
The University of Manchester Research

Bayesian Learning to Discover Mathematical Operations in
Governing Equations of Dynamic Systems

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Zhou, H., & Pan, W. (2022). Bayesian Learning to Discover Mathematical Operations in Governing Equations of
Dynamic Systems.

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:18. Jul. 2023

https://research.manchester.ac.uk/en/publications/961c4df2-7be5-44b2-9798-3af02f6c7a5c

Bayesian Learning to Discover
Mathematical Operations in Governing Equations

of Dynamic Systems

Hongpeng Zhou
Department of Cognitive Robotics

Delft university of technology
Mekelweg 2, 2628 CD Delft
h.zhou-3@tudelft.nl

Wei Pan
Department of Cognitive Robotics

Delft university of technology
Mekelweg 2, 2628 CD Delft
Wei.Pan@tudelft.nl

Abstract

Discovering governing equations from data is critical for diverse scientific disci-
plines as they can provide insights into the underlying phenomenon of dynamic
systems. This work presents a new representation for governing equations by
designing the Mathematical Operation Network (MathONet) with a deep neural
network-like hierarchical structure. Specifically, the MathONet is stacked by sev-
eral layers of unary operations (e.g. sin, cos, log) and binary operations (e.g.
+,−,×), respectively. An initialized MathONet is typically regarded as a super-
graph with a redundant structure, a sub-graph of which can yield the governing
equation. We develop a sparse group Bayesian learning algorithm to extract the
sub-graph by employing structurally constructed priors over the redundant mathe-
matical operations. By demonstrating on the chaotic Lorenz system, Lotka-Volterra
system, and Kolmogorov–Petrovsky–Piskunov system, the proposed method can
discover the ordinary differential equations (ODEs) and partial differential equa-
tions (PDEs) from the observations given limited mathematical operations, without
any prior knowledge on possible expressions of the ODEs and PDEs.

1 Introduction

Accurate governing equations (e.g., ordinary differential equations (ODEs) or partial differential
equations (PDEs)) can facilitate the study on robust prediction, system control, stability analysis, and
increase the interpretability of a physical process [1, 2]. The first principle method is dominating
to obtain the governing equation, for example, one for pendulums using Newton’s second law of
motion to pertains to the relation between the acceleration of an object and the external forces acting
on it. Nevertheless, slow modeling process [3] and lack of domain knowledge [4] of the first principle
method motivate the shift to a data-driven approach.

A seminal breakthrough from [5] applied symbolic regression [6] to determine the underlying
structure and parameters of time-invariant non-linear dynamic systems. Typically, the symbolic
regression method [5] is too computationally expensive and is prone to overfitting. [7–10] used
sparse regression techniques to determine the fewest terms in the dynamic governing equations to
represent the data accurately. The sparse regression approaches of [7] cannot avoid the nontrivial
task of choosing appropriate sets of basis functions and cannot build the model with more unary
functions (e.g. such as sin, cos, log). More recently, physical-based machine learning methods
arouse much interest, which focuses on combining physical-based modeling and machine learning
methods [11, 12]. [13] proposed the physics-informed neural networks (PINNs) to discover both
the solution and structure of PDEs by encoding prior knowledge in the cost functions. The physics-

Preprint. Under review.

ar
X

iv
:2

20
6.

00
66

9v
1

 [
cs

.L
G

]
 1

 J
un

 2
02

2

informed neural networks [13, 14] require prior knowledge and belong to the grey-box approximator,
which lacks complete interpretability.

This paper is motivated by both symbolic regression and sparse regression to discover governing
equations of dynamic systems. Similar to symbolic regression, we start from some basic mathematical
operations, i.e., unary (e.g. sin,cos,log) and binary operations (e.g. +,×), instead of a dictionary
of predefined equation terms. Instead of exploring the best fitness by trying possible combinations
of operations as much as possible, we cast the discovery problem as a sparse optimization problem.
Specifically, the optimization is nothing different than training a sparse deep neural network (DNN),
i.e., DNN compression problem [15–17], which can be solved using sparse group Lasso type of
algorithms. The key idea is to reformulate the governing equation composed of unary and binary
operations into a augmented hierarchical structure similar to DNN. In Fig. 1(a) and (c), a tutorial is
given to show how an expression of k4sin(k1y + k2y

2) + k5cos(k3x
3) can be decomposed into a

DNN-like model, termed as Mathematical Operation Network (MathONet). The model in Fig. 1(c)
can be augmented into a over-parametrized network (see Fig. 1(d)) by adding extra mathematical
operations. In MathONet, the operations are similar to the activation function in DNN; and the
weights of the connection between two operations are expected to be zeros if the corresponding
operations are redundant. To this end, the true underlying governing equations can be seen as
a sub-graph of an over-parameterized super-graph of the MathONet. Essentially, the governing
equation discovery problem is equivalent to the compression problem of MathONet with structural
and non-structural sparsities.

Among various DNN compression techniques [18, 19, 16], the structured sparsity learning method
in [17] is the most related algorithm for our approach and can be readily applied. This method is
essentially a sparse group Lasso type of algorithm [20] where ‖W‖`1 and ‖Wg‖`2 are added on top
of the conventional loss function of data as regularizer to promote sparsity of the network weight W .
Our practical implementation found that the solutions are always non-sparse compared to the true
underlying governing equations, even when the hyper-parameters are extensively tuned (more details
can be found in Fig. 3 in Sec. 5.1, Fig. 10 in Appendix.Sec. B.2.2 and Fig. 11 in Appendix.Sec. B.3.2).
This motivates us to seek a Bayesian learning solution that can potentially result in sparser solutions.
The Bayesian learning approach can incorporate the structural and non-structural sparsity as priors in
a principled manner. The algorithm is demonstrated on chaotic Lorenz system, Lotka-Volterra system,
and Kolmogorov–Petrovsky–Piskunov system. The proposed method can discover the ordinary
differential equations (ODEs) and partial differential equations (PDEs) from the observations given
limited mathematical operations, without any prior knowledge on possible expressions of the ODEs
and PDEs. Overall, the contribution of paper has two folds:

Mathematical operation network design: The governing equations of dynamic systems (ODEs or
PDEs) characterized by basic mathematical operations, i.e., unary and binary ones, can be represented
as a DNN-like hierarchical structure, termed MathONet. The governing equation discovery problem
can be treated as a sub-graph search problem from an over-parameterized MathONet graph with
redundant mathematical operations.

Bayesian learning discovery algorithm : A Bayesian learning alternative of the sparse group Lasso
type of algorithms is proposed to discover a more sparse solution, the mathematical operations in
governing equations without too much hyperparameter tuning. The algorithm was demonstrated on
some well-known dynamics systems in physics and ecology, for which the governing equations are
learned from scratch given basic mathematical operations without any prior knowledge on the format
of the underlying governing equations.

2 Related Works

System identification Data-driven discovery of the governing equations has become an active re-
search area for many years [21, 22]. With provided heuristics and expert guidance, several pioneering
works started from rediscovering known governing equations in specific disciplines (e.g., Proust’s
law in chemistry [23], ideal gas law [24]) with simulated data [25]. Further work was also imple-
mented for equation discovery of ecological applications with real collected dataset [26]. Another
typical classical method is system identification, which aims to obtain an approximated mathematical
model by identifying the model parameters [27]. However, since the typical prerequisite for system
identification is that the model structure is known, these methods are impractical for the domains
without known mathematical laws(e.g., neuroscience, cell biology, finance, epidemiology) [26, 11].

2

To improve generalization, the method of discovering both structure and coefficients of the governing
equations becomes a key research direction.

Symbolic regression Symbolic regression can be used to discover mathematical operations in
governing equations without prior domain knowledge [5, 6]. In [28], symbolic regression is applied
for unsupervised learning of motion equations of the object from a distorted unlabelled video.
Other successful applications include automated refinement and reverse engineering for metabolic
networks [29, 30], synchronization control of oscillator networks [31], motion prediction of harmonic
oscillator [32] and constructing smooth value functions for reinforcement learning [33], etc. The
symbolic regression method can learn the mathematical expression by searching over a space of basic
arithmetic operations and self-evolved by genetic algorithms [5, 6]. However, it is too computationally
expensive to scale well to high-dimensional systems and large datasets.

Sparse regression The sparse regression is a promising technique that can determine (almost) the
fewest equation terms to describe a system. In [7], sparse identification of non-linear dynamics
(SINDy) algorithm is proposed to identify the governing equations as a linear combination of basis
functions selected from a pre-built function dictionary. The SINDy method has achieved success
on many benchmarks, e.g., fluid dynamics [7], chemical kinetics [8]. It was also expanded to
address the model recovery of dynamic systems following abrupt changes [9] and the discovery of
partial differential equations [10]. These works show that the sparse regression methods provide an
effective manner to identify the governing equations. However, these approaches also suffer from
the non-trivial task of choosing appropriate basis functions, limiting their capacity for more general
applications.

