
 Chen, H., Vasmer, M., Breuckmann, N. P., & Grant, E. (2022).
Automated discovery of logical gates for quantum error correction.
Quantum Information and Computation, 22(11-12), 947-964.
https://doi.org/10.26421/QIC22.11-12-3

Peer reviewed version

Link to published version (if available):
10.26421/QIC22.11-12-3

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online
via Rinton Press athttps://doi.org/10.26421/QIC22.11-12-3.Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.26421/QIC22.11-12-3
https://doi.org/10.26421/QIC22.11-12-3
https://research-information.bris.ac.uk/en/publications/7b6b046b-703d-4f27-885f-2311060f5e23
https://research-information.bris.ac.uk/en/publications/7b6b046b-703d-4f27-885f-2311060f5e23

Machine learning logical gates for quantum error correction

Hongxiang Chen,1, 2, ∗ Michael Vasmer,3, † Nikolas P. Breuckmann,4, ‡ and Edward Grant1, 2, §

1Dept. Computer Science, University College London

2Rahko Ltd., Finsbury Park, N4 3JP, United Kingdom

3Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada¶

4Dept. of Physics & Astronomy, University College London

(Dated: December 24, 2019)

Abstract

Quantum error correcting codes protect quantum computation from errors caused by decoher-

ence and other noise. Here we study the problem of designing logical operations for quantum error

correcting codes. We present an automated procedure which generates logical operations given

known encoding and correcting procedures. Our technique is to use variational circuits for learn-

ing both the logical gates and the physical operations implementing them. This procedure can

be implemented on near-term quantum computers via quantum process tomography. It enables

automatic discovery of logical gates from analytically designed error correcting codes and can be

extended to error correcting codes found by numerical optimizations. We test the procedure by

simulation on classical computers on small quantum codes of four qubits to fifteen qubits and show

that it finds most logical gates known in the current literature. Additionally, it generates logical

gates not found in the current literature for the [[5,1,2]] code, the [[6,3,2]] code, and the [[8,3,2]]

code.

∗ h.chen.17@ucl.ac.uk
† mvasmer@pitp.ca
‡ n.breuckmann@ucl.ac.uk
§ edward.grant.16@ucl.ac.uk
¶ Also at Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada

1

ar
X

iv
:1

91
2.

10
06

3v
1

 [
qu

an
t-

ph
]

 2
0

D
ec

 2
01

9

mailto:h.chen.17@ucl.ac.uk
mailto:mvasmer@pitp.ca
mailto:n.breuckmann@ucl.ac.uk
mailto:edward.grant.16@ucl.ac.uk

I. INTRODUCTION

Quantum errors stem from undesired interactions with an outside environment. There

are many different interactions which may occur and their nature as well as their strength

depend on the particular hardware architecture. A natural assumption on the errors is that

they are not adversarial, but are randomly distributed and localized.

It was shown by Shor [1] that we can preserve quantum information by using quantum

error correcting codes. The main idea is similar to what is done in classical error correction:

redundancy is introduced by encoding some number of qubits k into a larger number of

physical qubits n. While for classical information (bits) we can introduce redundancy by

keeping several copies, for quantum information it can be shown that copying of states is

not possible by the laws of quantum mechanics, i.e. there is no device which takes any

quantum state as an input and produces several copies of this state. Despite this limitation

it is possible to effectively encode a quantum state. This is done by mapping the states of the

k logical qubits into non-local degrees of freedom of a highly entangled state of the physical

qubits. Although classical codes can not be used directly, there exists a construction due to

Calderbank, Shor and Steane (CSS) [2, 3] which takes two linear classical codes as an input

and returns a quantum code.

In a quantum computer we manipulate quantum states using a small set of unitary

operators called quantum gates. Gates applied to the encoded qubits are called logical gates.

As the application of gates is prone to errors itself we would like to implement the logical

gates using shallow depth circuits, meaning that only a small number of gates are being

applied to the physical qubits to induce the logical gate. Finding such circuits is a major

challenge in quantum error correction and has thus far been done on a case-by-case basis.

For example, codes which are generated by the CSS construction (CSS codes) and encode a

single logical qubit are known to have a fault-tolerant CNOT gate: it can be implemented

on two copies of the same code by applying a CNOT between all pairs of physical qubits.

Here we apply the technique of variational circuit optimization to find fault tolerant

logical gates for a given quantum error correcting code. Variational circuits have been used

to parametrize wavefunctions, i.e. parametrize a unitary circuit transforming the |0〉 initial

state. This approach has been used successfully to perform quantum chemistry calculations

on Noisy Intermediate-Scale Quantum (NISQ) computers [4–8]. The popular basic building

2

blocks, called unit cells, of these variational circuits are rotational gates Rx, Ry, Rz and

CNOT gates (see the Nomenclature and notation section of [9] for a definition). The specific

mathematical properties of these gates makes optimizing the variational circuit relatively

easy [10, 11]. In our case, we propose using variational circuits to find fault-tolerant logical

gates for given quantum error correcting code. Our procedure finds logical gates and their

quantum circuit implementations by numerically optimizing the variational circuit ansatz for

both logical gates and their physical implementations (Fig. 1). Our procedure offers several

benefits and much flexibility. The ansatz used for the physical operation can be tailored to

take advantage of the property of a specific quantum computing architecture. The ansatz

for the logical gate is variational and thus our procedure automates the discovery of logical

gates given a quantum error correcting code. The procedure can also target a specific logical

gate when we fix the ansatz to this gate. Therefore, for stabilizer codes and in particular for

non-CSS codes, our procedure provides a straightforward first choice to find logical gates.

