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Jumps or staleness? ∗

Aleksey Kolokolov† Roberto Renò‡

February 3, 2023

Abstract

Even moderate amounts of zero returns in financial data, associated with stale prices, are

heavily detrimental for reliable jump inference. We harness staleness-robust estimators to re-

appraise the statistical features of jumps in financial markets. We find that jumps are much

less frequent and much less contributing to price variation than what found by the empirical

literature so far. In particular, the empirical finding that volatility is driven by a pure jump

process is actually shown to be an artifact due to staleness.

JEL classification: C58; C22

Keywords: Staleness; Multipower variation; Jump testing; Jump activity index

∗We thank Torben Andersen, Federico Bandi, Massimiliano Caporin, Cecilia Mancini, Dobrislav Dobrev, Marcelo
Medeiros, the participants at the SoFiE Conference 2017 (New York, June 21-23), the SoFiE Conference 2018
(Lugano, June 12-14), Quantitative Finance and Financial Econometrics – QFFE 2018 (Marseille, 30 May - 1
June), 10th World Congress of the Bachelier Finance Society (Dublin, 16-20 July, 2018) and the XIX Quantitative
Finance Workshop (Rome, 24-26 January, 2018), and seminar partecipants at the Pontifical Catholic University,
Rio de Janeiro (2019) and BI Norwegian Business School, Oslo (2022). R. Renò acknowledges PRIN funding from
MIUR, Italy, HiDEA Project 2017RSMPZZ. Errors and omissions remain our own.
†Alliance Manchester Business School, Booth St W, Manchester M15 6PB, phone: +44 161 2750436, e-mail:

Aleksey.kolokolov@manchester.ac.uk
‡ESSEC Business School, e-mail: reno@essec.edu



1 Introduction

In empirical finance, it is customary to sample prices on evenly spaced grids, such as one or

five minutes. When doing so many price returns are zero. For the stocks belonging to S&P500

in our sample, the percentage of zero returns at one minute is 33.96%; at five minutes, it is

16.08%; and at the relatively low frequency of ten minutes, it is still 11.52%. Zeros are a non-

negligible feature of high-frequency data, even for the most liquid stocks. Their omnipresence is

caused by price staleness, an economically justified phenomenon (Bandi, Pirino, and Renò, 2017),

and price discreteness (Bandi, Kolokolov, Pirino, and Renò, 2020 discuss how to separate the

two phenomena). Nevertheless, the vast majority of models used in finance postulate the mere

impossibility of zero returns in the price dynamics. Exceptions are models with rounded prices

(Delattre and Jacod, 1997; Li and Mykland, 2015), the uncertainty zone literature (Robert and

Rosenbaum, 2011), and zero-augmented models, as in Hautsch, Malec, and Schienle (2013) and,

more recently, Catania, Di Mari, and Santucci de Magistris (2020), Sucarrat and Grønneberg

(2022) and Francq and Sucarrat (2022). What are the dangers of ignoring the presence of zeros

in the data generating process?

This paper answers this question by focusing on the impact of price staleness on jumps inference.

Jumps and staleness are both essential ingredients of the data generating process. Jumps are

discontinuities in the price, which materialize either in the form of sudden, large returns, or in

the form of small, but infinitely many, discontinuities (see, e.g., Aït-Sahalia and Jacod, 2012).

Staleness refers to the absence of movement, and materializes in the form of zero returns. The

presence of zero returns has two effects on the return distribution. The first is inflating the

distribution at zero. The second, which is more subtle but inherently linked to the linear scaling

law of the variance of the Brownian motion, is that non-zero returns following a zero have a larger

variance, which inflates the tails of the distribution of observed returns. Both effects concur in

making the distribution more leptokurtic than it actually is, which is the same effect of jumps. It

is then not surprising that jump-diffusion models which do not account for staleness require more

(or more active) jumps to fit the data. We provide formal support for this intuition by exploring

the bias induced by staleness on multipower variation, a successful tool in financial econometrics

(see, e.g., Woerner, 2006; Barndorff-Nielsen and Shephard, 2004; Barndorff-Nielsen, Graversen,

Jacod, and Shephard, 2006), as well as on alternative tools used for jump inference.

Our paper provides several contributions to the existing literature. On the theoretical side,

we provide limit theorems for multipower variation under a flexible data generating process
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which includes staleness. We then introduce new multipower estimators which are designed

to remove the biases due to the presence of staleness. We borrow the return scaling from

Hayashi, Jacod, and Yoshida (2011) and Levine, Wang, and Zou (2016). With respect to Hayashi,

Jacod, and Yoshida (2011), we extend the analysis to multipower variation. Multipower variation

with random sampling is also considered in Levine, Wang, and Zou (2016), but under restrictive

assumptions on the duration between observation times which are relaxed here. The correction

we propose is handy and requires no further computational effort. The staleness-robust multi-

power estimator coincides with the traditional one if there are no zeros in the time series under

investigation.

Further, we study jump inference in finite samples using simulations. We extend the work of

Theodosiou and Zikes (2011) and Maneesoonthorn, Martin, and Forbes (2020) by adding stale-

ness in the data generating process, showing that this changes the ranking of various jump tests

considerably, and studying various estimators of the jump activity index (JAI, see Todorov and

Tauchen, 2010 for a formal definition of this quantity). Similarly to Theodosiou and Zikes (2011),

we show that popular jump tests (such as those in Barndorff-Nielsen and Shephard, 2006, Lee and

Mykland, 2008 and Aït-Sahalia and Jacod, 2009b) are severely biased toward rejection of the null

(that is, detecting more jumps) when zeros are included in the data generating process. However,

we also show that tests based on wild bootstrap (Podolskij and Ziggel, 2010; Dovonon, Gonçalves,

Hounyo, and Meddahi, 2019) as well as tests based on the correction we propose are robust to the

presence of zeros. Regarding existing JAI estimators, we show that they are negatively biased in

the presence of zero returns, and increasingly so when zeros are more frequent. When we apply

the proposed correction to the considered estimators we remove this bias, thus allowing to truly

assess the nature of the main driving force of the returns’ shocks.

Our empirical contribution is then to reconsider jump features in financial time series using our

staleness-robust multipower estimator. The examined assets are stocks belonging to the S&P

500 index, the SPY exchange-traded fund (that is, the SPDR S&P 500 trust), and the VIX

index as computed by CBOE. We show that, after correcting for staleness, (i) much fewer jumps

are detected, and (ii) the contribution of jumps to total quadratic variation is much smaller.

Our results point out that the discrepancy in measures of jump variation at different frequency

found in the literature (Christensen, Oomen, and Podolskij, 2014) is a spurious by-product of

the presence of staleness in high-frequency returns. We further show that estimates of the jump

activity index on all our assets, including the VIX index, are not significantly different from 2

(the value implied by the presence of the Brownian motion) after taking staleness properly into
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account. In particular, traditional estimators of the jump activity index estimate a value lower

than 2 for the VIX index (Todorov and Tauchen, 2011; Andersen, Bondarenko, Todorov, and

Tauchen, 2015; Todorov, 2015), which would imply that the dynamics of volatility is driven by

a pure, infinite activity jump process, in contrast with traditional stochastic volatility models

typically assumed in asset pricing. However, our empirical analysis is very sharp in showing that

traditional activity estimates are affected by the fraction of zero returns in the data, being strongly

negatively correlated with this fraction. We thus argue that the alleged evidence of pure jumps in

volatility is an artifact due to the unaccounted presence of staleness. Using robustified estimators,

the relation between the level of staleness and the estimated activity disappears, and the activity

index of the VIX is invariably estimated to be indistinguishable from 2 for every day in the sample,

in keeping with the inescapable presence of a Brownian motion in the price and volatility dynamics.

