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Privacy Preservation in Kubernetes-based Federated
Learning: A Networking Approach

Abstract—Federated Learning (FL) is a distributed Machine
Learning paradigm that enables multiple clients to collabo-
ratively train a model under the control of a central server
while preserving data locally in heterogeneous edge devices. To
facilitate scalable deployment of FL systems, cloud computing
and container-based approaches such as Kubernetes (K8s) have
been recently proposed. K8s enables container orchestration
for cloud and edge applications while reducing workload man-
agement complexity in FL ecosystems. Nonetheless, K8s can
violate fundamental FL privacy principles, e.g., the inherent flat
networking approach in K8s can potentially allow FL clients
to access other client or domain resources. The latter poses
an open research problem and gap in the literature because
serious privacy risks can arise from attackers gaining access to
any client in the FL setup. To address this problem, this paper
presents a networking approach via network isolation at the link
layer level, and authentication and data packet encryption at the
network layer level. The former allows to create secure resource
sharing, and the latter is used to protect in-transit data. For this
purpose, we use a K8s networking operator and a secure network
protocol suite. The above combination facilitates on-demand
link-layer connectivity, per-link data source authentication, and
confidentiality between FL actors. We tested our approach on a
network testbed composed of different geo-located nodes where
FL clients are deployed. Our promising results showcase the
feasibility of the solution for privacy preservation at the network
level in K8s-based FL.

Index Terms—Federated Learning, Kubernetes, Networking,
Privacy Preservation, Scalability.

I. INTRODUCTION

Federated Learning (FL) is a popular Machine Learning
(ML) technique for training models on decentralised, sensitive
data while preserving data privacy [1]. This paradigm allows
local nodes to collaboratively train a shared model and use it
for a given task (e.g., classification or regression) while keep-
ing the data locally without sharing their direct information
with the FL server [2].

A traditional centralised FL architecture describes coopera-
tion between a central server and heterogeneous clients, aiming
to reduce the loss and increase the model prediction accu-
racy over non-independent and identically distributed (non-
iid) data [3]. A typical example of a centralised FL setup is
depicted in Fig. 1a, where individual hospitals (e.g., A and B)
benefit from the datasets of multiple non-affiliated clients (e.g.,
A1 and AN in the case of Hospital B) without centralising the
data in one place to tackle privacy concerns [4]. A central
server hospital updates a global model with only training
results (i.e., parameters) which are aggregated and exchanged
at a certain frequency within the clients. We emulate this
scenario and treat this use case as a running example.

Hospital A
A1 AN....

Central server hospital 

Global model

Hospital B 
B1 BN....

(a) Centralised FL scenario

Kubernetes (K8s) cluster

Hospital A Hospital B

Central
server

(b) FL with Kubernetes

Fig. 1: Running example of Kubernetes-based FL

Due to the heterogeneous nature of multiple decentralised
clients, it is challenging to implement and deploy FL systems
over various clients that are spanned in different geographical
locations [5]. Adopting cloud computing technologies such as
containers and Kubernetes (K8s) is a promising approach to
increase computation elasticity and efficiency when deploying
distributed ML architectures, such as FL, at both near the
edge and data centres [6], [7], [8], [9]. A container is a
standalone, lightweight, executable software package, which
includes the application code and all the necessary data for its
execution [10]. Packaging FL tasks with containers can reduce
the complexity of managing the underlying technology stack
for users [7]. K8s is a container workload orchestration system
for simplifying and automating application deployment, scal-
ing, migration, and management across distributed nodes [5],
[7]. However, given the cloud native methodology followed by
K8s, a flat networking approach is imposed where all pods (the
minimal unit of deployment in K8s, composed of one or more
containers belonging to the same network) can communicate
with each other [11].

Nevertheless, the above-mentioned approach contradicts FL
privacy principles, namely, zero knowledge, and data reach-
ability and accessibility in Secure Multiparty Computation
(SMC) [3], [4]. These principles aim to describe that data
should be only accessed, consumed and processed by its pro-
ducer in order to tackle privacy risks to personal data leakage,
misuse, and abuse [9], [2]. This is in line with the regulations
in collecting and managing data across heterogeneous sources
described in the EU/UK General Data Protection Regulation
(GDPR) [2]. In our running example, in Fig. 1b, by deploying
FL using K8s for scalability and workload management, a
flat network is created allowing the reachability of resources
between hospitals which violates FL privacy concerns.