Furthermore, the procedure can be implemented on a quantum computer using quantum

process tomography and is resource friendly for quantum codes requiring a small number of

physical qubits. It is hence feasible for an implementation on near-term quantum computers.

We note that in the literature, previous research has applied numerical optimization tech-

niques to the field of quantum error correction for different purposes. Work in [12–15] used

optimization algorithms (mostly convex optimization algorithms) to find error correcting

quantum channels. Work in [16] demonstrated learning a circuit for preserving quantum

information using a variational ansatz circuit. In [17, 18] authors constructed quantum er-

ror correcting codes using neural networks. There is also a body of research using neural

networks for decoding [19–23]. In this work, we applied similar optimization techniques to

the novel problem of finding logical operators for quantum error correcting codes.

Paper structure. In this paper, we describe the procedure in detail in the Sec. II

where we also present the results of simulation on a classical computer where we apply the

procedure to several CSS codes and non-CSS codes. The technical details of the simulation

and the optimization are mentioned in Sec IV and the data are attached with this paper

in the Supplementary Information. Among these results there are several new logical gates

for the [[5,1,2]] code, the [[6,3,2]] code, and the [[8,3,2]] code, which to our knowledge have

not appeared previously in the literature, and which we discuss in detail in the Sec. II A.

Finally, we make several comments on the benefits and disadvantages of our procedure in

3

Sec III.

II. RESULTS

Here we present the procedure to find circuits which implement logical gates for error

correcting codes. The procedure is inspired by the idea of circuit learning and uses ansatz

circuits for both the logical gate and the physical operations that implement this logical

gate in the encoded Hilbert space. Before we define this procedure, we first introduce the

notation.

Commonly, an error correcting code encodes logical qubits (whose corresponding Hilbert

space will be denoted as HA), into the subspace, denoted by L, of another Hilbert space

H ′ = HA ⊗HB. This mapping is unitary and is denoted as E : HA → L ⊂ H ′. We call G

a physical operation implementing the logical gate g if it is a unitary automorphism on L

such that E−1GE |ψ〉 = g |ψ〉 for states |ψ〉 ∈ HA.

Now we present the procedure. We first describe how the procedure can be performed

via simulation on a classical computer, and we describe its extension to quantum computer

afterwards. On a classical computer, we simulate the encoding, the physical operation, and

the inverse encoding E−1. While the encoding/inverse encoding circuit is fixed by the choice

of a particular error correcting code, we use ansatze for both the physical operation G and

the logical gate g. The ansatz for the physical operation is variational and may map logical

states outside the logical space. Because of this possibility, we instead apply a projector onto

the codespace after the physical operation. This is achieved by measuring the stabilizer

generators and applying a correction, where the correction is the minimum weight error

compatible with the observed syndrome. The stabilizer measurements and corrections are

simulated classically as a unitary circuit acting on the extended Hilbert space H ′⊗HC . Here

the qubits in the HC are all initialized to the |0〉 state. We use a variational circuit as the

ansatz for the logical gate, to enable automatic discovery of logical gates for the quantum

error correcting code. Alternatively, we can set a fixed unitary gate as the logical gate, and

try to vary the ansatz for physical operation to find an implementation for this unitary gate.

Our goal is to optimize the parameters for the ansatz circuits such that the for all possible

input quantum states, a physical operation G together with the encoding, syndrome removal,

and decoding circuit, act in the same way as a logical operation g (See Fig.1). Specifically,

4

we minimize the loss function

L(θ1, θ2) =
∑
i

(1− F (trB⊗C (|φ1,i〉〈φ1,i|) , |φ2,i〉〈φ2,i|)) . (1)

Here φ1
i (φ2

i) is the output of the trial logical circuit (comparison circuit) (see Fig.1). The

input states {ψi}Ni form a tomographically complete set (the particular set of states we used

in simulation is described in the Sec. IV B). The trace tr is taken over the ancilla Hilbert

space used for syndrome removal and the Hilbert space HA. For two quantum states ρ and σ,

we define F(ρ, σ) to be the fidelity between them. When the minimization is successful and

the average fidelity is zero excluding float point errors, the procedure succeeds in finding a

logical gate for this code.

Our method can be adapted to run on a quantum computer in order to find logical gates

for larger error correcting codes and to tailor the ansatz to the specific quantum computing

architecture. We briefly outline such an extension here. The main change with regards to

the classical implementation concerns the encoding and inverse encoding circuits. Instead of

implementing a (non fault-tolerant) encoding circuit, we need a certain method of reliably

preparing encoded Pauli eigenstates on the quantum computer. Given these states, we

apply the logical operation ansatz in the same way as the classical implementation. We can

also implement an error correcting procedure after applying the logical operation ansatz.

