
 van den Broek, S. F., Patni, M., Hii, A. K. W., Weaver, P. M., Greaves,
P., & Pirrera, A. (2023). Nonlinear Analysis of Wind Turbine Blades
Using Finite Elements with Anisotropic Variable Kinematics. In AIAA
SCITECH 2023 Forum [AIAA 2023-1921] American Institute of
Aeronautics and Astronautics Inc. (AIAA).
https://doi.org/10.2514/6.2023-1921

Peer reviewed version

Link to published version (if available):
10.2514/6.2023-1921

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online
via AIAA at https://doi.org/10.2514/6.2023-1921.Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.2514/6.2023-1921
https://doi.org/10.2514/6.2023-1921
https://research-information.bris.ac.uk/en/publications/4b2d256c-9da4-4d2b-8737-05ed15f633e8
https://research-information.bris.ac.uk/en/publications/4b2d256c-9da4-4d2b-8737-05ed15f633e8

Nonlinear Analysis of Wind Turbine Blades Using Finite
Elements with Anisotropic Variable Kinematics

Sander van den Broek∗, Mayank Patni †, Aewis Hii ‡ , Paul Weaver §

University of Bristol, University Walk, Bristol BS8 1TR, United Kingdom

Peter Greaves¶

Offshore Renewable Energy Catapult, Albert Street, Blyth NE24 1LZ, United Kingdom

Alberto Pirrera‖

University of Bristol, University Walk, Bristol BS8 1TR, United Kingdom

Analysis of wind turbine blades using beam or shell models presents difficulties in accurately
capturing the torsional stiffness and local 3D stress fields. Instead, modeling torsional effects
accurately often necessitates three-dimensional analysis as achieved with solid elements in finite
element analysis. The use of solid elements and complex local mesh refinement algorithms are
often required to capture the three-dimensional stress fields in critical regions, which results in
systems with a large number of degrees of freedom. The present work proposes using variable
kinematics finite elements to analyze wind turbine blades. Variable kinematic elements use a
higher-order shape function to represent the displacement field in an element, enabling a more
refined kinematic description of displacements. Previous works have shown that higher-order
elements with variable kinematics can obtain accurate 3D stress fields with fewer degrees of
freedom than conventional solid models. Using p-refinement furthermore allows for local
refinement without requiring remeshing. By allowing the kinematics to be directional, the
accuracy and degrees of freedom can be tailored to be closely related to the structure.

I. Nomenclature

𝑒𝑖 = Edge number 𝑖
𝐹𝑖 = Face number 𝑖
h = Displacement field shape function
𝐻 = Shape function mode
𝐿𝑛 = Legendre polynomial of order 𝑛
Λ = Array with evaluated affine coordinate terms
_ 𝑗 = Affine coordinate 𝑗

n = Geometry shape function
𝑝 = Order of expansion
Φ = Array with evaluated Lobatto shape functions 𝜙
𝜙𝑛 = One-dimensional Lobatto shape function of order 𝑛
x𝑒 = Coefficients representing the element’s position in space

II. Introduction

Wind turbine blades have steadily grown over the decades to increase the capacity of wind turbines, with blades
exceeding 115 meters currently being prototyped. Increasing the length of turbine blades leads to increased

∗Research Associate, Bristol Composites Institute
†Honorary Research Associate, Bristol Composites Institute
‡Research Associate, Bristol Composites Institute
§Professor in Lightweight Structures, Bristol Composites Institute
¶Principal R&D Engineer – Blade Structures
‖Professor of Nonlinear Structural Mechanics, Bristol Composites Institute

1

structural complexity from a mechanical and material perspective. Complexities arise due to the more considerable
deformation of the blade and corresponding nonlinear effects such as cross-sectional warping [1].

Preliminary design of wind turbines in practice uses simple models based on beams. Detailed designs are then
analyzed using shell models [2]. Areas that can not be modeled accurately using shell elements are then submodeled
using loads and boundary conditions extrapolated from the shell model, often using assumptions that significantly affect
results.

Using multiple types of structural models requires separate meshes and mesh refinement studies. Creating meshes
from geometry and making sure results converge is time-consuming, often taking more time than the actual analysis.

Another area for improvement with traditional design approaches is that shell models can not accurately represent
certain aspects of blade design. Assumptions in shell models do not facilitate modeling certain geometric features,
such as the adhesive interface at the spar caps. In addition, the torsional stiffness computed using shell elements has
a significant disparity compared to experimental results [3, 4]. Work done by Tavares et al. [5] has shown that the
torsional stiffness can be improved by including drilling rotation degrees of freedom, though solid elements are needed
to converge to experimental results. Other types of analyses also require solid elements, such as delamination modeling,
where through-thickness stresses are required.

Modeling an entire wind turbine blade using solid elements requires a fine mesh with multiple elements through the
material thickness to properly represent the kinematics and converge to the correct 3D stress state. Using solid elements
requires more time in mesh preparation and significantly increases the degrees of freedom in the finite element model,
potentially becoming computationally prohibitive.

The work presented in this paper proposes an alternative workflow for the structural analysis of wind turbine blades.
Instead of being dependent on generating and converging different meshes, each focusing on a specific type of analysis,
the proposed approach uses a single unified mesh. A unified mesh is used to represent the geometry of the wind turbine
as closely as possible.

