components are functioning as they should is that the warning light is off).

Obviously in each of these cases a single bit is transmitted, and the bit value is signalled

without the transfer of matter or energy. However, only one bit-value can be communicated by an

absence in this way. Had a stranger kidnapped the racehorse, the dog would have barked, and

energy would have have been transferred through the communication channel; correspondingly of

course the Bat-Signal and other warning lights involve the transmission of energy when they are

on. A sign’s absence can transmit one value of a bit, only if the sign always occurs for the other

bit value [Mau02]. This is counterfactual communication based on counterfactual inference.1

Counterfactual inference is not rare but ubiquitous in everyday life and in science. For example,

if there was an ether then the Michelson-Morley experiment would not have a null result.

The structure of classical counterfactual communication as above is as follows. Were A to

happen, B would happen. B did not happen. Therefore A did not happen. B not happening is a

signal that A did not happen, only because B happening signals that A happened.

Formally,

1It is not required that the signalled event’s non-occurrence directly causes the the sign’s absence, as there could
be other common causal factors. Also a channel may be more reliable for signalling one bit value than for another.
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A ⊃ B; ¬B; ∴¬A(4.4)

Any instance of this structure in which B doesn’t happen can be thought of as counterfactual

communication of A’s not happening. However, typically, we want a one-to-one correspondence

between the signalling event A and the inferred event B, so we always recognise the inferred

event’s absence. For this, we need the further condition that, were A not to happen, B would not

happen (¬A ⊃¬B).

4.3.2 Quantum as Non-Classical

Next, to evaluate the proposed protocols we need a sufficient condition for something being

quantum. There are many differences between classical and quantum physics. For optics (which

all protocols so far have used), classical physics is everything up to and including Maxwell’s

equations. These formulate light as the evolution of waves whose intensity can be split con-

tinuously [Gri05]. In contrast to this, in the quantum optics needed for many situations, we

must consider light as photons [Ein05], which are quanta of the electromagnetic field that are

detected as discrete packets of absorbed energy. Despite this discrete particle-like behaviour, in

propagation photons retain wave-like properties such as interference. Therefore, in the context

of optics it is appropriate to take a protocol to be quantum if it requires using both wave- and

particle-like features by combining interference with single photon detection. The latter nullifies

the splitting of light intensity across different detectors, and forces it to end in a single location.

Therefore, the sufficient definition of “quantum” we shall use in this paper if a protocol requires

both interference effects and discrete detection events to work (i.e. each run of the protocol only

ever ends in a single detection event, as it uses for instance a single photon).

4.3.3 Protocol Evaluation

Of the protocols proposed so far, only one has been shown counterfactual by both Weak Trace

and Consistent Histories—Salih et al’s [Sal+13b; Sal+22]. We show this protocol in Fig. 2.7

and give a detailed description in the associated caption. Above we argued that a sufficient

condition for a protocol to be quantum is that it requires both discrete detection events and

path-interference—which, for light, only single photons can do. We now consider whether this

protocol has to meet this condition in order to be counterfactual.

While the limit of many single photons may generate the same results as coherent states, the

way in which they produce them differs. This is due to the discreteness discussed, which is not

considered when using coherent states, but is when using Fock states (i.e. single photons).

In the quantum case, beamsplitters split a photon’s probability amplitude between the two

eigenstates that correspond to the photon going in each direction; in the classical case, they split
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the beam intensity (and field). As interference still occurs, when Bob does not block, waves on

both sides still destructively interfere, so the light never returns to Alice. However, Bob’s D3 and

Alice’s D0 both detect light simultaneously. Similarly, when he blocks, light goes to his blockers

and Alice’s D1 simultaneously. Therefore, in both cases, as light goes between Alice and Bob,

it is not counterfactual. While the amount of light going to Bob’s D3 may be infinitesimal for

an infinite number of outer cycles, and that going to his blockers infinitesimal for infinite inner

cycles, this is not the same as no light going there in either case—so, regardless the number of

cycles, with classical light, the protocol isn’t counterfactual. This may seem obvious, but many

have not realised this and claimed this protocol could be performed classically (e.g. [Gis13]).

The only way to avoid this is to force the light to end at only one point—to postselect, with

information only travelling when nothing goes between Alice and Bob. Only single photons can

do this. Therefore, the only way to make the protocol counterfactual is to use these, and so make

the protocol quantum.

Alongside the proven protocol of Salih et al, Vaidman recently proposed one [Vai19] which,

while not yet proven valid by Consistent Histories, has been shown to be valid by the Weak Trace

criterion. We show this protocol in Fig. 2.7 and give a detailed description in the associated caption.

Similarly to Salih et al’s, it relies on both interference and single-photon detection—without the

use of single photons, when Bob blocks the paths on his side of the inner interferometers, light

could reach both Bob’s blocker and Alice’s detector D1. Further, when Bob doesn’t block, light

could reach both the loss channels (marked ‘DL ’ in Fig. 2.8) and Alice’s D0—in both these cases,

the protocol would definitely not be counterfactual.

Extrapolating from these protocols, any counterfactual protocol (valid or not) whereby the

interference from Bob blocking or not blocking his side of an interferometer affects the destination

of light on Alice’s side, without both Alice and Bob simultaneously detecting that light, relies

on both wave-like and particle-like properties. This means, all these protocols, from the Elitzur-

Vaidman Bomb Tester, to Noh’s counterfactual cryptography scheme, to even Arvidsson-Shukur

et al’s proposal (despite only sending one bit-value counterfactually), are essentially quantum by

our definition above.

We have shown Quantum Counterfactual Communication is essentially quantum. This

confirms that both particle-like behaviour and path interference are necessary for schemes where

both bit-values are sent counterfactually. In all schemes experimentally demonstrated so far,

this is the only way it is quantum (though protocols which send quantum information have been

proposed theoretically [Sal16; Sal18c; Sal+21; Sal+20]). Quantum Counterfactual Communication

allows us to look at principles at the heart of the foundations of quantum physics—such as single-

particle self-interference and the quantum Zeno effect—in a new and exciting way, and will

hopefully motivate new thought experiments and experimental work based on this seemingly

impossible phenomenon.
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4.4 Chapter Conclusion

This Chapter considered foundational issues related to counterfactual communication. First,

we investigated whether truly counterfactual communication is actually possible, by considering

whether we can design a protocol which meets both weak trace [Vai15; Vai14a; Sal+14] and

consistent histories [Gri84; Gri16] criteria for counterfactuality (as introduced in Chapter 2). This

involved showing experimentally that the protocol meets the weak trace criterion for there being

no particles crossing the channel between Alice and Bob when information is communicated, by

performing an experiment similar to Danan et al’s [Dan+13]. Secondly, we showed that Salih

et al’s counterfactual communication protocol is inherently quantum, and that counterfactual

communication of this sort (where both bit values are transmitted with no particle crossing the

channel between communicants) cannot be performed classically.

This Chapter gave examples of how we can foundationally investigate developing quantum

technologies, especially those themselves based on foundational ideas, to evaluate their properties,

and whether they meet the claims associated with them. Further, it acted as an example of

how we can use technology to test foundational properties of developing quantum technologies

themselves based on foundational ideas. This elegantly illustrated the interplay between quantum

foundations and quantum technologies.
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5
COUNTERFACTUAL COMMUNICATION OF QUANTUM INFORMATION

Declaration of contribution: This chapter is based the published article Exchange-Free

Computation on an Unknown Qubit at a Distance [Sal+21], and the preprint article Deter-

ministic Teleportation and Universal Computation Without Particle Exchange [Sal+20].

Both were conceived by myself and Mr Hatim Salih, in discussion with Prof Terry Rudolph.

I then worked with Mr Salih to create the full protocols given here. I performed all simula-

tion of the protocols in Wolfram Mathematica. The manuscripts were co-written by myself

and Mr Salih, under the supervision of Prof John Rarity. Further discussion and edits

were done by all authors (including Dr Will McCutcheon, who also wrote an appendix to

[Sal+21] not included in this thesis).

5.1 Chapter Introduction

This chapter is the first in this thesis where a foundational idea (here, counterfactual

communication) is used for the development of a new form of quantum technology. Specif-

ically, this chapter first gives a protocol where counterfactual communication is used as a

primitive to allow the direct application of an arbitrary single-qubit unitary by one party onto

another party’s qubit. This protocol occurs without any particles being exchanged by the two

parties. Alongside this, this Chapter then gives another protocol by which a controlled-Z gate can

be applied counterfactually by one party onto the other party’s qubit. This is then used as the

basis by which quantum information transfer protocols making use of controlled-Z gates, such as

teleportation and telecloning, can be performed counterfactually.
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5.2 Exchange-Free Computation on an Unknown Qubit

This Section presents a protocol allowing a remote Bob to prepare any qubit he wishes at Alice

without any particles passing between them. More generally, Bob can directly apply any arbitrary

Bloch-sphere rotation to an unknown qubit at Alice. This allows him to perform any single-qubit

quantum computation. While we describe an optical realisation using photon polarisation, the

scheme is in principle applicable to other physical implementations.

5.2.1 Protocol

Our protocol consists of a number of nested outer interferometers, each containing a number

of inner interferometers, as in Salih et al’s 2013 protocol (see [Sal+13b] and Subsection 2.4.3). We

combine these interferometers into a device that we call a Phase Unit, allowing Bob to apply a

relative phase to Alice’s photonic qubit (Fig. 5.1). We pair two Phase Units such that one applies

some phase to Alice’s H-polarised component, while the other applies an equal but opposite-sign

phase to her V -polarised component, resulting in a R̂z(θ) rotator. By chaining three such R̂z(θ)

rotators, interspersed with appropriate wave-plates, Bob can apply any arbitrary unitary to

Alice’s qubit, exchange-free (Fig. 5.2).

We now go into the detail of how the R̂z(θ) rotation is achieved, using the device in Fig. 5.1,

where the H-polarised and V -polarised components, are separated out.

We put the H-polarised component through one run of Salih et al’s 2013 protocol (see Chapter

2), with Bob either always blocking or not blocking his channel. If he blocks, and the component

exits V -polarised, the PBS sends it through a HWP that flips it to H-polarised, and it is kicked out

of the device. However, if it is H-polarised, it goes through a phase plate (gaining a phase increase

of π/2L), hits a mirror, goes back through the phase plate (gaining another phase increase of

π/2L, for a total increase of π/L), and re-enters the device for another run.

This is repeated L times, with Bob blocking or not blocking for all outer cycles in a given run.

After each run, the component goes into a PBS: if it is H-polarised, it gains a phase of π/L; if

V -polarised, it is flipped to H-polarised and sent out from the unit. Bob first doesn’t block for k

runs, applying a phase of kπ/L, then blocks, applying the transformation

(5.1) |H〉→ eikπ/L |H〉

When N is finite, the rotations applied by each outer cycle when Bob blocks are not complete,

meaning one run (M outer cycles) doesn’t fully rotate the state from H to V . However, given Bob

only blocks after the component has had a phase applied to it, to kick the component out of the

device, any erroneous H-polarised component can be kept in the device by Bob not blocking for

the remaining L−k full runs afterwards. This lets us treat the erroneous H-component as loss.

While coarse-grained for finite L, as L goes to infinity (with 0 ≤ k/L ≤ 1), Bob can generate

any relative phase for Alice’s qubit, from 0 to π. Further, by moving the π/2 HWP from its location
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Figure 5.1: Our exchange-free Phase Unit, which applies a phase determined by Bob to Alice’s
H-polarised input photon. The Phase Unit comprises an equivalent setup to that of Salih et al’s
2013 protocol [Sal+13b], but with an added phase-module in the dashed box. The optical switches
each alter the paths at different times in the protocol to allow the photon to do the correct number
of cycles. Optical switch M1 inserts the photon into the device, and keeps it in for M outer cycles;
optical switches M2 and M3 cycle the photon around for N inner cycles per outer cycle. The PBSs
transmit H-polarised light, and reflect V -polarised light. The HWPs are tuned to implement
R̂y(θ) rotations on polarisation with θ of π, π/M and π/N, as shown in the figure. Detectors DA
and DB not clicking ensure that the photon has not been to Bob. After M outer cycles, the photon
is sent by M1 to the right. The photon only exits the Phase Unit if its polarisation had been
flipped to V as a result of Bob blocking the channel (which he does by switching his Switchable
Mirror on) because of the action of the PBS in the dashed box. The phase plate (tuned to enact
a R̂z, or phase, rotation, and realisable using a tiltable glass plate) adds a phase of π/2L to the
photon every time it passes through it, summing to π/L every time it is sent H-polarised to the
right by M1. Bob doesn’t block for k runs (out of a maximum L), then blocks, allowing him to
set the final phase of the photon, kπ/L, anywhere from 0 to π, in increments of π/L. An initially
V -polarised photon can be put through an altered version of this device to add a phase to it
(identical, except for the π/2 HWP being moved to above M1). The unit rotates Alice’s qubit by
R̂z(kπ/L).
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Figure 5.2: The overall protocol, incorporating multiple Phase Units from Fig. 5.1, as well as
PBSs (which transmit horizontally-polarised, and reflect vertically-polarised, light), as well as a
quarter wave plate and its adjoint (conjugate-transpose). The setup allows Bob to implement any
arbitrary unitary on any initial pure state

∣∣ψ〉
Alice inserts, entirely exchange-free.

in Fig. 5.1 to the input, a similar phase can be added to a V -polarised component, relative to a

H-polarised component.

This Phase Unit can be constructed to include Aharonov and Vaidman’s modification of Salih

et al’s 2013 protocol [AV19], satisfying their weak-measurement criterion for exchange-free

communication. We do this by running the inner cycles for 2N cycles rather than N, except that

for the case of Bob not blocking, he instead blocks for one of the 2N inner cycles, namely the Nth

inner cycle. This removes any lingering V component exiting the inner interferometer of Fig. 5.1

due to imperfections in practical implementation.

We now use our Phase Unit as the building block for a protocol where Bob can implement any

arbitrary unitary onto Alice’s qubit, exchange-free.

70



5.2. EXCHANGE-FREE COMPUTATION ON AN UNKNOWN QUBIT

Any arbitrary 2×2 unitary matrix can be written as

Û= ei(2α′−β′σ̂z−γ′σ̂y−δ′σ̂z)/2

= eiα′
R̂z(β′)R̂y(γ′)R̂z(δ′)

(5.2)

Note, the factor of eiα′
can be ignored, as it provides global rather than relative phase, which

is unphysical for a quantum state [NC10].

We can apply the R̂z(θ) rotations using the Phase Unit, and make a R̂y(θ) rotation by

sandwiching a R̂z(θ) rotation between a −π/4-aligned Quarter Wave Plate, ÛQWP , and its adjoint,

Û†
QWP , where

ÛQWP =R̂x(−π/2)= eiπσ̂x/4

Û†
QWP =R̂x(π/2)= e−iπσ̂x/4

(5.3)

We set

β′ = 2πβ/L, γ′ = 2πγ/L, δ′ = 2πδ/L(5.4)

where, for the three Phase Unit runs, k is β, γ and δ.

The Phase Units form components of the overall protocol, as shown in Fig. 5.2. Here, Alice first

splits her input state
∣∣ψ〉

into H- and V -polarised components with a PBS, before putting each

component through a Phase Unit, to generate equal and opposite phases on each. She recombines

these at another PBS. Afterwards, she puts the components through a quarter wave plate, then

through another run of PBS, Phase Unit, and PBS, then through the conjugate-transpose of the

quarter-wave plate, tuned to convert the partial R̂z rotation (phase rotation) into a partial R̂y

rotation. Finally, she applies another run of PBS, Phase Unit, and PBS to implement a second R̂z

rotation.

Using these R̂z and R̂y rotations, Bob can implement any arbitrary rotation on the surface of

the Bloch sphere on Alice’s state. This can be used either to allow Bob to prepare an arbitrary

pure state at Alice (if she inserts a known state, such as |H〉), or to perform any arbitrary unitary

transformation on Alice’s qubit, without Bob necessarily knowing that input state.

5.2.2 Discussion

Because the Phase Units output their respective photon components after Bob blocks for a

run, the timing of which depends on the phase Bob wants to apply, there is a time-binning (a

grouping of exit times into discrete bins) of the components from each Phase Unit correlated

with the phase Bob applies in that unit. Bob can, on his side, compensate for the time-binning

(given he knows the phase he is applying). Further, in order to locate the photon in time, Alice

can detect the time of exit using a non-demolition single photon detector.

Alternatively, we could add a final pair of Phase Units with the value of k set to 3L′−β−γ−δ
(where L′ is the value of L for each of the first three Phase Unit pairs, and β, γ and δ are their
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Figure 5.3: The survival probability of a photon going through a Phase Unit (Fig. 5.1) of given M
(number of outer cycles) and N (number of inner cycles). This is shown for the unit imparting
phase ikπ/L, where k, the number of runs of the protocol before the photon is emitted from the
unit, is 1 for (a), 5 for (b), 10 for (c) and 20 for (d). Note there is no dependence on L, the maximum
number of runs.

respective k-values), but without phase plates (see Fig. 5.1). This means that while no phase is

applied, a time delay is still added to the components, meaning the photon always exits the overall

device at a time proportional to 3L, rather than β, γ and/or δ as before. This makes the time of

exit uncorrelated to Bob’s unitary, which means Alice can know in advance the expected exit time

of her photon from the protocol (without needing to perform a non-demolition measurement to

find it).

When considering a finite number of outer and inner cycles, there is a nonzero probability of

the photon not returning to Alice, which reduces the protocol’s efficiency. The survival probability

of a photon going through a Phase Unit is plotted in Fig. 5.3. The survival probability for the
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Figure 5.4: Quantum circuit diagram, showing how a 3-qubit gate applying a controlled-controlled
unitary U can be constructed from two-qubit gates along with single-qubit gates, where U is
some unitary transformation, and V 2 =U [Bar+95]. Using our exchange-free single-qubit gate,
a classical Bob can directly simulate the control action on Alice’s photonic qubits. Since any
quantum circuit can be constructed using 2-qubit gates along with single-qubit ones, our exchange-
free single-qubit gate allows Bob in principle to directly program any quantum algorithm at Alice,
without exchanging any photons.

overall protocol is the product of the survival probability for the three Phase Units:

(5.5) P(Tot)Sv = P(β)Sv ·P(γ)Sv ·P(δ)Sv

As expected, as {M, N}→∞, the survival probability goes to one.

Regardless, postselection renormalises Alice’s output state such that if Alice receives an

output photon, it will be in a pure state. Thus, for our set-up, given ideal optical components, the

rotation enacted on Alice’s qubit is always the rotation Bob has applied, not just for any L, but

also for any N, M, and k.

Interestingly, a phase Unit, which outputs a photon into one of L different time bins depending

on the number of runs Bob blocks, could be adapted to sending, exchange-free, a classical logical

state of dimension d greater than two—a “dit", rather than a bit. We do this by removing the

phase plate in the Phase Unit (see Fig. 5.1). Bob first doesn’t block for k runs, then blocks for the

remaining L−k, meaning the photon’s output occurs in the kth time-bin of L possible time-bins.

This encodes a dit of dimension L into the photon, which Alice can read via non-demolition single

photon detector.

We now show how our exchange-free protocol enabling arbitrary single-qubit operations,

can in principle allow a classical Bob to directly enact any quantum algorithm he wishes on

Alice’s qubits, without exchanging any particles with her. This is based on the fact any quantum

algorithm can be efficiently constructed from 2-qubit operations (such as CNOT) and single-qubit

ones. Our protocol already enables exchange-free single-qubit operations, i.e. gates. Thus, if Bob
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can directly activate or not, a 2-qubit gate at Alice, exchange-free, then directly programming

an entire quantum algorithm at Alice using these two building blocks becomes possible. The

quantum network of Fig. 5.4 shows how a 3-qubit controlled-controlled gate, applying some

unitary U to the target qubit at Alice, can be constructed from 2-qubit controlled gates [Bar+95].

(Some controlled-controlled gates can have more implementable circuits than the general one

given here [NC10].) A classical Bob, at the top end of Fig. 5.4, uses our exchange-free single-qubit

gate to simulate the control action on Alice’s photonic qubits. For simulating the CNOT gate, he

can choose to either apply the identity transformation, representing control-bit |0〉, or apply an X

transformation, representing control-bit |1〉. For the controlled-V gate, he can choose to either

apply the identity transformation, again representing control-bit |0〉, or apply a V transformation,

representing control-bit |1〉. In this scenario, we envisage an optical programmable circuit, with

exchange-free single-qubit gates acting on Alice’s qubits that Bob can directly program, and

2-qubit gates acting on Alice’s qubits that he can directly choose to activate, exchange-free.

While considering how Bob could prepare an arbitrary qubit at Alice exchange-free, we

found a simpler protocol for Bob to prepare exchange-free a qubit with real, positive probability

amplitudes.

Consider Fig. 5.1, without the phase module. Starting with Alice’s H-polarised photon, instead

of Bob blocking or not blocking every cycle, he instead doesn’t block for the first M−k outer cycles,

then blocks for the rest. In order to eliminate the error resulting from a finite number of blocked

inner cycles, Alice introduces loss, attenuating the outer arm of the interferometer on her side by

a factor of cos(π/2N)N for each outer cycle. This means, before the final PBS, the state is

|Ψ〉 =cos
( π

2N
)MN

cos
( π

2M
)M−k

(
cos

( kπ
2M

) |H〉+sin
( kπ
2M

) |V 〉
)(5.6)

By postselecting on Alice’s photon successfully exiting the protocol, she receives the state

|Ψ〉PS = cos
( kπ
2M

) |H〉+sin
( kπ
2M

) |V 〉(5.7)

By choosing k, Bob directly applies a R̂y rotation to Alice’s |H〉 input state. Now, in order

to allow Bob to apply such a rotation to an arbitrary input polarisation state, Alice’s photon is

initially split into H and V -components using a PBS. The desired rotation is applied separately.

In the case of the V -component, its polarisation is first flipped to H before the rotation is applied,

followed by a phase flip and a polarisation flip upon exit. The separate components can then

be combined using a 50:50 beamsplitter, with the correct state obtained 50% of the time. The

advantage, however, is that, assuming perfect optical components and a large number of cycles,

only two runs of the protocol are needed on average.

In summary, this Section presented a protocol allowing Bob to directly perform any computa-

tion on a remote Alice’s qubit, without exchanging any photons between them. We use this to

show how, in principle, Bob can directly enact any quantum algorithm at Alice, exchange-free.
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5.3 Counterfactual Quantum Computation

Counterfactual communication was generalised to sending quantum information exchange-

free for the first time in the Salih14 protocol [Sal16], also known as counterportation, proposing

an exchange-free quantum CNOT gate as a new computing primitive. The exchange-free CNOT

was later employed by Zaman et al to propose exchange-free Bell analysis, albeit with a 50%

theoretical efficiency limit [ZJS18].

This Section instead proposes a controlled R̂z-rotation, based on this above-mentioned CNOT

gate, which is universal and has no theoretical limit on efficiency. We then combine quantum

teleportation with exchange-free computation at a distance to propose deterministic exchange-

free teleportation. The core of this gate is set up by the entangling operation enabled by a

one-dimensional cavity atom system. The ground state of an atom in a cavity can be put into

a superposition of being on-resonant (’0’) and reflecting, or off-resonant (’1’) and transmitting,

a photon [Hu+09; RR15]. We then construct a counterfactual way of probing whether Bob is

blocking/not blocking (transmitting/reflecting) using the standard counterfactual communication-

style protocol.

5.3.1 Protocol

We first go through the chained quantum Zeno effect (CQZE) unit, as given in Fig. 5.5. This is

based on Salih’s exchange-free CNOT gate, which has Bob enacting a superposition of blocking

and not blocking his side of the communication channel [Sal16; Sal18c]. The switchable mirror,

SM1, is first switched off to allow the photon into the outer interferometer, before being switched

on again. The switchable polarisation rotator, SPR1, rotates the photon’s polarisation from H to

V , by a small angle π
2M :

|H〉→ cos
π

2M
|H〉+sin

π

2M
|V 〉

|V 〉→ cos
π

2M
|V 〉−sin

π

2M
|H〉

(5.8)

PBS2 passes the H-polarised component towards the mirror below it, while reflecting the

small V -polarised component towards the inner interferometer. The switchable mirror, SM2, is

then switched off to allow the V -polarised component into the inner interferometer, before being

switched on again. The switchable polarisation rotator, SPR2, rotates the V -polarised component

by a small angle π
2N :

(5.9) |V 〉→ cos
π

2N
|V 〉−sin

π

2N
|H〉

PBS3 then reflects the V -polarised component up, towards a mirror while passing the H-

polarised component towards Bob’s trapped atom, which is in a superposition, α |0〉+β |1〉, of

reflecting back any photon, and transmitting it through to the loss detector. If the atom reflects

(is in state |0〉), the H-polarised component survives—if the atom transmits (|1〉), the component
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Figure 5.5: Our setup for an experimentally feasible, exchange-free controlled-R̂z, universal gate.
This is based on Salih’s exchange-free CNOT gate which has Bob enacting a superposition of
blocking and not blocking the communication channel by means of a trapped atom [Sal16; Sal18c].
With the addition of a phase-shift plate applying a (θ+π)/2 rotation, switchable mirror SM0, a π/2
HWP that flips polarisation, PBS1, and an optical delay loop, the chained quantum Zeno effect
unit becomes the basis of our controlled phase-rotation universal gate, entangling the states of
Alice’s photonic qubit and Bob’s trapped atom qubit.
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is lost. This means the action of the first inner interferometer, assuming the photon is not lost to

Bob’s detector DB, is

|V 〉 (α |0〉+β |1〉)→α(cos
π

2N
|V 〉−sin

π

2N
|H〉) |0〉+βcos

π

2N
|V 〉 |1〉(5.10)

After N such cycles the photonic superposition has now been brought back together by PBS3

towards SM2. Because the |0〉 term coherently rotates from |V 〉 to |H〉, after N such cycles the

state is,

|V 〉 (α |0〉+β |1〉)→α |H〉 |0〉+βcosN π

2N
|V 〉 |1〉(5.11)

The switchable mirror, SM2, is then switched off to let the photonic component inside the inner

interferometer out. Since for large N, cosN π
2N → 1, the implemented transformation becomes,

|V 〉 (α |0〉+β |1〉)→α |H〉 |0〉+β |V 〉 |1〉(5.12)

Note that this state is entangled, but the |H〉 |0〉 term has been to/from Bob, so this wouldn’t

be counterfactual. Consequently, we send this term to loss channel DA via PBS2.

The first outer cycle, starting with the photon at SM1 (assuming the photon is neither lost to

to Alice’s detector DA nor to Bob’s DB) implements first the SPR1, then N inner cycles, giving

|H〉 (α |0〉+β |1〉)→
(
cos

π

2M
|H〉+sin

π

2M
|V 〉

)
(α |0〉+β |1〉)

→ cos
π

2M
|H〉(α |0〉+β |1〉)+sin

π

2M
|V 〉cosN π

2N
|1〉

=αcos
π

2M
|H〉 |0〉+β(cos

π

2M
|H〉+cosN π

2N
sin

π

2M
|V 〉) |1〉

(5.13)

as after the initial SPR1 rotation, the H-polarised component goes to the delay, while the V -

polarised component goes into N inner cycles, and so evolves as per Eq. 5.11, with the |H〉 |0〉
component generated by this sent to loss mode DA.

This represents one outer cycle, containing N inner cycles. The photonic superposition has

now been brought back together by PBS2 towards SM1. After M such cycles (setting cosN π
2N → 1),

the coherent rotation of the |1〉 part of the state from |H〉 to |V 〉 means the protocol applies

|H〉 (α |0〉+β |1〉)→αcosM π

2M
|H〉 |0〉+β |V 〉 |1〉(5.14)

Since for large M, cosM π
2M approaches 1, Eq. 5.14 goes to,
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|H〉 (α |0〉+β |1〉)→α |H〉 |0〉+β |V 〉 |1〉(5.15)

The switchable mirror SM1 is now switched off to let the photon out. Crucially, this last

equation describes the action of a quantum CNOT gate with Bob’s as the control qubit, acting on

Alice’s H-polarised photon.

Ignoring the large-M limit, let is illustrate this for M = 2. Taking the state at the end of

Eq. 5.13, setting cosN π
2N → 1, and putting it through SPR1 again, we get

cos
π

2M
|H〉(α |0〉+β |1〉)+sin

π

2M
|V 〉 |1〉→

cos
π

2M

(
cos

π

2M
|H〉+sin

π

2M
|V 〉

)(
α |0〉+β |1〉)+sin

π

2M

(
cos

π

2M
|V 〉−sin

π

2M
|H〉

)
|1〉

=For M=2
1p
2

(
1p
2
|H〉+ 1p

2
|V 〉

)(
α |0〉+β |1〉)+ 1p

2

(
1p
2
|V 〉− 1p

2
|H〉

)
|1〉

= |H〉
2
α |0〉+ |V 〉

(α
2
|0〉+β |1〉

)
(5.16)

If we now send this through N more inner interferometers, due to the |H〉 component being

kept in the delay below PBS2, and the |V 〉 |0〉 component coherently rotating to |H〉 |0〉 and so

being lost to loss channel DA, we get the transformation for the entire two outer-cycle (M = 2)

protocol as

|H〉 (α |0〉+β |1〉)→ |H〉
2
α |0〉+ |V 〉β |1〉(5.17)

We now explain the rest of the setup, which uses the CQZE unit to implement a universal,

general-input controlled-R̂z rotation gate (Fig. 5.5). We begin with a superposition state at Alice,

a |V 〉+ b |H〉. This is split at PBS1, with the H-polarised component going into an optical loop,

and the V -polarised component going through a π/2 HWP flipping its polarisation to H, before

being admitted into the CQZE unit by turning off the switchable mirror SM0, before turning

it on again. Upon exiting the CQZE unit, it is reflected back by SM0, having a phase of θ+π if

V -polarised (0 if H) applied to it by the phase shifter, before going through another run of the

CQZE unit. This always produces an H-polarised state, as noted in [Li+19]. Note that the π term

in the phase shifter is a correction term. The photonic component now exits through SM0, which

is switched off, before being flipping back to V -polarisation at the π/2 HWP, having acquired a θ

phase shift. It then recombines with the H-polarised component at PBS1.

Given the initial state of the overall system is

(5.18) (a |V 〉+b |H〉)⊗ (α |0〉+β |1〉)

and that only the initially V -polarised component “interacts" with the trapped atom, we get the

final state

(5.19) a |V 〉 (α |0〉+βeiθ |1〉)+b |H〉 (α |0〉+β |1〉)
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Figure 5.6: Our protocol for exchange-free teleportation. In this protocol, Alice has a photon-
polarisation qubit, and Bob has a maximally-entangled pair of qubits, one implemented as a
trapped-atom enacting a superposition of blocking and not blocking the communication channel,
and the other as photon polarisation. Alice’s qubit begins in the state to be teleported,

∣∣ψ〉
.

Importantly, complete Bell detection takes place without Alice and Bob exchanging any particles,
and instead of classical communication, Alice directly applies a controlled-Z (phase flip) operation
on Bob’s photonic qubit. The two exchange-free Controlled-Z gates, marked by dashed red-boxes,
are instances of the set-up of Fig. 5.5.
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This is an entangled state between Alice’s polarisation qubit and Bob’s trapped ion qubit: a

controlled-phase rotation, with Alice’s as the control qubit and Bob’s as the target. Due to the

symmetry of control and target qubits for this type of rotation, it can also be factorised as

(5.20) α |0〉 (a |V 〉+b |H〉)+β |1〉 (aeiθ |V 〉+b |H〉)

the same controlled-phase rotation expressed differently, now with Bob’s as the control qubit and

Alice’s as the target. Taking the special case when θ =π, we get a controlled-Z gate.

On universality, our exchange-free controlled-R̂z, as a two-qubit gate, allows efficient imple-

mentation of any quantum circuit when combined with local operations. But there’s another

sense in which it is universal. As explained later, this gate can be operated differently, allowing

one party with classical action to enact any desired operation on a second party’s remote photonic

qubit, exchange-free. This classical action can even control a two-qubit gate at the second party,

as shown in [Sal+21]. Our controlled-R̂z gate can therefore be thought of as a universal set in its

own right.

Bob needs a way to implement a superposition of reflecting, bit “0”, and blocking, bit “1”,

Alice’s photon. There are many ways to go about this; however, recent breakthroughs in trapped

atoms inside optical cavities [RR15], such as the demonstration of light-matter quantum logic

gates [Tie+14; Rei+14], make trapped atoms an obvious choice.

Bob’s qubit is a single 87Rb atom trapped inside a high-finesse optical resonator by a three-

dimensional optical lattice [Rei+14; Rei14]. Depending on which of its two internal ground states

the 87Rb atom is in, a photon impinging on the cavity in Fig. 5.5 will either be reflected as a

result of strong coupling, or otherwise enter the cavity on its way towards detector DB. For this, it

needs to have mirror reflectivities such that a photon entering the cavity exists towards detector

DB, similar to [Müc+10]. By placing the 87Rb in a superposition of its two ground states, by

means of Raman transitions applied through a pair of Raman lasers, Bob implements the desired

superposition of reflecting Alice’s photon back and blocking it. Note that coherence time for such

a system is of O (10−4s) [Rei14], with longer times possible. Therefore, if the protocol is completed

within O (10−5s), lower-bounded by the O (10−9s) switching speed of switchable components, then

decoherence effects can be ignored.

(Experimental tricks can ensure the correct number of cycles without having to use switchable

optical elements, as in Cao et al’s experimental implementation of Salih et al’s 2013 protocol

[Cao+17].)

We now move to an exchange-free implementation of teleportation. This is based on the

quantum teleportation first devised by Bennett et al [Ben+93]. In Bennett et al’s protocol, any

arbitrary quantum state can be transferred from one party to another, so long as the two parties

share an entangled state, and can send classical information between them. However, in our

protocol, teleportation is recast such that there is no need for previously-shared entanglement

between Alice and Bob, nor classical communication between them. Our teleportation scheme is

shown in Fig. 5.6.
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In this protocol, we have a photon-polarisation qubit at Alice, and an entangled pair of qubits,

one trapped-atom and the other photon-polarisation, at Bob. Alice’s qubit is instantiated in

the state to be teleported, e.g. by a third party, while Bob’s two modes are in the maximally

entangled state |H〉 |0〉+ |V 〉 |1〉 /
p

2 (which can be created by Bob sending an H-polarised photon

into the cavity, when it is in the superposition (|0〉+ |1〉)/p2, and then recombining the photon’s

components from the transmitted and reflected outputs at a PBS, after applying a H →V rotation

on the path from the transmitted side).

