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Fold-Transversal Clifford Gates for Quantum Codes
Nikolas P. Breuckmann1 and Simon Burton2
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2Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland

We generalize the concept of fold-
ing from surface codes to CSS codes
by considering certain dualities within
them. In particular, this gives a gen-
eral method to implement logical oper-
ations in suitable LDPC quantum codes
using transversal gates and qubit per-
mutations only.
To demonstrate our approach, we

specifically consider a [[30, 8, 3]] hyper-
bolic quantum code called Bring’s code.
Further, we show that by restricting the
logical subspace of Bring’s code to four
qubits, we can obtain the full Clifford
group on that subspace.

1 Introduction

We show how symmetries of CSS quantum
codes can be utilized to implement encoded
Clifford gates, using only transversal gates
and qubit permutations. Our scheme is not
only trivially fault-tolerant, but it also incurs
no time-overhead and does not require any ad-
ditional ancilla qubits. It can be understood
as a generalization of the concept of folding
surface codes due to Moussa [1], see Figure 1.

Folding of topological quantum codes is
part of the folklore relating surface codes and
color codes: folded surface codes give color
codes, or alternatively, unfolded color codes
give surface codes [2].

We generalize the concept of folding to
arbitrary CSS codes by introducing fold-
transversal gates. While our approach works
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for any sufficiently symmetric CSS code, we
believe it is particularly suited to imple-
ment logical gates in low-density parity-check
(LDPC) quantum codes. These codes have
recently attracted a lot of attention, see [3]
for a recent review. This is partially due to
the fact that constant overhead fault-tolerant
quantum computation can be realized with
these codes [4, 5]. Recent developments have
shown that it is possible to construct high-
performance LDPC quantum codes from clas-
sical codes [6, 7, 8]. In particular, [8] gave
a construction that was conjectured to have
optimal asymptotic parameter scaling, which
was subsequently proven in [9].

While the construction of LDPC quantum
codes has made big advances, it is still un-
clear how to best manipulate the encoded in-
formation. The constant overhead in [4] was
achieved by implementing gates via ancillary
states. However, in order to keep the qubit
overhead constant in their proof, the imple-
mentation of gates had to be serialized, mak-
ing the scheme less practical.

For specific families of LDPC quantum
codes, a few techniques to fault-tolerantly im-
plement logical gates have been introduced.
For hyperbolic surface codes, Breuckmann
et al. considered code deformations in order to
perform CNOT-gates [10]. Further, Lavasani–
Barkeshli discussed the implementation of
other Clifford gates on hyperbolic surface
codes by using ancillary states [11]. Krishna–
Poulin [12] considered generalizations of code
deformation techniques of the surface code
to hypergraph product codes in order to im-
plement Clifford gates. On the other hand,
Burton–Browne [13] showed that it is not pos-
sible to obtain transversal logical gates outside
of the Clifford group using certain hypergraph
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(i) Moussa’s original construction
on a surface code. The ZX-duality
τ is reflecting along a diagonal.

(ii) The Steane code is self-dual,
and so the identity permutation
serves as a ZX-duality.

(iii) On a {5, 5}-tiled hyperbolic
surface, a ZX-duality is shown re-
flecting along a geodesic.

Figure 1: How ZX-dualities define folds of quantum codes. Qubits are shown as grey circles. The green/blue
faces correspond to the Z- and X-checks. The ZX-duality τ maps between the two types of checks. The
codes (i) and (iii) are built from the homology of a tiling (cellulation) shown in black.

product codes.
More recently, Cohen et al. generalized

lattice surgery between two logical operators
of an arbitrary LDPC quantum code [14].
The surgery is facilitated by an ancillary sur-
face code that grows with the code distance.
Hence, for codes with large distance, it is nec-
essary to serialize the quantum circuit to avoid
a large overhead, as in [4].

In comparison, the logical gates constructed
in our work do not incur any qubit overhead,
as they are realized within the quantum code
directly, avoiding the need for ancilla qubits.
We also avoid any time overhead, as logical
gates are implemented by a transversal cir-
cuit of single- and two-qubit gates, which can
be applied in parallel. This also means that
our implementation is compatible with any de-
coding scheme, as it can be executed between
rounds of error correction.

We explicitly construct fault transversal
gates for a certain [[30, 8, 3]] hyperbolic sur-
face code that we call Bring’s code. We show
that we can generate a subgroup of the Clif-
ford group C8 using transversal circuits. By
adding a single logical entangling gate, which
can be obtained using other techniques, we
generate the full Clifford group C8. Alterna-
tively, when we restrict the logical subspace
to four qubits, we can generate all of C4, using
transversal circuits only.

In this work we do not consider any con-
straints on the locality of qubit interactions.
In particular, we make use of qubit per-
mutations, which in principle, can map any
qubit to any other qubit. Thus, in or-
der to take full advantage of our construc-
tion, a potential hardware architecture ide-
ally supports non-local interactions between
qubits. Fortunately, there have been several
advances in experimental setups that can re-
alize such unconstrained connectivity. Lin-
ear optical quantum computation, for exam-
ple, is naturally flexible in terms of connec-
tivity [15, 16, 17]. The Moussa folding con-
struction is used by the fusion-based photonic
scheme proposed in [18]. In a similar vain,
modular architectures, in which modules are
interlinked by a photonic interface, allow for
non-local connectivity [19, 20, 21]. Other ap-
proaches to quantum computation, such as
mobile qubits [22] or qubits coupled to a com-
mon cavity mode [23, 24], even allow for fast
any-to-any connectivity between qubits. In
particular, [25] proposes an architecture based
on Rydberg atoms, or alternatively, ion-traps,
in which it is possible to have fast, long-
range interactions between hundreds of phys-
ical qubits.

Bring’s code is small enough that this
scheme could be implemented on NISQ hard-
ware. Together with the fold-transversal gates
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it provides a simple set-up in which fault-
tolerant Clifford gates could be demonstrated.