Finally, instead of implementing the inverse encoding circuit, we envisage performing logical

measurements of the encoded states in the X, Y and Z bases. Using these measurement

outcomes, we perform logical state tomography [9, 24] on the output states, and compare

the tomography results with the unencoded states obtained via classical simulation, using

an analogous loss function to the one shown in Eq. 1.

The requirements of implementing our method on a quantum computer are relatively

minor, as long as the number of logical qubits in the code is modest. The only subroutines

we would need to implement on the quantum computer are: preparing encoded Pauli eigen-

states, applying a physical operation ansatz, and measuring Pauli observables. Although the

number of required logical Pauli measurements grow exponentially in the number of logical

qubits, which might be a bottleneck of our proposed method. Potentially one can utilize

a swap test[25, 26] for calculation of the loss functions. Specifically, we may prepare in

another error-corrected quantum computer the unencoded states, and analogously calculate

5

HC : |0〉

CHB : |0〉
E N G(θ1) E†

∣∣φ1i 〉
HA : |ψi〉

(a) Trial logical circuit

HA : |ψi〉 g(θ2)
∣∣φ2i 〉

(b) Comparison circuit

Loss:
ℒ 𝑡𝑟$⊗& 𝜙() , 𝜙(+

Optimization
Algorithm

𝜓(

Trial logical
circuit (𝜃))

Comparison
circuit (𝜃+)𝜓(

𝜙()

𝜙(+

𝜃), 𝜃+

Random
Initialization

𝜃), 𝜃+

(c) Procedure

FIG. 1: Learning logical gates

To learn logical gates, we optimize angles θ1 and θ2 such that the trial logical circuit and the comparison

circuit perform effectively the same unitary as measured by our loss function L. Inside the trial logical

circuit, the encoding/inverse encoding circuit E/E† maps input states {ψi}Ni into/out of the logical space.

The ansatz G(θ1) performs a series of physical operations and the circuit C performs the stabilizer

measurements and minimum weight error correction. In the comparison circuit, only the ansatz circuit

g(θ2) for the logical gate is performed. The whole procedure starts with randomly initialize the two angles

in both circuits, and then a tomographically complete set of quantum states are fed to the two circuits as

inputs. Their outputs are gathered and fed to the loss function L. The calculated loss function values are

fed to a minimization algorithm which outputs new angles for θ1 and θ2. Then we rerun the trial logical

circuit and the comparison circuit again and the whole loop continues until L is zero excluding float point

errors, in which case the circuit G(θ1) will perform the logical gate g(θ2) on the encoded space.

6

the loss function in Eq. 1 by a cross-device swap test. We emphasize that our procedure

can be applied to any code that can prepare encoded Pauli eigenstates and measure Pauli

observables, i.e. it is not limited to qubit stabilizer codes.

A. Results for small codes

We applied our procedure to a variety of small codes, as summarized in Table I. Of

particular interest are the cases where non-Pauli logical gates were found by the experiment.

In this section, we highlight the results of the experiment for the following codes: [[8,3,2]],

[[8,2,2]], [[6,3,2]], and [[7,1,3]] surface code with a twist.

The [[8,3,2]] code is the smallest non-trivial 3D color code [39, 40]. We found three

transversal Clifford gates for this code which (to the best of our knowledge) have not previ-

ously appeared in the literature: CZ12, CZ13, and CZ13, where CZij denotes a logical CZ

acting on logical qubits i and j. Our optimization procedure also provided a simple imple-

mentation of these gates, which we now explain.

Logical gates in the [[8,3,2]] code can be understood geometrically. Suppose we place

qubits on the vertices of a cube, as shown in Figure 2. The stabilizer group of the [[8,3,2]]

code can be generated by an operator consisting of Pauli-X operators acting on every qubit,

alongside operators that are associated with the faces of the cube, i.e. for each face, f ,

we have an operator Πv∈fZv, where Zv denotes a Pauli-Z operator acting on the qubit on

vertex v. With this definition, the logical X operators of the code are associated with the

faces of the cube (X1 = Πv∈fXv etc.) and the logical Z operators are associated with the

edges of the cube. We note that opposite faces support logical X operators that act on the

same encoded qubit, and the corresponding logical Z operators are supported on the edges

linking these faces.

To implement a logical CZij gate, we apply S = diag(1, i) and S† gates in an alternating

pattern to the vertices of a face that supports Xk. We show this operator in Figure 2b and we

denote it by U . We now show that U implements a CZij gate: namely it maps X i to X iZj,

and has no effect on all other logical operators. First, we note that all operators that consist

exclusively of Pauli-Z operators are unaffected by U because S and Z commute. Therefore,

Z-type stabilizers and logical Z operators are mapped to themselves by U . Next we consider

operators that contain Pauli-X, which are transformed by S as follows: SXS† = Y = iXZ.

7

TABLE I: Summary of quantum gates found by our procedure using classical simulation

for a variety of small quantum error correcting codes.