Structural finite element analysis converges towards a displacement field solution. Convergence of a solution requires
that the discretization allows an accurate representation of the displacement field. Commercial finite element solvers
usually do this by reducing the size of elements, also referred to as h-refinement. Reducing the size of elements makes it
possible to approximate complex displacement fields with relatively low polynomial approximations within element
subdomains. Another way to achieve convergence is to allow higher-order approximations of displacement fields in
an element, also known as p-refinement. Increasing the polynomial order of elements leads to exponentially faster
convergence than decreasing element sizes [6].

Using p-refinement, the shape functions of elements have varying kinematics depending on the expansion order
used. As the expansion order increases, the kinematics that an element can represent become more complex. By
achieving convergence using p-refinement, there is no more need to create new meshes to converge to a solution. Instead,
convergence is achieved by increasing the polynomial order of the element shape function, thereby allowing the element
to represent more complex displacement fields.

The variable kinematics element used allows for anisotropic expansion of the shape function. Using anisotropic
variable kinematics, degrees of freedom can be selectively added to directions in which the kinematic description
should refine. It is possible to, for instance, refine the in-plane direction of a thin-walled structure without adding
through-thickness refinement.

Variable kinematics elements have an additional advantage: they can converge to solutions with fewer degrees of
freedom than linear or quadratic elements often used in commercial finite element programs. One solid element can
accurately capture the 3D stress fields of multiple laminae using an equivalent single-layer approach (ESL). 3D stresses
within the element can be recovered using refined zig-zag theory with great accuracy while using orders of magnitude
fewer degrees of freedom [7]. For these reasons, Vanskike [8] recently identified layered variable kinematics solid
elements as a promising approach in modeling wind turbine blades.

The work presented shows an implementation of variable kinematics elements and demonstrates the performance
of structures representative of wind turbine blades. Results are shown to converge with those of refined meshes in
commercial finite elements while using fewer degrees of freedom.

III. Methodology
The approach adopted in this paper distinguishes between shape functions used to represent the structural geometry

and shape functions used to represent the displacement field. By separating these representations, meshes can be
generated using widely available algorithms that define linear, quadratic, or higher-order meshes using Serendipity or

2

Lagrange shape functions. Displacements can be represented using variable kinematics elements. Variable kinematics
elements utilizing Legendre polynomials make it possible to increase the (local) element order without remeshing.

A. Geometric representation
The geometric representation is used to define the geometry of elements. Any differentiable 3D shape function can

be used, but the accuracy of the solution will be directly affected by the accuracy of the representation. Examples in this
paper utilize geometry represented by quadratic Lagrange elements, but better accuracy can be achieved using exact
representations through b-splines or nonuniform b-splines (NURBS).

Point 𝑖 in an element can be mapped from natural coordinates, (b, [, Z), to global coordinates by the relationship

x𝑖 = n(b𝑖 , [𝑖 , Z𝑖)x𝑒, (1)

with x𝑒 being the element coefficients of the geometric shape function n.

B. Displacement field representation
Displacement fields represent displacements of an element in space and are represented using the shape function

u𝑖 = h(b𝑖 , [𝑖 , Z𝑖)u𝑒 . (2)

The shape function h is a variable kinematics shape function with a variable number of terms depending on the order
of expansion. Within the variable kinematic shape function, displacement on edges, faces and within the volume are
enriched using a set of mutually orthogonal polynomials.

1. Lobatto shape functions
Orthogonal shape functions are constructed using Legendre polynomials and normalizing these to zero at boundaries.

These shape functions are also called Lobatto shape functions 𝜙, and are constructed as [9, sec. 3.3.2] [10]

𝜙𝑛 (b) =
√︂

2𝑛 − 1
2

∫ b

−1
𝐿𝑛−1 (𝑥)d𝑥

=
1

√
4𝑛 − 2

(𝐿𝑛 (b) − 𝐿𝑛−2 (b)) , 𝑛 = 2, 3, . . .
(3)

where 𝐿𝑛 is the Legendre polynomial of order 𝑛. Legendre polynomials 𝐿𝑛 (b) are defined as solutions of the differential
equation [9, App. D]

(1 − b2)𝑦′′ − 2b𝑦′ + 𝑖(𝑖 + 1)𝑦 = 0, −1 ≤ b ≤ 1. (4)

The first 15 Lobatto shape functions and their derivatives are listed in the appendix.

2. Kinematic expansion
Lobatto shape functions are used to expand the linear kinematic displacement field with additional terms. Terms can

be categorized as:
Edge A single polynomial 𝜙𝑚 (𝑎) is used to expand the kinematic description of an edge;
Face A product of two polynomials 𝜙𝑚 (𝑎)𝜙𝑛 (𝑏) is used to expand the kinematic description of a face;
Internal Three polynomials 𝜙𝑚 (𝑎)𝜙𝑛 (𝑏)𝜙𝑜 (𝑐) are combined to describe an internal "bubble" shape function.

where 𝑚, 𝑛, 𝑜 is the order of the polynomial and 𝑎, 𝑏, 𝑐 the coordinates associated with the shape function.
The terms included in a shape function depend on the polynomial space used and the directional order. When

multidimensional polynomials are used, the terms of a shape function can vary by the polynomial order of expansion
and the terms included in the polynomial space.