In Section 2 we introduce the theory of fold-
transversal gates. When discussing stabilizer
codes, we largely employ the language of ho-
mology which is introduced in Section 2.1. In
Section 2.2 we give the definition of a ZX-
duality of a homological code, and show how
the symmetries of the code interact with the
ZX-dualities. We then apply this to a class
of highly symmetric two-dimensional hyper-
bolic surface codes in Section 2.3. These
codes all have ZX-dualities, which are de-
scribed in Theorem 5. Armed with this the-
ory of ZX-dualities, in Section 2.4 we char-
acterize when these dualities give rise to fold-
transversal Clifford gates on the logical sub-
space of the code. In Section 3 we discuss the
example of Bring’s code and work out in de-
tail the fold-transversal gates and their action
on the logical subspace.

2 Folding along a ZX-duality

2.1 CSS quantum codes

A stabilizer code is defined by a subgroup S
of the Pauli group Pn which is abelian and
does not contain −I. We call the elements of
some distinguished set of generators the (sta-
bilizer) checks of the stabilizer code. A stabi-
lizer code is a Calderbank-Shor-Steane (CSS)
code if there exists a generating set of S such
that each generator acts as either Pauli-X or
Pauli-Z on all qubits in its support. Hence, we
can define a CSS code C in terms of two bi-
nary matrices HX ∈ FrX×n

2 and HZ ∈ FrZ×n
2

where each row corresponds to the support in-
dication vector of a Pauli-X or Pauli-Z gener-
ator, respectively. Note we do not require HX

or HZ to have full rank. As X-type and Z-
type Pauli operators commute if and only if
the overlap of their supports contains an even
number of qubits we must have

HXH
>
Z = 0. (1)

In the language of homology, a CSS code C
is equivalent to a chain complex over the field

F2 = Z/2:

C = {FrZ
2

H>
Z−−→ Fn2

HX−−→ FrX
2 }.

We can think of H>Z and HX as boundary op-
erators ∂2 and ∂1, respectively:

C2 C1 C0
∂2 ∂1

where C2 = FrZ
2 , C1 = Fn2 and C0 = FrX

2 . The
elements of Ci are called i-chains. Note that
the space of i-chains comes with a natural ba-
sis due to the construction of Ci as a free vec-
tor space on a basis. The fact that “the bound-
ary of a boundary is zero”, i.e. ∂1 ∂2 = 0, is
guaranteed by Equation (1). The group gener-
ated by the Z-type stabilizer operators SZ cor-
responds to boundaries B1 = im ∂2 and the Z-
type Pauli-operators normalizing the X-type
stabilizer operators N(SX)Z corresponds to
cycles Z1 = ker ∂1. Similarly, SX andN(SZ)X
correspond to coboundaries B1 = im δ0 and
cocycles Z1 = ker δ1, respectively, where δ0 =
∂>1 = H>X and δ1 = ∂>2 = HZ . The Z-type
logical operators of the code are found as cy-
cles modulo boundaries, which is the (first)
homology of the code, H1 := Z1/B2. Dually,
theX-type logical operators are cocycles mod-
ulo coboundaries. This is the (first) cohomol-
ogy of the code, H1 := Z1/B1. A (co)cycle
that is not trivial modulo a (co)boundary is
called an essential (co)cycle.

2.2 ZX-Dualities

Given a CSS Code C = (HZ , HX), the dual
CSS code is

C> = {FrX
2

H>
X−−→ Fn2

HZ−−→ FrZ
2 }.

A self-dual CSS code C has C = C>.

An isomorphism of CSS codes σ : C → C ′ is
a triple of permutation matrices (σZ , σn, σX)
where

σZ : FrZ
2 → Fr

′
Z

2 ,

σn : Fn2 → Fn
′

2 ,

σX : FrX
2 → Fr

′
X

2 ,
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such that the following diagram commutes:

FrZ
2 Fn2 FrX

2

Fr
′
Z

2 Fn′
2 Fr

′
X

2

σZ

H>
Z

σn

HX

σX

H′>
Z H′

X

The automorphism group of a CSS code C is
the group of self-isomorphisms Aut(C) = {σ :
C → C}.

We are also interested in weaker notions
of isomorphism between codes that allow for
swapping the X- and Z-checks. Given a CSS
code C = (HZ , HX) we define the underly-
ing classical code C/ ∼ZX to be given by the
parity check matrix H as:

C/ ∼ZX :=
{
Fn2

H:=
(
HX
HZ

)
−−−−−−−→ Fr2

}
.

where r := rX + rZ . This classical code re-
members all the checks of the quantum code,
but it has forgotten whether each check is an
X- or Z-type check.

An automorphism of a classical code with
parity check matrix H : Fn2 → Fr2 is a pair of
permutation matrices (σn, σr) where

σn : Fn2 → Fn2 ,
σr : Fr2 → Fr2,

such that the following diagram commutes:

Fn2 Fr2

Fn2 Fr2

σn

H

σr

H

Given a CSS code C = (HZ , HX) we write
the automorphisms of the underlying classical
code C/ ∼ZX as

G := Aut(C/ ∼ZX).

The subgroup of G that fixes the X- and Z-
sectors corresponds precisely to Aut(C) de-
fined above. In more detail, these elements
of G are pairs (σn, σr) where σr has block form

σr =
(
σX 0
0 σZ

)

and then (σZ , σn, σX) is the corresponding au-
tomorphism of C.

The elements τ of G that swap the X- and
Z-sectors are called ZX-dualities. These are
pairs τ = (τn, τr) such that τr has the block
form:

τr =
(

0 τZ
τX 0

)
.

In this case, τ = (τZ , τn, τX) is an isomor-
phism τ : C → C>, and we call such a code
self-ZX-dual. The set of all ZX-dualities of C
we denote by DZX .

Lemma 1. Given a self-ZX-dual CSS
code C, the set of ZX-dualities for C is a
coset of Aut(C) in G:

DZX = τAut(C),

where τ is any choice of a ZX-duality for C.

Proof. It is not hard to see that from a given
ZX-duality τ : C → C> and an isomorphism
σ : C → C we get another ZX-duality from
the composition τσ. Conversely, given an-
other ZX-duality τ ′ = (τ ′n, τ ′r) we find that

τ−1
r τ ′r =

(
0 τZ
τX 0

)−1(
0 τ ′Z
τ ′X 0

)

=
(
τ−1
X τ ′X 0

0 τ−1
Z τ ′Z

)
∈ Aut(C).