The main limitation of our proposed correction is that it may deliver less precise estimates of the

quantities of interest when the level of price discreteness (rounding) is too aggressive, as we show

using simulations. Indeed, rounding is a form of friction which generates zeros but with different

statistical properties with respect to our staleness model. Theoretical treatment of rounding is

particularly challenging (see, e.g. Delattre and Jacod, 1997; Li and Mykland, 2015). To overcome

this difficulty, we follow Bandi, Kolokolov, Pirino, and Renò (2020) and measure the strength

of the rounding in the data using so-called Rounding Impact Ratio (RIR) prior to applying the

correction. We show that, for realistic values of the RIR, the correction we propose is more reliable

than traditional estimators. Moreover, we provide an heuristic solution to the rounding problem,

which is dependent on the observed RIR. This improves the precision of the estimator we propose

especially in cases in which rounding is particularly aggressive.

The rest of the paper is structured as follows. Section 2 lays down the theory for multipower

estimators and their robustified counterparts in the presence of staleness. Section 3 shows the

distortions of traditional jump statistics based on multipower estimators on realistic simulations

of the price process. Section 4 studies similar distortions on alternative jump statistics which do

not use multipower. Section 5 studies the impact of price discreteness on our new staleness-robust

estimator. Section 6 containes our empirical application which reconsiders the estimates of jump

features in financial data. Section 7 concludes. Three appendices contain mathematical proofs,

central limit theorems and a correction robust to the presence of rounding respectively.
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2 Multipower variation under staleness

We assume the efficient log-price process Xe
t is a Brownian semimartingale, evolving (in the stan-

dard probabilistic setting) as

Xe
t = Xe

0 +

∫ t

0

µs ds+

∫ t

0

σsdWs, (2.1)

and the volatility process σ satisfies the equation:

σt = σ0 +

∫ t

0

µ′s ds+

∫ t

0

σ′sdWs +

∫ t

0

ν ′sdVs, (2.2)

where Wt and Vt are independent Brownian motions, µ, µ′, σ′ and ν ′ are adapted càdlàg bounded

processes. The observations are recorded on an equally spaced mesh ti = i∆n, i = 0, . . . n, of n+ 1

points, with ∆n = T/n. Price staleness is introduced as in the model in Bandi, Pirino, and Renò

(2017), that is we assume that the observed log-price follows:

Xti = Xe
ti

(1−Bti) +BtiXti−1
, (2.3)

where (Bti) is a triangular array of Bernoulli random variables, for i = 1, . . . , n, such that, as

n → ∞, 1
T

n∑
i=1

∆nBti

p−→ p∅, with p∅ ∈ [0, 1]. We define the returns of the observed price process

as ∆iX = X(i+1)T/n − XiT/n. In what follows, without loss of generality, we set T = 1. For a

vector of m positive real numbers r = [r1, ..., rm], and a stochastic process X, we define realized

multipower variation as

MV(X; r) =
1

n

n−m+1∑
i=1

∣∣√n ·∆iX
∣∣r1 . . . ∣∣√n ·∆i+m−1X

∣∣rm . (2.4)

In the presence of zeros, multipowers are biased estimators of integrated volatility powers. If

the Bernoulli variates are independent and identically distributed (i.i.d.), the bias can be derived

explicitly, that is we can prove that:1

MV(X; r)
p−→

(
m∏
j=1

µrj

)
(1− p∅)m+1

p∅
Li− r1

2

(
p∅
) ∫ 1

0

|σs|r+ ds, (2.5)

where r+ = r1 + ...+ rm, and Lis (z) denotes the polylogarithm function of order s and argument

z, and where µs = 2s/2Γ((1+s)/2)
Γ(1/2)

. The multiplicative bias only depends on the first power r1, the

1Proof is available upon request.
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Figure 1: The multiplicative bias of power variation (left panel) and bipower
variation with equal powers (right panel) as a function of the powers for different
staleness probability, p∅.

probability of zero p∅, and the number of powers m. It is produced by two competing effects.

The first is the attenuation due to the fact that the product of consecutive returns may be zero

because one of them is zero. This is a downward multiplicative bias equal to (1 − p∅)m. The

second is a volatility inflation effect, due to the fact that when the product of consecutive returns

is non-zero, the first return in the multiplication is computed by the difference of prices whose

distance depends on the run length of zero returns preceding the first return. This can be an

upward or downward multiplicative bias, depending on the power r1, and, in the i.i.d. case, this

is equal to Li− r1
2

(
p∅
)

(1− p∅)/p∅. Since only the first return is affected by prior staleness, the bias

depends only on the first power r1, with the remaining powers playing no role. There is no bias

for realized variance since (r1 = 2 and m = 1) since Li−1

(
p∅
)

= p∅/(1− p∅)2.

Figure 1 displays the multiplicative bias for power variation (left) and bipower variation (right) as

a function of the first power, for various choices of the probability of zero p∅. For power variation,

the estimator is asymptotically smaller than the estimation target when r < 2, and larger when

r > 2. For bipower variation, the estimator is unbiased when r1 ≈ 3.25 and downward biased for

smaller first power. In the typical case used in the empirical literature (r1 = r2 = 1), bipower

variation is downard biased.

While the i.i.d. case is natural to provide intuitions, it is highly unrealistic in practice (Kolokolov,

Livieri, and Pirino, 2020; Bandi, Kolokolov, Pirino, and Renò, 2020). Below we propose a cor-

rection to multipower estimators which is designed to work for a more realistic specification of

Bernoulli variables presented by Assumption 1.
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Assumption 1. Assume that (Bti) is a triangular array of Bernoulli random variables with

E [Bti|pti ] = pti, where pt is a stochastic process taking values in [0, 1) and evolving as

pt = p0 +

∫ t

0

µ′′sds+

∫ t

0

ν ′′s dVs +

∫ t

0

v′′sdZs, (2.6)

where Zt is a Brownian motion independent from Wt and Vt (which appear in equations (2.1) and

(2.2)), µ′′, ν ′′ and v′′ are adapted càdlàg bounded processes, and conditionally on pt the Bernoulli

random variables Bti and Btj are independent ∀ti 6= tj.

Assumption 1 is general enough to allow for standard features of staleness in the data. For

example, the common factor in the shocks to volatility and the shocks to the probability of zeros

allows for correlation between stale prices and the volatility level. Our assumptions also allow for

the joint presence of a leverage effect. Moreover, the assumption allows introducing a common

intraday diurnal pattern in zeros and volatility (typically, more zeros are observed in periods of

low volatility around lunch hours). However, Assumption 1 does not allow zeros to be correlated

with the Brownian component of the efficient price, which is ruling out, e.g., rounding. Section 5

is dedicated to study the impact of price discreteness on our results.

Given the initial time grid of price observations {t0, t1, . . . , tn}, we define the new stochastic grid

of Nn points {τ0, . . . , τNn} such that returns are non-zero: τ0 = tk, k = min {j : Btj = 0}, and

τl = tk, k = min {j : Btj = 0, tj > τl−1}. Let ∆τiX = Xτi −Xτi−1
and ∆(n, i) = τi − τi−1 denote

respectively non-equispaced non-zero returns and their durations (the variables ∆(n, i) can also be

interpreted as the run lengths of the Bernoulli variates, that is the numbers of consecutive zeros

after a non-zero return, multiplied by ∆n). Staleness-robust multipower variation are defined using

a generalization of the power estimator of Hayashi et al. (2011). However, we need to adapt their

theory to allow for dependency between the Bernoulli variates and price volatility (which violates

Assumption C in their paper, see also the discussion in Li, Mykland, Renault, Zhang, and Zheng,

2014). This is done in the following theorem.

