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Novel Fine-Tuned Attribute Weighted Naı̈ve Bayes
NLoS Classifier for UWB Positioning
Fuhu Che?, Qasim Zeeshan Ahmed?, Fahd Ahmed Khan†, and Faheem A. Khan?.

Abstract—In this paper, we propose a novel Fine-Tuned at-
tribute Weighted Naı̈ve Bayes (FT-WNB) classifier to identify the
Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) for UltraWide
Bandwidth (UWB) signals in an Indoor Positioning System (IPS).
The FT-WNB classifier assigns each signal feature a specific
weight and fine-tunes its probabilities to address the mismatch
between the predicted and actual class. The performance of the
FT-WNB classifier is compared with the state-of-the-art Machine
Learning (ML) classifiers such as minimum Redundancy Maxi-
mum Relevance (mRMR)- k-Nearest Neighbour (KNN), Support
Vector Machine (SVM), Decision Tree (DT), Naı̈ve Bayes (NB),
and Neural Network (NN). It is demonstrated that the proposed
classifier outperforms other algorithms by achieving a high
NLoS classification accuracy of 99.7% with imbalanced data and
99.8% with balanced data. The experimental results indicate that
our proposed FT-WNB classifier significantly outperforms the
existing state-of-the-art ML methods for LoS and NLoS signals
in IPS in the considered scenario.

Index Terms—UWB, ML, WNB, mRMR, and IPS.

I. INTRODUCTION

Mobile target tracking is extensively used in commercial,
civil, industrial, and military applications, such as object track-
ing, autonomous vehicles, forklift control, military reconnais-
sance, etc [1], [2]. Ultra-wideband (UWB) technology, utilizes
exploratory signals with an extremely large spectrum, that
provides significant advantages in tracking and positioning [3],
[4]. Beside this various alternative technologies have been
extensively researched and employed in indoor scenarios such
as Radio Frequency Identification (RFID), Bluetooth, WiFi
fingerprinting, etc. Recently, [2], [5] has shown that WiFi
with channel state information can be utilized for Indoor
Positioning System (IPS) and have the same positioning cost
and its accuracy is not inferior to UWB. Non-line-of-sight
(NLoS) conditions are a major hindrance in achieving high
positioning accuracy [6], [7]. In NLoS, the direct signal path
between the transmitters and the receivers is blocked by the
obstacles causing estimation error [4]. To deal with the impact
of NLoS, several signal-feature-based Machine Learning (ML)
classification methods have been proposed [7]–[10].

Non-parametric regression technique based on Support Vec-
tor Machine (SVM) and Gaussian process to estimate the rang-
ing error was proposed in [3]. It was shown that for signals un-
der NLoS conditions, 28% had a ranging error of less than one
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meter. Deep learning methods such as Convolutional Neural
Network (CNN) and Long Short-Term Memory (LSTM) were
employed in [8], [9]. The highest classification accuracy of
82.14% was achieved by employing CNN and stacked LSTM
together [8]. Other ML techniques such as SVM, Random
Forest (RF), and Multi-Layer Perceptron (MLP) were applied
in [10] and an accuracy of 82.80%, 91.9%, and 91.20% was
reported for these techniques, respectively. A semi-supervised
learning approach has also been adopted for NLoS identifica-
tion. It was shown that NLoS identification accuracy could be
improved to 94.7% with the aid of semi-supervised SVM via
leveraging unlabeled data [7]. An unsupervised ML approach
based on Gaussian mixture models (EM-GMM) to identify the
NLoS links from the unlabelled data was proposed in [11].
[12] employed the ranging and received signal strength (RSS)
to identify the NLoS condition using LoS, NLoS soft, and
NLoS hard classification. Furthermore, in [13] the power
delay profile was exploited to accelerate the training of NN-
based classifiers. However, the dataset was perfectly balanced.
Finally, in [14], a different scenario was considered for testing
with respect to the training for generalization of IPS.

Feature-based ML methods were well-studied in the afore-
mentioned works, however, none of these works considered the
correlation between different features of the signals. Moreover,
in an imbalanced dataset, where a limited amount of NLoS
samples are present, it is difficult for existing algorithms to
train a robust model [8]. To address these shortcomings, we
propose a novel feature-based Fine-Tuned attribute Weighted
Naı̈ve Bayes (FT-WNB) classifier. To the best of the authors’
knowledge, no work has proposed signal-feature weighting to
enhance NLoS classification with an imbalanced dataset. The
main contributions of this work are as follows:

• A novel signal-feature-based FT-WNB algorithm for
NLoS classification addresses class imbalance by assign-
ing different weights to each feature and fine-tunes the
classifier probabilities to improve classification accuracy.