The two most common spaces in defining multidimensional polynomial spaces are the trunk space 𝒮𝑝b , 𝑝[, 𝑝Z

ts (Ωstℎ)
and the product space 𝒮𝑝b , 𝑝[, 𝑝Z

ps (Ωstℎ). Details of these spaces can be found in [9, sec. 3.2], and are summarized as:
Trunk space Within a trunk space, the total number of monomials in a shape function equals the most significant
expansion order in an anisotropic polynomial expansion. The terms included can be summarized as:

3

𝑣1

𝑣2

𝑣3

𝑣4

𝑣8

𝑣5
𝑣7

𝑣6

b

[Z𝑒1 𝑒2

𝑒3
𝑒4

𝑒5

𝑒6

𝑒7

𝑒10

𝑒11

𝑒9

𝑒12

𝑒8𝐹3 I

II

𝐹4

II
𝐹2

II

I

I
𝐹1

II
I

𝐹6
II

I

𝐹5
II

I

Fig. 1 Face and edge orientations on a hexahedron

Table 1 Overview of edges 𝑒, faces 𝐹 and internal bubble functions 𝐼 and the expansion direction that determines
their expansion

𝑝 b 𝑝[𝑝Z

Edges 𝑒1, 𝑒3, 𝑒9, 𝑒11 𝑒2, 𝑒4, 𝑒10, 𝑒12 𝑒5, 𝑒6, 𝑒7, 𝑒8

Faces 𝐹3,I, 𝐹4,I, 𝐹5,I, 𝐹6,I 𝐹1,I, 𝐹2,I, 𝐹5,II, 𝐹6,II 𝐹1,II, 𝐹2,II, 𝐹3,II, 𝐹4,II

Internal 𝐼b 𝐼[𝐼Z

• b[Z for 𝑝[, = 𝑝[= 𝑝Z = 1, corresponding to the nodal modes.
• b𝑖[𝑗 Z 𝑘 , bound to 𝑖 = 0 . . . 𝑝[, 𝑗 = 0, . . . 𝑝[𝑘 = 0, . . . 𝑝Z with 𝑖 + 𝑗 + 𝑘 = 0, . . . max(𝑝[, 𝑝[, 𝑝Z) .
• b 𝑝b [Z for 𝑝 b ≥ 2, b[𝑝[Z for 𝑝[≥ 2, and b[Z 𝑝Z for 𝑝Z ≥ 2. Corresponding to edge modes.

Using a trunk space, therefore, means that internal bubble modes are not included until 𝑖 + 𝑗 + 𝑘 ≥ 6.
Product space The product space spans all polynomials b𝑖[𝑗 Z 𝑘 with 𝑖 = 0, . . . 𝑝 b , 𝑗 = 0, . . . 𝑝[, and 𝑘 = 0, . . . 𝑝Z .
Therefore, in a product space, face nodes and internal modes are present as soon as the expansion in all related
directions is of order two or higher.

In an anisotropic kinematic expansion, the order assigned to edges, faces, and internal bubble functions varies by
direction. Using the nomenclature of Fig. 1 and an expansion polynomial of 𝑝 b , 𝑝[, 𝑝Z , the highest order of polynomials
used can be determined. In a hexahedron, the expansion of edge 𝑒9 would equal 𝑝 b . Surface 𝐹3 has two polynomials,
the first 𝑝𝐼 equals 𝑝 b , the second 𝑝𝐼 𝐼 = 𝑝Z . Bubble shape functions vary the same way, with the highest polynomials
determined by each expansion order 𝑝 in the natural coordinate system. An overview of the kinematic determination of
each element edge and face is shown in Table 1. The number of terms of the shape function, categorized by type, is
given analytically in Table 2.

C. Numerical implementation
In order to effectively deal with varying polynomial expansions, it is essential to implement certain aspects of

the finite element solver more intricately than in traditional finite element formulations. In general, meshes are only
sometimes structured so that all element orientations are identical (e.g., face three does not only face four in a hexahedron
shown in Fig. 1). In an anisotropic polynomial expansion, it is, therefore, necessary to thoroughly index the highest
polynomial that is assigned to each edge and face.

Upon evaluation of an element’s shape function, all terms associated with an edge or face must be considered. As
such, elements might have to transition between different orders of expansion, requiring, for instance, 𝑝𝐹3,I = 𝑝𝐹3,II = 4,
while the same element might have 𝑝𝐹4,I = 𝑝𝐹4,II = 5. The transition between elements requires additional terms for
face 4.

Explicitly deriving the shape function for all possible combinations of element expansions is unrealistic and would
require many combinations. Therefore, it is interesting to develop a modular approach to systematically evaluate shape
function terms. The developed approach is capable of both function evaluations and evaluating the function derivatives

4

Table 2 Number of terms for isotropic and anisotropic expansions using the polynomial trunk space. Expansion
orders 𝑝I, 𝑝II, 𝑝III are element orders 𝑝 b , 𝑝𝑖[, 𝑝Z sorted by element order 𝑝I ≥ 𝑝II ≥ 𝑝III with 5 subtracted.
Note that these formulas are only valid on a per-element basis and do not consider compatibility terms with
neighboring elements.

