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Abstract

The preparation of Ni-rich cathode materials is challenging due to the Ni2+ ion sensitivity to oxidation during synthesis. The

synthesis conditions during the manufacture of Ni-rich materials such as LiNi0.8Mn0.1Co0.1O2 (NMC811) therefore require

stringent control. The co-precipitation step, applied in the synthesis of the metal hydroxide precursor, determines the secondary

particle assembly formation, where it is typically desirable to produce uniform, spherical, ∼10 µm-diameter structures. A

stirred tank reactor is often employed to maintain a constant temperature of 60 ◦C and a controlled pH of between 10.5 and

11.5 in an inert atmosphere to maintain a high Ni2+/Ni3+ ion ratio. This promotes the formation of an NMC hydroxide

precursor (Nix MnyCoz(OH)2) which is typically milled with a lithium salt and calcined to form LiNix MnyCozO2 with a

layered α-NaFeO2 crystalline structure. This review outlines some of the critical synthetic parameters for the formation of

spherical secondary assemblies of metal hydroxide precursors for nickel-rich layered cathodes.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer-review under responsibility of the scientific committee of the Multi-CDT Conference on Clean Energy and Sustainable Infrastructure, Professor

Solomon Brown, 2022.
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1. Introduction

Cathode materials remain a focal point of battery research due to the high proportion of raw material

costs associated with their production and their capacity limitation in comparison to graphite anodes [1,2]. The

development of lithium-ion batteries towards an electric vehicle range of 300 miles relies on cathode materials

with energy densities of 760 Wh kg−1 (or 200 mAh g−1) [3–5]. Lithium-ion batteries initial success came via the

commercialisation of LiCoO2 (LCO) which can deliver a practical capacity of 130 mAh g−1 (less than half of its

274 mAh g−1 theoretical capacity). [5] This is a result of the structural stability of Lix CoO2 declining when x

< 0.5 [6,7]. Ethical, economic and environmental concerns continue to encourage the minimisation of cobalt in

cathode materials [5–9].
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Developments to improve the cathode capacity have also focused on the partial replacement of cobalt with other

transition metals such as nickel, manganese and aluminium. One alternative, lithium nickel oxide (Li1−x Nix O2,

LNO), has a similar theoretical capacity of 275 mAh g−1 but displays much higher reversible capacities of

200–220 mAh g−1 [5]. One major challenge with LNO is the reduction of Li:Ni stoichiometry during synthesis,

where lithium deficiencies can result as well as poor electrochemical capacity retention due to secondary particle

failure; this is caused by a crystalline volume change during the H2-H3 phase transition [5,10,11].

To utilise the high capacity offered by LNO while mitigating these stability issues, manganese, cobalt and

aluminium have been used as stabilising agents to form nickel–manganese–cobalt oxide and nickel–cobalt–

aluminium oxide (commonly abbreviated to NMC and NCA respectively). Cobalt provides structural stability and

mitigates Li/Ni cation mixing [12] while aluminium and manganese can provide thermal and further structural

stability during cycling [5,12,13]. NMC111 (where the nickel: manganese: cobalt ratio is 1:1:1) can deliver capacities

of ∼160 mAh g−1 (cycled at 2.7–4.2 V) compared to a theoretical capacity of 277.8 mAh g−1 and high capacity

retention of 92.4% over 100 cycles (cycled at 3.0–4.3 V, 25 ◦C) [4,14]. Moving closer to a target of 200 mAh g−1

requires an increase in nickel content, with stoichiometries such as NMC532, NMC622 and NMC811.

Progressing to nickel content above 80% leads to increases in capacity, but more pronounced thermal and cycling

instabilities, as seen in Fig. 1 [4]. The increased presence of reactive Ni4+ ions in the delithiated state initiates

an aggressive reaction with the electrolyte, consuming active material and forming a surface rock-salt layer [14–

16]. For the NMC variants, nickel contents of up to 95% have been reported, with 88% nickel content for NCA

materials [13,17].

Fig. 1. The change in specific capacity and capacity retention as the transition metal ratio changes in NMC cathode materials. The capacity

retention relates to the capacity retained after 100 cycles at 0.5 C [4].

© 2013 Journal of Power Sources.

