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eRNA profiling uncovers the 
enhancer landscape of oesophageal 
adenocarcinoma and reveals new 
deregulated pathways
Ibrahim Ahmed, Shen-Hsi Yang, Samuel Ogden, Wei Zhang, Yaoyong Li, The 
OCCAMs consortium, Andrew D Sharrocks*

School of Biological Sciences, Faculty of Biology, Medicine and Health, University of 
Manchester, Manchester, United Kingdom

Abstract Cancer is driven by both genetic and epigenetic changes that impact on gene expres-
sion profiles and the resulting tumourigenic phenotype. Enhancers are transcriptional regulatory 
elements that are key to our understanding of how this rewiring of gene expression is achieved in 
cancer cells. Here, we have harnessed the power of RNA-seq data from hundreds of patients with 
oesophageal adenocarcinoma (OAC) or its precursor state Barrett’s oesophagus coupled with open 
chromatin maps to identify potential enhancer RNAs and their associated enhancer regions in this 
cancer. We identify ~1000 OAC-specific enhancers and use these data to uncover new cellular path-
ways that are operational in OAC. Among these are enhancers for JUP, MYBL2, and CCNE1, and 
we show that their activity is required for cancer cell viability. We also demonstrate the clinical utility 
of our dataset for identifying disease stage and patient prognosis. Our data therefore identify an 
important set of regulatory elements that enhance our molecular understanding of OAC and point 
to potential new therapeutic directions.

Editor's evaluation
This is an important study that identifies enhancer-associated (e)RNAs specifically associated with 
Oesophageal adenocarcinoma (OAC). Integrative analyses of patient gene expression data and 
epigenetic data from an OAC-derived cell line provide convincing support for the identification of 
eRNAs as markers of enhancers that are important for OAC tumour biology. This paper should be of 
wide general interest to researchers interested in how epigenetics drive cancer development.

Introduction
Enhancers are distal regulatory elements that generally promote gene expression by engaging with 
the promoters of their target genes in cis (Andersson and Sandelin, 2020), although they have also 
been observed acting in trans (Hu et al., 2008; Spilianakis et al., 2005) and more recently, through 
hubs of activity on extra-chromosomal DNA species (Hung et al., 2021). Active enhancers are char-
acterised by the presence of histone marks such as H3K27ac and H3K4me1 (Creyghton et al., 2010; 
Heintzman et al., 2007). However, it has been shown that enhancers can be the site of production 
for small transcripts termed enhancer RNAs (eRNAs) (De Santa et al., 2010; Kim et al., 2010). Whilst 
the functionality of eRNAs is still under debate, there is a large body of evidence associating the 
production of eRNAs with enhancer activity, and subsequent target gene activation (Tyssowski et al., 
2018; Andersson et al., 2014; Chen et al., 2018). This association with gene expression has allowed 
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eRNA-defined enhancer activity to serve as a specific marker for developmental stage and tissue type 
(Yan et al., 2019; Huang et al., 2016). Furthermore, eRNAs provide molecular markers for disease, 
often with more sensitivity than the gene expression pattern itself (Zhang et al., 2019; Chen et al., 
2018).

During tumourigenesis, there are widespread changes to gene expression patterns that are asso-
ciated with rewiring of the regulatory landscape in an enhancer-driven manner (Li et al., 2015; Hsieh 
et al., 2014). This can be accompanied by eRNA production. For example, production of an eRNA 
from the PSA gene enhancer is associated with increased PSA expression in castration-resistant pros-
tate cancer (Zhao et  al., 2016). This potentially makes the production of eRNAs a biomarker for 
cancer, but this is widely underappreciated. Indeed, a recent pan cancer study demonstrated that 
eRNAs can serve as prognostic markers across various cancer types and provide novel insights into 
cancer biology (Chen et al., 2018), leading to the identification of therapeutic opportunities.

Oesophageal adenocarcinoma (OAC) has an overall 5-year survival rate of approximately 15%, 
making it a leading global cause of cancer-associated deaths (Coleman et al., 2018). OAC is believed 
to arise in a stepwise fashion from the pre-cancerous lesion Barrett’s oesophagus (BO) (Peters et al., 
2019). A number of large-scale DNA sequencing studies have been performed into the pathogenesis 
of OAC from Barrett’s (Frankell et al., 2019; Ross-Innes et al., 2015; Stachler et al., 2015), however 
there is still uncertainty concerning the precise molecular mechanisms. In an effort to understand 
potential epigenetic contributors to OAC, we have previously demonstrated that changes in chro-
matin accessibility play a role in the transition to OAC (Britton et al., 2017; Rogerson et al., 2019; 
Rogerson et al., 2020). These chromatin changes are often associated with non-coding regions of the 
genome that may represent regulatory elements such as enhancers.

Here, we build on our previous work identifying chromatin changes during the BO to OAC transi-
tion (Britton et al., 2017; Rogerson et al., 2019; Rogerson et al., 2020). By integrating total RNA-
seq data from BO and OAC patients generated by the Oesophageal Cancer Clinical and Molecular 
Stratification (OCCAMS) consortium dataset, with previously generated chromatin accessibility data 
on these tissues (Britton et al., 2017; Rogerson et al., 2019; Rogerson et al., 2020; Corces et al., 
2018), we identify, and validate, pervasive eRNA production at regions of accessible chromatin, indic-
ative of enhancer activity. Subsequent interrogation of genes associated with these enhancers iden-
tified deregulated pathways of importance and demonstrated the potential clinical utility of eRNA 
profiling in OAC.

Results
Identification of potential intergenic eRNA transcripts in OAC patients
eRNAs are generally unstable and lowly abundant, making them hard to detect in RNA-seq data-
sets. We therefore harnessed the sequencing power derived from combining hundreds of patient 
samples to discover potential eRNAs (Figure 1A). To identify eRNAs that are relevant to OAC we 
interrogated RNA-seq data generated from 210 OAC patients and also from 108 Barrett’s patients to 
identify differentially upregulated eRNAs in OAC (Jammula et al., 2020). After mapping sequencing 
reads to the genome, we excluded all regions corresponding to gene bodies as well as sequences 
2 kb upstream from the transcriptional start site (TSS) and 500 bp downstream from the annotated 
transcriptional termination site (TTS) (Figure 1—figure supplement 1A) to avoid interference from 
promoter sequences and read through transcription, respectively. Next, we identified all of the acces-
sible regions of chromatin in OAC and Barrett’s samples within this truncated genome by creating a 
union peak set from ATAC-seq performed on 14 OAC and 4 Barrett’s samples (Britton et al., 2017; 
Rogerson et al., 2019; Rogerson et al., 2020; Corces et al., 2018) (resulting in 150,265 peaks). To 
focus on potential enhancer regions, we then took the RNA-seq data from both classes of patients 
and assessed raw reads within these accessible chromatin regions. This identified 61,349 intergenic 
regions that contain RNA transcripts and represent potential eRNA regions. We then filtered these 
based on a read count ≥3 and fragments per million (FPM) value ≥1.5, which resulted in a final high-
confidence set of 4600 potential eRNA containing enhancer regions in OAC and Barrett’s patients 
(Supplementary file 1).

Next, we identified differentially transcribed eRNAs in each disease state (±>0.5 log2 fold; p-val-
ueadj <0.05; Figure 1B) and found 959 to be significantly upregulated in OAC (Supplementary file 2) 

https://doi.org/10.7554/eLife.80840
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and 670 to be more active in Barrett’s patients (Supplementary file 3). 2498 eRNAs did not meet the 
stringent DESeq2 distribution threshold and were discarded. The remaining putative eRNAs exhibited 
low directionality score distributions consistent with the bidirectional transcription associated with 
eRNA production (Figure 1C; Figure 1—figure supplement 1B).

To probe the clinical utility of eRNA region profiling, we analysed the expression levels found in 
the 4600 eRNA regions across all of the OAC and Barrett’s samples. Hierarchical clustering showed a 
clear separation of Barrett’s and OAC patients (Figure 1D). While clustering based on whole RNA-seq 
data gave broadly similar separation of OAC and Barrett’s samples, several more were misclassified 
compared to eRNA-based profiling (Figure 1—figure supplement 1C; 37 vs. 8 samples). Clustering 
of the expression of the same eRNA regions in a different RNA-seq dataset (Maag et al., 2017) also 
provided a good separation of the OAC and Barrett’s samples (Figure 1—figure supplement 1D), 
further demonstrating the relevance of this dataset. In summary therefore, we have identified a panel 

Figure 1. Identification of enhancer transcription in oesophageal adenocarcinoma (OAC) and Barrett’s patients. (A) Enhancer RNA (eRNA) identification 
strategy. The numbers of putative eRNAs identified at each stage are indicated. (B) Volcano plot displaying the differentially expressed (±Log2FC 
0.5,<padj = 0.05) eRNAs (n = 2102). (C) Directionality scores for Barrett’s oesophagus (BO)- or OAC-specific eRNAs compared to promoters. (D) Pearson’s 
correlation and hierarchical clustering of BO (n = 108) and OAC (n = 210) patient tissue total RNA-seq samples according to row z-score normalised 
expression levels in the 4600 eRNA regions. See also Figure 1—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Identification of enhancer transcription in Barrett’s oesophagus (BO) and oesophageal adenocarcinoma (OAC) patients.

https://doi.org/10.7554/eLife.80840
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of potential eRNA generating regions that can be used for discriminating OAC samples from the pre-
cancerous Barrett’s state.

eRNA-associated regions show enhancer-like characteristics
Having identified a group of accessible chromatin regions expressing potential eRNAs, we next 
sought further evidence to associate these with enhancer-like activity. First, we examined chromatin 
accessibility in OAC patients and found higher levels at eRNA expressing loci compared to a random 
set of open chromatin regions (Figure 2A; left). Furthermore, these regions also exhibited higher 
levels of the H3K27ac chromatin mark in OE19 OAC-derived cells that is usually associated with 
active enhancers (Figure 2A; right). This was not just a function of increased accessibility as a control 
group of more highly accessible regions did not exhibit increased levels of H3K27ac (Figure 2—figure 
supplement 1A). Indeed, chromatin accessibility levels are a weak indicator of eRNA transcription 
levels across patient samples, as even regions of greater accessibility contained much lower transcript 
levels (Figure 2B; Figure 2—figure supplement 1B). Thus, eRNA regions are more accessible but 
the reciprocal is not true, as more accessible regions do not necessarily show higher levels of eRNA 
transcription.