To enact teleportation, Bob first applies a Hadamard gate to his trapped-atom qubit, before

Alice applies an exchange-free controlled-Z gate, with her photonic qubit as the control and and

Bob’s trapped-atom qubit as the target. Bob and Alice then apply Hadamard gates onto their

respective qubits, before measuring the states in the computational basis for Bob, and in the H/V

basis for Alice, together performing a complete Bell measurement. Bob then either flips or doesn’t

flip the polarisation of his photonic qubit based on the classical measurement outcome of his

trapped-atom qubit. Alice then, based on the classical measurement outcome of her qubit, either

performs an exchange-free controlled-Z on Bob’s photonic qubit with her control set to |1〉 by

blocking both runs, or else sets her control to |0〉 by not blocking both runs. These last two steps

by Bob and Alice respectively act as the feed-forward step of teleportation (which next-generation

trapped atoms are expected to allow) leaving Bob’s photonic qubit in the state of Alice’s original

qubit.

5.3.2 Discussion

Our exchange-free protocol bears all the hallmarks of teleportation as given by Pirandola

et al [Pir+15]. Alice’s input state is unknown to her, and can be provided by a third party who

also verifies the teleported state at Bob. The protocol allows complete Bell detection, which in

our case is jointly carried out by Alice and Bob exchange-free. The protocol allows the possibility

of real-time correction on Bob’s photonic qubit. Lastly, even for the smallest number of cycles,

achievable fidelity for our protocol exceeds the 2/3 limit of “classical teleportation", which comes

from the no-cloning theorem [WZ82]. Fig. 5.7 gives the average fidelity F(θ,φ), where

(5.21) F(θ,φ)= 〈Ψin|Ψout〉〈Ψout|Ψin〉

and Ψin and Ψout are the input and output states of the protocol, θ and φ parameterise the input

state’s Bloch sphere (azimuthal and radial angle respectively), and the average fidelity is F(θ,φ)

averaged over θ and φ [OLL02]. The average efficiency of the protocol is 30% for a number of

cycles M equal to 10 and N equal to 100, but improves for larger numbers of cycles.

Since quantum telecloning combines approximate cloning with teleportation to transport

multiple approximate copies of a states, one would think that our exchange-free teleportation

protocol might allow telecloning to be carried out exchange-free. In fact the telecloning scheme of

Murao et al [Mur+99], which employs a Bell measurement, along with local operations at the
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Figure 5.7: Average fidelity of our exchange-free teleportation protocol as a function of the number
of outer and inner cycles, M and N. This is for an imperfect trapped-atom at Bob that fails to
reflect an incident photon 34% of the time when it should reflect, and fails to block the photon
8% of the time when it should block. Fidelity is averaged over 100 points evenly distributed over
possible states Alice could send.

receiver based on the Bell detections, can be made exchange-free in a similar manner to how we

made teleportation exchange-free. Their scheme starts with an already prepared multipartite

entangled state [Mur+99], which for our purposes we take to be located at Bob, with one of the

entangled qubits in the form of say a trapped-atom, and the output qubits where the approximate

copies appear, all photonic. Alice and Bob jointly perform an exchange-free Bell measurement

between Alice’s photonic input qubit, and Bob’s trapped-atom ‘port’ qubit, as we show in Fig. 5.8.

Based on the classical outcomes of the Bell measurement, Alice applies suitable exchange-free

controlled-rotations (Pauli operations) to recover the approximate copies at Bob. The fidelity of

these copies is limited by the no-cloning theorem to

(5.22) γ= 2q+1
3q

where q is the number of approximate copies of our state that we want to send. For the protocol,
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Figure 5.8: An entanglement diagram for exchange-free telecloning. The diagram shows the initial
entangled state between port-qubit P, copy-qubits Cq, and ancilla-qubits Aq−1, all at Bob(s). Also
shown is the Bell Measurement done on Bob’s port qubit P and Alice’s initial state qubit X. The
thick black lines mark entanglement, while the red dashed box indicates an exchange-free Bell
measurement. This forces the system into one of four states. Alice applies suitable exchange-free
controlled-rotations (Pauli operations) to recover the approximate copies at Bob.

when the trapped-atom interaction is ideal, we always reach this limit of fidelity (5/6 for two

copies) even for the smallest number of cycles. In Fig. 5.9, we give the fidelity for an imperfect

trapped-atom at Bob that fails to reflect an incident photon 34% of the time when it should reflect,

and fails to block the photon 8% of the time when it should block, for different values of M and N.

Average efficiency is 14% for M equal to 10 and N equal to 100, but improves for larger numbers

of cycles.

Above (and in [Sal+21]), we gave a protocol that allows Bob to implement any phase on Alice’s

qubit, exchange-free [Sal+21]. This then forms the basis of a device that we called a phase unit,

allowing Bob to apply any arbitrary single-qubit unitary to the qubit, exchange-free. However, an

issue that phase unit displayed was that the time the photon exited the device was correlated

with the phase applied by Bob. While we provided a way for Bob to undo this time-binning after

the fact, it is generally desirable to remove it altogether.

By adapting the controlled phase-rotation above, a phase unit can be constructed that doesn’t

exhibit this time-binning. We use the set-up in Fig. 5.5, but instead with a classical Bob either

blocking or not-blocking, and with SM0 keeping Alice’s photon in the device for 2L runs (rather

than 2). Bob sets θ to π/L, blocking for 2k of the runs and not blocking for 2(L− k), in units

of 2 runs where he either blocks for both or does not block for both. This allows Bob to set a
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Figure 5.9: Average fidelity for exchange-free telecloning using the exchange-free controlled-Z
gate described above, plotted for different numbers of outer (M) and inner (N) cycles. Fidelity is
calculated for an imperfect trapped-atom at Bob that fails to reflect an incident photon 34% of
the time when it should reflect, and fails to block the photon 8% of the time when it should block.
Fidelity is averaged over 100 points evenly distributed on the Bloch sphere of possible states
Alice could send.

phase on Alice’s photon of 2πk/L. We place three of these devices in series, interspersed with

a −π/4-aligned Quarter Wave Plate, ÛQWPR̂x(−π/2), and its adjoint, Û†
QWPR̂x(π/2), to create

a chained-R̂zR̂xR̂za set of rotations, into which any single qubit unitary can be decomposed.

Bob can thus apply any arbitrary single-qubit unitary to Alice’s qubit—both exchange-free, and

without time-binning. This also, as we show in [Sal+21], allows us to classically control of a

universal two-qubit gate, which enables Bob to directly enact in principle any desired algorithm

on a remote Alice’s programmable quantum circuit.

An interesting modification of Salih et al’s 2013 protocol was recently proposed by Aharonov

and Vaidman, satisfying their criterion, based on weak trace, for exchange-free communication

[AV19]. Following Salih’s 2018 paper on counterportation [Sal18c], we now show how to implement

it in our protocol. In the CQZE module, after applying SPR2 inside the inner interferometer for
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the Nth cycle, Alice now makes a measurement by blocking the entrance to channel leading to

Bob. (She may alternatively flip the polarisation and use a PBS to direct the photonic component

away from Bob.) Instead of switching SM2 off, it is kept turned on for a duration corresponding

to N more inner cycles, after which SM2 is switched off as before. One has to compensate for the

added time by means of optical delays. The idea here is that, for the case of Bob not blocking,

any lingering V component inside the inner interferometer after N inner cycles (because of weak

measurement or otherwise) will be rotated towards H over the extra N inner cycles. This has the

effect that, at least as a first order approximation, any weak trace in the channel leading to Bob

is made negligibly small.

While alternative proposals have been given for counterfactual communication by Arvidsson-

Shukur et al [AB16; Cal+19], the protocols’ definition of counterfactuality have been the subject

of debate [Vai19; HLR21; WCV21]. Their adoption of Fisher Information as a tool for analysing

counterfactuality is interesting nonetheless.

As Vaidman points out in [Vai16b], Salih’s 2014 protocol—also known as counterportation

[Sal18c]—achieves the same end goal of Bennett et al.’s (1993) teleportation [Ben+93]: the

disembodied transport of an unknown quantum state, albeit over a large number of protocol

cycles. It is an entirely different protocol though, as can be seen from their respective quantum-

circuit diagrams. Our current protocol, by contrast to counterportation, is directly based on the

1993 teleportation protocol, but implemented using our universal, newly proposed counterfactual

Z-gate, with the aim of exploring the foundations of this most central of quantum information

protocols.

In this Section, we have shown how the chained quantum Zeno effect can be employed to

construct an experimentally feasible, exchange-free controlled-R̂z operation, which is not only

a universal gate, but can be considered a universal set. This allowed us to propose a protocol

for deterministic teleportation of an unknown quantum state between Alice and Bob, without

exchanging particles.

5.4 Chapter Conclusion

This Chapter presented a protocol allowing Bob to directly perform any computation on a

remote Alice’s polarisation qubit, without exchanging any photons between them. We use this

to show how, in principle, Bob can directly enact any quantum algorithm at Alice, exchange-

free. We then showed how the chained quantum Zeno effect can be employed to construct an

experimentally feasible, exchange-free controlled-R̂z operation, which is not only a universal

gate, but can be considered a universal set. This allowed us to propose a protocol for deterministic

teleportation of an unknown quantum state between Alice and Bob, without exchanging particles.

This is the first example in this thesis of new research where a foundational idea (here,

counterfactual communication) is used for the development of a novel form of quantum technology.
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This illustrates the interplay between quantum foundations and quantum technologies, insofar

as foundational ideas can be leveraged for technological gain.
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6
COUNTERFACTUAL GHOST IMAGING

Declaration of contribution: This chapter is based on the published article Counter-

factual Ghost Imaging [HR21b], which was conceived, simulated, and written by myself,

supervised and edited by Prof John Rarity.

6.1 Chapter Introduction

Ghost Imaging exploits the the position-momentum entanglement between correlated

photon pairs to derive image information. When one photon of the pair travels via the

object and is focused into a bucket detector, an image can still be formed using coincident

detection of the partner photon in a high-resolution pixel detector [Mal+10; SB12; Asp+13; PB17]

(as shown in Fig.6.1).

Pittman et al originally conceived ghost imaging to illustrate the power of quantum correla-

tions [Pit+95]. However, it has since been shown thermal light can be used to replicate this effect

classically [BBB02; CZ05; Fer+05; DDX13]. Doing so however, rather than using an entangled

photon pair, removes some benefits of the original protocol. Entangled photon pairs created by

Spontaneous Parametric Down-Conversion (SPDC) are both position-correlated (so can image in

the near-field), and momentum anti-correlated, meaning they are position anti-correlated in the

far-field, and can image there too. Classically, they can only be (anti-)correlated for one of the

two conjugate variables, so can only image in one of these regimes [PB17]. Therefore, despite the

comparative ease of using thermal light, entangled photon pairs still provide an advantage.

Despite claims in [Asp+15], having short-wavelength photons going to the high-resolution

detector and longer wavelengths to the object does not allow an increase in imaging resolution

above and beyond standard diffraction limits [Mor+18]. Regardless, the ability to ghost image
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Figure 6.1: A standard set-up for ghost imaging. Position-and-momentum-entangled photons
are generated in pairs at the SPDC source from a laser beam, with conjugate polarisations (i.e.
always in pairs of horizontal and vertical polarisation). A PBS sends the vertically polarised
photon to an Intensified Charge-Coupled Device (ICCD) camera (which records in high resolution
its arrival position), and sends the horizontally-polarised photon via a sample to be imaged, to
a bucket detector (DB). By recording coincidences between the detections at the ICCD and the
bucket detector, the sample can be “ghost imaged”.

while reducing the energy going to the object under investigation, to reduce potential damage,

could be massively beneficial [Gen16; Gil+19].

Zhang et al combined Ghost Imaging with the Elitzur-Vaidman Bomb Tester [EV93] to create

a form of Ghost Imaging where there is a chance that information is still received about the

imaged object without any photons being absorbed by it [Zha+19]. However, the Elitzur-Vaidman

Bomb Tester is not always necessarily counterfactual—there is a (reasonably high) chance the

photon can go via the object being investigated [HLR21].

By replacing the Elitzur-Vaidman object-detection system in Zhang’s protocol with Salih et al’s

method for counterfactual communication [Sal+13b], we create a protocol for ghost imaging that

is always counterfactual: whenever information is received about the imaged object, no photons

have interacted with that object. Further, even in runs where no information travels, far fewer
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photons go to the object than in either the standard ghost imaging or in the interaction-free ghost

imaging case. This reduces the energy absorbed by the object, and so potentially damage done to

that object by the imaging process. This shows the benefit of leveraging quantum foundational

ideas—here, counterfactual communication and entanglement—for quantum technological gain,

illustrating the interplay between these two fields.

6.2 Protocol

For Counterfactual Ghost Imaging, we make use of a version of Salih et al’s counterfactual

communication protocol as a primitive. See Chapter 2.4.3 and Fig. 3.1 and 4.2 for the details of

this protocol. However, we use a common-path interferometer form of this protocol—PBSs are re-

placed with polarisation separators, which subtly divert horizontally-polarised light, and directly

transmit vertically-polarised light. We also use switchable mirrors to allow the repeated use of a

single inner/outer interferometer, rather than a spatially-extended chain of interferometers as in

the Michelson set-up described previously.

We now describe how to adapt Salih et al’s protocol to use it for Counterfactual Ghost

Imaging (as shown in Fig.6.2). A pair of conjugately-polarised photons, entangled in position

and momentum, are split at a PBS. The vertically-polarised photon is sent through an image-

preserving optical delay line to an Intensified Charge-Coupled Device (ICCD) camera (both of

which have previously been used to allow multi-mode ghost imaging, rather than single-mode

raster-scanning [Asp+13; Asp+15; Mor+15]). The horizontally-polarised photon is sent through

one run of Salih et al’s protocol, where the object to be imaged is put in place of Bob’s blocker. If

the object doesn’t block the path, the photon, in that spatial mode, remains horizontally-polarised,

and so goes to D0, leading to a coincidence measurement between D0 and that pixel of the ICCD

camera; however, if the object does block the path, the photon becomes V -polarised and so goes to

D1, causing a coincidence measurement between D1 and that pixel of the ICCD camera.

Note, because arrival in D0 (D1) is correlated far more closely in Salih et al’s protocol with the

object not blocking (blocking) the path (see Fig.6.3b) than in the Elitzur-Vaidman Bomb Tester

(and so Zhang et al’s protocol [Zha+19]), we only need to resolve coincidences between D0 and

the ICCD camera (unlike Zhang et al, who need to form two images—one based on D0-ICCD

coincidences, and the other on D1-ICCD coincidences—and subtract one from the other, due to

the interference patterns produced by the Elitzur-Vaidman Bomb Tester [EV93]). However, by

resolving both D0-ICCD and D1-ICCD coincidences, and subtracting one from the other, we can

image with high accuracy even for low N—so we do this.

A similar protocol could be constructed by replacing Salih et al’s protocol in the imaging set-up

with either Aharonov and Vaidman’s modified protocol [AV19], or Vaidman’s later adaptation

[Vai19]—however, such a protocol would not be counterfactual by the consistent histories criterion

(as shown by Salih [Sal18c; Sal+22]).
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Figure 6.2: Our Counterfactual Ghost Imaging Protocol. This is based on the combination of
standard Ghost Imaging (Fig.6.1) and a common-path interferometer version of Salih et al’s
counterfactual communication protocol [Sal+13b]. We create a pair of position-and-momentum-
entangled photons, one horizontally polarised and one vertically polarised, by passing a pulsed
pump laser through a SPDC crystal, before collimating the beam, and filtering out the pump.
The photon pair is split at a PBS, with the V -polarised photon going through a long optical delay
to an ICCD camera, and the H-polarised photon going through a run of Salih et al’s protocol,
adapted so the object to be investigated is put in place of Bob’s blocker. The switchable mirrors
allow the photon to cycle the correct number of times: the first for M outer cycles; and the second
for N inner cycles per outer cycle. The polarisation separators subtly divert horizontally-polarised
light, and directly transmit vertically-polarised light. The HWPs are tuned to implement a R̂y(θ)
polarisation-mode rotation with θ of π/2M and π/2N respectively. The detector DL acts as our
loss channels (which we postselect against). After M outer cycles, the switchable mirror sends
the photon to the optical circulator, which sends it to the PBS. The path not being blocked by
the object leads the photon to remain H-polarised, and so go to D0, leading to a coincidence
measurement between that and the ICCD camera; however, the path being blocked leads to the
photon becoming V -polarised and so going to D1, so coincidence measurement between that and
the ICCD camera. The use of multi-mode interferometers and (position-momentum) correlations
between the entangled photons enables multi-mode ghost imaging in this counterfactual set-up.
Note, the polarisation separators ensure a common path length for both H− and V -polarised
components, while generating beam separations of the several millimetres. An optimisation we
mention in the discussion has photons going to DL can trigger a coincidence measurement with
the ICCD camera, treated as if it was a detection at D0, which does not affect the chance of
photons interacting with the object (photons only go to DL if the object doesn’t block the channel),
and allows us to lower the number of outer cycles to the minimum required (2) with no increase
in loss.
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For the original Ghost Imaging protocol, photon pairs are generated by SPDC [Pit+95]. This

makes use of second-order nonlinearities in an optical medium to generate conjugately-polarised

photon pairs entangled in position and with frequencies that sum to the frequency of an input

pump laser. By using a low-pass filters, the photons can be split off from the pump laser, and then

split from one another using a PBS, sending one to the high-resolution detector, and the other to

the object and bucket detector. We propose using the same source for our protocol.

Also note, for the V -polarised photon going to the ICCD camera, rather than using an optical

delay, the ICCD camera can detect the photon earlier, but record the time of arrival as well as

the position, which can be used with post-processing to determine effective coincidences with the

bucket detectors, avoiding issues with long optical delays.

6.3 Discussion

Counterfactual communication has been controversial, with many debating whether given

protocols are counterfactual—most notably from the weak trace [Vai13a] and consistent histories

[Gri16] approaches to the path of a quantum particle. However, unlike other protocols [Noh09;

AB16; LAZ15; AV19; Vai19] Salih et al have recently shown their protocol for counterfactual

communication is counterfactual by both these criteria [Sal+22]—whenever Alice detects the

photon at either D0 or D1, she can be sure it has never been at Bob. However, when the number of

cycles isn’t infinite, there is a chance the photon could end at Bob, rather than Alice, in which case

the protocol is aborted and restarted. Given a use of Ghost Imaging is to image photosensitive

samples [Gen16; Gil+19] (which could be easily damaged by high-energy photons), we want

to reduce the chance of any photons going to/via the object as much as possible. We plot this

probability in Fig.6.3a. Note, as N goes to infinity, this probability goes to zero.

Interestingly, Aharonov and Rohrlich have recently shown counterfactual communication

conveys modular angular momentum Lzmod2ℏ of ℏ from Alice’s photon into Bob’s blocker

whenever Bob blocks [AR20]—however, there is no energy associated with this, meaning there is

no chance of this damaging photosensitive samples; therefore, we can ignore this in our analysis.

In Salih et al’s 2013 protocol, there is a probability of erroneous D0 clicks, as they take

cos(π/2N)N → 1 for large N. This probability, for M = 2, is

(6.1) P(D0|Block)M=2 =
(
cos

( π

2N

)N −1
)2

/4

We plot the probability for given values of M and N in Fig. 6.3b. By increasing the rotation

slightly at the start of each outer cycle, this error could be avoided—future work will consider the

exact value needed, and the specific benefits of this optimisation.

We now discuss measures of efficacy for the protocol.
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Figure 6.3: Loss probabilities when the object blocks the path. Probability, when the object blocks
the channel, of the photon: interacting with the object being imaged (PInt) (a); or erroneously
ending up in D0 (b). We plot these for given numbers of outer (M) and inner (N) interferometer
cycles. Note, the photon only goes via the object erroneously—in any case when D1 clicks, the
detection of the object will have been fully counterfactual. Further, both the interaction and
erroneous-D0 probabilities go to 0 as N goes to ∞.

The Signal-to-Noise Ratio (SNR) [OCB10; Bri+11; Gen16], a useful measure of the efficacy of

an imaging system, is given by

(6.2) SNR= |∆Ī|
σ(|∆Ī|)

where ∆Ī is the difference in average intensity values observed by a detector between inside and

outside the object, and σ(|∆Ī|) is the standard deviation in this difference.

For standard ghost imaging, when an average of N̄ photons (those generated in a given time

interval by a SPDC source) interrogate an object, none of the N̄ photons will reach the detector,

giving a change in photon detection number at the detector of ∆NGI =−N̄. Given spontaneous

parametric down-conversion has thermal statistics for rate of emission (which look Poissonian

averaged over many temporal modes), the SNR is

(6.3) SNRGI = N̄/
√

N̄ =
√

N̄

For counterfactual ghost imaging, we define∆ND0 (∆ND1) as the difference in photon numbers

received at D0 (D1) between the object blocking and not blocking the channel (which in each case

is N̄ times the difference in probability of a photon reaching that detector in each of those two
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Figure 6.4: Plots of the SNR. This is for: equal numbers of photon pairs generated in a given
time by the SPDC source (a); and equal numbers of photons absorbed by the object (b)—and the
visibility V of the protocol (c)—for our original protocol. d,e and f give these values for when
photons that would go to DL also count for coincidence measurements as if they went to D0.
These are as functions of the number of outer (M) and inner (N) interferometer cycles.

cases). Note, ∆ND0 and ∆ND1 will have opposite signs. Therefore,

SNRCGI =
|∆ND0 −∆ND1|

σ(|∆ND0 −∆ND1|)
= f (M, N)

√
N̄ = f (M, N)SNRGI

(6.4)

which we plot in Fig. 6.4a (as a multiple of SNRGI , the SNR of standard ghost imaging). For

values of M and N where SNRCGI = 1, the protocol is just as good at imaging as standard ghost

imaging. In these cases, Fig. 6.3b shows that in our protocol the probability of a photon interacting

with the object is much less than the 73.5% limit from previous protocols [Zha+19].

However, rather than looking at the SNR for the photons generated by a SPDC source in a

given period of time, a more apt comparison would be the SNR for which the same number of

photons are absorbed by the object as in standard ghost imaging. Given the average number of

photons interacting with the object is PInt times N̄, we get

(6.5) SNRInt = f (M, N)
√

N̄/PInt = f (M, N)√
PInt

SNRGI
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which we plot in Fig. 6.4b (again in terms of SNRGI ).

Even for low numbers of outer and inner cycles (M and N), our protocol gives a vast improve-

ment over the signal-to-noise ratio of standard ghost imaging—for instance, two outer cycles of

13 inner cycles gives double the equal-photon-absorption SNR of standard ghost imaging. This is

much higher than the 118% improvement in equal-photon-absorption SNR that Zhang et al’s

protocol gives [Zha+19]. Note, as N →∞, the probability of a photon interacting with the object

goes to 0, meaning SNRInt becomes infinitely larger than the SNR available with standard ghost

imaging (if we’re willing to wait that long).

Another key measure of an imaging protocol’s efficacy is its visibility, V , defined as

(6.6) V = |N̄In − N̄Out|
N̄In + N̄Out

Visibility gives how responsive to a difference in presence/absence of an object is, defined on a

scale from 0 to 1. For our protocol, visibility is given as

(6.7) VCGI =
|∆ND0 −∆ND1|

2N̄

(the changes in intensity for D0 and D1 over the maximal possible changes in their intensities,

remembering their opposite signs). This gives reasonable values (i.e. between 0 and 1) for our

protocol, as given in Fig.6.4c. For instance, 5 outer cycles of 12 inner cycles gives a visibility of

0.569. This shows higher visibility than the maximal we calculate for Zhang’s protocol (0.5625)

[Zha+19].

We now discuss a method for increasing the efficacy of the protocol, at the expense of it no

longer being truly counterfactual.

When the object does not block the photon’s path in the adapted Salih et al device, for

finite numbers of outer interferometers (M), there is a chance the photon will cross through the

unblocked gap, in which case it goes to the loss detector DL rather than the coincidence-linked

detector D0. This occurs with probability

(6.8) P(DL|NB)= 1−cos
( π

2M

)2M

which we plot in Fig.6.5. This goes to 0 as M goes to infinity.

Note, if we weaken our definition of counterfactuality to be that the photon never goes via the

object’s path when the object is there (rather than the photon never goes via that path at all), we

could link detector DL as well as D0 to the ICCD camera, treating coincidences between DL and

the ICCD camera as if they were between D0 and the ICCD camera. This would let us use the

minimum number of outer cycles the protocol works for, two, rather than requiring higher values

of M to avoid us erroneously ignoring ICCD detections. We do a version of this in Fig.6.2, having

photons which would go to DL treated as if going to D0.

This led us to plot altered values for SNRs and visibility, taking into account DL now going to

D0. These are plotted in Fig.6.4 (d, e and f), and give even better values for all three measures.
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Figure 6.5: Probability the photon goes to DL rather than D0. This is the probability that, when
the object does not block the photon’s path, the photon travels via that path (and so goes to DL
rather than D0. This is as a function of number of outer cycles (M).

Traditional ghost imaging can only distinguish between whether or not a photon could have

passed through a given region (i.e. whether, at that point, a mask would transmit that photon,

or whether it would absorb/reflect it). This makes this style of ghost imaging bad for imaging

transparent/translucent objects—which is unfortunate, given the many applications for the

detection of low-contrast objects. However, Abouraddy et al, and later Gong et al, proposed

[Abo+04; GH10] (and Zhang et al experimentally demonstrated [Zha+14]) schemes which make

use of phase-sensitivity to allow materials to be detected which, while translucent, create a

change to the phase/polarisation of transmitted light. Zhang et al’s interaction-free ghost imaging

also demonstrated this sensitivity [Zha+19]. Further, given it relies on interference to direct the

photon to one of two bucket detectors, our scheme is also sensitive to changes in phase induced by

transparent objects—presenting yet another benefit of our protocol over standard ghost imaging.

Alongside standard ghost imaging, which makes use of entangled photons, alternative forms

have been created which instead just use classical correlations. Given this is classically simulable,

a version has been demonstrated which is referred to as computational ghost imaging—where

rather than sending a correlated photon to a high-resolution/scanning detector, a spatial light

modulator (SLM) applies an effective reference pattern to the photon probing the object. Given
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Figure 6.6: Plots (assuming realistic component loss) of the SNR. These are for: equal numbers of
photon pairs generated in a given time by the SPDC source (a), and equal numbers of photons
absorbed by the object (b)—and the visibility V of the protocol (c)—for our original protocol.
d,e and f give these values for when photons that would go to DL also count for coincidence
measurements as if they went to D0. These are as functions of the number of outer (M) and inner
(N) interferometer cycles.

counterfactual ghost imaging allows us to image an object counterfactually while preserving

quantum correlations between the signal and idler photons, it can clearly preserve the classical

correlations necessary for computational ghost imaging. In such a set-up, we replace the SPDC,

beamsplitter and ICCD camera with a single photon source, a spatial light modulator (SLM), a

pseudo-random illumination pattern, and computational analysis. While it remains to be seen

the effect the loss of quantum correlations would have on fidelity, loss, SNR and visibility, this

shows the flexibility of counterfactual alterations to ghost imaging.

The analysis presented above assumes ideal components. Sadly, no component is ideal. In our

protocol, the four key components which could through loss affect the protocol are the HWPs, the

PBS, the switchable mirrors, and the detectors. In this Subsection, we model the protocol with

these at experimentally realistic values, to show that, even with these limitations considered, the

protocol still provides a significant advantage over both standard ghost imaging, and classical

metrology.
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At designed-for wavelengths, HWPs can achieve loss (through reflection) of O (0.1%); PBSs

can achieve loss (through absorption) of less than 1%, and a typical heralding efficiency for a

SPDC/SPAD set-up like ours is 18%. Practically, switchable mirrors pose an issue (given typical

switching times for these are of O (10−6s), while the switching we need has to be of O (10−9s)).

However, Cao et al showed how to adapt the protocol to use fixed components that alter a degree

of freedom on the photon to effectively ‘count’ the number of cycles it has travelled, and transmit

it after the right number [Cao+17]. This however adds loss in their demonstration of 15/16 per

outer cycle. Despite this, as we show in Fig.6.6 (which shows the same quantities as in Fig.6.4

albeit adjusted to take into account these losses), the SNR per photon absorbed is still far higher

than for standard ghost imaging.

6.4 Chapter Conclusion

We have given a protocol for ghost imaging in a way that is always counterfactual—while

imaging the object, no light interacts with that object. This extends the idea of counterfactuality

beyond communication, showing how this interesting phenomenon can be used for metrology.

Given, in the infinite limit, no photons ever go to the imaged object, it presents a method of

imaging even the most light-sensitive of objects without damaging them. A future direction

would be separately leveraging the chained quantum Zeno effect to see if this performance can

be improved further. Another future direction, which we discuss in Chapter 10, is leveraging

counterfactual/interaction-free metrology for the task of polarimetry—identifying the effect a

given sample would have on the polarisation of any arbitrary light ray transmitted through it,

while sending vanishingly small quantities of light through the sample itself.

This work gives another promising example of how quantum foundational work can be

leveraged for the development of quantum technological tools. Given the large number of potential

use cases for optical metrology with reduced light flux through the imaged sample (e.g., the

imaging of optically-sensitive biological or archaeological samples), and the impact the use of such

a tool could have in each of these cases, the work presented in this Chapter serves to reinforce

just how powerful the adaptation of quantum foundational ideas for quantum technologies can

be, in allowing us to create tools to benefit society beyond just the quantum community.
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Extensions to Quantum Mechanics
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“The concept of ‘measurement’ becomes so fuzzy on reflection that it is quite surprising to have it

appearing in physical theory at the most fundamental level... does not any analysis of measurement

require concepts more fundamental than measurement? And should not the fundamental theory

be about these more fundamental concepts?”

J. S. Bell,

“Quantum Mechanics for Cosmologists” (1981)

([Bel81])
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7
EXTENSIONS OF QUANTUM MECHANICS BACKGROUND

Declaration of contribution: This chapter acts as a literature review for Part II of

this thesis. Section 7.2 is partly based on the published paper, Bell’s theorem allows local

theories of quantum mechanics [HH22c], and Section 7.3 is adapted from the published

paper What does it take to solve the measurement problem? [HH22a]. Both of these papers

were conceived and written by myself and Dr Sabine Hossenfelder. These papers were

written at a later stage of my PhD, when I had been developing independent collaborations,

and my supervisors were happy for this independent work to be included in my thesis.

7.1 Chapter Introduction

In this chapter, we lay out the necessary background for this second Part of the thesis, which

looks at (specifically statistical independence-violating) extensions of quantum mechanics.

This involves first introducing Bell’s Theorem, and the assumptions necessary to formulate

a Bell inequality. We then focus on the statistical independence assumption specifically, and

proposed extensions of quantum mechanics where this assumption is violated. After this, we

move onto the measurement problem in quantum mechanics, illustrating how it arises from

the axioms of quantum mechanics, requirements a solution to the problem must possess, and

why currently-proposed interpretations and extensions of quantum mechanics fail to solve the

problem.

This Chapter, and Part overall, allows us to survey cases where quantum devices and technolo-

gies can be used to test foundational ideas—the second part of the interplay between quantum

foundations and quantum technologies.

103



CHAPTER 7. EXTENSIONS OF QUANTUM MECHANICS BACKGROUND

7.2 Bell’s Theorem

In this section, we go over Bell’s Theorem. This states that, given certain (reasonable-

sounding) classical assumptions, one can generate an inequality from the expected results

of an experimental scenario, which can be violated by expected results when represented using

quantum mechanics [Bel71]. This programme, developing experiments where quantum mechan-

ics gives differing predictions to those expected from reasonable assumptions about the nature

of the world, originated with Einstein, along with Podolsky and Rosen (EPR) [EPR35]. They

first came up with a case in which interpreting quantum mechanics as fully describing a given

situation seemingly leads to a paradox. In this section, we first go through this EPR paradox,

and Bohm’s simplification of it, before showing how to use this EPR-Bohm set-up to derive a

Bell inequality: the Clauser-Horne-Shimony-Holt (CHSH) inequality. We then describe experi-

mental attempts to violate this inequality (e.g. Freedman and Clauser’s [FC72], and Aspect et

al’s [AGR81; AGR82]), loopholes in those experiments, and how those loopholes were resolved.

Finally, we consider the assumptions needed to formulate a Bell inequality, and the consequences

in each case for that assumption being violated.

7.2.1 EPR Paradox

Einstein, Podolsky and Rosen came to a paradox by combining conjugacy (one variable’s

uncertainty increasing as the other’s decreases) and entanglement (two particles’ states being so

correlated they cannot be written independently) [EPR35]. By measuring one of a set of conjugate

variables for one of a pair of entangled particles, quantum mechanics says the conjugate variable

for the other particle becomes uncertain. This is despite the two particles potentially being

spatially separated, and standard quantum mechanics providing no mechanism for a signal to

propagate between them.

Bohm simplified this paradox, doing away with non-commuting observables, and focusing

on joint states—those which quantum mechanics says cannot be written as the (tensor) product

of single-particle states [Boh51]. He gave the example of the joint spin state of two entangled

electrons, where the total spin of the two particles is 0 (see Fig 7.1).

