
RESEARCH ARTICLE National Science Review
10: nwad045, 2023

https://doi.org/10.1093/nsr/nwad045
Advance access publication 22 February 2023

INFORMATION SCIENCE

Learning physical characteristics like animals for
legged robots
Peng Xu1,†, Liang Ding1,∗,†, Zhengyang Li1, Huaiguang Yang1, Zhikai Wang1,
Haibo Gao1, Ruyi Zhou1, Yang Su1, Zongquan Deng1 and Yanlong Huang2

1Key Laboratory of
Robotics and Systems,
Harbin Institute of
Technology, Harbin
150001, China and
2School of Computing,
University of Leeds,
Leeds LS29JT, UK

∗Corresponding
author. E-mail:
liangding@hit.edu.cn
†Equally contributed
to this work.

Received 27 October
2022; Revised 3
February 2023;
Accepted 14
February 2023

ABSTRACT
Physical characteristics of terrains, such as softness and friction, provide essential information for legged
robots to avoid non-geometric obstacles, like mires and slippery stones, in the wild.The perception of such
characteristics often relies on tactile perception and vision prediction. Although tactile perception is more
accurate, it is limited to close-range use; by contrast, establishing a supervised or self-supervised contactless
prediction system using computer vision requires adequate labeled data and lacks the ability to adapt to the
dynamic environment. In this paper, we simulate the behavior of animals and propose an unsupervised
learning framework for legged robots to learn the physical characteristics of terrains, which is the first report
to manage it online, incrementally and with the ability to solve cognitive conflicts.The proposed scheme
allows robots to interact with the environment and adjust their cognition in real time, therefore endowing
robots with the adaptation ability. Indoor and outdoor experiments on a hexapod robot are carried out to
show that the robot can extract tactile and visual features of terrains to create cognitive networks
independently; an associative layer between visual and tactile features is created during the robot’s
exploration; with the layer, the robot can autonomously generate a physical segmentation model of terrains
and solve cognitive conflicts in an ever-changing environment, facilitating its safe navigation.
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INTRODUCTION
With the development of deep learning, robot mo-
bility, and simultaneous localization and mapping
techniques, mobile robots are able to move from
laboratories to outdoor environments [1–3]. Such
progress is particularly evident in legged robots,
whose maneuverability with discrete footholds al-
lows them to operate in the wild, planetary or deep-
sea environments [4–6]. One of the most impor-
tant challenges associated with outdoor tasks is that
robots need to tackle ever-changing environments,
which is not only reflected in various geometric
shapes but also in diverse physical parameters of
terrains. Until now, robot navigation has largely re-
lied on geometric characteristics of terrains, such as
roughness, height and slope [7,8]. However, geo-
metric features may not suffice for safe navigation
in the wild. For example, the robot could be stuck
in soft terrain or lose balance in slippery terrain.

In order to avoid irreversible failures [9], an ap-
pealing solution is to exploit physical characteris-
tics of terrains, such as softness and friction. In fact,
it is challenging to study physical characteristics in
diverse and dynamic environments. As a result of
changes in weather, light, humidity and terrain ma-
terial, terrains with similar appearances may differ
significantly in their physical characteristics; or ter-
rains with disparate appearances could share sim-
ilar physical properties. Such changes in the envi-
ronment may also lead to cognition conflicts, e.g.
what appears to be a passable weedy surface turns
out to be very muddy below because of rain, which
further deteriorates the perception of the robot. Al-
though it is difficult to realize the autonomous navi-
gation of robots in a complex environment, adapting
to dynamic hazards seems to be effortless for animals
[10].