• We conduct extensive experimentation to validate the
superiority of the proposed FT-WNB classifier in com-
parison to the state-of-art algorithms. The performance is
compared in terms of the confusion matrix, Receiver Op-
erating Characteristics (ROC) curve, Area Under Curve
(AUC), precision, recall, and classification accuracy.

• We show that the FT-WNB classification algorithm out-
performs existing algorithms for different ratios of NLoS
and LoS samples, even in the presence of imbalanced
dataset.
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Fig. 1. Block diagram of Fine-tuned WNB algorithm.

II. FINE-TUNED WEIGHTED NAÏVE BAYES (FT-WNB)
CLASSIFICATION ALGORITHM

A. UWB Range Theory

Time-of-Arrival (ToA) is used to calculate the estimated
distance d between the tag and the anchor [9],

d =

{
c× ToA + ε, LoS

c× ToA + ε+ b, NLoS
(1)

where, c is the speed of light in m/s, ToA is the propagation
time taken from the tag to the anchor, ε represents the
measurement noise and b is the NLoS measurement error
caused by the blockages and obstacles.

B. Weighted Naı̈ve Bayes

Naı̈ve Bayes (NB) classifies the data with a corresponding
maximum posterior probability. As features are assumed to be
conditionally independent, the predicted class l̂k at the k-th
instance of data can be determined as

l̂k = argmax
l

P (l)

I∏
i=1

P (Xk
i |l), (2)

where P (Xi) is the probability of the i-th attribute, P (l)
is the apriori probability of class l and I is the number of
attributes. The underlying principle of WNB algorithm is that
some attributes are of more importance than others [15]. This
importance is specified by weighting the attributes and the
predicted class, l̂k, in this case, is determined as

l̂k = argmax
l

P (l)

I∏
i=1

P (Xk
i |l)w(i), (3)

where w(i) is the weight associated with the i-th attribute.
.

Fig. 2. Experimental data collected in the studio.

C. FT-WNB Algorithm

The overall framework of the FT-WNB algorithm is de-
scribed in Fig. 1. We first initialize the conditional probabilities
as defined in (3) by applying the attribute weights to predict
the class label. In the training phase, if the training instance
is classified incorrectly, the predicted class lP has a higher
posterior probability than its true class lT . Therefore, the
conditional probabilities of signal features, P (Xk

i |lT ) and
P (Xk

i |lP ) can be fine tuned in the next iteration as

Pt+1(X
k
i |lT ) = Pt(X

k
i |lT ) + ξt+1(X

k
i , lT ), (4)

Pt+1(X
k
i |lP ) = Pt(X

k
i |lP )− ξt+1(X

k
i , lP ), (5)

where t represents the number of iteration and ξt+1(·) are the
updated step size calculated as

ξt+1(X
k
i , lT )=β

(
α
(
maxPt(X

k
i |lT )

)
−P (Xk

i |lT )
)
e(lT , lP ),(6)

ξt+1(X
k
i , lP )=β

(
αP (Xk

i |lP )−min
(
Pt(X

k
i |lP )

))
e(lT , lP ),(7)

where α, β ∈ (0, 1) controls the size of the updated step for
Pt(X

k
i |lT ) and Pt(X

k
i |lP ), respectively. max(Pt(X

k
i |lT )) and

min(Pt(X
k
i |lP )) are the maximum and the minimum value

for Pt(X
k
i |lT ) and Pt(X

k
i |lP ), respectively. The error term,

e(lT , lP ), is calculated as

e(lT , lP ) = |P (lT )− P (lP )|. (8)

Finally, the steps involved in the training and testing phase are
summarised in Algorithms 1 and 2, respectively.

III. EXPERIMENTAL SETUP AND DATA COLLECTION

The required dataset was collected in a studio environment
(4.8m×3.5m). The floorplan of the infrastructure is shown in
Fig. 2. Decawave R© MDEK-1001 UWB kits, based on DW-
1000 chip, with configuration as mentioned in [16], are used
to generate the dataset. During data collection for the LoS
scenario, there is no obstacle between the anchor and tag.
For the NLoS scenario, an iron sheet is placed between the
anchors and the tag. The plates are placed very close to the
tag, generally less than a meter away. In this case, the first
path of the signal transmission is either completely blocked or
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Fig. 3. Signal-features correlation matrix.