Using Bra-Ket notation, we write the spin-states of the two electrons as the Bell state

(7.1)
∣∣ψ〉= 1p

2
(|↑〉1 ⊗|↓〉2 +|↓〉1 ⊗|↑〉2)

where indices 1 and 2 label the spin states of particles 1 and 2 respectively. Note, while normally

we need to define a basis for the result of a spin measurement (e.g., for a spin-1/2 particle, spin-up

or spin-down in the X , Y or Z direction), the Bell state in Eq. 7.1 takes the same form regardless

of the basis in which we represent it, so long as we represent both particles in the state in the
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Figure 7.1: The EPR-Bohm experiment [Boh51], where a source emits pairs of spin-entangled
particles in opposite directions. The joint spin state of the two particles is

∣∣ψ〉= (|↑〉1⊗|↓〉2+|↓〉1⊗
|↑〉2)/

p
2. The left-hand particle is subjected to either test a or a′, and the right-hand one, to either

test b or b′. All tests have result either +1 or −1. This set-up (alongside various assumptions,
discussed below) was used to derive the CHSH inequality [Cla+69], which was experimentally
violated by Aspect et al [AGR82].

same basis—i.e.,

|Ψ〉 = 1p
2

(|↑X 〉1 ⊗|↓X 〉2 +|↓X 〉1 ⊗|↑X 〉2)

= 1p
2

(|↑Y 〉1 ⊗|↓Y 〉2 +|↓Y 〉1 ⊗|↑Y 〉2)

= 1p
2

(|↑Z〉1 ⊗|↓Z〉2 +|↓Z〉1 ⊗|↑Z〉2)

(7.2)

(and similarly for any other choice of representation direction).

As this state cannot be written as the tensor product of the two individual electrons’ states,

quantum mechanics says we cannot describe these two electrons’ spins independently of one

another. This means, if this description is the most complete we can have, when one of the

electrons’ spins is measured, it collapses the overall state, pushing the other electron into its

corresponding spin (and making its spin in any of the other two mutually unbiased bases

uncertain). If we are being fully realist about both the wavefunction (i.e. saying there is nothing

in this system not described by the wavefunction as given/no hidden variables) and this collapse,

this just happens instantaneously, and so information must travel superluminally. To reinforce

this, the state into which the first electron collapses is completely random according to standard

quantum mechanics, so there is no way (by this account) that the second electron can be said

to be ’pre-prepared’ into the corresponding state in advance, to avoid the need for superluminal

information transfer.

Einstein dismissed this effect as “spooky action at a distance" (spukhafte Fernwirkung)

[Ein71]—information seemingly passing from one place to another, instantly and without mech-

anism. To him, this meant there must be a deeper description of what was happening in the
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system than standard quantum mechanics provided: a possibility referred to as “hidden-variables”

theories.

7.2.2 Bell Inequalities

For nearly thirty years after the EPR paper, quantum mechanics was considered either

incomplete, failing to account for some ’hidden variables’ which further explain its peculiarities,

or to violate some fundamental assumption about the nature of the universe. However, in 1964

Bell proposed an experiment to settle the debate [Bel64]. For the EPR-Bohm experiment, Bell

derived the upper limit for measurable correlations between the two particles, assuming they

obeyed a local hidden-variable model (among other assumptions).

These local hidden variable models posit a variable λ, which, from the moment an entangled

state is generated, holds information as to the final state its constituents will end up in, above

and beyond that given by the wavefunction. For instance, for Eq. 7.1, this information would be

whether the spins of the two electrons will collapse to |↑〉1 ⊗|↓〉2 or |↓〉1 ⊗|↑〉2). This variable is

hidden (i.e., not necessarily accessible to the experimenter), and local (i.e., cannot be used as a

channel to superluminally transmit information between the two particles). The space Λ spans

all possible values for this local hidden variable (i.e. λ ∈Λ, ∀λ).

By using properties of these local hidden variable theories alongside certain assumptions,

Bell (and others) derived inequalities for sums of correlation functions. The most famous of these

Bell inequalities is the CHSH inequality [Cla+69] (of which we use the Wigner form [Wig70;

Red87]). As in the EPR-Bohm set-up, a source emits pairs of particles in opposite directions.

The left-hand particle is subjected to test a (either a0 or a1), and the right-hand one to test b

(either b0 or b1). All tests have result either +1 or −1 (see Fig. 7.1). For example, for tests of

single-photon polarisation, where a0 and a1 (b0 and b1) are differently oriented polarisers, +1

corresponds to the photon being transmitted, and -1 to it being absorbed.

For a given trial i, we call the result of the experiment of the left A i either A0,i or A1,i

(depending on whether we choose test a to be a0 or a1), and similarly Bi as either B0,i or B1,i.

Therefore, we can write the four pairs of products of the results as A0,iB0,i, A1,iB0,i, A0,iB1,i,

and A1,iB1,i.

We use these 4 result combinations to give

γi(a0,a1,b0,b1)=A0,iB0,i + A1,iB0,i + A0,iB1,i − A1,iB1,i(7.3)

As A0,i, A1,i,B0,i,B1,i ∈ {−1,1},

γi(a0,a1,b0,b1)= A0,i(B0,i +B1,i)+ A1,i(B0,i −B1,i)

=±2
(7.4)

For N events, given γi =±2,

(7.5)

∣∣∣∣∣ 1
N

N∑
i=1

γi

∣∣∣∣∣=
∣∣∣∣∣ 1
N

N∑
i=1

A0,iB0,i + 1
N

N∑
i=1

A1,iB0,i + 1
N

N∑
i=1

A0,iB1,i − 1
N

N∑
i=1

A1,iB1,i

∣∣∣∣∣≤ 2
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As A i ∈ {A0,i, A1,i} and Bi ∈ {B0,i,B1,i}, the expectation value for the product of the results of

a given pair of measurements a,b is

(7.6) E(a,b)= lim
N→∞

1
N

N∑
i=1

A iBi

so Eq. 7.5 becomes

(7.7) S = |E(a0,b0)+E(a1,b0)+E(a0,b1)−E(a1,b1)| ≤ 2

This is the CHSH inequality. Note, the CHSH inequality is typically used as, unlike Bell’s

1964 inequality, it doesn’t require perfect anticorrelation between the measurement outcomes

of the two particles when measured using the same setting. This allows it to better account for

experimental errors; with perfect anticorrelation, it simplifies to Bell’s initial inequality [Bel71].

Quantum mechanics can violate this limit. Returning to the state defined in Eq. 7.1, the

quantum mechanical expectation value for the product of the results of two tests a,b on the two

parts of the entangled state (i.e., test a on the part of the state labelled subscript 1, and test b on

the part labelled subscript 2) is

(7.8) E(a,b)= 〈Ψ| (σ1,a ⊗σ2,b |Ψ〉

where σ1,a is the spin operator on particle 1 in direction a (and σ2,b the spin operator on particle

2 in direction b), such that for instance

(7.9) σ1,Z |↑Z〉1 = |↑Z〉1 ; σ1,Z |↓Z〉1 =−|↓Z〉1

As spin lives on the Bloch sphere, we can simplify Eq. 7.8 by decomposing spin measurements

in the b direction, into the component of the measurement parallel to a, and the component

perpendicular to a (denoted a ⊥):

(7.10) E(a,b)= 〈Ψ|(σ1,a ⊗
(
cosθabσ2,a +sinθabσ2,a⊥

)) |Ψ〉

where θab is the angular distance along the Bloch sphere between a and b.

As |Ψ〉 is the state given in Eq. 7.1, which keeps the same form regardless of the basis we

represent it in, Eq. 7.8 simplifies further to

E(a,b)=−cosθab(7.11)

This means, given

(7.12) S = |E(a0,b0)+E(a1,b0)+E(a0,b1)−E(a1,b1)|

in the quantum case,

(7.13) S = ∣∣−cosθa0b0 −cosθa1b0 −cosθa0b1 +cosθa1b1

∣∣
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This is maximal when θa0b0 = θa1b0 = θa0b1 =π/4 and θa1b1 = 3π/4, such as when

(7.14) a0 =σX ; a1 =σZ ; b0 = σZ +σXp
2

and b1 = σZ −σXp
2

and gives

(7.15) Smax =
∣∣∣∣− 1p

2
− 1p

2
− 1p

2
−+ 1p

2

∣∣∣∣= 2
p

2

This is a proof of the Tsirelson bound [Cir80]: the maximal value of S achievable using

quantum mechanics. (Note, for the EPR-Bohm scenario, Popescu and Rohrlich showed S can go

above this bound, up to S ≤ 4, for general nonlocal theories [PR94], though Carmi and Cohen

showed models where S > 2
p

2 must at the least violate a subtle form of relativistic causality).

While there are more formal proofs, generalised for all quantum systems (rather than just

dimension-2, like the spin-1/2 qubits above), this proof serves our purpose. It shows the CHSH

inequality can be violated using quantum logic: local-hidden-variable models of the sort used to

generate the CHSH inequality above fail to account for predicted quantum correlations between

the two particles. Therefore, an experiment giving S > 2 would show the Universe violates one of

the assumptions used to form this inequality.

7.2.3 Experimental Tests and Loopholes

The first experimental attempt to violate a Bell inequality was performed by Freedman

and Clauser in 1972 [FC72]. This used polarisation-entangled photon pairs, generated through

the atomic cascade of Calcium, to try and violate the CHSH inequality that Clauser et al had

proposed two years earlier. However, this experiment left a number of loopholes—ways a local

hidden-variable theory could still explain the correlations observed, given practical details of the

experiment. In this Subsection, we discuss these loopholes, and how later Bell tests managed to

avoid them, such that loophole-free violations of Bell inequalities have now been performed. We

follow Larsson et al’s categorisation of these loopholes into the Locality loophole, the Memory

loophole, the Detection loophole, and the Coincidence loophole [Lar14].

Locality: If local (i.e., subluminal) communication between the two measurement sites is

possible in the time between a measurement choice being decided at one measurement site, and

the measurement being performed at the other measurement site, then it is perfectly consistent

that we could observe correlations which violate our Bell inequality even if the Universe obeys a

local hidden-variable theory. This was the Locality loophole found in Freedman and Clauser’s

experiment—we could imagine some mechanism by which the measurement settings at the

first site (the polariser direction being set) locally affect the state of the particle at the second

site, in such a way as to generate these correlations. This loophole was first closed in Aspect et

al’s tests, proposed in 1976 [Asp76], and performed in the early 1980s [AGR81; AGR82]. These

experiments also used polarisation-entangled single photons, but used time-varying analysers to

perform measurement. These analysers are effectively variable polarisers, which jump between
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two polarisation orientations in a time far shorter than the time it takes each photon to travel

from the source to its respective polariser.

Memory: While Aspect et al’s experiment closed the locality loophole, it raised a new

loophole—the memory loophole. This loophole comes from the analysers in Aspect et al’s experi-

ment shifting between the two polarisations deterministically, at a fixed frequency—the state

of the polariser at some given time in the future was predictable. One could imagine, while

unlikely, a way the system could extrapolate what the state would be at a given time to allow

the generation of Bell inequality-violating coincidences. Aspect himself noted this loophole in his

proposal [Asp76], saying the set-up required the supplemental assumption that the polarisers

have no “memory” as to what state they had been in previously, so they couldn’t extrapolate

from any regularity in the settings what their state would be in the future. This assumption

however is not needed (and the memory loophole closed) if the measurement settings for each

experimental run are chosen in some unpredictable way, so there is no way to infer what the

measurement setting will be for a given run. The first Bell tests to close this loophole were those

of Weihs et al [Wei+98]. Here, random number generators at each measurement site determined

which of the two possible measurement settings to use for a given run, after the photons were

emitted from the source. (This also avoids the locality loophole.)

Detection: next, we look at the detection, or efficiency loophole, whereby the possibility of

losing or not detecting particles during the experiment can affect the correlations observed. This

can occur in two ways. Firstly, when using polarisers (like Freedman and Clauser), one of the

measurement results (-1) is recorded when there is no detection, as one assumes the photon was

absorbed by the polariser, having had an orthogonal polarisation to the polariser’s measurement

setting. However, there are many other reasons the photon might be lost during the experiment.

For instance, the detector might not have perfect efficiency, the lenses and transmissive optics

between the source and the polariser might not be perfectly transmissive, or polarisers might

not be perfectly transmissive even at their transmission polarisation. Therefore, -1 would be

recorded far more often in practice than we would expect with a theoretically perfect experiment.

This could overshadow any correlation from entanglement, and lead to the data not violating

the inequality. To avoid this (and not receiving a click when observing a -1 detection), Freedman

and Clauser adapted the CHSH inequality to give an inequality in terms of rates of coincidence

detection as a function of angle between the two polarisers, divided by rate of coincidences when

both polarisers were removed. This however relies on an assumption of fair sampling—that the

detection efficiency is the same for different polarisations. This could be violated if, for instance,

the detectors had a bias towards detecting certain polarisations more efficiently than others, or

the lenses used subtly act as polarisers.

The detection loophole also appears in experiments such as Aspect et al’s. These use PBSs

of variable basis rather than variable polarisers, so there is a detection associated with both a

+1 and a -1 click. However, they still neglects runs (photon pairs) where one or both photons
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are absorbed. Therefore, forming a Bell inequality for these experiments still requires some

assumption of fair sampling—that observed runs are a fair sample of all runs. This loophole is

only closed by tests where this loss can be bounded and accounted for. Initially, this was only

possible in tests using solid-state platforms rather than optics, such as Rowe et al’s [Row+01],

which then had the locality loophole. However recent experiments have been performed which

close both detection and locality loopholes simultaneously—e.g. Hensen et al’s [Hen+15], which

use a combination of optics and nitrogen-vacancy centre qubits, and Giustina et al’s [Giu+15] and

Shalm et al’s, which both use entangled photon pairs.

Coincidence: A related loophole is the coincidence loophole: given we rely on simultaneous

detection times to tell us which particles where initially generated in the same pair, we could

imagine a local hidden variable model whereby state/setting-dependent delays cause correlations

which violate the Bell inequality [LG04]. This loophole is most problematic in photon-pair

experiments, such as Freedman and Clauser’s, and Aspect et al’s, but can again be mitigated in

solid-state experiments. In these, it is easier to assign measurement results to a given run, and

so they don’t require coincidence detection. Larsson showed that later photonic Bell tests (e.g.,

Giustina et al’s and Shalm et al’s) also avoid this loophole [Lar+14].

Bell tests have been performed which close all these loopholes. These experiments show one of

the assumptions which go into generating a theoretical Bell inequality must be false, rather than

there potentially being some convoluted experimental reason why we observe such a violation.

Over the last fifty years, the quantum community has worked hard to evaluate and mitigate

against any way an observed Bell inequality violation could be due to one of these loopholes, rather

than due to one of these assumptions being false. This shows the benefits of interaction between

foundational and technological minds, and illustrates the necessity of interaction between the

quantum foundations and quantum experimentalist/technological communities when performing

work such as this.

7.2.4 Assumptions

Above, we showed that observed Bell inequality violations are not due to experimental

loopholes, but must instead necessarily be due to one of the assumptions used to generate such

a Bell inequality being false. We now look in more detail at these assumptions. In this thesis,

we divide the assumptions into Hidden Variables, the Matching Condition, and Factorisability

(which we subdivide into No Superluminal Interaction and Statistical Independence). Note

there are many other categorisations (e.g. Wiseman and Cavalcanti’s [WC17]), which subdivide

many of these assumptions further. However this simple categorisation is sufficient for our

purposes, given we are mainly describing these assumptions to provide background before

looking more specifically at the statistical independence assumption (which is universal to these

categorisations).

Hidden variables The first assumption needed for the Bell inequality derivation above is
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the existence of hidden variables, and the result of a given measurement being a function both

of the measurement setting, and some hidden variables. These hidden variables are typically

viewed as localised at each particle in some way (i.e. as hidden system properties of each particle).

This becomes important when combined with the No Superluminal Signalling assumption

mentioned later. Note, these variables need not completely determine the measurement result

(i.e., there can still be some classical randomness to the process of measurement result generation).

However, given these variables are hidden, we can just add an additional hidden variable to

the model which differentiates between the different random options. This allows us to return

to a deterministic relationship between the combination of hidden variables and measurement

setting, and measurement results, without affecting the conclusions of the model.

We can represent this dependence on hidden variables by writing our product result AB as

(7.16) AB ≡ A(a,b,λ)B(a,b,λ)

where a and b are our two measurement setting choices (a ∈ {a0,a1}, b ∈ {b0,b1}), and λ represents

our hidden variables. Here, for greatest generality, we have each measurement result A, B written

as a function of both the measurement choice applied on its side, and the measurement choice

applied to the other side. This is restricted further by the Factorisability assumption discussed

below.

The hidden-variables assumption is often claimed to be rebutted by the violation of Bell

inequalities. Those who hold to this interpretation claim that what Bell’s Theorem shows is that

quantum mechanics provides a complete description of the world, and hidden variable models

are unnecessary classical baggage we bring with us.

Matching Condition The next assumption required to generate a Bell inequality is the

matching condition. This is a strong version of the assumption of counterfactual definiteness—

that there is a matter of fact about the results of unperformed measurements. Looking back

at Subsection 7.2.2, we define γi for a given trial i by summing the four different pairs of

measurement results. However, this requires there to be a matter of fact about what result we

would get, had we performed each of the four possible pairs of measurements on the particle pair.

For instance, imagine for a given trial that we had measured the two particles with measurement

settings a0 and b0, and so got measurement result pair A0,iB0,i. To generate a value of γ for

that trial, we are now required to also imagine what the results of a measurement would be, for

that trial, had we instead measured a1 instead of a0 (to get a value of A1,iB0,i). Further, we are

required to both imagine what the measurement result would be had we measured b1 rather

than b0 (to get A0,iB1,i), and what would happen if we measured both a1 instead of a0 and b1

instead of b0 (to get A1,iB1,i). We can only ever measure one pair of measurement settings on each

particle, so we have to assume it is meaningful to consider these counterfactual options. Note,

this is not the same as assuming that changing measurement settings on one side does not affect

the measurement results on the other, which is instead part of the locality assumption below. All
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the matching condition assumption requires is that the measurement results of unperformed

measurements are counterfactually definite for all four pairs of measurement choices.

There are ways to generate Bell inequalities without making explicit use of the Matching

Condition, as in stochastic hidden variables models. However, this involves considering probabil-

ity distributions over possible measurement result pairs, which requires assuming Kolmogorov’s

axioms [KB18]. However, these axioms are far stronger than the matching condition, and (de-

pending on how one interprets these probabilities) such an approach can itself be said to rely on

counterfactual definiteness as a sub-assumption.

Factorisability The next assumption we look at, which we use to form Bell inequalities, is

factorisability. This is the assumption we can write the product of the measurement results in

the form

(7.17) AB ≡ A(a,λA)B(b,λB)

where there are two implicit assumptions. The first is that the hidden variables λA are only able

to be influenced by events in the past or future light cone of the measurement event giving A,

and the same for λB and B. The second is that the measurement settings a and b can be treated

as completely free variables—they are not themselves influenced by each other, or the hidden

variables, nor can they influence the hidden variables.

This notion of factorisability therefore can be decomposed more fully into these two assumptions—

no superluminal interaction, and statistical independence.

No superluminal interaction The No Superluminal Interaction assumption is that there

can be no way for spacelike-separated events (those outside each others’ past or future light-cones)

to affect each other. By having the two measurement events spacelike-separated (as is required

to avoid the locality loophole), this assumption prevents the measurement setting on one side

of the set-up directly affecting the measurement result on the other side of the set-up (as in,

affecting the result beyond such correlation as would be allowed by the shared part of the hidden

variables). Therefore, it allows us to partially-factorise the product of the measurement results

into

(7.18) AB ≡ A(a(λ),λ)B(b(λ),λ)

However, this does not necessarily mean this assumption requires the measurement settings

on one side cannot affect the measurement results from the other, as this correlation between

the two could be carried through a correlation between the measurement settings and the

hidden variables. (This possibility is only blocked by combining the No Superluminal Interaction

assumption with the Statistical Independence assumption below.)

A concern with models which break this assumption is that we haven’t observed any other

systems where interaction occurs superluminally. Shimony therefore proposed the idea of quan-

tum interactions exhibiting superluminal ‘passion’, rather than action, at a distance [Shi93]. This
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is as, even if factorisability was violated by some superluminal effect for entangled particles, no

observer would be able to extract transmit information superluminally through this mechanism,

due to the No-Signalling Theorem [GRW80; PT04]. Therefore, the violation of this assumption

doesn’t necessarily allow observations which would contradict Special Relativity.

That this assumption is the one violated is one of the most common interpretations of Bell’s

Theorem, to the extent that Bell’s Theorem is often claimed to show that nature is nonlocal

[Tea22], and EPR-correlation (or at least the violation of factorisability) is often referred to in

quantum information theory as nonlocality [PR94; Pop14; Bru+14]. However, while it respects

No-Signalling, it still seems to violate our intuitions about Special Relativity, given this prima

facie prohibits any signal, not just observable information, travelling superluminally.

7.2.5 Statistical Independence

Statistical independence is the assumption that there is no correlation between our measure-

ment choices and our hidden variables. This can be represented in multiple equivalent ways.

Following the notation we use above, we can write this assumption as

(7.19) a ̸= a(λ); b ̸= b(λ); λ ̸=λ(a); λ ̸=λ(b)

Alternatively, if we imagine some probability distribution over our hidden variables describing

their likelihood, ρ, then we can write this assumption as

(7.20) ρ(λ,a,b)= ρ(λ), ∀a ∈ {a0,a1}, b ∈ {b0,b1}

It is a common misconception that this assumption is not needed, and so Bell’s Theorem

rules out all local hidden-variable models [SKZ13; SN16; Tea22]. However, the assumption

is mathematically necessary to formulate a Bell inequality [Che21; HH22c]—otherwise, the

measurement result on one side of the experiment could trivially depend on the measurement

setting on the other side of the experiment through the hidden variables, which would violate

factorisability without requiring superluminal interaction.

We can imagine three cases (ignoring just repeated coincidence) where this assumption is

not true (i.e., where there is some correlation between the hidden variables and measurement

settings). First, this correlation could be due to the hidden variables in some way causing the

choice of measurement settings; secondly, the measurement settings could in some way cause

the value of the hidden variables; or thirdly, the choice of measurement settings and value of the

hidden variables could have some common cause. Models following the first or third option are

commonly referred to as superdeterministic [HP20; Hos20] (although in Chapter 9 and [HHP22]

we discuss another set of models which fall under the third option). Models following the second

option are termed retrocausal: we do not discuss these further in this thesis, but recommend

[WA20] for a well-written review of these models.

113



CHAPTER 7. EXTENSIONS OF QUANTUM MECHANICS BACKGROUND

Examples of superdeterministic models include Brans’s model [Bra88], ’t Hooft’s cellular

automaton model [Hoo16], Ciepielewski, Okon and Sudarsky’s model [COS20], Donadi and

Hossenfelder’s toy model [DH22], and Palmer’s Invariant Set Theory (IST) [Pal20a]. We discuss

IST more in Chapter 9, as an example of a model which fits more neatly in a new subcategory of

statistical independence-violating model we propose—supermeasured models.

While authors often talk about classical superdeterministic models [DRS22], all the models

mentioned above use entanglement, superpositions, density matrices and wavefunctions just like

standard quantum mechanics. This illustrates why it is worth investigating local hidden-variable

models which avoid Bell’s Theorem: not just to return to something which looks like classical

mechanics, but to resolve issues which the standard formalism of quantum mechanics cannot. An

example of such an issue is the Measurement Problem.

7.3 The Measurement Problem

This section looks at the measurement problem in quantum mechanics. We go over how this

problem arises, the issues it causes, what we can say about possible solutions to it, and issues

with all previous attempts to resolve it.

Quantum mechanics, in its standard formulation (often referred to as the Copenhagen

Interpretation), has two different axioms for its time evolution. The one is the deterministic,

linear Schrödinger equation, the other the non-deterministic, non-linear, and generically non-

local collapse of the wave function. The latter is sometimes also referred to as the “reduction” or

“update” of the wave function.

The collapse of the wave function must be mathematically applied in the event of a mea-

surement, yet the theory leaves unspecified just what constitutes a measurement. While this

problem is a century old, it is still hotly debated [Mer22]. We show here that this is more than

just unsatisfactory, but is a severe shortcoming that requires a solution. Previous accounts of

some of the aspects discussed here can be found in [Mau95; Leg05; Wei16].

7.3.1 The Axioms

Below, we take an instrumental perspective on quantum mechanics. For this Section, quantum

mechanics is a mathematical machine. Into this machine we insert some known properties of a

system that we have prepared in the laboratory. Then we do the maths, get out a prediction for

measurement outcomes, and compare the prediction to the observation.

The axiomatic framework of this mathematical machine can roughly be summarised as:

Axiom 1. The state of a system is described by a vector |Ψ〉 in a Hilbert space H .

Axiom 2. Observables are described by Hermitian operators Ô. Possible measurement outcomes

correspond to one of the mutually orthogonal eigenvectors of the measurement observable |OI〉.
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Axiom 3. In the absence of a measurement, the time-evolution of the state is determined by the

Schrödinger equation i∂t|Ψ〉 = Ĥ|Ψ〉.

Axiom 4 (Collapse Postulate). In the event of a measurement, the state of the system is updated to

the eigenvector that corresponds to the measurement outcome |Ψ〉→ |OI〉.

Axiom 5 (Born’s Rule). The probability of obtaining outcome |OI〉 is given by |〈Ψ|OI〉|2.

Axiom 6. The state of a composite system is described by a vector |Ψ〉 in the tensor product of the

Hilbert-spaces of the individual systems.

This brief summary doesn’t do justice to all the subtleties of quantum mechanics. Among

other things, it doesn’t specify what the Hamiltonian operator is or how one gets the operators

corresponding to the measurement observables. However, the form of those operators will not

concern us in the rest of this Section.

Of course, there are many different ways to approach quantum mechanics axiomatically, e.g.,

that proposed by Hardy [Har01]. We will use the above set of axioms because it is how quantum

mechanics is typically taught to students, and we believe that this familiarity will make our

argument more accessible.

It is sometimes questioned whether the Collapse Postulate is actually necessary (e.g. in

[Zur18]). Without it, quantum mechanics would still correctly predict average values for large

numbers of repetitions of the same experiment. This is the statistical interpretation suggested by

Ballentine [Bal70].

However, we do not merely observe averages of many experiments: we also observe the

outcomes of individual experiments. And we know from observations that the outcome of an

experiment is never a superposition of detector eigenstates, nor is it ever a mixed state (whatever

that would look like)—a detector either detects a particle or it doesn’t, but not both. As Maudlin

put it [Mau95], “it is a plain physical fact that some individual cats are alive and some dead”

(emphasis original). Without the Collapse Postulate, the mathematical machinery of quantum

mechanics just does not describe this aspect of physical reality correctly.

This means quantum mechanics without the Collapse Postulate is not wrong, but it describes

less of what we observe. The Collapse Postulate is hence useful, and part of the axioms because it

increases the explanatory power of the theory. It cannot simply be discarded.

The necessity of the Collapse Postulate to describe observations is not a problem in itself, but

it gives rise to the problems discussed below.

7.3.2 The Problems

The Heisenberg Cut
The most obvious problem with the axioms of quantum mechanics is the term “measurement,”

which remains undefined.
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The need to refer to a measurement strikes one as suspect right away, because quantum

mechanics is commonly believed to be a fundamental theory for the microscopic constituents of

matter. But if quantum mechanics was fundamental, then the behaviour of macroscopic objects

(like measurement devices) should be derivable from it. If we are to be realist about quantum

mechanics, rather than just instrumentalist, the theory should explain what a measurement is,

rather than require it in one of its axioms.

This problem has been known since the earliest days of quantum mechanics and is often

referred to as the “Heisenberg Cut”, alluding to where to make the “cut” between the unitary

Schrödinger evolution and the non-unitary measurement update [Hei52].

One may object that it is a rather inconsequential problem, because in practice we know

that, roughly speaking, measurements are caused by large things. This is how we have used the

axioms of quantum mechanics so far, and it has worked reasonably well. Us not knowing just

how large a device needs to be to induce a measurement hasn’t really been an issue. However, the

smaller the measurement devices we can manufacture become, the more pressing the question

becomes.

That we cannot answer this question has practical consequences already. A few years ago,

Frauchinger and Renner argued that quantum mechanics cannot consistently describe the

use of itself [FR18]. But as was pointed out in [Rel18; ŻM21], the origin of the inconsistency

is that Frauchinger and Renner did not specify what a measurement device is. They treated

a measurement merely as a sufficiently strong correlation, which leads to a basis ambiguity

that allows mutually contradictory results. The problem was directly created by not making a

Heisenberg Cut.

This alleged inconsistency was later experimentally tested with a setup that, stunningly

enough, used single photons as stand-ins for observers that supposedly make measurements

[Pro+19]. Now, it may be a matter of debate just exactly where to apply the Heisenberg Cut,

but Heisenberg would probably be surprised to learn that by 2018 physicists would have con-

fused themselves so much over quantum mechanics that they came to believe single photons

are observers. What the Frauchinger-Renner paradox therefore establishes is that quantum

mechanics can result in inconsistent predictions so long as we do not add a definition for what a

measurement device is to the axioms of quantum mechanics.

This problem could easily remedied—after all, we would just need to write down a definition.

However, the definition for a measurement of course should not just remove the risk of inconsistent

predictions but also agree with observations, and this just returns us to considering where to

apply the cut.

It was argued in [Rel18; ŻM21] that the Frauchinger-Renner paradox can be resolved by

taking into account decoherence. But decoherence is still a unitary and linear process that is

described by the Schrödinger equation. It can therefore not give rise to the measurement update,

so this still has to be added to the axioms.
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Decoherence can to some extent be used to identify the circumstances under which the

measurement update should be applied, but this idea has its problems too. We will comment

on this in more detail in Section 7.3.4. For now, let us just note that decoherence alone simply

will not evolve a system into a single detector eigenstate, and hence does not agree with what

we observe. Tracing out the environment gives us a mixed state, but that is still not what we

observe, not to mention that taking this trace is not a physical process, and therefore doesn’t

change anything about the state of the system.

The Classical Limit

Before quantum mechanics, there was classical mechanics, and classical mechanics still

describes most of our observations correctly. Unfortunately, quantum mechanics doesn’t correctly

reproduce it.

It has long been known that recovering the classical time-evolution for suitably defined

expectation values in quantum mechanics works properly only for integrable systems [BZ78;

Zas81]. For chaotic systems, on the other hand, the quantum-classical correspondence breaks

down after a finite amount of time [CR97; BGP99]. As pointed out by Zurek [Zur03] (see also

[Ber01]), this time may be long, but not so long that we can’t observe it. Zurek estimates that

the chaotic motion of Hyperion (a moon of Saturn) would last less than 20 years if we used the

Schrödinger evolution for its constituents. Alas, it has lasted hundreds of millions of years.

Again, decoherence allegedly solves the problem. If one includes the interaction of Hyperion

with dust and photons in its environment, then one sees that the moon becomes entangled with

its environment much faster than its motion could significantly deviate from the classical limit.

However, we have to note again that tracing out the environment is not a physical process.

Therefore, all entanglement gives us is a very big entangled state. What we would have to do to

get a classical non-linear motion of a localised object is to actually include the Collapse Postulate

into the dynamical law. This shouldn’t be so surprising: the non-linearity has to come from

somewhere.

To do this, we would have to know when and how the collapse happens, but we don’t. Do the

photons detect the moon? Or does the moon detect the photons? If there’s neither photons nor

dust, does the moon detect itself? And if the state collapses, then just exactly when do we update

what part of the moon’s wave function? These are not philosophical questions; these are questions

about how to apply the axioms of our quantum machinery, and they are questions that we simply

do not have an answer to.

Another way to look at this problem was summarised by Klein [Kle11]: the ℏ→ 0 limit of

quantum mechanics just does not reproduce classical mechanics, unless one restricts oneself to

special states (generalised coherent states) and specific types of potentials.

Locality and Causality

The trouble with Hyperion brings us to the next problem. The collapse of the wave function

in quantum mechanics is instantaneous; it happens at the same time everywhere in space.
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This “spooky action at a distance” [EPR35] understandably worried Einstein because it seems

incompatible with the speed-of-light limit. We know now [GRW80] that no information can be

exchanged with the collapse of the wave function, but this doesn’t explain how to apply the

collapse postulate.

Consequently, people have debated for decades how to make the collapse compatible with

relativistic invariance, and whether it requires backwards causation [Per98; MR02; Myr02]. No

resolution has been reached.

We acknowledge, however, that the non-locality of the collapse is not a problem for the

instrumentalist because, in the Copenhagen Interpretation, collapse is not necessarily a physical

process, and is not related to any observable. So, in just which reference frame it happens does

not matter; there are no predictions tied to this frame anyway.

The reason we mention locality and causality is that these matter when we cross from special

to general relativity, as we discuss next.

Conservation Laws
In the Einstein Field Equations (EFEs)

(7.21) Rµν− 1
2

R gµν+Λgµν = Tµν ,

where the entries of the stress-energy tensor, Tµν are C-valued functions [Ein15; MTW73]. In

quantum field theory, however, the stress-energy tensor is operator-valued, T̂µν, as it derives

from operator-valued observables. To insert the stress-energy tensor from quantum field theory

into Einstein’s field equations, one thus has to give quantum properties to the left side of the field

equations, which would require us to develop a complete theory of quantum gravity. Attempts to

develop such a theory have been made since the 1950s, but have yet to provide such a complete

theory.

Another option is to instead convert the operator-valued stress-energy tensor into a C-function.

The most obvious way of doing this is to take its expectation value, 〈Ψ|T̂µν|Ψ〉, with respect to

some quantum state |Ψ〉 that suitably describes the particle content of space-time. This is often

referred to as semi-classical gravity.

Most important for our purposes is that the semi-classical approximation is generally believed

to be at least approximately correct in the weak-field limit and if fluctuations of the stress-energy

tensor are small [For82; KF93].

But the expectation value in the stress-energy tensor generically has to be updated upon

measurement with the collapse of the wave function. And since this update is non-local, it violates

the (contracted) Bianchi-identities which the left side of Einstein’s field equations do fulfil and

that are usually associated with local stress-energy conservation [Wei72; MTW73].

Take for example a photon (γ) which passes through a beam splitter (S). Due to momentum

conservation, this creates an entangled state

1p
2

(|γ(p)〉|S(−p)〉+ |γ(−p)〉|S(p)〉) ,(7.22)
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where p is the momentum and we will assume that it is really the mean value of a suitably

localised wave-packet. The expectation value of this entangled state is a sum of localised mo-

mentum distributions going out in opposite directions from the beam splitter, while the mean

momentum transferred to the beam splitter is zero.