To provide further evidence for association with active enhancers in OAC cells, we used CUT&Tag 
(Kaya-Okur et al., 2020) to profile a range of histone marks and chromatin-associated proteins in 
OE19 cells and correlated the levels of these across the eRNA expressing regions (Figure 2C). There 
is clear co-association with a range of enhancer-associated marks and proteins, including RNA poly-
merase II, BRD4, and the MED1 subunit of mediator. This is also evident when visualising the data 
as heatmaps compared to random regions of accessible chromatin, where there are higher levels of 
the chromatin-associated marks/proteins that categorise enhancers in the eRNA regions (Figure 2—
figure supplement 1C). Conversely, there is a clear depletion of the promoter-associated mark 
H3K4me3 (Figure 2—figure supplement 1D). We also examined the distribution of the chromatin 
marks H3K4me1 (associated with active and poised enhancers) and H3K4me3 (associated with active 
promoters) found in gastric adenocarcinoma (GAC) patients which are molecularly similar to OAC 
patients (Cancer Genome Atlas Research Network et al., 2017). Neither mark is enriched in the 
eRNA containing regions compared to random accessible regions (Figure  2—figure supplement 
1E). However, there is a clear enrichment of H3K4me1 and depletion of H3K4me3 in eRNA containing 
regions compared to promoters, consistent with their designation as potential enhancers (Figure 2—
figure supplement 1F). Conversely, the CpG content of the eRNA regions was substantially lower 
than at promoter regions (Figure 2—figure supplement 1G).

To further probe links between eRNA containing regions and enhancer activity, we partitioned the 
genome into a series of states via a Hidden Markov Model (HMM states) (Figure 2—figure supple-
ment 1H). Positional information was used to mark these HMM states as promoter proximal or distal 
(Figure 2—figure supplement 1I). Re-evaluation of the eRNA expressing regions showed that 33% 
were associated with regions designated as enhancers (Figure 2D; compared to 4% genome-wide), 
with very few regions designated as quiescent or repressed (17% compared to 69% in randomly 
selected chromatin regions; Figure 2—figure supplement 1J).

The co-association of eRNA expressing regions with genomic elements associated with active chro-
matin marks is strongly suggestive of enhancer-like activity. However, to provide further evidence for 
active ongoing transcription at these loci we performed KAS-seq (Wu et al., 2020) in OE19 cells to 
identify areas of DNA strand opening as observed in the transcription bubble. The three replicates 
showed good congruency (Figure 2—figure supplement 2A), and we merged all three to call peaks 
of DNA strand opening (Supplementary file 4). These peaks show a highly significant overlap with 
the eRNA regions we identified from patient samples (Figure 2—figure supplement 2B), and higher 
levels of KAS-seq signal are associated with eRNA regions compared to random regions (Figure 2E). 
This is exemplified by eRNAs associated with a putative enhancer region located upstream from JUP 
(Figure 2F), CCNE1 and MYBL2 gene loci (Figure 2—figure supplement 2C, D). Furthermore, when 
we combined eRNA regions with regions showing KAS-seq peaks, higher levels of H3K27ac were 
observed compared to those lacking concomitant KAS-seq signal (Figure 2—figure supplement 2E), 
indicative of higher activity.

Finally, we focussed on potential super enhancers as these have been shown to play important 
roles in cancer-specific gene regulation (Hnisz et al., 2013) including gastroesophageal cancers (Ooi 

https://doi.org/10.7554/eLife.80840
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et al., 2016). We identified potential super enhancers in OE19 cells using HOMER (Heinz et al., 2010; 
Whyte et al., 2013) from peak sets generated from H3K27ac ChIP-seq (for histone activation marks) 
and ATAC-seq (for open chromatin) (Figure 2—figure supplement 3A; Supplementary file 5). We 
then overlapped these peak sets to generate a dataset with both indicators of super enhancer activity, 
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Figure 2. Putative enhancer RNAs (eRNAs) are associated with enhancer-like genomic regions. (A) Metaplots of patient tissue chromatin accessibility 
(left) and OE19 cell H3K27ac ChIP-seq signal (right) at all 4600 eRNA regions compared to 4600 random regions of accessible chromatin. (B) Distribution 
of transcription at 4600 eRNA regions compared to 4600 randomly selected regions of similar or greater chromatin accessibility (regions shown as peak 
centre ±0.5 kb). (C) Pearson’s correlation and hierarchical clustering of CUT&Tag signal at 4600 eRNA regions for various chromatin-associated factors. 
(D) Distribution of ChromHMM emission states for 4600 eRNA regions. (E) Metaplots of KAS-seq signal in OE19 cells at 4600 eRNA regions compared 
to 4600 random regions of accessible chromatin. (F) Genome browser view of OE19 KAS-seq, OE19 ATAC-seq data, and OE19 H3K27ac ChIP-seq at 
the JUP locus with the JUPe eRNA highlighted. (G) Venn diagram of overlap between 221 high-confidence intergenic super enhancers and 1432 eRNAs 
(specific to oesophageal adenocarcinoma [OAC] or shared with Barrett’s oesophagus (BO) eRNA; p-value is shown; hypergeometric test). See also 
Figure 2—figure supplements 1–3.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Putative enhancer RNAs (eRNAs) are associated with enhancer-like genomic regions.

Figure supplement 2. KAS-seq reveals active transcription at enhancer RNA (eRNA) regions.

Figure supplement 3. Enhancer RNAs (eRNAs) are associated with super enhancers.

https://doi.org/10.7554/eLife.80840
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excluding promoter regions from our analysis. This resulted in 221 high-confidence super enhancers 
(Figure 2—figure supplement 3B). Next, the constituent enhancers within these super enhancers 
were overlapped with the eRNA regions we identified from OAC patients, producing a final list of 
73 super enhancers showing evidence of eRNA activity, with a total of 216 eRNA regions residing in 
these super enhancers (Figure 2G). Multiple eRNA regions identified in patient samples are there-
fore associated with super enhancers as exemplified by the ELF3 super enhancer (Figure 2—figure 
supplement 3C). The genes associated with these super enhancers are enriched in several biological 
processes with direct relevance to OAC, such as MAPK signalling and cadherin binding (Figure 2—
figure supplement 3D).

Collectively, these data strongly indicate that the eRNA-associated regions we discovered in patient 
samples represent areas of enhancer activity due to the presence of enhanced accessibility, enhancer-
associated chromatin marks/proteins, and evidence for actively transcribing RNA polymerase in OAC 
cells.

Association of eRNA regions to target genes and regulatory 
transcription factors
Next, we asked whether we could identify upstream transcription factors that might control eRNA levels 
and provide insights into the regulatory landscape of OAC. First, we identified binding motifs for tran-
scription factors that are over-represented in OAC or Barrett’s-specific eRNA producing regions. This 
revealed enrichment for transcription factors previously identified as relevant for OAC including AP1, 
KLF5, and HNF1 (Britton et al., 2017; Rogerson et al., 2019; Rogerson et al., 2020; Chen et al., 2020) 
as well as CTCF, a factor implicated in enhancer activity (Ren et al., 2017; Figure 3A; Supplementary 
file 6A). However, the frequency of motif occurrence differed between eRNA- and open chromatin-
defined enhancers in OAC patients; HNF1 motifs were significantly more enriched in eRNA-defined 
enhancers whereas AP1 and KLF5 motifs were more enriched in enhancers defined by increased acces-
sibility alone (Figure 3B). A similar set of transcription factor motifs were observed when we omitted 
regions commonly found in patient samples and OE19 cells and instead focussed on eRNA-defined 
enhancers inferred only from OAC patient-specific ATAC-seq data (Figure 3—figure supplement 1A). 
AP1 motifs were again identified in Barrett’s-specific regions as well as a different set of motifs including 
p53-binding motifs (Figure 3A; Supplementary file 6B). Similarly, calculating differential binding scores 
revealed higher binding activity of AP1 and HNF1 in OAC-specific regions and conversely higher p53-
binding activity in Barrett’s-specific regions (Figure 3C; Supplementary file 7). Thus, eRNA-defined 
enhancers reveal the activity of disease stage-specific transcriptional regulators. To further explore this 
point, we sought evidence for enhancer occupancy by transcription factors in OAC cells and found 
substantially more binding signal of KLF5 derived from ChIP-seq in OE19 cells Rogerson et al., 2020 
for eRNA-defined regions with KLF5 motifs compared to regions lacking the motif, or control genomic 
regions (Figure 3D). Furthermore, evidence for KLF5-mediated regulation was obtained by the signifi-
cant overlap between the genes associated with the same eRNA regions (ie containing KLF5 motifs) and 
those genes downregulated upon KLF5 depletion in OE19 cells (Figure 3E; Figure 3—figure supple-
ment 1B–D; Supplementary file 1). We also examined the effect of AP1 inhibition by expressing a 
dominant-negative FOS derivative (dnFOS; Olive et al., 1997) in OE19 cells (Ogden et al., 2023) and 
compared the downregulated gene profile with the eRNA-associated genes containing AP1 motifs that 
we have identified. Again, we observed a significant overlap between the genes associated with eRNA 
regions containing AP1 motifs in OAC samples and those genes downregulated upon AP1 inhibition 
(Figure 3F; Figure 3—figure supplement 1E–G; Supplementary file 1). To provide functional links 
between transcription factor occupancy at enhancers, enhancer activation and target gene transcrip-
tion, we focussed on KLF5. ChIP-seq data Rogerson et al., 2020 demonstrate that KLF5 strongly binds 
to the JUP and CCNE1 enhancers but low levels are observed at the MYBL2 enhancer (Figure 3G). 
KLF5 depletion (Figure 3—figure supplement 1H) caused reduced expression of all three target genes 
(Figure 3H). However only JUP and CCNE1 enhancer activities were diminished following KLF5 deple-
tion (Figure 3I), consistent with the higher occupancy of KLF5 at these enhancers compared to MYBL2. 
MYBL2 is likely regulated by KLF5 though other cis regulatory elements or by an indirect mechanism. Our 
data are therefore consistent with KLF5 regulating JUP and CCNE1 expression through the enhancers 
we have identified. Thus, both motif discovery and functional dissection demonstrate that KLF5 and AP1 
are likely major players in eRNA-defined enhancer activation in OAC patients.

