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Abstract

Motivation: Human traits are typically represented in both the biomedical literature and large population studies as
descriptive text strings. Whilst a number of ontologies exist, none of these perfectly represent the entire human phe-
nome and exposome. Mapping trait names across large datasets is therefore time-consuming and challenging.
Recent developments in language modelling have created new methods for semantic representation of words and
phrases, and these methods offer new opportunities to map human trait names in the form of words and short
phrases, both to ontologies and to each other. Here, we present a comparison between a range of established and
more recent language modelling approaches for the task of mapping trait names from UK Biobank to the
Experimental Factor Ontology (EFO), and also explore how they compare to each other in direct trait-to-trait
mapping.

Results: In our analyses of 1191 traits from UK Biobank with manual EFO mappings, the BioSentVec model per-
formed best at predicting these, matching 40.3% of the manual mappings correctly. The BlueBERT-EFO model (fine-
tuned on EFO) performed nearly as well (38.8% of traits matching the manual mapping). In contrast, Levenshtein
edit distance only mapped 22% of traits correctly. Pairwise mapping of traits to each other demonstrated that many
of the models can accurately group similar traits based on their semantic similarity.

Availability and implementation: Our code is available at https://github.com/MRCIEU/vectology.

1 Introduction

Population health and medical research are increasingly reliant on
large population studies, such as UK Biobank (https://www.ukbio
bank.ac.uk), The Million Women Study (http://www.millionwo
menstudy.org), Our Future Health (https://ourfuturehealth.org.uk),
The Million Veterans Program (https://www.research.va.gov/mvp),
China Kadoorie Biobank (https://www.ckbiobank.org), and others
to discover new predictive biomarkers and interventions. Such stud-
ies measure many thousands of phenotypic variables. Systematic
analyses, such as phenome-wide association studies (Jones et al.
2005, Denny et al. 2010, Millard et al. 2019), can describe relation-
ships between thousands of variables, producing large datasets.
However, many variables are inconsistently named across studies,
and can prove difficult to map to each other or an existing ontology,
such as the Experimental Factor Ontology (EFO) (Malone et al.
2010), Human Phenotype Ontology (Robinson et al. 2008) or the

Disease Ontology (Kibbe et al. 2015). In parallel, the biomedical lit-
erature contains a wealth of data on human diseases, traits, and risk
factors described using free text (with some mappings to Medical
Subject Headings). Systematically integrating knowledge across
these different datasets and domains would enable us to triangulate
the evidence (Lawlor et al. 2016) for different risk factor/disease
combinations, but at the moment this is hindered by the inconsisten-
cies in trait nomenclature.

The complexity of variable names is illustrated by UK Biobank,
an internationally important population study that has collected a
wealth of data on half a million people. Examples of text labels for
variables in UK Biobank include easily recognizable traits, such as
“systolic blood pressure”, and disease names, such as “coronary
heart disease”. However, the study also includes more complex vari-
ables, including those derived from questionnaire data, including
“able to walk or cycle unaided for 10 minutes” and “cough on most
days”. An array of other variables also exists, including
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International Statistical Classification of Diseases and Related
Health Problems 10th Revision (ICD10) codes, such as “anaemia
due to enzyme disorders” (D55) and “syncope and collapse” (R55),
the former mapping directly to the EFO (EFO: 0009529), but the
latter not. Direct mapping by text matching to ontology terms is
therefore not realistic, and whilst manual mapping to ontologies is
sometimes appropriate, this is time-consuming, especially if map-
ping to multiple different ontologies (which cover different domains
of the human phenome and exposome).

Given this, there are four potential solutions to link two datasets
based on their lists of trait (variable) names:

1. Manual mapping to an ontology to find shared terms between

datasets.

2. Using automated tools to map each variable to an ontology to

find shared terms between datasets.

3. Direct mapping of variables using a generalizable text embed-

ding model to identify semantically similar terms.

4. Direct mapping of variables using a bespoke model trained on

the particular datasets to identify semantically similar terms.