The main contribution of this paper lies in tackling the pre-
viously described privacy-preserving challenges in K8s-based
FL from a networking perspective. We propose a networking



and data-link management approach. Our design employs
network isolation to ensure security control in resource sharing
communication [12], and authentication and packet encryption
to address privacy risks native to K8s flat networking. From a
technical, implementation and testing point, our contributions
can be summarised as:

1) Network isolation & packet authentication and en-
cryption in K8s-based FL: We use the Link Layer
Secure connectivity for Microservice platforms (L2S-M)
operator [11] and the Internet Protocol Security (IPsec)
protocol suite [13] for privacy-preserving in FL deployed
using K8s. This tries to tackle privacy from a data-in-
transit perspective different to common FL application-
level approaches like secure aggregation combined with
HTTPS [3], [2]. Communication between clients and
the server is also critical in FL processes, introducing
another vulnerability surface [1].

2) Proof-of-concept implementation environment: We
deploy a two-site implementation in different geograph-
ical locations, along with multiple collaborative clients
with a task from the medical domain using the Medical
MNIST image classification dataset [14].

3) Network and ML performance evaluation: We study
network isolation, throughput and added overheads on
the network side, and classification accuracy and loss on
the ML side. To study scalability merits, we performed
experiments with 10, 30 and 50 clients distributed in the
two geographical locations. Results are promising, ex-
hibiting good feasibility properties empowering privacy
preservation in an FL deployment facilitated by K8s.

The rest of the document is organised as follows, Section II
shows concepts needed to understand the present document
and work related to this paper. Section III describes the
proposed approach for network isolation and data packets
encryption in FL. The experimentation, implementation, and
discussion are presented in Section IV. Finally, the conclusions
and future work are presented in Section V.

II. BACKGROUND AND RELATED WORK

A. Privacy Preservation in FL

Privacy is one of the essential properties of FL [3]. In FL,
no private data is shared among the clients and the central
server [6]. Nonetheless, even though data is not shared, ML
models trained on personal data and transferred over the
network have been shown to leak information about users that
can be exploited in privacy attacks [9], [2]. Therefore, privacy
preservation and security for FL is an ongoing topic in the
research community [3], [4].

Privacy preservation in FL is commonly addressed from an
application point of view. For example, secure aggregation,
differential privacy, and clustering are used to mitigate data
and model poisoning, inference, and backdoor attacks, among
other privacy threats [4], [3], [15]. However, securing the
network and in-transit data is an essential ingredient to allow
privacy preservation in an FL setup. Only a few works in the

literature have focused their efforts on investigating network-
level risks and countermeasures in FL [1]. In the present
paper, a networking approach is proposed to target privacy
preservation in K8s-based FL.

B. K8s-based ML and FL

K8s is an open-source solution for automating the deploy-
ment, scaling, and management of workloads of container-
ised applications [9]. K8s can simplify the deployment and
maintenance of applications and compute loads, especially the
training and hosting of ML models [16]. Different works have
demonstrated the benefits of using containerised approaches to
deploy ML pipelines. For example, the authors of [7] propose
a flexible container-based architecture for scalable ML setups.
The focus of this architecture is to reduce the barriers to
the development and deployment of the entire ML life-cycle.
Similarly, Wan et al. [16] propose a K8s-based platform for
online ML targeting IoT and fog computing scenarios.

K8s have also started to be a choice for deploying FL sys-
tems given their distributed and scalable nature. For example,
Kim et al. [5] present KubeFL to help the deployment of
the FL over multiple clients via K8s. The authors perform
measurement-based analysis of the implementation on edge
devices such as NVIDIA Jetson TX2 under various practical
configurations. Likewise, in [8], the authors propose the design
and development of server-client cooperation framework for
FL using container-related technologies. However, none of
these works have addressed the flat networking approach of the
cloud-native K8s nor the security and privacy aspects required
for FL deployment which is targeted in this paper.