https://doi.org/10.7554/eLife.80840
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Figure 3. Association of enhancer RNA (eRNA) regions with transcriptional regulators. (A) Transcription factor de novo motif enrichment using HOMER, 
at eRNAs differentially expressed in oesophageal adenocarcinoma (OAC) (top; n = 959) and Barrett’s (bottom; n = 670) (p values are shown). (B) Bar 
graphs displaying the frequency of motif prevalence of the top 5 enriched motifs at eRNA regions differentially expressed in OAC ( n = 959) compared 
to differentially accessible intergenic chromatin (****p < 0.0001; **p < 0.01; *p < 0.05; N-1 Chi-squared test). (C) Volcano plot showing differential TF 
binding (±0.2 differential binding score or ≥−log10 padj 70) at 4600 eRNAs regions using TOBIAS (Bentsen et al., 2020). (D) Metaplots of KLF5 ChIP-seq 
signal from OE19 cells at eRNAs (specific to OAC or shared with Barrett’s oesophagus [BO] eRNA) containing a KLF5 motif, lacking a KLF5 motif or 
randomly selected open chromatin regions. (E) Venn diagram displaying overlap between genes annotated to KLF5 motif containing eRNAs (specific 
to OAC or shared with BO eRNA) with genes downregulated upon siKLF5 treatment (Log2FC ≥1.0, <padj = 0.05) in OE19 cells (p-value is shown; Fisher’s 
exact test). (F) Venn diagram displaying overlap between genes annotated to AP-1 motif containing eRNAs (specific to OAC or shared with BO eRNA) 
with genes downregulated upon dominant-negative FOS (dnFOS) induction (Log2FC ≥0.5, ≤padj = 0.05) in OE19 cells (p-value is shown; Fisher’s exact 
test). (G) Genome browser view of KAS-seq, ATAC-seq data, H3K27ac ChIP-seq, and KLF5 ChIP-seq in OE19 cells at the CCNE1 (left), MYBL2 (middle), 
and JUP (right) enhancer loci, with corresponding eRNA regions highlighted (5 kb window shown). (H) Bar graphs displaying the expression from 
RNA-seq analysis of CCNE1, MYBL2, and JUP genes in OE19 cells treated with siRNA targeting KLF5 (n = 3; ***p < 0.001; **p < 0.01; Welch’s t-test). 
(I) Reverse-transcription quantitative real-time PCR (RT-qPCR) analysis of enhancer activity from the indicated pSTARR-enhancer vectors upon siKLF5 
depletion in OE19 cells (n = 3; **p < 0.01; t-test). See also Figure 3—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Association of enhancer RNA (eRNA) regions with potential regulatory transcription factors.

https://doi.org/10.7554/eLife.80840
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To understand the potential biological consequences of eRNA activation, we then linked the differ-
entially active eRNA regions to putative target genes with the nearest gene model using HOMER (Heinz 
et al., 2010) resulting in 528 genes in OAC and 380 genes in Barrett’s. Gene ontology (GO) analysis 
identified several terms relevant to the OAC phenotype such as ‘Cell migration’ and ‘MAPK signalling’ 
whereas Barrett’s-specific regions identified genes associated with various metabolic processes and 
‘epithelial differentiation’ that would be expected for this intestinal metaplastic tissue (Figure 4A). A 
similar set of GO terms were identified when we omitted regions commonly found in patient samples 
and OE19 cells and instead focussed on eRNA-defined enhancers inferred only from OAC patient-
specific ATAC-seq data (Figure  3—figure supplement 1I; Supplementary file 2). One difference 
was ‘cell adhesion’ which was more enriched in the patient-specific dataset which might reflect the 
differing adhesive properties on 2D cultured cells and cells growing in a 3D in vivo environment. We 
also performed differential gene expression analysis on the whole RNA-seq datasets to identify genes 
preferentially expressed in OAC or Barrett’s and performed GO-term analysis (Supplementary file 

Figure 4. Association of enhancer RNA (eRNA) regions with transcriptional regulators and potential target genes. (A) Gene ontology (GO)-term analysis 
of differentially expressed eRNA region-associated genes (top-left/right) and differentially expressed genes (bottom-left/right) in Barrett’s (left) (>Log2FC 
0.9, <padj = 0.05) and oesophageal adenocarcinoma (OAC, right) (>Log2FC 1.1, <padj = 0.05). eRNAs were annotated to genes by the nearest gene 
model using HOMER (Heinz et al., 2010). (B) Venn diagram displaying overlap between differentially expressed genes and unique protein-coding 
genes annotated to differentially expressed eRNAs in Barrett’s oesophagus (BO, top) and OAC (bottom) (p-value is shown; Fisher’s exact test). (C) Box 
plots comparing the expression of genes annotated to eRNAs differentially expressed in BO (left) or OAC (right) in BO and OAC patient tissue total 
RNA-seq samples from the OCCAMS dataset (p-value is shown; Welch’s t-test). (D) Genome-wide analysis of the effect of changing eRNA expression on 
gene expression within 200 kb chromosomal bins. Numbers above bars represent total genes associated with respective net-enhancer change (p-value 
is shown; Kruskal–Wallis test). See also Figure 4—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Association of enhancer RNA (eRNA) regions with potential target genes.

https://doi.org/10.7554/eLife.80840
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8, Supplementary file 9). Similar GO terms were identified with ‘MAPK signalling’ and ‘Hallmark 
EMT/ECM organisation’ (terms associated with cell migration) resembling those identified through 
association with eRNA regions (Figure 4A). However, eRNA-associated genes revealed processes not 
among the top GO terms generated from differentially expressed genes (DEGs) such as ‘embryonic 
development’ and ‘histone methylation’. Similarly, Barrett’s-specific genes returned GO terms such as 
‘epithelial cell differentiation’, as identified from eRNA regions further emphasising the similarity in 
biological processes identified by eRNA-associated genes and total RNAs. A range of different meta-
bolic processes were also identified in both cases, illustrating the distinct information that is derived 
from eRNA-associated genes. To determine whether these similar GO categories reflected similar 
genes being identified, we overlapped the DEGs (Supplementary file 8; Supplementary file 9) with 
genes associated with differentially expressed eRNAs (DEEsSupplementary file 2; Supplementary 
file 3), that are enriched in either Barrett’s or OAC samples. We found a significant overlap between 
these sets of genes although the majority of the genes were uniquely identified by investigating either 
by total RNA-seq or by eRNA profiling (Figure 4). Therefore, despite pinpointing many similar biolog-
ical processes, eRNA profiling reveals different candidate genes involved these processes.

To further investigate whether the activities of enhancer regions are linked to nearby gene expres-
sion, we selected eRNA regions preferentially expressed in either OAC or Barrett’s and found that the 
nearest genes exhibited higher expression in the correct corresponding tissue type in two indepen-
dent datasets (Figure 4C; Figure 4—figure supplement 1A). This observation was further supported 
by comparing the expression of the genes closest to eRNA regions found in patient RNA-seq data 
to the expression of a random set of genes. This revealed significantly enhanced expression levels of 
eRNA-annotated genes in patients (Figure 4—figure supplement 1B). While the nearest gene model 
often correctly associates enhancers with the closest gene, this is not always the case, so we consid-
ered all genes within a 200 kb bin around the eRNA region rather than just the nearest gene. We then 
determined the net eRNA expression change when comparing Barrett’s to OAC samples and created 
nine bins reflecting the magnitude of differential expression. We then calculated the associated gene 
expression changes within these genomic bins when comparing Barrett’s to OAC. There was a clear 
correlation between the directionality of eRNA expression with mRNA expression which changed in 
an analogous manner, with high eRNA levels in OAC associated with higher gene expression in OAC 
and vice versa in Barrett’s (Figure 4D).

In summary therefore, eRNA expression profiling can reveal specific upstream regulatory transcrip-
tion factors and the eRNA generating regions can be used to uncover a set of biological processes 
and constituent genes that are relevant to specific disease states.

Target genes of eRNA-defined enhancers are co-expressed in OAC
We identified potential target genes of eRNA-defined enhancers by implementing the nearest gene 
model (Figure 4B). However, the nearest gene is not always the enhancer target (Sanyal et al., 2012). 
We therefore examined the correlation between eRNA expression and the expression of their desig-
nated target genes for three candidate enhancers, localised in the vicinity of the JUP (Figure 5A), 
MYBL2, and CCNE1 (Figure  5—figure supplement 1A, B) loci. Each of these putative enhancer 
regions contains more RNA signal in OAC compared to Barrett’s as well as evidence for chromatin 
accessibility in OAC patient material. We focussed on JUP as this had not been implicated in OAC 
previously and is significantly co-amplified with ERBB2, a key oncogenic driver of OAC (Cancer 
Genome Atlas Research Network et al., 2017; Frankell et al., 2019; Figure 5—figure supplement 
1C). Indeed, both JUP transcript and eRNA are upregulated compared to Barrett’s in OAC patients 
with high ERBB2 expression (Figure 5B). We performed a similar analysis for CCNE1 and MYBL2 but 
instead examined their expression across all OAC samples. For both loci, the eRNA and gene tran-
script are both upregulated in OAC relative to Barrett’s (Figure 5—figure supplement 1D, E, ). Next, 
we examined the correlation of eRNA and transcript expression on a ‘sample by sample’ basis. JUP 
eRNA expression showed strong correlation with JUP expression, irrespective of ERBB2 level sample 
status (Figure 5C). Lower correlations were observed with the expression of the two adjacent genes 
(Figure  5—figure supplement 1F) consistent with JUP being the relevant target. The correlation 
between JUP eRNA and JUP-coding gene expression was even higher when only OAC samples are 
compared, and this correlation is much lower in Barrett’s samples (Figure 5—figure supplement 1G). 
Similarly, CCNE1 and MYBL2 eRNA expression is more strongly correlated with the expression of their 

https://doi.org/10.7554/eLife.80840
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designated targets than either of their immediately flanking genes (Figure 5—figure supplement 
1H, I, I). We extended this analysis across all eRNAs and asked whether we could find significantly 
correlated mRNA expression of genes located in their vicinity (±100  kb)(Supplementary file 10). 
Generally, highly correlated genes could be identified (see diagonal in Figure 5D). Interestingly when 
we clustered the data according to the expression of the genes associated with each eRNA, then 
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Figure 5. Enhancer RNA (eRNA) regions identify JUP as a candidate target gene. (A) Genome browser view of Barrett’s oesophagus (BO) and 
oesophageal adenocarcinoma (OAC) patient tissue ATAC- and total RNA-seq data, and H3K27ac ChIP-seq in OE19 cells, at the JUP locus with the JUPe 
eRNA highlighted. (B) Box plots comparing the expression of JUP (left) and JUPe (right) in BO (n = 108), ERBB2WT (n = 193), and ERBB2AMP (n = 17) OAC 
patient tissue total RNA-seq samples (p-value is shown; Welch’s t-test). (C) Schematic displaying relative locations of putative eRNA region target genes 
and nearest neighbours (top) and correlation of JUPe with JUP expression across BO (n = 108), ERBB2WT (n = 193), and ERBB2AMP (n = 17) OAC patient 
tissue total RNA-seq samples (bottom) (Spearman’s r and p-value are shown; Spearman’s rank correlation test). (D, E) Global analysis of correlations 
of eRNA expression with the expression of the most correlated gene within a 200 kb window flanking the eRNA region. eRNAs are defined as tissue-
specific according to Figure 1A, and the rest of the eRNAs are designated as shared. (D) Heatmap showing the correlation coefficients between all 
4600 eRNAs and the most highly associated mRNAs in the RNA-seq datasets. Samples are clustered based on these correlation coefficients. OAC-
specific eRNAs (red), BO-specific eRNAs (blue), and shared eRNAs (white) are indicated across the top. (E) Box plots showing the correlations with BO 
gene expression datasets (left) or OAC gene expression datasets (right). Significance values (t-test) are shown between the indicated groups. See also 
Figure 5—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Enhancer RNA (eRNA) regions identify JUP, CCNE1, and MYBL2 as a candidate target genes.