Transition metal oxide cathode materials may be synthesised by a variety of routes, including solid-state, high

temperature [18,19]; hydrothermal [20]; and co-precipitation methods [13,21–23]. The co-precipitation synthesis

route involves mixing stoichiometric transition metal salts with a basic precipitating agent and a complexing agent

to produce a mixed-transition metal ion precursor to the final lithiated oxide product [13,21]. Co-precipitation affords

control over multiple reaction conditions, allowing the morphology and tap density to be tailored. This is typically

achieved by tuning the pH, stirring rate, temperature, and reaction time to form quasi-spherical particles; these

parameters change depending on the transition metal ratio of the material [21,24].

The NMC precursor subsequently undergoes lithiation and calcination steps to afford the final ‘LiNix MnyCozO2’

layered NMC oxide with an α-NaFeO2 crystal structure. This structure consists of stacked layers of lithium, and

transition metal oxide, with 2-dimensional channels for the lithium ions to (de)intercalate easier in/out of the

structure during cycling [25]. The lithiation of the dried precursor involves homogeneous mixing with stoichiometric
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amounts of a lithium source. Typically, an excess of lithium source is used (Li:M ratio of 1.01–1.05:1) [15,26–

28]. Calcination temperatures of between 700–800 ◦C are commonly applied for NMC materials with Ni > 80%,

but this calcination temperature is typically optimised for nickel content [4,24,29,30]. An oxidising atmosphere is

recommended for the calcination of layered LiNix MnyCozO2 to prevent cation mixing of Ni2+ ions to Li sites due

to the similar ionic radii of Ni2+ and Li+ (0.69 Å vs 0.76 Å) [31,32]. Two recent reviews by Kurzhals and Riewald

et al. elegantly details the effects of calcination conditions on resulting structural chemistry and primary particle

morphology [33,34].

Here, we review published findings on the co-precipitation synthesis of the metal hydroxide precursor in

an attempt to draw together the effects of key parameters such as pH, temperature, reaction time and reactant

concentrations on resulting secondary particle formation.

2. Precursor synthesis

The precursor synthesis stage involves a reaction between stoichiometric quantities of transition-metal salts

nickel, manganese, and cobalt hydrated sulphates (NiSO4.6H2O, MnSO4.H2O and CoSO4.7H2O respectively); using

ammonia as a complexing agent, and a base [4,15]. Ammonia is often added first to provide a sufficient concentration

gradient to promote the formation of [M(NH3)]2+ complexes prior to particle precipitation [21]. Sodium hydroxide is

typically chosen as the base to maintain a high pH and supply hydroxide ions for NMC precursor precipitation while

maintaining lower costs per high purity than other hydroxide bases such as potassium hydroxide. For nickel-rich

materials, LiOH.H2O is usually selected as the lithium source due to its lower thermal decomposition temperature

range of 230–380 ◦C [35]. This allows the calcination temperature to be kept at a suitably low temperature to

minimise oxygen loss from the layered cathode compound and the resultant formation of the undesired rock-salt

phase [5,35,36]. Li2CO3 can be used for lower nickel-content material such as NMC532 or NMC111, but due to

its increased thermal decomposition temperature of 725 ◦C [5,35], it is not frequently used for more nickel-rich

materials [1,37].

Co-precipitation reaction mechanisms are complex and rely on the control of multiple parameters, with the

added difficulty of each Ni, Mn and Co ion ratio requiring different conditions to ensure uniform precipitation in

each NMC system. For example, one may apply lower pH conditions for a higher Mn/Co content, with pH values

of 9.8–10 producing optimal tap density of 1.0 g cm−3 for Ni0.33Mn0.33Co0.33(OH)2 (NMC111(OH)2) particles,

whereas pH values of 10.8–11.4 are applied for the synthesis of Ni(OH)2 with an increased tap density of 1.5–1.7 g

cm−3 [21,24]. These conditions should be maintained for the complexing and precipitation of the metal ions to

occur in such a manner so as to promote the formation of a layered transition metal hydroxide as shown in general

scheme 1 and 2 respectively. These schemes provide an overview of the reaction, where n represents the number of

coordinating ammonia molecules, which is less than or equal to 6 [21,38]. The β-NMC hydroxide material obtained

by this co-precipitation reaction crystallizes in a brucite type structure, with a hexagonal P3m1 space group [39].