Animals are able to establish their fear mech-
anism to evade dangers through observing and
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interacting with the environment [10,11]. For
example, after hitting glass a number of times, an
orangutan can learn to keep its distance from the
glass; when a cat walks in a dangerous area, it uses
its feet to test the bearing capacity of the terrain
and avoids soft regional topography. In order to
build their cognition systems, animals first need to
interact with the environment in a proactive fashion
so that they can explore the environment sufficiently
and gain more useful experiences. Then the tactile
and visual perception ability helps them to collect
environmental data. Tactile perception ability is
essential for animals to perceive dangers accurately,
which transmits various sensory information such
as pain, temperature, pressure and vibration to their
nervous system,helping themperceive surroundings
and avoid potential harm [12]. On the other hand,
vision contains rich information, such as texture,
color and illumination, helping organisms remotely
extract the characteristics of the environment and
predict dangers. Besides, when several modalities
appear at the same time, brains will establish inter-
nal connections among the modalities, endowing
animals with the ability to establish connections
among different perceptions. For example, humans
who have been bitten by snakes may imagine a
sense of pain even when they see an object with a
snake shape [13]. Apart from collecting perceptual
information and interactive experiences, updating
their cognitive system dynamically by constantly
summarizing experiences, updating cognition and
solving conflicts is another essential ability for them
to adapt to dynamic changes in the environment,
which is also a key characteristic of highly intelligent
animals [14]. In this way, animals can adapt to the
dynamic environment by creating and updating
their cognition systems actively. Thus, it is desirable
for robots to act like animals: learning physical
characteristics of the environment.

Before imitating the behavior of animals, the first
question that comes to mind is what environmental
features the legged robot needs to extract to avoid
environmental dangers. The geometric features of
the environment are thefirst considerationof robots,
as most obstacles, like slopes, stumbling blocks and
steep terrains, can be detected by these features. For
the legged robot, geometric features such as rough-
ness, slope and the step degree of elevation maps
are themain factors considered in path planning and
foothold selection [8,15]. However, it is not practi-
cal to distinguish a flat swamp with a totally differ-
ent softness degree from a hard flagstone floor just
by its geometric appearance, but ignoring the differ-
ence may lead to irreparable loss [9]. Extracting se-
mantic clues from images, such as designing many
features like color and frequency characteristics, to

distinguish terrains seems to be a feasible solution
[16,17]. Notably, constructing semantic segmenta-
tion networks through machine learning methods
has shown better efficiency and advantages in se-
mantic feature extraction recently [18,19]. On an-
other front, energy consumption is another concern
in measuring the risk of terrains. In order to plan
a path consuming minimal energy for robots, pre-
dicting the cost of the transport map of the environ-
ment through remote sensors like cameras is inves-
tigated to promote the robot’s navigation [20,21].
However, in the field environment, the physical
characteristics of terrains greatly influence robot
traversability. Although semantic clues through vi-
sion can help robots avoid non-geometric obsta-
cles, they cannot reveal more about the specific
parameters of a terrain, which limits their appli-
cation; e.g. a semantic picture cannot assist the
robot to determine whether the friction coefficient
of a terrain can meet its demand of 1 m/s velocity
planning.

Since physical features of terrains are crucially
important, how should a robot extract them? Two
of the most concerning terrain physical parameters
formobile robots are softness and friction [22]. Soft-
ness is required when estimating whether a terrain
has sufficient carrying capacity, while friction is cru-
cial for driving force. Tactile perception is the most
direct way to extract physical parameters through
contacting terrains. For instance, in the planetary
exploration field, a planetary vehicle first collects
contact data during wheel rotation and then it can
identify terrain parameters like soil shear parame-
ters based on terramechanic models [23,24]. For
legged robots, physical parameters of terrains can
be extracted through normal contact and tangen-
tial interaction between feet and terrains [22,25,26].
In addition, coarse-grained estimation of physical
parameters by classifying them into categories is a
more common practice in the robotics field. There
are many tactile perception works based on dif-
ferent sensor information, such as force and mo-
ment [27], vibration [28], execution errors [29],
etc. It is worth mentioning that the fusion of multi-
ple sensors can achieve higher accuracy, and much
work has shown its advantages [30,31]. Although
the haptic approach provides the most reliable data
on the physical features of the terrain, it becomes
powerless when performing remote planning. A nat-
ural biological process emerges: feel, observe and
predict.