Both the symbolic and sparse regression techniques explore the governing equations within an ample
space of possibly non-linear mathematical terms. The comparisons and discussions between them
can be found in a recent work [34], which identifies dynamical equations of a distillation column.

3 MathONet Design
3.1 Motivation

We will describe the motivation for MathONet design in more depth following the tutorial in
Section 1 on the decomposition of k4sin(k1y + k2y

2) + k5cos(k3x
3) into a DNN-like hierarchical

representation (see Fig. 1(c) and (d)). As shown in Fig. 1(c), the hierarchical structure is stacked by
two typical operations, i.e., unary operations (e.g. sin,cos,log, etc, denoted by diamond blocks) and
binary operations (e.g. +,×, etc, denoted by square blocks). It should be noted that the input of the
system will be “copied” (denoted as the green line in Fig. 1(c)) and “pasted” for the following layers
(similar to the principle in DenseNet [35]) for the calculations performed by binary operations. The
design connects each layer to the preceding layers that can augment information flow and preserve the
feed-forward nature similar to in DenseNet [35]. The unary operations obtain input from preceding
binary operations and pass their own feature-map to all subsequent binary operations.

As in Fig. 1(b), the MathONet is stacked by two typical layers, i.e., binary layer and unary layer.
The binary layer is stacked by Polynomial-Network (PolyNet), and the unary layer is stacked by
Operation-Network (OperNet). For a PolyNet, the system input is obtained as its input. Its output is a
polynomial embodying the linear combination of input and is multiplied by the output of the previous
layer. Each PolyNet can directly access the gradients from the loss function and system input by such
design, thereby achieving implicit deep supervision. The unary layer is placed behind binary layer
and performs linear (e.g., ident) or non-linear transformation(e.g., sin, cos) as its input. More
detailed illustration for PolyNet and OperNet is in Sec.3.2 and Sec.3.3, respectively.

3.2 Polynomial-Network
The Polynomial-Network (PolyNet) is a simple Fully-Connected network without hidden layers, as
shown in Fig. 1(b). Its input features are consist of two parts. The first part is the original input
of the system. The second part is a constant which enables the MathONet to represent a linear
system. Typically, the output of PolyNet is a polynomial embodying the linear combination of input
as plik = wl(n+1)ik +

∑n
i=1 (wliikxi), where X = [x1, x2, . . . , xn] ∈ Rn stands for the input of

the system. plik represents the output of the PolyNet P lik. l is the layer index. wliik is the weight
parameter whose magnitude determines the strength of the connection within P lik. An example of
PolyNet P1

ik is illustrated in Fig. 1(b).

3

(a) Decomposition procedure into mathematical operations

(c) Hierarchical representation using mathematical operations

(d) Over-parameterized hierarchical representation (b) Mathematical Operation Network (MathONet)

Polynomial-Network
Operation-Network

D
ec

o
m

p
o

si
ti

o
n

Figure 1: Mathematical Operation Network (MathONet). (a) Decomposition procedure for
k4sin(k1y + k2y

2) + k5cos(k3x
3) into mathematical operations in term of unary operations (e.g.,

sin,cos,log, etc) and binary operations (e.g. +,−,×, etc). (b) A MathONet includes two ba-
sic modules, i.e., Polynomial-Network (PolyNet) and Operation-Network (OperNet). The stacked
PolyNets form the binary layer, and the stacked OperNets form the unary layer. (c) A DenseNet-like
hierarchical representation using mathematical operations, where the square block stands for the
binary operation and the diamond block represents the unary operation. The green line denotes that
the input of the system will be copied and get involved in mathematical calculations performed by
binary operations. (d) An over-parameterized hierarchical structure. The black dotted connection
represents the redundant connection that can be regularized on each weight. The dotted connections
with different colors denote the redundant connections that can be regularized on a group of weights.

3.3 Operation-Network
Operation-Network (OperNet) is designed as a linear combination of unary operations. As in Fig. 1(b),
the general mathematical expression for the output of an OperNet is alk =

∑O
o=1 fo(w

l
okh

l
k), where

hlk is the output of the kth neuron in layer l with hlk =
∑nl

i=1(plika
l−1
i + blk). Specially for the first

hidden layer, h1
k =

∑n1

i=1(p1
ikxi + b1k). blk is the bias. fo() stands for unary functions, e.g., sin, cos,

log, exp.

By including the PolyNet and OperNet, the MathONet can be used to construct the governing
equations of a dynamic system. The designed MathONet has the following advantages: a) a MathONet
with even simple structure can represent a considerable expression space. For example, suppose
an MathONet includes only 1 hidden layer and 1 hidden neuron with 2 input features and 2 unary
functions, the compressed model can represent 29 different expressions. b) a MathONet can be trained
with typical optimization method for neural networks, e.g. SGD. c) a MathONet can approximate
both linear and non-linear systems. It should be noted that the complexity of a MathONet is mainly
limited by three user-defined parameters: a) the number of hidden layers L, which denotes initialized
model order and limits the depth of the MathONet; b) nl, the number of hidden neurons in layer l; c)
O, the number of unary functions for OperNet.

4 Discovery Algorithm

This section will illustrate how to apply the Bayesian framework for a MathONet and explain the
proposed sparse Bayesian deep learning algorithm. To ease notation, we use W ∈ Rm×1 to represent
a weight matrix within a PolyNet or OperNet.

4

4.1 Sparse Group Lasso

Sparse group Lasso [20] is a regularization optimization technique which is a combination of
Lasso [36] and group Lasso [37]. Typically, suppose a weight matrix can be divided into different
groups and Wg represents a group of weights, its optimization target can be formulated as:

min
W

E(·) +
∑

W
λ‖W‖`1 +

∑
W

∑
g
λg‖Wg‖`2 (1)

where E(·) is the energy function, E(·) = 1
K

∑K
k=1(Yk − Ŷk)2. ‖W‖`1 represents the Lasso

regularization on each weight. And ‖Wg‖`2 is the group Lasso regularization on a group of weights.
In this paper, the weights within each PolyNet and OperNet can be collected as one group. Therefore
the Wg is equivalent to W and ‖Wg‖`2 can be represented as ‖Wg‖`2 =

√∑m
i=1(W 2

i). λ and λg
are the tuning parameters.

Before continuing, we would like to define two consistent terminologies (“epoch” and “cycle”)
which will be used in the following Sections: one “epoch” refers to the entire dataset is processed
forward and backward by the MathONet one time; each “cycle” includes Nepoch epochs, and the
network pruning is performed at the last epoch of each cycle. As in [17, 38], sparse group Lasso
can identify the redundancy of each connection and achieve structured sparsity by zeroing out all
weights of a group. It should be noted in our algorithm, sparse group Lasso is exactly the first cycle
to start. As shown in the Lorenz experiment, the identified model by sparse group Lasso is still
redundant/non-sparse with 651 terms (see Fig. 3b) and cannot reproduce attractor dynamics precisely
(see Fig. 2(b)). Further research is needed to study why the sparse group Lasso is inefficient. These
inefficiencies motivates us to develop a Bayesian learning version of sparse group Lasso, which can
potentially yield sparser solutions.

4.2 Sparse Group Bayesian Learning

Given the dataset D = (X,Y) = {(Xk, Yk)}Kk=1 and noise precision σ−2, the likelihood for W is
assumed to be p(Y |W,σ2) =

∏K
k=1N (Yk|Net(Xk,W), σ2). A Gaussian prior distribution P (Wi)

is imposed onWi to regularize each weight. And a group prior P (Wg) is imposed onWg to regularize
a group of weights:

p(W) = N (W |0,Υ) =

m∏
i=1

N (Wi|0, ηi) p(Wg) = N (Wg|0,Υg) =

m∏
i=1

N (Wgi|0, ηg) (2)

where Υ = diag [ν], ν , [η1, η2, . . . , ηm] ∈ Rm×1
+ can be calculated by maximiz-

ing the model evidence [39], i.e., ν = argmaxν≥0
∫
p(Y |W,σ2)N (W |0,Υ)dW where

Υg = diag [νg] and νg , [ηg, ηg, . . . , ηg] ∈ Rm×1
+ is calculated by maximizing νg =

argmaxνg≥0
∫
p(Y |Wg, σ

2)N (W |0,Υg)dWg. It should be noted that the parameter within νg
shares the same value, which means that all weights of Wg will be penalized identically.