According to the axioms of the quantum machine, when we measure the photon we have to

update the wave function. In this moment, the momentum of one detector suddenly increases by

p (−p) and that of the beam splitter switches to −p (p). The momentum is conserved, but how

did it get to the detector? Without general relativity there is no observable tied to this question,

but in general relativity there is: even though it’s too small to measure, something must have

happened with the space-time curvature. But what?

Again this is a problem for which we simply do not have an answer. We do not have the

mathematics to describe what happens with the gravitational field of a particle if its wave function

collapses, not even approximately.

However, this shows an issue with approaches to the measurement problem which claim that

wavefunction collapse is just a nonlocal process (e.g. Shimony’s ‘passion-at-a-distance’ [Shi93]):

while they may work to some extent for non-relativistic many-particle quantum mechanics,

they are difficult to reconcile with both relativistic quantum mechanics and gravity. And just

letting go of relativistic covariance is not an option either since it is experimentally extremely

well-confirmed [Mat05; KR11]. That is to say, while it cannot strictly speaking be ruled out that

a nonlocal approach can be made “local enough” to agree with all available evidence, it seems

like a stretch. The more pragmatic approach is to just look for an approach that is local and

relativistically covariant to begin with.

7.3.3 What can we say about the solution?

Solution Requirements
From the previous section, we see that a satisfactory solution of the measurement problem

must achieve the following:

Requirement 1. Agree with all existing data.

Requirement 2. Reproduce quantum mechanics, including the Collapse Postulate (Axiom 4) and

Born’s Rule (Axiom 5), in a well-defined limit.

Requirement 3. Determine unambiguously what a measurement device is, at least in principle.

Requirement 4. Reproduce classical physics in a well-defined limit.

Requirement 5. Resolve the inconsistency between the non-local measurement collapse and local

stress-energy conservation.
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Requirement 1 must be fulfilled by any scientifically adequate theory and we just add it for

completeness. Requirement 2 recognises that within its domain, standard quantum mechanics

is incredibly well-supported by data and a new theory would not become accepted without

reproducing the achievements of its predecessor. Requirement 3 is necessary to resolve the

problem of the Heisenberg Cut, Requirement 4 the problem of recovering the classical limit, and

Requirement 5 the problems of locality, causality and local stress-energy conservation.

Requirements 2 and 4 have the same form—they both consist of ensuring the solution

reproduces an established, well-proven theory in some well-defined limit. Their resolution might

well be related; however, this does not have to be so, which is why we list them separately.

Likewise, we would expect that Requirements 2 and 4 can be used to show that Requirement 1 is

fulfilled. Again, however, this does not have to be the case—a limit might be well-defined and yet

its result might just be in conflict with observations—so we list them separately.

We added the phrase “at least in principle” in Requirement 3 to make clear that no one

expects it to be of much practical use to calculate from first principles what the arrangements of

elementary particles in a detector are. To find out what a detector is, it is much more practical to

just test whether it actually detects the thing we want to detect. However, even though it may be

unpractical or even unfeasible to perform an exact calculation, we should be able to identify some

general properties for what it takes for a collection of particles to act as a measurement device.

As mentioned previously, Requirement 5 might be resolved by a theory of quantum gravity.

However, the currently most well-developed approaches to quantum gravity do not address the

measurement process. Similarly, these requirements could feasibly be met by a theory which

isn’t also a theory of quantum gravity. Therefore, we emphasise a theory of quantum gravity is

neither necessary nor sufficient to solve the measurement problem.

Solution Properties
So what does it take to meet these requirements? Requirement 5 requires a local evolution

law that connects the initial state of the system with the observed measurement outcome. This

means that either

Solution 1. The wave function itself evolves according to Axiom 3 and is updated according to

Axiom 4, but it is is an incomplete description. The physical state of the system is described by

something else that evolves locally though not necessarily deterministically.

or

Solution 2. The wave function is the complete description of the system, but does not evolve

by Axiom 3 and Axiom 4. It evolves instead according to a different, local evolution law, that is

necessarily non-deterministic.

or

Solution 3. A combination of Solutions 1 and 2.
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Solution 1 is what is commonly called a “hidden variables” theory. We will instead adopt the

convention of [Mau95] and refer to it as an “additional variables” theory, to acknowledge that

the variables may not, in fact, be hidden—the variables are merely not included in axioms 1-6.

It should be noted that according to this definition, details of the detector and environment (as

they appear in the decoherence approach) count as additional variables. We will come back to

this point later.

For the instrumentalist, all three solutions come down to local, deterministic evolution laws

with additional variables. We here use the definition for deterministic from [CW12], which is that

measurements have definite outcomes (probability 0 or 1). Using this terminology, the laws may

be non-predictable, despite being deterministic.

This can be seen by noting that any local, non-deterministic evolution law can be rewritten

into a local, deterministic evolution in a theory with additional variables: any time the evolution

law is indeterministic (which could be continuously), we encode the possible time-evolutions with

an additional variable.

To give a concrete albeit trivial example: we can make the Collapse Postulate deterministic by

just using the eigenstate that is the outcome of the collapse as an additional variable. The collapse

is then “determined” by the “additional variable”. Of course, this is somewhat pointless, because

in quantum mechanics this additional variable is unpredictable (hence would well deserve the

name “hidden”), but it serves to show that additional variables could be used to describe the

process.

The difference between the solutions is then merely what we call the “wave function”. Do we

reserve the term for that which evolves under Schrödinger equation (Solution 1) which has to

come out of the mathematics at least in some limit (Requirement 2), or are we okay with using

the term for whatever it is that we use to describe the state of the system (Solutions 2 and 3)? Do

we require wave functions to be elements of a Hilbert-space, regardless of their evolution law? Do

we want them to factorise for separable systems? Do we want them to be green, or married, or all

of the above? In the end, this is just a matter of definition. The instrumentalist doesn’t care and

concludes that all possible solutions to the problem can be covered with a local and deterministic

evolution in a theory with additional variables.

This, together with the undeniable resemblance between the von Neumann-Dirac equation

and the Liouville equation, makes it plausible that quantum mechanics is indeed an ensemble

description of an underlying statistical theory with the additional variables [HH22a].

Solution Parameterisation

That this new underlying theory must explain just where the Heisenberg Cut is (Requirement

3) means that it has to bring in some new parameter to quantify how good the statistical

approximation is. This parameter cannot be derived from quantum mechanics itself; it must be

extracted from experiment.

It is clear that the new transition parameter cannot be something as simple as just the
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number of particles, not least because that quantity is not in general well-defined. (How many

particles are inside an atom? How many particles does the vacuum contain?) Seeing the problems

of the decoherence approach (see 7.3.4) it is also unlikely to be any measure of decoherence or

entanglement, though the frequency or strength of interactions must play some role. Parameters

based on the total mass or energy or gravitational self-energy have no a priori relation to generic

measurements, and parameters based on the classical limit (possibly using the action as a

quantifier) create a circular problem, because we would need them to know how the classical

limit works to begin with.

However, we have reason to be optimistic that this problem is solvable because we have

observational limits on the Heisenberg Cut both from above and below, and current technologies

are pushing both these limits: by bringing larger objects into quantum states, while at the same

time shrinking the size of detectors. It is only a matter of time until experiment will reach a

regime in which deviations from quantum mechanics become noticeable. However, this process

could be accelerated if we knew better what to look for, which is a task for theory development.

7.3.4 Solution Attempts

Second Quantization: The problems we discussed in the previous sections do not disappear

with second quantisation. All quantum field theories are built on the basic axioms of quantum

mechanics which we listed in Section 7.3.1. In quantum field theory we merely have more

complicated ways of describing interactions, and calculating the time-evolution of the system and

observables related to it. If anything, it has been argued these problems become more complicated

in quantum field theory [Gri22].

Understanding Quantum Mechanics: Some readers may wonder if it is possible that

these problems will one day be solved within the context of quantum mechanics itself. Maybe

the problem with the classical limit is just that no one has found the right limit. Indeed, it is

widely known that generalised coherent states make a promising basis for taking the classical

limit [Yaf82; Lan06]. But, in light of the problems pointed out by Klein [Kle11], this would at

least entail adding further axioms about what to do for obtaining the classical limit. Within the

context of this present argument we would therefore have to consider it a new theory, because its

set of axioms would not be equivalent to the one we listed earlier.

Wave Functions as Epistemic States: One common strategy to explain away the measure-

ment problem is to argue that the wave function is not an ontic but an epistemic state, and that

its collapse is not a physical process. The collapse, so the argument goes, is merely an update of

our knowledge about the system, and its non-locality therefore should not worry us. After all,

as Bell put it, when the Queen dies, Prince Charles will instantaneously become King, yet no

information had to be sent non-locally for this update [Bel04a].

A common strategy to counter this argument is to point out that if the wave function is

the complete description of the system, then there is nothing else the wave function could
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describe knowledge about [Mau95]. Therefore, most wave function-epistemic views require the

wavefunction to be an incomplete representation of the system.

While attempts have been made at formalising this view [Spe07; HS10] and using it to come

to no-go theorems on the wavefunction being in some way epistemic [PBR12; PPM13; RLE20],

these formalisations have fundamental issues [SF12; OL20; HRL22]. Therefore, these no-go

theorems contribute little to telling us whether the wavefunction can or cannot be epistemic.

In reality, the two sides of this argument haven’t much advanced since the debate between

Einstein and Bohr, and at this point it seems unlike they ever will. Let us therefore note

that the problems listed in Section 7.3.2 exist regardless of whether one believes the wave

function is epistemic or ontic or how one wants to interpret the collapse. Quantum mechanics is

unsatisfactory for the instrumentalist simply because we cannot answer questions about physical

reality with it: just what properties does a measurement device need to have? Just what happens

with space-time curvature when a photon passes through a beam splitter? Saying that the wave

function is epistemic doesn’t answer these questions.

Decoherence: The virtues of the decoherence program can be briefly summarised as follows.

Given any system that includes a prepared state, detector, and environment, a detector is a

subsystem that can keep a record of at least one aspect of another subsystem, which is the

prepared state one wants to measure. To be able to keep a record of (some property of) the

prepared state, the detector itself must have states that are stable under interaction with the

rest of the system, which is the environment.

These stable detector states are often called ‘pointer states’ and we will denote them with

|I〉. They keep a record of the prepared state’s projection on the eigenstate corresponding to the

pointer state, i.e., one gets a product state |I〉|OI〉. Any superposition of pointer states would

rapidly decohere under interaction of the environment, hence not keep a record of what we are

interested in.

To describe the process of decoherence formally, one takes the density matrix of pointer

states, prepared states, and environment. One estimates how quickly they become entangled

and how much this affects the relative phases between the pointer states. This is the process of

decoherence. It must be stressed that this process is fully described by the Schrödinger equation.

After that, one traces out the environment, and obtains a mixed state whose probabilities are

given by Born’s rule.

What one learns from this is that a useful detector, loosely speaking, must be large enough so

that superpositions of its pointer states rapidly decohere. Decoherence hence gives us a criterion

for identifying detector pointer states by what Zurek termed ‘einselection’ by the environment

[Zur03].

But we do not observe mixed pointer states any more than we observe their superpositions.

We only observe detectors in pointer states. In terms of the density matrix, we observe a matrix

that has one entry equalling one, somewhere on the diagonal, and all other entries equal zero. The
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result of decoherence, however, is a density matrix with the Born probabilities on the diagonal.

Thus, while decoherence explains why we do not measure cats that are in a superposition of

dead and alive, it does not explain why we do not measure cats that are 50% dead and 50% alive

(a classical mixture) either [Sch05]. To agree with observations, the wave function, or its density

matrix, respectively, must therefore still be updated upon measurement.

Another way to see that decoherence does not solve the measurement problem is noting that

it is based on counterfactual reasoning: the typical initial state of the system will, under the

Schrödinger equation, evolve into a final state that is highly entangled with the environment,

susceptible to decoherence, and hence not what we observe. According to the decoherence program,

the state we observe is instead an (almost) decoherence-free subspace which is exactly what we

generically do not expect. But the decoherence program gives us no clue as to how we get from

evaluating the amount of decoherence in a state we do not observe to the not-decohering state we

do observe.

This discrepancy raises whether the notion of entropy we use in quantum mechanics, that

increases under an evolution that we do not actually observe, can possibly be correct. Indeed, if

the wave function describes an ensemble average, we do not expect a notion of entropy derived

from it to be meaningful.

The decoherence program suffers from another problem, as pointed out by Kastner [Kas14]. It

requires one to specify a division between the observed system, the detector, and the environment

already. Without that division, one does not know what the environment is that one should

trace out. For this reason, decoherence does not allow us to define what a detector is. It merely

quantifies certain properties that we know detectors do have.

We do not mean to deny the usefulness of studying and quantifying decoherence and entan-

glement. But they can ultimately not solve the problem of how to define a measurement, because

these properties are basis-dependent. They will just reformulate the question into one about the

choice of basis or the division into subsystems, respectively.

Many Worlds: The many-worlds interpretation [Eve57; DG15] and similar approaches are

often claimed to be simpler than the Copenhagen Interpretation [Fay19] because they do not

require the Collapse Postulate. That we only observe detector eigenstates is allegedly explained by

the branching of the wave function and is supposedly a consequence of the Schrödinger equation

alone.

Alas, this is just not the case. To make a prediction for a measurement outcome in a many-

words approach, one has to replace the Collapse Postulate with sufficiently many assumptions

that achieve the same. Those are normally stated as assumptions about what constitutes an

observer or a detector or a branching event [SC18]; in any case, they are clearly not any simpler

than the Collapse Postulate.

The easiest way to see that many worlds does not do away with the Collapse Postulate is

to note that if it was possible to make predictions for our observations using the Schrödinger
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equation alone, then this would be possible in any interpretation of the mathematics. One

therefore clearly needs the Collapse Postulate or at least equivalent assumptions in many worlds,

regardless of how they are called or interpreted.

This is not to say that many world approaches are wrong. From the instrumentalist perspec-

tive, they are as good or as bad as the Copenhagen Interpretation. Anybody who doubts this

statement is strongly encouraged to make a prediction with the many worlds interpretation and

try to figure out how this differs from one made with the Copenhagen Interpretation.

Bohmian Mechanics: Bohmian Mechanics [Boh52a; Boh52b] comes in two different versions,

one in which the equilibrium hypothesis is counted as an axiom, and one in which it is not an

axiom, but merely approximately fulfilled in the situations we typically observe in the laboratory.

Bohmian Mechanics with the equilibrium hypothesis is mathematically equivalent to the

Copenhagen Interpretation in the sense that one can be derived from the other. They make exactly

the same predictions. Bohmian Mechanics is usually formulated in position space, but one can

easily extend this definition just by requiring it to respect invariance under basis transformations.

Since Bohmian Mechanics with the equilibrium hypothesis is equivalent to the Copenhagen

Interpretation, it cannot solve the problems laid out in Subsection 7.3.2. It adds rather than

removes non-locality, does not give us any clue about how to define a detector, and doesn’t help us

take a classical limit.

The reason Bohmian Mechanics is often said to solve the measurement problem is that

the outcome of the time-evolution, interpreted suitably, is a detector eigenstate. In Bohmian

Mechanics, one has a distribution of particles but interprets the actual ontic state of the system to

be only one of them. Loosely speaking, Bohmian Mechanics combines the Schrödinger evolution

and the Collapse Postulate to one local evolution for the particle and a non-local one for the

guiding field. Since by assumption there is only one particle in the initial distribution, there is

only one final outcome.1

This solution however only works if one measures positions, so if one wants this solution to go

through one has to argue that the only thing we ever measure are really positions of particles and

everything else is derived from that. Given that the Collapse Postulate also brings the system

into a detector eigenstate, one thus doesn’t gain any advantage from switching to Bohmian

Mechanics, one just gets this new headache. Further, since the ontology of Bohmian mechanics

is itself non-local, it makes it even more difficult to conceive of a solution to the measurement

problem.

Again, this is not to say that Bohmian Mechanics is wrong. Being equivalent to the Copen-

hagen Interpretation, it is isn’t any better or worse: Nikolic proposed comparing Bohmian

Mechanics to the Coulomb gauge of electrodynamics [Nik06]. It seems non-local, and though it

doesn’t give rise to non-local observables, the explicit non-locality makes it difficult to generalise

the formulation. It is quite possibly for this reason that quantum field theories based on Bohmian

1Though this leaves one with the long-standing problem of the empty waves.
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mechanics have been complete non-starters [Dür+04; Dür+14]. See also [Wal22] for more about

the difficulty of generalising different interpretations of quantum mechanics to quantum field

theory. Bohmian Mechanics may suffer from more severe problems than its failure to solve the

measurement problem (see e.g. [Ein53; Ein11; Hel19]), but we will not discuss these here because

it is not relevant for our purposes.

Bohmian mechanics without the equilibrium hypothesis [Val91a; Val91b] is distinct from

quantum mechanics, and to our best knowledge it has not helped solving the measurement

problem. Since it has to reproduce the equilibrium hypothesis in the situations we typically

encounter in the laboratory, it is also implausible that it would be of use.

Other Interpretations: At this point, it should be clear that the problem can’t be solved by

reinterpreting the maths: we actually need new maths. If we cannot derive what a measurement

device is, or what the source of gravity is in one interpretation, we can’t do it in any interpretation.

This means that QBism [Fuc10; FS14b; Fuc17], the modal interpretation [DV98], the previously

mentioned statistical interpretation [Bal70], the transactional interpretation [Cra86; Kas13],

Rovelli’s relational interpretation [Rov96; AR22], or Smolin’s ensemble interpretation [Smo12],

or any other reinterpretation of the mathematics cannot actually solve the problems we laid

out in Section 7.3.2. Those are not just questions whose answers are difficult to calculate;

they’re questions whose answers can’t be calculated in quantum mechanics—regardless of its

interpretation.

We want to stress however that we certainly do not mean to say that it is useless to think

about different interpretations of quantum mechanics. This is because some interpretations

may make it easier to answer certain questions. A good example is the arrival time, a quantity

that is notoriously difficult to calculate in the Copenhagen Interpretation, but that was recently

successfully calculated using Bohmian Mechanics [DD19].

Collapse Models: Collapse Models (be they gravitational, such as the Penrose-Diosi model,

or spontaneous [BG03], such as the GRW [GRW86] and CSL [GPR90] models) have a chance to

actually solve the problem, because they are not just reinterpreting the same mathematics. In

accordance with what we discussed in 7.3.3, they all bring in new parameters that quantify the

deviation from standard quantum mechanics. However, the currently existing collapse models

run into a well-known problem: Bell’s theorem.

Remember that we can interpret any non-deterministic evolution as a deterministic evolution

with additional hidden variables. This means, so long as collapse models fulfil the assumptions

for Bell’s theorem, they have to violate local causality (or they cannot reproduce observations).

The currently used collapse models are therefore either still non-local [Tum06], or the evolution

law explicitly contains the basis that the evolution collapses into. In the latter case they either

violate statistical independence, or one is forced to assume that measurements can only be made

in one particular basis (usually the position basis).
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7.3.5 The role of statistical independence

We have argued above that quantum mechanics suffers from several problems, and that

any solution to the problem can be expressed as a local, deterministic theory with additional

variables.

However, we can measure different observables of the same prepared state, and different

observables correspond to different detector pointer states. If the evolution into the detector

eigenstate is to be local, then the additional variables which determine the outcome must

contain information about the pointer states from the outset. If the prepared state only gets this

information by the time it arrives at the detector, then the collapse will generically have to be

faster than light—this is exactly what happens in standard quantum mechanics.

If we want to avoid this, then the additional variables, commonly denoted λ, must be correlated

with the measurement settings. This is known as a violation of statistical independence, or

a violation of measurement independence. If ρ is the probability distribution of the hidden

variables, and X are the detector settings (of possibly multiple detectors), then a violation of

statistical independence means ρ(λ|X ) ̸= ρ(λ). Theories with this property have been dubbed

superdeterministic [HP20; Hos20].

To our best knowledge we do not presently have any theory that fulfills requirements 1-

5, but from our above arguments we do know that any such theory has to violate statistical

independence. Seeing that most of what we argued above (except the reference to Frauchinger-

Renner) could have been said 50 years ago, it is curious that progress on this has been so slow.

We would like to offer some thoughts on why that may be.

One reason we don’t yet have a solution to the problems of Subsection 7.3.2 is almost certainly

that so far it just wasn’t necessary. Quantum mechanics in its present form has worked well,

made a stunning amount of correct predictions, and for the most part saying that we know a

detector when we see one is sufficient to make predictions with quantum mechanics’ mathematical

machine.

Let us not forget that it wasn’t until 1982 [AGR81] that violations of Bell’s inequality were

conclusively measured. Until about a decade ago, interpretations of quantum mechanics were

discussed primarily by philosophers, simply because they weren’t relevant for physicists. The re-

approach between philosophy and physics in quantum foundations is a quite recent development,

and it has been driven by technological advances.

Even now, the problems that we outlined in Section 7.3.2 have grown of interest to the

instrumentalist, but not yet for the experimentalist. This is about to change though. Soon,

experiments will probe into the mesoscopic range, and investigate when a device ceases to be a

useful detector. Further, tests of the weak-field limit of quantum gravity are on the way [Bos+17;

MV17]—granted, the latter experiments weren’t designed to test the Collapse Postulate, but they

examine the parameter range where the questions raised above are also relevant.

Another potential reason why we haven’t yet managed to solve the measurement problems is
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that the only viable option—violating statistical independence—was discarded 50 years ago on

purely philosophical grounds. For peculiar reasons, statistical independence became referred to as

the ‘free will’ or ‘free choice’ assumption, which has discouraged physicists from considering that

this assumption may just not be fulfilled, and hence that a local description of the measurement

process may still be possible. It has already been explained elsewhere [HP20; Hos20] that this

terminology is meaningless; whether statistical independence is violated or not bears no relevance

for the existence of free will. The option of violating statistical independence was so strongly

discouraged that as of today many physicists do not even know that Bell’s theorem does not

generally rule out local and deterministic completions with additional variables [SKZ13].

A third reason that probably added to the lack of interest in the option is that the additional

variables are often interpreted as new degrees of freedom that reside inside elementary particles.

This possibility is strongly constrained by experiments, and has only become more unappealing

the more thoroughly we have tested the Standard Model of particle physics.

This, however, is based on a misunderstanding. The additional variables don’t need to be new

variables, and they don’t need to reside on short distance scales; they merely need to be variables

that don’t appear in the standard axioms A1-A6. Further, as we mentioned above, the additional

variables may merely be a stand-in for a non-deterministic (or non-computable) evolution law

[HHP22].

Most importantly though, there is no reason why the additional variables must be located

inside particles or located anywhere for that matter. They could for example be the details of the

detector or the environment or more generally variables that quantify large-scale properties or

correlations. This means the solution we seek for may not to be found on the route of ontological

reductionism that has preoccupied thinking in the foundations of physics for the past century

(i.e., building bigger particle colliders won’t solve this problem).

Indeed, as we have argued in [HH22a], the additional variables in Bell’s theorem are better

interpreted as labels for trajectories (which also explains why they can alternatively be understood

as encoding a non-deterministic evolution law). Whatever the reason for the slow progress, we

think that the problems we have laid out here are eminently solvable with existing mathematics

and will become accessible for experimental test in the near future.

7.3.6 What is it good for?

The brief answer to what solving the measurement problem is good for (besides solving the

problem, that is), is that we don’t know. However, we can make some speculations.

For one thing, it might be that the underlying theory which solves the measurement prob-

lem turns out to be deterministic again, and explains the seeming indeterminism of quantum

mechanics as being epistemic in origin. In this case, it stands to reason that the theory would

allow us to overcome limits and bounds set by quantum mechanics on measurement accuracy
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with suitably configured experiments. This could turn out to be useful for many things, not least

for quantum metrology and quantum computing.

However, it could turn out the go the other way. If deviations from the Schrödinger equation

become important for, say, quantum computers beyond a certain number of qubits (as they are in

IST [Pal20a]), then maybe large quantum computers will be impossible [Sla21; HPR21].

More generally, understanding in which cases a measurement process occurs and just what

happens would almost certainly improve our ability to control quantum states.

That is to say, solving the measurement problem is not just a philosophical enterprise. Its

solution will quite possibly have technological applications.

We have identified several different aspects of the measurement problem in quantum me-

chanics, and argued that solving these problems requires a new theory. Deviations from quantum

mechanics will likely become experimentally accessible in the near future. However, a theoretical

understanding of the measurement process could greatly speed up the discovery. We have listed

five requirements that any satisfactory solution of the measurement problem must fulfil.

7.4 Chapter Conclusion

In this Chapter, we went through the necessary background for this second Part of the the-

sis, which investigates (specifically statistical independence-violating) extensions of quantum

mechanics. For this, we first introduced Bell’s Theorem, and looked at both the assumptions

necessary to formulate a Bell inequality, and the experimental loopholes which can allow models

which still meet all these assumptions to violate such an inequality. We then looked specifically

at the statistical independence assumption, and investigates proposed extensions of quantum

mechanics where this assumption is violated. Secondly, we moved onto looking at the measure-

ment problem in quantum mechanics, illustrating how it arises from the axioms of quantum

mechanics, the requirements a solution to the problem must possess, and why currently-proposed

interpretations and extensions of quantum mechanics fail to solve this problem.

This Chapter, and Part overall, serve to allow us to survey and illustrate cases where current

or developing quantum technologies can be used to test foundational ideas—the second part of the

interplay between quantum foundations and quantum technologies. In this Chapter, this is most

visible in the discussion of Bell tests, and the loopholes in such tests. However, Chapter 9 will also

show this, as we consider ways to experimentally test certain statistical independence-violating

models.
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EPISTEMIC AND ENSEMBLE INTERPRETATIONS OF THE WAVE

FUNCTION

Declaration of contribution: This Chapter is adapted from the published papers Could

wavefunctions simultaneously represent knowledge and reality? [HRL22], which was con-

ceived by myself and Prof James Ladyman, and written by myself, supervised and edited

by Prof Ladyman and Prof John Rarity; and The wave function as a true ensemble [HH22a],

conceived and written by myself and Dr Sabine Hossenfelder. This second paper was

written at a later stage of my PhD, when I had been developing independent collaborations,

and my supervisors were happy for this independent work to be included in my thesis.

8.1 Chapter Introduction

In this chapter, we look at a recently-proposed pair of definitions for characterising inter-

pretations and extensions of quantum mechanics. By these definitions, models that meet

a specific mathematical criterion have the wavefunction represents the state of the world,

and are called ψ-ontic. Models that do not meet this mathematical definition supposedly have

the wavefunction represent knowledge, and are called ψ-epistemic. We show that nothing in

the informal ideas of the wavefunction representing the state of the world or representing the

knowledge of an experimenter require these to be contradictories, and so that this mathematical

criterion fails to adequately reflect whether the wavefunction should be described as representing

reality, or representing knowledge (or both).

We further argue that the ψ-ontic/ψ-epistemic distinction fails to properly identify ensemble

interpretations. In these interpretations, the wavefunction predicts probabilities of possible mea-

surement outcomes, but not which individual outcome is realised in each run of an experiment.
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We therefore propose a more useful definition, where the wavefunction describes an ensemble

of states with different values of a hidden variable (ψ-ensemble). All local ψ-ensemble interpre-

tations which reproduce quantum mechanics violate Statistical Independence. We then show

how these interpretations can help make sense of otherwise puzzling phenomena in quantum

mechanics, such as the delayed choice experiment, the Elitzur-Vaidman Bomb Tester, and the

Extended Wigner’s Friends Scenario.

This chapter is foundational, and so does not show the links between quantum foundations

and quantum technologies. However, it reinforces the importance of the next chapter, showing why

we should be interested in statistical independence-violating extensions of quantum mechanics.

This illustrates why we should be interested in trying to develop experimental tests to distinguish

these extensions from standard quantum mechanics.

8.2 Could wavefunctions simultaneously represent knowledge
and reality?

In this section, we examine Harrigan and Spekkens’s definitions for the wavefunction being

ψ-ontic and ψ-epistemic, and argue that their definitions do not reflect the standard usage of

the terms ontic and epistemic. Harrigan and Spekkens formally define the wavefunction being

ψ-ontic or being ψ-epistemic as contradictory, such that the wavefunction can only be one or the

other [HS10]. However, as we show in Subsection 8.2.1, the informal ideas of pertaining to what

exists, and pertaining to knowledge do not exclude each other. Subsection 8.2.2 explains Harrigan

and Spekkens’s formalisation, and shows how their definitions of ψ-ontology and ψ-epistemicism

simply presuppose that the wavefunction cannot pertain to both knowledge and reality. If, as we

argue, it is right that nothing about the informal ideas of epistemic and ontic interpretations rules

out wavefunctions pertaining to both knowledge and reality, then the now standard definitions

create a false dichotomy1. Subsection 8.2.4 considers the consequences of this for discussions of

quantum foundations.

8.2.1 Ontic and Epistemic Interpretations of Terms in Physical Theories

Quantum mechanics describes the behaviour of subatomic particles. Unlike classical mechan-

ics, which attributes particles particular values of position and momentum, quantum mechanics

attributes wavefunctions, from which can be derived probabilities for possible values of position,

momentum and other observables. In the quantum case the products of the standard deviation

of position and the momentum (and other pairs of incompatible observables) have a minimum

value given by the uncertainty principle [Ken27], unlike in the classical case. However, in some

1Myrvold independently noted that taking ψ-epistemic to be simply the negation of ψ-ontic is ‘potentially
misleading’ [Myr20] and seems to take this to be obvious. However, it is not a prominent point in his paper, and is
worth arguing here since some people claim it is not just not obvious but false.
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ways the situation is similar to how a probability distribution in classical statistical mechanics

can be interpreted as describing what is known about microstate of the particles in a gas given

its macrostate, and so as ‘epistemic’. Quantum mechanical wavefunctions behave like classical

ensembles in the limit, and so perhaps the wavefunction in quantum mechanics is epistemic in a

similar way. On the other hand, Fuch’s Quantum Bayesianism (QBism) treats the wavefunction

as representing knowledge of possible results, rather than of the underlying microstate [Fuc02;

FS14b] and so as epistemic, but in a different way, while Ben-Menahem’s interpretation holds

“quantum probabilities as objective constraints on the information made available by measure-

ment" [Ben17]. All these responses to the peculiarities of quantum mechanics—phenomena such

as contextuality, entanglement and collapse—do not posit any kind of novel metaphysics and are

exclusively epistemic interpretations.

By contrast, dynamical collapse theories [GRW86; Pen96], Bohmian mechanics [Boh52a;

Boh52b] and Everett’s relative-state interpretation [Eve57], take the wavefunction to represent

something physical, and not to be epistemic in any way.2

The notions of epistemic and ontic have wide application in philosophy. For example, an

epistemic interpretation of probability takes it to be a matter of belief, information or knowledge,

while an ontic interpretation of probability takes it to be something in the world and nothing to

do with the representations of agents. In this and many other cases, epistemic and ontic interpre-

tations are taken to be mutually exclusive. In general however, ‘epistemic’ means pertaining to

cognition or knowledge, while ‘ontic’ means pertaining to what is exists (the words are directly

based on Greek genitive forms of the words for cognition or knowledge and reality respectively),

and there is clearly no contradiction in predicating both of the same thing without the assumption

that nothing can be both epistemic and ontic. There is no argument for such an assumption in

general of which we are aware, and indeed it is arguably false in particular cases.

For example, the thermodynamic entropy S of a system is a candidate for being both ontic

and epistemic. Arguably, the entropy assigned to a system depends on knowledge of it as well

as how the system is objectively. For instance, the entropy assigned to an equally divided box

of particles is higher if an observer can distinguish these particles than if they cannot [Che09].

David Wallace [Wal14] argues that thermodynamics should be interpreted as a ‘control theory’ in

which what agents know about systems is essential to what they can do with them. Arguably, at

least, the entropy of a system represents the system as it is independently of us to some extent,

while also representing what is known about it [LPS08].

Another example is that of proper mixtures in quantum mechanics, which represent both

systems and what is known (or not known) about them. For example, the (proper) mixed state

(x|↑〉〈↑|x +x |↓〉〈↓|x)/2, is assigned to a system when it is really either in the state |↑〉x or |↓〉x), and

when the epistemic probability of state |↑〉x and of state |↓〉x is a half. Clearly, proper mixtures

pertain to both what exists and what is known about it. Similarly, one can imagine another

2Recently an epistemic interpretation of the wavefunction in Bohmian mechanics has been proposed by [Esf+14].
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observer validly assigning the state (2x |↑〉〈↑|x +x |↓〉〈↓|x)/3, illustrating that these states are to

some degree epistemic—but given they are also based on the knowledge the system is actually in

one of the two eigenstates of spin-x with certainty (we are just unsure which), they are also ontic.

However, the terminology of ‘epistemic’ and ‘ontic’ that has become standard among physicists

working in quantum foundations is understood so as to make the application of the terms

mutually exclusive without an argument being given that they should be. In his influential

review of the PBR theorem, Matt Leifer says that an ontic state represents ‘something that

objectively exists in the world, independently of any observer or agent’ [Lei14]. This is stronger

than the definition above because it rules out that the state also represents our knowledge of the

world. He gives the example of the ontic state of a single classical particle being its position and

momentum. His corresponding example of an epistemic state is then a probability distribution

over the particle’s phase space. Note that in the case Leifer considers there is clearly a many-one

map between the epistemic state and the underlying state, in the sense that many epistemic

states are compatible with the true state of the system (because there are many probability

distributions that give a non-zero probability to a given state of the particle). However, this is not

so for the ontic state. Only one mathematical representation is compatible with the underlying

state of the system, because the mathematical representation of each possible microstate is a

complete specification of all the degrees of freedom of the system over which the probability

distribution is defined. As the next section explains, Harrigan and Spekkens make this difference

between a many-one and one-one relationship definitive of epistemic and ontic interpretations

respectively.

Simon Friedrich says a (ψ-)epistemic interpretation is any view according to which “quantum

states do not represent features of physical reality, but reflect, in some way to be specified, the

epistemic relations of the agents who assign them to systems they are assigned to” [Fri14]. So he

(and Leifer) agree that epistemic and ontic interpretations are exclusive of each other, so that an

epistemic interpretation of a term rules out that the term represents the world as well. This is so

for Harrigan and Spekkens too, as explained in the next section.