C. Implications of K8s Networking

Notwithstanding the advantages that K8s brings to FL
environments in the cloud and edge scenarios, the literature
has barely addressed the privacy concerns that these solutions
could introduce in production environments. The most relevant
issue comes from one of the multiple abstraction layers
that K8s uses to simplify the development and deployment
of containerised workloads, i.e., its networking model. K8s
imposes a set of restrictions that any third-party networking
solutions (developed as networking plugins for K8s) must
follow. It requires that pods can communicate with all other
pods on any K8s node without Network Address Translation
(NAT) [17]. In consequence, to preserve this model, popular
networking plugins like Flannel1 and Calico2 implement flat-
networking, with all pods being able to reach each other at
the IP layer, regardless of their location in the cluster.

This flat-networking model could adversely affect the pri-
vacy of the data shared within a cluster since all containers
can directly see each other. Potentially, malicious elements
could communicate with genuine FL clients holding sensitive
information, which could lead to privacy-related attacks. One
way to mitigate this risk is to create virtual networks that only
certain clients are able to attach to, enabling communication

1Flannel: https://github.com/flannel-io/flannel
2Calico: https://www.tigera.io/project-calico



only between pods connected to the same virtual network.
However, K8s does not natively support this behaviour.

Gonzalez et al. in [11] attempted to solve this problem
by enabling virtual networking in K8s clusters, allowing to
isolate containerised workloads. The authors presented an
open-source solution, the L2S-M operator 3, that allows the
creation of link-layer virtual networks in such a way that the
containers attached to them are located in the same broadcast
domain regardless of their location in the cluster. This enables
building L2 container network administrative domains that
containers use to communicate with each other. Although ini-
tially designed for Small Unmanned Aerial Vehicle scenarios,
this approach can be used in cloud and edge environments to
provide the desired behaviour in FL scenarios.

III. A NETWORKING APPROACH FOR PRIVACY
PRESERVATION IN KUBERNETES-BASED FL

Data transmission between clients and server are crucial in
FL. In this distributed ML approach, a global model is learned
in rounds with contributions from multiple networked parties
and orchestrated by a central node. Therefore, the network
represents another surface of vulnerability. This can be ex-
acerbated when enabling multiple access routes to resources
in the system between all nodes, which is natively allowed
in K8s. In this work, we propose the establishment of link-
layer connectivity among the different components of an FL
solution in a K8s deployment to support on-demand network
isolation for privacy preservation. In addition, we also propose
data packet encryption to provide confidentiality to in-transit
data at the network level for privacy augmentation. Next, we
discuss the aforementioned aspects in detail.

A. Network isolation

To preserve user privacy and resources in an FL setup
deployed in a K8s cluster, we propose to create logically
isolated network partitions overlaid on top of a common
physical network infrastructure. The main idea is that each
partition is isolated from others by a set of policies defined by
the K8s networking operator, which allows the administrators
to easily create and modify the isolated virtual networks on-
demand at the link layer level. It is important to define the
expected initial isolation level (e.g., per domain or node)
as well as design dynamic isolation mechanisms that can
enforce the isolation level of any given service. We use L2S-
M operator [11] to provide network isolation on an FL setup
deployed in a K8s cluster. In principle, L2S-M allows the
provision of network connectivity as a service by deploying
a data plane that containers can use to establish link-layer
connectivity between the pods. In this case, each pod inside
the cluster will be attached to one or several virtual network(s)
(created beforehand) and exclusively communicate with the
members attached to the same network. This in turn provides
security against malicious pods that could be deployed inside
the cluster. More precisely, such malicious pods will not

3L2S-M: http:/l2sm.io

be able to communicate with the FL pods unless they are
attached to the same administrative domain (virtual network).
We discuss how the isolation is performed in a later subsection.

