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Abstract—This paper presents a deep learning framework for
medical video segmentation. Convolution neural network (CNN)
and transformer-based methods have achieved great milestones
in medical image segmentation tasks due to their incredible
semantic feature encoding and global information comprehension
abilities. However, most existing approaches ignore a salient
aspect of medical video data - the temporal dimension. Our pro-
posed framework explicitly extracts features from neighbouring
frames across the temporal dimension and incorporates them
with a temporal feature blender, which then tokenises the high-
level spatio-temporal feature to form a strong global feature
encoded via a Swin Transformer. The final segmentation results
are produced via a UNet-like encoder-decoder architecture. Our
model outperforms other approaches by a significant margin and
improves the segmentation benchmarks on the VFSS2022 dataset,
achieving a dice coefficient of 0.8986 and 0.8186 for the two
datasets tested. Our studies also show the efficacy of the temporal
feature blending scheme and cross-dataset transferability of
learned capabilities. Code and models are fully available at
https://github.com/SimonZeng7108/Video-SwinUNet.

Index Terms—Deep Learning, Swin Transformer, SwinUNet,
Video Tracking, Dysphagia, Swallow difficulty, Videofluoroscopy

I. INTRODUCTION AND RELATED WORK

Dysphagia or swallowing difficulty is a common complica-
tion found in 30 - 50% of people following stroke [1]. The
prevalence of dysphagia in older people with dementia can
be high up to 84%. Risks are identified in people with dys-
phagia such as malnutrition, development of pneumonia and
aspiration. Serious Dysphagia can lead to a strong association
with mortality [2], [3]. Hence early detection and treatment of
Dysphagia are crucial.

A Videofluoroscopic Swallow Study (VFSS) is accepted as
the gold standard assessment for dysphagia. During VFSS,
patients are asked to swallow texture-modified foods and
liquids that contain barium. It provides visual data on the
trajectory of bolus, muscle, and hyoid bone movement and
the connection between anatomy and aspiration [4]. However,
the clinical assessment requires an extensively experienced
speech-language therapist to analyse the visual data on a per-
frame basis. The visual data sometimes has both low spatial
and temporal quality due to device modalities and radiation
noise. Moreover, there can be ambiguity and inconsistency in
the judgments of different clinical experts.

Early attempts at automated processing of the data have used
traditional methods, such as Hough transforms [5], Sobel Edge
detection [6] and Haar classifiers [7] to track lumbar vertebrae,

hyoid bone and epiglottis, which are important anatomical
structures in the pharyngeal swallowing reflex. With the more
recent impact of deep learning in medical image analysis,
others have shown advances in pharyngeal phase detection [8],
[9], [10], [11] and hyoid bone detection [12], [13], [14], [15].

Bolus trajectory is one of the main indicators in a VFS
study, but there are few studies on the automation of bolus
detection or segmentation [16], [17], [18]. CNN-based works,
such as [19], demonstrate significant superiority in feature
extraction, though they are disadvantaged in computing long-
range relations due to their inherent local operations. Vision
transformers [20], [21], on the other hand, have exhibited great
predominance in modelling global contextual correlations by
using attention mechanisms.

Recent works that leverage vision transformers [22], [23]
have shown remarkable performance in medical image seg-
mentation. While others have dealt with video dynamics for
detection or segmentation in videos, such as Cao et al. [24] and
Yang et al. [25], only few has explicitly addressed the use of
temporal information in assisting the detection or segmentation
of sequential medical data [26]. The dynamics of bolus suggest
that an implicit temporal relationship between the frames
on a feature level can be exploited in learning detection or
segmentation models.

In this paper, we present a deep-learning pipeline that
takes account of multi-rater annotations and fuses them into
a more consistent and reliable ground truth. Subsequently, an
architecture is proposed (see Fig. 1) comprising a ResNet-50
feature extractor, a Temporal Context Module (TCM) feature
blender, a non-local attention encoder (Swin Transformer)
and a cascaded CNN decoder for detailed segmentation map
prediction.