Term Isotropic expansion Anisotropic expansion

Vertex 8 8
Edge For 𝑝 ≥ 2, 12(𝑝 − 1) 4(𝑝 b − 1) + 4(𝑝[− 1) + 4(𝑝Z − 1)

Face For 𝑝 ≥ 4, 6 (𝑝−3) (𝑝−5)
2

Functions are only included for faces where expansions I and II are both at least 4
2 𝑝I (𝑝I+2)

2 − (𝑃I−𝑃II) (𝑃I−𝑃II+1)
2 +

2 𝑝I (𝑝I+2)
2 − (𝑃I−𝑃III) (𝑃I−𝑃III+1)

2 +
2 𝑝I𝐼 (𝑝I𝐼+2)

2 − (𝑃II−𝑃III) (𝑃II−𝑃III+1)
2

Internal For 𝑝 ≥ 6, (𝑝−5) (𝑝−4) (𝑝−3)
6

Internal terms are included when 𝑝 b , 𝑝[, 𝑝Z ≥ 6
For 𝑝II + 𝑝III − 𝑝I ≤ 2
𝑝II𝑝III

2𝑝I+2−𝑝II−𝑝III
2

For 𝑝II + 𝑝III − 𝑝I > 2

− 𝑝3
I +(3(𝑝II+𝑝III−1) 𝑝2

I
6 + 𝑝I (−3𝑝2

II−3𝑝2
III+6𝑝II+6𝑝III−2+𝑝3

II+𝑝
3
III)

6 − 𝑝2
II+𝑝

2
III

2 + 𝑝II+𝑝III
3

to the natural (element) coordinate system.
By evaluating a finite amount of expressions, it is possible to combine these to evaluate the different terms of

the shape function. ConstrucShape functions are constructed using both affine coordinates of the elements and the
previously derived shape functions evaluated using specified coordinates. Evaluating derivatives also requires the
derivatives of both of these expressions.

1. Affine coordinates
Affine coordinates define functions to element faces that are 0 at the specified face and one at the opposite end of the

element. A product of these coordinates can create a shape function that specifies an element’s vertex, edge, or face.
The affine coordinates for a hexahedron are

_1,𝐻 (b, [, Z) = 1 + b

2
_2,𝐻 (b, [, Z) = 1 − b

2
_3,𝐻 (b, [, Z) = 1 + [

2
(5)

_4,𝐻 (b, [, Z) = 1 − [

2
_5,𝐻 (b, [, Z) = 1 + Z

2
_6,𝐻 (b, [, Z) = 1 − Z

2

2. Polynomial evaluation
Lobatto polynomials are evaluated with a set amount of coordinates. The polynomials defined in the appendix are

used to create a polynomial array Φ with entries for hexahedrons

Φ𝐻 =

𝜙1 (b) 𝜙1 ([) 𝜙1 (Z)

...
...

...

𝜙𝑛 (b) 𝜙𝑛 ([) 𝜙𝑛 (Z)

 , (6)

where 𝑛 is the highest order polynomial evaluated.

3. Shape function evaluation and assembly
In order to evaluate a shape function, a template has to be constructed of terms included for the specific element.

A template for different terms of a hexahedron element is shown in Table 3. The terms of a shape function can be
described using an array with indices that uniquely describe the combination of polynomial terms. A third-order

5

𝑣1

𝑣2

𝑣3

𝑣4

𝑣8

𝑣5
𝑣7

𝑣6

b

[Z

𝑒1 𝑒2

𝑒3
𝑒4

𝑒5

𝑒6

𝑒7

𝑒10

𝑒11

𝑒9

𝑒12

𝑒8

𝐹6

𝐹1

𝐹3

𝐹2

𝐹4

𝐹5

Fig. 2 Hexahedron with vertices, edges and faces identified.

polynomial term on edge four would be evaluated as 𝑒4,3 = _2_6𝜙3,2, and a term on face 4 with 𝑝I = 2, 𝑝II = 3 would
be 𝐹4,2,3 = _3𝜙2,1𝜙3,3.

From this approach, it is clear that an array of terms can be assembled that is unique to a specific kinematic
representation of an element. The indices of affine coordinates and polynomial terms uniquely identify the shape
function term. The terms that are included can be described using an array that is constructed during preprocessing
or is precomputed for a specific expansion. The latter approach should be avoided using anisotropic expansions and
structures with varying expansions, as this would likely lead to kinematic incompatibilities. Dealing with differences in
expansion has to be done properly using transitional elements containing a unique set of shape function terms.

An important thing to note is that shape function terms may require additional transformation between an element
and global coordinate systems. Transformations can be done using sign changes and by switching terms 𝜙𝐴 and 𝜙𝐵 for
faces. These transformations are unique per edge, face and element and can be precomputed or incorporated in the
shape function evaluation. The necessary transformations are detailed in [11, sec. 3.5].

4. Shape function derivatives
Shape function derivatives are evaluated similarly to shape functions. A numerical implementation of the product

rule is used to compute the derivative of the shape function. Terms of a shape function are organized into an 𝑛 × 𝑛 array,
with the diagonal replaced with each term’s derivative. Evaluating the derivative is done by summing the product of
each row.

The derivatives for the affine coordinates are easily found as

d_
db

=

[
0.5 −0.5 0 0 0 0

] d_
d[

=

[
0 0 0.5 −0.5 0 0

] d_
dZ

=

[
0 0 0 0 0.5 −0.5

]
,

and polynomial array as

𝜕Φ𝐻

𝜕b
=

d𝜙1 (b)

db 0 0
...