https://doi.org/10.7554/eLife.80840
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there was generally a good segregation of OAC- and BO-specific eRNAs further emphasising the 
relevance of the correlations we observed (Figure 5D). Furthermore, when we split the RNA-seq data 
into tissue types, there was a significantly higher correlation of BO-specific eRNA with nearby gene 
expression in BO datasets, compared to analysing the shared eRNAs (Figure 5E, left). Similarly, the 
same trend was observed for OAC-specific eRNAs which were more highly correlated with nearby 
gene expression in OAC datasets (Figure 5E, right).

Together these results demonstrate that we are able to link eRNA expression to their putative 
targets in the relevant disease-specific datasets.

Validation of enhancer activity of eRNA regions
To validate that the regions generating eRNAs have enhancer activity we again focussed on the JUP, 
MYBL2, and CCNE1 loci. First, we showed that all three putative enhancer regions have significantly 
higher levels of KAS-seq signal in OE19 cells relative to a control enhancer from the APOL4 gene that 
is not expressed in OE19 cells (Figure 6A). This is reflective of ongoing transcription. Furthermore, all 
three eRNAs and their associated target genes exhibit higher expression in OE19 cells compared to 
the Barrett’s CP-A cell line (Figure 6B). To directly establish enhancer activity, we cloned the regions 
encompassing the eRNAs into two different enhancer reporter systems with either RNA (Figure 6C) 
or luciferase (Figure 6—figure supplement 1A) readouts. For all three regions, both assays demon-
strated significant enhancer activity in OE19 cells (Figure  6C and Figure  6—figure supplement 
1A). Finally, we used an inducible dCas9-KRAB synthetic repressor protein to silence the activities of 
each enhancer in their natural chromatin context in OE19 cells (Figure 6—figure supplement 1B). 
In all cases, introduction of the relevant sgRNA to target the dCas9-KRAB repressor to the putative 
enhancer, resulted in reduced eRNA transcription and reduced expression of the associated target 
gene, albeit to a lesser degree in the case of the target genes (Figure 6D). The latter observation 
is not unexpected as a combination of several proximal and distal regulatory elements rather than a 
single enhancer likely contributes to their expression. Importantly, no significant changes in expression 
were observed for any of the genes immediately flanking the target genes, demonstrating the fidelity 
of our enhancer–gene linkages (Figure 6—figure supplement 1C). However, to establish whether any 
additional longer range enhancer–gene linkages could be found, we used Hi-C to generate a 3D chro-
matin map in OE19 cells. Replicate samples showed good reproducibility (stratum-adjusted correla-
tion coefficient = 0.965). However, we were unable to identify any long range interactions emanating 
from the CCNE1e and MYBL2e enhancer regions (Figure 6—figure supplement 2A, B). In contrast, 
we identified significant long range linkages between the JUPe enhancer and the region located 
downstream from the ERBB2 locus (Figure 6E). This juxtapositioning likely arises due to genomic 
rearrangements that are seen in OAC where JUP is often located on the same ecDNA amplicons as 
ERBB2 (Ng et al., 2022). We tested whether any of the genes in the vicinity of the contact point are 
also regulated by the JUPe region and found that GRB7 expression is reduced upon reducing JUPe 
activity, but no effect is seen on ERBB2 or MIEN1 expression (Figure 6F). GRB7 expression is also 
reduced following KLF5 depletion, consistent with the role of KLF5 in activating this enhancer region 
(Figure 6—figure supplement 2C).

Together these results build on our correlative observations linking eRNA containing regions with 
enhancer-like properties and provide definitive proof of enhancer activity and regulatory linkage to 
neighbouring genes.

Biological and clinical relevance of eRNAs and their target genes
We have shown that the discovery of eRNAs in OAC patients reveals genes and processes which 
are operative in OAC and allows us to distinguish OAC from Barrett’s patients. To provide further 
biological insights, we asked whether any of the three eRNA target genes, JUP, MYBL2, and CCNE1 
were uncovered in a cell line viability screen in the DepMap project (Tsherniak et al., 2017; Behan 
et al., 2019). We found that four of the top 6 cell lines showing a dependency on JUP expression are 
gastroesophageal in origin and these all contain ERBB2 amplifications (Figure 7A, left). JUP is also 
the highest scoring gene for fitness dependency across OAC cell lines (Figure 7A, right). In contrast, 
GRB7 which is also JUPe-regulated does not majorly contribute to the fitness of OAC cell lines 
(Figure 7—figure supplement 1A). Similarly, MYBL2 and CCNE1 did not score highly in this screen. 
We therefore further probed the function of the eRNA-defined enhancers in the OE19 OAC cell line 

https://doi.org/10.7554/eLife.80840
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Figure 6. In vitro interrogation of enhancer RNA (eRNA) regions confirms production and association with cancer-associated processes. (A) Bar graphs 
displaying KAS-seq signal at the APOL4e, JUPe, CCNE1e, and MYBL2e regions in OE19 cells (n = 3; **p < 0.01; Welch’s t-test). (B) Bar graphs displaying 
difference in expression of JUP, CCNE1, MYBL2 and JUPe, CCNE1e, and MYBL2e between CP-A and OE19 cells using RT-qPCR (n = 3; p-value is 
shown; Welch’s t-test; *GFP is truncated). (C) Schematic of STARR-RT-qPCR assay (left) and bar graph displaying the difference in STARR reporter activity 
between JUPe, CCNE1e, and MYBL2e, compared to U00930 tRNA-negative control (right) (n = 3; ****p < 0.0001; ***p < 0.001; one-way analysis of 
variance (ANOVA) with Bonferroni’s correction). (D) Bar graphs displaying the expression of JUPe, CCNE1e, and MYBL2e eRNAs (top) and JUP, CCNE1, 
and MYBL2 mRNAs (bottom) in OE19-dCas9-KRAB cells using real time RT-qPCR, upon treatment with the indicated targeting or non-targeting (NT) 
sgRNA (n = 3; p-value is shown; Welch’s t-test). A schematic of dCas9-KRAB targeting of eRNA regions is shown. (E) Genome browser view of Hi-C data 
surrounding the JUP locus. Significant intrachromosomal interactions are shown below the tracks. The start (at JUPe) and end (near ERBB2) of long 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.80840


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Chromosomes and Gene Expression

Ahmed et al. eLife 2023;12:e80840. DOI: https://doi.org/10.7554/eLife.80840 � 13 of 29

by using the dCas9-KRAB silencing system directed at these regions. In all cases, enhancer silencing 
led to significant reductions in cell viability and growth (Figure 7B; Figure 7—figure supplement 1B).

To provide further clinical relevance, we used an RNA-seq dataset from the TCGA consortium 
(Cancer Genome Atlas Research Network et al., 2017) that differed from our discovery cohort to 
ask whether any of the eRNA target genes informed on any particular clinical features. We found 
that the age of diagnosis was lower in patients expressing high levels of MYBL2 (Figure 7C) and 
JUP (Figure 7—figure supplement 1C) suggesting earlier disease onset. Furthermore, in the case 
of MYBL2, high-level expression was indicative of lower median survival times (Figure 7D), although 
JUP and CCNE1 were not informative in that regard (Figure 7—figure supplement 1D). For JUP, this 
is not unexpected as it is only amplified in a subset of patients where co-amplification with ERBB2 
is often observed (Figure 7—figure supplement 1C). Altogether, 32% of genes annotated to OAC-
specific eRNAs displayed a significant prognostic value for patient survival (Figure 7—figure supple-
ment 1E). Finally, we took an unbiased approach and asked whether we could identify a clinically 

range loops are highlighted with red lines. (F) RT-qPCR analysis of expression of the indicated genes or JUPe eRNAs following dKAS9-KRAB-mediated 
repression of JUPe activity (n = 3; **p < 0.01, *p< 0.05; Welch's t-test). See also Figure 6—figure supplements 1 and 2.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Figure supplement 1. In vitro interrogation of enhancer RNA (eRNA) regions confirms production and association with cancer-associated processes.

Figure supplement 1—source data 1. Raw unedited images of Western blots.

Figure supplement 1—source data 2. Original TIFF files used to create Figure 8, Figure 6—figure supplement 1b.

Figure supplement 2. HiC analysis of OE19 cells.
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Figure 7. Biological and clinical relevance of enhancer RNAs (eRNAs) and their target genes. (A) Scatter plots displaying data from the Sanger DepMap 
Project Score (Tsherniak et al., 2017; Behan et al., 2019) highlighting cell line dependency on JUP (left) (gastroesophageal cell lines are marked 
in red) and top genetic dependencies in oesophageal adenocarcinoma (OAC, right). (B) Bar graph displaying the difference in cell viability in OE19-
dCas9-KRAB cells upon sgRNA treatment, assessed by crystal violet assay (n = 3; p-value is shown; Welch’s t-test). (C) Box plots comparing diagnosis 
age for OAC patients with low and high MYBL2 expression in the TCGA PanCancer Atlas dataset (p-value is shown; Welch’s t-test). (D) Kaplan–Meier 
plot comparing overall survival between OAC patients with low and high MYBL2 expression in the TCGA PanCancer Atlas dataset (Log rank p-value 
is shown). (E) Kaplan–Meier plot comparing overall survival between OAC patients with low and high signature eRNA target expression in the TCGA 
PanCancer Atlas dataset (Log rank p-value is shown; signature genes are shown). See also Figure 7—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Biological and clinical relevance of enhancer RNAs (eRNAs) and their target genes.

https://doi.org/10.7554/eLife.80840
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significant signature within the entire eRNA-associated gene list. This revealed a six-gene signature 
that was highly predictive of OAC patient survival (Figure 7E). Only three out of six genes comprising 
this signature were annotated to OAC DEEs. We therefore also explored whether we could derive a 
prognostic signature from OAC unique DEE-annotated genes, OAC unique DEGs or the intersect of 
OAC DEEs and DEGs (as defined in Figure 4B) and identified differing prognostic signatures in all 
categories (Figure 7—figure supplement 1F). DEEs are therefore able to predict prognostic signa-
tures on their own to an equivalent level as using DEGs but do so by providing alternative molecular 
markers to assess patient prognosis.