To calculate the posterior distribution p(W |Y), the model evidence p(Y) is a necessity and can
be evaluated by the integration p(Y) =

∫
p(Y |W)p(W)dW . However, the calculation of this

integration is intractable and stands in need of approximation methods [39, 40]. We consider the
Laplace approximation approach. ν and νg can be updated iteratively according to following iterative
procedure:

β =
√
|α|, α = −ζ × (1/ν2) + 1/ν, βg =

√
|αg|, αg =

∑m

i=1
(−ζgi/η2

g + 1/ηg) (3)

where ζ =
(
Υ−1 + H(W,σ2)

)−1
, ζgi =

(
η−1
g + H(Wgi, σ

2)
)−1

, H() denotes the Hessian matrix
of W or Wgi, respectively. ν and ηg can be calculated as ν = |W |/β, ηg = ‖Wg‖`2/βg. βg is a
scalar and shared by all connections within the group Wg .

The common criteria of determining connection redundancy is based on the magnitude of weight,
which is questionable as the magnitude does not indicate the optimal connection undoubtedly. In
this work, we adopt α and αg as the determining factor for connection redundancy. As in (3), the
value of α and αg is mainly decided by the uncertainty ν, νg and H. Typically, the change of α
(αg) is the opposite of ν (νg). An increase in ν (νg) will cause α (αg) to decrease, thereby reducing

5

regularization on corresponding weight W (Wg). Based on this, the binary matrices C and Cg
are generated as the masks of W and Wg, which denotes the connection redundancy and group
redundancy, respectively. C (Cg) has the same dimension as W (Wg) and will be optimized during
the training process. The value is decided by:

C =

{
0, α > κα
1, others Cg =

{
0, αg > καg

1, others (4)

where κα, καg
stands for the thresholds for connection pruning and group pruning, respectively. 0

denotes the redundancy, and 1 means the weight should be retained. It should be noted that the masks
C and Cg will be updated at the last epoch of each cycle. The generic optimization target for the
MathONet can be formulated as:

min
W,C

E(·) +
∑

W,c
λ‖β � C �W‖`1 +

∑
Wg,Cg

λg‖βg · Cg �Wg‖`2 . (5)

The dimension of C and β are the same as W . The dimension of Cg is the same as Wg. βg a scalar
which is shared by all connections within the group Wg . � denotes the Hadamard product. Inspired
by [41, 42], we also evaluate the predictive uncertainty using a practical Monte-Carlo sampling
method. By sampling over the inferred posterior distribution for T repetitions, an unbiased estimate
of prediction can be approximated by the average of predicted output, i.e., Ȳk = 1

T

∑T
t=1 Ŷ

t
k . where

Ŷ tk is the predicted output of the t-th samples and ΣŶk
= 1

T

∑T
t=1(Ŷ tk − Ȳk)2, Suppose Ncycle

represents the maximal cycles and Nepoch denotes the number of epochs in each cycle, a pseudo-
code for the discovery algorithm is given by Algorithm 1. The detailed proof for (3) and (4) is in
Appendix A.

Algorithm 1 Bayesian learning discovery algorithm
Initialize: hyper-parameters β, η = I ; regularization tuning parameter λ ∈ R+; threshold for
pruning κα, καg ∈ R+. Ncycle ∈ Z+ denotes the maximum cycles; Nepoch ∈ Z+ denotes the number
of epochs in each cycle.
for i = 1 to Ncycle

for j = 1 to Nepoch
1. Update the weight W by minimizing loss function as (5).

end for
2. Update hyper-parameters ν as (3).
3. Update mask C and Cg as (4).

end for

5 Experimental Result

In this section, the algorithm is demonstrated on the chaotic Lorenz system [43], Lotka-Volterra
system [44] and Kolmogorov–Petrovsky–Piskunov (Fisher-KPP) system [45].

5.1 Chaotic Lorenz System

As a typical canonical model for chaotic dynamics, the Lorenz system is non-linear, non-periodic
and is notable for its chaotic solution being sensitive to system parameters and initial conditions.
Although the dynamics of the Lorenz attractor is difficult to interpret, the attractor action can be
described by a simplified mathematical model, which is a three-dimensional and deterministic ODE:

ẋ = σ(y − x), ẏ = x(ρ− z)− y, ż = xy − βz (6)

With the standard parameter values σ = 10, β = 8/3 and ρ = 28, the system exhibits chaotic behavior
as shown in Fig. 2(c). The data is collected through simulation experiments. The state vector and
their derivatives are stacked as input and output dataset, respectively.

Due to space limitation, we only show the identified result for model z in Fig. 2. Fig. 2(b) shows
the trajectory of the attractor represented by the model generated in each cycle during the training
process. The first cycle (the definition of cycle is in Algorithm 1) is the conventional regularization

6

(a) Identified MathONet (b) Identified PolyNet and OperNet (c) Simulated attractor trajectory of each cycle

Cycle 2 Cycle 3

Cycle 4Cycle 6

Cycle 1Initialized

Cycle 5Cycle 5True trajectory

x

1

∑

∑

∑

z

Unary layerBinary layerInput layer

2
1
2
1

3
1
3
1

1
1
1
1

Output layer

y

z

1
2222
1
22

1
3232
1
32

1
1212
1
12

∑y 0.6200

∑x 0.6400

∑1 -3.3601

∑
1.2823

=1.2823 h2
1h2
1a2

1a2
1 =1.2823 h2

1a2
1

p32
1p32
1 = -3.3601= -3.3601p32
1 = -3.3601

p22
1p22
1 = 0.6400x= 0.6400xp22
1 = 0.6400x

p12
1p12
1 = 0.6200y= 0.6200yp12
1 = 0.6200y

0.61890.6189

.

Figure 2: Identified result of Lorenz system. (a) Identified MathONet model for model z. The
MathONet is initialized with 1 hidden layer and 3 hidden neurons. The OperNet includes 5 basic
unary functions in the beginning, i.e., identity, sin, cos, log, exp. Algorithm 1 can identify the
essential connections after 6 cycles. The dotted parts are the identified redundant connections and
neurons. (b) The identified PolyNets and OperNets represent simple mathematical expressions that
are placed under each basic modules. (c) The attractor trajectories generated by the intermediate
model of each cycle. The identified model can reproduce the attractor dynamics as the true model
after 6 cycles.

7

3

(a) The number of nonzero weights of the Math-
ONet generated in each cycle.

0 1 2 3 4 5 6 7

Cycle index

1551 terms

651 terms

8 terms

7 terms

4 terms
2 terms

2 terms

S
p
a
rs

it
y

P
re

d
ic

ti
v
e
 a

b
il
it
y
 (

-l
o
g
 e

rr
o
r)

-10

-5

0

5

10

15

20

25

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) The sparsity and predictive ability of the Math-
ONet generated in each cycle.

Figure 3: The sparsity, predictive ability and weights of the identified MathONet generated in each
cycle, which aims to discover governing equation of model z of Lorenz system. a) The nonzero
weights of the MathONet generated in each cycle. The horizontal axis represents the combination
of non-zero weights in the MathONet generated in each cycle. The vertical axis denotes the index
of training cycles. The expression at each turning line (the cliff) represents the governing equation
identified in the corresponding cycle. b) The sparsity and prediction ability of the MathONet identified
in each cycle. The model becomes more and more sparse and has more and more predictive ability.
The annotation next to the sparsity line represents the number of identified mathematical terms of the
corresponding cycle. The first cycle represents the result identified by sparse group Lasso method
which is still redundant (651 terms), and the prediction ability is low.

that cannot identify the dynamics precisely. By applying the Bayesian learning algorithm 1, the
identified model of cycle 6 can reproduce the attractor dynamics accurately.

Fig. 3 shows the process of the discovering governing equations for model z. In Fig. 3(a), only the non-
zero weight elements within the MathONet are collected to form a weight vector in each cycle. The
identified governing equation has undergone a transformation from complex to simple. If combined
with Fig. 3(b), which shows the change of predictive ability and model sparsity, it can be observed that
the predictive ability tends to improve as the model complexity decreases. The initialized structure
has 1551 terms in total, while only 2 terms are retained after 6 cycles. This also verifies that the
proposed method can discover governing equations in a reasonable, effective and accurate manner. To
explore the robustness of the proposed method with noisy derivatives measurement, a Gaussian noise
ξ = N (0, σ2) with σ ∈ {0.01, 1, 10} is added to the exact derivatives, respectively. The result shows
that linear and quadratic terms are correctly identified even under the large noise value (σ = 10).
Besides, although the simulation accuracy of attractor dynamics decreases with the increase of noise,
the coefficients σ, β, γ can still be determined accurately within 0.5% around the true value. The

7

detailed identified structure and parameters can be found in Table 1 in Appendix B.1. The prediction
uncertainty for noisy datasets can be found in Fig. 8.