B. Data packets authentication and encryption

Eavesdrop and replay attacks can occur when an adversary
intercepts network messages, and then fraudulently sniffs, sup-
presses, or replays them to mislead the receiver to carry out the
adversary’s intended activity [4]. Given the networked-system
nature of FL, it is crucial to enable a secure communication
medium for the information exchanged between local clients
and the server on the network layer. For this purpose, we
propose the use of the IPsec [13] framework to ensure secure
communications against attacks that may be launched from
outside the K8s cluster (since the L2 isolation already provides
a security layer against malicious pods within the cluster).
We use the Encapsulating Security Payload (ESP) security
protocol for encryption and integrity protection of the packets.
To establish an IPsec tunnel, we use the Internet Key Exchange
(IKE) protocol. IPsec in Transport Mode is used, preserving
the original IP header. IKE builds the secure tunnels and
ESP provides authentication, integrity, and confidentiality in
communications between the hosts where the FL server and
clients are deployed.

This encryption must be performed between the hosts (i.e.,
the nodes of the K8s cluster) since the IP addresses of the FL
containers can dynamically change, which hinders the direct
implementation of IPSec between FL clients and the server.
This can cause a scalability issue in large K8s clusters since
every node must establish a tunnel between all the members
of a cluster.

C. Proposed Architecture

The proposed architecture for this FL environment is il-
lustrated in Fig. 2. This architecture uses an open-source
K8s network operator (L2S-M) to establish a virtual network
and link-layer connectivity between the FL clients and/or the
server. The network operator requires the deployment of one
virtualised programmable L2 switch in every node of the
cluster. In order to interconnect these L2 switches in the
cluster, the proposed architecture relies on IP tunneling tech-
niques to build point-to-point links using Virtual Extensible
Local Area Networks (VXLANs) [18]. Each VXLAN is first
built in the host and afterward, attached inside the virtualised
L2 switch. These VXLANS are only built between some of
the nodes of the cluster rather than a mesh architecture to
provide more flexibility to accommodate the necessities of
different architectures and/or services. The creation of these
links between the switches results in a programmable link-
layer overlay, allowing traffic to be sent as if all nodes were
located in the same Local Area Network (LAN), i.e., the same
broadcast domain.

The network operator’s control logic dictates how the pods
are attached to the switch by listening to the API events of K8s.
Inside each pod, a new interface will be available to be used
for this communication, while leaving the default K8s interface

http:/l2sm.io
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Fig. 2: Proposed FL architecture with isolated L2 connectivity, and L3 encryption in a K8s cluster.

intact (i.e., the interface provided by the networking plugin
used in the cluster). In consequence, the solution extends the
K8s networking without sacrificing its main advantages and
abstraction layers.

Since each switch can be programmed to support the use of
Virtual Local Area Networks (VLANs) tags, our model uses
this technique to perform network isolation. Each L2 switch
port assigns a different VLAN tag to specific ports based on
the allowed links, creating separated container networks. These
tags will be aggregated to the Ethernet frames generated by
the pods, and the receiving switches will only forward those
that belong to the same tag of each port (instead of performing
a broadcast), isolating members belonging to different virtual
networks. For example, it will never allow a member of one
zone of the clusters to reach another portion of the cluster.

Thanks to the use of this programmable overlay, it is not
necessary to introduce IPsec between all members of the
cluster, thereby mitigating the scalability problem described
in the previous subsection for traffic encryption. As traffic
from the pods is only going to traverse the VXLAN tunnels
built between neighbours, these links are the only ones that
need to be secured. Therefore, it is not mandatory to integrate
IPsec between all nodes, but only between the nodes that are
connected by a VXLAN. This in turn not only reduces the
number of tunnels needed to be established in the cluster but
also the complexity of aggregating new nodes to a cluster that
can enable building new tunnels for securing FL data.

IV. CASE STUDY

We demonstrate the proposed architecture feasibility with a
case study prototype implementation for image classification
using medical images in an FL K8s setup.

A. Datasets, models, and tasks

We use the image classification Medical MNIST [14] dataset
consisting of 64 × 64 sized grayscale images. The dataset con-
tains 58954 images of six classes (i.e., types): abdomen Com-
puted Tomography (CT); breast magnetic resonance imaging

Hand BreastMRI CXRChestCT AbdomenCTHeadCT

Fig. 3: Medical MNIST dataset [14]

(MRI); chest X-Ray; chest CT; hand X-Ray; and head CT.
Figure 3 shows the different classes. The dataset is randomly
split into 80% training and 20% test split. We use Latent
Dirichlet Allocation (LDA) to generate a non-iid version of the
dataset. LDA is a commonly used technique [3] for emulating
real-world FL scenarios where each client owns different data.