Collectively, these data demonstrate the functional importance of the eRNA-defined enhancers 
and their target genes for OAC cell growth and their potential utility for assessing patient prognosis. 
In the case of JUP, the broad OAC cell dependency suggests that this represents a target of potential 
therapeutic value, especially in ERBB2-positive patients.

Discussion
Cancer is driven by a combination of genetic and epigenetic changes (reviewed in Zhao et al., 2021). 
Both of these processes ultimately lead to alterations in the activity of gene regulatory elements, 
including transcriptional enhancers, that results in a change in cellular phenotype that defines the 
tumourigenic state. While profiling of histone marks and chromatin accessibility is useful in defining 
potential gene regulatory elements, this approach is limited for defining active enhancers. Here, 
we used eRNA profiling to identify regions harbouring potentially active enhancers in OAC patient 
samples. We integrated these with a range of epigenetic datasets and experimentally validated 
several regions as bona fide enhancers. Importantly, our enhancer repertoire identified new molecular 
events that are activated in OAC which were not apparent from either genome sequencing or mRNA 
profiling alone.

A previous pan-cancer analysis of RNA-seq datasets generated by the TCGA consortium to iden-
tify eRNAs defined a compendium of potential enhancers across human cancers and demonstrated 
how they could have clinical significance (Chen et al., 2018). However, while the authors examined 
oesophageal cancers, they mixed two distinct disease sub-types, squamous and adenocarcinoma, 
which limited any discoveries specific to OAC. Here, we specifically interrogated OAC RNA-seq data 
(generated by the OCCAMs consortium) and to identify enhancers that are potentially relevant to 
OAC, we compared their associated eRNA levels to the pre-cancerous BO state. Using this approach, 
we were able to identify ~1000 high-confidence OAC-specific enhancers. These enhancer regions 
exhibited high accessibility in both patient samples and cell line models and using a variety of chro-
matin marks profiled in an OAC cell line model we provided further verification of the enhancer-like 
properties. The OAC-specific enhancers are associated with transcription factors which have been 
shown to be important for driving OAC-specific transcriptional events (e.g., KLF5, Rogerson et al., 
2020; AP1, Britton et al., 2017). Reciprocally we also identify ~700 Barrett’s-specific enhancers which 
are associated with a different transcription factor repertoire, including the potential involvement 
of members of the TP53/TP63/TP73 family. While we have identified a large number of intergenic 
enhancers, the approach we have taken will miss intragenic enhancers, and other approaches using 
function-based assays (e.g., STARR-seq; Arnold et  al., 2013) or computational imputation will be 
needed to identify these.

Our newly derived eRNA-defined enhancer datasets also provide novel insights into pathways 
that are operational in OAC. This is apparent from the limited overlap in DEGs at the mRNA level 
versus the differential expression of genes associated with nearby enhancers defined by eRNA levels. 
Interestingly while the specific gene overlaps are limited, the broad processes defined by GO terms 
such as MAPK signalling and cell migration/EMT remain the same. Part of this discrepancy might be 
explained by the OAC-specific enhancers maintaining gene expression in the BO–OAC transition 
rather than de novo gene activation in OAC or alternatively that many genes may be primarily driven 
by changes in promoter rather than enhancer activity. However, expression change cut offs we use 
may also contribute to this, as can the heterogeneity of the OAC samples. Other potential reasons 
for the lack of congruency include technical issues such as the nearest gene model may not always 
provide the most appropriate linkage of eRNAs to target genes and that we are likely missing many 
eRNAs due to the datasets we used which are not optimally designed for eRNA identification. An 
enhancer associated with JUP was specifically revealed by eRNA profiling, alongside hundreds of 

https://doi.org/10.7554/eLife.80840
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other enhancers linked to genes involved in oncogenic processes such as cell migration, PI3K signal-
ling, and metabolism. We validated this JUP enhancer, and enhancers linked to MYBL2 and CCNE1, 
and their association with their proposed targets by CRISPRi. Furthermore, correlations between 
eRNA and mRNA expression across cancer samples suggest a causal link. Longer range regulatory 
interactions were detected between the JUP enhancer and GRB7, but HiC analysis did not reveal any 
additional potential connections for the other two enhancers. It remains possible that such long regu-
latory interactions may exist that escaped detection using HiC. Importantly both CCNE1 and MYBL2 
play important roles in promoting cell proliferation, an important cancer cell trait. JUP (otherwise 
known as junction plakoglobin) had not previously been implicated in OAC but this was identified in 
a screen for gene dependencies in OAC cell lines (DepMap project: Tsherniak et al., 2017; Behan 
et al., 2019) and we validated its importance for OAC cell growth. In this context, the co-amplification 
with ERBB2 is intriguing as both genes are on the same chromosome and are ~2 Mb apart and the 
intervening region is not usually co-amplified. Both can be found on the same ecDNA molecules (Ng 
et al., 2022) allowing closer juxtapositioning of ERBB2 and the JUPe enhancer, which we were able 
to validate using HiC in OE19 cells. Nevertheless, we were unable to detect JUPe enhancer-mediated 
ERBB2 regulation. This co-amplification may instead reflect a functional interdependency for these 
two oncogenic events. JUP has previously been implicated in multiple cancers although it is generally 
found to be a tumour suppressor protein, rather than the oncogenic properties it has in the context 
of OAC (reviewed in Aktary et al., 2017). As JUP encodes a protein involved in cell–cell contacts, 
this might suggest a role for this process in OAC cancer cell survival and a potential route to therapy. 
Alternatively, JUP may be acting via the numerous other cellular processes in which it has been impli-
cated, and further work is needed to understand the precise role it has in OAC cells.

In addition to pointing to potential actionable pathways, we also demonstrate that eRNA profiling 
is clinically relevant and is sufficient to differentiate between BO and OAC. A six-gene signature 
derived from our OAC-specific enhancer-associated genes is able to predict prognostic outcomes. 
Indeed, a large proportion of the eRNA-associated genes show prognostic significance when anal-
ysed on an individual basis. Furthermore, by focussing in on a few examples, we found that one of the 
novel OAC-associated genes, JUP, was upregulated in ERBB2 overexpressing OAC samples which 
is reflected by their frequent co-amplification. Coupled with the observation that JUP is required for 
the survival of a range of OAC cell lines harbouring ERBB2 amplifications, this further emphasises the 
potential utility of JUP as a therapeutic target in this subset of OAC patients. This would provide an 
alternative approach to the use of ERBB2 inhibitors which are routinely administered but have limited 
therapeutic benefit (Bang et al., 2010). Further clinical insights are provided by other eRNA-defined 
enhancer regions, such as the enhancer associated with MYBL2 where high MYBL2 expression indi-
cates a worse prognosis for patients and earlier disease onset.

In summary, we identify a cohort of OAC-specific enhancers, expanding our knowledge of the 
regulatory networks that are operational in OAC. This has led to novel insights into the pathways 
that are operational in this disease. The approach we have taken to identify cancer-specific enhancers 
should be broadly applicable to other tumour types or subtypes, where data are available for both the 
cancer and the originating normal or pre-cancerous tissue.

Materials and methods
Cell culture and treatments
OE19 cells were purchased from ATCC and tested negative for mycoplasma. OE19 cells were cultured 
in RPMI 1640 (Thermo Fisher Scientific, 52400) supplemented with 10% foetal bovine serum (Thermo 
Fisher Scientific, 10270). OE19-dCas9-KRAB stable cells were previously generated from the parental 
OE19 cells (Rogerson et  al., 2020) and cultured as above with the addition of 500  ng/ml puro-
mycin (Sigma P7255). The expression of dCas9-KRAB was induced using 100 or 250 ng/ml doxycycline 
(Sigma-Aldrich, D3447). Cell lines were cultured at 37°C, 5% CO2 in a humidified incubator.

dnFOS over-expression
pINDUCER20-GFP-AFOS (ADS5006, Britton et  al., 2017) was packaged into lentivirus and OE19 
cells were transduced with lentivirus as previously described (Tiscornia et al., 2006). Briefly, 3 × 106 
HEK293T cells were transfected with 2.25 μg psPAX2 (Addgene, 12260), 1.5 μg pMD2.G (Addgene, 
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12259), and 3 μg pINDUCER20-GFP-AFOS using PolyFect (Qiagen, 301107). Media was collected 
at 48 and 72 hr post-transfection and viral particles were precipitated using PEG-it Solution (System 
Biosciences, LV810A-1). To transduce, cells were treated with virus (Multiplicity of Infection (MOI) 
0.5–1.0) and 5 μg/ml Polybrene (EMD Millipore, TR-1003). Polyclonal cells were selected for 2 weeks 
in 250 μg/ml G418 (Thermo Fisher Scientific, 10131027). dnFOS (Olive et al., 1997) was induced with 
1 μg/ml doxycycline.

sgRNA transfection
2 × 105 cells were transfected with 10 pmol sgRNA pool using Lipofectamine RNAiMAX transfection 
reagent (Thermo Fisher Scientific, 13778150) according to the manufacturer’s instructions. Cells were 
seeded into 6-well plates. Modified full-length sgRNAs were designed using E-CRISP (Heigwer et al., 
2014) and off-target activity assessed using CCTop (Stemmer et al., 2015). sgRNAs were ordered 
from Synthego. sgRNA sequences are listed in Supplementary file 11.

Cell growth and cell viability assays
Cell growth and viability were assessed by crystal violet assay. Assays were performed by fixing cells in 
4% paraformaldehyde for 10 min. Cells were stained with 0.1% crystal violet (Sigma-Aldrich, HT90132) 
for 30 min. Crystal violet dye was extracted using 10% acetic acid and absorbance readings taken at 
570 nm on a SPECTROstar Nano Microplate Reader (BMG LABTECH). Cell growth measurements 
were taken at 0, 24, 48, and 72 hr and cell viability measurements taken at 72 hr.