5.2 Lotka-Volterra System

The Lotka-Volterra system is known as a general framework of an ecological system that can describe
the dynamic relationship between the natural population of a predator and prey through time [44].
With two main assumptions: a) the growth rate of population is proportional to its size; b) The
predator population can only get food from the prey population, and the food for the prey population
is supplied sufficiently at all times. The Lotka-Volterra equation can be described by a pair of
deterministic first-order non-linear ODEs:

ẋ = αx− βxy, ẏ = δxy − γy (7)

where ẋ and ẏ represents the instantaneous growth rates of the prey (x) and predator (y), respectively.
It can be found that the growth rate of each species is determined by two factors, i.e., the population of
itself and the interaction with the other species. Fig. 4 shows the identified MathONet. It can be found

x

1

∑ x

Unary layerBinary layerInput layer

1
1
1
1

2
1
2
1

Output layer

y
1
1212
1
12

1
2222
1
22

1
1111
1
11

∑
y -0.7308

∑

1 1.0557

p11
1p11
1 = -0.7308y+1.0557= -0.7308y+1.0557p11
1 = -0.7308y+1.0557

∑y -0.5602

p12
1p12
1 = -0.5602y= -0.5602yp12
1 = -0.5602y

∑

-0.4617

1
2.2993

p22
1p22
1 = -0.4617x+2.2993= -0.4617x+2.2993p22
1 = -0.4617x+2.2993

x

(a) Identified MathONet (b) Identified PolyNet and OperNet

∑
1.5712

=1.5712 h2
1h2
1a2

1a2
1 =1.5712 h2

1a2
1

∑
1.5712

=1.5712 h2
1a2

1

∑
1.1119

=1.1119 h1
1h1
1a1

1a1
1 =1.1119 h1

1a1
1

∑
1.1119

=1.1119 h1
1a1

1

x

1

∑ x

Unary layerBinary layerInput layer

1
1

2
1

Output layer

y
1
12

1
22

1
11

∑
y -0.7308

∑

1 1.0557

p11
1 = -0.7308y+1.0557

∑y -0.5602

p12
1 = -0.5602y

∑

-0.4617

1
2.2993

p22
1 = -0.4617x+2.2993

x

(a) Identified MathONet (b) Identified PolyNet and OperNet

∑
1.5712

=1.5712 h2
1a2

1

∑
1.1119

=1.1119 h1
1a1

1

y
-0.4982

1.1075

.

.

Figure 4: Identified MathONet model for Lotka-Volterra system. The MathONet is initialized with 1
hidden layer and 2 hidden neurons. The OperNet includes 3 unary functions, i.e. identity,sin,cos.
(b)The identified PolyNets and OperNets, where the dotted line are the identified redundant parts.

that the introduced constant input is removed from the input layer, which is in accordance with (7).
The PolyNet between input feature y and the first hidden neuron is also identified to be redundant.
Although the other basic modules are retained, the identified structures are sparse and equivalent to
simple mathematical expression, as shown in Fig. 4(b). We also investigate the simulated output and
predicted distribution of the identified model, which is shown in Fig. 9 of Appendix.Sec. B.2.1. The
change of identified governing equations during the searching process, the change of sparsity and
predicted ability are in Fig. 10 in Sec. B.2.2 of the Appendix.

5.3 Fisher-KPP (Kolmogorov–Petrovsky–Piskunov) Equation

Fisher equation, also known as Kolmogorov–Petrovsky–Piskunov (KPP) equation, is a typical
semilinear reaction-diffusion equation that describes the population growth and propagation of a
species [45]. The spatio-temporal dynamics of Fisher-KPP can be represented by a PDE:

∂p

∂t
= d

∂2p

∂x2
+ rp(1− p) (8)

where p denotes the population density. x ∈ [0, 1] represents the coordinate measurement position
of a species. t ∈ [0, T] stands for the time in generations. d = 6.25 is a constant denoting the
diffusion coefficient. r = 1 represents the intensity in favor of local population growth, assumed to
be independent of p. The dataset is generated by the Julia code provided in [14]. The dimension of
the dataset is 26 × 11, in which 11 refers to the number of samples for time; and 26 refers to the
number of samples for the position.

As shown in (8), the one-dimensional Fisher equation consists of two parts, i.e., a derivative operator
and a polynomial representing the local growth item. In this experiment, we use a MathONet to
approximate the local growth item. Inspired by [14, 46], a discretized PDE can be interpreted as
a convolutional layer that can exploit the relation between adjacent elements of a 2-D matrix [47].
In Fig. 5(a), we explain this affine transformation on a spatial-temporal matrix. It should be noted

8

(a) the partial derivate represented by a CNN stencil

spatio-temporal matrix CNN kernel partial derivate

(b) Identified MathONet (c) Identified PolyNet and OperNet

1

∑

Unary layerBinary layerInput layer

2
1
2
1

3
1
3
1

1
1
1
1

Output layer

p

1
1313
1
13

∑

∑

1

∑

Unary layerBinary layerInput layer

2
1

3
1

1
1

Output layer

p

1
13

∑

∑

∑
p 0.6344

1 2.7195

p13
1p13
1 = 0.6344p+2.7195= 0.6344p+2.7195p13
1 = 0.6344p+2.7195

∑
1.8447

=1.8447 h3
1h3
1a3

1a3
1 =1.8447 h3

1a3
1

-0.8546

Figure 5: An illustration to model the PDE by combining a MathONet and a CNN with a special kernel.
(a) An explanation of the partial derivative ∂p

∂t represented by a CNN stencil with kernel [1,−2, 1]. (b)
Identified MathONet model for Fisher-KPP system. The MathONet is initialized with 1 hidden layer
and 3 hidden neurons. The OperNet includes 3 basic unary functions, i.e. identity,sin,cos. Only
two basic modules, i.e., P1

13 and A1
3 are retained in the graph. (c) Identified PolyNet and OperNet.

that an ideal CNN stencil should be [1,−2, 1], which satisfies the physical constraint that the sum of
CNN stencil being zero. To ensure the physical interpretability of the learned CNN stencil, previous
work [14] imposed the physical constraint on the CNN kernel and obtained the desired result. In
this work, we aim to discover the governing equations only from data. Therefore, we only include a
simple convolutional neural network with the kernel size 3× 1 is and try to learn the stencil.

The optimal learned model is obtained with the identified equation:

∂p

∂t
= 3.2424 ∗ CNN(p)− 1.5765p(0.6344 ∗ p+ 2.7195)

The identified CNN stencil is [1.9276,−2.2245, 1.9276]. If this stencil is re-scaled to
[1.000,−2.000, 1.000], the equivalent equation will be ∂p

∂t = 6.250 ∗ CNN(p) + 1.000p(1.000 −
1.000p) which is almost the same as the true governing equations. Therefore, both the structure and
coefficients of (8) can be accurately learned. The identified structure of MathONet is in Fig. 5(b). We
also investigate the change of identified governing equations, model sparsity, predicted ability along
the training process, and the prediction uncertainty of the identified model. A more detailed result is
shown in Fig. 11 of Appendix.Sec. B.3.

6 Conclusion

We present a method that can learn the mathematical operations in governing equations of dynamic
systems composed of the basic mathematical operations, i.e., unary and binary operations. The
governing equations are formulated as a DenseNet-like hierarchical structure, termed as MathONet.
The governing equations discovery problem can be formulated as a deep neural network compression
problem with redundant mathematical operations. A Bayesian learning approach is proposed to
find a sparser solution compared with sparse group Lasso-type algorithms. The experiment result
shows that the proposed method effectively discovers general differential equations, including linear
and non-linear differential equations, ordinary differential equations (ODEs), or partial differential
equations (PDEs).

References
[1] Samuel H Rudy, J Nathan Kutz, and Steven L Brunton. Deep learning of dynamics and

signal-noise decomposition with time-stepping constraints. Journal of Computational Physics,
396:483–506, 2019.

[2] Anders Rasmuson, Bengt Andersson, Louise Olsson, and Ronnie Andersson. Mathematical
modeling in chemical engineering. Cambridge University Press, 2014.

[3] Chia-Chiao Lin and Lee A Segel. Mathematics applied to deterministic problems in the natural
sciences. SIAM, 1988.

9

[4] David J Wollkind and Chernyk. Comprehensive Applied Mathematical Modeling in the Natural
and Engineering Sciences. Springer, 2017.

[5] Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data.
Science, 324(5923):81–85, 2009.

[6] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., USA, 1st edition, 1989.

[7] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the National
Academy of Sciences, 113(15):3932–3937, 2016.

[8] Moritz Hoffmann, Christoph Fröhner, and Frank Noé. Reactive sindy: Discovering governing
reactions from concentration data. The Journal of chemical physics, 150(2):025101, 2019.

[9] Markus Quade, Markus Abel, J Nathan Kutz, and Steven L Brunton. Sparse identification of
nonlinear dynamics for rapid model recovery. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 28(6):063116, 2018.