Code Logical gate found by the procedure

[[4,1,2]] [27], [[8,2,3]] [28], [[8,3,3]] [29–31],

[[11,5,3]] [30], [[12,6,3]] [28], [[13,7,3]] [28],

[[14,8,3]] [28], [[15,7,3]] [2, 30]

Pauli group

[[4,2,2]] [32, 33] Pauli group, CNOT

[[5,1,2]] [34] Pauli group, S, H

[[5,1,3]] (Five-qubit code) [35, 36] Pauli group, eiπ/4SH, ei3π/4XHXS†,

e−i3π/4XHXS, e−iπ/4HS†, e−iπ/4S†H,

e−i3π/4SXHX, ei3π/4S†XHX

[[6,3,2]] [28] Pauli group, H12CZ12H12

[[7,1,3]] (Steane code) [2, 3] Pauli group, Generators for the group

generated by H and S

[[7,1,3]] (Surface code with a twist) [37] Pauli group, e−i3π/4SXHX, ei3π/4S†XHX

[[8,2,2]] (Projective plane 2D color code) [38] Pauli group, CZ, H⊗2CZH⊗2, H⊗2SWAP

[[8,3,2]] [39, 40] Pauli group, CZ12, CZ13, CZ23, CCZ

1 The new logical gates we found, which have not been reported in the literature, are in high-

lighted in red and in boldface. For these logical gates, the parity check matrix of the corre-

sponding quantum code and the physical operations which implement them are provided in

OpenQASM[41] format in the Supplementary Information.

2 The exact experimental configuration and optimization algorithm we used is discussed in the

Sec.IV.

3 We found a generating set of logical Pauli gates for the codes which we have labeled Pauli group

in the column Logical gate found by the procedure.

Consider the X stabilizer of the code (X on all the qubits). It is straightforward to see

that U maps this operator to a product of itself and a Z stabilizer associated with the

face where we applied U (the alternating pattern causes the factors of i and −i to cancel).

Finally, consider Xi (the blue face in Figure 2b). This operator is mapped to a product of

8

itself and a Zj operator with support on an edge that links the Xj faces (the green edge in

Figure 2b). Similarly, Xj is mapped to XjZi

8

4

7

3

6

2

5

1

X1
X2

X3

(a)

S

S†

S

S†

(b)

FIG. 2: CZ gates in the [[8,3,2]] code. Qubits are placed on the vertices of the cube. In

(a), we highlight three logical X operators of the code, namely X1 = X1X2X5X6 (red

face), X2 = X1X2X3X4 (blue face), and X3 = X1X3X5X7 (green face). Three

corresponding logical Z operators are: Z1 = Z1Z3, Z2 = Z1Z5, and Z3 = Z1Z2. (b)

Suppose that we apply S and S† gates to the vertices on the face that supports X1. This

unitary maps X2 (blue face) to X2Z3 (blue face and green edge). Likewise, X3 is mapped

to X3Z2. Therefore, this unitary implements a logical CZ23 gate.

In addition, our procedure found a transversal implementation of CCZ for the [[8,3,2]]

code. This gate was known previously [39, 40], however the fact that our procedure found a

non-Clifford gate (CCZ) with no prior knowledge about the structure of the code is notable.

It is often relatively straightforward to implement Clifford gates and Pauli measurements in

error correcting codes. Such operations are classically simulable, but they can be promoted

to universality by adding a single non-Clifford gate. However, codes with transversal non-

Clifford gates are rare, and understanding the structure of such codes is an active area of

research [38, 39, 42–44]. Most examples of constructions of code families with non-Clifford

gates exploit some specific structure of the code family, such as tri-orthogonality [45–47].

Our procedure may be capable of finding fault-tolerant non-Clifford gates for codes whose

structure is opaque to us. In particular, the structure of non-CSS codes with non-Clifford

gates is poorly understood, so our procedure may be able to shed some light on this area

given enhanced computational resources.

We successfully found non-Pauli gates for codes related to 2D color codes: the [[8,2,2]]

9

code (2D color code defined on a projective plane [38]) and the [[6,3,2]] code (subcode of a

2D color code defined on a hexagon [48]). For the [[8,2,2]] code, we found the gates that we

would expect to find in a 2D color code with two logical qubits: logical CZ implemented

by transversal S and S†, logical H⊗2CZH⊗2 implemented by transversal
√
X and logical

H⊗2SWAP implemented by transversal H. And we found that the [[6,3,2]] code inherits one

of the transversal gates of its parent 2D color code (the [[6,4,2]] code [48]): CZ12 implemented

by transversal S and S†.

FIG. 3: An illustration of the Clifford gate K1,1,1 = eiπ/4SH. This gate maps |0〉 → |+i〉,

|+i〉 → |+〉, and |+〉 → |0〉 (up to global phases). It can be understood geometrically by

considering an octahedron embedded in the Bloch sphere. The operation performed by the

gate is a clockwise rotation of 2π/3 around the axis which is normal to the face marked

with a red circle. The |+〉 state is at the front unlabeled vertex of the octahedron.