Our main contributions are summarised as follows: i) we
provide the VFSS2022 dataset Part 2 in different modalities
in contrast to Part 1 annotated with reliable labels for the
laryngeal bolus and pharynx. ii) we propose a new archi-
tecture enhancing the performance of previous work [18] by
extending the vision transformer encoder to a stronger and
more generalised Swin Transformer, iii) we perform a detailed
ablation study to reveal the importance of temporal feature
blending. We also explore the cross-dataset transferability and
generalizability of our deep neural networks on data across
different modalities.
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Fig. 1. Video-SwinUNet Architecture Overview.(a)A ResNet-50 CNN feature extractor; (b)Temporal Context Module for temporal feature blending; (c)A
Swin transformer-based feature encoder; (d)Cascaded CNN up-sampler for segmentation reconstruction; (e)2-layer segmentation head for detailed pixel-wise
label mapping. Three skip connections are bridged between the CNN feature extractor and up-sampler as well as from the temporal features.

II. METHODOLOGY

A. Architecture Overview

Inspired by UNet [19], we follow the encoder-decoder
structure to build our video instance segmentation network, as
shown in Fig. 1. It takes a video snippet as an input that con-
sists of a sequence of frames with dimension x ∈ Rt×H×W ,
where H ×W represents the spatial resolution of the input
and t is a temporal range of the input sequence. The input
frames will be successively fed into a ResNet-50 backbone for
feature extraction (see Fig. 1(a)). Then, the extracted features
are simultaneously passed into a novel Temporal Context
Module(TCM) (see Fig. 1(b)) [25], which blends the past
and future frame features into the target central frame feature.
Thereafter, the output feature that is integrated with high-level
spatial and temporal representation is tokenised into image
patches by a Swin transformer encoder (see Fig. 1(c)) for
global context construction. Finally, an up-sampling decoder
(see Fig. 1(d)) reconstructs the segmentation map to the
original image size of H×W with cascaded CNNs and binary
segmentation heads (see Fig. 1(e)).

B. Temporal Context Module

The proposed architecture contains a key component Tem-
poral Context Module(TCM) following success in video detec-
tion [25]. The design of TCM follows the principled blending
framework by [24] where a trainable self-attention module is
formulated to a range of frame features from the previous CNN
block. The input features xt ∈ {x1, . . . , xi} are separately lin-
ear embedded to a feature space by function e(·) and weights
wt in a concurrent manner. After that, a global Softmax
operation is applied so that the temporal correlation across all
the frames in the feature space can be aggregated. The agglom-
erated features are dispersed again to several stems for further
linear embeddings. The normalisation of each stem is neces-
sary to prevent vanishing/exploding gradients and can be done
easily by x̂t,i = 1

HW C (xt,i;wt)
∑HW

j=1 C (xt,j ;wt). Identity
mapping operations by multiplication⊗ and addition⊕

are applied in each stem. In the end, stabilised features are
added back to the central frame feature as a final single mixture
high-level description of the short-term snippet. In summary,
the TCM operation can be formulated by:

zTCM
t,i = xt,i+

∑
n∈T

w∗∗n

xn,i ⊕ w∗n

HW∑
j=1

x̂n,j ⊗ xn,j

 , (1)

where xn are the linear embedded features to be combined,
w∗n and w∗∗n are trainable parameters for identity additions and
blending operations.