Each of these options has different strengths and weaknesses.
Option 1 can only really be used in cases where the numbers of vari-
ables is low, or the requirement of human assigned ontological terms
is essential. Option 2 relies on existing tools, such as OnToma
(https://github.com/opentargets/OnToma), Zooma (https://www.
ebi.ac.uk/spot/zooma/) or MetaMap Lite (Demner-Fushman et al.

2017) for common ontologies, such as EFO and UMLS (https://
www.nlm.nih.gov/research/umls/index.html). These rule-based tools
can work well, but the mapping to ontology may identify a more
generic parent term in the ontology losing valuable information in
the process. Options 3 and 4 may offer benefits in mapping variables
between datasets by avoiding the intermediate step of an ontology
term (Fig. 1).

The development of methods based on text embeddings, such as
word2vec (Mikolov et al. 2013), sent2vec (Pagliardini et al. 2018),
and doc2vec (Le and Mikolov 2014), have opened up the potential
to map terms based on semantic similarity. These methods have
been applied to data from the biomedical domain e.g. BioWordVec
(Zhang et al. 2019) and BioSentVec (Chen et al. 2019) and have
been applied to real world problems (Duong et al. 2017, Jaeger et al.
2018, Allot et al. 2019, Blagec et al. 2019, Karadeniz and Özgür
2019, Tshitoyan et al. 2019).

Further development to shallow/non-contextual text embeddings
gives rise to contextualized methods, such as the transformer model
architecture (Vaswani et al. 2017) and its implementation in lan-
guage modelling [e.g. BERT (Devlin et al. 2019)] applied in a range
of contexts [e.g. GLUE (Wang et al. 2018), BLUE (Peng et al. 2019),
and BLURB (Gu et al. 2021)]. These models can be finetuned to
tackle specific problems with great effect (Duong et al. 2019,
Koroleva et al. 2019, Liu et al. 2019, Fabian et al. 2020). However,
despite their merits, transformer models are slower and more re-
source intensive compared to the word2vec architecture.

Here, we apply a range of text embedding methods and BERT
language models (including one trained on EFO) to the problem of
mapping biomedical variables (from UK Biobank) to an ontology
(EFO) and compare their performance, strengths, and weaknesses.
We also illustrate the use of these models on a direct trait-to-trait
mapping problem.

2 System and methods

2.1 The EFO dataset
The EFO contains parts of several biological ontologies as well as
variables from many large scale databases. Whilst many other ontol-
ogies exist, this particular ontology is widely used for human traits
and is well documented, so was considered a good choice for this
evaluation. A version of the EFO dataset was downloaded from the
EBI RDF platform (https://www.ebi.ac.uk/rdf/services/sparql) in
March 2021 containing 25 390 terms. This was used for all subse-
quent analysis and is available in the supplementary material
(Supplementary Files S1 and S2).

2.2 Ontology distance metric
To understand the relative distance between any two EFO terms and
enable us to measure how well a trait was mapped, we used the
nxontology Python library (https://github.com/related-sciences/nxon
tology). By creating a parent–child network of EFO terms, we could
compute a similarity measure between any pair of EFO terms and
use this to create a measure of how close two terms are within the
EFO hierarchy. For this analysis, we used the Batet (parameter
“batet” in the library) measure (Batet et al. 2011) as this was devel-
oped using biomedical taxonomy data and produced good correl-
ation results to manual biomedical concept comparisons. The
measure ( 0; 1½ �) is a ratio calculated from the shared and non-
shared information between a pair of concepts, where the lower the
score the less shared ancestry between the two ontology concepts
have. From here on we will refer to this metric as the EFO-Batet
score.

To create a nxontology instance, we provided the parent/child
EFO edge data to the ‘NXOntology’ class (Supplementary Code
block S1).

2.3 Trait-to-trait mapping distance score
The different models use different approaches for measuring dis-
tance between text terms (Supplementary Table S2). For simplicity,
we refer to these metrics (edit distance, cosine similarity, and seman-
tic distance) as “trait similarity score” throughout.