We employ a simple convolutional neural network (CNN)
comprised of 4 convolutional layers with 32, 64, 128 and 256
feature maps respectively and a kernel size of 3, followed
by a 2x2 max pooling after each layer. For the classification,
two fully connected layers of 256 and 128 neurons were
used, respectively. In order to build the FL pipeline, the
Flower4 framework was used and deployed in a K8s cluster.
Flower enables development and evaluation of FL systems
adopted by major research organisations across academia and
industry[15]. Flower allows the federation of any workload
while being agnostic to the underlying ML framework (e.g.,
TensorFlow or PyTorch) and programming language (e.g.,
Python or C++) [15]. We use the popular FedAVG algo-
rithm [3] for model aggregation.

B. Scenarios and experiments definition

We demonstrate the viability of our proposed approach in
different scenarios based on the running example of Fig. 1.
Two hospitals with multiple user clients are part of an FL
setup. First, we tested an FL setup using a commonly used
networking plugin in K8s, namely Flannel, to corroborate
the claims of the flat networking approach of K8s. Then, we
conducted testing with data packet encryption using IPsec.

4Flower: https://flower.dev/

https://flower.dev/


Finally, we deploy a complete implementation solution using
K8s, L2S-M for network isolation, and IPsec for data packet
encryption. Two different experiments were performed using
these scenarios. They are described next.

1) Experiment 1– network isolation: We compare connec-
tivity across different setups in terms of network isolation
using an instance of the example application containing one
central server and two sets of five independent clients deployed
in a K8s cluster. Each client or server corresponds to a single
independent pod detailed in Sec. IV-C.

All deployed pods exchange ICMP echo packets using
GNU’s ping implementation through the default K8s container
network interface. The latter is configured by the Flannel
plugin in a standard K8s cluster installation. After changing
to the interface configured with L2S-M, we repeat the same
process. Based on the received ICMP echo reply we can
determine two distinct connectivity matrices and compare
network isolation back by the solution approach to the standard
K8s alternative.

2) Experiment 2– FL and system performance analysis: We
explore the model-related qualitative impact of our approach
on FL processes including the predictions accuracy and corre-
sponding loss or penalties after bad predictions, converge time,
communication throughput between the server and clients,
and client scalability. We ran multiple FL experiments us-
ing the different system configurations previously mentioned:
Vanilla K8s, K8s with data-packet encryption, and a complete
configuration of K8s with network isolation and data-packet
encryption. To test scalability, we use a setup of 10, 30,
and 50 clients that are trained for 20 FL rounds using the
aforementioned different system configurations.

C. Proof-of-concept implementation

We present a K8s-based FL implementation over an actual
testbed setup shown in Fig. 4. The testbed for running all the
experiments is managed by a private OpenStack5 instance. The
physical locations are scattered in two different geo-locations
to replicate the scenario of the running example. A K8s cluster,
consisting of one controller node and three working nodes was
deployed. To reduce the need for resources, the controller node
also runs the FL server, as part of the domain belonging to the
shared central service (using the 10.244.0.0/24 network), and
has 15vCPUs, 25GB of RAM and 100GB of disk space. The
worker nodes have 15vCPUs, 15GB of RAM and 100GB of
storage. Worker node 1 is part of the Hospital A administrative
domain, that uses the 10.244.1.0/24 network. Worker nodes 2
and 3 are part of Hospital B administrative domain, which
is comprised by networks 10.244.2.0/24 and 10.244.3.0/24
respectively. Both domains belong to the same K8s cluster as
a FL deployment. Various FL clients can run in the different
worker nodes depending on the experiment performed. To
test our approach, the networking is managed by the L2S-
M operator and IPsec is used in transport mode to encrypt the
communications between workers and the server.