However, not everything in physics is as straightforward as the toy model Leifer considers,

and it is not always clear whether terms in physical theories represent real things (for example,

component versus resultant forces, gauges and so on). In quantum mechanics, individual particles

do not in general have their own pure quantum states. Nothing about the idea of a determinate

reality requires that all physical states are decomposable into the states of particles, and the

states of quantum field theory do not take individual particles to be the fundamental bearers

of physical properties. The probability distributions we get from quantum mechanics are over

eigenvalues associated with observables, not over underlying states-of-the-world as in classical

statistical mechanics. For all these reasons and more the framework and definitions of the next

section that have become orthodox are at least questionable3.

3There is a long history of interpretations of the wavefunction as both ontic and epistemic, which shows precisely
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Moreover, it is possible to give definitions of ontic and epistemic, which capture the informal

usage of the terms reasonably well, and which do not make them exclusive of each other. Wave-

functions, like particle coordinates or vector fields, are part of the mathematical apparatus of

physical theory. Such a term in a physical theory has an ontic interpretation (is an ‘ontic state’)

when it is taken to represent how the world is independently of our knowledge of it to some

extent or other.4 For example, the number 9.81 represents the acceleration due to gravity near

the surface of the Earth. It is not perfectly accurate and depends on the conventional choice of

units, but arguably all representations are like this to some extent. Many mathematical terms

used in classical physics, whether scalars, like mass or charge, or vectors, such as magnetic field

strength or linear momentum, are apt to be taken as representing real physical properties. On

the other hand, a term in physical theory has an epistemic interpretation (is an ‘epistemic state’)

when it is taken to represent knowledge or information about the world to some extent or other.

(Note that the positive second part of Friederich’s definition of a (ψ-)epistemic interpretation is

very similar to ours.)

8.2.2 The Ontological Models Framework

The wavefunction ψ gives the relative (Born) probability pψA(s) that, upon measurement,

a certain degree of freedom (described by observable A) will have the specific value s. The

wavefunction can be represented as a normalised vector
∣∣ψ〉

in a Hilbert Space H , where there

is a complete orthonormal basis of vectors, corresponding to possible values of A (and we write

vector |s〉 with eigenvalue s for A). Harrigan and Spekkens’s Ontological Models framework

considers how the wavefunction relates to some particular underlying real state of the world λ,

from the space Λ of possible such states [Spe05; Rud06; HR07; Spe07; HS10].

In any hidden variable model, each observable A has an associated response function A (S|λ),

which gives the probability for state λ that a measurement of variable A would give an outcome

s in set S [SF12]. p(λ|ψ) is the probability a situation described by wavefunction ψ has the

underlying state λ. This probability function is normalised over ψ’s support in state space Λψ. 5

The framework assumes these are both probabilities (i.e., non-negative and additive) rather than

quasiprobabilities (which need not be either) [HRA07].6 From these we get the Born rule,

(8.1) pψA(S)=∑
S
|〈s|ψ〉|2 =

∫
Λ

A (S|λ)p(λ|ψ)dλ

why it is not appropriate to treat these two terms as mutually exclusive [Boh28; Fri14; Hei58; Sch52]. However, for
some reason, this has been neglected by Harrigan and Spekkens, who define ψ-ontic and ψ-epistemic as contradictories.

4That this is not to say that wavefunctions are physical things, but that they represent something physical, just as
the correspondence between your fingers and the numbers one to ten does not make the numbers themselves physical
[Her21; SF12; WT10].

5The ‘support’ of a probability distribution is the set of all the values to which it assigns a non-zero probability.
6Note, Harrigan and Rudolph extend this framework further by including a treatment of preparation and

measurement devices.
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Figure 8.1: Harrigan and Spekkens’s ψ-epistemic (A) and ψ-ontic (B) models of reality. Wavefunc-
tions ψ and ϕ each have probability distributions over state-space Λ= {λ}. In a ψ-epistemic model,
these can overlap over a subspace ∆, so a state λ within this overlap could be represented by both
ψ and ϕ. However, in their formalism, in ψ-ontic models, each state can only be represented by
one wavefunction.

Imagining our (arbitrary) observable A had the original wavefunction
∣∣ψ〉

as a possible state

after measurement (i.e.,
∣∣ψ〉= |s〉 for some |s〉 that is an eigenstate of A with some value q), we

find

(8.2) ∀λ ∈Λψ, A (q|λ)= 1

(as |〈ψ|ψ〉|2 = 1, and p(λ|ψ) is normalised over Λψ [Mar12]).

If we now consider a second wavefunction, ϕ, with probability distribution p(λ|ϕ) over its

support Λϕ, obeying these same rules, then, by Eq. 8.1,

(8.3) |〈ψ|ϕ〉|2 =
∫
Λ

A (q|λ)p(λ|ϕ)dλ

By restricting this to the subspace Λψ, we define

∆≡
∫
Λψ

A (q|λ)p(λ|ϕ)dλ

=
∫
Λψ

p(λ|ϕ)dλ≤ |〈ψ|ϕ〉|2
(8.4)

If ∆> 0, Harrigan and Spekkens claim this overlap of p(λ|ϕ) and Λψ implies the two wave-

functions in this model are epistemic states, because the same underlying state λ could be
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represented by either depending on what it known about the system.7 Harrigan and Spekkens

take the existence of two distinct wavefunctions with overlapping support within a model as

necessary and sufficient for that model being ψ-epistemic (and not ψ-ontic). This is as, given two

different wavefunctions can represent the same underlying state, the wavefunction is not deter-

mined completely by the underlying state. Therefore, some other factor must fix the wavefunction,

and that factor is what is known about the system.

Harrigan and Spekkens stipulate that all models that do not meet their criterion for being

ψ-epistemic are ψ-ontic, based on how, classically, states can be understood as either ontic (points

of state space) or epistemic (probability distributions over state space) as discussed above.8

Harrigan and Spekkens give three subcategories of ψ-ontic model. In the strongest (ψ-

complete), the wavefunction describes the system’s state completely and no hidden variables

are left out by it (as in, for example, Everettian interpretations). In the other two models, both

referred to as ψ-supplemented, the state is supplemented by some hidden variable—in the

first as a one-to-one mapping between the wavefunction and the state; and in the second where

wavefunctions can map to more than one state (but each state still only maps to one wavefunction).

While the wavefunction may not itself be the state, in ψ-ontic models each ontic state corresponds

to at most one wavefunction (see Fig. 8.1B), so all wavefunctions have disjoint support in the

state-space:

(8.5) ∀ψ,ϕ, s.t.ψ ̸=ϕ; Λψ∩Λϕ =⊘

8.2.3 Analysing Harrigan and Spekkens’s Definitions

In Harrigan and Spekkens’s framework, only ψ-epistemic models allow multiple wavefunc-

tions to have overlapping support from the same underlying real state (see Fig. 8.1A). As noted

above, they also take such overlap also to be necessary for a model to interpreted epistemically.

However, while we grant that within the ontological models formalism overlap is sufficient for

a model to be interpreted epistemically, we believe it is not necessary for it to be interpreted

epistemically, because there is no reason to suppose that a one-one map between the wavefunction

and the ontic state rules out that the wavefunction represents knowledge. Indeed, if the response

functions for individual λ within a wavefunction’s support Λψ for S, are not equal to the Born

probability for S conditional on the wavefunction, then this surely suggests the wavefunction

could be interpreted epistemically:

∃{ψ,S, A}, s.t.¬(A (S|λ)= pψA(S)∀λ ∈Λψ)

=⇒ epistemic
(8.6)

7This doesn’t however mean that they necessarily represent the underlying state equally well—for a given λ in
this overlap, p(λ|ψ) needn’t equal p(λ|ϕ).

8Schlosshauer and Fine apply the terms ‘Mixed’ and ‘Segregated’, rather than ‘ψ-epistemic’ and ‘ψ-ontic’ [SF12],
which better reflects the distinction between wavefunction overlap and not.
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On this condition the Born probability is just the weighted average of response functions

over Λψ, rather than equalling the response function of the state of the world λ (suggesting

there is a real difference between the λs in the support of ψ, but that the experimenter does

not know enough to distinguish between these different λs)9. All cases of overlap obey this

condition, as within Λψ, A (ψ|λ)= 1, but pϕA(ψ)= |〈ψ|ϕ〉|2 which isn’t equal to 1 if ψ ̸=ϕ. However,

cases without overlap could also obey this condition, as it applies to the response function of

any observable, rather than the one represented by the operator whose eigenstates include ψ

whatever that is. Hence, Harrigan and Spekkens’s criterion for a model being ψ-ontic—that

wavefunctions never have overlapping support in the space of underlying states—is wrong to

make it not ψ-epistemic by definition.

ψ-ontic models either take the wavefunction to represent the exact underlying state, or to

represent some part of the state and so to be incomplete. What Harrigan and Spekkens ignore

is the possibility that the wavefunction represents both the state of reality and the epistemic

state of an observer, as with the case of a proper mixture or entropy discussed above. Hence, even

though the wavefunction represents reality, wavefunctions could still have overlapping support

on state space, because they could simultaneously represent different states of knowledge.

Because of this, there is nothing in Harrigan and Spekkens’ formal definition for a model

being ψ-ontic, nor a criterion we can build from their model, which is necessary or sufficient for

a model to have wavefunctions representing reality. The closest we can come to is that, if the

wavefunction doesn’t represent knowledge, it must represent something else (and so represent

reality)—but, given our condition for a model representing knowledge above is sufficient rather

than necessary, there is no reason models without overlap need represent reality.

Harrigan and Spekkens admit that all models that are not ψ-complete could be said to have

an epistemic character, especially where multiple states map onto one wavefunction, given this

associates the wavefunction with a probability distribution over state space. However, they say

they are instead interested only in pure quantum states—hence their definitions being based on

overlap, given they claim, with pure states, “ψ has an ontic character if and only if a variation of

ψ implies a variation of reality and an epistemic character if and only if a variation of ψ does not

necessarily imply a variation of reality" [HS10]. Hardy agrees, saying, given no overlap between

the support of wavefunctions on the underlying state, we could deduce the wavefunction from

λ, which he takes to mean the wavefunction would be written into the underlying reality of the

world [Har13]. However, this is questionable, given that, as noted above, correlation between

λ and a wavefunction does not necessarily make that wavefunction physical, any more than

the correspondence between your fingers and the numbers 1-10 makes those numbers physical

[SF12] (which is why we defined wavefunction-ontic as the wavefunction representing the real

state, rather than being real itself).

9The Colbeck-Renner-Leegwater Theorem claims to prohibit cases like this, where the quantum state does not
provide a full description for the prediction of future measurement outcomes [CR12; Lee16]. However, Hermens has
shown this rests on a faulty assumption, and so these cases are not prohibited [Her20].
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Further, considering the wavefunction to be ontic if and only if variation in it implies variation

in the underlying state ignores that, while ontic models require that the wavefunction represent

an element of reality, they need not only represent that. Even for pure states, so long as we are

not considering a ψ-complete model, there is always some factor supplementing the wavefunction

in the full underlying state of the world—so, conversely, knowledge could supplement that

representation of reality to give us the wavefunction. Therefore, there is no reason for change in

wavefunction to imply change in reality in an ontic model, even for pure states.

This is demonstrated by ψ-dependent models [SF12]. In a ψ-dependent model, the response

functions depends on ψ—individual overlap possibilities for each possible state are given by the

relevant measurement probabilities, rather than being uniform. The simplest case of this is when

pψ is uniform across Λψ, as, to retrieve the Born probabilities, A ψ(S,λ) must then depend on

ψ. As the wavefunction still to some degree reflects the underlying state, these models are ontic

in our sense. However, they also allow overlap of wavefunctions on state space, making them

ψ-epistemic. Schlosshauer and Fine give an ontic model which is also ψ-epistemic, also showing

models can be both.

8.2.4 Consequences

The Pusey-Barrett-Rudolph (PBR) argument shows that wavefunctions cannot overlap on

state space, but it says nothing about whether they are epistemic in the broader sense of

Section 8.2.1. The same applies for other no-go theorems based on these definitions, such as

Colbeck and Renner’s [CR12], Patra et al’s [PPM13], Hardy’s [Har13], and Ruebeck et al’s [RLE20].

Pusey et al showed, given certain assumptions, that any model that is ψ-epistemic by Harrigan

and Spekkens’s criterion (i.e. allows wavefunction-overlap on state space) always contradicts

quantum theory [PBR12]. However, above we showed that wavefunctions being able to overlap

on state space is a sufficient, rather than necessary condition for a model being epistemic. This

means, even if those assumptions are valid, and so wavefunction overlap is incompatible with

quantum physics, that does not rule out all epistemic models.

Even in the ontological models framework, models can be simultaneously ontic and epistemic—

the wavefunction can represent both elements of reality, and knowledge about that reality.

Harrigan’s and Spekkens’s terms, ψ-ontic and ψ-epistemic, do not formalise these informal ideas.

In light of our analysis, it is important that people do not conflate the ideas of ontic and

epistemic in general with Harrigan and Spekkens’ specific definitions, as to do so confuses the

debate about quantum foundations.

8.2.5 Issues with an Assumed Underlying State λ

As mentioned above, there are a number of issues with the idea of an underlying state

assumed by the Ontological Models Framework. Classically, points in state space define exact

values for all observables (e.g. a point in (3+3)-dimensional position-momentum state space gives
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the exact position and momentum of an object), so associating a real possible state-of-the-world

to each point ensures all values are simultaneously single-valued. However, if we try and say

a single point in a state space corresponds to a real quantum state-of-the-world, it enforces

locality of hidden variables, so violates Bell’s theorem. (The only major interpretation of quantum

physics in which this is not the case is in Bohmian mechanics, where the state-of-the-world would

pin down the quantum potential—but existence as real values would reinforce the nonlocality-

vs-special-relativity issue (as information sent nonlocally would definitively be writ onto the

state-of-the-world, so this nonlocal communication would be, to use Shimony’s terms, action,

rather than passion, at a distance [Shi93]).)

Further, there is an issue with representing a projective measurement in this form, if one

assumes all values are simultaneously single-valued—given, if we assume all system evolution

except measurement is deterministic (as quantum mechanics does), it implies measurement

must physically disturb the system in a random way to replicate our observations. Spekkens

tries to say this random disturbance could come from the initial state of the measurement device,

and that if we knew this too, the whole interaction would be deterministic, but this sounds like

superdeterminism-by-stealth.

Another issue, specifically with the idea of the real underlying state of the world assumed

by the ontological models formalism, is that both the response function for a variable at an

initial state, and the probability that a situation represented by a given wavefunction being

in a given state, are real probabilities, rather than quasiprobabilities—they are always non-

negative, and sum additively. This is unlike quantum ‘probability amplitudes’, which are really

quasiprobabilities—they can be negative or even imaginary, and so can interfere destructively

with one another. This negative probability interference is a key part of quantum mechanics,

explaining peculiar phenomena such as the Elitzur-Vaidman Bomb Tester [EV93], and coun-

terfactual communication [Sal+13b; HLR21] and imaging [HR21b]. It is unclear how the real

non-negative probabilities of this real underlying state-of-the-world could replicate these effects—

casting doubt on this framework.

See Oldofredi et al for additional issues with this underlying real state assumption in [OL20],

and below (and [HH22a]) for an alternative terminology for underlying-state models of the

wavefunction.

8.3 The wavefunction as a true ensemble

The wavefunction is weird. Its most salient feature — that it merely predicts probabilities

for measurement outcomes, rather than the outcomes themselves — suggests that quan-

tum mechanics is an emergent, average description of an underlying, more complicated

dynamics. In this underlying theory, the time-evolution of the system would be determined and

measurement outcomes could be predicted. It is because we lack information about the details of
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the initial state that we can only make a probabilistic prediction.

That the wavefunction might be an emergent description of yet-to-be-discovered underlying

physics is often called a hidden variable interpretation. The hidden variables are the informa-

tion that is missing in quantum mechanics. This straightforward explanation for the strange

properties of the wavefunction, however, has seemingly been disfavoured by Bell’s and related

theorems [Bel64; Cla+69], and, more recently, by the Pusey-Barrett-Rudolph theorem [PBR12;

Lei14] (hereafter PBR-theorem). We here want to look closer at what these theorems actually

say about the wavefunction as an ensemble of different values of the hidden variables.

The PBR-theorem in particular builds on a classification of models put forward by Harrigan

and Spekkens [HS10]. Their framework attempts to mathematically formalise the distinction

between a wavefunction that represents reality (ψ-ontic) and one that represents knowledge

(ψ-epistemic). That this is a false dichotomy was previously pointed out in [HRL22]. We here

want to spell out another problem with the ψ-ontic/epistemic framework — it doesn’t identify the

hidden variables theories that Bell was trying to rule out.

We begin with defining in what sense we take the wavefunction to be an ensemble in Section

8.3.1, and explain the relation to the ψ-ontic/epistemic framework in Section 8.3.2. In Section

8.3.3 we will discuss the most important consequence, that is the different definition of what

the hidden variables describe, and how to interpret it. In Section 8.3.4, we will revisit the PBR-

theorem in this light. In Section 8.3.5 we discuss Statistical Independence, locality, and the

sometimes used classification of superdeterminism and retrocausality for violations of Statistical

Independence. Finally, in Section 8.3.6, we will explain how the ψ-ensemble interpretation helps

making sense of quantum mechanics.

8.3.1 The ψ-ensemble interpretation

We will begin by explaining what exactly we mean by the wavefunction being an ensemble.

We do not mean the Ensemble, or Statistical, Interpretation of quantum mechanics [Bal70],

according to which the wavefunction describes an ensemble of identically prepared states in

identical experiments. It arguably does, but if the states are indeed identical, that’s not much

of an ensemble. Similarly, we do not mean Smolin’s ensemble interpretation [Smo12], where

the ensemble considered is the ensemble of all the systems in the same quantum state in the

universe.

We mean instead that the supposedly identically prepared states in supposedly identical

experiments are in fact different: they have different hidden variables and this is the reason why

the measurement outcomes can be different for identical wavefunctions. We will refer to this

interpretation of the wavefunction as the ψ-ensemble interpretation.

In our ψ-ensemble interpretation, we have an underlying theory with variables that we will

collectively name κ and we will denote the state-space of all κ with K . The κ are generically
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time-dependent, κ(t). These κ(t)s are not the same as Bell’s hidden variables, as will become clear

in a moment.

In the ψ-ensemble interpretation, the wavefunction in quantum mechanics emerges as an

average description from the hidden variables theory, much like thermodynamics emerges from

statistical mechanics. This interpretation suggests itself because of the apparent similarity of

the von Neumann-Dirac equation with the Liouville equation, and also, as was pointed out in

[Kle11], because the naive ℏ→ 0 limit of quantum mechanics results in a statistical theory.

We use the term ‘hidden variables’ because it has become common terminology. However, we

want to stress that these variables are not a priori unmeasurable. They are ‘hidden’ merely in

the sense that they do not appear in quantum mechanics. If the underlying theory was better

understood, they could well become measurable one day. That is to say, the ψ-ensemble is an

interpretation of the wavefunction in quantum mechanics, but it implies the existence of an

underlying hidden variables theory. This underlying theory is better referred to as a completion

or modification. This is as opposed to interpretations, such as the Transactional Interpretation

[Cra86; Kas13] or Decoherent Histories [GH96], which have the same ontological basis as

standard quantum mechanics, or Modal interpretations [LD21] that do not rely on an underlying

completion (and do not violate Statistical Independence — we will get to this point below).

We assume that the underlying theory is deterministic, that is, if one specifies an initial state,

one can use the theory to uniquely calculate the outcome of a measurement.

|ψ〉 is, as usual, an element of a projected Hilbert space, H . It fulfils the Schrödinger equation.

We are considering a generic quantum mechanical measurement, in which |ψ〉 is prepared at time

tp and measured at time tm. The measurement is described by an orthonormal basis of pointer

states that we will denote |I〉, where I ∈ {0...N −1} and N is the dimension of the Hilbert-space.

|I〉 could be describing multiple different detectors, and might be a product-state or an entangled

state when expressed in a basis of the individual detectors. The basis |I〉 implicitly contains the

measurement settings at the time of measurement.

For simplicity we will in the following assume that the basis |I〉 is time-independent. This

does not mean that the detector setting cannot change. It merely means that if the detector

setting before the measurement was different from the setting at the actual measurement, then

it wasn’t described by |I〉.
In quantum mechanics now, the Schrödinger evolution of |ψ〉 will generically result in a state

that is not one of the detector eigenstates at the time of measurement. In this case, we assume

that |ψ(tm)〉 is an ensemble of different κ(tm), that is, a distribution µ(κ(t)) over K . This means in

the ψ-ensemble theory we have a map

(8.7) P (K) ∋µ(κ(t))→|ψ(t)〉 ∈H ,

where P (K) is the space of all normalisable probability distributions on K . That is to say,

we interpret |ψ(tm)〉 as an ensemble because we empirically know it corresponds to different

measurement outcomes.
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For each pointer state |I〉, there is a subset of hidden variables, {κ}I that will lead to this

outcome. We will refer to these subsets {κ}I as “clusters”. The measurement reveals which cluster

the hidden variable of the actual state belonged to. Hence, the measurement reveals some

information about the hidden variable.

The reason we have for considering this interpretation is that the wavefunction update is

non-local when interpreted as a physical process. This makes it difficult to combine quantum

theory with general relativity. If we hence introduce a ψ-ensemble interpretation, our motivation

is to develop an underlying theory which restores locality, causality, and determinism. Of course

one can conceive of ψ-ensembles that are not local, but these (unsurprisingly) are not useful for

restoring locality. Therefore, for the rest of this Section we will only consider ψ-ensembles that

are locally causal in Bell’s sense [Bel04b; CW12; Nor11].

8.3.2 Difference between ψ-ensemble and ψ-epistemic

The introduction of the ψ-ensemble in the previous section sounds superficially very similar

to the definition of a ψ-epistemic model introduced by Harrigan and Spekkens we discuss above

[HS10].

As a simple example, consider you have a two-state system with detector eigenstates |0〉
and |1〉. You could prepare the state so that, under the Schrödinger-evolution it goes to |0〉
with certainty. Or you could prepare it so that it goes to (|0〉+ |1〉)/p2. If the wavefunction was

ψ-epistemic, then the latter case must have some overlap with the former in the underlying

hidden-variables theory because it can result in the same measurement outcome. At least that is

the idea.

There are several problems with the Harrigan and Spekkens ψ-ontic/epistemic distinction.

One of them is purely linguistic. According to the Harrigan and Spekkens definition, for ψ-ontic

theories, the wavefunction in quantum mechanics itself is ontic. It seems odd to declare something

ontic that can’t be observed, especially given that Bohr already argued ψ is far better interpreted

as knowledge. Settling a hundred-year old debate by definition is not insightful.

One might put this aside as historical nitpicking, but this linguistic issue reflects a deeper

problem. If there’s no observational requirement tied to calling something ontic, then every model

can be made ontic just by declaring the wavefunction to be part of the hidden variables [SF12;

Lei14]. Such an easily malleable definition of ‘ontic’ is not what one wants to base theorems on.

It is also highly confusing that, according to the Harrigan and Spekkens-definition, most

hidden variables models which have been proposed so far are actually ψ-ontic. Think back to

the example with the two state system that evolves into (|0〉+ |1〉)/p2 but is measured in either

|0〉 or |1〉. While the (|0〉+ |1〉)/p2 state must have been made up of different underlying states

(because otherwise it couldn’t give rise to different outcomes) there is no reason why any one of

those underlying states must have been the same as those of a system prepared to evolve into |0〉
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or |1〉. Hence, according to the Harrigan and Spekkens-definition, a ψ-ontic model can solve the

measurement problem as well as a ψ-epistemic one.

We believe our definition of a ψ-ensemble to be more descriptive of hidden variables models,

and less ambiguous than the ψ-epistemology proposed by Harrigan and Spekkens. Whether or

not the state prepared to evolve into (|0〉+ |1〉)/p2 had overlap with any other wavefunction, it

will always be an ensemble if the underlying hidden variables theory solves the measurement

problem. That is to say a ψ-ensemble could be either ψ-ontic or ψ-epistemic according to the

Harrigan and Spekkens-definition.

8.3.3 Hidden variables label trajectories

In our definition of a ψ-ensemble, we have been careful to point out that naturally the

underlying hidden variables theory will be dynamic, hence the hidden variables will be functions

of time. This is of utmost importance for locality considerations, as those usually pertain to

arguments about the distribution of the hidden variables. (We will discuss this in Section 8.3.5.)

If we evaluate the distribution of hidden variables at the time of measurement, then we can

infer the measurement outcome directly from that. However, for Bell’s theorem, and also for the

PBR-theorem, one normally considers the distribution of variables at the time of preparation

instead. These two distributions will in general not be identical. The problem is, if one merely

takes the distribution at the time of preparation, this will not constitute the hidden variables of

Bell’s theorem.

To see this, note that since we assume the underlying theory is deterministic, we can always

take the distribution at the time of preparation, tp, and evolve it forward with whatever is

the transport function of the theory. Assuming time-translation invariance, let us denote the

transport function as T(t1− t0, ·) where the free slot is for the hidden variables. It has the property

that

(8.8) κ(t1)= T(t1 − t0,κ(t0)) , T(0, ·)≡ Id .

Now arguably the entire information that is necessary to determine the outcome at tm is both the

initial distribution at preparation κ(tp) and the transport function T(tm − tp, ·).
Bell, therefore, in the derivation of his inequality, correctly defines the hidden variables as the

‘full specification’ of the information necessary to predict the outcome [Bel04b]. In his own words,

the “values of these variables together with the state vector determine precisely the results of

individual measurements” [Bel66]. However, an initial state without an evolution law does not

determine a final state.

Therefore, if we call Bell’s hidden variables (as usual) λ, then λ(t0)= (κ(t0),T(tm − t0,κ(t0))

and one can now treat the hidden variables as time-independent. The additional information

in the transport function becomes redundant in case one defines the distribution of the hidden

variables at the time of measurement already (t0 = tm) but normally one chooses tp < t0 < tm.
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Figure 8.2: Illustration of the relation between the hidden variables κ(t) which define the state,
and the hidden variables λ which define the entire trajectory. |I〉 and |J〉 depict two different
detector eigenstates. The trajectories that go to the eigenstate |I〉 belong to cluster {κ}I , and those
which go to |J〉 belong to cluster {κ}J , respectively.

Pictorially this means that Bell’s hidden variables (the λ) can be interpreted as labels for

histories (in state space), whereas the Harrigan and Spekkens hidden variables (that we called

κ) define a state (see Fig. 8.2). For this reason, assuming that Bell’s hidden variables belong to a

particular moment in the history of the (entire) state makes no sense. We will comment in Section

8.3.5 on what this means for locality requirements that one normally uses for the distribution of

the hidden variables.

A particularly illustrative example for hidden variables that define trajectories is the model

proposed in [Pal09; Pal20a]. In this case, the hidden variables simply are the detector eigenstates

towards which the prepared state evolves. Given that we cannot measure the state before we

measure the state, this is the most minimal assumption that one can make.

Following the terminology introduced in [CW12], we note that a deterministic model may not

be predictable, in the sense that a model may contain variables from which one could calculate

measurement outcomes when one had them, and yet one cannot find out the values of the

hidden variables to actually do that. Bohmian mechanics is an example of such a deterministic,

yet unpredictable mode. The ψ-ensembles we consider here are all deterministic. They may or

may not also be predictable. In the model laid out in [Pal09; Pal20a] the hidden variables are

incalculable with also makes the model unpredictable.

A few words are in order here about the sense in which the ψ-ensemble is local. In the

ψ-ensemble, the hidden variables are in general not localised in the sense that they do not

belong to some compact region of space because they actually describe trajectories. The initial
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values κ(t0) are in general not localised either because they are not uniquely defined. Suppose,

for example, you have a distribution of variables in space and instead replace them with their

Fourier-transformation. That would contain the same information but one may be localised, the

other not. However, the initial states are localised if one considers experiments in which the

prepared state is localised and is detected in localised detectors, which is for all practical purposes

always the case, and certainly in Bell-type experiments. It is for this reason that the ψ-ensembles

can fulfil the definition of local causality, as Bell intended.

We should add here that it is quite possible that the type of model we consider, in which

the hidden variables actually describe trajectories, is not what Bell meant when he conceived of

his definition of local causality. But regardless of what Bell may have meant, such models can

formally fulfil the condition of local causality.

8.3.4 The PBR theorem revisited

Let us then look at what happens when one confuses these two sets of hidden variables. The

PBR-theorem [PBR12], in a nutshell, shows that models which are ψ-epistemic according to

the Harrigan and Spekkens-definition are incompatible with observations. This superficially

sounds similar to Bell’s theorem which takes on hidden variables theories, but the PBR-theorem

works entirely differently. For this reason, one cannot draw conclusions from it about ψ-ensemble

theories. It is not our intention here to criticise the PBR theorem which has instilled much fruitful

discussion and helped sharpen terminology. We merely want to clarify what conclusions can be

drawn from it.

The above discussion on ψ-ensembles is relevant as the hidden variables in the Harrigan

and Spekkens-definition merely define the state. They do not also specify the time-evolution

of the underlying hidden variable system. If one hence does not define the state at the time

of measurement, then the hidden variables in the Harrigan and Spekkens-definition do not

determine the measurement outcome. How could they if they do not contain information about

the evolution law? Now one may say that a definition is just that, a definition. However, for the

PBR-theorem one treats the hidden variables as if they did determine the measurement outcome,

which implicitly assumes that the transport function contains no further information.

If however the transport function contains necessary information to determine the outcome,

then one runs into the following problem. For the PBR-theorem one considers the distribution

of hidden variables at preparation in the Harrigan and Spekkens-definition. However, those

don’t tell us what the outcome is, so no conclusions about whether the theory is viable or not can

be derived. If one instead replaces the variables in the PBR-theorem with the variables which

actually determine the outcome — i.e., those which contain information about the transport

function — then one needs an additional assumption. This assumption is that the complete

variables are not correlated with the detector settings. That is, one needs the assumption that

Bell called Statistical Independence. This is because if Statistical Independence is not fulfilled,
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then one of the assumptions for the PBR-theorem, the Preparation Independence Postulate (PIP)

is not fulfilled.

Bell defined Statistical Independence (SI) as the absence of correlations between the hidden

variables and the two detector settings which he considered in a particular experiment. However,

of course one can define Statistical Independence in general as

(8.9) µ(λ|S)=µ(λ) ,

where S are the detector settings (of whatever experiment), and µ is the probability distribution

of the hidden variables. As laid out in [HHP22], violating this condition does not necessarily

require correlations between the settings and the distribution of the hidden variables over the

state space; the correlations can instead be induced by the structure of the state-space.

Statistical Independence sneaks into the PBR-theorem because the Harrigan and Spekkens-

definition for a ψ-epistemic model assumes that the hidden variables which define the state at

preparation have nothing to do with the measurement. And that sounds reasonable, until one

realises that if one wants to say anything about measurement outcomes one needs to know the

time-evolution of the hidden variables too.

The PIP now says that if we prepare two independent (spatially separate) experiments, then

the distributions of the hidden variables should factorise. In the PBR argument one first considers

two experiments in isolation. Then one combines the two so prepared states — using PIP — and

measures them instead with a smartly chosen basis of distinguishable states. From this, one

derives a contradiction: If the distribution of the hidden variables was actually the product of

the distributions for the separate measurements, then one cannot reproduce the predictions of

quantum mechanics.

Needless to say, the theorem is correct for what the mathematics is concerned, but the

relevant physical assumption was that the distributions of the hidden variables for the individual

experiments already didn’t depend on the measurement settings. So of course if one multiplies

them, they still do not depend on the measurement settings and one cannot reproduce the

predictions of quantum mechanics. That is, in the ψ-epistemic framework, we have SI ⇒ PIP10.

However, the relevant assumption was the independence of the complete hidden variables

(the λs which determine the outcome) from the measurement settings, not the factorisation. In

particular, the initial distribution of the variables, κ(tp), might well factorise at preparation.

An example for a model in which this happens is [DH22]. This model uses one (complex valued)

hidden variable for each dimension of the Hilbert-space. These hidden variables, which correspond

to κ, are uniformly distributed in the unit disk. Hence, the model fulfils the requirements for the

PBR-theorem and yet reproduces the predictions of quantum mechanics, seemingly defying the

theorem. The reason is that the dynamical law of the model depends on the detector settings, and

so do the full hidden variables λ. When one uses these variables, the model violates PIP, hence
10Note that it’s not in general the case that ¬ PIP ⇒ ¬ SI because it could be that other assumptions of the

ψ-epistemic framework are violated rather than SI.
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no contradiction with the theorem arises. However, since the variables then no longer describe

the initial state at preparation, it’s unclear why they should fulfil PIP in the first place.

We may note that this issue does not appear in Bell’s theorem, simply because Bell considers

a situation where the state is prepared at one place but measured in two, whereas PBR consider

a situation where the state is prepared in two places but measured in one. In Bell’s case one has

no reason to assume that the distribution of the hidden variables factorises.

For completeness, let us mention that the approach presented in [Bar+14] to rule out (Harri-

gan and Spekkens) ψ-epistemic models. This approach works by constructing sets of incompatible

states, and deriving properties about the overlap of probability distributions from measurements

on those. This proof implicitly assumes that the probability distribution of the hidden variables

does not depend on the measurement settings.

8.3.5 Properties of ψ-ensemble theories

Statistical Independence
We know from Bell’s theorem that any ψ-ensemble theory which is locally causal (in Bell’s

sense) and reproduces the predictions of quantum mechanics must violate Statistical Indepen-

dence. Indeed, that one can reproduce quantum mechanical correlations while respecting local

causality provided Statistical Independence is violated is quite possibly the reason why Bell (and

others after him) sought other ways to rule out Statistical Independence, notably by arguing that

it requires finetuning (discussed below).

However, one does not need Bell’s theorem to see that local and causal ψ-ensemble models

will violate Statistical Independence. We just need to note that if we want states in the hidden

variables theory to evolve locally and within the light-cone into detector eigenstates, then we

need information about the detector before the prepared state reaches the detector — otherwise

how do we know what state to evolve into?