2.4 Mapping methods
We used a range of existing string comparison language models rep-
resenting different approaches to language representation and differ-
ent pre-training datasets to enable us to evaluate the impact of these
differences on mapping performance.

2.4.1 String comparison methods

Levenshtein edit distance ratio (Levenshtein 1966) was used to under-
stand how well a basic string comparison performs. Using the imple-
mentation from the python-Levenshtein library (https://pypi.org/
project/python-Levenshtein/), we obtained a measure of similarity
between two strings.

Zooma is an established tool to map text to ontologies using a com-
bination of curated mapping to existing datasets and standard text
matching (the exact method is undocumented). For this analysis, we
utilized the Zooma API setting the “required” parameter set to
“None” and “ontologies” parameter set to “efo” (Supplementary
Code block S2) to avoid circularity.

2.4.2 Text embedding methods

BioSentVec is an established model created using sent2vec
(Pagliardini et al. 2018), pre-trained on over 28 million titles and
abstracts from PubMed (https://pubmed.ncbi.nlm.nih.gov/) and 2
million clinical notes from MIMIC III (Johnson et al. 2016). The
BioSentVec (Chen et al. 2019) model was downloaded from the pro-
ject GitHub repository (https://github.com/ncbi-nlp/BioSentVec)
and installed following the examples in the tutorial (https://github.
com/ncbi-nlp/BioSentVec/blob/master/BioSentVec_tutorial.ipynb)
(Supplementary Code block S3).

Figure 1 Example of potential benefits of using text embeddings to connect two bio-

medical strings compared to using a shared ontology
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Google Universal Sentence Encoder v4 (GUSE) is a generalized text
embedding model trained and optimized for sentence level tasks (Cer
et al. 2018). The model was trained on Wikipedia and other general-
ized texts with no focus on biomedical information. The model was
downloaded from the project home page (https://tfhub.dev/google/uni
versal-sentence-encoder/4) and implemented as described in the docu-
mented example (Supplementary Code block S4).

spaCy is a natural language processing platform, which provides
various tools, methods, and pipelines, one of which is word embed-
dings (Montani et al. 2021). The ‘en_core_web_lg’ model was down-
loaded and installed as described in the documentation (https://spacy.
io/usage/linguistic-features#vectors-similarity) (Supplementary Code
block S5).

ScispaCy is built on spaCy and provides models for processing
biomedical, scientific or clinical text (Neumann et al. 2019). The
‘en_core_sci_lg’ model was downloaded and installed as described
in the documentation (https://allenai.github.io/scispacy). The model
is accessed via the same spaCy methods as above.

BlueBERT (Peng et al. 2019) (NCBI_BERT_pubmed_mimic_
uncased_L-12_H-768_A-12) and BioBERT (Lee et al. 2020) (bio-
bert_v1.1_pubmed) are biomedical language model implementations
based on the original BERT pre-trained weights, with further language
model training with biomedical corpora to improve language understand-
ing tasks in the biomedical domain. For transformer models, the vector
representation of the entity is computed as the average of the hidden state
tensor of the N � 1 layer as a fixed representation of the tokenized se-
quence (i.e. the default strategy in bert-as-service, https://github.com/han
xiao/bert-as-service). These models were obtained from their respective
model repositories, then served via the bert-as-service API (see
Supplementary Code block S6 for example usage and code repository for
detailed set up).

2.4.3 Bespoke ontology classifier

In addition to established language models, we also explored the ef-
fect of tailoring a transformer model to the EFO using transfer
learning.

BlueBERT-EFO was developed by finetuning BlueBERT with an
ontology entity alignment training process designed as a sequence
classification task (for details see Supplementary Text S1). To create
a similarity matrix of the entities, for each pair of terms the model
produces a score representing the inferred ontology distance, where
the lower number of steps between two entities as predicted by the
model, the closer they are represented in an ontology graph. The
model can be used for inference using the Huggingface
Transformers (Wolf et al. 2019) package (see Supplementary Code
block S7 for example usage and code repository for detailed set up).

Supplementary Table S2 shows a summary of the models and
methods.