[10] Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Data-driven discovery
of partial differential equations. Science Advances, 3(4):e1602614, 2017.

[11] Jared Willard, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. Integrating
physics-based modeling with machine learning: A survey. arXiv preprint arXiv:2003.04919,
2020.

[12] Laura von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev, Sven Giesselbach,
Raoul Heese, Birgit Kirsch, Julius Pfrommer, Annika Pick, Rajkumar Ramamurthy, et al.
Informed machine learning–a taxonomy and survey of integrating knowledge into learning
systems. arXiv preprint arXiv:1903.12394, 2019.

[13] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

[14] Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit
Supekar, Dominic Skinner, Ali Ramadhan, and Alan Edelman. Universal differential equations
for scientific machine learning, 2020.

[15] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network
pruning based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

[16] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding. In International Conference
on Learning Representations, 2016.

[17] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems, pages 2074–2082,
2016.

[18] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pages 598–605, 1990.

[19] B. Hassibi, D. G. Stork, and G. J. Wolff. Optimal brain surgeon and general network pruning.
In IEEE International Conference on Neural Networks, pages 293–299 vol.1, March 1993.

[20] Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A sparse-group lasso.
Journal of computational and graphical statistics, 22(2):231–245, 2013.

[21] Ribana Roscher, Bastian Bohn, Marco F Duarte, and Jochen Garcke. Explainable machine
learning for scientific insights and discoveries. IEEE Access, 8:42200–42216, 2020.

10

http://arxiv.org/abs/2003.04919
http://arxiv.org/abs/1903.12394
http://arxiv.org/abs/1810.02340

[22] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali Tishby,
Leslie Vogt-Maranto, and Lenka Zdeborová. Machine learning and the physical sciences.
Reviews of Modern Physics, 91(4):045002, 2019.

[23] Pat Langley. Data-driven discovery of physical laws. Cognitive Science, 5(1):31–54, 1981.

[24] Pat Langley, Gary L Bradshaw, and Herbert A Simon. Rediscovering chemistry with the bacon
system. In Machine learning, pages 307–329. Springer, 1983.

[25] Douglas B Lenat. The role of heuristics in learning by discovery: Three case studies. In
Machine learning, pages 243–306. Springer, 1983.

[26] Sašo Džeroski, Ljupčo Todorovski, Ivan Bratko, Boris Kompare, and Viljem Križman. Equation
discovery with ecological applications. Machine learning methods for ecological applications,
pages 185–207, 1999.

[27] Lennart Ljung. System identification. Wiley encyclopedia of electrical and electronics engi-
neering, pages 1–19, 1999.

[28] Silviu-Marian Udrescu and Max Tegmark. Symbolic pregression: Discovering physical laws
from raw distorted video. arXiv preprint arXiv:2005.11212, 2020.

[29] Josh Bongard and Hod Lipson. Automated reverse engineering of nonlinear dynamical systems.
Proceedings of the National Academy of Sciences, 104(24):9943–9948, 2007.

[30] Michael D Schmidt, Ravishankar R Vallabhajosyula, Jerry W Jenkins, Jonathan E Hood,
Abhishek S Soni, John P Wikswo, and Hod Lipson. Automated refinement and inference of
analytical models for metabolic networks. Physical Biology, 8(5):055011, aug 2011.

[31] Julien Gout, Markus Quade, Kamran Shafi, Robert K Niven, and Markus Abel. Synchronization
control of oscillator networks using symbolic regression. Nonlinear Dynamics, 91(2):1001–
1021, 2018.

[32] Markus Quade, Markus Abel, Kamran Shafi, Robert K. Niven, and Bernd R. Noack. Prediction
of dynamical systems by symbolic regression. Phys. Rev. E, 94:012214, Jul 2016.

[33] Jiří Kubalík, Jan Žegklitz, Erik Derner, and Robert Babuška. Symbolic regression methods for
reinforcement learning. arXiv preprint arXiv:1903.09688, 2019.

[34] Renganathan Subramanian, Raghav Rajesh Moar, and Shweta Singh. White-box machine
learning approaches to identify governing equations for overall dynamics of manufacturing
systems: A case study on distillation column. Machine Learning with Applications, 3:100014,
2021.

[35] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[36] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[37] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

[38] Seyoung Kim and Eric P Xing. Tree-guided group lasso for multi-task regression with structured
sparsity. In Proceedings of the 27th International Conference on International Conference on
Machine Learning, pages 543–550, 2010.

[39] Michael E Tipping. Sparse bayesian learning and the relevance vector machine. Journal of
machine learning research, 1(Jun):211–244, 2001.

[40] William R Jacobs, Tara Baldacchino, Tony Dodd, and Sean R Anderson. Sparse bayesian
nonlinear system identification using variational inference. IEEE Transactions on Automatic
Control, 63(12):4172–4187, 2018.

11

http://arxiv.org/abs/2005.11212
http://arxiv.org/abs/1903.09688

[41] Yarin Gal. Uncertainty in deep learning. University of Cambridge, 1(3), 2016.

[42] Antonio Loquercio, Mattia Segu, and Davide Scaramuzza. A general framework for uncertainty
estimation in deep learning. IEEE Robotics and Automation Letters, 5(2):3153–3160, 2020.

[43] Edward N Lorenz. Deterministic nonperiodic flow. Journal of the atmospheric sciences,
20(2):130–141, 1963.

[44] Alan A Berryman. The orgins and evolution of predator-prey theory. Ecology, 73(5):1530–1535,
1992.

[45] Ronald Aylmer Fisher. The wave of advance of advantageous genes. Annals of eugenics,
7(4):355–369, 1937.

[46] Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations.
Journal of Mathematical Imaging and Vision, 62:352–364, 2020.

[47] Rajat Raina, Anand Madhavan, and Andrew Y Ng. Large-scale deep unsupervised learning
using graphics processors. In Proceedings of the 26th annual international conference on
machine learning, pages 873–880, 2009.

[48] David JC MacKay. Bayesian interpolation. Neural computation, 4(3):415–447, 1992.

[49] S. Boyd and L. Vandenberghe. Convex optimisation. Cambridge university press, 2004.

[50] Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: Many could be better
than all. Artificial Intelligence, 137(1):239–263, 2002.

[51] Andrew Gordon Wilson. The case for bayesian deep learning. arXiv preprint arXiv:2001.10995,
2020.

[52] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on
machine learning, pages 63–71. Springer, 2003.

[53] Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An in-
troduction to variational methods for graphical models. Machine learning, 37(2):183–233,
1999.

[54] Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing
the description length of the weights. In Proceedings of the sixth annual conference on
Computational learning theory, pages 5–13, 1993.

[55] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning.
arXiv preprint arXiv:1705.08665, 2017.

12

http://arxiv.org/abs/2001.10995
http://arxiv.org/abs/1705.08665

A Sparse Group Bayesian Learning Algorithm Derivation

As explained in Sec. 4.2, the Laplace approximation method is adopted to calculate the intractable
integral for the model evidence p(Y) =

∫
p(Y |W)p(W)dW , where W ∈ Rm×1 represents a weight

matrix within a PolyNet or OperNet.

The sparse group Bayesian learning algorithm is a Bayesian learning version of the sparse group
Lasso. It imposes the Gaussian prior distribution on each weight as the non-structured regularization
and imposes group prior on a group of weights as the structured regularization. In this section, a
more detailed mathematical description of the sparse group Bayesian learning algorithm is given.