5Openstack: https://www.openstack.org/
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1 - ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
2 ✔ - ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
3 ✔ ✔ - ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
4 ✔ ✔ ✔ - ✔ ✔ ✔ ✔ ✔ ✔ ✔
5 ✔ ✔ ✔ ✔ - ✔ ✔ ✔ ✔ ✔ ✔
S ✔ ✔ ✔ ✔ ✔ - ✔ ✔ ✔ ✔
6 ✔ ✔ ✔ ✔ ✔ ✔ - ✔ ✔ ✔ ✔
7 ✔ ✔ ✔ ✔ ✔ ✔ ✔ - ✔ ✔ ✔
8 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ - ✔ ✔
9 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ - ✔
10 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ -
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(a) Flat network imposed by K8s.
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3 ✔ ✔ - ✔ ✔ ✔ ✖ ✖ ✖ ✖ ✖
4 ✔ ✔ ✔ - ✔ ✔ ✖ ✖ ✖ ✖ ✖
5 ✔ ✔ ✔ ✔ - ✔ ✖ ✖ ✖ ✖ ✖
S ✔ ✔ ✔ ✔ ✔ - ✔ ✔ ✔ ✔ ✔
6 ✖ ✖ ✖ ✖ ✖ ✔ - ✔ ✔ ✔ ✔
7 ✖ ✖ ✖ ✖ ✖ ✔ ✔ - ✔ ✔ ✔
8 ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✔ - ✔ ✔
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(b) Isolated network via L2S-M.

Fig. 5: Connectivity matrix for different system configurations.
Clients enumerated from 1 to 10. Server identified by S.

D. Evaluation results

1) Experiment 1 – network isolation: Connectivity ma-
trices in Fig. 5 portray flat networking in a standard K8s
deployment with Flannel (or similar container networking
plugins) interconnecting all deployed pods regardless of the
assigned network. This means that each pod in this setup can
communicate not only with the central server and the other
pods belonging to the same domain but also with any other
domain attached to the cluster. During a security breach, access
to different domains can potentially widen the attack surface.

On the contrary, the L2S-M implementation effectively
creates separated networks that cannot communicate with each
other. The separation causes packets across domains to be
simply isolated at the network level. The only pod that can
communicate with all other ones is the central server in com-
pliance with FL standards, noting that the server cannot use its
internal IP stack to re-route packets to preserve isolation. Since
the separation is enforced at the network level, this result could
be extrapolated to an arbitrary number of clients per domain.

2) Experiment 2 – FL and system performance analysis:
Different dimensions were analysed in this experiment in terms
of FL performance. These dimensions are:

• Model accuracy: In this image classification task, the
accuracy of whether an image is labelled in the correct
class or not, is the main metric for analysing the results of
the learning task. Using the system’s different configura-
tions mentioned in Sec. IV-B, an evaluation for different
numbers of FL clients was performed. Figure 6 shows
the results: 6a, 6b, 6c, depict the accuracy for 10, 30 and

https://www.openstack.org/
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Fig. 6: Accuracy of the results for (a) 10, (b) 30, and (c) 50 clients in the different system configurations.
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Fig. 7: Loss of the model predictions for (a) 10, (b) 30, and (c) 50 clients in the different system configurations.

50 clients, respectively in this FL setup. As exhibited,
the results are congruent in a range of 99.5 ∓ 0.1 when
converged for all the configurations and different numbers
of clients.

• Model loss: Similar to the previous dimension, analysing
the loss of the model predictions is a key metric to
evaluate if an ML model has learned the desired features.
The loss represents a penalty when a classification is
incorrect. The smaller the loss the better. Accordingly,
the analysis was performed using different scenarios and
numbers of clients. The results of the experimentation are
shown in Fig. 7. The loss reduced from a starting loss of
0.16∓0.02 in episode 1 to 0.03∓0.01 for every scenario
and system configuration.

• Time to converge: Another important aspect when de-
veloping and deploying FL systems is the execution time
until convergence. For all the experiments, the execution
time was measured during 20 FL rounds using the Flower
server statistics. The results are shown in Table I. The
execution times are incrementally ranging from 11479.41
seconds (s) for a run of 10 clients in a K8s-only configu-
ration to 61168.84s for a run of 50 clients in a complete
configuration of K8s, IPsec and L2S-M.