RT-qPCR and eRNA qPCR
Total RNA was extracted from cells using an RNeasy Plus RNA extraction kit (Qiagen, 74136) according 
to the manufacturer’s protocol. RT-qPCR reactions were run using the QuantiTect SYBR Green RT-qPCR 
kit (Qiagen, 204243) on a Qiagen Rotor-Gene Q. For eRNA-qPCR, RNA was extracted using an 
RNeasy Plus RNA extraction kit (Qiagen, 74136) with the on-column DNAse digest, according to the 
manufacturer’s instructions. 500 ng of RNA was reverse-transcribed using SuperScript VILO Master 
Mix (Thermo Fisher Scientific, 11755250) according to the manufacturer’s instructions. eRNA levels 
were assessed by qPCR using a Rotor-Gene SYBR Green PCR Kit (Qiagen, 1054586) on a Qiagen 
Rotor-Gene Q. Relative transcript levels were determined by standard curve and normalised to the 
expression of RPLP0 control gene. Primers used are listed in Supplementary file 11.

Luciferase and STARR-qPCR reporter assays
Regions containing JUPe, MYBL2e, or CCNE1e were amplified from OE19 genomic DNA using 
primers containing 20 bp overlap regions with the multiple cloning site of the pGL3 Promoter vector 
(Promega, E1761) for luciferase assays, or between the InFusion arms of the hSTARR_ORI vector 
(Addgene, 99296) (Supplementary file 11). Final vectors were assembled using HiFi assembly 
(NEB, E5520S) according to the manufacturer’s instructions to create plasmids containing JUPe, 
MYBL2e, or CCNE1e enhancer regions in either hSTARR_ORI (pAS5008-pAS5010) or pGL3- vectors 
(pAS5011-pAS5013). All recombinant plasmids are available upon request. Enhancer vectors were 
transfected using the Amaxa Nucleofector II (Lonza) with Cell Line NucleofectorTM Kit V (Lonza, VCA-
1003) and program T-020, according to the manufacturer’s instructions. For luciferase assays, 250 ng 
of enhancer vector was co-transfected alongside 50 ng of pCH110 (Amersham). For STARR-qPCR, 
800 ng of vector was transfected. Enhancer activity was assessed using the Dual-Light Luciferase & 
β-Galactosidase Reporter System (Thermo Fisher Scientific, T1003) according to the manufacturer’s 
instructions, or by RT-qPCR.

Western blots
Cells were lysed in Radioimmunoprecipitation assay (RIPA) buffer (1% IGEPAL CA-630, 150 mM NaCl, 
0.1% sodium dodecyl sulfate [SDS], 50 mM Tris pH 8.0, 1 mM Ethylenediaminetetraacetic acid (EDTA), 
0.5% sodium deoxycholate) and protease inhibitor cocktail supplement (Roche, 11836170001). 
Protein concentration was determined by bicinchoninic acid assay (Pierce, 23227). 5× SDS loading 
buffer (235  mM SDS, 10% β-mercaptoethanol, 0.005% bromophenol blue, 210  mM Tris–HCl pH 
6.8, 50% glycerol) was added to lysates to a final 1× concentration and incubated for 10  min at 
90°C. Proteins were then resolved by SDS–polyacrylamide gel electrophoresis and transferred onto 
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a nitrocellulose membrane. Membranes were blocked using Odyssey Blocking Buffer (LI-COR Biosci-
ences, P/N 927-40000). Antibodies used: anti-Cas9 (Diagenode, C15200229, 1:10,000) and anti-ERK 
(Cell Signaling Technologies, 4695S, 1:1000). Secondary antibodies used: anti-rabbit (LI-COR Biosci-
ences, 926-32213, 1:10,000) and anti-mouse (LI-COR Biosciences, 926-32210, 1:10,000). Membranes 
were visualised using a LI-COR Odyssey CLx Infrared Imager.

eRNA and mRNA analysis
Patient tissue ATAC-seq data processing was performed as described previously (Britton et al., 2017). 
Reads were mapped to GRCh38 (hg38) using Bowtie2 v2.3.0 (Langmead and Salzberg, 2012) with 
the following options: -X 2000 -dovetail. Mapped reads ( ≥ q30) were retained using SAMtools (Li 
et al., 2009). Reads mapping to blacklisted regions were removed using BEDtools (Quinlan and Hall, 
2010). Peaks were called using MACS2 v2.1.1 (Zhang et al., 2008) with the following parameters: 
-q 0.01, -nomodel-shift –75 -extsize 150 -B –SPMR. A custom union peakset was formed from all BO 
and OAC patient samples, using HOMER v4.9 ​mergePeaks.​pl -d 250 (Heinz et al., 2010) as described 
previously (Rogerson et al., 2019) and filtered to retain only intergenic regions ≥2 kb upstream from 
a TSS or ≥500 bp downstream from a TTS.

RNA-seq reads were mapped to the human genome GRCh38 (hg38) using STAR v2.3.0 (Dobin 
et al., 2013). The expression threshold for eRNAs was determined using an adapted method from 
Zhang et al., 2019. Briefly, total RNA-seq reads were integrated into genomic regions from the inter-
genic patient ATAC-seq peakset. Putative eRNA and mRNA read counts were determined using featu-
reCounts (Liao et al., 2014) and FPM values determined using DESeq2 (Love et al., 2014). Putative 
eRNA regions with average counts and FPM values of ≥3 and 1.5, respectively, were taken forward 
for further analysis. Differentially expressed eRNAs and mRNAs were determined using DESeq2 (Love 
et al., 2014). For eRNAs, a log2-fold change of ±0.5 and p-valueadj <0.05 defined differential expres-
sion. For BO and OAC mRNAs, a log2-fold change of ±0.9 and ±1.5, respectively, and p-valueadj 
<0.05 defined differential expression. ERBB2-positive OAC samples (ERBB2AMP) were determined 
based on these samples having expression of ERBB2 greater than the median ERBB2 expression +2 
SD. Morpheus (https://software.broadinstitute.org/morpheus/) was used to generate heatmaps and 
perform hierarchical clustering.

HOMER v4.9 was used for de novo transcription factor motif enrichment analysis. To analyse foot-
printing signatures at putative eRNA regions, TOBIAS v0.5.1 was used (Bentsen et al., 2020). eRNAs 
were annotated to genes by the nearest gene model and assessed for CpG content using HOMER 
v4.9. Super enhancers were identified using HOMER v4.9 ​findPeaks.​pl -style super. Net enhancer 
activity was calculated as in Bi et al., 2020. Briefly, neighbouring genes of eRNA regions in both BO 
and OAC were identified and stratified into nine groups based on the net eRNA change within 200 kb 
of the TSS of each gene: + (or −1) stands for 1 net gained (or lost) eRNA from BO to OAC. Bidirec-
tionality score was calculated using HOMER v4.9 ​analyzeRepeats.​pl with the −strand option applied 
for each strand and score defined as log10((+strand expression score + 1)/(−strand expression score 
+ 1)) + 1.

DepMap data
Batch-corrected genome-wide CRISPR–Cas9 knockout screen data (DepMap Public 21Q4 ​CRISPR_​
gene_​dependency.​csv) were obtained from DepMap (https://depmap.org/portal/).

ChIP-seq data analysis
ChIP-seq analysis was carried out as described previously (Wiseman et al., 2015). OE19 H3K27ac 
and GAC H3K4me1/3 ChIP-seq reads were mapped to the human genome GRCh38 (hg38) using 
Bowtie2 v2.3.0 (Langmead and Salzberg, 2012). Biological replicates were checked for concordance 
(r > 0.80). Peaks were called using MACS2 v2.1.1, using input DNA as control (Zhang et al., 2008). 
Mapped reads (≥q30) were retained using SAMtools (Li et al., 2009). Reads mapping to blacklisted 
regions were removed using BEDtools (Quinlan and Hall, 2010).

CUT&Tag processing and data analysis
CUT&Tag library generation was performed as described previously (Kaya-Okur et al., 2020) with 
an altered nuclear extraction step. For the nuclear extraction, OE19 cells were initially lysed in Nuclei 
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EZ lysis buffer (Sigma-Aldrich, NUC-101) at 4°C for 10 min followed by centrifugation at 500 × g 
for 5  min. The subsequent clean-up was performed in a buffer composed of 10  mM Tris–HCl pH 
8.0, 10  mM NaCl and 0.2% NP40 followed by centrifugation at 1300 × g for 5  min. Nuclei were 
then lightly cross-linked in 0.1% formaldehyde for 2 min followed by quenching with 75 mM glycine 
followed by centrifugation at 500 × g for 5 min. Cross-linked nuclei were resuspended in 20 mM N-2-
hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) pH 7.5, 150 mM NaCl, and 0.5 M spermidine 
at a concentration of 4–8 × 103 / μl (2–4 × 104 total). Subsequent stages were as previously described 
(Kaya-Okur et al., 2020). For 2–4 × 104 nuclei, 0.5 μg of primary and secondary antibodies were 
used with 1 μl of pA-Tn5 (Epicypher, 15-1017). Antibodies used: anti-BRD4 (abcam, ab128874), anti-
CTCF (Merck-Millipore, 07-729), anti-H3K27ac (abcam, ab4729), anti-H3K27me3 (Merck-Millipore, 
07-449), anti-H3K4me1 (abcam, ab8895), anti-H3K4me2 (Diagenode, pAb-035-010), anti-H3K4me3 
(abcam, ab8580), anti-H3K36me3 (Diagenode, pAb-058-010), anti-H4K20me1 (Diagenode, mAb-
147-010), anti-PolII (abcam, ab817), anti-PolII-S2 (abcam, ab5095), anti-PolII-S5 (abcam, ab5131), and 
anti-Med1 (AntibodyOnline, A98044/10 UG). CUT&Tag libraries were pooled and sequenced on an 
Illumina HiSeq 4000 System (University of Manchester Genomic Technologies Core Facility). CUT&Tag 
data processing was performed as for ChIP-seq but with the MACS2 v2.1.1 (Zhang et al., 2008) but 
the --broad peak calling option was used for the H4K20me1, H3K27me3 and H3K36me3 marks. 
Fraction reads in peak (FRiP) scores for each mark were calculated using featureCounts and a stringent 
threshold of ≥2% was set to ensure quality of data for downstream analyses (Landt et al., 2012; FRiP 
scores are listed in Supplementary file 12).