Therefore we have shown the identity DZX =
τAut(C).

Corollary 2. For a self-ZX-dual code C, the
number of ZX-dualities equals the size of the
automorphism group of C:

|DZX | = |Aut(C)|.

Given CSS codes C = (HZ , HX) and C ′ =
(H ′Z , H ′X) we can form the direct sum CSS
code:

C ⊕ C ′ := (HZ ⊕H ′Z , HX ⊕H ′X).

Lemma 3. Given a CSS code C with ZX-
duality τ : C → C> then C ⊕ C has a ZX-
duality without any fixed points.
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Proof. We define the ZX-duality given by τ⊕
τ followed by the permutation that swaps the
two summands:

C⊕C τ⊕τ−−→ C>⊕C> swap−−−→ C>⊕C> = (C⊕C)>.

In what follows we will often abuse notation
and write τ(i) for the action of τn on the i-th
basis vector of Fn2 .

2.3 Hyperbolic surface codes
In this section we review the construction of
hyperbolic triangle groups ([26] Section 2.4),
and how they give rise to two dimensional hy-
perbolic surface codes [27, 28]. We then find
the ZX-dualities in this context.

The Poincaré disc model of the hyperbolic
plane is written as D = {z ∈ C : |z| < 1}.
The group of orientation preserving automor-
phisms of D is given by the Möbius transforms,

Aut(D+) =
{
z 7→ az + b

cz + d

∣∣∣ a, b, c, d ∈ R,

ad− bc = 1
}

∼= PSL(2,R).

By also including the reflection given by com-
plex conjugation z 7→ z̄, we generate the full
automorphism group Aut(D).

The Coxeter reflection group for the {5, 5}-
tiling of D has presentation

R5,5 := 〈a, b, c | a2, b2, c2, (ab)5, (ac)2, (bc)5〉.

The generators a, b, c here correspond to re-
flections that destabilize a vertex, edge, or face
respectively. We can summarize this presen-
tation using the Coxeter diagram:

See Figure 2ii. The rotations ab, ac, bc corre-
spond to the rotation around a face, edge or
vertex respectively. The subgroup generated
by these rotations we write as

R+
5,5 = 〈ab, ac, bc〉.

This subgroup has index 2 in R5,5. Next we
choose a normal subgroup Γ of R+

5,5 with fi-
nite index, that acts freely on D. The surface
we are interested in is the compact Riemann
surface

S = D/Γ.

This surface is tiled by triangles, which we
can identify with the elements of the group
G+ := R+

5,5/Γ once we choose a fiducial tile
to act upon. Up to conjugation, the stabilizer
subgroup of a face, edge or vertex is generated
by the rotations ab, ac, bc ∈ G+, respectively.
Therefore, the chain complex of our quantum
code is obtained from the free vector spaces
generated by cosets of these:

C =
{
FrZ

2 := F2[G+/〈ab〉]

H>
Z−−→ Fn2 := F2[G+/〈ac〉]

HX−−→ FrX
2 := F2[G+/〈bc〉]

}
. (2)

Proceeding with the theory developed in
Section 2.2 we now seek the automorphism
group G of the underlying classical code of C.
We can do this using another Coxeter reflec-
tion group R5,4 for the {5, 4}-tiling of D. This
has presentation

R5,4 := 〈d, e, f | d2, e2, f2, (de)5, (df)2, (ef)4〉.

The generators d, e, f here correspond to re-
flections that destabilize a vertex, edge, or
face respectively. The rotations de, df, ef cor-
respond to the rotation around a face, edge or
vertex respectively. We can summarize this
presentation using the Coxeter diagram:

See Figure 2i.

Lemma 4. R5,5 has an outer automorphism
that swaps the generators a, c while fixing b.
Moreover, R5,5 is a subgroup of R5,4 in which
the outer automorphism is conjugation by f .

Proof. The outer automorphism is clear from
the presentation of R5,5. There is a group
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monomorphism R5,5 � R5,4 given by sending
the generators

a 7→ e, b 7→ d, c 7→ f−1ef,

and conjugation of these generators by f has
the required effect.

Theorem 5. For the hyperbolic code C de-
fined in Equation (2) we have the following:

Aut(C) = R5,5/Γ,
Aut(C/ ∼ZX) = R5,4/Γ.

Furthermore, C is self-ZX-dual as exhibited
by the ZX-duality τ = f ∈ R5,4.

Proof. (Sketch.) By Lemma 4 we can think
of R5,5 as a subgroup of R5,4, where the lat-
ter has an additional generator f . The reflec-
tion f divides each of the fundamental trian-
gles of R5,5 with internal angles π/2, π/5, π/5
into two triangles with internal angles π/2,
π/4, π/5, cf. Figures 2i and 2ii.

By studying the cosets which give rise to C
and C/ ∼ZX in the universal cover, and not-
ing that Γ is normal and acts fixed-point free,
our arguments regarding the cosets are pre-
served under the covering map induced by Γ
onto the finite surface.

Using this result and Lemma 1 we obtain
all the ZX-dualities of our hyperbolic code C
as

DZX = fR5,5/Γ.

A similar result holds for other symmetric
Coxeter reflection groups Rl,l for l ≥ 3. There
is always a subgroup inclusion Rl,l � Rl,4
coming from the outer automorphism of Rl,l.
In the case of R3,3 this group is S4 the (finite)
symmetry group of the tetrahedron, and R3,4
is the symmetry group of the cube. The inclu-
sion R3,3 � R3,4 corresponds to the inclusion
of a tetrahedron inside a cube. When l = 4, we
get the group R4,4 which is the (infinite) sym-
metry group of the square two-dimensional
lattice. The inclusion R4,4 � R4,4 exhibits
an inclusion of this lattice into a 1/

√
2 scaled

and rotated copy of the same lattice.

2.4 Fold-Transversal Clifford Gates

Some of the ZX-dualities in DZX can be used
to implement logical gates using circuits of
low, constant depth.

Given a ZX-duality τ , a unitary operator
on the n qubits is called fold-transversal when
it is a tensor product of single qubit unitaries,
and two-qubit unitaries with support on the
orbits {(i, τ(i))}i=1,...,n of τ.