Our procedure also found transversal Clifford gates for the [[7,1,3]] surface code with a

twist. As was noted in [37], this code has transversal implementations of the octahedral

Clifford gates, which are defined as follows:

Kx,y,z = exp

{
i
π

3
√

3
(xX + yY + zZ)

}
, (2)

where x, y, z ∈ −1, 1. These gates cyclically permute the Pauli operators. We can decompose

these octahedral gates into products of more familiar Clifford gates as follows:

K1,1,1 = eiπ/4SH,

K1,−1,1 = eiπ/4HS,

K1,1,−1 = ei3π/4XHXS†,

K−1,1,1 = e−i3π/4XHXS,

K−1,−1,−1 = e−iπ/4HS†,

K−1,1,−1 = e−iπ/4S†H,

K−1,−1,1 = e−i3π/4SXHX,

K1,−1,−1 = ei3π/4S†XHX.

(3)

10

The specific gates we found in our experiments were transversal realizations of K−1,−1,1 and

K1,−1,−1.

III. DISCUSSION

We comment on several aspects of our procedure here. Firstly, we mention here a rough

resource estimate of our proposed procedure. For the calculation of the loss function in Eq. 1,

we require the the full process tomography of the encoded logical space, which requires a

number of quantum circuit runs growing exponentially with respect to the number k of

logical qubits. However, this cost is benign when k is small and can further mitigated

by running these circuits in parallel on multiple computers. Also, due to the fact that

transversal ansatz is mostly likely to be used as the ansatz for logical gates, we expect a

friendly linear growth of the number of parameters with respect to the number of physical

qubits (n) in Eq.1 which we need to optimize. In the classical simulations we have done,

typically one optimization converge in less than 5 hours running on a commercially available

GPU (Nvidia RTX 2080 Ti).

Secondly, our optimization benefits from the use of Rotosolve[10] optimization algo-

rithm, which depends largely on the fact that the functional dependency of the lost function

in Eq.1 is sinusoidal due to the parametrized rotation gates we have used for the ansatze (see

Appendix IV A). Adapting our procedure for specific quantum computation hardware might

require a different set of parametrized gates and might invalidate the use of Rotosolve. In

this case, the optimization will be harder due to the non-convex nature of the loss function

and the high number of parameters.

A promising future research avenue would be to use our procedure to explore quantum

codes that have not been as extensively studied as qubit stabilizer codes. Qudit quantum

codes are a natural example, where a qudit is the d-dimensional analogue of a qubit. The

stabilizer formalism can be extended to prime (or prime power) qudits [49], which means

that it would be straightforward to generalize our procedure to these cases. Considerably less

research has been done into implementing logical gates in qudit stabilizer codes compared

with qubit stabilizer codes, so we may be able to find more unknown fault-tolerant gates in

the qudit context. In addition, we emphasize that our procedure is not limited to stabilizer

codes, and can be applied to non-stabilizer codes e.g. the codes described in [50].

11

In summary, we have proposed a procedure to automate the discovery of logical gates

using shallow quantum circuits for a given quantum error correcting code. The ansatz

for the logical gate can be tailored to a specific quantum computing architecture to take

advantage of this architecture. We have shown that it can find logical gates available in

the current literature for a number of error correcting codes and it additional produces

new logical gates for the [[5,1,2]] code, the [[6,3,2]] code, and the [[8,3,2]] code. Although

the procedure is simulated classically, we have proposed an extension of this procedure on

quantum computers and we believe an implementation on near-term quantum computers

for error correcting codes requiring a small number of qubits is feasible.

IV. METHODS

A. Experimental setup for Table I

In the simulation experiments shown on Table I (except for the [[5,1,2]] code), the ansatz

for logical operation is transversal, which is naturally fault-tolerant. A transversal ansatz

is formed by using three single qubit rotation gates (Rj = e−iθσj/2, where {σj}j=x,y,z are the

three Pauli matrices) on each physical qubit, where each rotation gate has its own angle

that can be adjusted independently of other rotation gates. For the parameterization of the

logical gate g(θ2), we use the ansatz which parametrizes arbitrary unitary transformation on

the Hilbert space HA. Denote the number of qubits in HA as na. When na = 1, the ansatz

is simply the three single qubit rotation gates mentioned before. When na = 2, the ansatz

is the circuit shown in Fig.2 in [51]. When na = 3, we obtain a circuit parametrization for

arbitrary three qubit unitary gates using the QSD decomposition provided by [52]. When

na > 3, only the first three qubits are selected on which we apply the three qubit ansatz

mentioned previously. This is because the exponential increase of the possible ansatze makes

experimentation infeasible.

We note that for the experiments on the code [[4, 2, 2]] in the table, the encoder used only

encodes one of the two logical qubits and we only experimented on this logical qubits. In

addition, as an early stage proof of principle that our procedure can find entangling gates, we

targeted the logical gate CNOT for this code [[4, 2, 2]] in one experiment In this experiment,

we encoded a pair of qubits in two copies of the [[4,2,2]] code (one encoded qubit per code).

12

We then used a transversal two-qubit gate ansatz, where each gate coupled corresponding

qubits in the different codes. Using this ansatz, we were able to find a transversal logical

CNOT gate between the codes. The physical operation that implemented this logical gate

is simply CNOT gates between corresponding qubits in the different codes. This shows that

our method is capable of finding gates acting between separate codes.