Care must be taken as the divalent metal ions can oxidise to their trivalent states, which can lead to undesirable

side-phases or disruptions to the layered structure which can have a deleterious effect during calcination [38,40,41].

Additionally, reaction temperatures are also limited to 60 ◦C as higher residence temperatures can lead to increases

in primary particle size and tap density [21,24].

M2+ + nNH3 →
[

M (NH3)n

]2+
Scheme 1 [21]

[

M (NH3)n

]2+
+ 2OH− → M (OH)2 + n (NH)3 Scheme 2 [21]

The concentration of the transition metal solution, ammonia, and sodium hydroxide also affect the particle size

and tap density. Typically, the total transition metal sulphate concentration is 2 M [4,41]. Wang et al. synthesized

NMC-80:05:15-(OH)2 with a variety of NH3: NaOH molar ratios, concluding that a ratio of 1:1 yields an optimised

particle size, tap density and uniformity, with nanoplate primary particles of >100 nm and ∼20 µm spherical

secondary particles with a density of 1.5 g cm−3. Other ratios produced clustered, irregular particles of less than

10 µm in diameter and with tap densities of less than 0.8 g cm−3 [41].

The ammonia: transition metal ratio also affects NMC811(OH)2 particle morphology and tap density due to

its ability to complex with transition metal ions prior to particle precipitation. Increasing the NH3:M ratio from

1.0–1.2:1 leads to smaller primary particle grains, less uniformity in secondary particle morphologies and a narrower

particle size distribution [24,42]. A ratio of 1:1 was found to yield spherical, uniform particles of ∼20 µm with a

density of 2.0 g cm−3 [43]. An increased ammonia: transition metal ratio of 1.2:1 can also yield quasi-spherical
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particles with a 10 µm diameter for nickel contents of between 60% and 95% [15], but the concentration of

[Ni(NH3)6] complexes can increase, decreasing the precipitation rate of nickel [24]. Higher concentrations of

ammonia can be detrimental to the particle morphology, leading to the formation of ‘clusters’ with non-uniform

particle sizes and shapes, with each secondary particle ranging from 5–15 µm [43]. This is associated with the

incomplete precipitation of NMC811(OH)2 and the formation of [Ni(NH3)n]2+ complex [24].

The pH of the system is determined by the ammonia: sodium hydroxide solution and can dictate the degree

of transition metal precipitation. Its addition is often controlled via a pH meter. The pH-variable solubility of

each transition metal complex [M(NH3)n]2+ means there is an optimum pH value which varies depending on the

NMC ratio. For instance, van Bommel et al. showed that synthesizing a Ni0.33Mn0.33Co0.33(OH)2 precursor at pH

∼9.8 produces a peak tap density of 1.0 g cm−3, whereas Ni(OH)2 synthesized at 10.2–11.5 has an increased

tap density of 1.5 g cm−3 [21]. This is supported by Liang et al. who reported that NMC622(OH)2 synthesized

via co-precipitation had a more spherical morphology at pH 11.2 and an increased tap density of 1.65 g cm−3,

compared with pH values of 11.5 and 11.8, which had a tap densities of 1.47 and 1.05 g cm−3 respectively as well

as a less uniform morphology displayed in Fig. 2 [44]. Furthermore, Vu et al. demonstrated that NMC811(OH)2

particles were near-uniform in size and had an increased tap density of 1.91 g cm−3 when synthesized at pH 11.5

compared to pH 11.8 (which yields a tap density of 1.26 g cm−3) [24]. For lower nickel-content cathode materials

(NMC111(OH)2), a pH of 11.0 is reported to be optimal with respect to morphology, with a decreasing particle

size (10 µm to ∼3 µm), tap density (1.79 to 1.11 g cm−3) and uniformity as pH increases from 11.0 to 12.0 [42].

A similarly low tap density of 1.0 g cm−3 achieved by synthesizing NMC111(OH)2 at pH 10 [21]. Below these

optimal pH values, there are excess nickel and manganese ions in the system, leading to the formation of unwanted

side products [45]. Accordingly, one experiment demonstrated that a pH of 10.6 in the synthesis of NMC111(OH)2

was found to yield larger (median size of 16 µm), more uniform particles with an increased tap density (1.23 g

cm−3) and higher capacity retention after 50 cycles (96.5%) than equivalent materials prepared at a pH of 11.4

(which had a median size of 8 µm, a tap density of 0.3 g cm−3, and a capacity retention of 93.6%) [46].