Whilst we only evaluated the benefits of finetuning on one base
model (BlueBERT), we recognize that a number of other models
could also be finetuned.

2.5 Mapping to ontology (EFO)
To assess how the models perform when mapping biomedical varia-
bles to an existing ontology, we utilized the EBI UK Biobank EFO
dataset (Pendlington et al. 2019). This is a list of around 1500 UK
Biobank variables that have been manually mapped to EFO terms.
In addition, each mapping has been assigned a mapping type (Exact,
Broad, Narrow, and Other). The original dataset was modified in
the following ways: first, any query that had been assigned multiple
EFO terms was dropped. Second, exact matches were excluded as
uninformative (i.e. the query term is identical to the EFO label).
Third, due to our use of an EFO hierarchy distance method (EFO-
Batet), we only included those rows containing an EFO term present
in our parent/child EFO dataset. Fourth, all EFO and variable terms
were lower-cased. Lastly, duplicates were removed. These filtering
steps created a dataset with 1191 entries (Supplementary File S3).
Supplementary Table S1 displays the numbers of each by mapping
type and a brief description of each mapping type as described in the
original dataset.

Using this dataset, we applied the models described above to
conduct pairwise comparison between the UK Biobank variables
and the EFO terms to measure their semantic similarity and ontol-
ogy distance. Specifically, a UK Biobank variable A is associated
with a manually mapped EFO term a in the source dataset, then for
an EFO term b, we calculated the similarity score between A and b
as well as the EFO-Batet distance score between a and b. Therefore,
for the variable of interest A, the results dataset gives us a measure
of how close the top ranking (by a specific similarity score metric)
EFO term predictions b0 . . . bN are to the variable’s equivalent EFO
representation a in the ontology space (by the EFO-Batet score).

2.6 Direct trait-to-trait mapping
In some scenarios mapping trait names between two datasets direct-
ly (without using an ontology) might be preferable. To compare
how the different methods perform when predicting the similarity
between two biomedical variables, we again used the EBI UK
Biobank EFO dataset. This time, we limited the entries to those
labelled as “Exact” on the assumption that these would provide a
better dataset for assessing pairwise distances, both semantically
and using the same ontology based method. Additional filtering
steps were taken to create a dataset with one query per predicted
EFO term, resulting in 530 entries (Supplementary File S4). For the
purposes of visualization, we then manually selected a subset of 43
traits that represented a broad spectrum of variables, covering meas-
urements, questionnaire data, and disease (Supplementary File S5).
For each of the pre-trained models, pairwise cosine distances were
generated for each query text. For Levenshtein, the similarity ratio
was calculated as before. For BlueBERT-EFO, we generate the
inferred ontology distance for each pair of terms. Whilst we were
not mapping trait terms to an ontology, we also compared how close
these pairs of traits are in the EFO for comparison using the EFO-
Batet score for each pair of terms.

3 Implementation

3.1 Comparison to other approaches for automated

mapping to ontology
3.1.1 Top ranking results

We first explored how well the top prediction of each method com-
pared to the manual annotation (Fig. 2). For results that exactly
agree with the manual annotation (Fig. 2A), the best performing
methods were BioSentVec (40.3%), BlueBERT-EFO (38.8%),
Zooma (37.2%), and ScispaCy (36.5%), the results of which were
notably higher than those of the methods included in the analysis.
Pairwise proportions Z-test results (Supplementary Table S4) be-
tween each of the mapped proportions confirm that there is a not-
able difference between results of the best performing group and the
those of the other methods, but the differences are minimal within
the group (largest difference is between BioSentVec and ScispaCy,
P-value¼.058).

Whilst none of the methods exceeded 40.3% exact mapping, it is
important to consider three key points: (i) some of the manual pre-
dictions are likely to be incorrect; (ii) the methods and models used
here to automate this approach are quick and easy to use, and would
scale to a task size that would be impractical for manual annotation;
(iii) even the most sophisticated natural language processing models
will struggle to predict the same result as a human, particularly in
cases where the query string contains two un-linked entities, or even
a negated term, e.g. “enduring personality changes not attributable
to brain damage and disease”.