A unitary operator on the n qubits of a CSS
code C is called an encoded logical gate when
it commutes with the codespace projector.

2.4.1 Hadamard-type fold-transversal gates

The simplest such gate is of what we call
Hadamard-type, meaning it exchanges logical
X-operators with logical Z-operators. Given
a ZX-duality τ ∈ DZX we define this as the
following fold-transversal operator on the n
physical bits:

Hτ =
⊗

i=1,..,n
i<τ(i)

SWAPi,τ(i)

n⊗
i=1

Hi

Theorem 6. Given a ZX-duality τ for a CSS
code C then Hτ is an encoded logical gate.

Proof. The operator Hτ acts on elements of
the Pauli group Pn via conjugation. Using the
identities HiXiH

†
i = Zi and HiZiH

†
i = Xi, as

well as the fact that τ maps between X- and
Z-checks, we see that Hτ leaves the stabilizer
group S invariant. Thus, the normalizer of
the stabilizer group N(S) must also be invari-
ant. In other words, Hτ leaves the code space
invariant and maps logical operators onto log-
ical operators.

Note that Hτ is generally not simply a log-
ical Hadamard, exchanging pairs of logical
Pauli-operators X̄i with Z̄i, as τ does not have
to be compatible with the choice of logical ba-
sis. More severely, in general, we do not have
H2
τ = I. This is only the case if τ2 = id.
When we construct Hτ for the surface code,

using the ZX-duality τ shown in Figure 1i,
we obtain the Hadamard-gate described by
Moussa [1].
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(i) The {5, 4}-tiling of the Poincaré
hyperbolic disc model. Vertices,
edges and faces are marked with
red, blue and green dots respec-
tively. This tiling has symmetry
group the Coxeter reflection group
R5,4.

(ii) The {5, 5}-tiling of the Poincaré
hyperbolic disc model. Vertices,
edges and faces are marked with
red, blue and green dots respec-
tively. This tiling has symmetry
group the Coxeter reflection group
R5,5.

(iii) Bring’s curve as a quotient
of the {5, 5}-tiled hyperbolic disc.
Faces are identified according to the
number scheme. Each edge is as-
sociated with a qubit, shown with
a grey circle, and faces/vertices de-
fine Z/X-check operators.

Figure 2: Hyperbolic codes are defined using the homology of compact hyperbolic surfaces. We construct
these tiled surfaces as quotients of the {5, 5}-tiling (ii), for example Bring’s code (iii). We find ZX-dualities
of the hyperbolic codes by forgetting the distinction between vertices and faces in (ii), which yields the
{5, 4}-tiling (i).

2.4.2 Phase-type fold-transversal gates

Given a ZX-duality τ ∈ DZX we define the
following fold-transversal operator on the n
physical qubits:

Sτ =
⊗

i=1,...,n
i=τ(i)

S
(†)
i

⊗
i=1,...,n
i<τ(i)

CZi,τ(i)

for some choice of Si and S
†
i on the fixed points

i = τ(i). We call this a phase-type gate.

Theorem 7. Let τ ∈ DZX be a ZX-duality
for a CSS code C, which is self-inverse (τ2 =
id) and whose set of stabilized qubits is even,
i.e. |{i = 1, ..., n | τ(i) = i}| ≡ 0 mod 2.
Further, suppose that each X-check X⊗s with
support s ⊂ {1, . . . , n} has (a) even over-
lap with the set of invariant qubits {i =
1, ..., n|τ(i) = i} and (b) contains an even
number of two element orbits {i, τ(i)}, where
i 6= τ(i). Then there exists a phase-type
gate Sτ that is an encoded logical gate for C.

Proof. Due to condition (a) there exists a par-
tition of the set of invariant qubits of τ into A
and B such that each X-check is half sup-
ported on A and half supported on B. We

define the following unitary operator on the n
physical bits:

Sτ =
⊗
i∈A

Si
⊗
j∈B

S†j
⊗

i=1,...,n
i<τ(i)

CZi,τ(i)

Let us verify that Sτ leaves the stabilizer
group S invariant. We do this by showing
that Sτ sends check operators to other el-
ements of S. By virtue of Sτ being Clif-
ford, this then extends to a permutation of S.
As Sτ is diagonal in the computational ba-
sis, it commutes with all Z-checks. Consider
an X-check X⊗s with support s ⊂ {1, . . . , n}.
First, let us assume that s does not contain
qubits invariant under τ , i.e. s∩ (A∪B) = ∅.
Note that for single-qubit Pauli-X operators
we have that

CZi,j Xi CZ†i,j = XiZj .

Further, due to condition (b) we have that
|s∩ τ(s)| is even, so that we can commute the
Pauli-X and Pauli-Z operators. Hence, the
operator X⊗s is mapped by Sτ onto the oper-
ator X⊗sZ⊗τ(s). By virtue of τ mapping X-
checks onto Z-checks, we know that Z⊗τ(s) ∈
S. Now, let us assume that s ∩ (A ∪ B) 6= ∅.

7



For Pauli-X operators we have that SiXiS
†
i =

iXiZi and S†iXiSi = −iXiZi. The check X⊗s
is mapped onto

i|s∩A|(−i)|s∩B|X⊗sZ⊗τ(s).

Each phase gate Si (S†i ) introduces an un-
wanted factor of i (−i). However, by assump-
tion on τ , we are guaranteed that |s ∩ A| =
|s ∩B|, so that these factors cancel out.

As for the Hadamard-type gates, we have
shown that the phase-type gate Sτ leaves the
code space invariant and maps logical opera-
tors onto logical operators. We stress again
that the action of Sτ will generally be differ-
ent from applying a logical S̄i on each logical
qubit. However, we do have S2

τ = I by con-
struction.

When we construct Sτ for the surface code,
using the ZX-duality τ shown in Figure 1i,
we obtain the S-gate described by Moussa [1].
Note there is another ZX-duality that rotates
the surface code by 90 degrees. However, this
rotation fixes a single physical qubit and so we
cannot construct a phase-type encoded logical
gate from this ZX-duality.

The next result shows we can get a phase-
type encoded logical gate by stacking two
copies of a self-ZX-dual code.