Theorem 1. Assume that Xt is defined by equations (2.1) and (2.2) and Assumption 1 holds. Let

f be a continuous function on Rm for some m ≥ 1, which satisfies

|f (x1, . . . , xm)| ≤ C

m∏
j=1

(1 + ‖xj‖p) , (2.7)
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for some p > 0 and C > 0. Define the robustified multipower variation as

V′ (f)n = ∆n

Nn−m+1∑
i=1

f
(
∆(n, i)−1/2∆τiX, . . . ,∆(n, i+m− 1)−1/2∆τi+m−1

X
)
, (2.8)

where ∆n denotes a deterministic sequence of numbers, such that, for q = 1, 2,

Nn∑
i=1

E
[(

∆(n, i)−∆n

)q |Fτi−1

] p−→ 0.

Then,

V′ (f)n
p−→
∫ 1

0

ρσu(f)du, (2.9)

where ρσu(f) = E [f(u1, . . . , um)] with u1, . . . , um being i.i.d. N (0, σ2
u) random variables.

The estimator (2.8) does not exactly coincide with the Hayashi et al. (2011) estimator in the

case of power variation because of the scaling factor. The scaling factor we suggest, borrowed

from Levine, Wang, and Zou (2016), has the simple advantage that the covariance among different

robustified multipowers is such that the asymptotic distribution of the test-statistics of Barndorff-

Nielsen and Shephard (2006) (used below in our empirical application) needs not to be changed. In

practice, one can estimate ∆n, e.g., with the sample average of ∆(n, i)’s. However, estimating ∆n

is not required for jump-testing and JAI estimation as the constant appears in both numerator and

denominator of the tests statistics and cancels when dividing. Further discussion and associated

Central Limit Theorems are presented in Appendix B.

In the case of multipowers, the estimator (2.8) takes the form:

MVc(X; r) = ∆n

Nn−m+1∑
i=1

∣∣∆(n, i)−1/2∆τiX
∣∣r1 . . . ∣∣∆(n, i+m− 1)−1/2∆τi+m−1

X
∣∣rm , (2.10)

and it coincides with that in Eq. (2.4) when Bti = 0 ∀i identically, that is in the absence of

zeros. However, under the presence of price staleness, MVc(X ′; [2]) differs from standard realized

variance, although it converges to the same limit. The objects of econometric interest are the

integrated volatility powers of model (2.1). When the model is contaminated by staleness, as

in Eq. (2.3), traditional estimated volatility powers (2.4) are distorted as shown by Theorem 1.

Inference about the object of interest (volatility powers of the efficient price) is restored by the

estimator (2.10).
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2.1 Comparison to tick-time sampling

Our model for staleness can be viewed as a specific form of implicit random sampling. In our

model, the price is observed on a (random) subset of a pre-specified deterministic grid, and the

randomness in the observation times is driven by the Bernoulli variables according to Eq. (2.3).

The bias in multipower estimators is thus generated by the randomness of the sampling times, as

it is the case with realized estimators when random sampling is explicit and observation grids are

not equally spaced. Explicit random sampling is more typically referred as tick-time or event-time

sampling in the literature, see e.g. Aït-Sahalia and Mykland, 2003 and Griffin and Oomen, 2008

for a discussion. In the case of explicit random sampling, it is natural to rescale returns with

the exact distance between observations, as we do in Eq. (2.10). This is done, for example, in

Hayashi, Jacod, and Yoshida (2011) to study power variation, and in Levine, Wang, and Zou

(2016) to study multipower variation under iid sampling times.

An alternative route to the implicit random sampling we propose would be to define multipower

estimators under explicit random sampling and study the properties of such estimators. How-

ever, our approach based on (randomized) calendar time is motivated by several reasons. The

first is that, in many instances, the empirical analysis is constrained by data availability, which

typically comes on pre-specified grids in calendar time (e.g., one-minute data). The second is

that our theoretical treatment stresses that the usual grids used in empirical analysis, defined in

calendar time, are actually random grids because of price staleness, which originates biases (due

to random sampling) which need to be corrected. The third one is that calendar time is the norm

in empirical work. Relevant exceptions that use random sampling for realized measures are Li,

Mykland, Renault, Zhang, and Zheng (2014), who use power variations to test for endogeneity

of sampling times; Andersen, Dobrev, and Schaumburg (2009); Hong, Nolte, Taylor, and Zhao

(2021), who use price durations to estimate integrated volatility powers; Andersen, Dobrev, and

Schaumburg (2012) who use robust filtering based on nearest neighbors; and Li, Nolte, Nolte, and

Yu (2022), who propose a jump test based on event time. The fourth reason is that, even if we

have the full transaction record at our disposal, it is common to do sparse sampling to soften the

impact of frictions (market microstructure noise, price discreteness, time endogeneity) which are

absent in our theoretical treatment. Sparse sampling is less common in tick time, since it may be

influenced by the properties of the arrival times (for example, when trading switches from intense

to infrequent). Sparse sampling in calendar time is more natural. It transforms trade inaction

into staleness, a feature that is accommodated by our theory.

The theoretical properties of the implicit random sampling scheme associated with staleness are
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determined by the assumptions we impose on the triangular array of Bernoulli variables. For

example, iid Bernoulli satisfy the conditions of Theorem 1 and Theorem 2 of Li, Mykland, Renault,

Zhang, and Zheng (2014) (the iid case is Example 3 in their paper), so we can use their test for

endogeneity.2 Since we assume that the Bernoulli variables are independent from the Brownian

motion in the efficient price, our implicit random sampling is non-endogenous in their terminology.

The Li, Mykland, Renault, Zhang, and Zheng (2014) test on five-minute grids does not reject the

null of non-endogenity. This is consistent with the idea, discussed above, that sparse sampling is

a simple solution against frictions that contaminate the standard price diffusion. In Section 5, we

will specifically discuss the impact of price discreteness.

3 Distortions to jump inference

We now assess the distortion to jump inference produced by staleness in finite samples. To this

purpose we simulate 5-minute returns on the latent price process Xt for 6.5 hours of trading using a

stochastic volatility model. Our settings are borrowed from Caporin, Kolokolov, and Renò (2017),

who adopted the stochastic volatility model from Andersen, Benzoni, and Lund (2002) enlarged

by the presence of intraday effect in volatility. The efficient log-price process Xt is specified as:

dXt = µdt+ γt
√
VtdW1,t, (3.1)

d log Vt = (α− β log Vt)dt+ ηdW2,t, (3.2)

where W1,t and W2,t are correlated Brownian motions and γt is the adjustment for the intraday

effect. The parameters of the stochastic volatility model are from Table IV of Andersen et al.

(2002), corresponding to the column SV1J, ρ 6= 0. The intraday effect takes the following form:

γt =
1

1033

(
0.1271t2 − 0.1260t+ 0.1239

)
, (3.3)

as estimated by Caporin, Kolokolov, and Renò (2017) on S&P500 index data.