In some situations (e.g. a recommender of similar concepts), an
exact match may not be required, and if the top prediction from a
model is sufficiently close to the manual annotation, this may be a
suitable result. We then examine how well the top predictions from
a method align with the manual annotation in terms of their EFO-
Batet score distance to the manual EFO terms. Fig. 2B shows the ag-
gregate results for the subset (see Supplementary Fig. S9 for full
results) of methods over different range of EFO-Batet score
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threshold for top predictions to be included, from total number of
top predictions that are strictly identical to manual annotation

(threshold ¼ 1, i.e. Fig. 2B), to those that are sufficiently close to the
manual annotation in the ontology space (e.g. threshold �0.9), and

then to results with a greater ontology distance tolerance (e.g.
threshold �0.6). Supplementary Figs S1–S3 show the detailed distri-
butions for thresholds of 0.9, 0.8, and 0.7, respectively.

For inexact mapping results, BlueBERT-EFO and BioSentVec
retrieved similar number of concepts that are close (e.g. under an

EFO-Batet threshold of 0.9 or 0.8) to manual annotation, where
notably greater number of predictions by BlueBERT-EFO have

more ontology similarity to their manual annotation counterparts
then the rest of the methods. In other words, BlueBERT-EFO as a
finetuned model on BlueBERT with EFO structural information is

able to enhance the performance of the foundational BlueBERT to
be on par with BioSentVec, and able to incorporate EFO knowledge
on candidate retrieval (we note that BioSentVec has not been fine-

tuned, and is not directly comparable to BlueBERT-EFO).

3.1.2 Overall results for top N predictions

With methods that produce a distance or score, there may still be
significant value in a set of top predictions (which we would expect

to be enriched for related terms, and potentially contain the correct
mapping term). We then investigated the distribution of EFO-Batet
scores for both the top prediction (Fig. 3A) and the top 10 predic-

tions (weighted average EFO-Batet scores, Fig. 3B), and the aggre-
gate results of generalized top ranges, to determine which models

prioritize the most relevant set of traits. As shown in Fig. 3A, for top
predictions BlueBERT-EFO is able to retrieve higher number of can-
didates that have high ontology relevance to the manual annotation

(greater mass in the upper tail) and lower number of candidates that
have low relevance (lower mass in the lower tail), which is also con-
firmed by the pairwise Kolmogorov–Smirnov two sample tests

(Supplementary Table S4) on the statistical difference of its distribu-
tion to those of other methods (P� value � 3:3� 10�9).

We then extended the analysis to consider a set of top results.
Fig. 3B shows the distribution of the weighted average EFO-Batet
scores for the top 10 EFO predictions for each method (see
Supplementary Fig. S4 for violin plot and Supplementary Table S3
for descriptive statistics on the same data). For top 10 predicted
EFO terms, we computed the EFO-Batet score vis-a-vis the manual
annotation counterpart, then averaged with the ranking weights (i.e.
top prediction getting a weighting of 10, 9, and so on) to show the
aggregate ontology relevance of the retrieved candidates. Fig. 3C
shows the averaged sum of the weighted average scores for each top
N level to provide an overall measure on the general ontology rele-
vance of the candidate retrieval for a subset of methods (see
Supplementary Fig. S10 for full results). The results suggest that
BlueBERT-EFO will generally return a set of traits that are more
closely associated with the correct part of the EFO ontology com-
pared to other methods, and corroborates with earlier analysis find-
ings that the finetuning of the BlueBERT language model with EFO
structure information will notably improve EFO candidate retrieval.

We also investigated on the performance of a hybrid method
(BioSentVec-X-BlueBERT-EFO) where BioSentVec is applied in the
first stage to select the top X (e.g. 30) candidates, then BlueBERT-EFO
is applied in the second stage to select the top N (e.g. 5) candidates,
with the aim to improve inference efficiency as transformer models are
more computationally expensive than simpler model architectures,
such as BioSentVec. Supplementary Figs S5–S7 show the weighted
average score distribution for top 1, 5, and 10 matches, and
Supplementary Fig. S8 shows the averaged sum of weighted average
scores for generalized top N levels. These results suggest that top
matching results produced by the second stage BlueBERT-EFO in the
hybrid methods retain the overall behaviour of BlueBERT-EFO, and is
robust to the first stage filtering via BioSentVec.