...
...

d𝜙𝑛 (b)
db 0 0

𝜕Φ𝐻

𝜕[
=

0 d𝜙1 ([)

d[0
...

...
...

0 d𝜙𝑛 ([)
d[0

𝜕Φ𝐻

𝜕Z
=

0 0 d𝜙1 (Z)

dZ
...

...
...

0 0 d𝜙𝑛 (Z)
dZ

 .
The first 15 derivatives of the Lobatto shape function are listed in the appendix. Organizing shape function terms into a
3D array A each term can be sliced into a 2D form. Using a derivative to b as an example, a slice for term 𝑖 would have
the form of

A𝑖 =

𝜕_𝐴

𝜕b
_𝐵 _𝐶 𝜙𝐴 𝜙𝐵 𝜙𝐶

_𝐴
𝜕_𝐵

𝜕b
_𝐶 𝜙𝐴 𝜙𝐵 𝜙𝐶

_𝐴 _𝐵
𝜕_𝐶
𝜕b

𝜙𝐴 𝜙𝐵 𝜙𝐶

_𝐴 _𝐵 _𝐶
𝜕𝜙𝐴

𝜕b
𝜙𝐵 𝜙𝐶

_𝐴 _𝐵 _𝐶 𝜙𝐴
𝜕𝜙𝐵

𝜕b
𝜙𝐶

_𝐴 _𝐵 _𝐶 𝜙𝐴 𝜙𝐵
𝜕𝜙𝐶

𝜕b

,

6

Table 3 Components that are part of a shape function term. Polynomial expansions on edge terms are listed as
𝑝. On face terms, two components (I & II) are given, and for face terms, three (A,B,C). Element components can
be identified from Fig. 2. _ terms refer to affine coordinate terms of Eq. (6), 𝜙 terms refer to the entries of the
polynomial array Φ, where rows are the polynomial order and columns the evaluated coordinate.

Type _𝐴 _𝐵 _𝐶 𝜙𝐴 𝜙𝐵 𝜙𝐶

𝑣1 _2 _4 _6 1 1 1
𝑣2 _1 _4 _6 1 1 1
𝑣3 _1 _3 _6 1 1 1
𝑣4 _2 _3 _6 1 1 1
𝑣5 _2 _4 _5 1 1 1
𝑣6 _1 _4 _5 1 1 1
𝑣7 _1 _3 _5 1 1 1
𝑣8 _2 _3 _5 1 1 1
𝑒1 _4 _6 1 𝜙𝑝,1 1 1
𝑒2 _1 _6 1 𝜙𝑝,2 1 1
𝑒3 _3 _6 1 𝜙𝑝,1 1 1
𝑒4 _2 _6 1 𝜙𝑝,2 1 1
𝑒5 _2 _4 1 𝜙𝑝,3 1 1
𝑒6 _1 _4 1 𝜙𝑝,3 1 1
𝑒7 _1 _3 1 𝜙𝑝,3 1 1
𝑒8 _2 _3 1 𝜙𝑝,3 1 1
𝑒9 _4 _5 1 𝜙𝑝,1 1 1
𝑒10 _1 _5 1 𝜙𝑝,2 1 1
𝑒11 _3 _5 1 𝜙𝑝,1 1 1
𝑒12 _2 _6 1 𝜙𝑝,2 1 1
𝐹1 _2 1 1 𝜙𝑝I ,2 𝜙𝑝II ,3 1
𝐹2 _1 1 1 𝜙𝑝I ,2 𝜙𝑝II ,3 1
𝐹3 _4 1 1 𝜙𝑝I ,1 𝜙𝑝II ,3 1
𝐹4 _3 1 1 𝜙𝑝I ,1 𝜙𝑝II ,3 1
𝐹5 _6 1 1 𝜙𝑝I ,1 𝜙𝑝II ,2 1
𝐹6 _5 1 1 𝜙𝑝I ,1 𝜙𝑝II ,2 1
𝐼 1 1 1 𝜙𝑝𝐴,1 𝜙𝑝𝐵 ,2 𝜙𝑝𝐶 ,3

7

Fig. 3 Geometry and layup of simplified blade structure. UD fibers are all aligned to the span with the section

where derivative of the term would be computed as

h𝑖 =

6∑︁
𝑛=1

6∏
𝑚=1

𝐴𝑖,𝑛,𝑚.

Following this approach an example of a derivative to b of the term 𝑗 acting on face 3 with 𝑝I = 2, 𝑝II = 4 can be
assembled and evaluated as

A 𝑗 =

𝜕_4
𝜕b

= 0 1 1 𝜙2,1 𝜙4,3 1
_4 0 1 𝜙2,1 𝜙4,3 1
_4 1 0 𝜙2,1 𝜙4,3 1
_4 1 1 𝜕𝜙2,1

𝜕b
𝜙4,3 1

_4 1 1 𝜙2,1
𝜕𝜙4,3
𝜕b

1
_4 1 1 𝜙2,1 𝜙4,3 0

→ ℎ 𝑗 = _4

𝜕𝜙2,1

𝜕b
𝜙4,3 + _4𝜙2,1

𝜕𝜙4,3

𝜕b
.

IV. Numerical example
To demonstrate the higher-order approach, a numerical example is analyzed. Analyses were performed on a

representative structure that has a similar, though simplified geometry as a wind turbine blade. Two different layups are
used, one for the skin and one for the spar. Geometry and layup details can be found in Fig. 3, and material properties
are listed in Table 4.