We add zeros with Eq. (2.3). The generated probability of observing a zero return is time

varying, and it follows a deterministic inverted U-shape intraday pattern. We model time-varying

probability of zeros as:

pt = pU · γ(p)
t , (3.4)

2The generalization of Theorem 2 of Li, Mykland, Renault, Zhang, and Zheng (2014) under Assumption 1 is left
for further research. Indeed, we cannot apply directly Theorem 2 as it is, since sampling times are not independent
from the efficient price, due to the asssumed dependence between Bernoulli variates and volatility shocks.
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where pU is the constant giving the unconditional probability of staleness and γ
(p)
t is the deter-

ministic function of time which provides the inverse U-shape pattern. γ(p)
t is defined as γ(p)

t = γ0
γt
,

where γt is the intraday effect in volatility (3.3) and γ0 is the normalizing constant which ensures

that
∫
γ

(p)
t = 1 (the integral is taken over one trading day), so on average the daily number of

zeros is close to pU . For better illustrating the effect of staleness we consider different values of

the unconditional probability pU .

We start by looking at two paradigmatic examples, namely the BNS test of Barndorff-Nielsen and

Shephard (2006) and LM test of Lee and Mykland (2008). The BNS test is defined, as suggested

in Huang and Tauchen (2005), as:

BNS =
1− MV(X;[1 1])

MV(X;[2])√
θ
n

max
(

1, MV(X;[4/3 4/3 4/3])
MV(X;[1 1])2

) , (3.5)

where θ ≈ 2.61. Intuitively, the presence of zeros due to staleness inflates the numerator since,

while realized variance is unbiased, bipower variation is downard biased. Additionally, staleness

deflates the denominator since the quarticity estimate is also downard biased. The joint combi-

nation of these two effects inflates the BNS test dramatically, distorting it toward rejection of the

null, with the distortion increasing with the unconditional probability of staleness. The solution

to this issue is to use the staleness-robust multipower estimators in place of standard ones in (3.5).

The LM test represent a different class of jump detection methodologies including the tests of Lee

and Mykland (2008), Andersen, Bollerslev, and Dobrev (2007), and Lee and Hannig (2010), based

on comparing the magnitude of the absolute value of the returns to an estimate of spot volatility.

The statistic L(i), which tests at time ti whether there was a jump on an interval (ti−1, ti), is

defined as:

L(i) =
∆iX

1
K−2

i−1∑
j=i−K+2

|∆jX| |∆j−1X|
, i = K, . . . , n. (3.6)

where K is a tuning parameter determining a window size over which the instantaneous volatility

is estimated. As soon as zeros appear among the K increments preceding ti−1, the spot volatility

in the denominator of L(i) is underestimated. Hence, under staleness, many of L(i)’s (and, as a

consequence, max
i

(L(i))) are distorted toward rejection of the null. We again correct by replacing

the bipower estimator in the denominator of (3.6) with its corrected version.

Figure 2 clearly shows the danger of ignoring zeros. Both the BNS and the LM test statistics

are heavily distorted. For the BNS test, with an average staleness of 10% we have 25.92% of
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Figure 2: Quantiles (median, 5% and 95%) of daily jump tests in their
original and corrected version, with the 99.9% rejection line, on simulated 5-
minute returns, as a function of the generated probability of staleness. Panel
A: BNS test. Panel B: LM test. Panel C and D report rejection rates of BNS
test and LM test respectively at confidence level 1%.

false positives; and a staleness larger than 40% would imply a detection of spurious jumps almost

automatically. The situation for the LM test is not any better. On the other hand, the corrected

tests in which staleness is fully taken into account present no distortions at both frequencies, even

for extremely large probability of staleness, with a median centered in zero and a distribution close

to a standard normal.

This staleness-induced distortion toward spurious jump detection is typically shared by other jump

testing strategies. Figure 3 compares the distributions of different tests estimated on our simula-

tions with 10% of zeros. These tests are directly comparable since their asymptotic distribution

should be standard normal under the assumed null in which jumps are absent. In addition to

the BNS, reported as benchmarks, we consider: i) the ADS median test proposed by Andersen,

Dobrev, and Schaumburg (2012); ii) the ASJ test of Aït-Sahalia and Jacod (2009b), which uses

the ratio of power variations at different frequency; iii) the PZ test of Podolskij and Ziggel (2010),

which is based on truncated variation; iv) the DGHM test of Dovonon, Gonçalves, Hounyo, and

Meddahi (2019), which is based on wild bootstrap of bipower variation.3 The ADS test compares
3 The ADS test we implement in Figure 3 is based on Eq. (6) in Andersen, Dobrev, and Schaumburg (2012),
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realized variance with an estimator of integrated variance based on the median of a number of

consecutive absolute intraday returns. The median estimator was purposely proposed to deal with

outliers. Indeed, as shown in Figure 3, the test is less distorted than the BNS test. However,

under staleness, even the median estimator is biased for the same reasons of multipower variation.

Consequently, ADS is still distorted toward the rejection of the null, even if less than BNS. The

ASJ test procedure in Aït-Sahalia and Jacod (2009b) is contaminated by staleness as well. Un-

der staleness, the bias appears in both the numerator and the denominator of the proposed test

statistics. Since the bias of power variations is larger for the large powers, the ASJ test statistic is

still distorted. The PZ test is based on the difference between power variation and its truncated

version, and makes use of random perturbation of returns (wild bootstrap) in order to set up a

confidence region. Thus, despite of the bias in the power variation, the distribution of PZ test

remains standard normal under the null by construction. Similarly, the randomness of the wild-

bootstrap DGHM test comes from the artificially generated random variables, which preserves

normality under the null. Indeed, Figure 3 shows that the distribution of the wild-bootstrap tests

under the null is as close to standard normal as the distribution of the corrected BNS test, if not

closer.

Distortions due to staleness similarly affect alternative popular jump tests which were not reported

here, and which are based on multipower variations as well. The test proposed by Corsi, Pirino,

and Renò (2010), who combine multipower variation and truncation, suffers of exactly the same

bias of the BNS test. Alternative tests proposed by Andersen, Dobrev, and Schaumburg (2012)

are based on the minRQ and minRV estimators, and are more distorted than that based on

the median estimators and reported in Figure 3. Using simulations, Theodosiou and Zikes (2011)

analyze the performance of several jump tests under staleness, also showing that all the ones they

consider, including the tests mentiond here and the test based on variance swaps of Jiang and

Oomen (2008), are distorted toward finding more jumps, with the exception of the PZ test.

We now consider estimation of the Jump Activity Index (JAI) using two different multipower

estimators. The first is a modification of Todorov and Tauchen (2010) estimator used in Andersen,

Bondarenko, Todorov, and Tauchen (2015) that makes use of power variations computed over

different frequencies. The second is introduced in Kolokolov (2022), and is based on the ratio of

where IQ is estimated with the MedRQ estimator. The ASJ test is implemented with power variation with power
p = 4 calculated over the two scales (1/78 and 2/78); the variance of ASJ test statistics is estimated without
truncating large returns, since we do not simulate jumps under the null. The PZ test is implemented with power
p = 2, and the test statistics is perturbed by random draws from the distribution Pη = 1

2 (δ1−τ + δ1+τ ), where δ is
the Dirac measure and τ = 0.05. The threshold used in the PZ test is computed as c2θV̂t, where V̂t is an estimator
of the local standard deviation computed as in Corsi, Pirino, and Renò (2010) with bandwidth parameter L = 10.
In this simulation exercise, we use cθ = 5.
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Simulated data
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Figure 3: Distribution of test statistics on simulated daily samples at the
five minutes frequency (n = 78 returns). The considered tests are: the median
test in Andersen, Dobrev, and Schaumburg (2012) (ADS); the BNS test in Eq.
(3.5) (BNS); the Podolskij and Ziggel (2010) test (PZ); Dovonon, Gonçalves,
Hounyo, and Meddahi (2019) test (DGHM); the Aït-Sahalia and Jacod (2009b)
test (ASJ), and the corrected BNS test.

multipowers with different powers. Both estimators are downward biased in the presence of zeros.