A.1 Non-structured regularization

A.1.1 Laplace Approximation

Given the dataset D = (X,Y) = {(Xk, Yk)}Kk=1 and noise precision σ−2, the likelihood is defined
by a Gaussian distribution:

p(Y |W,σ2) =

K∏
k=1

N (Yk|Net(Xk,W) = (2πσ2)
K
2 exp

(
− 1

2σ2

K∑
k=1

(Yk − Net (Xk,W))
2

)
(9)

Based on Eq. (2), the prior is

p(W) = N (W |0,Υ) =

m∏
i=1

N (Wi|0, ηi) (10)

To compute the intractable integral for the evidence as in (14), the energy function E(W,σ2) =
1

2σ2

∑K
k=1(Yk − Net(Xk,W))2 is expanded according to a second-order Taylor series expansion

around W ∗:

E(W,σ2) ≈ E(W ∗, σ2) + (W −W ∗)>g(W ∗, σ2) +
1

2
(W −W ∗)>H(W ∗, σ2)(W −W ∗)

(11)
where g(·) = ∇E(W,σ2)|W∗ is the gradient and H(·) = ∇∇E(W,σ2)|W∗ is the Hessian. With
this expansion, the likelihood function 9 can be rewritten as:

p(Y |W,σ2) = (2πσ2)
K
2 · exp{− 1

2σ2

K∑
k=1

(Yk − Net(Xk,W))2}

≈(2πσ2)
K
2 · exp

{
−
(

1

2
(W −W ∗)>H(W ∗, σ2)(W −W ∗) + (W −W ∗)>G(W ∗, σ2) + E(W ∗, σ2)

)}
=a(W ∗, σ2) · exp

{
−
(

1

2
W>H(W ∗, σ2)W +W>ĝ(W ∗, σ2)

)}
(12)

with

ĝ(W ∗, σ2) , g(W ∗, σ2)−H(W ∗, σ2)W ∗.

a(W ∗, σ2) , (2πσ2)
K
2 exp

{
−
(

1

2
W ∗>H(W ∗, σ2)W ∗ −W ∗>g(W ∗, σ2) + E(W ∗, σ2)

)}
Given the Gaussian prior (10) and the approximated likelihood (12), the posterior is also a Gaussian
N (µW ,ΣW by the effect of the conjugacy rule:

µW = ΣW ·
[
g(W ∗, σ2) + H(W ∗, σ2)W ∗

]
, ΣW =

[
H(W ∗, σ2) + Υ−1

]−1
(13)

A.1.2 Evidence Maximization

As in David MacKay’s Bayesian framework [48], the model evidence can be approximated by the
posterior volume, i.e. p(Y |W,σ2)p(W) ≈ p(Y |µW ,ΣW)p(µW). Based on (10) (12), the model

13

evidence is:

p(Y) =

∫
p(Y |W,σ2)p(W)dW =

∫
p(Y |W,σ2)N (W |0,Υ)dW

=
a(W ∗, σ2)

(2π)
m/2 |Υ|1/2

∫
exp{1

2
W>H(W ∗, σ2)W +W>ĝ(W ∗, σ2) +

1

2
W>Υ−1W}dW

∝ a(W ∗, σ2)

(2π)
m/2 |Υ|1/2

exp{1

2
W>H(W ∗, σ2)W +W>ĝ(W ∗, σ2) +

1

2
W>Υ−1W}|ΣW |

1
2 dW

(14)

Applying a −2 log(·) transformation to (14):

− 2 log

[
a(W ∗, σ2)

(2π)m/2 |Υ|1/2
exp{1

2
W>H(W ∗, σ2)W +W>ĝ(W ∗, σ2) +

1

2
W>Υ−1W}|ΣW |

1
2 dW

]

∝− 2a(W ∗, σ2) + log |Υ|+ log |H(W ∗, σ2) + Υ−1|+ 1

2
W>H(W ∗, σ2)W +W>ĝ(W ∗, σ2)

+
1

2
W>Υ−1W

∝W>H(W ∗, σ2)W + 2W>ĝ(W ∗, σ2) +W>Υ−1W + log |Υ|+ log |H(W ∗, σ2) + Υ−1|.
(15)

Therefore, the maximization of evidence becomes minimizing following objective function:

L(W,Υ) = W>HW + 2W>(g −HW ∗) +W>Υ−1W + log |Υ|+ log |H + Υ−1| (16)

A.1.3 Regularization Update Rules

Proposition 1 With known σ,the W and η can be optimized by minimizing the objective function:

L(W,Υ) = W>HW + 2W>(g −HW ∗) +W>Υ−1W + log |Υ|+ log |H + Υ−1| (17)

where u(W,Υ) = W>HW + 2W>(g − HW ∗) + W>Υ−1W is convex jointly in W,Υ. And
v(Υ) = log |Υ|+ log |H + Υ−1| is concave in Υ. The optimization problem can be solved with a
convex-concave procedure (CCCP).

Proof 1 Eq (17) is consist of a convex part in W,Υ and a concave part in Υ. For the convex part:

u (W,Υ) = W>HW + 2W>(g −HW ∗) +W>Υ−1W (18)

u (W,Υ) is a convex function as it is the sum of convex functions with type f(x, Y) = x>Y−1x
[49]. By using the Schur complement determinant identities, the concave part can be written as a
log-determinant of an affine function of semidefinite matrices Υ:

v(Υ) = log |Υ|+ log |Υ−1 + H(W ∗, σ2)| = log
(
|Υ||Υ−1 + H(W ∗, σ2)|

)
= log

∣∣∣∣(H(W ∗, σ2)
−Υ

)∣∣∣∣ = log
∣∣Υ + H−1(W ∗, σ2)

∣∣+ log
∣∣H(W ∗, σ2)

∣∣ (19)

Therefore, the optimization problem in Eq. (17) could be solved with a convex-concave procedure
(CCCP). Specifically, by computing the gradient of v(Υ) to Υ and the gradient of u(W,Υ) to W , we
have the following iterative optimization procedure:

Υ = arg min
Υ�0

u(W,Υ) +∇Υv(Υ)>Υ (20)

W = arg min
W

u(W,Υ) (21)

Based on (20), we could update Υ. By using the chain rule, its analytic form is:

α ,∇Υv (Υ)
> |Υ=Υ∗ = ∇Υ

(
log |Υ−1 + H(W ∗, σ2)|+ log |Υ|

)> |Υ=Υ∗

=− diag
{

Υ−1
}
◦ diag

{(
Υ−1 + H(W ∗, σ2)

)−1
}
◦ diag

{
Υ−1

}
+ diag

{
Υ−1

}
= diag {[α1 · · · αm]}

(22)

14

where ◦ represents the Hadamard product; α is an intermediate variable. According to (22), each αi
is calculated as:

ζ =
(
Υ−1 + H(W ∗, σ2)

)−1
α = − ζ

(Υ)2
+

1

Υ
(23)

Therefore, Υ can be updated as (20):

Υ = arg min
Υ�0

u(W,Υ) +∇Υv(Υ)>Υ

=arg min
Υ�0

W>HW + 2W>(g −HW ∗) +W>Υ−1W +∇Υv(Υ)>Υ

=arg min
Υ�0

W>Υ−1W +∇Υv(Υ)>Υ
(24)

Since W 2
i

ηi
+ αiηi ≥ 2

∣∣√αi ·Wi

∣∣ , the optimal ηi equals:

ηi =
|Wi|√
αi
,∀i. (25)

Define β ,
√
α, W can be solved according to Eq (21):

W =arg min
W

1

2
W>HW +W>(g −HW ∗) +

m∑
i=1

‖β ·Wi‖`1

∝arg min
W

E(W ∗, σ2) + (W −W ∗)>g(W ∗, σ2) +
1

2
(W −W ∗)>H(W ∗, σ2)(W −W ∗)

+ 2

m∑
i=1

‖β ·Wi‖`1

≈arg min
W

E(·) + 2

m∑
i=1

‖β ·Wi‖`1

(26)
Combine (26) and (25), the η could be calculated. With Eq (23), (25) and (26), the weight W and
hyperparameter Υ could be updated alternatively.

In this paper, the α calculated in (22) is adopted as the determining factor for connection redundancy.
α is mainly decided by the uncertainty ν and the Hessian. Typically, the change of α is the opposite
of ν. An increase in ν will cause α to decrease, thereby reducing regularization on corresponding
weight W . Based on this, the binary matrix C is generated, which denotes the connection redundancy.
C has the same dimension as W and will be optimized during the training process. The value is
decided by:

C =

{
0, α > κα
1, others (27)

where κα stands for the thresholds for connection pruning. 0 denotes the redundancy, and 1 means
the weight should be retained. It should be noted that the mask C will be updated at the last epoch of
each cycle.

A.2 Structured regularization

For the structured regularization, a group Gaussian prior p(Wg) = N (Wg|0,Υg) =∏m
i=1N (Wgi|0, ηg) is imposed on a group of weights. It should be noted that the group means

that connections within a group share the same value on η. The derivation of the loss function for
structured regularization is the same as Sec. A.1. The only difference is the optimization step for ηg:

ηg =
‖Wg‖`2
βg

=

√∑m
i=1(W 2

i)
√
αg

,∀i. (28)

where αg =
∑m
i=1(−ζgi/η2

g + 1/ηg), ζgi =
(
η−1
g + H(Wgi, σ

2)
)−1

. For the structured regular-
ization, αg will be used as the determining factor for group redundancy. If the value of αg is smaller

15

than the threshold καg , the weights of the group will be retained. On the contrary, the group’s weights
will be removed if the value αg is larger than the threshold καg . The binary matrix Cg for structured
regularization is decided by:

Cg =

{
0, αg > καg

1, others (29)

mask Cg has the same same dimension as W and will be updated at the last epoch of each cycle as
well.