For the purposes of this Section, we shall say that a hidden variables theory solves the

measurement problem if it respects Bell’s local causality and gives rise to detector eigenstates

in each single run of an experiment with a probability distribution that agrees (to within

measurement accuracy) with that of quantum mechanics. There are other ways to look at the

measurement problem [Mau95], but for the purposes of this Section, this simplified notion that

specifically applies to hidden variables theories will suffice.

To illustrate what solutions to the measurement problem have to do with Statistical Indepen-

dence, consider the generic setting of an experiment with two detectors (Fig. 8.3). The state is

prepared at P and measured at detectors D1 and D2. One may have in mind for example a single

photon that goes through a beam splitter. The state does not have to be entangled. We want to

know how it evolves in the underlying hidden variables theory.

When the prepared state arrives at D1 it needs to know the setting at D2. Yet, it is clear that

if that information wasn’t available already at P, then it can’t have gotten there within the light
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Figure 8.3: A diagram showing the two backwards light cones from detectors D1 and D2, and
their overlap at point of preparation P .

cone. Hence, both detector settings D1 and D2 must have been either in the initial distribution of

hidden variables or the evolution law. In either case, Statistical Independence is violated.

To be sure, we have drawn an extreme case where the prepared state actually moves with the

speed of light. If one took a massive particle, the last moment in which information about D2

must be available for the underlying state going to D1 could be after preparation. But that doesn’t

change the fact that Statistical Independence must have been violated because information about

the detector setting must have been in the full specification of the hidden variables.

It is a corollary of this — and not the starting point — that any ψ-ensemble theory that solves

the measurement problem and reproduces quantum mechanics will violate the assumptions of

Bell’s theorem and the PBR-theorem. It follows that experiments which show the violation of a

Bell inequality or the CHSH inequality [AGR81], or the agreement of the measurement proposed

by PBR with the predictions of quantum mechanics [Rin+15], cannot rule out ψ-ensemble

theories. A different type of experiment is necessary to test such theories.

Understanding that Statistical Independence is violated because that is required to solve the

measurement problem also explains why one need not expect such violations to occur in non-

quantum experiments, like the often quoted tobacco trials to infer a correlation between smoking

and cancer (see [HP20] and references therein). No preparation of such an experiment will ever

result in a superposition of measurement outcomes. Even if one used a quantum experiment

to, say, sample mice into two groups (one exposed to tobacco smoke, the other not), then the

quantum superposition would be destroyed before one even wrote down the outcome of the

quantum experiment. But Statistical Independence is only violated between the preparation of

an experiment that, under the Schrödinger-evolution, evolves into a superposition of detector

eigenstates, and the measurement of that state.
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It must be understood here that we use the term ‘measurement’ in the same sense as in

quantum mechanics. That is, it does not necessarily require an observer or even a detector, it just

requires a sufficient amount of interactions with the environment. We don’t need to be specific

about this because this aspect of the measurement problem was already solved by decoherence

and einselection [Zur03]: A detector is any system that decoheres the prepared state quickly

enough, and the detector eigenstates are defined as those which are stable in that process. We

merely need violations of Statistical Independence to explain why we always measure a detector

eigenstate and not, as decoherence predicts, a mixed state.

It is worth stressing that the statements made in this section are not suggested interpretations

of mathematical expressions, they are conclusions drawn from empirical facts. We know, as

a matter of fact, that measurements yield definite results. If the results come about locally,

causally, and deterministically from the prepared state, then the underlying theory must violate

Statistical Independence. We also know empirically that we never observe superpositions of

detector eigenstates, hence violations of Statistical Independence are negligible for macroscopic

objects.

Theories which violate Statistical Independent are often further broken down into those

which are superdeterministic and those that are retrocausal. The superdeterministic ones were

recently further broken down into those that are and are not supermeasured (see [HHP22] and

Chapter 9). However, the terms superdeterministic and retrocausal have been used to mean

different things by different authors which has made the situation very confusing. For example,

some authors assume superdeterminism is deterministic [HP20], while others do not [SV20a].

Some equate retrocausality with future input dependence [WA20], others do not [Pri94; Pri12].

Some claim that retrocausality is just mislabelled superdeterminism [NV22]. Yet other authors

have proposed to use the terms all-at-once or atemporal [Adl22]. None seem to assign much

importance to the ensemble that the wavefunction should describe, which is at the centre of our

definition.

We believe that the ψ-ensemble is a more useful classification because it captures those

approaches which are candidates to solve the measurement problem(s).

Locality

It is quite common to get confused here about how such a requirement — that the evolution

law depends on the measurement settings at the time of measurement — can possibly be local.

However, keep in mind that the hidden variables λ label trajectories, not initial states, of the

underlying theory. The trajectories necessarily connect the prepared state with the detectors

locally and causally (if they didn’t, we couldn’t detect the prepared state). Hence, the requirement

that the hidden variables are correlated with the detector settings at measurement can come

about entirely by local propagation and by local interactions. (Again, we do not claim that such a

theory necessarily has to be local. It’s just that this is the case we are interested in.)

Such ψ-ensemble theories that violate Statistical Independence fulfil Bell’s criterion of local
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causality because if the information about both detector settings was available already at

preparation, then it is unnecessary to later add it.

Fine-tuning
It is frequently argued that theories which violate Statistical Independence would need a

lot of detail to specify the initial state for the detector setting at the time of measurement, and

that they are thence fine-tuned “conspiracies” [SV20b]. This initial state is often believed to be

required long before the experiment even began, possibly as far back as the Big Bang.

However, the idea that we need to define an initial state for the detector setting is patently

absurd. In quantum mechanics, we also never define the initial condition at the Big Bang that

will give rise to a specific detector setting. Indeed, we never do this in any theory. It is in practice

unnecessary to ever write down this initial state, regardless of whether it is feasible in the

first place. We simply make predictions for any possible measurement setting. Hence, violating

Statistical Independence does not require a lot of detail; it merely requires the detector settings

at the time of measurement — an input we also use in ordinary quantum mechanics.

A second finetuning argument [WS15] has it that it would require specifying a lot of details

for the distribution of hidden variables in order to prevent violations of Born’s rule that would

allow for superluminal signalling. However, leaving aside that the absolute impossibility of

superluminal signalling (rather than its observed rarity) is a postulate, not an empirical fact, we

can arguably always achieve that Born’s rule is fulfilled simply by postulating that it is fulfilled,

which one also does in quantum mechanics.

That is, these two arguments use a double-standard: Assumptions are not called fine-tuned

when used in normal quantum mechanics (detector settings at measurement and Born’s rule are

required to calculate probabilities) but are called fine-tuned when used in other frameworks. As

already argued in [Hos20], such a notion of fine-tuning is scientifically meaningless and can at

best be considered metaphysical. (Finetuning in these contexts has been discussed in more detail

by Adlam [Adl21a].)

8.3.6 Using the ψ-ensemble to make sense of quantum experiments

Of course using a ψ-ensemble, even if deterministic, local, and causal doesn’t remove the

weirdness of quantum mechanics. It remains in the property that for a spatially distributed

detector, a state in the underlying theory that goes to one particular eigenstate must have had

information about that part of the detector to which it didn’t go. Again, this requirement can be

formulated purely in local terms (if the state would have gone to the other part of the detector,

it would have interacted with it), but this is where the famed quantum weirdness goes. If the

underlying hidden variables theory is local and causal and deterministic, then the evolution

which the actual state takes — and which we ultimately observe — takes into account what would

have happened if the state had gone elsewhere. We will now explain how this nicely explains

some otherwise very unintuitive quantum behaviour.
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The Double-Slit Experiment

To warm up, we consider the familiar double-slit experiment. The odd thing about this

experiment is that the behaviour of the quantum particle changes depending on whether we

know which slit the particle goes through. If we don’t know, the particle seems to go through

both slits and interferes with itself, like we expect for a wave. But if we measure which slit the

particle goes through, the interference pattern vanishes.

This seemingly strange behaviour makes total sense from the ψ-ensemble perspective because

the trajectory of the state in the underlying hidden variables theory depends on what is being

measured.

Wheeler’s Delayed-Choice Experiment

The delayed choice-experiment [Whe78] comes in a large number of variations, but in the

simplest version, one changes the variable that is being measured after the prepared state has

begun its propagation. In normal quantum mechanics, this is even more difficult to understand

than the double slit experiment because it seems that the prepared state must somehow ‘change

its mind’ as the setting is changed.

However, from the ψ-ensemble perspective this is clearly not what happened. This is because

the trajectories depend on the detector setting at the time of measurement. What the settings

were before that or how often they were changed is irrelevant.

The Elitzur-Vaidman Bomb Tester

The Elitzur-Vaidman Bomb Tester allows one to detect whether a bomb is live (would blow

up when it detects a photon) without triggering the bomb [EV93]. In this experiment, the bomb

acts as a detector. Whether the bomb is live or a dud therefore constitutes two different detector

settings. From the ψ-ensemble perspective, it is hence rather unsurprising that the case in which

the bomb does not blow up contains information about whether the bomb is live, because this is

just a type of detector setting.

Counterfactual Computation/Communication

In counterfactual computation [Hos+06] one infers the result of a computer query without

interacting with the computer. This experiment is a variant of the Elitzur-Vaidman experiment

and can be explained the same way. The computer acts as a detector depending on what the

outcome of the calculation is. In the ψ-ensemble interpretation, the particle which one measures

contains information about the setting of the detectors which it wasn’t detected in, which allows

one to infer the result of the computation.

The same logic also applies to Salih et al’s counterfactual communication device and related

protocols [Sal+13b; Sal+22; HLR21], and so protocols for imaging [HR21b] and for quantum

information transfer derived from it [Sal+20; Sal+21].

The Extended Wigner’s Friend Scenario

The previous examples all work more or less the same way. The Extended Wigner’s Friend

experiment [FR18] is a more recent proposal that beautifully highlights the problems one runs
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into when rejecting hidden variables theories, but works entirely differently.

The Extended Wigner’s Friend Scenario is a Bell-type test with two entangled particles, one

measured by Charlie and one by Debbie (the friends) in spatially separated laboratories. Each of

the two observers is observed by a super-observer, Alice and Bob respectively. Charlie and Debbie

measure an entangled state and Alice and Bob then further measure correlations between Alice’s

and Bob’s measurement outcomes. It turns out that, given suitable measurement settings, the

observers cannot all agree on what the measurement results are.

The issue with this experiment is a fuzzy definition of what constitutes a measurement. As

already pointed out in [Rel18; ŻM21], one can interpret the friends’ measurements as either

having resulted in a definite outcome, or as still being in an entangled quantum state. The

resulting contradiction does not occur if one has a theory in which a measurement outcome is an

unambiguous result of the time-evolution.

In a ψ-ensemble theory, the friends either make a measurement and violations of Statistical

Independence are for all practical purposes destroyed. Then the super-observers can no longer

measure quantum correlations between the friends. Or the friends really just make a transforma-

tion on a quantum state, rather than a measurement, in which case the super-observers can well

observe further quantum effects.

We have argued here that the ψ-ontic/epistemic distinction is not descriptive of hidden

variables models that can restore locality and causality by giving a physical meaning to the

wavefunction update. Instead, they can better be described as ψ-ensemble theories. If they are

local, causal, deterministic and reproduce the predictions of quantum mechanics, then such

theories violate the assumptions of both Bell’s theorem and the PBR-theorem. We have shown

that taking this possibility seriously can help making sense of some otherwise strange quantum

phenomena.

8.4 Chapter Conclusion

In this chapter, we undertook foundational work—evaluating whether Harrigan and Spekkens’s

criteria for models being ψ-ontic and ψ-epistemic actually corresponded to the wavefunction

representing the state of the world (the wavefunction being ontic) and the wavefunction repre-

senting some experimenter’s knowledge about the state of the world (the wavefunction being

epistemic). While Harrigan and Spekkens’s terms ψ-ontic and ψ-epistemic are necessarily defined

as contradictories, we showed the wavefunction being ontic doesn’t necessarily exclude it from

also being epistemic. Harrigan and Spekkens’s mathematical definitions therefore fail to capture

the underlying intuitions they are supposed to represent. We then highlight a category of model

specifically excluded from Harrigan and Spekkens’s definitions, where the wavefunction repre-

sents an ensemble of identically-prepared states with differing hidden variables (ψ-ensemble

models). Those ψ-ensemble models which are locally causal in Bell’s sense can be used to solve
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the measurement problem, at the expense of violating statistical independence. Combined with

the review of the measurement problem in Chapter 7, this shows why we should be interested

in models that violate statistical independence—while they have been attacked as unpalatable,

they present the only viable path towards resolving the measurement problem.

While this chapter does not directly link to the interplay between quantum foundations and

quantum technologies, it shows why we should be interested in statistical independence-violating

models. This reinforces why we need ways to experimentally distinguish between these models

and standard quantum mechanics.
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9
STATISTICAL INDEPENDENCE-VIOLATING MODELS

Declaration of contribution: This Chapter is adapted from one published paper and one

preprint. The published paper is Supermeasured: Violating Bell-Statistical Independence

without violating physical statistical independence [HHP22], which was conceived and

written by myself, Dr Sabine Hossenfelder, and Prof Tim Palmer. The preprint is Experi-

mental Tests of Invariant Set Theory [HPR21], which was written by myself, edited by Prof

Tim Palmer, and supervised and edited by Prof John Rarity. These papers were written at

a later stage of my PhD, when I had been developing independent collaborations, and my

supervisors were happy for this independent work to be included in my thesis.

9.1 Chapter Introduction

In this chapter, we look in more depth at statistical independence-violating models of quan-

tum mechanics. First, we show that, while statistical independence-violating models are

typically split into either superdeterministic or retrocausal models, there is actually a third

type of model which violates statistical independence: we name this “supermeasured”. We show

how this type of model differs from superdeterministic and retrocausal models: these differences

allow proponents of such models to counter arguments posed against statistical independence-

violating models. We then focus on an example of a supermeasured model—Invariant Set Theory

(IST)—and investigate how to experimentally test predictions it makes which differ from those of

standard quantum mechanics.

The work in this chapter, especially towards the latter end, forms a key aspect of Part II’s

case study into the interrelation between foundations and quantum technology. By showing

how quantum technology can be used to test foundational models, it illustrates how new and

155



CHAPTER 9. STATISTICAL INDEPENDENCE-VIOLATING MODELS

developing/hypothetical quantum technologies can feed back into quantum foundations. This

demonstrates that quantum technological research serves not only to develop spin-off applications

of quantum foundations, but also provides key tools for experimentally validating foundational

research.

9.2 Supermeasured: Violating Bell-Statistical Independence
without violating physical statistical independence

Bell’s theorem [Bel64] has been a milestone in our understanding of quantum mechanics,

detailing just what correlations are necessary to reproduce observations. Unfortunately, many

physicists have jumped to incorrect conclusions from it. A 2016 survey among professional

physicists [SN16] found that 34% believe Bell’s theorem shows that “Hidden variables are

impossible”: that is, they think Bell’s theorem rules out theories in which measurement outcomes

are determined by variables that are not accounted for in standard quantum mechanics. Similarly,

in a survey conducted among professional quantum physicists at a conference in 2012 [SKZ13],

64% claimed that Bell’s theorem rules out hidden variable theories (and said local realism is

untenable). This is of course not so. Bell’s theorem just shows that a hidden variables theory

which fulfils all the assumptions of the theorem is ruled out by observation.

Bell’s theorem however contains a questionable assumption: (Bell-)Statistical Independence,

sometimes called the “Free Will” or “Free Choice” assumption (here labelled Bell/capitalised to

distinguish it from the intuitive ideas of physical statistical independence, free will and free

choice). Indeed, one can interpret all experiments that have found violations Bell inequalities

as simply demonstrating that if quantum mechanics is underpinned by a local, causal, and

deterministic theory, then that underlying theory must violate Bell-Statistical Independence.

Clearly the conclusion to draw from this is that we should look for a hidden-variables theory

that violates Bell-Statistical Independence, not least to develop a quantum formalism that is

compatible with General Relativity. Of course this is not historically what has happened. Instead,

physicists have collectively discarded the possibility that Bell-Statistical Independence might be

violated because they misunderstood what it means. For example, referring to Bell-Statistical

Independence as “free will” or “free choice” seems to have created a strong cognitive bias for

accepting the assumption unthinkingly.

That this “free will” nomenclature is highly misleading has already been clarified elsewhere

[HP20; Hos20]; we don’t want to repeat this entire discussion here (though we will briefly

comment on the relation between statistical independence and free will in Subsection 9.2.3). Our

aim in this Section is to investigate the physical interpretation of Bell-Statistical Independence,

and explain why it is widely misunderstood.

This misunderstanding is well-illustrated by a quote from a recent paper by Sen [Sen21]:

“The [Statistical Independence] assumption states that the hidden variables that

156



9.2. SUPERMEASURED: VIOLATING BELL-STATISTICAL INDEPENDENCE WITHOUT
VIOLATING PHYSICAL STATISTICAL INDEPENDENCE

determine the measurement outcomes are uncorrelated with the measurement set-

tings.”

Similar interpretations can be found in [SV20a; SV20b]. This indeed is the standard way of

interpreting the mathematical statement of Bell-Statistical Independence. However, we will show

below that physically this interpretation is ambiguous at best. Subsection 9.2.1 gives a general

argument for this. Subsection 9.2.2 looks at the CHSH inequality in particular. Subsection 9.2.3

discusses in more detail IST [Pal20a], which is to our knowledge the only example of a theory

that ‘violates Bell-Statistical Independence without violating physical statistical independence’,

before discussing misconceptions regarding free will, fine tuning and conspiracy.

9.2.1 Understanding Statistical Independence

As per Subsection 7.2.5, Statistical Independence is often said to be the assumption that

(9.1) ρ(λ|X )= ρ(λ) ,

where λ is a set of hidden variables, X are the detector settings, and ρ is a probability distribution

of the hidden variables. In Bell’s theorem one normally uses two separate detectors and their

settings. We comment on that specifically in Subsection 9.2.2, but first look at the general

interpretation. It is possible in principle that ρ depends on further variables, but this will not

matter in the following.

That ρ(λ, X ) is a probability distribution means it is normalised over a space, which we will

denote Smath for the mathematical state space: it comprises all mathematically possible states

of the hidden-variables theory. By “mathematically possible” we literally just mean that we can

write them down mathematically. We might however later discard some of the mathematically

possible states as not physically possible or meaningful. This isn’t so uncommon. For example,

some mathematically possible solutions to the Schrödinger equation are not normalisable, and

hence not physically possible.

Our key point in this section is that any space we integrate over must have a measure, µ(λ, X ),

and generically this measure is non-trivial, i.e., isn’t just identical to some normalisation constant.

A measure roughly speaking quantifies the volume of the space. The probability distribution ρ

can only be normalised by help of the appropriate measure:

(9.2)
∫
Smath

dλdX ρ(λ, X )µ(λ, X )= 1 .

Measure theory [CD15] is not usually discussed in physics textbooks. However, a variety

of measures make their appearance in physics nevertheless. The most widely used one is the

Lebesgue measure on Rn and (pseudo-)Riemannian manifolds. On fractals, it can be generalised

to the Hausdorff measure. In the context of Hamiltonian dynamical systems, a non-trivial

measure on state space arises in the theory of symplectic manifolds (leading, for example, to the

157



CHAPTER 9. STATISTICAL INDEPENDENCE-VIOLATING MODELS

Gromov non-squeezing theorem). In Subsection 9.2.3, we discuss non-trivial invariant measures

associated with chaotic attractors.

The measure of Smath appears in the calculation of any expectation value; therefore it

should enter the derivation of Bell’s theorem together with the probability distribution ρ. Since

these two functions always appear together, it is tempting to simply combine them into one

ρBell(λ, X ) := ρ(λ, X )µ(λ, X ), where we use the index “Bell” to emphasise that this is the quantity

that really enters Bell’s theorem. The assumption of Statistical Independence in Bell’s theorem is

therefore actually the assumption that

(9.3) ρBell(λ|X )= ρBell(λ) .

We call this Bell-Statistical Independence (with the prefix Bell- and capital letters), and

distinguish it from Eq. 9.1 which we now call physical statistical independence in lower-case

letters. (Note, in the most general formulation of the assumptions of Bell’s theorem, one considers

a dependence of ρBell on both the measurement settings as well as the preparation procedure.

However, the dependence on the preparation procedure is irrelevant to our point, and we have

therefore omitted it for simplicity. The reader may consider the preparation details to be part of

the hidden variables.)

To avoid confusion with the standard interpretation of superdeterminism, we propose calling

a theory which violates Eq. 9.3 but does not violate Eq. 9.1 a “supermeasured” theory, with µ

being the supermeasure. (Note, despite the similarity in terminology, this has nothing to do with

measurement.)

Since Eq. 9.3 is mathematically indistinguishable from Eq. 9.1 given a suitable redefinition of

the probability density, one may wonder why we should bother introducing the two distributions ρ

and ρBell? It is important to distinguish them because physically they mean something different.

ρ is the distribution of states on Smath. It can be affected by factors under the control of the

experimenter, such as the preparation of the state. ρBell , by contrast, is the distribution weighted

by the measure µ(λ, X ). This measure is not under the control of the experimenter—it’s just

a property of the laws of physics. As such ρBell contains information both about the intrinsic

properties of the space and the distribution over the space.

The problem with the common interpretation of Bell-Statistical Independence is that typically

the measure µ is not explicitly defined in the assumptions for Bell’s theorem. This means that

one implicitly assumes that the measure µ is identical to the uniform measure µ0 on Smath. The

consequence is that interpretations of Bell’s theorem run afoul of physics whenever one is dealing

with a theory in which µ(λ, X ) ̸=µ0.

To see why this distinction matters, let us look at a simple idealised example. The following

example is not meant to describe a realistic physical theory. We merely present it to elucidate

that it is always possible to replace a correlation on one space with a non-correlated distribution

on a subset of the first space—without changing any of the probabilities. This shows that the

common definition of statistical independence is ambiguous for what the physical interpretation
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is concerned, and so claims of “fine-tuning” based on this definition are also ambiguous. We will

come to a more physically relevant example later.

Let Smath be a compact continuous space with uniform measure µ≡µ0 = constant, and ρ a

probability distribution over it. This probability distribution may violate Eq. 9.1. Our task here

will be to show that we can remove this correlation entirely without changing any probabilities.

To see this, we use ρ to randomly choose a set SN = {(λ1, X1), (λ2, X2)...(λN , XN )} of N points

in Smath. For illustration, see Fig. 9.1. From this we define the discrete measure

(9.4) µ̃(λ, X ) :=
N∑

i=1
δ(λ−λi)δ(X − X i) .

Note that the probability that two points are equal to another is zero. We then define a uniform

probability distribution ρ̃(λ, X )≡ 1/N on Smath which is normalized with respect to µ̃ and from

that ρ̃Bell(λ, X ) := ρ̃(λ, X )µ̃(λ, X ).

Figure 9.1: Illustration of sampling procedure. Left: The square represents the space Smath over
hidden variables and measurement settings, and the shading is the probability distribution ρ

over it. The brighter the shading, the higher the probability. Right: We randomly distribute a set
of N points using ρ. In the limit N →∞ a uniform distribution ρ̃ on the points will reproduce the
probabilities defined by ρ on Smath with a uniform measure. The set of points defines the new
space Sphys, also over hidden variables and measurement settings. It has a non-trivial measure
µ̃ in Smath. Any correlations that were present in ρ are thereby moved into the structure of
Sphys.

Let us now take a subset A of Smath with non-zero volume (according to µ), A ⊂Smath. In

the limit N →∞, the probability P(A) of finding the system in that subset is

(9.5) P(A)=
∫

A
dλdX ρ̃Bell(λ, X )=

∫
A

dλdX ρBell(λ, X ) ,
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for any A. This means that all probabilities calculated from ρ on Smath with uniform measure

µ≡µ0 are by construction identical to those of the uniform distribution ρ̃ with measure µ̃.

Finally, we define the new, physical state-space Sphys := limN→∞SN . Since µ̃≡ 0 on Smath \

Sphys, we discard the complement, only keep Sphys, and restrict the probability ρ̃ to Sphys.

Once we have done that, the entire information that was previously in ρ has moved into

the definition of the physical state-space Sphys. ρBell = ρµ and ρ̃Bell = ρ̃µ̃ give exactly the same

probabilities. Since we never experimentally measure probability densities but only probabilities,

these two theories are physically indistinguishable. Both violate Bell-Statistical Independence as

defined in Eq. 9.3. But ρ̃(λ|X )= ρ̃(λ): the hidden variables are by construction uncorrelated on

the new space. On Sphys, the theory violates Eq. 9.3, but not Eq. 9.1.

We here used a uniform distribution on the physically possible states. This corresponds to

what is commonly called the principle of indifference [Key21]. We just use this as the simplest

example of a distribution on state space. Regardless of the distribution, however, one cannot

be indifferent about the state-space itself because this state space is a property of the laws of

physics. It is whatever it is. This can induce violations of Bell-Statistical Independence even if

the distribution over the space is uniform.

It is in this sense that the common interpretation of Bell-Statistical Independence is wrong:

on a state space with non-trivial measure, the hidden variables may not be correlated with

the detector settings, yet the Bell-Statistical Independence assumption will be violated. The

common interpretation neglects the possibility that the theory is supermeasured rather than

superdeterministic.

Moving the correlation into the definition of the physical state space is a simple way to avoid

fine-tuning (the claim that the experimentally confirmed correlations are sensitive to small

changes in the distribution, raised in e.g., [SV20b; WS15])). If the correlations are created by the

intrinsic properties of the space itself, rather than the distribution over the space, then small

changes just can’t happen. This is the idea of IST [Pal20a] which we will discuss in more detail in

Subsection 9.2.3. Other reasons why the fine-tuning argument can fail were previously discussed

in [Hos20; WA20; DH22].

Another example of a theory which uses a non-trivial measure is Spekkens toy model [Spe07].

This model relies on an “epistemic restriction,” that requires certain combinations of phase-space

distributions to have measure zero. The Spekkens model is not supermeasured, however, because

this measure does not depend on the measurement setting. For this reason the Spekkens model

cannot reproduce Bell-inequality violations, whereas IST can.

One could apply the principle of indifference to say the measure should be uniform (or trivial).

This occurs in fields such as statistical mechanics (e.g. with the Gibbs measure [Geo11]). However,

empirical evidence/observed physics gives us reason to believe the measure is (or at least to

consider theories where the measure is) non-trivial, and so the principle of indifference does not

apply here. Specifically, we can take clues from the non-commutativity of certain variables in
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quantum mechanics that we might have gotten the measure of the space wrong, and hence try a

different measure to see if it allows us to explain more.

We want to stress, however, that just because a measure can remove fine-tuning does not

mean it necessarily does. The measure itself may be fine-tuned, in the sense that it requires a

large number of details to be specified. Whether that is so must be evaluated for each model on a

case by case basis. But since we know already that the measurement settings are sufficient to

obtain the correct predictions of quantum mechanics as average values (because that is what we

do in quantum mechanics), it is reasonable to think that the measure need not be fine-tuned. We

will now show this with a simple example.

9.2.2 Statistical Independence in the CHSH inequality

Before turning to IST as a natural example for a non-trivial measure, we will go through a

simple example, the CHSH inequality [Cla+69]. The CHSH setting describes a measurement

of two entangled particles with two different detectors, commonly assigned to two observers,

Alice (A) and Bob (B). The inequality states that any locally causal hidden variable theory which

respects Bell-Statistical Independence fulfils

(9.6)
∣∣E(X0,Y0)−E(X1,Y0)+E(X0,Y1)+E(X1,Y1)

∣∣≤ 2 ,

where X0/1 are detector settings on Alice’s side and Y0/1 are the detector settings on Bob’s side.

The quantum correlations E(X0/1,Y0/1) are the expectation values of the results, A(X0/1) and

B(Y0/1). A(X0/1) is Alice’s result given Alice’s setting X0/1, and B(Y0/1) is Bob’s result given Bob’s

setting Y0/1. We will consider the usual case in which there are only two possible measurement

outcomes relative to those settings, A(·),B(·) ∈ {−1,+1}.

In experimental tests of the CHSH inequality, the correlations for four different combinations

of settings are estimated from four separate sub-ensembles of particles. Physical statistical

independence is then the assumption that

(9.7) ρ̃(λ|X0Y0)= ρ̃(λ|X0Y1)= ρ̃(λ|X1Y0)= ρ̃(λ|X1Y1)= ρ̃(λ) ,

that is, the distribution of hidden variables does not depend on the (combination of) detector

settings. We will assume that our hidden variables theory fulfils this assumption.

We now explain how the CHSH inequality can be violated in a hidden variables model by

violating Bell-Statistical Independence but not physical statistical independence. For this, we

first assume that the entangled state is represented by a hidden variable, λ, which has the

probability distribution ρ̃(λ, XY ). Secondly, we assume the measurement outcome is determined

by the hidden variable and the settings: A(λ, X ),B(λ,Y ).

We denote the space of all the hidden variables with Λ, and divide it up into subsets for each

possible combination of detector settings and outcomes ΛAB
XY . That is, the subset Λ++

00 contains all
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λs for setting X0Y0 that will give the result A =+1,B =+1, the subset Λ+−
00 contains all λs for

setting X0Y0 that will give the result A =+1,B =−1, and so on.

However, we will next assume that the hidden variable cannot occur for two different combi-

nations of measurement settings. If the variable λ described the case with setting X0Y0, then the

combination (λ, X0Y1) is in Smath but not in Sphys. This means

Λ= ⋃
i, j,k,l

Λ
i j
kl for i, j ∈ {+,−} ∧ k, l ∈ {0,1} ,(9.8)

but that these spaces are mutually disjoint

Λ
i j
kl ∩Λab

cd =; for i jkl ̸= abcd .(9.9)

This does not contradict Eq. 9.7, because physical statistical independence is a statement

about the probability distribution. The probability distributions for the four different combina-

tions of settings can be made similar to arbitrary precision, even though no value of λ appears

twice.

Imagine for example that λ is a real number from the interval [0,1] ∈Q. We randomly sample

N points from this interval using a uniform distribution and assign each to one combination

of settings and outcomes, i.e. one of the Λi j
kl . The so-generated probability distributions will be

statistically indistinguishable for N →∞, even though the probability that λ appears for two

different settings is zero. This is true regardless of how many of the λs we assign to each detector,

provided the cardinality of all subsets is the same. In the limit N →∞ the distribution for λ

conditioned on one of the detectors will just be uniform on each subspace Λi j
kl .

However, importantly, the measures of the subspaces Λi j
kl don’t have to be the same. All we

need to do now is choose ρ̃ to be constant, and the measure of the space Λi j
kl to be proportional to

the quantum mechanical probability P
(
A(Xk)B(Yl)|X iY j

)
(the constant of proportionality will

cancel with the normalisation of ρ̃) for each possible combination of outcomes. Since λ together

with the detector setting determines the outcome, the outcome isn’t an independent variable. If

we want to calculate the expectation value for a certain combination of measurement settings in

the hidden variables model, we therefore have

E(Xk,Yl)=
∑
AB

∫
ΛAB

kl

dλ A(λ, Xk)B(λ,Yl)ρ̃(λ)µ̃(λ|XkYl)

= ∑
AB

A(Xk)B(Yl)P
(
A(Xk)B(Yl)|XkYl

)
,(9.10)

which reproduces the correlations of quantum mechanics.

This might seem trivial: we just pushed the quantum mechanical correlation into the defi-

nition of the physical state space, then uniformly sampled the hidden variables over this space.

This way, physical statistical independence is respected because the correlation comes from the

definition of the space rather than from the distribution over it.
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The above example can be generalised straight-forwardly to any quantum mechanical mea-

surement, regardless of what variables are measured in what order or how many detectors there

are. The above construction will always give the exact same result as quantum mechanics. In

particular, it obeys the same bounds and violate the same inequalities as quantum mechanics.

This example is admittedly somewhat pointless, because we did not specify the model suffi-

ciently to even know whether it was locally causal. However, any deterministic hidden variable

theory that violates local causality can be made locally causal at the expense of violating Bell-

Statistical Independence. We have further shown—contrary to what is often stated—violating

Bell-Statistical Independence does not necessarily require correlations between the hidden

variables and measurement settings.

This is not the only way to reproduce quantum mechanics with a locally causal and determin-

istic model without fine-tuning [DH22], but it is a nice example to see just why the distribution

of the hidden variables is not fine-tuned. It is uniform on the sample-space, and the sample-space

just describes what happens in reality. If the detector setting is one thing, it is not also another

thing. The correlations come from the sample-space itself, and the information that goes into the

construction of the sample-space is just the same as in quantum mechanics. Hence, this model is

exactly as fine-tuned or not fine-tuned as quantum mechanics. That is to say, a rational reader

who has no quarrels with quantum mechanics should have no quarrels with this model either.

9.2.3 Invariant Set Theory

The Mathematical Basis of IST We next consider supermeasures in the context of IST. In

the following we do not directly use the fractal structure of an invariant set. That invariant sets

are generically fractals merely serves as a motivation to consider a finite discretisation of Hilbert

space in which certain combinations of states do not exist. As we explain below, this discretisation

naturally acts as a supermeasure.

IST [Pal20a; Pal95; Pal09] is a putative theory of quantum physics based on the assumption

that the universe is a causal deterministic dynamical system whose state-space is a fractal set,

IU . This fractal set corresponds to Sphys of the previous section. It is invariant under the action

of dynamical equations: if a point lies on IU , its time evolution always lies on IU ; if a point

does not lie on IU , its time evolution never has and never will. The nontrivial measure µ̃ is the

measure of this invariant set. It is sometimes called the invariant measure. Each trajectory of

IU actually comprises a Cantor Set’s worth of trajectories. As such µ̃ is a Hausdorff measure

[Rog98]—a generalisation of Lebesgue measure for spaces with non-integer dimension.

Notably, if the state space is a fractal, it has gaps. (Indeed one could say it is mostly gaps,

since the set has measure zero in the continuum embedding space.) In IST, the states in the

gaps are not ontic, they are counterfactual states that are mathematically possible (and hence

lie in Smath), but are inconsistent with the assumed laws of physics (and hence do not lie in

Sphys). With respect to a Euclidean metric on Smath, the restricted states are arbitrarily close to
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the allowed states. That is, perturbations (which are tiny with respect to the Euclidean metric)

will generically take an allowed state to one that is inconsistent with the assumed laws of

physics. This does not make the theory fine-tuned as perturbations which take ontic states off the

invariant set are necessarily p-large with respect to a p-adic norm. Such a norm, and associated

metric, is the natural one to use on a fractal geometry.