C. Swin Transformer

Following [20], we tokenise temporal blended features into
feature patches xp and map them into a latent D-dimensional
embedding space via learnable linear projection. [21], [23]
suggest the unnecessity of employing position embedding
Epos in Swin transformer, hence we omitted it in our work
for simplicity. The projected feature can be expressed as z0 =[
x1
pEpat;x

2
pEpat; · · · ;xN

p Epat

]
, where Epat is the patch em-

bedding linear projection. The conventional vision transformer
computes global attention across the vectorized patches, As a
result, the computational complexity is quadratically increased
along with the increase of the input resolutions. To alleviate
the computation overhead in Multihead Self-Attention(MSA),
a Window-based Multihead Self-Attention(W-MSA) method
is proposed in [21]. The window moves along the feature or
image with no over-lapping and conducts self-attention within
the local window and makes it more computationally efficient
in computer vision tasks. the W-MSA also includes a relative
position bias and can be expressed as:

Attention(Q,K, V ) = SoftMax
(
QKT /

√
d+B

)
V , (2)

where Q,K, V ∈ RM2×d stands for the query, key and value
matrices respectively; d is the query/key dimension, and M2

patch numbers in a window. Values in B are taken from the
bias matrixB̂.
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Fig. 2. Qualitative Results. Model segmentation results on 3 consecutive frames selected from VFSS Part2 dataset testset. All results are in pairs of bolus
and pharynx predictions side by side. The red and blue outlines indicate the output segmentation and ground truth, respectively.(Best viewed zoomed)

To model the relationship between windows, a Shifted-
Window MSA (SW-MSA) is proposed in [21], the patches
take turns in two consecutive Swin Transformer blocks, each
of which contains both a W-MSA and a SW-MSA accom-
panied with a 2-layer MLP followed a GELU activation
function. And LayerNorm(LN) and skip connections are
added before the MLP, as illustrated in Fig. 1.

III. EXPERIMENTS AND RESULTS

A. Datasets and Implementation details

Datasets. The VFSS2022 datasets are collected in two
major hospitals and the utilisation of the anonymised data
is ethically reviewed and approved by the hospitals and our
internal institutional Ethics Board. During the VFS studies,
the patients carried out modified barium swallow tests under
the practitioner’s supervision. VFSS2022 Part 1 produces 3.5
minutes of swallowing videos which result in 440 sampled
frames with a spatial resolution of 512 × 512 pixels. Each
frame is annotated by 3 experts and reviewed by 2 speech
and language therapists and compromising labels for bolus
and pharynx. The final ground truth is fused together with the
3 labels by a common image fusion strategy STAPLE [30].
VFSS2022 Part 2 is annotated by one trained expert consisting
of 154 frames and corresponding labels, it appears to have
more modal noises and poorer temporal quality, and is used
for the model generalisation test.

Implementation details. The bolus and pharynx are con-
catenated as 2-layer tensors for the end-to-end model co-
learning from both. The layers for the frames with no visible
bolus are replaced with full-size zeroed tensors. To study the
effect of input snippet lengths in our system, the input number
of frames is in the range of t = 3, 5, 7, 9, 11&13 both for
training and testing. All experiments supported online data
augmentation such as random limited rotation and flipping. We
initialise the weights of the ResNet-50 backbone and Swin-
Transformer from the pre-trained models [22], [23]. During
training, our system takes in a batch size of 2 and is equipped
with an Adam optimizer with an initial learning rate of 1e-3.
For transfer learning, the learning rate is dropped to 1e-4 at the
beginning. A learning rate scheduler is set to drop the learning
rate to 80% after 20 epochs of validation loss saturation. The
architecture is achieved in Python 3.8.5 and Pytorch 1.9 and
trained with an NVIDIA Tesla P100 16GB GPU. We consider

the overall loss of Binary Cross Entropy Loss and Dice Loss
as the final training objectives.