Algorithm 1 : Training Phase
Input: Training dataset consisting of signal features.
Output: The conditional probability vector

Phase 1: Initializing conditional probabilities
� Step 1:
for each Xk

i do
calculate l̂k by (2)

end for
for each weighted Xk

i do
calculate l̂k by (3)

end for Estimate the conditional probability vector
Phase 2: Fine tuning conditional probabilities
� Step 2:
if lT 6= lP then

Calculate the error by (8)
Calculate the max(Pt(X

k
i |lT )) and min(Pt(X

k
i |lP ))

for each weighted figure Xk
i do

calculate ξt+1(X
k
i , lT ) by (6)

update Pt+1(X
k
i |lT ) by (4)

calculate ξt+1(X
k
i , lP ) by (7)

update Pt+1(X
k
i |lP ) by (5)

end for
end if
if lT = lP then
end if
return Classification model

Algorithm 2 : Testing Phase
Input: Test dataset with a mixture of LoS and NLoS signals
Output: Predicted class label of Xk

i

Algorithm:
1) Estimate the class membership probability P (Xk

i |l).
2) Predict the class label l̂k of each class Xk

i .
3) Return l̂k.

Fig. 4. Samples of Error vs. Power Difference

distorted through multiple reflections. As a result of this, the
estimated range will be biased due to the signal propagation
delay. From the collected dataset, we randomly select 100
NLoS and 1000 LoS signals to generate data imbalance. We
consider two more features in addition to the 10 features
of [17]: i) the index of the detected first-path (FP index) and
ii) the power ratio between the estimated received power and
first-path power. The features and the correlation between them
are illustrated in Fig. 3. As expected, the features are clearly
not equally important nor independent. It can be observed that
the features amplitude of the first path (F1), the amplitude of
the second path (F2), and the amplitude of the third path (F3),
as well as first path power level (FPPL), have a relatively
higher correlation than others.

IV. PERFORMANCE EVALUATION

Visualization of our samples is shown in Fig. 4 where the
power difference versus the distance error is plotted. There
are 1000 LoS samples and 100 NLoS signals, respectively.
In this figure, the green samples represent the LoS signals
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Fig. 5. Performance comparison for the proposed FT-WNB algorithm with
state-of-the-art ML algorithms.

TABLE I
RUNNING TIME AND CONFUSION MATRIX OF THE PROPOSED FT-WNB

ALGORITHM AND STATE-OF-THE-ART ML ALGORITHMS

Running LoS NLoS
Algorithms Time (s) CR CR TP FN FP TN Accuracy(%)
mRMR-KNN 0.049 98.6% 87% 986 14 13 87 97.5
mRMR-SVM 0.092 98.2% 90% 982 18 10 90 97.5
mRMR - DT 0.104 98.4% 89% 984 16 11 89 97.5
mRMR - NB 0.048 98.9% 90% 989 11 10 90 98.1
mRMR - NN 0.061 98.8% 92% 988 12 8 92 98.2
FT-WNB 0.041 99.5% 98% 995 5 2 98 99.4

and the blue color represents the NLoS signals. From the
figure, it can be observed that few NLoS samples can be easily
differentiated from LoS samples. While a large number of
samples for NLoS cannot be easily differentiated from LoS
samples. Therefore, for accurate classification, an appropriate
algorithm is required.

The performance of the proposed FT-WNB classifier is
compared with ML classifiers in Fig. 5. For these clas-
sifier, a subset of features is selected based on minimum
redundancy maximum relevance (mRMR) feature selection.
mRMR is a feature selection approach that tends to select
features with a high correlation with the class and a low
correlation between themselves to maximize relevance toward
the features and simultaneously to minimize the redundancy
among features [18]. The running time, confusion matrix and
the correct rate (CR) is summarised in Table I. The confusion
matrix depicts metrics, True Positive (TP), False Positive (FP),
False Negative (FN) and True Negative (TN), respectively.
In order to compare the classification performance, we plot
precision, recall and classification accuracy in Fig. 5. It
can be observed that the best performing algorithm among
the existing ML algorithms is the mRMR-NN, which has a
precision of approximately 99.2%, recall around 98.8% and
overall classification accuracy is 98.2%. mRMR-NB follows
closely and has similar performance. However, it is evident
from Fig. 5, that the proposed FT-WNB algorithm outperforms
all the state-of-the-art ML algorithms, i.e., mRMR-KNN, -
SVM, -DT, -NB and -NN by achieving a precision of 99.7%,
recall of 99.5% and an overall classification accuracy of
99.4%. From Table I it can be observed that the proposed
FT-WNB algorithm, TN= 98 which indicates that 98% NLoS
samples are correctly classified and only 2% NLoS samples
are incorrectly classified. The classification performance is
significantly better than the second best case which is 92%
achieved by mRMR-NN algorithm. TP= 995, refers to LoS

Fig. 6. Classification accuracy of the FT-WNB algorithm under imbalanced
datasets having varying ratios of data.