Again, our solution to this issue is simply to replace power/multipower variations in the definitions

of the estimators by the corrected versions.

For comparison, we additionally consider estimators which do not use multipowers: the Aït-Sahalia

and Jacod (2009a) estimator based on counting the overshoots over threshold; the Jing, Kong, and

Liu (2012) estimator based on counting small increments; and the Hounyo and Varneskov (2017)

wild-bootstrap estimator. We compare the estimators on simulated data in which jumps are absent

and the true JAI is 2. The left panel of Figure 4 shows the distribution of JAI estimates using the

original estimators in the presence of zeros. It shows that ignoring the presence of staleness would

result in an artificially lower JAI estimate, which would induce to reject the presence of a Brownian

motion in the vast majority of replications. The effect is evident not only for multipower-based,

but for all considered estimators. The right panel of Figure 4 shows the distribution of corrected

estimators. It shows that, when correcting for staleness using rescaled returns, the estimates

are symmetrically centered around 2 across replications. The right panel also shows that the

corrected Kolokolov (2022) estimator is the most precise. Therefore, we use it as our main tool

for JAI inferencing in the empirical section.

Price staleness can bias not only for JAI estimation, but also similar tests for pure-jumps processes.
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Figure 4: Distribution of the JA estimates on simulated data in which the
jump activity is equal to 2. Left panel: the estimators under the presence
of zeros. Right panel: corrected estimators. The considered estimators are:
Andersen et al. (2015), Kolokolov (2022), Aït-Sahalia and Jacod (2009a), Jing,
Kong, and Liu (2012) and Hounyo and Varneskov (2017). All estimators are
implemented on one day of five-minutes returns (n = 78).

For example, we found that zeros severely distort the test of Jing, Kong, and Liu (2012) toward

the rejection of the Brownian motion, while the test by Kong, Jing, and Liu (2015) is robust to

the presence of staleness. The latter test, however, requires sampling on a substantially higher

frequency than the one considered in our paper, therefore it is not used for the empirical analysis.

The corresponding simulations are available upon request.

4 Alternatives to multipower

The econometric literature suggests a number of alternative jump robust estimators of integrated

variance, which might be affected by jumps and/or staleness less than multipower variation. Here

we analyze threshold realized variance (Mancini, 2009) and robust neighborhood truncation (An-

dersen, Dobrev, and Schaumburg, 2014).

Threshold realized variance is defined as

TRV(X) =
n∑
i=1

|∆iX|2 1{|∆iX|≤ϑ(∆n)}, (4.1)

where 1{·} is the indicator function and ϑ(∆n) is the threshold function satisfying

lim∆n→0 ϑ(∆n) = 0 and lim∆n→0
∆n log (1/∆n)

ϑ(∆n)
= 0. The difference between TRV(X) and the re-

alized variance of the continuous part of X is asymptotically negligible. Consequently, TRV(X)

remains consistent under the presence of staleness. However, it is strongly negatively biased by
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Panel A: threshold estimators Panel B: neighborhood truncation estimatiors
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Figure 5: Alternative jump robust integrated variance estimators under the
presence of zeros. Panel A: threshold realized variance. Infeasible TRV(X) is
implemented with the time-varying threshold 3 · σi∆n ·

√
∆n. The threshold of

feasible TRV(X) is equal to 3 · σ̂i∆n
·
√

∆n, where σ̂i∆n
is estimated as in Corsi,

Pirino, and Renò (2010). TRVc(X) is implemented with σ̂i∆n
estimated by

applying the algorithm of Corsi, Pirino, and Renò (2010) to rescaled returns.
Panel B: robust neighborhood truncation estimators (RminRV and RmedRV)
implemented as in Andersen, Dobrev, and Schaumburg (2014), tripower vari-
ation with equal powers (denoted by MPV 3) and corrected RminRV and
RmedRV computed using rescaled returns.

zeros in finite samples. The increments of X observed after a series of zeros include the previous

unobserved increments of the efficient price. Consequently, they have larger variance and more

likely exceed the threshold (which is fixed in practice). As a result, such increments are eliminated

from the sum lowering the value of TRV(X). The negative bias can be even stronger when the

threshold is proportional to the estimated local standard deviation (which is a common strategy

of implementing truncated estimators in practice), since in this case the threshold is spuriously

undervalued due to the negative bias of local volatility estimators.

Robust neighborhood truncation estimators adopt a filtering scheme truncating arbitrary func-

tionals on return blocks. We consider a pair of such estimators (denoted by RminRV and RmedRV)

applied with one-sided filtering as in the simulations in the original paper. Note that these es-

timators are optimized for the setup of Andersen, Dobrev, and Schaumburg (2014), which uses

ultra-high frequency data and differs from our settings by the absence of staleness at moderate

frequencies. The presence of price staleness generates an artificial time-change distorting the local

normality of the data and producing a negative bias for both estimators.

To soften the bias of TRV(X) the threshold values corresponding to the increments observed after

a series of zeros ought to be rescaled by the number of previous zero returns, so that the corrected
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threshold realized variance we propose is defined as:

TRVc(X) =
n∑
i=1

|∆iX|2 1{|∆iX|≤(nZ
i +1)·ϑ(∆n)}, (4.2)

where nZi denotes the number of consecutive zeros observed prior to the instant i∆n. When local

volatility estimates are used to compute the threshold, they ought to be corrected for the presence

of zeros as suggested in Section 2. To correct robust neighborhood truncation estimators we simply

apply them to the time series of non-equispaced returns computed as in Section 2 and rescaled by

the number of the preceding zeros.

Panel A of Figure 5 illustrates the bias of TRV(X) on the same simulated data of Section 3. The

figure compares TRV(X) computed with the time-varying (infeasible) threshold equal to three

standard deviations of the efficient returns, TRV(X) with estimated threshold computed as in

Corsi, Pirino, and Renò (2010) and corrected TRVc(X) with the threshold computed by applying

the algorithm of Corsi, Pirino, and Renò (2010) to rescaled returns. All estimators are negatively

biased due to truncating the largest returns. The (absolute) bias of TRV(X) substantially in-

creases with the number of zeros. For example, already with 20% of stale prices, TRV(X) with

feasible threshold underestimates integrated variance by 20%. The corrected estimator effectively

eliminates the bias produced by staleness, however its variance increases with the number of zeros.

Panel B shows the bias of RminRV and RmedRV. The absolute bias of the robust neighborhood

truncation estimators is smaller with respect to the tripower variation. However, it is comparable

with the bias of TRV(X). Applying the estimators to the rescaled returns allows to eliminate the

bias.

Overall, this section suggests that alternative estimators can be affected by zeros similarly to

multipowers. The main reason for that is the deviation from local normality of equally spaced

returns generated by price staleness. We leave further theoretical considerations (in particular on

the joint effect of staleness and other microstructure frictions present at ultra-high frequencies)

for future research.

5 The impact of price discretization

A relevant source of zero returns which is not considered in our model is price discretization.

Including rounding in the data generating process is a notoriously challenging problem (Delattre

and Jacod, 1997; Li and Mykland, 2015). Bandi, Kolokolov, Pirino, and Renò (2020) argue that

the number of observed zeros due to this specific friction depends on the “Rounding Impact Ratio”
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(RIR):

RIR =
d

σP ·
√

∆n

, (5.1)

where d is the magnitude of the price discreteness (e.g. d = $0.01 for NYSE stocks), σP is the

volatility of price differences (price matters here since discreteness is for prices, not for log-prices).

In the definition (5.1) σP is assumed to be constant, but when measuring RIR on data in Section

6.1 we will relax this assumption. The RIR is an index without units with a simple interpretation:

it compares the width of price discretization with the volatility of the price difference, measuring

the relative strength of price discretization on observed returns.