To try and understand why certain traits are challenging to map,
and why others are not, we extracted the top UK Biobank queries,
which were most and least variable in EFO-Batet score between
methods. Details of this can be found in Supplementary Text S2.

3.2 Comparison to other approaches for trait-to-trait

mapping
Our final set of analyses explores the differences in direct trait-to-
trait mapping of the different models. For each model, we estimated

Figure 2 Distribution of top matching predictions. (A) Number of top matching pre-

dictions by MAPPING_TYPE. The Total bar contains all manual mappings, subdi-

vided into Exact, Broad (parent term), Narrow (child term), and Other. Each other

bar represents the number of traits exactly matched by the named method to the

manual mapping for that trait, with the same subdivisions. (B) Total number of top

matching predictions that are equal or above an EFO-Batet threshold, i.e. if a

method produces greater number of matched predictions with a threshold closer to

1, greater number of predictions exhibit close ontology relationship to the manual

mapping results. Points at EFO-Batet thresholds 1.0, 0.9, 0.8, and 0.7 are equivalent

to the Total values for each method in Fig. 2A, Supplementary Figs S1–S3. Full

results for all methods can be found in Supplementary Fig. S9

Figure 3 Distribution of predicted EFO-Batet scores by method. (A) Distribution of

EFO-Batet score for the highest-ranking (top 1) match for each query term; (B) dis-

tribution of weighted average EFO-Batet score for the top 10 matches for each

query term. (C) Averaged sum of the top N weighted averaged EFO-Batet score of

the predicted EFO candidates for a query term, for subset methods of BlueBERT-

EFO, BlueBERT, and BioSentVec (full results are available in Supplementary Fig.

S10)
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trait similarity scores between each trait (n¼530, see Section 2) and
all others (excluding itself). Fig. 4 shows the results of a Spearman
rank correlation analysis comparing the matrices of these pairwise
trait-mapping scores between each pair of models. The results
broadly indicate three clusters of models. One contains the EFO-
Batet (manual mapping) and BlueBERT-EFO scores, suggesting
again that the BlueBERT-EFO model, as expected, is predicting dis-
tances most similar to that which we find in the EFO hierarchy. A
second group contains the other BERT models (BioBERT and
BlueBERT) highlighting the similarity between those two transform-
er models. A third group contains the spaCy, ScispaCy, and
BioSentVec models, which may represent their shared underlying
methodology (i.e. variations of word2vec). Whilst this analysis can-
not tell us which method performs “best” at trait-to-trait mapping,
it highlights that these models do perform differently at this task,
which should be taken into account in the development of future
automated trait-to-trait mapping methods.

Finally, we present visualizations of the trait similarity scores for
all pairwise trait-to-trait mappings for a selected set of 43 traits (rep-
resenting a mixture of disease, continuous traits, and medications)
to illustrate how these models perform at this task. Supplementary
Fig. S11 is provided as a reference and shows a clustered dendro-
gram of EFO-Batet scores for the distance between traits in the EFO
hierarchy. The clusters represent the relationships between EFO
terms as determined by the EFO hierarchy and Batet scores. We ob-
serve a sharp separation between measurement-based quantitative
traits and disease traits. This reflects the structure of the EFO, with
quantitative traits falling into the “information entity” and disease
traits into the “material property” top-level branches of EFO.

Using the same 43 traits, we then produced a matrix of trait-to-
trait distance scores for each model, but this time based on cosine
distances (or equivalent—see Section 2). These matrices were com-
pared to each other using the Mantel test in scikit-bio (http://scikit-
bio.org/), a method to compute correlation distances between matri-
ces (Supplementary Fig. S12). Here, we see a similar pattern, with
the BlueBERT-EFO and EFO-Batet (i.e. position in the EFO hier-
archy) scores clustered together. This similarity is obvious in the
BlueBERT-EFO clustermap (Supplementary Fig. S13) where there
are some clear differences, but the major distinction between quanti-
tative traits and disease is present, with almost exactly the same
traits clustering into the same two groups. This likely reflects the
finetuning of this model to EFO.