ChromHMM (Ernst and Kellis, 2012) was used to train an eight-state HMM using the CUT&Tag 
data for all marks assayed. The number of states was determined by running the model with increasing 
numbers of states until state separation was observed. Emission states were annotated in accordance 
with Roadmap Epigenomics Consortium Data (Kundaje et al., 2015).

KAS-seq processing and data analysis
KAS-seq library generation was performed as described previously (Wu et  al., 2020) except with 
nuclear extraction and labelling reactions. Nuclei were extracted and washed as described for 
CUT&Tag. Nuclei were then resuspended in nuclease-free H2O at a concentration of 1 × 104/μl (2 × 
105 total). Labelling reactions were carried out in DNA LoBind tubes (Eppendorf, 0030108051) using 
5 mM N3-kethoxal (a gift from Chuan He) in phosphate-buffered saline to a final volume of 50 μl 
for 15 min at 37°C with 1000 RPM mixing in a thermomixer. Labelled gDNA was isolated using the 
PureLink Genomic DNA Mini kit (Thermo Fisher Scientific, K182001) and eluted twice with 21.5 μl 
25 mM K3BO3 pH 7.0. Subsequent library preparation stages were as previously described (Wu et al., 
2020). KAS-seq libraries were pooled and sequenced on an Illumina HiSeq 4000 System (University 
of Manchester Genomic Technologies Core Facility). Three biological replicates were sequenced and 
checked for concordance (r > 0.80). KAS-seq data processing was performed as described previously 
(Wu et al., 2020), but with the MACS2 v2.1.1 --broad peak calling option.

HiC analysis
HiC samples for mammalian cells were carried out using the Arima-HiC Kit (A510008, ARIMA 
Genomics) with some modifications. Briefly, the nuclei were prepared from 3 million cross-linked cells 
(−80°C) using Nuclei EZ prep (NUC101, Sigma-Aldrich) at 4°C for 10 min and spun down 500 × g at 
1°C for 5 min. The nuclei wash was carried out in 0.09% bovine serum albumin (BSA)/CapC lysis buffer 
(10 mM Tris–Cl pH 8.0, 10 mM NaCl, 0.2% NP40, 0.09% BSA, and 1 tablet of EDTA-free protease 
inhibitor cocktail (11873580001, Roche) per 50 ml) at 4°C for 10 min and spun down at 500 × g at 1°C 
for 5 min. The nuclei pellets were resuspended in 25 μl of nuclease-free H2O (total volume of nuclei is 
~30 μl). A 20-μl solution (~2 million) of freshly prepared nuclei was used for HiC sample preparation.

HiC libraries were generated using the Arima Library Prep module (A303011, ARIMA Genomics) 
as described by the manufacturers and sequenced using a NovaSeq6000 (Illumina). We used Illumina 
150 bp paired end sequencing (300 cycle) to obtain ~1 billion read-pairs per sample.

The HiC dataset consists of the two biological replicated samples in OE19 cells. The paired-end 
reads of each sample were aligned to the human genome hg38 by the aligning software BWA-MEM 
v0.7.17 (Li and Durbin, 2010). The uniquely mapped reads were processed by the HiC data analysis 
pipeline Juicer v1.6 (Durand et al., 2016). The contacts identified in each of the two samples were 
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stored in ​the.​hic files. We applied the R package HiCRep with the default settings (Yang et al., 2017) 
to the contacts at MAPQ ≥ 30 to calculate the stratum-adjusted correlation coefficient (SCC) between 
the two replicates. As HiCRep calculated the SCC for the contacts on each chromosome, we calcu-
lated the chromosome-length weighted average of the SCCs on all the chromosomes as a summary 
SCC. The summary SCC for the two replicates is 0.965. We also applied the Juicer pipeline to the 
pool of the aligned reads from the two replicates and obtained the contacts from the merged reads 
of the two replicates.

The HiC data files of the two samples were uploaded in ArrayExpress repository with the ArrayEx-
press data ID E-MTAB-12664.

The Cancer Genome Atlas data
Diagnosis age and overall survival between OAC patients with high or low JUP, CCNE1, and MYBL2 
RNA expression (defined as ±1 SD from the median expression) in the TCGA PanCancer Atlas dataset 
(Liu et  al., 2018) were downloaded from cBioPortal (https://www.cbioportal.org/study/summary?​
id=esca_tcga_pan_can_atlas_2018). Oncoprint plot of mutational co-occurrence between JUP and 
ERBB2 in OAC was generated using cBioPortal.

To establish the prognostic model, univariate Cox regression was performed using the survival 
package in R v3.6.0 to select genes associated with patient prognosis utilising a criteria of q-value 
<0.1. A random forest algorithm was applied using the randomForestSRC package in R v3.6.0 for 
feature reduction to obtain a survival signature. Risk score (risk score = ∑‍x‍i × βi where ‍x‍i is gene expres-
sion value; βi is coefficient index) was calculated using a multivariate Cox regression model. Patients 
were grouped by the median value of risk score and Kaplan–Meier analysis performed to compare 
the survival difference between high- and low-risk score group. Visualisation was achieved using the 
survminer package in R v3.6.0.

Bioinformatics
Genome browser data were visualised using the UCSC Genome Browser (Kent et al., 2002). Heat-
maps and tag density plots of epigenomic data were generated the using deepTools (Ramírez et al., 
2016) computeMatrix, plotProfile, plotCorrelation, and plotHeatmap functions. Metascape (Zhou 
et al., 2019) was used for GO analysis of gene sets. The eulerr package in R v3.6.0 was used for 
generating Venn diagrams.

Datasets
All data were obtained from ArrayExpress, unless stated otherwise. Human tissue RNA-seq data were 
obtained from: OCCAMS consortium (European Genome-Phenome Archive, EGAD00001007496). 
Human tissue ATAC-seq data were obtained from: E-MTAB-5169 (Britton et  al., 2017), E-MTAB-
6751 (Rogerson et al., 2019), and E-MTAB-8447 (Rogerson et al., 2020). The Cancer Genome Atlas 
OAC ATAC-seq data were obtained from the GDC data portal (https://portal.gdc.cancer.gov/; Corces 
et  al., 2018). OE19 H3K27ac ChIP-seq was obtained from: E-MTAB-10319 (Ogden et  al., 2022). 
GAC H3K4me1 and H3K4me3 ChIP-seq were obtained from: Gene Expression Omnibus, GSE75898 
(Ooi et  al., 2016). OE19 siKLF5 RNA-seq and KLF5 ChIP-seq were obtained from: E-MTAB-8446 
and E-MTAB-8568, respectively (Rogerson et al., 2020). OE19 dnFOS RNA-seq was obtained from 
E-MTAB-10334 (Ogden et al., 2023).

Data access
All data have been deposited at ArrayExpress; OE19 KAS-seq and CUT&Tag data (E-MTAB-11357 and 
E-MTAB-11356, respectively), and OE19 HiC data (E-MTAB-12664).

Acknowledgements
We thank Guanhua Yan for excellent technical assistance, and staff in the Bioinformatics, and Genomic 
Technologies core facilities. We also thank Nicoletta Bobola and Sankari Nagarajan, for critical appraisal 
of the manuscript. We thank all lab members, Hannah Reed and Connor Rogerson for experimental 
and analytical advice. We are grateful to Chuan He for providing N3-kethoxal. This work was funded 
by grants to ADS from the MRC (MR/V010263/1) and the Wellcome Trust (102171/B/13/Z).

https://doi.org/10.7554/eLife.80840
https://www.cbioportal.org/study/summary?id=esca_tcga_pan_can_atlas_2018
https://www.cbioportal.org/study/summary?id=esca_tcga_pan_can_atlas_2018
https://portal.gdc.cancer.gov/


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Chromosomes and Gene Expression

Ahmed et al. eLife 2023;12:e80840. DOI: https://doi.org/10.7554/eLife.80840 � 20 of 29

Additional information

Competing interests
The OCCAMs consortium: The other authors declare that no competing interests exist.

Funding

Funder Grant reference number Author

Medical Research Council MR/V010263/1 Shen-Hsi Yang

Wellcome Trust 102171/B/13/Z Ibrahim Ahmed

The funders had no role in study design, data collection, and interpretation, or the 
decision to submit the work for publication. For the purpose of Open Access, the 
authors have applied a CC BY public copyright license to any Author Accepted 
Manuscript version arising from this submission.

Author contributions
Ibrahim Ahmed, Formal analysis, Investigation, Methodology, Writing - original draft, Writing - review 
and editing; Shen-Hsi Yang, Formal analysis, Supervision, Investigation, Writing - review and editing; 
Samuel Ogden, Wei Zhang, Formal analysis, Investigation, Writing - review and editing; Yaoyong 
Li, Formal analysis; The OCCAMs consortium, Resources; Andrew D Sharrocks, Conceptualization, 
Supervision, Funding acquisition, Writing - original draft, Project administration, Writing - review and 
editing

Author ORCIDs
Ibrahim Ahmed ‍ ‍ http://orcid.org/0000-0002-7424-6658
Samuel Ogden ‍ ‍ http://orcid.org/0000-0002-0217-881X
Andrew D Sharrocks ‍ ‍ http://orcid.org/0000-0001-7395-9552

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.80840.sa1
Author response https://doi.org/10.7554/eLife.80840.sa2

Additional files
Supplementary files
•  Supplementary file 1. All expressed eRNAs identified in Barrett’s and OAC samples.

•  Supplementary file 2. eRNAs upregulated in OAC.

•  Supplementary file 3. eRNAs upregulated in Barrett’s.

•  Supplementary file 4. KAS-seq peaks in OE19 cells.

•  Supplementary file 5. Super enhancers.

•  Supplementary file 6. Motif enrichment.

•  Supplementary file 7. BINDetect scores.

•  Supplementary file 8. Genes upregulated in OAC.

•  Supplementary file 9. Genes upregulated in Barrett’s.

•  Supplementary file 10. Genes associated with eRNA regions.

•  Supplementary file 11. PCR primer and sgRNA sequences.

•  Supplementary file 12. CUT&Tag FRIP scores.