We study the impact of rounding on multipower-based quantities in Figure 6 and Figure 7. We do

so with a model that rounds to the nearest cent (d = 0.01) the prices simulated with the model of

Section 3, again at the 5-minute frequency. The unconditional probability of zeros generated by

the Bernoulli variates is fixed to 10% in Figure 6 and to 30% in Figure 7. We consider different

levels of rounding ranging from zero to extremely high levels. As reference values, in our individual

stocks the median value of RIR is 22.46%, and RIR index is greater than 100% in 2.6% of the daily

time series, as we report in Section 6.1, see, e.g. Figure 9. In order to control the strength of

rounding, we use different starting values for the efficient price, which are calibrated in such a way

that the average value of RIR estimated from this simulated data is equal to reported values.

Figure 6 shows that rounding has a non-negligible impact on RV = MV(X; [2]), BPV =

MV(X; [1 1]) and TriPV = MV(X; [4/3 4/3 4/3]), and in particular that it generates a positive

bias on corrected estimator which is increasing with the RIR. Moreover, corrected estimator also

display a larger variance with respect to non-corrected ones. This finding complements the results

of Li and Mykland (2015) who explore the effect of rounding on realized variance. One can see

that corrected estimators can be less precise than traditional ones (in the relative RMSE sense)

when RIR is larger than a given threshold and staleness is low. When staleness is high, instead

(as shown in Figure 7), corrected estimator are more precise than traditional ones even in cases in

which rounding is extremely aggressive.

However, Figure 6 also shows that corrected estimators are better than non corrected ones for

realistic value of RIR and even when staleness is low for three relevant applications: jump testing,

measurement of the quadratic variation due to jumps, and jump activity index estimation. For

jump testing (Panel D), the size of the non-corrected BNS test is distorted (as discussed above),

and the size distortion grows with RIR, while the corrected BNS test has a conservative size. This

advantage for the corrected BNS test comes at the cost of power (displayed in the inset of Panel

D, obtained by adding to simulated price trajectories a single jump with uniform location and size
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Figure 6: The joint impact of rounding and staleness on estimates based
on multipower, corrected multipower and rounding corrected multipower on
simulated data. The rounding corrected estimators are defined in Appendix C.
Panel A: Relative RMSE, bias and standard deviation for RV. Panel B: Relative
RMSE, bias and standard deviation for BPV. Panel C: Relative RMSE, bias
and standard deviation for TriPV. Panel D: jump size (at 1%) and power of the
BNS test. Panel E: RMSE, bias and standard deviation for the JV = RV−BPV.
“Mixed” refers to the case in which we correct BPV but not RV. Panel F:
RMSE, bias and standard deviation for the Kolokolov (2022) estimator of the
jump acrivity index. Biases and standard deviations are in the insets. The
price impact ratio is defined on simulations as RIR = d/(< σ > ·P ·

√
∆n),

where d = 0.01, < σ > is the average generated volatility across all simulations
expressed in daily units, P is the starting price of the simulation and ∆n =
1/78. The unconditional probability of staleness is 10%.

10σJ
√

∆n, where σJ is the simulated volatility at the time of the jump), which, for the corrected

BNS test, decreases when the impact of rounding increases.
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Figure 7: Same as Figure 6, but with unconditional probability of staleness
set to 30%

When measuring the quadratic variation due to jumps (Panel E), using JV = RV−BPV (which,

in our simulations, is zero), non-corrected estimators display a positive bias increasing with RIR,

while corrected estimators display a negative bias, also increasing (negatively) with RIR. However,

the bias in the difference due to rounding cancels out more efficiently for corrected estimators,

which display a lower standard deviation. As a result, corrected JV is better than non-corrected

JV (again, in terms of relative RMSE) for RIR up to 70% when staleness is 10%, and up to more

than 150% when staleness is 30%. Given the large bias induced by rounding on corrected RV

displayed in Panel A, Panel E also shows a mixed case in which we compute JV after correcting

BPV but not RV. We see that this technique is worst than correcting both quantities. We need
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the biases in both quantities to cancel out to measure jump quadratic variation precisely.

Finally, when measuring jump activity index, the corrected estimator are better than the non-

corrected ones for values of RIR up to 50% when staleness is 10%, and up to more than 150% when

staleness is 30%. They display a positive bias and a standard deviation which both increase with

RIR. The bias is however smaller than the negative one of the non-corrected estimator, so that

the RMSE with respect to the value generated in the simulations (equal to 2) tends to be either

smaller or comparable.

When the impact of rounding is large, the scaling used in corrected estimators (motivated by

linearity of the variance of the Brownian motion) could be excessive. This does not have impact

on relevant jump statistics, for which corrected estimators remain superior to the standard ones in

realistic situations. However, one may wonder how to recover consistency of multipower estimators

in the joint presence of staleness and rounding. We now show that we can improve our corrected

estimators in the presence of rounding, by adopting a non-linear scaling depending on RIR and

estimated staleness. This non-linear scaling is more appropriate (but more difficult to implement)

in situations in which the rounding is strong. The non-linear scaling is detailed in Appendix C.

Figure 6 shows that the proposed heuristic correction, labelled “rounding corrected”, improves

our correction for all considered estimation targets and tests. In particular, using this correction

delivers more precise estimators of the jump activity index and jump quadratic variation than

the traditional multipowers for all the rounding levels, even in this case with low staleness. The

comparison is even more favorable for our estimators when staleness is higher (as shown in Figure

7).

However, some words of caution are needed. First, in our simulation setting we assume we know

the tick size d and the probability of staleness p∅, while in practice both have to be observed or

estimated. Second, our correction is heuristic in the sense that, for sake of simplicity, it is based

on several approximations which are detailed in Appendix C. When RIR in the data is low, we

recommend to use the estimator (2.10). Notice that RIR can be made arbitrarily low by decreasing

the sampling frequency, at the cost of increasing the estimator variance, generating the usual bias-

variance tradeoff similar to that generated by the presence of market microstructure noise (Bandi

and Russell, 2008). The optimization of this bias-variance problem due to the joint presence of

rounding and staleness is left for future research.
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6 Empirical application

The data set we use here is the collection of 442 stocks belonging to the S&P500 index and quoted

on the New York Stock Exchange (NYSE). The sample ranges from January 2, 2003 to March

10, 2022, for a total of 5, 087 trading days, and consists of one-minute transaction prices recorded

from 9:30 to 16:00, New York GMT. Moreover, we use prices of SPY (the SPDR S&P 500 trust

exchange-traded fund) and VIX (the CBOE Volatility Index) sampled at the one-minute frequency

in the same daily time span (these two data sets extend to June 30, 2022). The data, coming from

multiple exchanges and electronic networks, went trough a standard filtering procedure. Data are

cross-checked, tested and verified so that outliers and bad ticks are removed. In our applications,

we use 5-minute grids. We trim data at the beginning and at the end of the day with zero volume,

so that we do not include zero returns resulting from delayed opening or anticipated market closure.

We compute the quantities of interest only in days in which we have more than 20 returns and the

percentage of zero returns is less than 80%. This leaves us with N = 2, 013, 613 daily time series

(plus 4, 908 on SPY and 4, 909 on VIX).

Figure 8 shows the time series of the daily fraction of zero returns in our datasets at the 5-minute

frequency. The Figure shows that, consistently with markets becoming more liquid, the fraction of

zero returns in the data was declining over time. However, the Figure also shows that the fraction

of zero in the data is relevant, and still not negligible, in current times.