The blade section is fully clamped at coordinate 𝑧 = 0, and loaded by traction on surface of the spar box with
a traction force of 9 MPa, totaling 1 747 kN. Displacements are solved through linear analysis as well as through
geometrically nonlinear analysis using a Newton-Raphson solver.

The mesh in the higher-order implementation consists of elements with a seeded length of 2 meters, totaling 350
elements. Composite layups are incorporated through a smeared approach using integrated layered stiffness properties
of an element. The geometric representation of the mesh is generated in Abaqus using quadratic elements. The number
of degrees of freedom varies depending on the kinematic expansion. Figure 4 shows the number of degrees of freedom
depending on each expansion.

As a baseline result fine Abaqus analyses were done on a 0.1 m seeded mesh where each layer is meshed independently.
This totaled 1 481 436 degrees of freedom prior to boundary conditions being applied.

8

Fig. 4 Number of degrees of freedom for each structure prior to boundary conditions being applied

Table 4 Material properties

Material 𝐸1 𝐸2 𝐸3 a12 a13 a23 𝐺12 𝐺13 𝐺23

Glass UD 43.22 GPa 12.639 GPa 12.639 GPa 0.29 0.29 0.29 4.42 GPa 4.42 GPa 4.42 GPa
Foam 129 MPa 129 MPa 129 MPa 0.32 0.32 0.32 48.9 MPa 48.9 MPa 48.9 MPa
Glass biax 13.4 GPa 13.4 GPa 13.4 GPa 0.495 0.495 0.495 4.48 GPa 4.48 GPa 4.48 GPa

9

(a) Displacements computed using Abaqus (b) Displacements computed using higher order elements

Fig. 5 Displacement field results of a converged linear solution computed using Abaqus or higher order elements

A. Linear analysis
The maximum tip displacements of various expansion orders were computed using a linear static analysis. A

comparison in end values between these displacements and a refined Abaqus linear solution is shown in Fig. 6.
Convergence is achieved on different combinations of kinematic expansions.

Comparing Figs. 4 and 6, it is noted that the number of degrees of freedom is similar, 67 977 for p7-t5, 64 413 for
p6-t7, and 58 689 for p5-t9, where p indicates the in-plane expansion and t the through-thickness expansion. Therefore,
the converged solution with the fewest degrees of freedom was achieved in an expansion where the through-thickness
kinematic expansion is higher than the in-plane expansion. The convergence table indicates that it is necessary to
have a minimum through-thickness expansion of 5 to achieve convergence, signifying that a significant amount of
through-thickness deformation occurs, which can not be captured in a shell or solid models with a single linear or
quadratic element through the thickness.

The maximum displacement found in the linear solution convergences to a value that is 1.2% different from the
Abaqus solution; this difference is due to the lower fidelity geometric representation. Curved sections of the blade are
represented using quadratic interpolation. As elements are much larger, the prescribed geometry is different from that of
the Abaqus mesh, which has more elements and therefore is more accurate in its geometric description. Displacement
fields of both analyses can be found in Fig. 5, showing good agreement.

B. Nonlinear analysis
Just as for the linear analysis, the nonlinear analysis is done over various kinematic expansions. Solutions were

obtained using a Newton solver with force slowly being applied over multiple load steps.
An overview of maximum displacements found using both approaches is shown in Fig. 7. The results show that due

to the more complex deformations and interactions between structural components, convergence in the geometrically
nonlinear analysis requires higher kinematic expansion than for the linear analysis.

Results converged for only some kinematic expansions due to the analysis going into the post-buckling regime,
where snap-through behavior may only sometimes converge using a Newton approach. Resolving this involves using a
path-following scheme, implementing numerical damping techniques, or altering the solver parameters.

Deformed shapes of both nonlinear solutions are shown in Fig. 8. Both the Abaqus and higher-order solution show
local buckling occurring on the skin of the blade. The exact shape and location of the buckling are highly imperfection
sensitive and therefore vary slightly with the kinematic representation.

10

Fig. 6 A comparison in computed differences in end displacements of the structure in a linear analysis

Fig. 7 A comparison in computed differences in end displacements of the structure in a geometrically nonlinear
analysis

11

(a) Displacements computed using Abaqus (b) Displacements computed using higher order elements

Fig. 8 Displacement field results of a converged geometrically nonlinear solution computed using Abaqus or
higher order elements

V. Conclusions and discussion
Higher-order finite element approaches can lead to converging mechanical responses without needing further

remeshing. Furthermore, convergence can be achieved with significantly fewer degrees of freedom than would be
necessary using lower-order elements. Good agreements with commercial finite elements were found in both linear and
nonlinear analyses to recreate localized buckling in the skin of the blade.

Results presented so far are part of ongoing work to implement higher-order finite elements into an aeroelastic
optimization framework. Higher-order models would then be used for design verification and checking structural
stability and response. Using existing beam and shell models would lead to inaccurate results, necessitating an approach
using solid elements.

The geometric representation of the blade has been shown to be highly critical in mechanical response. Lower-order
approximations can have a significant effect when the geometry is not accurately modeled. To this end, improvements
can be made by using higher-order or exact geometry, such as NURBS curves in the numerical integration scheme.