The fractal structure that underpins IU is further assumed to be isomorphic to the p-adic

integers, for some very large p. The theory of dynamical systems defined on p-adic numbers is an

established part of arithmetic dynamics (see [WS98] and references therein). Indeed the famous

Lorenz model based on three simple ordinary differential equations

dX
dt

=σ(Y − X )

dY
dt

= X (ρ−Z)−Y

dZ
dt

= XY −βZ

(9.11)

provides a motivational example of what we have in mind. No matter where in state space

these equations are initialised, the solutions of the Lorenz equations define trajectories which,

after an infinite length of time, fall onto the fractal Lorenz attractor. IST proposes that laws of

physics are not based on differential equations like Eq. 9.11, but on geometric equations which

describe the attractor. With such laws, a point in state space which does not lie on the attractor

is not physically consistent with such laws. Such a point is assigned a prior probability of zero.

On the other hand, it is impossible to know a priori whether a point lies on the attractor: the

geometric properties of fractal structures like the Lorenz attractor are formally non-computable

[Blu+98; Dub93].

IST in its current form does not have a dynamical law. However, this is commonplace in the

quantum foundational literature as in many cases one only cares about transition amplitudes

between initial and final times. Those amplitudes are in addition often between spin states, so

that one does not need to consider a space-time evolution. An example of this is Spekkens’s Toy

Model [Spe07], which does not have a dynamical evolution equation but has still proved useful.

Like in Spekkens’s Toy Model, we study here what insights we can extract directly from the

structure of state space.

As a consequence of this fractal structure, an ensemble-based probabilistic state of the system

in IST can be expanded in the basis of detector eigenstates |A j〉 in the form

(9.12) |ψ〉 = a1|A1〉+a2|A2〉 . . .+aJ |AJ〉 ,

where the modulus-squared of the coefficients sun to 1 (i.e.,
∑

j a ja∗
j = 1). The crucial difference

to standard quantum theory is that in IST the complex amplitudes a j belong to a subset of

the complex numbers a j ∈ Cp,Cp ⊂ C. The elements of Cp obey rationality restrictions on the

coefficients (and so do not form a field). Specifically, if we write a j in polar form a j = R j eiφ j then
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the fractal structure of IU demands

(9.13) R2
j = m j/p; φ j = 2πn j/p ,

where m j,n j, p ∈N0, m j,n j < p.

This discretisation is effectively a nontrivial measure, allowing the violation of Bell-Statistical

Independence—it gives measure zero to any states whose coefficients in Eq. 9.12 do not obey

the conditions in Eq. 9.13. This means distributions over the set of allowed states will violate

the assumption of Bell-Statistical Independence, even if the distributions themselves contain no

information about the detector setting.

In the limit p →∞, the set of such “rational” Hilbert states is dense in the projection of the

quantum mechanical Hilbert-space. From this point of view, for large enough p, IST can be made

as experimentally indistinguishable from quantum theory as one likes. This makes it difficult to

devise experimental tests for this idea. Such tests must ultimately be based on the fact that, at

the end of the day, p is some finite number. We discuss this further in Section 9.3 and [HPR21].

However, no matter how large is p, the state-space of this theory will continue to have gaps.

That is to say, the limit p →∞ is singular: quantum mechanics does not correspond to IST in

the large p limit. Importantly, no matter how large is p, ensembles of trajectories described by

Hilbert States where the complex amplitudes do not belong to Cp, do not lie on IU . As such, these

trajectories have the measure µ̃= 0 in the continuous embedding space.

With this IST explains why it is impossible to simultaneously measure conjugated variables

in quantum mechanics with certainty. In quantum theory, this is a consequence of having non-

commuting operators acting on a Hilbert-space, but is otherwise unexplained. In IST this arises in

a deterministic framework because of the geometric structure of the invariant set and associated

fractal measure. The incomplete algebraic structure of Cp reflects the “gappy” geometric structure

of IU . For example, superpositions of two states which are in Cp are generically not also in Cp.

Of course, thinking about rational numbers and constraints among which states can mutually

exist does not explain all results of quantum mechanics—that would require, amongst other

things, a dynamical law. It does however provide a mathematical basis for the impossibility of

measuring certain combinations of variables at the same time.

The CHSH Inequality in IST [Pal20a] previously demonstrated that IST correctly repro-

duces the observed violations of Bell’s inequality and the results of sequential Stern-Gerlach

experiments. We here use the CHSH inequality to explain how the measure of state space is

relevant to obtain the correct probabilities.

In IST, if we keep the setting of the first detector fixed (say, at X0), then the settings Y0

and Y1 of the second detector cannot both be on the set if Y0 ̸=Y1. If Y0 was on the set together

with X0, then Y1 won’t be on it, and vice versa. One of them is not physically possible. This

property is a consequence of the rationality requirement on the amplitudes and phases, and a

number-theoretic result known as Niven’s theorem [Niv56; Jah10]:
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Niven’s Theorem: Let φ/2π ∈Q. Then cosφ ∉Q except when cosφ= 0,±1
2 ,±1.

If the first combination of settings, (X0Y0) for given λ, fulfils the rationality condition, then the

second one, (X0Y1) for the same λ, can’t fulfil it; it is associated with a state in Smath where

µ̃= 0.

This means

ρ̃Bell(λ|X0Y0) ̸= 0 =⇒ ρ̃Bell(λ|X0Y1)= ρ̃Bell(λ|X1Y0)= 0(9.14)

ρ̃Bell(λ|X1Y0) ̸= 0 =⇒ ρ̃Bell(λ|X0Y0)= ρ̃Bell(λ|X1Y1)= 0(9.15)

etc. However, this does not imply

ρ̃(λ|X0Y0) ̸= 0 =⇒ ρ̃(λ|X0Y1)= ρ̃(λ|X1Y0)= 0(9.16)

ρ̃(λ|X1Y0) ̸= 0 =⇒ ρ̃(λ|X0Y0)= ρ̃(λ|X1Y1)= 0(9.17)

etc.

As the statistics of trajectories in IST can be represented by complex Hilbert vectors over Cp

for large p, the measures of the spaces Λi j
kl introduced in Subsection 9.2.2 are proportional to the

quantum mechanical probabilities P
(
A(Xk)B(Yl)|XkYl

)
. Hence IST reproduces the correlations

of quantum mechanics.

Free Will As mentioned at the beginning of this Section, Bell-Statistical Independence is

sometimes called the Free Will and/or Free Choice assumption. This refers to the notion that if,

for example, Alice actually chose X0 and Bob Y0, then, keeping λ and Alice’s choice fixed, Bob

could have chosen Y1 instead—he had the freedom to have done otherwise. But as we have also

discussed, such a counterfactual state is incompatible with IST: if Bob actually chose Y0, then

the state corresponding to the triple (λ, X0,Y1) is not in the physical state-space; it corresponds

to a point in Smath where µ̃= 0.

But does this constraint actually have anything to do with free choice? In a deterministic

framework, like IST, free will can at best be interpreted as the absence of constraints that could

prevent an agent from doing as they please. But there is nothing in IST that would prevent an

agent from doing as he or she pleases any more than is always the case in any deterministic

theory—the laws of nature always constrain what we can do. And just as it is possible to violate

Bell-Statistical Independence without violating physical statistical independence, it is possible to

violate Free Choice (the assumption in Bell’s Theorem) without violating free choice—after all,

Free Choice is just a fancy name for Bell-Statistical Independence. That is, in IST Bob can freely

choose among the physically possible options in the sense that there is no constraint on them.

While the difference between the correlations being on state space or in the probability

distributions makes little difference to our observable world, it has relevance to the difference

between Free Will as an assumption in Bell’s Theorem, and “free will” as debated in metaphysics.

Were the “free will” debate based on what we observe or experience, we would be tempted to say
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that moving correlations to a supermeasure makes no difference; however, most of the free will

debate is metaphysical—it has nothing to do with what we observe or experience. It concerns the

question of what we even mean by being “free” from something. And for that part of the debate, it

matters whether an event or process is even physically possible (in the physical state space) or

merely mathematically possible.

For instance, no one seems to ever be worried that we are not free to move around with

complex-valued velocities or momenta. Mathematically, this is totally possible. It just does not

happen in reality—observables are Hermitian operators. However, no one has ever argued that

this restricts our “free will”. Why not? Because that velocities are real-valued is just a property of

the universe. Obtaining a complex-valued velocity is not a physically possible change, so we do

not think it restricts our “free will”. (It is probably something most people do not think about

in the first place.) It is for this reason that the distinction between mathematical and physical

possibilities matters, even though this does not affect what actually happens experimentally.

In some parts of the literature (as we sketch in Subsection 7.2.5), authors have tried to

distinguish two types of theories which violate Bell-Statistical Independence: those which are

superdetermined, and those which are retrocausal. The most naive form of this (e.g. [Sen21])

seems to ignore the prior existence of the measurement settings, and confuses a correlation

with a causation. More generally, we are not aware of an unambiguous definition of the term

“retrocausal” and therefore do not want to use it.

In the supermeasured models that we consider, the distribution of hidden variables is cor-

related with the detector settings at the time of measurement. The settings do not cause the

distribution. We find Adlam’s terms—that superdeterministic/supermeasured theories apply an

“atemporal” or “all-at-once” constraint—more apt and more useful [Adl22].

While Bell’s theorem is often said to imply that local causality (which is violated by standard

quantum mechanics) cannot be restored with a deterministic hidden variables theory, this is

only correct if the hidden-variables theory respects Bell-Statistical Independence. Violations of

Bell-Statistical Independence are commonly interpreted as implying a correlation between the

measurement settings and the hidden variables which determine the measurement outcomes.

However, as we have shown here, one can violate the (Bell-)Statistical Independence assumption

in Bell’s theorem without any correlations between the measurement outcomes and the hidden

variables. The violations of Bell-Statistical Independence can instead come about by the geometry

of the underlying state space. We have argued that this is a simple way to see that violating

Bell-Statistical Independence does not require fine tuning. In the next Section we look again at

the example we gave above of a model whereby violations of Bell-Statistical Independence come

from the geometry of state space—IST.
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9.3 Experimental Tests of Invariant Set Theory

For all the successes of modern physics over the last century-and-a-half, we have been left

with two apparently incompatible branches—the nonlinear and deterministic general relativity,

and the linear but indeterminate quantum theory. For us to have a Theory of Everything, that

describes all observed physical phenomena, we need a way to unite these, so we can describe

physical phenomena at any scale. However, due to their differing takes on the determinacy of the

universe, this has so far proved difficult.

IST attempts to unify these three disparate branches by using insight from chaos theory to

create a fully local and determinate model of quantum phenomena [Pal95; Pal09; Pal11; Pal12b;

Pal12a; Pal14; Pal16; Pal17; Pal18; Pal19; Pal20a; Pal20b]. It does by assuming that the universe

is a determinate dynamical system evolving precisely on a fractal invariant set in state space.

The natural metric to describe distances on a fractal set is the p-adic metric. This replaces the

standard Euclidean metric of distance between states in state space. A consequence of this is that

putative counterfactual states which lie in the fractal gaps of the invariant set are considered

distant from states which do lie on the invariant set, even though from a Euclidean perspective

such distances may appear small. Given the uncomputability of the possible states on any

given fractal attractor, we cannot in advance distinguish states allowed and disallowed by this

metric—hence, in IST, quantum-scale phenomena appear random despite being deterministic.

p-adic numbers form a back-bone of modern number theory and as such provide a framework

to describe quantum physics within a finite number-theoretic framework. An example of this

how IST provide an explanation for complementarity, a concept underpinning the uncertainty

principle in quantum mechanics. In IST, complementarity is an emergent phenomenon arising

from a number-theoretic property of trigonometric functions known as Niven’s theorem—that

cosφ is not a rational number when exp iφ is a primitive pth root of unity. The complex Hilbert

Space of standard quantum mechanics arises as a singular limit of IST when p is set equal to

infinity.

However, despite showing how key examples of quantum phenomena can be described de-

terministically, the theory deviates from standard quantum physics in some of its predictions—

mainly in ways which stem from the p-adic metric being finite. In this Section, we give these key

points of deviation, and investigate the extent to which these could be used to experimentally

test the theory.

9.3.1 Entanglement Limits

In standard quantum theory, there is no limit to the number of quantum objects n which can

be n-partite maximally entangled (i.e. saturate the Coffman-Kundu-Wootters inequality for an

n-partite state [CKW00; OV06]). However, in IST, there is. Here, we codify this limit, and design

experiments using optics/NISQ devices to probe it.
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For this, we use the M-qubit W state [DVC00; RA09],

(9.18)
∣∣∣WM

〉
= 1p

M

M−1∑
i=0

|0〉⊗i |1〉 |0〉⊗(M−1−i)

(where
∣∣ψ〉⊗M is the tensor product of

∣∣ψ〉
with itself M times). For instance, the M = 3 W state is

(9.19)
∣∣W3〉= |100〉+ |010〉+ |001〉p

3

The W state is a maximally entangled state of M qubits—and in standard quantum theory,

there is no limit to how high M can be.

However, in IST, the finiteness of the p-adic metric provides a limit to the number of qudits

that can be maximally entangled. For multiple-qubit entanglement, this limit is codified in

[Pal20a] as a maximum of log2 N qubits being able to be maximally entangled, in a p-adic system

where the equatorial great circle of the Bloch sphere consists of N equally-spaced discrete points.

A system of maximally-entangled photon-vacuum qubits can be created using a single photon

and a number of mirrors and 50:50 beamsplitters, as shown in Fig. 9.2. This naturally forms

a W state across M qubits, and, by standard quantum theory, should potentially be able to be

extended to M →∞. However, this disagrees with IST, which limits to a maximum of M = log2 N

entangled qubits, where the two orthogonal spherical dimensions of the Bloch sphere (θ and φ)

are each discrete in N divisions. While p is expected to be very large, each qubit will only have

been affected by I = log2 log2 N beamsplitters, so, for realistic experimental beamsplitter loss of

0.1%, the chance of losing a given qubit to decoherence only reaches 1% once the system has

entangled over 1000 qubits, which is only possible by IST if N ≥ 10250 (as we show in Fig. 9.3).

Further, an advantage of the W state is, even if decoherence effectively measures one of the

qubits, so long as the result is 0 (the photon isn’t in that mode), this collapse leaves the remaining

qubits still maximally entangled in the (M−1)th W state.

Even if we obtain this state, we need to prove it is entangled. Gräfe et al [Grä+14] and

Heilmann et al [Hei+15] have done this for 8 and 16 qubit W states respectively, confirming that

they generated an entangled W state of that size (assuming they inputted a single photon), and

NISQ devices such as Wang et al’s integrated silicon photonics chip could be used to do this for

a 32-qubit W state [Wan+18]. It is an ongoing problem to specifically discern an entanglement-

confirming optical layout for an arbitrarily-large W state, but Lougovski et al give the quantum-

information-theoretical groundwork for doing so [Lou+09]. This involves using beamsplitters

to shift the optical-path modes to instead each represent one possible permutation of phase

combinations for the sub-components (ignoring the global phase of the state). For instance, for

the 4-qubit W state, combining beamsplitters after the state creation so as to have each final
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Figure 9.2: The first 4 iterates of a set-up to create the entangled state
∣∣WM〉

(as given in Eq. 9.18),
where M = 2I at the I th iterate. The diagonal blue lines are 50:50 beamsplitters, the diagonal grey
lines mirrors, the yellow oval a single-photon source, and the black lines the possible paths of the
photon. Given this maximally entangles 2I qubits, IST predicts entanglement generated by an
experiment like this should begin to fail after I = log2 log2 N iterations, where the two spherical
dimensions of the Bloch sphere are each N-discrete. We can test whether this entanglement holds
or fails by putting mirrors at the ends of each path—if the photon returns with 100% probability
to the input port, it was maximally entangled; if each beamsplitter splits it evenly, such that
it only returns 2−I of the time, the entanglement has decayed completely. Return probabilities
between show various levels of entanglement decay.
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Figure 9.3: The survival probability of each qubit for a given set of entangled qubits created
using the experiment in Fig. 9.2, and the maximum number of entangled qubits that can be
created in a version of IST where the p-adicity causes the Bloch sphere to be split into N divisions
in each angular direction. This shows how this beamsplitter experiment allows us to test this
entanglement limit for very high-p versions of IST, due to the comparative lack of loss-induced
decoherence on the W state created.
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path act to project on one of the 4 states∣∣W4
1
〉= (|1000〉+ |0100〉+ |0010〉+ |0001〉)/2∣∣W4

2
〉= (|1000〉− |0100〉− |0010〉+ |0001〉)/2∣∣W4

3
〉= (|1000〉+ |0100〉− |0010〉− |0001〉)/2∣∣W4

4
〉= (|1000〉− |0100〉+ |0010〉− |0001〉)/2

(9.20)

Doing this means a consistent detection on just one of the paths over many runs (e.g. the

one corresponding to just
∣∣W4

1
〉
) indicates a pure entangled state is consistently being created

(specifically here the state
∣∣W4

1
〉
). Were the entanglement to break, the detections would begin to

spread between the targeted state
∣∣W4

1
〉

and the other three states, until, for a maximally mixed

state, each detector would click 25% of the time.

In the same way, for the I th iterate, consisting of M = 2I qubits, using linear optical compo-

nents one can project the eventual state into one of the 2I phase permutations of
∣∣WM〉

, and

so detect with certainty that a pure entangled state of M qubits was created. Interestingly,

preparing these states to certify entanglement requires each optical mode to again only interact

with I beamsplitters, to allow us to certify M = 2I -qubit entanglement, which simply squares the

survival probability. This means for 1000 qubits, it becomes 98% rather than 99%. Given the

resilience of the overall state to loss-induced decoherence, and the fact that Lougovski et al show

this certification method also allows us to detect any entangled states of fewer than M qubits,

this loss probability poses very little issue to our test of IST. Further, despite the loss, the total

number of surviving (maximally-entangled) qubits tends to infinity as I tends to infinity, rather

than peaking at a certain value.

This W state-based experimental analysis of IST can be extended by looking at an experiment

such as Rarity and Tapster’s, where a pair of photons are generated in a cone of possible positions.

Here, the angular position of one photon is anti-correlated with the position of the other [RT90].

We show this in Fig. 9.4. Considering just one photon in the cone, this is equivalent to a W state

where M is the number of sectors into which you subdivide the cone. Adding a second photon,

position-entangled with the first, doubles the number of entangled qubits in the system.

Rarity and Tapster also give a way to prove these photons are entangled—by interfering

them to violate a Bell inequality. However, as this is done assuming their position is a continuous

variable, we need to adjust it to prove just how large it holds for as discrete variables.

This can be done by making a set of 2M apertures on the circumference of the cone, and

splitting the ring into two half-circumferences. After this, similarly to what we do in Fig. 9.2, we

can iteratively combine adjacent apertures to get position-momentum entanglement between

adjacent apertures. Once this projects to equal superpositions across all M apertures on each

half-circle, we can record detected position for each half-circle’s photon. By comparing the final

detected position between upper half-circumference and lower half-circumference, and seeing if

they still correlate, we can confirm this double-WM state.
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9.3. EXPERIMENTAL TESTS OF INVARIANT SET THEORY

Figure 9.4: Type I SPDC source for the generation of pairs of position-and-momentum-entangled
photons, as given by Rarity and Tapster [RT90]. The generated position of each photon on the cone
can be viewed as a W state of arbitrary number of qubits N, and so the system of the two photons
is a double-W state of 2N qubits. This arbitrary number of qubits N can be lower-bounded as the
resolution of a circular single-photon position detector array used to detect where on the circle
each photon is emitted.
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While the phase between the upper photon and some other discrete division in the upper half

will be random, it will be the same as the phase between the lower photon and some discrete

division in the lower half. The correlation is always the same, but specific phases at different

points on the circumference are not. This is why, using the two photons (and two split half-circles),

we can prove the correlations still exist—a similar (continuous-variable) method was used by

Rarity and Tapster to provably violate a Bell inequality.

9.3.2 No Continuous Variables

A second, related implication of IST is that it permits no continuous quantum variables.As

the p-adic metric used in IST is necessarily finite-dimensional, the space of states allowed must

also be finite. Since we can lower bound the number of states allowed as the dimension of the

Hilbert space we use (to replicate classical information theory), we can say that, the existence

of a qudit of dimension d implies a state space of at least dimension d (e.g. a qubit requires at

least two distinct states: 0 and 1; a qutrit requires 3 states: 0, 1 and 2, etc...). Hardy extends this

argument, saying that, to satisfy his axioms for quantum theory, between any two pure states in

a system, there needs to be a continuous reversible transformation available on a system that

goes from one to the other. To allow this, Hardy argues a qudit of dimension d requires a state

space of dimension d2 [Har01].

This means for continuous variables to exist, given they have an infinite-dimensional Hilbert

space [BV05], there must be an infinite number of states allowed. This violates IST. Therefore, in

IST, there can be no quantum continuous variables.

In standard quantum physics, many variables are continuous (e.g., position, momentum,

electric field strength, and time) [Wee+12]. Therefore, for IST to hold true, all of these variables

would actually need to be discrete: of finite (but very high) dimension. While some models hold

one or another of these variables to be discrete (e.g., space-time in Loop Quantum Gravity [Rov98]

and certain toy models of the Universe [FS14a]), the idea that all ‘continuous’ variables are

actually discrete would be controversial.

9.3.3 Gravitational Decoherence

Palmer describes IST as not so much a quantum theory of gravity (like String Theory and Loop

Quantum Gravity), but a gravitational theory of the quantum [Pal16]. Aside from its determinate

nature, nowhere is this more true than in how IST models regimes where gravitational and

quantum effects are both present. The paper Invariant Set Theory describes the theory as

positing no gravitons and so no supersymmetry (spin-2 gravitons typically being seen as hinting

at supersymmetry) [Pal16]. Instead, the paper holds that gravity is inherently decoherent,

turning gravitationally-affected superpositions into maximally mixed states. This paper also

claims that effects typically considered signs of either dark matter or dark energy could instead be

in some way due to various manifestations of the “smearing" of energy-momentum on space-times
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Figure 9.5: The experiment described by Bose et al [Bos+17] and Marletto and Vedral [MV17], for
testing gravity’s ability to entangle two masses. Two masses, mi for i ∈ {1,2} are separated from
each other by distance d. Both are initially in state |C〉i, with embedded spin (|↑〉+ |↓〉)/p2. They
are then both admitted into Stern-Gerlach devices, which put them both into the spin-dependent
superposition (|L,↑〉i +|R,↓〉i)/

p
2, where |L〉i and |R〉i are separated from each other by distance

∆xi. They are left in these superpositions for time τ. During this time, if gravity is quantum-
coherent, evolution under mutual gravitational attraction h00 would entangle the two particles,
adding relevant phases to both. After time τ, an inverse Stern-Gerlach device is applied to return
each mass to their initial state (potentially modulo the phases applied by h00). By applying this
process, and measuring spin correlations between the two particles after each run, we can detect
if relative phases have been applied to each, and so if gravity is coherent. For IST to hold, gravity
must be decoherent, and so cannot entangle two masses. This means IST predicts no alteration
of phases will be detected.

neighbouring our universe MU on the invariant fractal set IU influencing curvature of MU . It

claims this smearing avoids precise singularities in MU : avoiding singularities being a key goal

of many previous attempts to quantise General Relativity.

Palmer suggests an alteration of the Einstein Field Equations (EFEs) based on the presence

and effects of possible universes M ′
U on our universe MU , leading to the EFEs instead being

Gµν(MU )=
8πG

c4

∫
N (MU )

Tµν(M ′
U )F(MU ,M ′

U )dµ
(9.21)

where F(MU ,M ′
U ) is some propagator to be determined and dµ is a suitably normalised Haar

measure in some neighbourhood N (MU ) on IU [Pal16]. Note, in this altered form of the EFEs,

the cosmological constant Λ is set to zero, given Palmer claims the alteration would separately

resolve the issue of dark matter and the acceleration of the expansion of the universe.
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This gravitational decoherence could be tested by experiments that involve putting heavy

objects in spatial superpositions. This would involve allowing them to gravitationally interact,

then returning the spatial superposition components back to a single position, then seeing if

there are any signs of entanglement between the objects from the resulting interference pattern

(see Fig. 9.5) [Bos+17; MV17].

In such an experiment, assuming gravity is coherent, the combined state of the two masses

initially is

(9.22) |ΨInit〉12 = (|↑〉1 +|↓〉1)(|↑〉2 +|↓〉2) |C〉1 |C〉2 /2

Passing both masses through a Stern-Gerlach apparatus, this combined state then evolves at

t = 0 to

(9.23) |Ψ(t = 0)〉12 = (|L,↑〉1 +|R,↓〉1)(|L,↑〉2 +|R,↓〉2)/2

After allowing the two masses to gravitationally interact for time t = τ, the overall state has

become

|Ψ(t = τ)〉12 = eiφ

2

(
|L,↑〉1 (|L,↑〉2 + ei∆φLR |R,↓〉2)

+|R,↓〉1 (ei∆φRL |L,↑〉2 +|R,↓〉2)
)(9.24)

where

φ≈ Gm1m2τ

ℏd

φRL ≈ Gm1m2τ

ℏ(d−∆x)
, φLR ≈ Gm1m2τ

ℏ(d+∆x)

∆φLR =φLR −φ, ∆φRL =φRL −φ

(9.25)

After applying the opposite of the initial Stern-Gerlach interaction, the final state is

|ΨEnd〉12 =
∣∣C′〉

1

∣∣C′〉
2 =

(
|↑〉1 (|↑〉2 + ei∆φLR |↓〉2)

+|↓〉1 (ei∆φRL |↑〉2 +|↓〉2)
)
|C〉1 |C〉2 /2

(9.26)

However, if gravity isn’t coherent, there are two possible final states. If gravity doesn’t also

collapse the state, the final state will be equivalent to the initial one (|ΨInit〉12 = |ΨEnd〉12).

However, if gravity does collapse the superposition, each particle will be forced into the (spin)

maximally mixed state

(9.27) |ΨMM〉i = |C〉〈C|i (|↑〉〈↑|i +|↓〉〈↓|i)/2, i ∈ {1,2}

By measuring spin correlations to estimate the entanglement witness

(9.28) W = |〈σ(1)
x ⊗σ(2)

z 〉−〈σ(1)
y ⊗σ(2)

z 〉|
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we can distinguish the entangled state from the two other possible final states (if W > 1, the state

is entangled), and so see if gravity is coherent. For IST to hold, W needs to be less than or equal

to 1.

While such a test may sound challenging to implement, recent experimental work indicates it

should be possible within the next few years [Del+20; Mar+21]. This test would also have the

benefit of either ruling for or ruling out other theories which hold gravity to be decoherent (e.g.

Penrose’s gravitational collapse interpretation [Pen96]).

We have identified points of difference between IST and standard quantum mechanics. While

not fatal to IST, they provide potential avenues to experimentally test the theory, to see whether

its deterministic, fractal-attractor-based structure is compatible with observed reality.

9.4 Chapter Conclusion

In this chapter, we looked further at statistical independence-violating models of quantum

mechanics. We showed that, while statistical independence-violating models are typically cat-

egorised into either superdeterministic or retrocausal models, there is actually a third type of

model which violates statistical independence, which we introduced, those which are “supermea-

sured”. We showed how this type of model differs from superdeterministic and retrocausal models,

and how these differences can help proponents of models in this category respond to arguments

typically levied against statistical independence-violating models. Finally, we focused specifically

on an example of a supermeasured model—IST—and presented potential methods for how to

experimentally test it against standard quantum mechanics.

The work in this Chapter illustrates the second part of the interplay between quantum

foundations and quantum technologies—the use of current and developing/hypothetical tech-

nologies to test ideas in quantum foundations. In this Chapter, we first specified a subtype of

model in which statistical independence is violated—supermeasured models—and described in

detail a model which meets fits this categorisation: IST. We then went on to describe differences

between the empirical predictions of IST and standard quantum mechanics. We then proposed

experiments, based on current or near-future quantum technologies (e.g. NISQ devices), which

would test which set of predictions most closely matches reality. This serves as an example of

how these near-term quantum technologies allow us to probe into the foundational mysteries of

quantum mechanics.
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CONCLUSION AND OUTLOOK

This final chapter first summarises the work presented in this thesis, before looking

at related potential future research directions, with specific focus on directions which

illustrate the links between quantum foundations and quantum technologies. We then

discuss broader themes within this work.

10.1 Summary of Work

This thesis focused on two areas within quantum foundations—counterfactual communication,

and statistical independence-violating extensions of quantum mechanics. We here summarise

work presented in each of these two areas.

10.1.1 Counterfactual Communication

Part I of this thesis examined counterfactual communication, and the related effects of

interaction-free measurement and counterfactual computation. Chapter 2 reviewed both proposed

criteria to determine where a quantum particle has been, and the history of interaction-free

and counterfactual effects. Chapter 3 analysed one of these proposed criteria for determining

the path of a quantum particle—where a non-zero weak value of the spatial projection operator

corresponding to a given path (or some operator comprising the product of the spatial projection

operator with any other operator) implies a particle was on that path. We showed issues with

these weak values approaches (such as Vaidman’s weak trace approach), and discussed whether

we should associate these weak values with the intuitive idea of presence.

Chapter 4 considered foundational issues related to counterfactual communication: whether

protocols are counterfactual by the definitions in Chapter 2; and whether protocols are necessarily
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quantum. Chapter 5 developed protocols using counterfactual communication as a primitive, for

the transfer of quantum rather than classical information. We first gave a protocol for enacting

an arbitrary single-qubit unitary onto a qubit across a channel counterfactually. We then gave a

protocol by which a controlled-Z gate operation can be applied across a channel onto a given qubit

counterfactually. This second protocol allowed us to build on this counterfactual controlled-Z

gate, for counterfactual quantum teleportation and telecloning. Chapter 6 turned counterfactual

communication towards metrology, giving a protocol for counterfactual ghost imaging. This

allows delicate samples to be imaged optically with far reduced (asymptotically zero) light flux

through the object, and no light flux through the object on runs of the protocol where the object is

successfully imaged.

Part I shows how an initially foundational idea, the Elitzur-Vaidman Bomb Tester, can still

be adapted to develop novel and interesting quantum technological tools, even thirty years after

it was originally described.

10.1.2 Extensions of Quantum Mechanics

Part II of this thesis looked at extensions of quantum mechanics which violate statistical

independence.

Chapter 7 first reviewed Bell’s Theorem. We examined the assumptions necessary to construct

a Bell inequality. We then reviewed the experiments performed that show that Bell inequalities

can be violated, and so that one of these assumptions must be false. We then looked more closely

at models where one of these assumptions, the statistical independence assumption, are violated.

These models are often referred to as superdeterministic or retrocausal. Finally, we introduced

the measurement problem: even though all other time evolution in quantum mechanics is linear

and unitary as governed by (forms of) the Schrödinger equation, the update of a quantum state

after measurement is explicitly non-unitary. This is despite measurement not being a rigorously-

defined part of quantum mechanics. We showed that the measurement problem motivates us

to look for theories that extend quantum mechanics, and that developing models which violate

statistical independence may give extensions which could resolve this problem.

Chapter 8 dived further into foundational research—evaluating the extent to which Harrigan

and Spekkens’s definitions ψ-ontic and ψ-epistemic correspond respectively to the wavefunc-

tion representing the state of the world (the wavefunction being ontic) and the wavefunction

representing some experimenter’s knowledge about the state of the world (the wavefunction

being epistemic). We showed that, while Harrigan and Spekkens’s definitions for ψ-ontic and ψ-

epistemic are necessarily contradictory, the wavefunction being ontic doesn’t necessarily exclude

it from also being epistemic. This shows Harrigan and Spekkens’s definitions fail to adequately

represent these underlying ideas. We then identified a specific category of model excluded by

Harrigan and Spekkens’s definitions—those where the wavefunction represents an ensemble of

identically-prepared states, with differing hidden variables (ψ-ensemble models). We showed
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ψ-ensemble models which obey Bell’s definition of local causality can be used to solve the mea-

surement problem, so long as they violate statistical independence.

Finally, Chapter 9 specifically examined models which violate statistical independence. We

showed that there is a third type of model which violates statistical independence, alongside

superdeterministic and retrocausal—those which are “supermeasured”. We illustrated how this

type of model differs from superdeterministic and retrocausal models, and how these differences

can help proponents of these models respond to typical arguments against models which violate

statistical independence. Finally, we focused on a specific example of a supermeasured model—

Invariant Set Theory (IST)—and presented potential ways to experimentally test it against

standard quantum mechanics.

10.2 Future Work

This Section gives possible future directions for work. These are either related to the two

case-study areas presented in this thesis, or more generally show the interplay between quan-

tum foundations and quantum technologies. These new directions comprise: interaction-free

polarimetry (Subsection 10.2.1), the interpretation and use of weak values (Subsection 10.2.2),

the broader experimental testing of extensions of quantum mechanics (Subsection 10.2.3), the

examination of data from quantum computing research for interesting patterns (Subsection

10.2.4), and philosophy of science in practice (Subsection 10.2.5).

10.2.1 Interaction-Free Polarimetry

Chapter 6 proposed counterfactual ghost imaging [HR21b]: a form of interaction-free metrol-

ogy where pixels of a sample could be discriminated as optically transmissive or absorptive

without any light flux through the sample. However, this and other interaction-free imaging

protocols (such as those described in Chapter 2) suggest interaction-free imaging could be used

for other metrological tasks.

A task this tool could be applied to is polarimetry—the determination of the effect of trans-

mission through a certain sample on the polarisation of any arbitrary ray of light. (See [Tyo+06;

Gol20] for more information on polarimetry.) Samples tested using current polarimetric protocols

are often optically sensitive. An example is where polarimetry is used to identify the relative

concentrations of chiral isomers of complex biological molecules [Boe+82; MPB01; Due+21]. We

want to reduce the light flux through these samples when undertaking polarimetry on them.

Interaction-free methods are ideally suited to this task, given they reduce light flux through a

sample, potentially to vanishing levels.