6.1 Staleness versus price discreteness: empirical evidence

The discussion in Section 5 makes clear that it is important, before applying the proposed correc-

tion to multipower estimators, to quantify the amount of zeros in the data due to price discreteness.

On this regard, Bandi, Kolokolov, Pirino, and Renò (2020) make two important points. The first

one is of empirical nature: the amount of staleness in the data, on the top of price discreteness, is

substantial at all frequencies, such that it cannot be ignored. The second is of theoretical nature:

the economic interpretation of zeros due to price discreteness is similar to that due to staleness.

Indeed, price discreteness bites when volume is low. If staleness is a signature of lack of trading,

then price discreteness is also a signature of lack of trading, in the sense that volume is not suf-

ficient to move the price of more than one tick. They refer to this idea as near idleness. This

idea, not considered in our simulation setting, suggests that the impact of rounding is probably

less than that discussed in Section 5.

To assess the aggressiveness of price discretization, we estimate the Rounding Impact Ratio for
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each stock and each day via

R̂IR =
d̂√

∆n

n∑
i=1

(Pi∆n − P(i−1)∆n)2

, (6.1)

where ∆n = 1/n, n is the number of 5-minute returns used in a day, Pi∆n is the price at time

i∆n and d̂ is an estimate of the discreteness level. The denominator in Eq. (6.1) estimates price

volatility over the day. The discreteness level d̂ is estimated, for each day and stock, as follows.

We first compute the absolute values of price differences at the highest available frequency (in our

case: 1-minute) in the considered day and in the previous 5 days. We then round these absolute

price differences to the sixth significant digit (to cluster returns whose difference is only due to

numerical precision). The estimate d̂ is the most frequent non-zero outcome of this procedure.

While for our data-sample the NYSE minimum tick is d = $0.01, we prefer to estimate it for two

reasons: i) our prices are adjusted for corporate actions; ii) there could be larger rounding levels

because of several reasons, including larger bid-ask spreads or psychological rounding, especially

for illiquid stocks. The estimated d̂ is exactly 0.01 in 64.85%, below 0.01 in 22.29%, and above
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frequency of 5 minutes.

0.01 in 12.87% of the days.

Figure 9 shows the distribution of the daily R̂IR at the 5-minute frequency in our three samples.

We can see that price discreteness is different from zero, especially for individual stocks, but not

large. The median value for individual stocks is 17.97%, and for this sample R̂IR is greater than

100% in 0.17% of the daily time series only. On the two other datasets, the median R̂IR is 14.14%

for SPY and 13.38% for VIX. With these estimates of the RIR values, our simulation experiments

suggest that corrected estimators are virtually always more precise than traditional ones.

Next, we estimate the amount of price staleness in the data using the p̂n estimator proposed in

Bandi, Kolokolov, Pirino, and Renò (2020), which is based on matching discrete counting at each

tick with zeros generated by the simple rounding model used in our simulations in which rounding

is independent from staleness. We relate the number of observed zeros (which are due to both

staleness and price discreteness) to estimated staleness and stock liquidity, proxied by the daily

dollar traded volume.

Panel A of Figure 10 shows the scatter plot of the average of percentage of zeros for each stock

against the logarithm of the average trading dollar volume. As expected, less intensely traded

stocks display a higher percentage of zero returns. Panel B of Figure 10 shows the scatter plot

of the average of estimate of the probability of staleness for each stock against the logarithm

of the average trading dollar volume. It shows that staleness is clearly present in the data,

more prominently, as expected, for stocks that are less liquid. The ratio between the average

probability of staleness and the average percentage of zero returns, again against the logarithm
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Panel A: Zeros vs volume Panel B: Estimated staleness vs volume
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Figure 10: Panel A: average daily number of zero five-minute returns (per
cent) as a function of logarithm of the average daily trading volume. Panel
B: average daily estimates of the unconditional probability of observing a zero
return due to price staleness, p̂n, estimated as proposed in Bandi, Kolokolov,
Pirino, and Renò (2020) using five-minute returns as a function of logarithm
of the average daily trading volume. Panel C: ratio of the average estimate
p̂n (estimated as in Panel B) and average daily number of zero five-minute
returns as a function of logarithm of the average daily trading volume. Panel
D: average daily estimates p̂n (computed as in Panel B) as a function of the
average estimates of the R̂IR index, as computed by formula (6.1).

of the average trading dollar volume, is shown in Panel C. Staleness accounts for more than 20%

of the observed zeros, with this percentage increasing as the stocks become less liquid. Moreover,

Panel D, which displays the scatter plot of average estimated staleness with the average RIR, shows

that the rounding and zeros are strongly correlated in the data, which is a phenomenon that can

be explained, as argued, by near idleness. The reported estimates for the probability of staleness

in Figure 10 thus need to be considered a lower bound on the economic phenomenon of absence

of trading, since rounding is stronger when staleness is stronger, so many of zeros attributed to

price discreteness would be attributed to staleness in a model that internalizes this correlation.
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Figure 11: Pooled distribution, for all the considered S&P500 stocks from
January 2003, to June 2022, of the daily BNS tests and corrected BNSc tests
using five-minutes returns. In total, we compute 2, 013, 613 daily tests.

In a nutshell, this Section illustrated three important facts: the first is that price discreteness

(as measured by the Rounding Impact Ratio) is not as large in the data as to compromise the

proposed correction in the vast majority of cases. The second, already documented in Bandi et al.

(2020), is that staleness is an important empirical component of the data, especially for illiquid

stocks. The third, also already suggested in Bandi et al. (2020) and empirically documented here,

is that zeros due to price discreteness are correlated with zeros due to staleness, suggesting that

the two phenomena are driven by similar economic forces. From an econometric perspective, this

explains why the proposed correction (devised in a model which accounts for staleness only) is

still useful in the presence of price discreteness.

6.2 Revising the evidence on jumps in financial markets

Figure 11 shows the distribution of the daily BNS test and of its version corrected for staleness

pooled across days and stocks. It also shows the DGHM and the PZ test. BNS test distribution

is centered around a positive value and largely skewed to the right. As a consequence, it reveals

jumps in 6.14% of the cases at the 99.9% confidence interval. This is the classic puzzle of the BNS

test (Huang and Tauchen, 2005), that is that jumps appear to be too many in the data. Our Monte

Carlo experiments suggest that this happens not because prices are too active, but because they are

too stale. The distribution of the staleness-corrected BNS test, also shown in Figure 11, is indeed

more centered around zero and still skewed to the right, but with a less pronounced right tail.

This distribution also presents a left tail which depends on rounding; indeed, the distribution of

the corrected test on stock/days with RIR less than 20% does not display the left tail, consistently
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Figure 12: Time series of traded prices of the BAC stock on January 9,
2014. The standard BNS test would detect a jump at any reasonable confidence
interval. The staleness-robust test we propose would not.

with our simulations. The corrected BNS test would detect jumps in just 3.70% of the days at the

99.9% confidence interval.4 The DGHM test reveals even less jumps on average (1.85% at 99.9%).

The PZ test is very sensitive to the choice of the threshold (described in footnote 3). At 99.9%, it

detects jumps in 6.81% of the days with cθ = 5, 2.26% of the days with cθ = 6, and 0.58% of the

days with cθ = 7. These estimates for the number of jumps in the data should be considered an

upper bound because of the multiple testing problem (Bajgrowicz, Scaillet, and Treccani, 2016).

If we use their universal threshold
√

2 logN = 5.3977, the percentage of detected jumps by the

corrected BNS test would be 0.34%. Thus, jumps are a non-negligible feature of stock data; but

they appear to occur much more rarely than what previously found.