4 Discussion

A number of approaches exist for text matching and semantic repre-
sentation of text. We set out to investigate the use of these
approaches for the automated mapping of human trait names to
ontologies (using the specific example of EFO) and explore how
they perform at direct trait-to-trait mapping.

4.1 Comparison of approaches for automated mapping

to ontology
Our analyses illustrate that using text embeddings to map biomed-
ical variables to EFO has a fairly high error rate, but is at least com-
parable to existing approaches (e.g. Zooma). Given the ease of use
and scalability of some of the models, we recommend this approach
when tackling problems that involve many thousands of variables
and manual annotation is not feasible. When attempting an exact
match (i.e. top match) BioSentVec (Chen et al. 2019) appears to per-
form best in terms of speed, precision, and accuracy. However, if it
is more important that the top N predictions are close to the truth,
then BlueBERT-EFO consistently out-performed all other models.
The increase in performance of the BlueBERT model when finetuned
to the EFO suggests that finetuning of other models to EFO could
yield similar gains, and not that there is something inherently super-
ior about the BlueBERT model.

It is important to note that several of the models had similar per-
formance at finding a top match, with the group including
BioSentVec, BlueBERT-EFO, Zooma, and ScispaCy (Neumann
et al. 2019) showing little statistical evidence of a difference. In con-
trast to the other models, the standard Zooma tool also brings the
benefit of continually updated manually curated mappings.

Embedding methods appear to perform well when the query
string describes a single event or entity, e.g. “whooping cough/
pertussis”. They perform poorly when the query string describes
multiple entities, e.g. “hiv disease resulting in malignant neo-
plasms”. This is perhaps not surprising, as the embedding of this
phrase is unlikely to be close to either HIV or cancer terms.
Addressing such traits therefore remains a complex challenge, i.e.
properly identifying mentioned concepts via named entity recogni-
tion (NER) and then incorporating pre-trained concept embeddings
from the knowledge base to the document embeddings (Park et al.
2019, Chen et al. 2020). In other words, a complex processing sys-
tem, which includes major components of NER, document level
embeddings, and concept embeddings, is required to approach map-
ping of complex traits in a generalized and robust manner, though
we are keen to explore this aspect in future research.

We compared our models to a manually mapped set of trait
names, but it is important to recognize this may itself contain errors.
Supplementary File S7 lists examples where no models predicted an
EFO term with an EFO-Batet score >0.95. Here, e.g. the query term
“malignant neoplasm of colon” was manually mapped to “colon
carcinoma”. However, six of the models predicted the EFO term
“malignant colon neoplasm”, which has an EFO-Batet score of 0.86
and is therefore a better fit (it is possible these differences reflect
changes in the EFO since the initial mapping rather than a mapping
error).

4.2 Comparison of approaches for trait-to-trait mapping
Mapping traits directly between two datasets has potential value,
but in the absence of a benchmark it is hard to validate. We there-
fore focussed on variables that had been mapped to a single EFO
term, and then refined that further for closer inspection. The use of
clustering methods enabled us to manually inspect groups of traits
and describe events that agree with standard biomedical knowledge.
Our analyses show that by including topological information from a
well-established ontology like the EFO, the BlueBERT-EFO model
can create sensible pairwise distances between variables, without ac-
tually mapping to ontology.

When focussing on a specific set of traits, we see that whilst the
finetuning of BlueBERT-EFO has produced a model which reflects
major patterns in the EFO hierarchy, there are some differences.