B. Comparison with the state of the art

We compare our proposed architecture with major medi-
cal image segmentation models including UNet [19], Neste-
dUNet [27], ResUNet [28], AttUNet [29], TransUNet [22],
Video-TransUNet [18] and SwinUNet [23] over 5 common
evaluation metrics, the Dice Coefficient (DSC), the 95th per-
centile of the Hausdorff Distance (HD95), the Average Surface
Distance (ASD), Sensitivity and Specificity, see Tab. I. Addi-
tionally, we also include the total number of parameters of the
model and the total floating-point operations(FLOPs) to com-
pare the model size and computing performance. It can be seen
that in Tab. I, our method improved segmentation accuracy
to 89.86%/81.86%(DSC) and 6.2365/4.5268 pixels(HD95) on
VFSS2022 Part1/Part2, the test results dominate the previous
SOTA [18] and other methods with a significant margin. The
general quality is greatly improved and output noises are
less produced, as demonstrated in the qualitative results, see
Fig. 2. More importantly, the proposed method achieves a
remarkable speed-accuracy trade-off. Although compared with
SwinUNet [23] the model size is doubled, it notably improved
the segmentation accuracy by 5.09%. And it is observed that
our model has reduced the number of parameters to less than
half compared with the previous SOTA while not sacrificing
computational efficiency due to the design of hierarchy shifting
windows. Fig. 3 shows the Grad-CAM output one layer before
TCM in Video-TransUNet and Video-SwinUNet. Compared
to TransUNet and SwinUNet which don’t include TCM, the
attention maps from our method devote great concentrations
are computed to task-relevant features. Hence it promotes the
efficacy of the TCM and the importance of temporal-relation
constructions.

C. Ablation study

We conducted major ablation experiments to reveal the
efficacy of the proposed temporal blending framework via a
novel TCM component. We modulate 4 main components,
CNN extractor(CNN), Swin Transformer Block(Swin), Tem-
poral Context Module(TCM) and CNN up-sampler(CUP) in
our experiments. Comparing Tab. II(4) to (3) and (6) to (5),
we can see that TCM has increased performance by a margin
without an extra expensive cost in computational power. The



TABLE I
QUANTITATIVE RESULTS. SEGMENTATION ACCURACY ON 5 METRICS OF VFSS2022 PART1/PART2 IS SHOWN, AS WELL AS A NUMBER OF

PARAMETERS AND FLOPS OF EACH MODEL. PART1/PART2 DATASETS ARE TRAINED SEPARATELY.

Model DSC HD95 ASD Sensitivity Specificity FLOPs #Params

(1) UNet[19] 0.8422/0.7894 14.7530/20.7516 2.1675/4.6458 0.8289/0.7414 0.9988/0.9793 50.1G 34.5M

(2) NestedUNet[27] 0.8335/0.7537 13.7601/6.4952 2.2275/5.1220 0.8305/0.7188 0.9987/0.9682 105.7G 36.6M

(3) ResUNet[28] 0.8465/0.7846 11.982/6.4187 2.0487/2.4218 0.8183/0.7218 0.9991/0.9994 43.1G 31.5M

(4) AttUNet[29] 0.8501/0.7917 12.9356/16.9552 2.1832/4.2174 0.8328/0.7721 0.9988/0.9985 51.0G 34.8M

(5) TransUNet[22] 0.8586/0.8046 7.4510/4.6291 1.1050/1.9322 0.8486/0.7579 0.9989/0.9929 29.3G 105.3M

(6) Video-TransUNet[18] 0.8796/0.8041 6.9155/4.7775 1.0379/1.5270 0.8851/0.7423 0.9986/0.9996 40.4G 110.5M

(7) SwinUNet[23] 0.8477/0.8001 10.2897/5.9846 2.0817/2.1342 0.8459/0.7336 0.9985/0.9935 6.1G 27.1M

(8) Ours 0.8986/0.8186 6.2365/4.5268 1.3081/1.2052 0.9011/0.7756 0.9986/0.9995 25.8G 48.9M
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Fig. 3. Grad-CAM Visualisation. Comparing the two closest competing
architectures, grad-cam maps show where the model pays attention. Note the
cleaner focus of our proposed approach.(Best viewed zoomed)

CNN feature extractor and CUP indicate the effectiveness
of convolutional operations due to their intrinsic locality
characteristic. The use of skip connections is well studied
in [19], [22], we attached an additional Temporal feature
Skip Connection(TSC) to the decoder path, see Tab. II(7) to
(6), it is suggested that the TSC is beneficial in constructing
the segmentation map, which further supports the significance
of temporal features in the neural network. Grid search over
snippet sizes t = 3, 5, 7, 9, 11&13 revealed the optimal,
application-specific size t = 5 both for training and testing.