In the short term, further refinements will be developed and implemented to improve various aspects of the
implementation. These include

Numerical integration techniques Currently, the number of integration points in layered higher-order elements is
likely too high. Finding an optimal integration scheme that balances the number of points and accuracy will lead to
significant performance improvements.
Stress recovery Certain stress components can not be accurately recovered in layered elements without a stress-
recovery technique. Future work will include developing and implementing an efficient and accurate stress recovery
scheme for composite materials.
Geometric representation At the moment, meshes are imported from Abaqus, which uses, at most, a quadratic
discretization of the geometry. Errors introduced when larger elements are used can be eliminated or reduced by
using higher order or exact geometry in the numerical integration. Such approaches can be implemented in the
in-house blade meshing tool currently under development.

12

Appendix
First 15 Lobatto shape functions:

𝜙2 =
√

6
(
𝑥2

4
− 1

4

)
𝜙3 =

√
10 𝑥

(
𝑥2 − 1

)
4

𝜙4 =

√
14

(
5 𝑥4 − 6 𝑥2 + 1

)
16

𝜙5 =
3
√

2 𝑥
(
7 𝑥4 − 10 𝑥2 + 3

)
16

𝜙6 =

√
22

(
21 𝑥6 − 35 𝑥4 + 15 𝑥2 − 1

)
32

𝜙7 =

√
26 𝑥

(
33 𝑥6 − 63 𝑥4 + 35 𝑥2 − 5

)
32

𝜙8 =

√
30

(
429 𝑥8 − 924 𝑥6 + 630 𝑥4 − 140 𝑥2 + 5

)
256

𝜙9 =

√
34 𝑥

(
715 𝑥8 − 1716 𝑥6 + 1386 𝑥4 − 420 𝑥2 + 35

)
256

𝜙10 =

√
38

(
2431 𝑥10 − 6435 𝑥8 + 6006 𝑥6 − 2310 𝑥4 + 315 𝑥2 − 7

)
512

𝜙11 =

√
42 𝑥

(
4199 𝑥10 − 12155 𝑥8 + 12870 𝑥6 − 6006 𝑥4 + 1155 𝑥2 − 63

)
512

𝜙12 =

√
46

(
29393 𝑥12 − 92378 𝑥10 + 109395 𝑥8 − 60060 𝑥6 + 15015 𝑥4 − 1386 𝑥2 + 21

)
2048

𝜙13 =
5
√

2 𝑥
(
52003 𝑥12 − 176358 𝑥10 + 230945 𝑥8 − 145860 𝑥6 + 45045 𝑥4 − 6006 𝑥2 + 231

)
2048

𝜙14 =
3
√

6
(
185725 𝑥14 − 676039 𝑥12 + 969969 𝑥10 − 692835 𝑥8 + 255255 𝑥6 − 45045 𝑥4 + 3003 𝑥2 − 33

)
4096

𝜙15 =

√
58 𝑥

(
334305 𝑥14 − 1300075 𝑥12 + 2028117 𝑥10 − 1616615 𝑥8 + 692835 𝑥6 − 153153 𝑥4 + 15015 𝑥2 − 429

)
4096

13

Derivatives of first 15 Lobatto shape functions

d𝜙2
x

=

√
6 𝑥
2

d𝑥

d𝜙3
x

=

√
10

(
3 𝑥2 − 1

)
4

d𝑥

d𝜙4
x

=

√
14 𝑥

(
5 𝑥2 − 3

)
4

d𝑥

d𝜙5
x

=
3
√

2
(
35 𝑥4 − 30 𝑥2 + 3

)
16

d𝑥

d𝜙6
x

=

√
22 𝑥

(
63 𝑥4 − 70 𝑥2 + 15

)
16

d𝑥

d𝜙7
x

=

√
26

(
231 𝑥6 − 315 𝑥4 + 105 𝑥2 − 5

)
32

d𝑥

d𝜙8
x

=

√
30 𝑥

(
429 𝑥6 − 693 𝑥4 + 315 𝑥2 − 35

)
32

d𝑥

d𝜙9
x

=

√
34

(
6435 𝑥8 − 12012 𝑥6 + 6930 𝑥4 − 1260 𝑥2 + 35

)
256

d𝑥

d𝜙10
x

=

√
38 𝑥

(
12155 𝑥8 − 25740 𝑥6 + 18018 𝑥4 − 4620 𝑥2 + 315

)
256

d𝑥

d𝜙11
x

=

√
42

(
46189 𝑥10 − 109395 𝑥8 + 90090 𝑥6 − 30030 𝑥4 + 3465 𝑥2 − 63

)
512

d𝑥

d𝜙12
x

=

√
46 𝑥

(
88179 𝑥10 − 230945 𝑥8 + 218790 𝑥6 − 90090 𝑥4 + 15015 𝑥2 − 693

)
512

d𝑥

d𝜙13
x

=
5
√

2
(
676039 𝑥12 − 1939938 𝑥10 + 2078505 𝑥8 − 1021020 𝑥6 + 225225 𝑥4 − 18018 𝑥2 + 231

)
2048

d𝑥

d𝜙14
x

=
3
√

6 𝑥
(
1300075 𝑥12 − 4056234 𝑥10 + 4849845 𝑥8 − 2771340 𝑥6 + 765765 𝑥4 − 90090 𝑥2 + 3003

)
2048

d𝑥

d𝜙15
x

=

√
58

(
5014575 𝑥14 − 16900975 𝑥12 + 22309287 𝑥10 − 14549535 𝑥8 + 4849845 𝑥6 − 765765 𝑥4 + 45045 𝑥2 − 429

)
4096

d𝑥

Acknowledgments
The authors would like to thank the Wind Blades Research Hub (WBRH), a collaboration between the University of

Bristol and ORE Catapult, for their support of this work.