Corollary 8. Let τ ∈ DZX be a ZX-duality
for a CSS code C which is self-inverse, then
C ⊕ C has phase-type encoded logical gate:

Sτ =
⊗

i=1,...,n
CZi,n+τ(i) .

Proof. We use the ZX-duality defined in
Lemma 3. This ZX-duality has no fixed
points and is also self-inverse so the result fol-
lows from the previous theorem.

2.5 The Symplectic Group

Instead of dealing with unitary Clifford oper-
ators directly, we consider a well-known rela-
tion to the symplectic group Sp2n(F2).

By definition, we have that the Pauli
group Pn is a normal subgroup of
the Clifford group Cn. The quotient

group Cn/Pn is isomorphic to the sym-
plectic group Sp2n(F2) [29]. In other words,
the following short sequence is exact:

Pn Cn Sp2n(F2)ι π

where ι is the canonical embedding map and π
the quotient map. This implies that any ele-
ment of the Clifford group U ∈ Cn can be spec-
ified by an element of the symplectic group
π(U) ∈ Sp2n(F2) and a representative of the
Pauli group P ∈ Pn. This fact is well-known
and used e.g. for sampling random elements of
the Clifford group [30]. Note that we can triv-
ially implement logical Pauli operators P̄ ∈ Pk
transversally.

From now on, we will use the notation Ũ :=
π(U) for any operator U ∈ Cn.

3 Bring’s code
We demonstrate our construction on a hy-
perbolic surface code, called Bring’s code,
which encodes 8 logical qubits into 30 physical
qubits. Hyperbolic codes are good candidates
for constructing interesting fold-transversal
gates, as they are finite-rate and have large
symmetry groups [27]. One reason for choos-
ing Bring’s code in particular is that its sym-
metries can be visualized as a 3D polyhe-
dron (see Figure 3). Also, it is small enough
to analyze the group generated by the fold-
transversal gates with a computer algebra sys-
tem, such as GAP [31]. Larger hyperbolic
codes already encode too many logical qubits
to do so.

We briefly discuss some further exam-
ples, such as hypergraph product codes, bal-
anced product codes and block codes, in Ap-
pendix B.

3.1 Construction
Using the notation from Section 2.3 for Bring’s
code we define Γ equal to the normal clo-
sure in R+

5,5 of the group generated by (abcb)3.
This single generator is enough to define the
quotient of the hyperbolic disc D, see Fig-
ure 2iii. Somewhat surprisingly, this quo-
tient has an immersion into three dimensional
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Figure 3: The great dodecahedron representation
of Bring’s code. Faces are pentagons which inter-
sect. A single face is highlighted yellow. Each edge
is associated with a qubit and vertices/faces define
X/Z-check operators. This figure was made with
Stella4D [32].

space known as the great dodecahedron. This
is a Kepler-Poinsot polyhedron derived from
the dodecahedron, see Figure 3. It has pen-
tagonal faces, of which five meet at any ver-
tex. By identifying the edges of the great do-
decahedron with qubits and associating ver-
tices/faces with X-/Z-checks, we obtain a
quantum code with parameters [[30, 8, 3]].

From a topological perspective, the great
dodecahedron is a tiling (cellulation) of a
genus-4 surface, S = D/Γ. This tiling consists
of 12 vertices, 30 edges and 12 faces. We re-
fer to the derived code as Bring’s code, as the
underlying surface is known as Bring’s curve,
named after Erland Samuel Bring, who stud-
ied the algebraic equation that defines the sur-
face as a complex curve. Bring’s code was first
defined in [27] and further analyzed in [10]
and [33].

From Theorem 5, the group of symmetries
of Bring’s code is Aut(C) = R5,5/Γ which
in this case is found to be the permutation
group S5. In terms of the presentation of R5,5

we have,

Aut(C) = R5,5/Γ
= 〈a, b, c | a2, b2, c2,

(ab)5, (ac)2, (bc)5, (abcb)3〉
= S5 .

We also make the definitions r := ab and
s := bc which are rotations around a face and
vertex, respectively. Also from Theorem 5,
we have the larger symmetry group which in-
cludes symmetries that exchange vertices and
faces,

Aut(C/ ∼ZX) = R5,4/Γ
= S5×C2 .

3.2 Logical bases

In the homological representation of CSS
codes, the logical Z-operators correspond to
a basis of the homology group H1. Essential
cycles on Bring’s surface can be associated to
the 20 faces of the icosahedron, which forms
the convex hull of the great dodecahedron, see
Figure 3. First we note that a chain consist-
ing of three edges of a triangle is a closed
loop and hence it is clearly a cycle, i.e. an
element of Z1 = ker ∂1. Direct computation
shows that it is also not a boundary, i.e. an
element of B1 = im ∂2. In fact, the set of
all 20 chains associated to the triangles span
the first homology group H1. However, as
k = dimH1 = 8, this spanning set can not
be independent. Picking a suitable subset of
these triangles gives rise to a basis.

A particularly nice basis is shown in Fig-
ure 4. The basis elements correspond to
eight faces of the icosahedron. These faces
are related by the action of the subgroup
C2×C2×C2 ⊂ S5.

This choice of basis has a geometric repre-
sentation that can be seen in Figure 5. We can
place the icosahedron inside a cube, such that
eight faces of the icosahedron can be associ-
ated with the eight vertices of the cube. The
group C2×C2×C2 is a subgroup of the sym-
metry group of the cube which has a regular
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Figure 4: The basis BH1 of the first homology
group H1. Each element is a cycle of length three
shown with thick lines of one color. Equivalently, this
is a choice of logical Z-operators Z̄1, . . . , Z̄8. Each
triangular face of this planar embedding (of which
there are 20, including the outer face) corresponds
to a face of the convex hull of the great dodecahe-
dron, which is the icosahedron.

Figure 5: The convex hull of the great dodecahedron
is the icosahedron. We can place a cube inside the
icosahedron such that the eight vertices of the cube
lie on the mid-points of eight faces of the icosahe-
dron. The symmetries of the cube are also symme-
tries of the icosahedron. The orientation of the cube
inside the icosahedron corresponds to a choice of ba-
sis in H1 where each triangle touched by a vertex of
the cube is a basis vector, cf. Figure 4.

action on its vertices. It is generated by re-
flections corresponding to the three planes in-
tersecting the cube in the middle. This place-
ment of the icosahedron inside the cube is not
unique and different placements correspond to
different choices of a basis.