B Experiment

The algorithm is demonstrated on the chaotic Lorenz system [43], Lotka-Volterra system [44] and
Kolmogorov–Petrovsky–Piskunov (Fisher-KPP) system [45]. All experiments are performed in
PyTorch framework by using a single GPU (NVIDIA TITAN V). The code is available on https:
//github.com/nips2021anonymous/MathONet.

B.1 Chaotic Lorenz System

B.1.1 Experiment Setup

The MathONet is initialized with 1 hidden layer and 3 hidden neurons. The OperNet includes 5 basic
unary functions, i.e. identity, sin, cos, log, exp. The initial value of the regularization parameters
λ, λg are assigned from the set {1e−2, 1e−4, 1e−6, 1e−8, 1e−10} and are decayed to one-tenth every
200 epochs. For each hyper-parameter, the identification procedure is repeated every 200 epochs.
For each hyper-parameter, the identification procedure is repeated 10 times with differing weight
initialization.

B.1.2 Result on Noise-free Dataset

With the simulated dataset without noise, the identified governing equations without fine-tuning are:

ẋ = −10.000x+ 10.000y (30a)
ẏ = −1.000xz + 28.000x− 1.000y (30b)
ż = 1.000xy − 2.667z (30c)

It can be observed that both the equation form and parameters are captured accurately. Fig. 6 and
Fig. 7 show the process of the algorithm searching for the governing equations for model x and y,
respectively. In Fig. 6a and Fig. 7a, the non-zero weight elements within the MathONet of each
cycle are collected to form a weight vector. Fig. 6b and Fig. 7b show that the predictive ability is
improved as the model complexity decreases. It only takes 7 cycles to identify the correct structures
and coefficients for model x and 9 cycles for model y. This is reasonable because the model y is
more complex with a second-order term than model x as described in (30).

The predicted distribution of the identified model is also investigated. We sampled a total of 1000
times based on the identified model and parameter. The first row in Fig. 8 shows the predicted mean
and variance of each model on the dataset without noise. Although the variance is very small almost
for all data points, it still can be observed that the predicted distribution spreads a bigger range around
the turning points, which means more training data is required around these points.

B.1.3 Result on Noisy Dataset

We also test the robustness of the algorithm with noisy derivatives measurement, Gaussian noise
ξ = N (0, σ2) with σ ∈ {0.01, 1, 10} is added to the exact derivatives, respectively. The experiments
were implemented with the same experiments setting as the simulated dataset in the Sec. 5.1. As
shown in Table 1, both structure and parameters are correctly identified even under the large noise
value (σ = 10). The coefficients σ, β, γ can be determined accurately within 0.5% around the true
value. Fig. 8 is the prediction uncertainty for each dataset, which shows the predicted uncertainty of
the identified model improves along with increasing σ.

16

https://github.com/nips2021anonymous/MathONet
https://github.com/nips2021anonymous/MathONet

1

8

(a) The number of nonzero weights of the Math-
ONet in each cycle.

Cycle index

P
re

d
ic

ti
v
e
 a

b
il
it
y
 (

-l
o
g
 e

rr
o
r)

S
p
a
rs

it
y

1037 terms

267 terms

9 terms

7 terms

3 terms
2 terms

0 1 2 3 4 5 6 7

-10

-5

0

5

10

15

20

25

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) The sparsity and predictive ability of the Math-
ONet in each cycle.

Figure 6: The sparsity, predictive ability and weights of the identified MathONet generated in each
cycle, which aims to discover governing equation of model x of Lorenz system. a) The nonzero
weights of the MathONet generated in each cycle. The horizontal axis represents the combination
of non-zero weights in the MathONet generated in each cycle. The vertical axis denotes the index
of training cycles. The expression at each turning line (the cliff) represents the governing equation
identified in the corresponding cycle. b) The sparsity and prediction ability of the MathONet identified
in each cycle. The model becomes more and more sparse and has more and more predictive ability.
The annotation next to the sparsity line represents the number of identified mathematical terms of the
corresponding cycle. The first cycle represents the result identified by sparse group Lasso method
which is still redundant (267 terms), and the prediction ability is low. The correct structure and
coefficients can be identified around 7 cycles.

(a) The number of nonzero weights of the Math-
ONet in each cycle.

Cycle index

1548 terms

395 terms

89 terms

15 terms

6 terms
5 terms

3 terms

S
p
a
rs

it
y

P
re

d
ic

ti
v
e
 a

b
il
it
y
 (

-l
o
g
 e

rr
o
r)

0 2 4 6 8

-5

0

5

10

15

20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) The sparsity and predictive ability of the Math-
ONet in each cycle.

Figure 7: The sparsity, predictive ability and weights of the identified MathONet generated in each
cycle, which aims to discover governing equation of model y of Lorenz system. a) The nonzero
weights of the MathONet generated in each cycle. The horizontal axis represents the combination
of non-zero weights in the MathONet generated in each cycle. The vertical axis denotes the index
of training cycles. The expression at each turning line (the cliff) represents the governing equation
identified in the corresponding cycle. b) The sparsity and prediction ability of the MathONet identified
in each cycle. The model becomes more and more sparse and has more and more predictive ability.
The annotation next to the sparsity line represents the number of identified mathematical terms of the
corresponding cycle. The first cycle represents the result identified by sparse group Lasso method
which is still redundant (395 terms), and the prediction ability is low. The correct structure and
coefficients can be identified around 9 cycles.

17

5000 6000 7000 8000 9000 10000
Test sample index

−100

−50

0

50

100

x

Output from our method
Output from measured data
Confidence Zone

(a) Model x, σ = 0

5000 6000 7000 8000 9000 10000
Test sample index

−200

−100

0

100

200

y

Output from our method
Output from measured data
Confidence Zone

(b) Model y, σ = 0

5000 6000 7000 8000 9000 10000
Test sample index

−100

−50

0

50

100

150

200

250

z

Output from our method
Output from measured data
Confidence Zone

(c) Model z, σ = 0

5000 6000 7000 8000 9000 10000
Test sample index

−100

−50

0

50

100

x

Output from our method
Output from measured data
Confidence Zone

(d) Model x, σ = 0.01

5000 6000 7000 8000 9000 10000
Test sample index

−200

−100

0

100

200

y

Output from our method
Output from measured data
Confidence Zone

(e) Model y, σ = 0.01

5000 6000 7000 8000 9000 10000
Test sample index

−100

−50

0

50

100

150

200

250

z

Output from our method
Output from measured data
Confidence Zone

(f) Model z, σ = 0.01

5000 6000 7000 8000 9000 10000
Test sample index

−100

−50

0

50

100

x

Output from our method
Output from measured data
Confidence Zone

(g) Model x, σ = 1

5000 6000 7000 8000 9000 10000
Test sample index

−200

−100

0

100

200

y

Output from our method
Output from measured data
Confidence Zone

(h) Model y, σ = 1

5000 6000 7000 8000 9000 10000
Test sample index

−100

−50

0

50

100

150

200

250

z

Output from our method
Output from measured data
Confidence Zone

(i) Model z, σ = 1

5000 6000 7000 8000 9000 10000
Test sample index

−100

−50

0

50

100

x

Output from our method
Output from measured data
Confidence Zone

(j) Model x, σ = 10

5000 6000 7000 8000 9000 10000
Test sample index

−200

−100

0

100

200

y

Output from our method
Output from measured data
Confidence Zone

(k) Model y, σ = 10

5000 6000 7000 8000 9000 10000
Test sample index

−100

0

100

200

z

Output from our method
Output from measured data
Confidence Zone

(l) Model z, σ = 10

Figure 8: Predicted distribution for the identified Lorenz system generated from data with different
noise ξ = N (0, σ2), where σ ∈ {0.01, 1, 10}.The blue curve stands for the best-predicted output of
our method. The shaded area represents the model uncertainty (showing 2 standard deviations)

Table 1: The identified governing equations for the chaotic Lorenz system with noisy measurements
Noise (σ) Identified governing equations

0
ẋ = −9.99999935280567x+ 9.99999935280567y
ẏ = −0.999997263120259xz + 27.9998710115329x− 0.999953545630988y
ż = 0.99999998781167xy − 2.66666669723636z

0.1
ẋ = −9.99999496925967x+ 9.99999952895684y
ẏ = −1.00052719172829xz + 28.0258380824985x− 1.00998669015022y
ż = 0.999999113716832xy − 2.66666544271354z

1
ẋ = −10.0033841069518x+ 10.0034298967151y
ẏ = −1.00010106902181xz + 28.0040216562134x− 1.00069798536041y
ż = 0.999929109879073xy − 2.66622599261675z

10
ẋ = −9.99893134664084x+ 10.0048109236265y
ẏ = −1.0092184658872xz + 28.4682092943604x− 1.1929184472878y
ż = 1.00051935274034xy − 2.66709953162919z

18

0 5 10 15 20 25 30
Time

0

2

4

6

8

Po
pu

la
tio

n

Prey
Predator

(a) Predator and prey population

0 2 4 6 8
Prey

0

1

2

3

4

5

6

7

Pr
ed

at
or

Output from our method
Output from measured data

(b) Phase-space plot of solution. (c) Predicted output.