References
[1] Jensen, F. M., Falzon, B. G., Ankersen, J., and Stang, H., “Structural testing and numerical simulation of a 34 m composite wind

turbine blade,” Composite Structures, Vol. 76, No. 1-2, 2006, pp. 52–61. https://doi.org/10.1016/j.compstruct.2006.06.008.

[2] Faccio Júnior, C. J., Cardozo, A. C. P., Monteiro Júnior, V., and Gay Neto, A., “Modeling wind turbine blades by geometrically-
exact beam and shell elements: A comparative approach,” Engineering Structures, Vol. 180, No. March 2018, 2019, pp.
357–378. https://doi.org/10.1016/j.engstruct.2018.09.032, URL https://doi.org/10.1016/j.engstruct.2018.09.032.

[3] Maes, V., “On the sensitivity and validation of bending, twisting, and bend-twist coupling behaviour of wind turbine blade cross-
sections,” Ph.D. thesis, University of Bristol, Bristol, United Kingdom, 2020. URL http://research-information.bristol.ac.uk.

[4] Peeters, M., Santo, G., Degroote, J., and Van Paepegem, W., “High-fidelity finite element models of composite wind
turbine blades with shell and solid elements,” Composite Structures, Vol. 200, No. February, 2018, pp. 521–531. https:
//doi.org/10.1016/j.compstruct.2018.05.091, URL https://doi.org/10.1016/j.compstruct.2018.05.091.

14

https://doi.org/10.1016/j.compstruct.2006.06.008
https://doi.org/10.1016/j.engstruct.2018.09.032
https://doi.org/10.1016/j.engstruct.2018.09.032
http://research-information.bristol.ac.uk
https://doi.org/10.1016/j.compstruct.2018.05.091
https://doi.org/10.1016/j.compstruct.2018.05.091
https://doi.org/10.1016/j.compstruct.2018.05.091

[5] Tavares, R. P., Bouwman, V., and Van Paepegem, W., “Finite element analysis of wind turbine blades subjected to
torsional loads: Shell vs solid elements,” Composite Structures, Vol. 280, No. October 2021, 2022, p. 114905. https:
//doi.org/10.1016/j.compstruct.2021.114905, URL https://doi.org/10.1016/j.compstruct.2021.114905.

[6] Szabó, B., Düster, A., and Rank, E., “The p -version of the Finite Element Method,” Encyclopedia of Computational
Mechanics, 3, John Wiley & Sons, Ltd, Chichester, UK, 2004, pp. 119–139. https://doi.org/10.1002/0470091355.ecm003g,
URL https://onlinelibrary.wiley.com/doi/10.1002/0470091355.ecm003g.

[7] Patni, M., Minera, S., Groh, R. M., Pirrera, A., and Weaver, P. M., “Efficient 3D stress capture of variable-stiffness and sandwich
beam structures,” AIAA Journal, Vol. 57, No. 9, 2019, pp. 4042–4056. https://doi.org/10.2514/1.J058220.

[8] Vanskike, W. P., “Comparative Assessment of Finite Element Modeling Methods for Wind Turbine Blades,” Ph.D. thesis,
University of Kansas, 2020. URL http://hdl.handle.net/1808/32635.

[9] Szabó, B., and Babuška, I., Finite Element Analysis Method, Verification, and Validation, 2nd ed., John Wiley & Sons, Hoboken,
NJ, USA, 2021.

[10] Düster, A., Bröker, H., and Rank, E., “The p-version of the finite element method for three-dimensional curved thin
walled structures,” International Journal for Numerical Methods in Engineering, Vol. 52, No. 7, 2001, pp. 673–703.
https://doi.org/10.1002/nme.222, URL https://onlinelibrary.wiley.com/doi/10.1002/nme.222.

[11] Šolín, P., Segeth, K., and Doležel, I., Higher-order finite element methods, 2003. https://doi.org/10.1201/9780203488041.

15

https://doi.org/10.1016/j.compstruct.2021.114905
https://doi.org/10.1016/j.compstruct.2021.114905
https://doi.org/10.1016/j.compstruct.2021.114905
https://doi.org/10.1002/0470091355.ecm003g
https://onlinelibrary.wiley.com/doi/10.1002/0470091355.ecm003g
https://doi.org/10.2514/1.J058220
http://hdl.handle.net/1808/32635
https://doi.org/10.1002/nme.222
https://onlinelibrary.wiley.com/doi/10.1002/nme.222
https://doi.org/10.1201/9780203488041

	Nomenclature
	Introduction
	Methodology
	Geometric representation
	Displacement field representation
	Lobatto shape functions
	Kinematic expansion

	Numerical implementation
	Affine coordinates
	Polynomial evaluation
	Shape function evaluation and assembly
	Shape function derivatives

	Numerical example
	Linear analysis
	Nonlinear analysis

	Conclusions and discussion