Imagine you walk to a frozen lake, you raise
a foot and stomp on the ice a few times, and
then whether the area with a similar appearance
as the touch point is safe can be determined. This
seems to be an ideal solution to predict physical
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characteristics through vision. Several works have
tried to realize it by using computer vision technolo-
gies to predict the physical parameters of terrains
by establishing a mapping relationship between tac-
tile characteristics and semantic classes using super-
vised methods [32–35]. Nevertheless, they require
a large number of human annotations and hence
become less applicable in ever-changing environ-
ments. Self-supervised learning allows for automatic
labeling of training data by exploiting correlations
between input signals to make the vision predic-
tion scheme more autonomous [36–39]. For exam-
ple,Wellhausen et al. [40] extracted friction features
from the footprints of a legged robot and the force-
torque signal felt by the robot’s feet and meanwhile
collected colorful images along the robot’s path so as
to form a mapping between vision and touch. How-
ever, these attempts still require robots to collect a
large amount of data in advance. Once new situa-
tions are encountered in the future, they may lack
the ability to make proper decisions [41], resulting
in various kinds of failures. For example, you are
not likely to walk across the lake in advance to fig-
ure out whether it is passable, right? Without suffi-
cient data, how do you extract effective features in a
dynamically changing environment? Autonomously
perceiving the physical characteristics of the envi-
ronment does not seem to be a good solution.

In this paper, inspired by the animal cognition
process, we present a framework for legged robots to
perceive physical characteristics of the environment
autonomously, as shown inFig. 1.The tactile percep-
tion and the visual perception work independently
to build a corresponding feature space and later
they are associated together to update the physical
cognition of the environment in this framework.
On the tactile perception side, features consisting of
softness and friction parameters are extracted using
foot-terrain interaction models. Specifically, the
robot executes a predefined foot trajectory to collect
contact force and displacement along normal and
tangential directions; then, a unified contact model
is utilized to identify terrain parameters (represent-
ing softness and the friction level of the terrain)
by nonlinear optimization methods. On the visual
perception side, an unsupervised feature extraction
method is designed: first, the surrounding images
collected by an unmanned aerial vehicle (UAV) are
segmented into patches as training data by a simple
linear iterative clustering (SLIC)method, which can
help each patch containing a single type of terrain
as much as possible; similar terrain patches are
used as positive samples and different terrain blocks
are treated as negative ones for training, making
positive samples close together while negative ones

far away in the feature space. After obtaining tactile
and visual features, an enhanced self-organizing
incremental neural network (E-SOINN) is adopted
to build cognitive networks and cluster all features.
Compared with K-means, E-SOINN does not rely
on the assumption of the known number of terrain
classes and can learn in an incremental manner. Af-
ter that, clustering results are used as pseudo-labels
of image patches to segment terrain images. Finally,
an associative layer using spiking neural networks
is designed to connect visual and tactile labels, and
the activation intensity between them is controlled
by trigger spike events, where results matching old
knowledge are treated as positive activation events
while cognitive conflict situations are regarded as
negative activation events. Updating the activation
intensity of mapping pairs (a pair is composed of a
visual cluster and a tactile cluster) helps the robot
deal with cognitive conflicts and renew its physical
cognition. The associative layer can also be used
to predict physical characteristics through vision,
helping legged robots to avoid non-geometric
obstacles.

In this work, there are several main contribu-
tions beyond state of the art in robot perception.
(i) An unsupervised learning framework is proposed
to perceive physical characteristics online and incre-
mentally, without the need of traversing a similar en-
vironment in advance. (ii) The learning framework
allows robots to handle cognitive conflicts, which is,
to the best of our knowledge, the first attempt in
the field of terrain perception. (iii) A novel unsu-
pervised terrain segmentation method is proposed.
Visual features are extracted through contrastive
learning and are clustered by E-SOINN to label the
image patches cropped by SLIC, forming an un-
supervised segmentation framework. (iv) Physical
parameters representing the friction and softness
of terrains are estimated based on the unified
foot-terrain contact models proposed, which can
distinguish different terrains effectively. (v) The
proposed method is extensively evaluated using a
hexapod robot, including indoor and outdoor navi-
gation tasks. It is worthmentioning that ourmethod
can be deployed on any legged robots, but is veri-
fied only on a hexapod robot. Compared with other
works [36,40], onemajor difference is that we adopt
the UAV to collect surrounding images around the
robot on the ground; such treatment helps the land
robot collect adequate images of the environment,
including dangerous terrains, in an efficient and
safe way. The reported results include quality tests
of visual and tactile features, constructions of cog-
nitive networks and associative layers, visual pre-
dictions of physical characteristics, verification of
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(a)