Figure 4 Pairwise plot of spearman correlations between methods based on a matrix

of cosine similarity (or equivalent) scores for all pairwise combines of traits (exclud-

ing self)
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One example is the loss of the “angina”, “worrier/anxious feeling”
cluster (present in EFO, Supplementary Fig. S11), with “angina”
joining the larger disease cluster next to “atrial fibrilation and

flutter” and “worrier/anxious feeling” moving next to “neuroticism
score” (Supplementary Fig. S13). The manual EFO term assigned to

“angina” was “EFO_0003913” (angina pectoris, http://www.ebi.ac.
uk/efo/EFO_0003913), which can be found within the “material
phenotype” EFO group as it is listed as a “Phenotype abnormality”

and not a disease. Even though the BlueBERT-EFO model has been
finetuned on the EFO hierarchy, the biomedical literature underpin-

ning the model has created distances placing “angina” with other
diseases rather than measurements. This highlights the subtle bal-
ance of information contained within this model.

Interestingly, the BlueBERT-EFO model fails to group together
the neurological illnesses (“parkinson’s disease”, “alzheimer’s dis-

ease”, and “secondary parkinsonism”). Looking at the other mod-
els, several also fail to do this, often grouping traits with the word
“disease” together (Supplementary Figs S14–S20). However,

BioSentVec, BlueBERT, and BioBERT appear to group these appro-
priately. This highlights one of the key challenges that the develop-

ers of these models face: how to distinguish between informative
words and ignore the generic (e.g. “disease”). This point is again
present in the BioBERT cluster map (Supplementary Fig. S19), with

“weight” an outlier to all other traits, suggesting this term was not
sufficiently similar to anthropometric traits.

It is worth noting, that the alternative methods to using language
models for this type of distance analysis appear to perform less well

(e.g. Levenshtein edit distance, Supplementary Fig. S14). Other
established methods, such as Zooma, are just not possible to use
when comparing data in this way.

At the moment there is no practical alternative automated ap-
proach to trait-to-trait mapping, so our results using language mod-

els are promising. However, they are far from perfect with many
cases of traits not grouping together as we might expect, and the
models often focussing on generic words, such as disease over and

above other more defining terms. This approach therefore requires
further development before it can be of practical use.

4.3 Use cases of these models
The models are imperfect but are still successful in mapping 40% of
trait names in the dataset we used. One obvious use case would be a
semi-automated mapping tool which would provide a suggestion for

the user to approve or edit. As highlighted above, many simple trait
names map well, and it is the more complex traits (e.g. combinations

of entities) that would need manual intervention.
Another scenario in which an imperfect one-to-many mapping

tool like those presented here may be useful is in a “trait name rec-
ommender”. One example of this is our OpenGWAS (Elsworth
et al. 2020) recommender, which provides recommended trait

matches from amongst thousands of GWAS datasets to enable a
user to see other relevant GWAS traits they may be interested in.
The OpenGWAS recommender uses a combination of ScispaCy and

BlueBERT-EFO to search for the top matching GWAS traits in the
semantic embedding vector space and optionally predict the ontol-

ogy relationships between the query term and the match candidates
(Liu et al. 2021).

In a follow-up study (Liu and Gaunt 2022), we applied ScispaCy
and BlueBERT-EFO as an ontology mapper in a hybrid architecture,
where a first stage model is used to efficiently filter EFO ontology

candidates associated with the query ULMS terms, and in the second
stage BlueBERT-EFO is then used to predict the ranking of the top

N results (similar to results in Supplementary Figs S5–S8 where
BioSentVec was applied as the first stage model). The retrieval
results have shown to be sensible for the systematic analysis on

medRxiv submission abstracts, without sacrificing inference per-
formance due to the computationally expensive nature of transform-
er models whilst retaining relevancy in candidate retrieval.

5 Conclusions

We have shown that current text matching and embedding
approaches offer some promise in the task of mapping traits to
ontologies and to each other. However, the mapping is imperfect
and unsuitable for fully automated mapping. Models trained on the
biomedical literature perform better than more generalized models,
and finetuning to the EFO ontology may further improve the per-
formance of a specific model. Some trait names present in popula-
tion health datasets, such as UK Biobank, are complex and their
embeddings are unlikely to be very representative; future work
should focus on how to handle such trait names.

Supplementary data

Supplementary data is available at Bioinformatics online.
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