The logical X-operators correspond to a ba-
sis of the cohomology group H1. Similarly as
for the homology basis, we can associate the
essential cocycles with triangles of the icosa-
hedron: for a given triangle there are three
edges (not belonging to the triangle) which
are adjacent to exactly one of the triangle’s
vertices and are not neighboring any of the
triangle’s edges. The chain formed by these
edges is an essential cocycle. By associating
eight triangles with the vertices of a cube we
obtain a basis of H1. Unfortunately, choosing
the bases of H1 and H1 in this fashion can not
give rise to a symplectic basis of H1 ⊕H1.

In order to represent the logical gates
that we are going to construct in terms
of symplectic matrices, we need to fix or-
dered bases of H1 and H1. We fix the
basis BH1 of H1 as shown in Figure 4 with
the order {1, 7, 9}, {2, 12, 23}, {3, 5, 19},
{10, 16, 18}, {21, 26, 30}, {8, 25, 28},
{11, 17, 29}, {14, 20, 27}. The ordered basis
elements of BH1 , given in terms of supports
on the edges (cf. Figure 4), are {1, 6, 11},
{2, 8, 22}, {4, 5, 25}, {10, 13, 17}, {24, 28, 30},
{12, 19, 26}, {9, 16, 27}, {15, 20, 29}.

The bases BH1 and BH1 give rise to a basis
BH1⊕H1 of the symplectic vector space H1 ⊕
H1 in the obvious way. The symplectic prod-
uct between the elements of BH1⊕H1 is given
by the matrix Φ with Φi,j = 〈bi, bj〉 with
bi ∈ BH1 and bj ∈ BH1 .

Φ =



1 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 1 1 0 0
0 1 1 0 1 0 0 0
1 0 0 1 0 0 0 1
0 0 0 0 0 0 1 1


As Φ is not diagonal, BH1⊕H1 is not a sym-
plectic basis.
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We can fix this by defining alternative bases
as follows: Let b′

i = bi for i ∈ {1, . . . , 5}, b
′
6 =

b2 + b3 + b5 + b6, b
′
7 = b1 + b4 + b7 and b′

8 =
b1 + b4 + b7 + b8, defining a new basis B′

H1
of

the first homology group. Further, let b′i = bi

for i ∈ {1, . . . , 5}, b′6 = b2 + b3 + b5 + b6,
b

′7 = b8 and b
′8 = b1 + b4 + b7, defining a

new basis B′

H1 of the first cohomology group.
The resulting basis B

′

H1⊕H1 of the combined
symplectic spaceH1⊕H1 is a symplectic basis.

3.3 Permutation gates
Before we discuss the fold-transversal gate
constrictions, we note that some non-trivial

gates can be implemented simply by permut-
ing qubits [34].

By definition, the automorphisms of Bring’s
code directly correspond to the symmetries of
Bring’s surface. The subgroup of symmetries
of Bring’s surface, which maps vertices to ver-
tices and faces to faces, is S5 and acts tran-
sitively on the 30 edges. This action is also
faithful, so that we can write the generators
a, b and c of S5 in terms of cycles of S30, i.e.
cycles permuting the edge labels:

a = (2, 3)(4, 5)(6, 8)(7, 9)(10, 13)(11, 14)(12, 15)(16, 19)(18, 20)(21, 26)(22, 27)(23, 28)(24, 29)
b = (1, 2)(3, 6)(4, 7)(5, 10)(9, 16)(11, 17)(13, 21)(14, 22)(15, 23)(18, 24)(19, 26)(20, 30)(25, 28)
c = (2, 4)(3, 5)(6, 11)(7, 12)(8, 14)(9, 15)(10, 18)(13, 20)(17, 25)(21, 27)(22, 26)(23, 29)(24, 28)

This action of S5 on the edges extends to a lin-
ear representation ρ on the space of 1-chains.

Since clearly Z1 and B1 are invariant sub-
spaces under any permutation matrix in the
image of ρ, there exists a representation σH1 :
S5 → GL(H1) on the first homology group.
Similarly, Z1 and B1 are invariant subspaces
as well, so that we obtain a representation
σH1 : S5 → GL(H1) on the first cohomology
group. See Appendix A.1 for the matrix rep-
resentations.

The group of logical gates induced by per-
mutations of the edges is generated by

σ̃x =
(
σ̃H1(x) 0

0 σ̃H1(x)

)

where x ∈ {a, b, c}.

As the representation is faithful, we have
that 〈σ̃a, σ̃b, σ̃c〉 ∼= S5 < Sp16(F2). This can
be verified using a computer algebra system,
such as GAP [31].

3.4 ZX-Dualities

The group of automorphisms of Bring’s code
is Aut(C) = S5 which has order 5! = 120.
Furthermore, Bring’s code is self-ZX-dual, by
Theorem 5, with self-ZX-duality

τ0 := f ∈ R5,4.

By Corollary 2 we know that there are 120
ZX-dualities exchanging X- and Z-checks of
Bring’s code. Among these, the number of
self-inverse dualities (τ2 = id) is 20. For the
implementation of the Hadamard- and phase-
type gates in Section 3.5 we will consider the
ZX-duality τ0.

Figure 6 shows the orbits of edges under the
action of τ0. As τ0 is self-inverse each edge
is either mapped onto a partner (τ0(e1) = e2
and τ0(e2) = e1), or it is fixed (τ0(e) = e). In
the figure, the pairs are given the same color,
while the fixed edges are drawn in black. The
same information is shown in Figure 7 in the
planar layout.

We have picked the ordered bases BH1

and BH1 in Section 3.2 such that τ0 maps be-
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Figure 6: The ZX-duality τ0 on Bring’s code.
Qubits are associated with edges. Qubits colored in
black are left invariant under the ZX-duality. Qubits
not left invariant come in pairs, as τ2

0 = id, and given
the same color.
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Figure 7: The orbits of τ0 shown in the planar layout.

tween the pairs of basis elements, i.e. τ0(bi) =
bi for bi ∈ BH1 and τ0(bi) = bi for bi ∈ BH1 .