(b) (c)

Figure 1. Physical characteristics of the learning framework. (a) Framework for learning the cognitive network and the associative layer. The visual
channel contains superpixel segmentation, a contrastive learning network and a visual cognitive network. SLIC is adopted to generate superpixels to
offer terrain patches as training samples. Contrastive learning is trained to get an encoder, which can extract latent features of images. E-SOINN is used
to train the visual cognitive network, which can cluster visual features in an unsupervised way. The tactile channel contains contact data collection,
physical parameter identification and a tactile cognitive network. Through tracking specific foot trajectories, the contact force and displacement are
collected in the first part. Identification of physical parameters is achieved using contact models to extract tactile features of terrains. Then, a tactile
cognitive network can be created like the visual cognitive network. Finally, the associative layer is created, and the details are shown in (b and c).
(b) Forgetting mechanism of modal mapping, which is designed to adjust the connect intensity of mapping pairs (between visual clusters and tactile
clusters). It is used to solve cognitive conflicts. (c) Framework for updating the associative layer and predicting physical characteristics from vision,
where the solid lines represent the offline training process, and the dashed lines represent the online training and prediction processes.

conflict-handling solutions in multi-terrain environ-
ments and application in robot navigation.

RESULTS
Both indoor and outdoor experiments have been
carried out. ELSpider (see Fig. S5 within the online
supplementary material), an electric-drive heavy-
dutyhexapod robot (1.9m×2.1m×0.5m, 330kg)
developed at the Harbin Institute of Technology,

is used for our experiments. Each leg of ELSpider
has three degrees of freedom and is equipped with
a circular flat foot. Six-axis force-torque sensors are
mounted at the connectionbetween the feet and legs
to measure normal and tangential forces.The sensor
can detect forces of up to 330 N along the x and y
axes and 990 N along the z axis, and detect up to
30 Nm of torque at a time. Depth cameras (D435i)
are installed on the robot to detect environmental vi-
sual information. A tracking camera (Intel T265) is
used to track the robot’s pose, and a router with a
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bandwidth of 3000 Mbps is installed for data com-
munication. In addition,weuse theDJIMINI2UAV
for remote visual perceptionof the environment (the
UAV will fly at a low altitude around the robot, and
collect images around it), with the data transmitted
to a high-performance computer mounted on EL-
Spider. Note that the camera setting, such as the
height and camera angle, has a significant impact on
the prediction accuracy (see Section 6within the on-
line supplementary material); so the camera setting
of the UAV is similar to that of the hexapod robot
in our experiments. When the robot travels to a new
environment, the computer on ELSpider will train a
contrastive learning network in advance.

Outdoor experiments
Visual cognitive network
Figure 2(a) depicts the scene of the outdoor exper-
iment with five types of terrains, including asphalt,
grass, curbstone, sidewalk and hard floor. In the first
place, the UAV, controlled by a human operator,
flies around ELSpider to collect images. The images
are transferred to a computer embedded in ELSpi-
der,where they are cropped intopatcheswith 10 000
pixels by SLIC, and subsequently resized as stan-
dard rectangle patches (100 × 100) as final input
samples. We use these patches to train a contrastive
learning network; see Fig. 1(a). For the training, we
use the Adam optimizer with a learning rate of 1e
× 3 and a batch size of 256 for 50 epochs to train
the contrastive network. The encoder is ResNet-18,
where amulti-layer perceptron (MLP)with one hid-
den linear layer (512-D input and 512-D output)
is used as the projection head; the MLP’s output
size is 32-D. See Figure S6 within the online supple-
mentary material for the input and output diagrams.
The visualization of features compressed by the net-
work through t-distributed stochastic neighbor em-
bedding (t-SNE) [42] is plotted in Fig. 2(b), show-
ing that the clusters are indeed classified. However,
it is hard to evaluate the clustering accuracy with-
out any labels.Therefore, we propose indirectly ana-
lyzing the clustering results according to terrain seg-
mentation labeled by unsupervised clustering.