D. Transfer learning

We also explore the transferability of each component in
Fig. 1, CNN(a), TCM(b), Swin Transformer(c), Decoder(d),
Segmentation head(e), shown in Tab. III, a* indicates weights
are pre-trained on ImageNet from [22], otherwise are trained

TABLE II
ABLATION STUDY ON IMPACTS OF DIFFERENT ENCODER-DECODER

COMBINATIONS TO PERFORMANCES.

Encoder Decoder DSC HD95 #Params

(1)Swin Swin 0.8477 10.2897 27.1M

(2)CNN+Swin Swin 0.8483 9.5757 39.1M

(3)CNN+Swin Swin+CUP 0.8562 8.0544 43.8M

(4)CNN+TCM + Swin Swin+CUP 0.8634 6.8941 49.1M

(5)CNN+Swin CUP 0.8592 8.2744 43.2M

(6)CNN+TCM+Swin CUP 0.8899 5.1234 48.4M

(7)S/A+TSC S/A 0.8986 6.2365 48.9M

from scratch. We adopt a standard transfer learning approach,
fine-tuning, to investigate the generalisation ability of each
part in domain shift from VFSS2022 Part 1 to Part 2 and
vice versa. It is suggested that fine-tuning the later part after
feature extraction is beneficial in domain adaption in both
ways, noting row(3) and row(7). It is also shown our model’s
ability to generalise in part 1/part 2 when the model trains
the entire dataset and can even gain performance boosts(DSC
89.94%) in part 1, see row(10) and row(11).

IV. CONCLUSION

We presented an end-to-end framework that exploits multi-
frame inputs to segment VFSS2022 data with great success
leading to performance gains and model size reduction.
Our proposed neural network merits local and global spatial
context and leveraged temporal features. Each of the modules
can be fine-tuned or exchanged. The final framework achieves
superior performance over other designs and provides a new,
alternative pipeline for medical video segmentation tasks.

ACKNOWLEDGEMENTS. Data usage and publication are granted by
UoB Ethics Approval REF: 11277. We thank project investigators Ian Swaine,
Salma Ayis, Aoife Stone-Ghariani, Dharinee Hansjee, Stefan T Kulnik, Peter
Kyberd, Elizabeth Lloyd-Dehler, William Oliff, Lydia Morgan and Russel
Walker and thank Yuri Lewyckyj and Victor Perez for their annotations.
Project: CTAR-SwiFt; Funder: NIHR; Grant: PB-PG-1217-20005.

TABLE III
TRANSFERABILITY TEST ON EACH PART OF THE MODEL.

Pretrained Training Frozen Fine-tuning DSC HD95
dataset dataset weights weights

(1)Part1 Part2 N/A All 0.7618 15.1496

(2)Part1 Part2 a b+c+d+e 0.7979 4.9123

(3)Part1 Part2 a* b+c+d+e 0.8437 4.6512

(4)Part1 Part2 a + b c+d+e 0.7295 16.4245

(5)Part1 Part2 a+b+c d+e 0.7030 18.1302

(6)Part1 Part2 a*+b+c* d+e 0.8171 5.2039

(7)Part2 Part1 a* b+c+d+e 0.8920 4.1984

(8)Part2 Part1 a* b+c*+d+e 0.8850 6.0604

(9)Part1+2 Part1 a* b+c*+d+e 0.8994 3.8415

(10)Part1+2 Part2 a* b+c*+d+e 0.8094 4.6473
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