In the case of the [[5,1,2]] code, we used a non-trasversal but still fault-tolerant ansatz

for the logical gate. Specifically, we used a transversal ansatz (as described above) for three

of the qubits, and an parametrization of an arbitrary two-qubit unitary for the final two

qubits. This choice of ansatz was motivated by the structure of the code [34]. The fact that

we found logical gates (including non-Pauli gates, see Table I) using this ansatz shows that

our procedure can work well with ansätze that are tailored to a particular code.

For minimization, we used the minimization algorithm Rotosolve[10] to minimize the

L. Rotosolve specializes in minimizing function of the form 〈0|U(θ)†HU(θ) |0〉, where U

is the unitary transformation of a quantum circuit made from constant unitary gates and

variational rotation gates Rx, Ry, and Rz. It is easy to see our loss function defined in Eq. 1

follows the same form if we consider Trancilla(|φ2,i〉〈φ2,i|) to be the H, and g(θ2) to be the U .

We note that for performance issues, the simulation was carried out using proprietary

software written by the author HX for Rahko Ltd.

B. Tomographically Complete Set

For a quantum channel ε, its action on the any quantum state ρ can be uniquely de-

termined by its action on some {ψi} which forms a tomographically complete set[9]. An

straight-forward example of a tomographically complete set is {ψi} such that {|ψi〉〈ψi|}

forms a basis for all density matrices. In our case, we only need a set of 1 qubit states such

that {|ψi〉〈ψi|} forms a basis for all 2×2 density matrices, since for 2n×2n density matrices,

the tensor products of this set of 1 qubit states form a complete tomography set.

Now we describe the six states, which we call the six Bloch states, which we use as the

initial states for our experiments. These states are,

{|ψi〉〈ψi|} = {|0〉 , |1〉 , |+〉 , |−〉 , |+i〉 , |−i〉} (4)

13

Here we show that any 2 × 2 matrix can be expressed (non-uniquely) by the density

matrices corresponding to the six Bloch states. And therefore, any n-qubit density matrix

can also be expressed by tensor products of the six Bloch states. Therefore, tensor products

of the six Bloch states forms a complete tomography set for n-qubit quantum channel.

Let ~a = (a, b, c, d, e, f}, and let ~b′ be the density matrices of states in {|ψi〉〈ψi|}. We can

check that,

~a · ~b′ =

 a+ c
2

+ d
2

+ e
2

+ f
2

c
2

+ fi
2
− d

2
− ie

2

c
2

+ ei
2
− d

2
− if

2
b+ c

2
+ d

2
+ e

2
+ f

2

 .

To express any 2×2 matrix ρ as linear combinations of ~b′, we consider the linear equation

~a · ~b′ = ρ. It can be written as A · ~a = ~c, where ~c is the vector of elements of ρ, A is the

coefficient matrix:

A =

1 0 1

2
1
2

1
2

1
2

0 0 1
2
−1

2
− i

2
i
2

0 0 1
2
−1

2
i
2
− i

2

0 1 1
2

1
2

1
2

1
2

 .

Since the rank of A is 4, the rank of the augmented matrix [A|c] is also 4, hence the above

linear equation A · ~a = ~c has infinitely many solutions.

[1] P. W. Shor, Physical review A 52, R2493 (1995).

[2] A. R. Calderbank and P. W. Shor, Physical Review A - Atomic, Molecular, and Optical

Physics 54, 1098 (1996), arXiv:9512032 [quant-ph].

[3] A. Steane, Proceedings of the Royal Society of London. Series A:

Mathematical, Physical and Engineering Sciences 452, 2551 (1996),

https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1996.0136.

[4] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik,

and J. L. O’Brien, Nature Communications 5, 4213 (2014).

[5] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gam-

betta, Nature 549, 242 (2017).

[6] Y. Li and S. C. Benjamin, Phys. Rev. X 7, 021050 (2017).

14

http://dx.doi.org/10.1103/PhysRevA.54.1098
http://dx.doi.org/10.1103/PhysRevA.54.1098
http://arxiv.org/abs/9512032
http://dx.doi.org/10.1098/rspa.1996.0136
http://dx.doi.org/10.1098/rspa.1996.0136
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1996.0136
http://dx.doi.org/ 10.1038/ncomms5213
http://dx.doi.org/10.1038/nature23879
http://dx.doi.org/10.1103/PhysRevX.7.021050

[7] A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo, J. M. Chow, and J. M. Gambetta,

Nature 567, 491 (2019).

[8] S. McArdle, S. Endo, A. Aspuru-Guzik, S. Benjamin, and X. Yuan, “Quantum computational

chemistry,” (2018), arXiv:1808.10402.

[9] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th

Anniversary Edition, 10th ed. (Cambridge University Press, New York, NY, USA, 2011).

[10] M. Ostaszewski, E. Grant, and M. Benedetti, “Quantum circuit structure learning,” (2019),

arXiv:1905.09692.