• Throughput: As mentioned along this document, com-
munications play a crucial role in FL systems. For this
reason, we analyse if the proposed approach introduces
any limitations regarding throughput measured in the
central server. Fig. 8a, 8b, and 8c show the transmitted
bytes in runs of 10, 30 and 50 clients using the different
system configurations. The rates are similar for all the
schemes with sporadic peaks. The average of transmitted
bytes for 10 clients using the complete approach (i.e, K8s,
IPsec and L2S-M) is 56713.291 bytes, for 30 clients is
82961.24 bytes, and for 50 is 96523.54 bytes.

TABLE I: Execution times in Seconds (s) using the proposed
approach with different systems configurations: Only K8s, K8s
and IPsec, K8s, IPsec and L2S-M.

System configurations
Clients K8s K8s and IPsec K8s, IPsec and

L2S-M
10 11479.41s 11587.16s 11672.74s
30 41933.88s 42090.24s 42118.59s
50 60905.23s 61085.59s 61168.84s

E. Discussion

The results from the experiments conducted showed the
feasibility of the approach for privacy preservation in K8s-
based FL. By combining L2S-M and IPsec, is possible to
enable network isolation on demand and encrypt data packets
in communications between the different FL actors. Isolation is
created on demand targeting only intended FL clients. In the
proposed approach, isolation can be defined by the domain,
location, or host of the FL client. Experiment 1 showcased
this capability. The results describe how, using our approach,
clients can have only access to resources within the same
hospital of the running example. Otherwise, given the flat
networking approach of K8s, they can reach resources from
everywhere in the cluster (i.e., Hospital A, Hospital B, and the
central server). Consequently, if one domain is compromised,
an additional security layer will be in place, working to prevent
eventual attackers from interfering with the other domains.

Experiment 2 focused on analysing the costs incurred in
terms of performance while adding these capabilities to FL
systems deployed using K8s. The analysed dimensions were
model accuracy and loss, time to converge, and throughput
in different networking scenarios with different numbers of
clients for scalability purposes. There were no significant
effects when using the proposed approach on system perfor-
mance.
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Fig. 8: Throughput for (a) 10, (b) 30, and (c) 50 clients in the different system configurations.

V. CONCLUSION AND FUTURE DIRECTIONS

FL is one of the most promising ML approaches to col-
laborative training and learning ML models in a privacy-
preserving fashion. K8s can be exploited for scalable and
manageable FL. However, some challenges arise when using
K8s with its flat networking approach, which can present a
risk for privacy preservation in FL. In order to guarantee the
privacy of user data, it is crucial to leverage privacy-preserving
mechanisms in every vulnerability surface. In this paper, we
focused on providing privacy-augmentation approaches at the
network level in K8s-based FL.

We propose the creation of on-demand link layer connec-
tivity between FL actors for the establishment and provision-
ing of network isolation. Using the L2S-M controller, this
approach reassures that only targeted clients have access to
local resources in this cloud-native environment. Additionally,
we propose the use of data-packets encryption to provide
data source authentication and confidentiality. This is enabled
by the use of the IPsec protocol suite to encrypt in-transit
data at the network level. We have tested our approach in
different scenarios studying the feasibility, scalability and
accuracy of the proposed architecture. Our promising results
show that the approach does not affect the FL system in terms
of performance (i.e., ML accuracy and loss) nor limits the
throughput between clients and the server. There is a small
overhead when using the solution of around 2-3% of training
time, although, this can be neglected considering the benefits
of privacy-preservation of the approach.

It is envisioned that distributed learning approaches such as
FL will be key enablers for 6G networks. Our future research
directions will focus on scalable, sustainable, and trustworthy
FL for 6G. We plan to leverage Differential Privacy (DP)
to provide further privacy guarantees to participating clients
in containerised environments. DP noise can be introduced
at different stages of the FL system and at the K8s level.
Furthermore, we have focused our efforts on intra-cluster
communication, future work will include privacy-preserving
implementations for inter-cluster and multi-tenant communi-
cations towards a secure, scalable grid-computing approach.
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