3.5 Fold-transversal gates
We will now use the ZX-duality τ0 from the
previous section to construct fold-transversal
Clifford gates for Bring’s code. This is
straightforward, as τ0 and the bases ofH1⊕H1

were carefully chosen.

3.5.1 Hadamard-type gate

We have picked the bases BH1 and BH1 such
that τ0(bi) = bi and τ0(bi) = bi for each

bi ∈ BH1 and bi ∈ BH1 . Therefore, the repre-
sentation of H̃τ0 in the basis of BH1⊕H1 takes
the simple form

H̃τ0 =
(

0 I8

I8 0

)
.

Changing to the symplectic basis B
′

H1⊕H1

yields

H̃
′
τ0 =



0
I6

0 1
1 1

I6
1 1
1 0

0


.

3.5.2 Phase-type gate

First we note that τ0 fulfills all requirements
listed in Section 2.4.2: it is self-dual, the num-
ber of stabilized qubits is six, there are either
none or two stabilized qubits in the support
of each X-check and no X-check contains an
orbit of cardinality two. All of this can be
verified by inspecting Figure 7.

The representation of S̃τ0 in the ba-
sis BH1⊕H1 takes the simple form

S̃τ0 =
(
I8 I8

I8 0

)
.

Changing to the symplectic basis B
′

H1⊕H1

yields

S̃
′
τ0 =


I8 0

I6
1 1
1 0

I8

 .

3.6 Achievable gates
Let Gτ0 be the group generated by the permu-
tation gates and fold-transversal gates, i.e. it
is generated by the set {σ̃a, σ̃b, σ̃c, H̃τ0 , S̃τ0}.
We observe, using GAP [31], that the
group Gτ0 is isomorphic to Sp8(F2)×C2. We
can also verify that Gτ0 does in fact not de-
pend on the choice of ZX-duality τ0. Fur-
ther, a single ZX-duality generates the same
group as taking all possible Hadamard-type
and phase-type gates of Bring’s code.
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3.6.1 Full Clifford group

Adding the symplectic equivalent of a single
CNOT- or CZ-gate between any of the logical
qubits to the set {σ̃a, σ̃b, σ̃c, H̃τ0 , S̃τ0} elevates
it to a generating set of Sp16(F2). Hence, we
can obtain the full Clifford group C8.

This can be done in several ways: In [10]
the authors show how to use Dehn twists to
implement logical CNOT-gates. Their tech-
nique requires either an increase of the qubit
degree1 up to O(log(n)) or, alternatively, an
increase in overhead due to ancilla qubits.
The temporal overhead of this technique is
O(d2) = O(log(n)2). Alternatively, the au-
thors of [14] suggest a generalization of lat-
tice surgery facilitated by an ancillary surface
code. This results in an overhead in ancilla
qubits scaling as O(d2).

3.6.2 Fold-transversal Clifford group

Implementing entangling gates can certainly
be done using lattice surgery and code de-
formation techniques. However, it would be
much more appealing to achieve all logical
Clifford gates fold-transversally. It turns out
that this can indeed be done: Let σ̃r = σ̃aσ̃b
and σ̃s = σ̃bσ̃c.

Let σ̃r = σ̃aσ̃b and σ̃s = σ̃bσ̃c. Under the
action of Gτ0 the symplectic space H1 ⊕ H1

decomposes into two invariant subspaces V
andW . Both, V andW have dimension eight.
The subspace V is symplectic and gives rise to
a set of Pauli-operators acting on four qubits.
The subspace W , on the other hand, is maxi-
mally isotropic (W⊥ = W ), in other words, it
is a Lagrangian subspace. A basis of both sub-
spaces can be found in Appendix A.2. The
group Gτ0 acts faithfully as Sp8(F2) on V .
Therefore, we obtain the full Clifford group C4
when we restrict the logical subspace to the
one induced by V .

1Meaning the cumulative total number of other
qubits a single qubit has to be connected with. The
instantaneous qubit degree is constant throughout the
procedure.

4 Conclusion

We have introduced a method to implement
Clifford gates in CSS quantum codes using
symmetries that we call ZX-dualities. A
ZX-duality defines a fold-transversal opera-
tor, which is a quantum circuit with gates sup-
ported on the orbits of τ . In particular, we
defined Hadamard-type gates Hτ and phase-
type gates Sτ , derived from suitable ZX-
dualities τ . For the surface code with τ being
a literal fold (see Figure 1i), this is equivalent
to the construction of Moussa [1]. Further,
we explicitly discussed Bring’s code as an ex-
ample, showing that it is possible to generate
the Clifford group C4 by restricting the logical
subspace.

It would be interesting to understand the
set of fold-transversal gates for a family of
LDPC quantum codes, such as hyperbolic
codes or those discussed in Appendix B. While
one can verify the construction using a com-
puter algebra system, as we have done here,
this has its limitations. This is because the
groups generated by the fold-transversal and
permutation gates become very large, even for
a moderate number of encoded qubits k.

Finally, we expect our results to generalize
to other code families that support a notion
of Fourier duality: non-CSS qubit stabilizer
codes, qudit stabilizer codes, and subsystem
codes.
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A Matrices

Here we give further details on associated matrices coming from the construction of Bring’s code
in Section 3.

A.1 Qubit permutation

In the basis B′
H1

we have

σ̃H1(a) =



1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0
0 1 1 0 0 0 0 1
0 0 0 1 0 1 1 1
0 0 0 0 1 0 0 0
1 1 0 0 0 0 1 0
1 0 0 0 1 0 1 0
0 1 0 0 1 1 1 1


σ̃H1(b) =



0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 1
1 0 0 1 0 1 0 0
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 1
0 1 1 0 1 0 0 0
1 1 0 1 1 0 1 0
1 0 0 1 0 0 1 1



σ̃H1(c) =



1 0 0 0 0 1 1 1
0 0 1 0 0 1 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 1
0 1 0 1 0 0 1 0
0 0 1 1 0 0 1 0
0 1 1 0 0 1 1 1


and in the basis B′

H1 we have σ̃H1(x) = σ̃H1(x)>, for x ∈ {a, b, c}.
Note that the matrices operate on row vectors from the right.