[11] K. M. Nakanishi, K. Fujii, and S. Todo, “Sequential minimal optimization for quantum-

classical hybrid algorithms,” (2019), arXiv:1903.12166.

[12] R. L. Kosut, A. Shabani, and D. A. Lidar, Phys. Rev. Lett. 100, 020502 (2008).

[13] S. Taghavi, R. L. Kosut, and D. A. Lidar, IEEE Transactions on Information Theory 56,

1461 (2010).

[14] R. L. Kosut and D. A. Lidar, Quantum Information Processing 8, 443 (2009).

[15] M. Berta, F. Borderi, O. Fawzi, and V. Scholz, “Semidefinite programming hierarchies for

quantum error correction,” (2018), arXiv:1810.12197.

[16] P. D. Johnson, J. Romero, J. Olson, Y. Cao, and A. Aspuru-Guzik, “Qvector: an algorithm

for device-tailored quantum error correction,” (2017), arXiv:1711.02249.

[17] J. Bausch and F. Leditzky, “Quantum codes from neural networks,” (2018), arXiv:1806.08781.

[18] T. Fösel, P. Tighineanu, T. Weiss, and F. Marquardt, Phys. Rev. X 8, 031084 (2018).

[19] G. Torlai and R. G. Melko, Phys. Rev. Lett. 119, 030501 (2017).

[20] N. P. Breuckmann and X. Ni, Quantum 2, 68 (2018).

[21] R. Sweke, M. S. Kesselring, E. P. L. van Nieuwenburg, and J. Eisert, “Reinforcement learning

decoders for fault-tolerant quantum computation,” (2018), arXiv:1810.07207.

[22] P. Baireuther, M. D. Caio, B. Criger, C. W. J. Beenakker, and T. E. O’Brien, New Journal

of Physics 21, 013003 (2019).

[23] P. Baireuther, T. E. O’Brien, B. Tarasinski, and C. W. J. Beenakker, Quantum 2, 48 (2018).

[24] K. Vogel and H. Risken, Phys. Rev. A 40, 2847 (1989).

[25] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Phys. Rev. Lett. 87, 167902 (2001).

[26] D. Gottesman and I. Chuang, “Quantum digital signatures,” (2001), arXiv:quant-ph/0105032.

[27] M. S. Kesselring, F. Pastawski, J. Eisert, and B. J. Brown, Quantum 2, 101 (2018),

15

http://dx.doi.org/ 10.1038/s41586-019-1040-7
http://arxiv.org/abs/arXiv:1808.10402
http://arxiv.org/abs/arXiv:1905.09692
http://arxiv.org/abs/arXiv:1903.12166
http://dx.doi.org/10.1103/PhysRevLett.100.020502
http://dx.doi.org/10.1109/TIT.2009.2039162
http://dx.doi.org/10.1109/TIT.2009.2039162
http://dx.doi.org/10.1007/s11128-009-0120-2
http://arxiv.org/abs/arXiv:1810.12197
http://arxiv.org/abs/arXiv:1711.02249
http://arxiv.org/abs/arXiv:1806.08781
http://dx.doi.org/ 10.1103/PhysRevX.8.031084
http://dx.doi.org/10.1103/PhysRevLett.119.030501
http://dx.doi.org/10.22331/q-2018-05-24-68
http://arxiv.org/abs/arXiv:1810.07207
http://dx.doi.org/10.1088/1367-2630/aaf29e
http://dx.doi.org/10.1088/1367-2630/aaf29e
http://dx.doi.org/10.22331/q-2018-01-29-48
http://dx.doi.org/10.1103/PhysRevA.40.2847
http://dx.doi.org/10.1103/PhysRevLett.87.167902
http://arxiv.org/abs/arXiv:quant-ph/0105032
http://dx.doi.org/10.22331/q-2018-10-19-101

arXiv:1806.02820.

[28] M. Grassl, “Bounds on the minimum distance of linear codes and quantum codes,” Online

available at http://www.codetables.de (2007), accessed on 2019-12-09.

[29] D. Gottesman, Phy. Rev. A 54, 1862 (1996).

[30] A. M. Steane, Phys. Rev. A 54, 4741 (1996).

[31] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. Sloane, Physical Review Letters 78,

405 (1997), arXiv:9605005 [quant-ph].

[32] M. Grassl, T. Beth, and T. Pellizzari, Physical Review A - Atomic, Molecular, and Optical

Physics 56, 33 (1997), arXiv:9610042 [quant-ph].

[33] L. Vaidman, L. Goldenberg, and S. Wiesner, Phys. Rev. A 54, R1745 (1996).

[34] A. Kubica, Private communication (2019).

[35] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Phys. Rev. Lett. 77, 198 (1996).

[36] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Physical Review A -

Atomic, Molecular, and Optical Physics 54, 3824 (1996), arXiv:9604024 [quant-ph].

[37] T. J. Yoder and I. H. Kim, Quantum 1, 2 (2017).

[38] C. Vuillot and N. P. Breuckmann, “Quantum pin codes,” (2019), arXiv:1906.11394.

[39] A. Kubica, B. Yoshida, and F. Pastawski, New Journal of Physics 17, 083026 (2015),

arXiv:1503.02065.