First of all, E-SOINN is adopted to construct a vi-
sual cognitive network (VCN; see Fig. 2(c)), which
divides all visual features collected by the UAV into
10 categories. Note that the number of categories
can be further simplified through human analysis.
For example, in Fig. 2(c), class 3 and class 8 can be
merged into one cluster. Although E-SOINN with
fine-tuned parameters performswell in a specific set-
ting, it may misclassify some different classes into
the same class in other scenarios. Thus, a more in-

tuitive solution is to separate the terrain data into
more categories than it should have. Interestingly,
this treatment will not degrade the performance of
our method, as the classified clusters can be com-
bined later using the mapping between tactile and
visual data.

After the VCN is trained, the labels predicted
by the VCN are used as pseudo-tags for new im-
ages. Specifically, given a new image, it is evenly
cropped into patches through SLIC. Each patch is
compressed by the contrastive network to extract
its latent features, which are subsequently fed to
the VCN to determine its cluster. In this way, an
image can be segmented by splicing with these la-
beled patches, as shown in Fig. 2(d). By compari-
son with the corresponding raw image, we can es-
timate the semantic class for each cluster: cluster 2
corresponds to asphalt; clusters 3 and8belong to the
sidewalk; cluster 7 is the hard floor; clusters 0, 6 and
9 correspond to grass; clusters 1, 4 and 5 represent
curbstone. From the semantic images in Fig. 2(d),
we can see that those different terrains are distin-
guished properly, which satisfies the need for robot
navigation.

In order to evaluate the clustering accuracy, we
have annotated the images collected by the UAV.
The following metric is designed to evaluate the
accuracy:

clusterAcc =
N∑

i=1

MaxSameN(Ci)
Num(Ci)

/N. (1)

HereN represents the number of clusters, Num(Ci)
denotes the number of samples belonging to
cluster Ci (clustering results of E-SOINN),
MaxSameN(Ci) is the maximum number of sam-
ples that belong to Ci and have the same labels as
those annotated by humans.This indicatormeasures
the clustering degree of samples in each cluster—
higher values mean better clustering results. By
adjusting the parameter of E-SOINN, we can get
different groups of clusters. We performed several
tests to verify the impact of the number of clusters
on the clustering accuracy. As shown in Table
S7 within the online supplementary material, the
clustering accuracy is above 94%, with the accuracy
increasing as the number of clusters increases, i.e.
using more clusters can better aggregate samples of
the same category. However, dividing one terrain
into multiple categories will not affect the effect of
our method, because they can be reunited again
through the mapping process between tactile
and visual data. Therefore, satisfactory clustering
accuracy verifies the success of the unsupervised
visual feature clustering method.
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(a)

(d)

(b) (c)

Figure 2. The unsupervised segmentation results. (a) Experimental scene in a realistic outdoor environment with differ-
ent terrains, including asphalt, sidewalk, curbstone, grass and hard floor. (b) Visualization of visual features using t-SNE.
(c) Visual cognitive network created by E-SOINN. It divides visual features into 10 clusters. (d) Results of the unsupervised
segmentation, where the second and fourth rows of images correspond to the segmentation results of the first and third rows
of raw images.

Tactile cognitive network
Verification of tactile feature extraction. The tactile
feature plays a pivotal role when training the tactile
cognitive network (TCN), so here we first verify
the effectiveness of the proposed feature extrac-
tion solution. In order to extract tactile features
sufficiently, we let the robot execute a predefined
reference trajectory and collect the corresponding
force and displacement along normal and tangential
directions. Subsequently, a unified contact model is
adopted to identify terrain parameters by nonlinear
optimization methods. The design of the reference
trajectory and the extraction of tactile features are
discussed in theMethods section.

We carried out experiments on eight typical ter-
rains, including marble floor, grass, foam board,
sand, ice, soil, snow and asphalt. The extracted soft-
ness parameters and friction parameters in various
terrains are illustrated in Fig. 3(a) and (b). Interest-
ingly, with these two groups of parameters, all ter-
rains can be classified properly, (see Fig. 3(c)), al-
though some terrains are indistinguishable using a
single group of parameters. For example, the soft-
ness parameters of asphalt, ice and marble floors are
similar, but their fiction parameters are significantly

different.The friction parameters of foam board and
snoware largely overlapped, but they can still be clas-
sified using the softness parameters (although they
are very close to each other). Thus, using both the
softness and friction parameters as tactile features is
advantageous for terrain classification.