Figure 9: The solution of the prey and predator population with the initial conditions x(0) =
0.442, y(0) = 4.628. a) The data of the prey and predator population generated by (7); b) Phase-
space plot for the predator and prey population of the identified model (31); c) The uncertainty of the
predicted output.

B.2 Lotka-Volterra System

B.2.1 Experiment Setup

The coefficients α, β, δ, γ in Eq.7 are the positive real parameters identified in this experiment and set
as 1.3, 0.9, 0.8, 1.8, respectively. Fig. 9a shows the generated prey and predator population along time.
Specifically, Fig. 9b illustrates the dynamic changes of the prey and predator population in a circle of
growth and decline. The input and output data with the dimension 300× 2 is generated, where 300
represents the number of data samples and 2 denotes the number of features. The ratio of training
data and test data is set to 90% : 10%. The regularization parameters λ and λg are selected from the
alternatives among {1e−2, 1e−4, 1e−6, 1e−8, 1e−10} and are decayed to one-tenth every 800 epochs.
For each λ (λg), 10 repeated experiments are implemented with differing weight initialization.

B.2.2 Result

The identified model with the best prediction accuracy and being in line with Occam’s razor principle
is selected as the best model. The identified system equations are:

ẋ = 1.300x− 0.900xy (31a)
ẏ = 0.800xy − 1.800y (31b)

It can be observed that the identified equations are exactly the same as the theoretical system
equation (7). Fig. 10a shows the process of the algorithm searching for the governing equations.
Fig. 10b shows the change of predictive ability and model sparsity, and the annotations along the
sparsity line represent the number of retained mathematical terms of each cycle. It can be observed
that the algorithm identify a model with only 4 terms that originates from the initialized structure
with 140 terms. The predictive ability improves as the model complexity decreases.

B.3 Fisher-KPP (Kolmogorov–Petrovsky–Piskunov) Equation

B.3.1 Experiment Setup

As in Eq.8, a time history of the population density p and the derivative ∂p
∂t are used as input

and output. The regularization parameters λ and λg are selected from the alternatives among
{1e−8, 1e−10, 1e−12, 1e−14, 1e−16} and are decayed to one-tenth every 800 epochs. For each hyper-
parameter, the identification procedure is repeated 10 times with differing weight initializations. The
best model is selected according to the prediction accuracy, which is evaluated by the predicted mean
square error.

B.3.2 Result

Fig. 11a shows the process of the algorithm searching for the governing equations. Fig. 11b shows the
change of predictive ability and model sparsity, and the annotations along the sparsity line represent
the number of retained mathematical terms of each cycle within the MathONet. It should be noted
that MathONet contains the same number of mathematical terms (7 terms) in the first three cycles.

19

8

1

3

5

(a) The number of nonzero weights of the Math-
ONet in each cycle.

140 terms
108 terms

108 terms

33 terms

19 terms

4 terms

Cycle index

P
re

d
ic

ti
v
e
 a

b
il
it
y
 (

-l
o
g
 e

rr
o
r)

S
p
a
rs

it
y

0 1 2 3 4 5 6 7

1.0

0.4

0.5

0.6

0.7

0.8

0.9

-5

0

5

10

15

20

25

30

(b) The sparsity and predictive ability of the
MathONet in each cycle.

Figure 10: The sparsity, predictive ability and weights of the identified MathONet generated in
each cycle. a) The nonzero weights of the MathONet generated in each cycle. The horizontal axis
represents the combination of non-zero weights in the MathONet generated in each cycle. The vertical
axis denotes the index of training cycles. The expression at each turning line (the cliff) represents the
governing equation identified in the corresponding cycle. b) The sparsity and prediction ability of the
MathONet identified in each cycle. The model becomes more and more sparse and has more and
more predictive ability. The annotation next to the sparsity line represents the number of identified
mathematical terms of the corresponding cycle. The first cycle represents the result identified by
sparse group Lasso method which is still redundant (108 terms), and the prediction ability is low.

1

3

5

C
y
c
le

 i
n
d
e
x

The number of nonzero weights within MathONet

(a) The number of nonzero weights of the Math-
ONet in each cycle.

Cycle index

P
re

d
ic

ti
v
e
 a

b
il
it
y
 (

-l
o
g
 e

rr
o
r)

S
p
a
rs

it
y

7 terms

7 terms

7 terms

2 terms 2 terms

0 1 2 3 4 5

0

5

10

15

20

25

30

0.50

0.55

0.60

0.65

0.70

0.75

0.85

0.80

(b) The sparsity and predictive ability of the Math-
ONet in each cycle.

Figure 11: The sparsity, predictive ability and weights of the identified MathONet generated in each
cycle. a) The horizontal axis represents the non-zero weights collected from the MathONet for the
corresponding cycle. The vertical axis denotes the index of training cycles. The definition of cycle
is in Algorithm 1. The expression at the cliff represents the identified governing equation of the
corresponding cycle. b) The sparsity and prediction ability of the MathONet identified in each cycle.

However, the sparsity is gradually decreasing, which can also be observed from Fig. 11a. This is
because after some redundant connections are removed from the model, the retained connections
can still represent the same or similar mathematical items represented by the redundant edges, so
the number of mathematical terms remains unchanged. The predictive ability improves as the model
complexity decreases.

C Further Discussion

Regularization parameter λ and λg in Algorithm 1: The regularization parameters λ and λg in (5)
needs to be properly tuned for network training. With the Bayesian approach that calculates α and
αg as the determining factors for redundancy, the effort for tuning λ can be saved a lot. Typically,
λ is also the necessity for the sparse group Lasso method as shown in (1). More strict conditions
are required to discover governing equations through sparse group Lasso, including proper network
initialization and an extensive computational resource used for tuning λ. It should be noted in
our algorithm, sparse group Lasso is exactly the first cycle to start and applied for all experiments.

20

However, it is challenging to discover governing equations precisely and efficiently (see Fig. 2(b) and
Fig. 3b for Lorenz experiment).

Comparison with deep ensemble: Deep ensemble is a learning paradigm to improve generalization
ability by training a set of deep neural network models with same structures and random initializa-
tions [50]. An ensemble includes high performing models weighted by their posterior probabilities
for better accuracy and variance reduction [51]. In this work, we also train a set of MathONet
models starting from random initializations using Bayesian approach. However, instead of averaging
on an ensemble, a single setting of parameters is selected as the optimal model by evaluating its
performance. Although a single point mass may cause worse prediction with flawed assumptions (e.g.
improper prior distribution [52]), it also alleviates the issue of a tremendous computational expense
that deep ensembles may incur.

Comparison with variational inference: Variational inference (VI) is another typical approxima-
tion method for Bayesian inference by minimizing the Kullback-Leibler divergence between an
assumed approximated posterior and true posterior distribution. VI method can provide bounds
on probabilities of interest and yield deterministic approximation procedures without tuning regu-
larization parameter [53]. Its applications on model compression have been explicitly interpreted
in [54, 55] However, the manual selection for proper pruning thresholds is also required, which hinder
its compression efficiency for complex models. In contrast, the Laplace approximation method can
be implemented more efficiently and extended to complex models. It is also worth studying to extend
the sparse group Bayesian approach to network compression by enforcing various structural sparsity
over network parameters.

21

	1 Introduction
	2 Related Works
	3 MathONet Design
	3.1 Motivation
	3.2 Polynomial-Network
	3.3 Operation-Network

	4 Discovery Algorithm
	4.1 Sparse Group Lasso
	4.2 Sparse Group Bayesian Learning

	5 Experimental Result
	5.1 Chaotic Lorenz System
	5.2 Lotka-Volterra System
	5.3 Fisher-KPP (Kolmogorov–Petrovsky–Piskunov) Equation

	6 Conclusion
	A Sparse Group Bayesian Learning Algorithm Derivation
	A.1 Non-structured regularization
	A.1.1 Laplace Approximation
	A.1.2 Evidence Maximization
	A.1.3 Regularization Update Rules

	A.2 Structured regularization

	B Experiment
	B.1 Chaotic Lorenz System
	B.1.1 Experiment Setup
	B.1.2 Result on Noise-free Dataset
	B.1.3 Result on Noisy Dataset

	B.2 Lotka-Volterra System
	B.2.1 Experiment Setup
	B.2.2 Result

	B.3 Fisher-KPP (Kolmogorov–Petrovsky–Piskunov) Equation
	B.3.1 Experiment Setup
	B.3.2 Result

	C Further Discussion