[40] E. Campbell, “The smallest interesting colour code,” Online available at https://

earltcampbell.com/2016/09/26/the-smallest-interesting-colour-code/ (2016), ac-

cessed on 2019-12-09.

[41] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, “Open quantum assembly

language,” (2017), arXiv:1707.03429.

[42] A. Kubica and M. E. Beverland, Physical Review A - Atomic, Molecular, and Optical Physics

91, 032330 (2015), arXiv:1410.0069.

[43] M. Vasmer and D. E. Browne, Phys. Rev. A 100, 012312 (2019).

[44] N. Rengaswamy, R. Calderbank, M. Newman, and H. D. Pfister, “On optimality of css codes

for transversal t,” (2019), arXiv:1910.09333.

[45] S. Bravyi and J. Haah, Physical Review A - Atomic, Molecular, and Optical Physics 86,

052329 (2012).

[46] E. T. Campbell and M. Howard, Physical Review A 95, 022316 (2017), arXiv:1606.01904.

16

http://arxiv.org/abs/1806.02820
http://www.codetables.de
http://dx.doi.org/10.1103/PhysRevA.54.4741
http://dx.doi.org/10.1103/PhysRevLett.78.405
http://dx.doi.org/10.1103/PhysRevLett.78.405
http://arxiv.org/abs/9605005
http://dx.doi.org/10.1103/PhysRevA.56.33
http://dx.doi.org/10.1103/PhysRevA.56.33
http://arxiv.org/abs/9610042
http://dx.doi.org/10.1103/PhysRevA.54.R1745
http://dx.doi.org/10.1103/PhysRevLett.77.198
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://arxiv.org/abs/9604024
http://dx.doi.org/10.22331/q-2017-04-25-2
http://arxiv.org/abs/arXiv:1906.11394
http://dx.doi.org/10.1088/1367-2630/17/8/083026
http://arxiv.org/abs/1503.02065
https://earltcampbell.com/2016/09/26/the-smallest-interesting-colour-code/
https://earltcampbell.com/2016/09/26/the-smallest-interesting-colour-code/
http://arxiv.org/abs/arXiv:1707.03429
http://dx.doi.org/10.1103/PhysRevA.91.032330
http://dx.doi.org/10.1103/PhysRevA.91.032330
http://arxiv.org/abs/1410.0069
http://dx.doi.org/10.1103/PhysRevA.100.012312
http://arxiv.org/abs/arXiv:1910.09333
http://dx.doi.org/10.1103/PhysRevA.86.052329
http://dx.doi.org/10.1103/PhysRevA.86.052329
http://dx.doi.org/10.1103/PhysRevA.95.022316
http://arxiv.org/abs/1606.01904

[47] E. T. Campbell and M. Howard, Physical Review Letters 118, 060501 (2017),

arXiv:1606.01906.

[48] B. Criger and B. M. Terhal, Quantum Information and Computation 16, 1261 (2016),

arXiv:1604.04062.

[49] D. Gottesman, in Quantum Computing and Quantum Communications, edited by C. P.

Williams (Springer Berlin Heidelberg, Berlin, Heidelberg, 1999) pp. 302–313.

[50] A. Cross, G. Smith, J. A. Smolin, and B. Zeng, IEEE Transactions on Information Theory

55, 433 (2009).

[51] V. V. Shende, I. L. Markov, and S. S. Bullock, (2003), 10.1103/PhysRevA.69.062321,

arXiv:quant-ph/0308033.

[52] R. Iten, O. Reardon-Smith, L. Mondada, E. Redmond, R. S. Kohli, and R. Colbeck, “Intro-

duction to universalqcompiler,” (2019), arXiv:1904.01072.

ACKNOWLEDGMENTS

We wish to acknowledge the usage of high performance computing cluster from Depart-

ment of Computer Science, University College London in completion of this project. H.C.

acknowledges the support though a Teaching Fellowship from UCL. Research at the Perime-

ter Institute is supported in part by the Government of Canada through the Department

of Innovation, Science and Economic Development Canada and by the Province of Ontario

through the Ministry of Economic Development, Job Creation and Trade. N.P.B. is sup-

ported by the UCLQ Fellowship. E.G. is supported by the UK Engineering and Physical

Sciences Research Council (EPSRC) [EP/P510270/1]

17

http://dx.doi.org/10.1103/PhysRevLett.118.060501
http://arxiv.org/abs/1606.01906
http://dx.doi.org/10.26421/QIC16.15-16
http://arxiv.org/abs/1604.04062
http://dx.doi.org/ 10.1109/TIT.2008.2008136
http://dx.doi.org/ 10.1109/TIT.2008.2008136
http://dx.doi.org/10.1103/PhysRevA.69.062321
http://arxiv.org/abs/arXiv:quant-ph/0308033
http://arxiv.org/abs/arXiv:1904.01072

	Machine learning logical gates for quantum error correction
	Abstract
	I Introduction
	II Results
	A Results for small codes

	III Discussion
	IV Methods
	A Experimental setup for Table ??
	B Tomographically Complete Set

	 References
	 Acknowledgments