A.2 Gτ0-Invariant subspaces of H1 ⊕H1

A symplectic basis of the symplectic space V ⊂ H1 ⊕H1 in the basis B′

H1⊕H1 :



0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1


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A basis of the Lagrangian space W ⊂ H1 ⊕H1 in the basis B′

H1⊕H1 :

1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0


In the basis of V above, the action of the generators of Gτ0

∼= Sp8(F2) restricted to V is given
by the following matrices:

σ̃r|V =



1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 1 1 0 0


σ̃s|V =



0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 1



H̃τ0 |V =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0


S̃τ0 |V =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 1 0 0 1 0
0 0 1 0 0 0 0 1


Note that matrices operate on row vectors from the right.

B Further Examples
Here we discus some further examples of fold-transversal gates and the groups they generate.
We do not go through all the details, as we did for Bring’s code. However, the derivation of
these results follows along the same steps.

B.1 Hyperbolic Surface Codes

We list some more examples of {5, 5} hyperbolic surface codes obtained from the construction
in Section 2.3, the first of which is Bring’s code. The table shows the parameters [[n, k, d]] for
the code C, and the order of the automorphism group Aut(C) which is equal to the number of
ZX-dualities.
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Code parameters |DZX | = |Aut(C)|
[[30, 8, 3]] 120
[[40, 10, 4]] 160
[[80, 18, 5]] 320
[[150, 32, 6]] 600
[[180, 38, 4]] 720
[[330, 68, 6]] 1320
[[480, 95, ?]] 1920

B.2 Hypergraph Product Code
Consider the [6, 2, 4] code defined by the parity check matrix

1 1 0 0
0 1 0 0
1 0 1 0
0 0 1 0
1 0 0 1
0 0 0 1


acting on row vectors. The hypergraph product of this code with its dual gives a [[52, 4, 4]]
quantum code with checks of weights 3, 4 and 5. The automorphism group of the code, as
defined in Section 2.2, is (S3×S3)oC2. This can be seen from the fact that S3 is the symmetry
group of the input code and we have the exchange of X- and Z-checks, giving the semi-direct
product with C2. There are four ZX-dualities and all of them fulfill the requirements of the
theorems in Section 2.4. Using a suitable choice of basis for H1 ⊕ H1, we can construct eight
Hadamard- and phase-type gates. Together with the permutation gates they generate the group
(A6×A6) o D4. This is an index-45696 subgroup of Sp8(F2).

As for Bring’s code, we can obtain the full group symplectic group Sp8(F2) by adding a single
entangling gate, e.g. by using surgery with an ancillary surface code [14]. Alternatively, the
largest symplectic subgroup of (A6×A6) o D4 is Sp4(F2), so we can obtain the full Clifford
group on two logical qubits when restricting the code space accordingly.

B.3 Balanced Product Code
Balanced product quantum codes are a generalization of the hypergraph product codes, allowing
for the construction of quantum codes that can achieve higher encoding rates and larger dis-
tances [8]. The balanced product between two classical codes, that share a common symmetry,
can be understood as the hypergraph product between the two, with the symmetry subsequently
factored out. We refer to [3, 8] for more details. Symmetry groups play a prominent role in the
construction of balanced product codes, so that they are amenable to our scheme.

For symmetric classical codes, let us consider the extended binary Golay code G24 with pa-
rameters [24, 12, 8] and its dual G>24. It turns out that, coincidentally, the parity checks of the
Golay code can also be derived from the great dodecahedron (Figure 3), see [35] for details.
The automorphism group of this parity check matrix of G24 is thus the same as that of Bring’s
code S5×C2 (see Section 3.1). The alternating group A5 is an (up to conjugation) unique
subgroup. The balanced product code G24 ⊗A5 G>24 is a [[20, 4, 3]] code with check weights 4, 5
and 7. It has 10 ZX-dualities, giving rise to Hadamard-type gates. However, only one of the
ZX-dualities satisfies the requirements of Theorem 7, giving rise to a single phase-type gate.
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The group of permissible qubit permutations is C2×S4 and it has a faithful representation on
H1 ⊕ H1. The permutation gates, the Hadamard-type gates and the phase-type gate generate
the group S3×S4, which is an index-329011200 subgroup of Sp8(F4). Adding a single entangling
gate generates the full symplectic group Sp8(F2).

Alternatively, consider the smaller subgroup H = C2×(C5 oC4). The balanced product code
G24 ⊗H G>24 is a [[30, 6, 3]] code. Similarly, the permutation gates, the Hadamard-type gates and
the phase-type gate generate an index-135491300609753088000 subgroup of Sp12(F4). Adding a
single entangling gate generates the full symplectic group Sp12(F2).

A [[60, 12, 5]] code can be obtained by taking the balanced product over the even smaller
subgroup C3 oC4. Unfortunately, the space H1 ⊕ H1 is 24-dimensional and thus too large for
our computational methods.

B.4 Block Code

The following example shows that the fold-transversal gates do not always suffice to generate
large groups. Consider the [[16, 4, 4]] code, obtained by concatenating the [[4, 2, 2]] code with
itself. It is a weakly self-dual CSS code with classical code defined by the check matrix

1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 1 0 0 0
0 1 0 1 0 0
0 1 0 0 1 0
0 1 0 0 0 1


A natural basis of H1 and H1 is

1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0


There exist 20 ZX-dualities, giving rise to 8 distinct Hadamard-type gates onH1⊕H1. Only one
of the ZX-dualities satisfies the requirements of Theorem 7, giving rise to a phase-type gate. The
group of permissible qubit permutations is C2×S4. However, unlike in the previous examples,
the induced representation on H1⊕H1 is not faithful, as its image is isomorphic to the dihedral
group D6. The permutation gates, the Hadamard-type gates and the phase-type gate generate
the group C2×S3×S3. Unlike in the previous examples, note even adding all C̃Zi,j-gates does
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not give rise to the full symplectic group Sp8(F2), but to the orthogonal group O+
8 (F2), which

is an index-272 subgroup.
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