The vessels employed in the co-precipitation reactions are round-bottom flask reactors or stirred tank reactors

(STRs) and are typically operated in batch mode. While round bottom flask reactors have a simpler setup, this comes

at a cost to experimental control (specifically the difficulties with operando monitoring of multiple parameters),

limitations over the geometry of the vessel, absence of an agitator (which is often substituted for a magnetic

stirrer bar) and limitations over scale-up potential. In contrast, STRs enhance the synthesis control through a real-

time feedback response to parameters such as pH and temperature and have an agitator and baffles that promote

homogeneous distribution and mixing of contents. STR vessels also have the capability to scale up through geometric

resizing of the vessel or the conduction of the reaction in a continuous manner by continually pumping reactants

in and extracting the wetted precipitated product [47,48].

In terms of mixing, the type of impeller blade impacts the nature and direction of the mixing (radial, axial

or both) and determines the distribution of particles and homogeneity of the system. Another important factor is

the stirring rate, which controls the shear rate of the system and consequently can affect the particle growth [47].

The type of the impeller blade can impact the tap density and particle size of the cathode precursors due to the

direction of the fluid flow through the blade. Zhu et al. [49] investigated the effect of axial mixing propeller turbines

compared to radial flow impellers and axial and radial flow impellers. The propeller turbine used at 1100 rpm led

to NMC622(OH)2 precursor particles with an increased tap density of 2.0 g cm−3 which increased to 2.5 g cm−3

upon calcination, with no change in average particle size (∼12 µm) on sintering. The initial discharge capacity of

the resultant NMC622 cells was 177.6 mAh g−1 (2.7–4.3 V, 0.2C), with 97.9% capacity retention after 200 cycles

at 2C, with comparative impeller blades such as the flat-blade and Rushton turbines displaying a 10–15% reduction

in capacity and capacity retention [49]. A stirring rate can also influence the secondary particle size. Commonly, a

stirring rate of 1000 rpm is used for NMC synthesis, yielding a particle size of 8–12 µm and tap densities on the

order of 2.0 g cm−3 (though these properties also depend on other reaction conditions) [21,50,51]. Vu et al. found

that a lower stirring rate (500 rpm) produced larger mean particle sizes (20 µm), compared to 800 rpm (13 µm) [24].

There are other established factors that affect the mixing characteristics and consequently the particle characteris-

tics, such as reactor geometry and its configuration (i.e. the inclusion of baffles, liquid level and turbine depth). This

raises an interesting prospect when considering the scale up of this reaction [48]. Longer reaction times generally

lead to more spherical particle morphologies and a higher tap density [21,49]. Due to the differing vessels, agitators,

and resultant shear rates of the system, optimal residence times vary across systems. For this reason, residence
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Fig. 2. Scanning electron microscope images of Ni0.6Mn0.2Co0.2(OH)2 synthesized via a co-precipitation technique at various pH. (a) pH

of 11.2; (b) pH of 11.5; (c) pH of 11.8 [44].

© 2013 Electrochimica Acta.

times vary in the literature spanning between 4 and 27 h for co-precipitation reactions [22,26]. As the 27 h mark is

approached, the particle size tends to plateau as particles begin to mature rather than grow, allowing the possibility

for a continuous flow system to be developed to yield consistently-sized particles [43].

3. Conclusion

High nickel-content cathode precursors synthesised via the co-precipitation route require careful control over

several key reaction parameters to produce particles with desired size, shape and tap density. The formation of

Ni-rich cathode materials is favoured by milder temperatures of ∼60 ◦C and anaerobic conditions to prevent the

oxidation of Ni2+.

The precipitation of the transition metals to form the preferred quasi-spherical ∼10 µm diameter secondary

particles requires a basic precipitating agent and a complexing agent. Sodium hydroxide is typically used to control
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the pH of the solution, with a pH range of between 11.0 and 11.5 favoured for NMC811(OH)2 precursor synthesis.

The molar ratio of transition metal: ammonia complexing agent should also be optimised for the resulting chemistry

to acquire optimised secondary assembly size and tap densities of ∼2.0 g cm−3 for the NMC hydroxide precursor.
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