Fig. 7. Comparisons for the existing UWB position methods.

resulting in a correct rate of 99.5% which means 5 samples out
of 1000 samples were inaccurately classified. Again, it is 1.3%
higher than the second-best case. The average running time
of FT-WNB is 0.041s which is better than other considered
algorithms where the process of mRMR takes significant time.
To sum up, in comparison to mRMR-KNN, mRMR-SVM,
mRMR-DT, mRMR-NB, and mRMR-NN ML algorithms, it
can be observed that the FT-WNB algorithm performs better
for all performance metrics of the confusion matrix.

Fig. 6 shows the overall classification accuracy in the case
of an imbalanced dataset. The ratio (NLoS: LoS) was set to
0.1, 0.5, and 1.0, respectively. It can be observed from Fig. 6
that as the ratio increases, the results of all algorithms improve
because the model is trained better with equal number of LoS
and NLoS samples. However, it is noticeable that the FT-WNB
algorithm always maintains a higher classification accuracy for
all considered ratios. This shows that the proposed FT-WNB
classifier is highly robust and can assign appropriate weights
to the desired features, guaranteeing better NLoS identification
as compared to existing ML algorithms.

We also compares the proposed algorithm with the existing
UWB NLoS identification methods as mentioned in the intro-
duction section. The results in terms of accuracy are shown in
Fig. 7. It can be clearly observed that the proposed FT-WNB
algorithm performs better than MLP, EM-GMM, MLP, CNN-
LSTM, and CNN methods which are some of the existing
positioning methods in UWB IPS.

For the fine-tuning step, the impact of a number of selected
samples is shown in Fig. 8. It can be observed that the accuracy
of the algorithm improves as the number of samples increase
and the proposed model benefits from the fine-tuning step.
The classification accuracy improves from 98.2% to 98.6%
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Fig. 8. Impact of number of samples evaluation

TABLE II
COMPARISON WITH [12].

Algorithms Processing % LoS % NLoS % Total
Time (s) Accuracy Accuracy Accuracy

Range & RSS 0.0371 97.4 91 96.8
All features 0.041 99.5 98 99.4
Difference 3.9 ms 2.1 (%) 7 (%) 2.6 (%)

TABLE III
PERFORMANCE OF FT-WNB IN A DIFFERENT ENVIRONMENT.

Training Testing TP FP FN TN Accuracy
Scenario Scenario (%)

Studio Studio 995 5 2 98 99.4
Studio Room 990 10 5 95 98.6

by collecting the first 10 samples and then further increases to
99.5% by just collecting the first 40 samples. However, there
is no significant gain in accuracy beyond that point. Therefore,
in our simulations, the number of samples required for fine-
tuning is fixed at 40.

There is a tradeoff between the collected features and
accuracy. In this paper, our focus was to collect a maximum
number of features that yield the highest accuracy. In Table II,
we present the comparison of the processing time considering
only two features (Range and RSS [12]) and all the 12
gathered features. It can be observed that a difference of
3.9ms leads to an improved accuracy of 99.4% as compared
to 96.8%. However, if the application does not require high
accuracy, we could reduce the number of collected features
and improve the processing time of the algorithm.

Our algorithm has been tested and trained in various sce-
narios as adopted in [14]. It can be observed from Table III
that the proposed WNB has a classification accuracy of over
98%, even after being trained in a studio and tested in a room
measuring (4.8m×5.4m). This demonstrates the versatility of
FT-WNB and its ability to perform in different environments,
regardless of where it was trained.

V. CONCLUSION

In this work, we propose the FT-WNB algorithm which
is a feature-based NLoS classification method to improve

classification accuracy by automatically weighting different
signal features, for imbalanced LoS and NLoS samples. The
performance of the FT-WNB classifier is compared with state-
of-the-art machine learning algorithms using simulation. It is
shown that the proposed FT-WNB algorithm performed better
in terms of confusion matrix, ROC, and AUC. In addition,
the proposed FT-WNB algorithm adapts better to the different
ratios of LoS and NLoS signal data. Our findings demonstrate
that the proposed FT-WNB classifier efficiently alleviates the
influence of the signal features in an imbalanced dataset in a
harsh mixed LoS and NLoS scenario.
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