•  MDAR checklist 

Data availability
All data have been deposited at ArrayExpress; OE19 KAS-seq and CUT&TAG data (E-MTAB-11357 
and E-MTAB-11356, respectively) and OE19 HiC data (E-MTAB-12664).

https://doi.org/10.7554/eLife.80840
http://orcid.org/0000-0002-7424-6658
http://orcid.org/0000-0002-0217-881X
http://orcid.org/0000-0001-7395-9552
https://doi.org/10.7554/eLife.80840.sa1
https://doi.org/10.7554/eLife.80840.sa2


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Chromosomes and Gene Expression

Ahmed et al. eLife 2023;12:e80840. DOI: https://doi.org/10.7554/eLife.80840 � 21 of 29

The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Ahmed I, Yang SH, 
Ogden S, Zhang W, 
Li Y, Sharrocks AD, 
OCCAMS Consortium

2022 KAS-seq in OE19 cells https://www.​ebi.​ac.​
uk/​arrayexpress/​
experiments/​E-​
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Ahmed I, Yang SH, 
Ogden S, Zhang W, 
Li Y, Sharrocks AD, 
OCCAMS Consortium
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ArrayExpress, E-
MTAB-11356

Ahmed I, Yang SH, 
Ogden S, Zhang W, 
Li Y, Sharrocks AD, 
OCCAMS Consortium
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uk/​arrayexpress/​
experiments/​E-​
MTAB-​12664

ArrayExpress, E-
MTAB-12664
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Davies JO, Wong 
WK, Soo KC, Chan 
WH, Ong HS, Chow 
P, Wong CY, Rha SY, 
Liu J, Hillmer AM, 
Hughes JR, Rozen S, 
Teh BT, Fullwood MJ, 
Li S, Tan P

2016 Somatic Promoter 
Landscape of Primary 
Gastric Adenocarcinoma 
Delineated by Epigenomic 
Profiling

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE75898

NCBI Gene Expression 
Omnibus, GSE75898

Ogden S, Carys 
K, Bruce J, 
The OCCAMS 
Consortium, 
Sharrocks AD

2021 Sequencing data for 
oesophageal and related 
samples - Ogden et al 
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European Genome 
Phenome Archive, 
EGAD00001007496
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Fitzgerald RC, Ang 
YS, Sharrocks AD
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cell lines and tissue 
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uk/​arrayexpress/​
experiments/​E-​
MTAB-​5169

ArrayExpress, E-MTAB-5169

Rogerson C, Britton 
E, Withey S, Hanley 
N, Ang YS, Sharrocks 
AD

2019 ATAC-seq of human 
Barrett's oesophagus tissue

https://www.​ebi.​ac.​
uk/​arrayexpress/​
experiments/​E-​
MTAB-​6751

ArrayExpress, E-MTAB-6751

Rogerson C, Britton 
E, Withey S, Hanley 
N, Ang YS, Sharrocks 
AD

2020 ATAC-seq of oesophageal 
adenocarcinoma patient 
samples

https://www.​ebi.​ac.​
uk/​arrayexpress/​
experiments/​E-​
MTAB-​8447

ArrayExpress, E-MTAB-8447

Rogerson C, Ogden 
S, Britton E, OCCAMS 
Consortium, Ang YS, 
Sharrocks AD

2020 RNA-seq of OE19 cells 
treated with siNT or siKLF5 
for 72 hours

https://www.​ebi.​ac.​
uk/​arrayexpress/​
experiments/​E-​
MTAB-​8446

ArrayExpress, E-MTAB-8446

Rogerson C, Ogden 
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Appendix 1 Continued on next page

Appendix 1—key resources table 
Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Cell line (H. sapiens) OE19 ACACC 96071721

Cell line (H. sapiens) CP-A ATCC KR-42421

Cell line (H. sapiens) OE19-dCas9-KRAB Rogerson et al., 2020
OE19 transfected with vector to express dCas9-KRAB 
under doxycycline control

Antibody Rabbit monoclonal anti-Erk1/2 antibody
Cell Signalling 
Technology 4695S (1:1000)

Antibody
Donkey polyclonal anti-mouse secondary 
antibody (800CW) Licor 925–32,212 (1:10,000)

Antibody
Donkey polyclonal anti-rabbit secondary 
antibody (700CW) Licor 925–32,213 (1:10,000)

Antibody Mouse monoclonal anti-Cas9 Diagenode C15200229 (1:10,000)

Antibody Rabbit monoclonal anti-BRD4 Abcam ab128874 0.5 µg/2–4 × 105 cells

Antibody Rabbit polyclonal anti-CTCF Merck-Millipore 07-729 0.5 µg/2–4 × 105 cells

Antibody Rabbit polyclonal anti-H3K27ac Abcam ab4729 0.5 µg/2–4 × 105 cells

Antibody Mouse polyclonal anti-H3K27me3 Merck-Millipore 07-449 0.5 µg/2–4 × 105 cells

Antibody Rabbit polyclonal anti-H3K4me1 Abcam ab8895 0.5 µg/2–4 × 105 cells

Antibody Rabbit polyclonal anti-H3K4me2 Diagenode pAb-035-010 0.5 µg/2–4 × 105 cells

Antibody Rabbit poylclonal anti-H3K4me3 Abcam ab8580 0.5 µg/2–4 × 105 cells

Antibody Rabbit poylclonal anti-H3K36me3 Diagenode pAb-058-010 0.5 µg/2–4 × 105 cells

Antibody Mouse monoclonal anti-H4K20me1 Diagenode mAb-147-010 0.5 µg/2–4 × 105 cells

Antibody Mouse monoclonal anti-PolII Abcam ab817 0.5 µg/2–4 × 105 cells

Antibody Rabbit polyclonal anti-PolII-S2 Abcam ab5095 0.5 µg/2–4 × 105 cells

Antibody Rabbit polyclonal anti-PolII-S5 Abcam ab5131 0.5 µg/2–4 × 105 cells

Antibody Rabbit polyclonal anti-Med1
https://www.antibodies.​
com/ A98044/10 UG 0.5 µg/2–4 × 105 cells

Recombinant DNA reagent pGL3 reporter vector Promega E1761

Recombinant DNA reagent hSTARR_ORI vector Addgene 99296

Recombinant DNA reagent pINDUCER20-GFP-AFOS Britton et al., 2017 ADS5006

Recombinant DNA reagent pCH110 Amersham

Recombinant DNA reagent pMD2.G Addgene 12259

Recombinant DNA reagent psPAX2 Addgene 12260

Sequence-based reagent Primers This study

Primers for amplification through PCR (See 
supplementary file). Primers can be ordered through 
any commercial vendor.

Commercial assay or kit Lipofectamine RNAiMAX Thermo Fisher 13778150

Commercial assay or kit Cell Line NucleofectorTM Kit V Lonza VCA-1003 Used on Amaxa Nucleofector II with program T-020

Commercial assay or kit
Dual-Light Luciferase & β-Galactosidase 
Reporter System Thermo Fisher T1003

Commercial assay or kit SuperScript VILO Master Mix Thermo Fisher 11755250

Commercial assay or kit PureLink Genomic DNA Mini kit Thermo Fisher K182001

Commercial assay or kit HiFi assemly NEB E5520S

Commercial assay or kit QuantiTect SYBR Green RT-PCR Kit Qiagen 204243

https://doi.org/10.7554/eLife.80840
https://www.antibodies.com/
https://www.antibodies.com/
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Commercial assay or kit RNeasy Plus Mini Kit Qiagen 74134

Commercial assay or kit RNase-free DNase set Qiagen 79254

Commercial assay or kit Ampure XP beads
Beckman Coulter 
Agencourt A63881

Commercial assay or kit TruSeq stranded RNA library kit v2 Illumina RS-122-2001

Commercial assay or kit Nextera DNA library prep kit Illumina FC-121-1031

Commercial assay or kit Nextera Index kit Illumina FC-121-1012

Commercial assay or kit NEBNext high fidelity 2x PCR master mix NEB M0541

Commercial assay or kit DNA Clean and Concentrator Zymo D4013

Commercial assay or kit Polyfect Qiagen 301107

Commercial assay or kit PEG-it System Biosciences LV810A-1

Commercial assay or kit Polybrene EMD Millipore TR-1003

Chemical compound, drug Doxycycline Sigma-Aldrich D3447 Used at final concentration of 100 ng/ml

Chemical compound, drug N3-kethoxal Gift from Chuan He Used at 5 mM

Peptide, recombinant 
protein RNase Sigma R4642 Used at 100 μg/ml

Peptide, recombinant 
protein pA-Tn5 Epicypher 15-1017

Peptide, recombinant 
protein EGF Thermo Fisher 10450-013 5 μg/l

Peptide, recombinant 
protein Bovine pituitary extract Thermo Fisher 1E+07 Used at 50 mg/l

Software, algorithm Trimmomatic Bolger et al., 2014 V0.34 http://www.usadellab.org/cms/?page=trimmomatic

Software, algorithm ChromHMM Ernst and Kellis, 2012

Software, algorithm Bowtie2
Langmead and 
Salzberg, 2012 v2.3.0

http://bowtie-bio.sourceforge.net/bowtie2/index.​
shtml

Software, algorithm STAR Dobin et al., 2013 V2.5.4 https://github.com/alexdobin/STAR

Software, algorithm Macs2 Zhang et al., 2008 v2.1.1 https://github.com/taoliu/MACS

Software, algorithm DEseq2 Love et al., 2014 V1.22.2
https://bioconductor.org/packages/release/bioc/​
html/DESeq2.html

Software, algorithm TOBIAS Bentsen et al., 2020 v0.5.1 https://github.com/loosolab/TOBIAS

Software, algorithm featureCounts Liao et al., 2014 V1.6.2 http://subread.sourceforge.net

Software, algorithm FastQC v0.11.4
https://www.bioinformatics.babraham.ac.uk/projects/​
fastqc/

Software, algorithm bedtools Quinlan and Hall, 2010 v2.26.0 https://bedtools.readthedocs.io/en/latest/

Software, algorithm DeepTools Ramírez et al., 2016 V2.5.0 https://deeptools.readthedocs.io/en/develop/

Software, algorithm Metascape Zhou et al., 2019 https://metascape.org/gp/index.html

Software, algorithm Homer Heinz et al., 2010 v4.9 http://homer.ucsd.edu/homer/

Software, algorithm R
R Development Core 
Team, 2018 v3.5.1 https://www.r-project.org/

Software, algorithm GraphPad Prism V8.0 https://www.graphpad.com/

Software, algorithm Morpheus Broad Institute https://​software.​broadinstitute.​org/​morpheus/

Other Crystal violet Sigma-Aldrich HT90132 Histological DNA stain. Used at concentration of 0.1%

Other Gibco RPMI 1640 Thermo Fisher 52400 Cell culture medium for OE19s.
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Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Other Gibco fetal bovine serum Thermo Fisher 10270 Cell culture supplement.

Other Gibco penicillin/streptomycin Thermo Fisher 15140122 Cell culture supplement

Other Keratinocyte SFM (1×) Thermo Fisher 17005042 Cell culture medium for CP-As.
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