Figure 12 shows an iconic example of the distortion of traditional tests. It shows a day in which

the Bank of America (BAC) stock price moves extremely smoothly, the largest 5-minute price

change being $0.10 and 21.79% of the 5-minute returns being zero. No jump is visible, but the

BNS test value is 5.22, with a p-value of 10−8. As argued, the BNS test is tricked by staleness in

the data. When we use corrected BNS, the value of the test is just 0.19, consistent with what we

see in the Figure.

The relative contribution of jumps to total quadratic variation is overestimated by traditional

bipower variation too. If we define JV = RV−BPV where RV is realized volatility and BPV is

bipower variation, the average relative contribution JV /RV at the five minutes frequency would be

estimated to be 8.63%. However, this is again an artificially inflated result due to staleness: when
4If we test using 1-minute data, the BNS test would reveal massive jumps (in 33.76% of the days), while the

corrected BNS would detect jumps in 4.30% of the days, fairly consistently with the 5-minute results. However, the
1-minute data are also contaminated by market microstructure noise, which is absent from our theoretical analysis.
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estimating the average relative contribution of jumps to total quadratic variation using staleness-

robust multipowers, the outcome is just 1.16% unconditionally, and 4.35% if we consider only days

with RIR below median. This result is in agreement with the fact that the jump contribution to

quadratic variation is much smaller than what implied by traditional estimates, as well as with our

simulation results. Using ultra-high frequency data, Christensen, Oomen, and Podolskij (2014)

uncover the puzzling discrepancy between the amount of jump variation measured at different

frequencies: they report a jump variation at the tick frequency which is roughly one sixth than

what found at five minutes (1.3% versus 7.3% for DJIA constituents). They show that we need

ultra-high frequency data to avoid a lot of sequential small moves being mistakenly found to

indicate one large jump at sparser sampling frequencies. We show that a similar reduction in

the contribution of jumps to price variation can be obtained when correcting for the presence of

staleness.

We now turn to the question: is Brownian motion necessary to model high frequency data? The

empirical literature is ambiguous on this point. Todorov and Tauchen (2011) support the presence

of Brownian motion in the S&P500 futures, while Jing, Kong, and Liu (2012) reject the presence

of Brownian motion on one year of Microsoft high frequency prices. On the other hand, Todorov

and Tauchen (2011) find that the JAI of the VIX index is significantly smaller than 2, advocating

that the volatility process is a pure jump process without Brownian motion. Indeed, as they show

in their paper, the activity of the VIX is the same as that of the volatility of the stock index.

Our results strongly support the presence of Brownian motion in stock prices.5 Figure 13 (panel A)

shows the empirical distribution of JAI estimates on individual stocks and SPY for every day in our

sample with RIR below median (roughly 1 million estimates). We use the Kolokolov’s estimator

with r+ = 1.5, which is more precise than the two-scale estimator of Andersen, Bondarenko,

Todorov, and Tauchen (2015), as shown in Figure 4. Figure 13 shows very clearly, and pervasively,

that the JAI of stock prices, as well as that of the index, does not depart significantly from the

value of 2, supporting the omnipresence of the Brownian motion in the price dynamics.

Do we really need to dispense with the Brownian motion when modeling volatility? To answer

this question, we now consider five-minute returns on the VIX index. We only consider days with

more than 60 observed daily 5-minute returns. The data for VIX, as in the case of individual

stocks, are heavily contaminated by the presence of staleness: on average, the daily fraction of

zero returns at the five-minute frequency is 8.80%, a figure which is consistent with the amount of
5The test of Jing, Kong, and Liu (2012) boils down to counting the excessive number of returns below a pre-

determined threshold. Of course, the presence of zeros impacts severely their test toward rejection of the Brownian
motion null, as discussed in the introduction.
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Figure 13: Empirical distribution of daily JAI estimates using the Kolokolov
(2022) estimator on 5-minute returns in the period January 2003-June 2022.
Panel A: Individual stocks and SPY using the staleness-corrected estimator for
days with RIR below median. Panel B: VIX using the original versus staleness-
corrected estimator.

staleness observed in stock prices. Thus, we reappraise the estimation of the JAI of the VIX after

robustifying the estimators for the presence of staleness.

Figure 13 (panel B) shows the empirical densities of the daily jump activity estimates using the

original Kolokolov (2022) estimator and with the version corrected for zeros. If we do not correct

for staleness, we again get an estimated JAI which is significantly lower than 2. When instead we

correct, the distribution of the estimates is symmetrically centered around the value of 2. Figure

14 clarifies that the bias of the non-corrected jump activity estimator is strongly correlated with

the frequency of zero returns, as predicted by our theory. The panels show the scatter plot of daily

jump activity estimates with the percentage of zero returns in that day. The left panel considers

the estimator based on traditional multipowers, and shows that the higher the percentage of zeros,

the lower the estimate of the JAI, as predicted by the theory (while, of course, staleness should have

nothing to do with jump activity). The right panel consider the estimators obtained with corrected

multipowers, and shows no relation between the two quantities, with the JAI estimates centered

around 2. The distribution of daily point estimates using corrected estimators is consistent with

the normal distribution predicted by Kolokolov (2022), and does not present any significant time

variation.

Our conclusion, based on the proposed evidence, is that we cannot reject Brownian motion as a

driving factor not only of stock prices (and, of course, of the market index), but also of of the

stock index volatility, in agreement with the assumptions made by traditional stochastic volatility

models in continuous-time finance. We also conclude that the rejection of the presence of the
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Figure 14: Scatter plot of daily estimates of the JAI on VIX data using
the Kolokolov (2022) method versus the percentage of zero returns in each
day. Left panel: original estimator. Right panel: staleness-corrected estimator.
For staleness corrected estimator, we estimate (using the feasible estimator of
Kolokolov, 2022) an average standard deviation of the point estimates of 0.0636.

Brownian motion found in the recent empirical literature is actually an artifact due to ignoring

the presence of staleness in the data.

7 Conclusions

Ignoring the presence of zero returns in financial data would result in incorrect inference about the

number, frequency, contribution to price variation and activity of the underlying jump process in

a time series. After robustification to the presence of staleness, desirable statistical properties of

popular estimators are restored. The robustification we propose is straightforward to implement

and does not require any additional computational cost.

When applying the robustified estimator to stock and VIX data, we find results which are very

different from those obtained in the literature so far. Jumps are much less frequent, contribute

much less to jump variation and are much less vibrant than what suggested by the existing em-

pirical literature. For the volatility of the stock index, our findings indicate that its activity is

compatible with that assumed by standard stochastic volatility models, whose shocks are driven

by Brownian motion, undermining the empirical relevance of pure jump processes in finance.

More generally, our paper strongly advocates for the inclusion of staleness in the primitive as-

sumptions for the data generating process of high-frequency data, since the distortions of not
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including it might not be limited to multipower estimators, but to general inference in financial

econometrics. Of course, our paper also suggests that the understanding of the nature and dy-

namics feature of staleness in the data constitute a rich research agenda in finance which needs to

be further explored.

Finally, our paper also shows that additional work is required on modeling rounding theoretically,

as for example in Li and Mykland (2015). The estimators studied in this paper work reasonably

well unless rounding is too aggressive, and it would be desirable to devise a correction that works in

this situation. While we propose a heuristic correction which soften the impact of rounding when

it is too aggressive, the problem of the estimation of multipower variation in the joint presence

of rounding and staleness remains open and appears challenging. However, our results show that

a proper understanding of rounding on high-frequency prices can help in deliver more accurate

measurements and more powerful tests about the nature of the price dynamics.
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