Our preprint Interaction-Free Polarimetry does preliminary work on combining interaction-

free methods with polarimetry [HR22]. However, this is still a work-in-progress, and needs

validation and verification—hence we did not include it in this thesis. However, we hope this
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work can be developed further in the near future, and this tool deployed to aid in polarimetry—a

potential future example of a useful quantum technology derived from quantum foundations.

10.2.2 Interpretation and Use of Weak Values

Chapters 2 and 3 mention that weak values can have practical applications in metrology,

despite originally being a foundational curiosity (e.g., in Aharonov, Albert and Vaidman’s paper,

How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out

to be 100 [AAV88]). From weak value amplification, to protocols for the “direct measurement”

of a quantum state (weak value state tomography), weak values can obtain more information

in a given scenario than either classical or quantum projective measurement allow [Dre+14].

Therefore, weak values present another potential case study in how quantum foundations can aid

the development of new/hypothetical quantum technologies. Similarly, quantum protocols/devices

have been used to try and show that foundational inferences made using weak values hold true.

Examples of this include Danan et al’s Asking photons where they have been [Dan+13], or the

experiment performed in Chapter 4 and the paper Do the laws of physics prohibit counterfactual

communication [Sal+22]. Weak value metrology has even been used to observe the Bohmian

trajectories of quantum particles [Koc+11; Mah+16]. This illustrates how an idea from quantum

foundations can be developed into a quantum technological tool (in the broadest sense), then used

to aid in quantum foundational research.

Due to this, an avenue for future research within the scope of this thesis is into weak values,

both foundationally and for potential future applications. We performed some initial research

in this area, both in Chapter 3 and the Appendix to this thesis. However, as this was not yet as

fully developed as the research we performed into counterfactual communication or statistical

independence-violating extensions of quantum mechanics, we decided not to include this work in

its own Part.

A key direction for this research, both in the Appendix and beyond, is examining the difference

between how we treat some quantities as “negligible in practice” (as being able to take some

infinitesimally small limit of, and treat as zero), and how the necessarily non-zero size of these

quantities affects actual experimental practice. This difference suggests that looking at how

protocols and experiments are actually implemented is important for foundational research.

For weak values, this specifically involves looking at the perturbation to a system caused by

weakly measuring the system. In weak value theory, this perturbation is typically taken as being

reducible to zero. However, initial results in Appendix B suggest different results in situations

when there is strictly zero perturbation.

10.2.3 Broader Experimental Testing of Extensions of Quantum Mechanics

Chapter 9 presented initial ideas as to how we could experimentally test IST [Pal16], a

supermeasured extension of quantum mechanics [HHP22]. However, this is one of a plethora of
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proposed extensions to quantum mechanics, to resolve our current issues with measurement and

the relationship between quantum phenomena and gravity. A key aspect of these extensions is

that they provide differing predictions to standard quantum mechanics in some parameter space.

If we can access that parameter space experimentally, we can test whether that extension reflects

observations better than standard quantum mechanics. This foundational phenomenology is a

necessary if underappreciated endeavour—evaluating how the predictions of newly-proposed

models differ from standard quantum mechanics, proposing experiments that use cutting-edge

quantum devices and technologies to test those differing predictions, and properly identifying

the set of models given results rule out. The best current examples of foundational quantum

phenomenology are the tabletop quantum gravity testing programme [MV17; Bos+17; Del+20],

and collapse-model testing programme [BG03; Bas+13]. Given developments in recent years on

quantum technologies, it is surprising so few groups leverage this to investigate foundational

ideas, even just to demonstrate their technological research.

Specifically testing models which violate statistical independence, proposed experiments such

as Hossenfelder’s [Hos11] are slowly becoming more feasible with modern quantum technologies

(such as NISQ devices). These could bound which statistical-independence-violating models are

compatible with observed reality. Therefore, an ideal direction for future work is collaborating

with experimentalists to perform such experiments, to provide new insights into the foundational

problems discussed throughout this thesis.

10.2.4 Examining Data from Quantum Computing Research

Also worth examining is data being generated in the current races between companies and

research groups to be the first to create a working quantum computer either of a given size,

or which can perform a given quantum algorithm [Wit22]. Achieving these goals will require

large numbers of interconnected qubits, protected in some way from environmental noise and

decoherence [CTV17]. (This protection is typically through application of quantum error correction

protocols over even larger numbers of either qubits or Gaussian states [DMN13].) These quantum

computers will comprise the largest entangled states ever controlled by man.

As discussed previously, some extensions of quantum mechanics differ from standard quantum

mechanics in how they treat large entangled states. For instance, IST sets stronger limits on the

size of maximally entangled states than the standard monogamy of entanglement [Pal16], and the

Diosi-Penrose model involves gravitationally-induced collapse [Pen96]. Therefore it seems sensible

for the foundations community to examine data from these experiments and NISQ devices:

compare observed decoherence/error rates to those expected from standard quantum mechanics,

and consider the foundational implications of practical “short-cuts” taken in quantum error-

correction research to mitigate unknown-yet-quantifiable error-inducing effects. This will allow

us to leverage the work done in developing quantum computers to investigate and potentially

resolve foundational questions—or even formulate new questions entirely.
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10.2.5 Philosophy of Science in Practice

As mentioned in Section 1.1, the work in this thesis acts as an example of philosophy of

science in practice—bringing philosophers and (especially experimental) quantum physicists

together to do collaborative research, both to consider philosophical problems within the field

(philosophy-of-science in practice) and to present case studies of scientific practice to develop

philosophical conclusions (philosophy of science-in-practice) [BL13].

A future direction would be to cement this interdisciplinary link between applied quantum

physics/quantum technologies and philosophy of science, to expand these two research strands.

Given how little interaction philosophers of science have had with quantum experimentalists

(especially compared to their interaction with quantum theorists), this presents an underexplored

research direction which could provide insights into major problems in quantum foundations. We

expect the key insights of such a research programme to come from cases where abstractions and

idealisations used by theorists fall apart when compared with actual experimental practice.

An example of this we mentioned in Subsection 10.2.2 is the idealisation with weak values

where the effect of weak measurement on the system under consideration can be treated as

negligible. As we discuss in Appendix B, experimentally this may not be necessarily true. While

still under evaluation, this presents an example of the sort of insight philosophical analysis of

real experimental practice could bring to the foundations of quantum mechanics.

10.3 Broad Themes

As discussed in Section 1.1, the overarching aim for this thesis was to show how quantum

foundations and quantum technologies interrelate: how quantum foundations can inform the

development of new/hypothetical quantum technologies, and how quantum devices and technolo-

gies can allow us to probe quantum foundations. This thesis examined two case studies for this

interrelation: the development of counterfactual communication from the foundational effect of

interaction-free measurement into a tool for both quantum information transfer and practical

metrology (Part I); and the use of quantum technologies to test extensions of quantum mechanics

where statistical independence is violated (Part II).

While some work in this thesis relates more specifically to either pure quantum foundations or

pure quantum technologies (due to open-ended nature of academic research), the goal of this work

was to illustrate the interconnectedness of these two areas. Between the two case studies, we have

elucidated this interplay, as well as showing how certain examples may not neatly fit into either

the schema of “quantum foundations inspiring quantum technologies”, or “quantum technologies

testing quantum foundations”. For instance, this thesis showed cases where foundational criteria

have been used to analyse and evaluate developing quantum technologies, that were themselves

originally based on quantum foundations (as in Chapter 4); or where quantum protocols which

were proposed to test one foundational question can instead be used to test another model
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entirely (as in Chapter 9). This shows the rich and rewarding area of potential developments

at the intersection of research in quantum technologies and quantum foundations, and the

potential for these research areas to re-seed new research directions in one another. Hopefully, by

illustrating the progress which can be made even in two small sub-areas of this intersection, this

thesis has advocated for greater interest in, and investigation of, the interplay between quantum

foundations and quantum technologies.
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MISAPPLICATION OF WEAK MEASUREMENT

Declaration of contribution: This Appendix is adapted from the published article

Comment on “Scheme of the arrangement for attack on the protocol BB84” [HR21a], which

was conceived, simulated, and written by myself, supervised and edited by Prof John

Rarity.

In his recent paper, Khoklhov claims to have developed a protocol that can be used to

distinguish between the four basis states used in BB84 to encode information—the H-,

V -, D- and A-polarised states of a single photon [Kho16b]. He claims this is through weak

measurement—where weak coupling of a quantum variable to an ancilla allows data about

a quantum state to be obtained without collapsing the state. However, weak measurement

typically only obtains a small amount of information per measurement, so a large number of

identically-prepared quantum objects are needed to obtain this fully. An alternative proposal

given by Aharonov et al discusses the possibility of performing a weak measurement on a single

particle [ACE14]—however, this is still subject to Busch’s limit on information gained for a given

disturbance [Bus09].

Khoklhov previously gave an interferometric device that he claims allows a weak measure-

ment to tell the path a photon travelled via, without disturbing the state of that photon (see

Fig. A.1a) [Kho16a]. For this, a photon of state α |H〉+β |V 〉 goes through a PBS, which transmits

H- and reflects V -polarised components. The two components each travel down a respective arm,

where they have a momentum-kick applied to them, such that their eventual arrival position

on the second PBS isn’t affected—here, the H-component gets a downwards kick, and the V -

component an upwards kick. The two components meet at the second PBS, recombine, and then

exit, but the difference in momentum allows, at a far distance from the second PBS, the respective
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Figure A.1: Diagrams of a) the single-interferometer device, which forms the building blocks of
the attack protocol, and b) the layout formed of these, where each red square is an interferometer
of the sort given in a. As can be seen, once initially split by the first interferometer, the H and
V components remain these separate components, and so never travel the paths marked X.
Therefore, only two of the four detectors ever receive photons, making the protocol useless for
determining the full initial state for a single photon.

components to be identified. Khoklhov claims, by using many photons, this allows the probability

amplitudes of the two polarisation components to be determined, and so the preparation state (in

truth, we only get the moduli-squared of those components, and so the classical balance of proba-

bilities). Further, Khoklhov implies that the photon emitted into one of the two distinguishable

far-field paths would still be in its original state, rather than collapsed to either H or V . This is

also incorrect—as the polarisation becomes entangled with the momentum degree-of-freedom,

the collapse to either upwards- or downwards-momentum causes the simultaneous collapse to

either H- or V -polarisation.

In this paper, Khoklov then makes the bold claim that, using these single-interferometer

units as building blocks, he can make a device which can perfectly distinguish between the

four basis states used in BB84—H, V , D (or H+Vp
2

) and A (or H−Vp
2

). Given the security of BB84

rests on the quantum assumption that, even with an optimal choice of measuring basis, one
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cannot distinguish between all four bases perfectly (thus bounding an eavesdropper’s potential

knowledge), this claim threatens the security of one of the most well-known QKD protocols.

Khoklhov claims this is possible by taking the separated outputs of one of his single-

interferometer devices, then putting each output through another device. Those outputs which

disagree with their original polarisation-determination (due to his assumption that the photon

exits in its original state) are then combined—the components which agree with their original

polarisation are put through another device, and again have any further outputs which disagree

combined. The combined beam is then put through a polarising beamsplitter in the A−D basis,

with its two outputs sent to detectors, alongside the other two outputs (that always agreed with

their initially-determined polarisation). We present this in Fig. A.1b. Khoklhov claims that if the

input photon’s initial state is D (A) it will end up in the inner left (right) detector. This claim is

false.

Let us examine the path of the input photon using standard quantum mechanics (as repre-

sented by Bra-Ket notation). We can describe the action of one of Khoklhov’s single-interferometer

devices (pre-detection), as given in Fig. A.1a, on a single polarisation-encoded photon qubit by

(A.1) α |H〉+β |V 〉→α |H,↓〉+β |V ,↑〉

This effectively entangles the polarisation and path degrees of freedom. Applying this to the

larger set-up (as given in Fig. A.1b), we then see the two components (H and V ) then act as

separate for the remainder of the chain, obeying

(A.2) α |H〉+β |V 〉→α |H,R,R,R〉+β |V ,L,L,L〉

where L and R describe the paths on the figure after each interferometer. This means the inner

paths, |R,L〉, |L,R〉, |L,L,R〉 and |R,R,L〉 are never explored, so the two inner detectors never

click. Given the determination of the single photon’s polarisation qubit in the attack is predicated

on these two detectors being able to click (being taken to represent H+Vp
2

and H−Vp
2

), this shows

the attack does not work—as expected, standard quantum mechanics preserves the security of

BB84 from this attack.

We finally give a more proper account of the result of using true weak measurements to

attempt Khoklhov’s scheme, using the description of weak measurement from [TC13].

To do this, in each of Khoklhov’s apparatuses, we couple our photon’s polarisation

∣∣ψ〉 ∈ {|H〉 ; |V 〉 ;
|H〉+ |V 〉p

2
;
|H〉− |V 〉p

2
}

=α |H〉+β |V 〉
(A.3)

with the pointer (the photon’s momentum)
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(A.4)
∣∣φ〉= ∣∣φd

〉= ∫
p
φ(p) |p〉dp

where p is the vertical momentum of the photon. P̂d is the momentum operator such that

P̂d |p〉 = p |p〉.
We assume φ(p) has a Gaussian distribution around 0 (input vertical momentum), such that

(A.5) φ(p)= e−p2/4σ2
/
√

2πσ2

If we define the polarisation-distinguishing operator

(A.6) Â = |H〉〈H|− |V 〉〈V |

we can consider an interaction Hamiltonian between the two

(A.7) Ĥint = g(t)Â⊗ X̂d

where X̂d is the operator conjugate to P̂d such that [P̂d, X̂d]= iℏ, and g(t) is the coupling function

such that

(A.8)
∫ T

0
g(t)dt = 1

for coupling time T.

This means, applying this Hamiltonian

(A.9) eiĤt/ℏ ∣∣ψ〉⊗ ∣∣φ〉
we see for each of |H〉⊗∣∣φ(p)

〉
, |V 〉⊗∣∣φ(p)

〉
, the Hamiltonian takes P̂d to P̂d+1, P̂d−1 respectively,

as

P̂d(T)− P̂d(0)=
∫ T

0

i
ℏ

[Ĥ, P̂d]dt ∈ {+1,−1}(A.10)

Therefore, the corresponding transformation is

eiĤt/ℏ ∣∣ψ〉⊗ ∣∣φ(p)
〉

=α |H〉⊗ ∣∣φ(p−1)
〉+β |V 〉⊗ ∣∣φ(p+1)

〉
=

∫
p

(
α |H〉⊗φ(p−1)+β |V 〉⊗φ(p+1)

) |p〉dp

(A.11)

The above wavefunctions φ(p−1) and φ(p+1) need to overlap each other for the measurement

to be weak—and so need to have high variance, σ. The higher the variance, the weaker the

measurement—if these Gaussian wavefunctions don’t overlap, them the measurement is strong.

Given σ is initially defined from the vertical momentum of the photon, this means the photon

input into the system must also have high σ.
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The effect of the strength of the measurement can be most readily seen when observe and

collapse the pointer to a specific momentum-value, p0, to read out our weak measurement, which

gives

(A.12)
(
e−

(p0−1)2

4σ2 α |H〉+ e−
(p0+1)2

4σ2 β |V 〉
)
⊗|p0〉

where both the coefficients on |H〉 and |V 〉 are biased slightly depending on where they are in

relation to p0. This makes sense, analogous to how measuring an eigenvalue for an observable

collapses the measured state to the relevant eigenstate—the only difference here is the variance

σ providing some uncertainty in that measurement.

The far-field vertical position of the photon will depend on the vertical momentum of the

photon, as Khoklhov rightly says. However, the variance in this momentum (which must be large

enough to allow overlap between the momenta for up and for down in order for the measurement

to be weak, and the final polarisation state to not have changed too far) means that these positions

must overlap heavily too. While, in the limit of many identically-prepared photons, we could

obtain information about whether the polarisation-state was |H〉, |V 〉, or a superposition of the

two, we cannot gain this for a single run without inducing collapse. Therefore, a protocol built up

of several of these devices, as Khoklhov’s attack protocol is, either doesn’t work due to collapse

(as we show with the standard quantum-mechanical approach above), or gains effectively no

information about the polarisation state of the photon, making it useless as an attack.
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THE DIFFERENCE BETWEEN THE DYNAMICAL QUANTUM CHESHIRE

CAT AND COUNTERFACTUAL COMMUNICATION

Declaration of contribution: This Appendix is adapted from the comment The difference

between the dynamical quantum Cheshire cat and counterfactual communication, which

was conceived and written by myself, supervised and edited by Prof John Rarity and Prof

James Ladyman.

B.1 Introduction

In 2013 Aharonov et al first described the quantum Cheshire cat effect: where a property of a

particle (for example, its polarisation) is disembodied from said particle, and travels through

regions the particle cannot traverse [Aha+13]. (See Subsection 2.2.3 for a description of the

quantum Cheshire Cat.) Aharonov et al further developed a protocol which they argue allows

a disembodied property to be altered while separated from the particle that possesses it — a

dynamical Cheshire cat [ACP21]. They say it can be detected only indirectly using weak values.

They further claim that this dynamical quantum Cheshire cat effect is behind counterfactual

communication [Sal+13b; Sal+22; AV19; AR20; HLR21] (and related counterfactual (quantum)

information transfer/metrology [Sal16; Sal18c; Sal+20; Sal+21; HR21b]).

In this Appendix, we show how to obtain these weak values, and so to detect a dynamical

Cheshire cat effect experimentally. We note however this involves adding a field orthogonal to

the state claimed, travelling with the property, which can measure the evolution of the state. The

measured weak value remains constant as we reduce the value of this orthogonal probe field, but

its uncertainty increases and becomes infinite when the probe field is zero. Since the weak value

is completely indeterminate when the probe field is zero, the effect cannot be observed experimen-
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tally unless the probe field travels with it. This is different from counterfactual communication as

presented by Salih et al [Sal+13b], where the transmitted information is provably not associated

with a probe field passing between communicating parties when information is sent.

B.2 Theoretically calculating the weak value of σx

As Aharonov et al themselves say, the dynamical quantum Cheshire cat effect cannot be

observed directly—a particle in the input state they give (spin |↑z〉) returns after 2N cycles with

its spin-state unchanged, regardless of whether the spin-dependent mirror is present or absent

[ACP21, p3]. Therefore, they suggest observing it using weak values, by weakly measuring σx at

the start of the experiment, then strongly measuring it after time 2NT, to get the weak value of

σx.

To do this, we first replace spin (the degree of freedom Aharonov et al use) with polarisation.

We replace |↑z〉 and |↓z〉 with |H〉 (horizontal) and |V 〉 (vertical) polarisation respectively, and

so |↑x〉 and |↓x〉 with |D〉 (diagonal) and |A〉 (anti-diagonal) polarisation. Therefore, operator

σx = |D〉〈D|− |A〉〈A|. Similarly, we replace the spin-dependent mirror with a polarising mirror,

which transmits H-polarised and reflects V -polarised light, and replace the leaky mirror with a

beamsplitter with reflection:transmission ratio cos(ϵ) : sin(ϵ).

Aharonov et al use the weak value formula

(B.1) Âw =
〈
ψ f

∣∣ Â
∣∣ψi

〉
〈ψ f |ψi〉

where Â =σx,
∣∣ψi

〉= |H〉 |L〉, and

∣∣ψ f
〉= Û2N |D〉 |L〉

= cos2N (π/2N) |H〉− |V 〉p
2

|L〉+ Loss

≈ |A〉 |L〉

(B.2)

Note, Û2N is the evolution in the device, which applies a phase of -1 to the |V 〉 state, but no

phase to the |H〉 state, which is equivalent to flipping |D〉 to |A〉 and vice-versa; i.e.,

(B.3) Û†,2N |L〉〈L|σxÛ2N ≈ |L〉〈L| (−σx)

Therefore,

σw
x =

〈L| 〈A|
(
|D〉〈D|− |A〉〈A|

)
|H〉 |L〉

〈L| 〈A|H〉 |L〉

= −1/
p

2

1/
p

2
=−1

(B.4)
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Figure B.1: Adapted form of Aharonov et al’s dynamical quantum Cheshire cat apparatus,
allowing us to obtain the weak value of σx. We postselect on the wavepacket ending up D-
polarised, and going to detector DD.

More generally, for postselected final state

(B.5)
∣∣∣ψβ

f

〉
=

(
cos(β)cos2N (π/2N) |H〉−sin(β) |V 〉

)
|L〉 ,

σw
x (β)=

〈L|
(
cos(β)cos2N (π/2N)〈H|−sin(β)〈V |

)(
|D〉〈D|− |A〉〈A|

)
|H〉 |L〉

〈L|
(
cos(β)cos2N (π/2N)〈H|−sin(β)〈V |

)
|H〉 |L〉

= −sin(β)
cos(β)cos2N (π/2N)

≈−tan(β)

(B.6)

which goes to 0 as β→ 0 (i.e., we postselect on |H〉), and becomes infinite as β→ π/2 (i.e., we

postselect on |V 〉).
Compare this to the weak value of σx when the polarising mirror is removed:

∣∣ψ f
〉

remains

|D〉 |L〉, so both the numerator and the denominator of σx are 1/
p

2, and σw
x = 1. Similarly,

σw
x (β)= tan(β)—therefore, the two cases become indistinguishable as β→ 0 (i.e., we postselect on

|H〉), and become infinitely distinguishable as β→π/2 (i.e., we postselect on |V 〉).

B.3 Experimentally measuring the weak value of σx

We now show, unlike in the theoretical treatment above, actually obtaining a weak value

experimentally causes a coupling disturbance, due to the initial weak measurement required

to entangle the system with the pointer [Kas17; Ips22]. We see this by showing how to exper-

imentally obtain the weak value Aharonov et al give for the σx operator, using a variation of
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Ritchie et al’s protocol for obtaining weak values for polarisation by weakly coupling to the beam

centroid position as a pointer state (see Fig. B.1) [RSH91]. Putting an H-polariser between the

weak measurement and Aharonov et al’s protocol shows the polarisation-position entanglement

caused by the weak measurement has the same effect as a perturbation of the polarisation — so

we cannot see the dynamical quantum Cheshire cat experimentally if we allow only H-polarised

light to enter the protocol.

While we interpret the Gaussian pointer below as the position of the wavepacket centroid,

these calculations, and so these conclusions, apply to any case where we use weak measurement

to entangle a qubit with a Gaussian continuous-variable pointer. While other protocols exist

for obtaining weak values experimentally (see [CP18; Wag+23]), these make use of strong

measurements, so also do not necessarily give us information on/require assumptions to allow us

to infer about about the unperturbed system.

To obtain a weak value for σx, we describe our wavepacket’s position as a Gaussian distribu-

tion:

(B.7) |E i〉 =
√

2
p

2
w0

p
π

e
− x2+y2

w2
0 |H〉 =

√ p
2

w0
p
π

e
− x2+y2

w2
0

(
|D〉+ |A〉

)
We then weakly measure polarisation, using a birefringent-crystalline quartz plate to separate

the polarisation-components by a distance a much smaller than the beam width w0:

(B.8) |Ew〉 =
√ p

2
w0

p
π

e
− x2

w2
0

(
e
− (y−a/2)2

w2
0 |D〉+ e

− (y+a/2)2

w2
0 |A〉

)
If we now did not apply Aharonov et al’s protocol, and instead send the beam straight to the

detector DA, this would give intensity

(B.9) Iw(y)= |〈D|Ew〉|2 =
p

2
w0

p
π

e
− 2x2

w2
0

(
e
− 2(y−a/2)2

w2
0

)
and so average beam position at x = 0

(B.10) 〈yw〉 =
∫ ∞

−∞
yIw(y)dy= a/2

Instead applying system evolution Û2N to |Ew〉, we get state

∣∣E f
〉= Û2N |Ew〉 =

√ p
2

w0
p
π

e
− x2

w2
0

(
e
− (y−a/2)2

w2
0

cos2N (π/2N) |H〉− |V 〉p
2

+ e
− (y+a/2)2

w2
0

cos2N (π/2N) |H〉+ |V 〉p
2

)
≈

√ p
2

w0
p
π

e
− x2

w2
0

(
e
− (y−a/2)2

w2
0 |A〉+ e

− (y+a/2)2

w2
0 |D〉

)

(B.11)

Postselecting on polarisation state

(B.12)
〈
β
∣∣= cos(β)〈H|+sin(β)〈V | = cos(β)+sin(β)p

2
|D〉+ cos(β)−sin(β)p

2
|A〉
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gives us amplitude

〈β|E f 〉 =
√ p

2
w0

p
π

e
− x2

w2
0

(cos(β)−sin(β)p
2

e
− (y−a/2)2

w2
0 + cos(β)+sin(β)p

2
e
− (y+a/2)2

w2
0

)
(B.13)

and so normalised intensity (at x = 0)

I f (y)= |〈β|E f 〉|2x=0 =
p

2
w0

p
π

(
(
1−sin(2β)

2
)e

− 2(y−a/2)2

w2
0 + 1+sin(2β)

2
e
− 2(y+a/2)2

w2
0 +cos(2β)e

− 2y2+a2/2
w2

0

)(B.14)

Therefore, the average position 〈yf 〉 of the centre of the beam on detector DA after the

protocol is

〈yf 〉 =
∫ ∞

−∞
yI f (y)d y= a

2
((

cos(β)−sin(β)p
2

)−(
cos(β)+sin(β)p

2
)2)(B.15)

Aharonov et al postselect on state |D〉 (β= π/4), so the average position is 〈yf 〉 = −a/2, and

the weak value σw
x = 〈yf 〉/〈yw〉 =− a

2 / a
2 =−1. This agrees with Aharonov et al’s theoretical weak

value for σx. However, by changing postselection, we can change the weak value—as β→ 0, π/2

(i.e., we postselect on either |H〉 or |V 〉), this value of σx goes to 0.

Were there no polarising mirror in the apparatus, any light travelling to the right-hand cavity

of the apparatus would be lost, regardless of polarisation. Therefore, both H and V components

would be attenuated by cos2N (π/2N), rather than the V -polarised component’s sign flipping.

The D-polarised component remain D-polarised rather than flipping to A, and the A-polarised

component would remain A-polarised rather than flipping to D, so the beam centroid would stay

at 〈y〉 = a/2, and the weak value would be 1, not -1. This shows a clear experimentally-detectable

difference between when there is and when there isn’t a polarising mirror in the right-hand

cavity, when we perturb the system to detect this.

We now show entangling the wavepacket’s polarisation with a pointer variable is equivalent to

perturbing the polarisation from state |H〉 by small perturbation, as, when we put a H-polariser

between the entangling birefringent crystal and the protocol, we cannot observe the weak value

experimentally.

We first take the state in Eq. B.8, and apply a |H〉〈H| projector

(B.16) |H〉〈H| |Ew〉 =
√ p

2
2w0

p
π

e
− x2

w2
0

(
e
− (y−a/2)2

w2
0 + e

− (y+a/2)2

w2
0

)
|H〉

We then apply the evolution Û2N

Û2N |H〉〈H| |Ew〉 =
√ p

2
2w0

p
π

e
− x2

w2
0 cos2N (π/2N)

(
e
− (y−a/2)2

w2
0 + e

− (y+a)2

w2
0

)
|H〉+ Loss

≈
√ p

2
2w0

p
π

e
− x2

w2
0

(
e
− (y−a/2)2

w2
0 + e

− (y+a)2

w2
0

)
|H〉

(B.17)

197



APPENDIX B. THE DIFFERENCE BETWEEN THE DYNAMICAL QUANTUM CHESHIRE CAT
AND COUNTERFACTUAL COMMUNICATION

Finally, we postselect on the wavepacket being D-polarised (arriving at detector DD), to get

intensity

(B.18) I(y)=
p

2
4w0

p
π

e
− 2x2

w2
0

(
e
− 2(y−a/2)2

w2
0 + e

− (y+a/2)2

w2
0 + e

− 2y2+a2/2
w2

0

)
and so, at x = 0, y-expectation value

(B.19) 〈y〉 =
∫ ∞

−∞
yI(y)d y= a

8
− a

8
= 0

Now, when there is no polarising mirror in the apparatus, the protocol just attenuates the

H-polarised state by cos2N (π/2N), so the state after the protocol would be identical to Eq. B.17,

and the y-expectation value would also be 0. There is now no experimentally-detectable difference

between the protocol having or missing the polarising mirror.

This shows entangling some pointer variable with the polarisation when obtaining the weak

value is equivalent to putting some indeterminate perturbation on the state, taking it from |H〉 to

cosδ |H〉+sinδ |V 〉 for some indeterminate tiny perturbation δ. By postselecting on some non-zero

β, we force this δ to be non-zero too, and so observe the effect of Aharonov et al’s protocol on

some non-zero |V 〉 component. This is different from the |H〉 input state Aharonov et al claim

to evaluate—so we cannot experimentally detect the dynamical quantum Cheshire cat with an

unperturbed state.

B.4 What does this have to do with counterfactual
communication?

Aharonov et al claim this dynamical quantum Cheshire cat effect underlies counterfactual

communication (an interesting development of exchange-free measurement [Sal+13b]). Given

recent interest in counterfactual communication, both practically for quantum computation

[Sal16; Sal18c; Sal+20; Sal+21] and metrology [HR21b], and foundationally [Sal+22; AV19; AR20;

HLR21], it is important to note the implications of our result for this claim.

The term ‘counterfactual’ in the name ‘counterfactual communication’ comes from Alice

(the receiver)’s photon never having travelled to/via Bob (the sender), when she receives a bit

of information from Bob in the protocol (i.e. by her postselection on photon either going to

her detector D0 for a 0-bit, or her detector D1 for a 1-bit). Rather than factually interacting

with anything on Bob’s side, the photon ‘counterfactually’ tells Alice whether Bob is blocking

his channel or not (and so whether his bit-value is 1 or 0 respectively), without ever having

been to his channel. Therefore, counterfactual communication seems superficially similar to the

dynamical quantum Cheshire cat, where there is a difference in the (theoretically-calculated)

weak value depending on whether or not a polarisation-dependent mirror is placed at the end of

the right-hand cavity, despite the H-polarised photon not being able to travel to-and-back-from

this mirror.
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However, in the counterfactual communication protocol of Salih et al (see [Sal+13b; Sal+22],

we do not require any small amount of field to travel to-and-back-from Bob’s channel to allow Alice

to receive information from Bob—anything which goes to Bob is lost (like the H-polarised light

which travels to the right-hand cavity and is then lost in the unperturbed dynamical quantum

Cheshire cat setup). On the other hand, as shown above, experimentally determining whether

or not the spin-dependent mirror is present requires some small amount of V -polarised light

to travel to, and back from, the mirror. This V -polarised light is obviously not counterfactual.

Therefore, the dynamical quantum Cheshire cat effect is not how Alice is able to detect Bob’s

blocker setting (and so bit-value) in Salih et al’s counterfactual communication.

B.5 Weak value of |R〉〈R|
Looking at the perturbed state we give above, when we want to find the weak value of the

projector P̂R = |R〉〈R| at some time during the protocol (again, with polarising mirror), we follow

Aharonov et al by saying

(B.20) Pw
R = 〈L| 〈D|Û2N−n−1Û(T −τ)P̂RÛ(τ)Ûn |H〉 |L〉

〈L| 〈D|Û2N |H〉 |L〉
but inserting our weakly perturbed state |Ew(α=π/4)〉 instead of the initial |H〉. For ease, we can

say Û(τ)= 1̂, and so Û(T −τ)= Û .

To see the result we get from this, we must first evaluate the effect of both the |D〉 and |A〉
components of this, getting

〈L| 〈D|Û2N−nP̂RÛn |D〉 |L〉 =−sin(
(2N −n)π

2N
)sin(

nπ
2N

)/2

〈L| 〈D|Û2N−nP̂RÛn |A〉 |L〉 =sin(
(2N −n)π

2N
)sin(

nπ
2N

)/2
(B.21)

and so

(B.22) 〈L| 〈D|Û2N−nP̂RÛn |Ew〉 |L〉 =
√ p

2
w0

p
π

e
− x2

w2
0 sin(

(2N −n)π
2N

)sin(
nπ
2N

)
(
e
− (y+a/2)2

w2
0 − e

− (y−a/2)2

w2
0

)
/2

From above, we get

(B.23) 〈L| 〈D|Û2N |Ew〉 |L〉 =
√ p

2
w0

p
π

e
− x2

w2
0 e

− (y+a/2)2

w2
0

Therefore

(B.24) Pw
R = 〈L| 〈D|Û2N−nP̂RÛn |Ew〉 |L〉

〈L| 〈D|Û2N |Ew〉 |L〉 = sin(
(2N −n)π

2N
)sin(

nπ
2N

)
(
1− e

2ay
w2

0

)
/2

While this is 0 at y= 0, away from this point, it has non-zero weak values. For instance, if we

set y=−a/2, it reaches its greatest magnitude at n = N of

(B.25) Pw,max
R = 1− e

− a2

w2
0

2
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APPENDIX B. THE DIFFERENCE BETWEEN THE DYNAMICAL QUANTUM CHESHIRE CAT
AND COUNTERFACTUAL COMMUNICATION

If we interpret this non-zero weak value of the projection operator P̂R as showing the presence

of some field at a given y, this shows the measurable perturbation of the beam centroid by a gives

us a non-zero weak value for both polarisation change in the protocol and presence in the right-

hand half of the apparatus. This makes sense, given the polarisation-dependent perturbation

caused by the weak value effectively creates positive and negative V -polarised components, each

in a Gaussian distribution, one shifted by a/2, the other by −a/2. Therefore, while these cancel

at y = 0, they do not away from here, and where they do not cancel, some of the V -polarised

wavepacket travels into the protocol. This is further proof that the dynamical quantum Cheshire

cat involves elements of the wavepacket “factually” travelling with the disembodied property, and

so further illustrates the difference between this and counterfactual communication.

B.6 Conclusion

We have shown Aharonov et al’s dynamical quantum Cheshire cat effect can be detected

by obtaining weak values through weak coupling and postselection. However, this necessarily

requires some perturbation away from the initial state, and so requires something to travel

through the second cavity, interact with the probed barrier, and return to the first cavity. This is

different from Salih et al’s counterfactual communication, which does not require any field to

travel between communicants for information to be transferred.
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