We adopted the samemetric as that of the visual-
feature verification part to verify the clustering accu-
racy of tactile data. The clustering accuracy results
are shown in Table S8 within the online supplemen-
tary material. When the number of clusters is larger
than the real category number (8), the algorithmcan
provide higher clustering precision (over 97%). By
contrast, the clustering accuracy decreases when the
number of clusters decreases.

Tactile cognitive network. We now discuss the
training of the TCN in an outdoor setting. The sce-
nario is shown in Fig. 2(a), where the robot walks
from the starting point (markedby the red ellipse) to
the destination (marked by the green ellipse).When
the robot works on the asphalt, the first cluster is
created in the TCN (see Fig. 3(e)–(g)), represent-
ing hard terrains with large friction. When the robot
touches the curbstone, the second cluster is cre-
ated, as the curbstone is more slippery than asphalt.
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(a)

(d)

(e) (f) (g)

(b) (c)

Figure 3. Results of tactile feature verification experiments. (a–c) Visualization of tactile features. Here k is the equivalent rigidity of the terrain
and n represents the exponential coefficient of the terrain’s deformation; μ denotes the frictional coefficient of the terrain and K (m) is the shearing
deformation modulus of the terrain; k soft and k fri represent the softness and friction parameters of the terrain, respectively. (d) Robot touches different
terrains to extract tactile features. (e–g) Process of creating a TCN: asphalt, sidewalk and hard floor are clustered as one type, and curbstone and grass
are another two types.

However, as the physical characteristics (i.e. friction
and softness) of the sidewalk are similar to that of
asphalt, sidewalk is recognized as the same cluster
as asphalt. Once the robot touches the grass, a third
cluster is created since the perceived tactile features
are quite different from those of previous terrains.
After that, the robot walks on the sidewalk until it
reaches the hard floor near the destination. Because
the physical characteristics of the hard floor are simi-
lar to thoseof asphalt, it is classified into thefirst clus-

ter. Thus, in this navigation task, the TCN network
can be created in an incremental way.

Tactile parameter estimation from clusters. As
shown in Fig. 3(e), each tactile cluster represents
a kind of terrain with similar tactile parameters.
However, there is still some difference between
samples in the cluster. In order to estimate the tactile
parameters from clusters, they can be modeled as
two norm distributions to present the softness and
friction parameters. In this way, once the tactile
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cluster is predicted from vision, the tactile parame-
ters can be estimated through the distribution.

Updating the associative layer
The associative layer aims to build a mapping from
visual clusters to tactile clusters. In the process of
building the TCN, the depth camera (D435i) will
also perceive the environment simultaneously. The
captured images will be sent to the contrastive net-
work to extract the corresponding visual features.
Whenever a new tactile cluster Tj is added, we can
combine it with the corresponding visual cluster Vi,
and then update the associative layer (which can be
interpreted as amapping table) in the formofnode=
{Vi,Tj,na,nc,γ }, where the indices of thenew tactile
cluster and visual cluster are respectively i and j, na
denotes the frequency of matched pairs, nc denotes
the frequency of conflicted pairs and γ > 0 repre-
sents the activation intensity, which is modeled us-
ing a spikingneuron (seeFig. 1(b)).Whenγ >0.85,
the node is fully activated. By contrast, if γ ≤ 0.15,
the node will be deleted. The variation rate of γ is
modulated by an additional parameterKLIF, which is
set as 0.5 in our experiment.The associative layer ob-
tained in the navigation task (Fig. 2(a)) is reported
in Table S3 within the online supplementary mate-
rial, where different visual classes are associatedwith
the same tactile class if they exhibit similar mechani-
cal properties.

Predicting tactile features
In the navigation task (see Fig. 2(a)), we first train
the contrastive learning network using images col-
lected by the UAV. Once the contrastive learning
network is ready, we can segment perceived images
in the navigation task into different visual clusters
online, which can be subsequently used to predict
the corresponding tactile clusters via the associative
layer.Note that the associative layer is also generated
online.

Figure 4 shows the prediction of tactile features
in the navigation task. At the very beginning (panel
a of Fig. 4(a)), with the image patch containing the
foothold of the front foot (bounded by the red box),
the corresponding visual cluster can be predicted us-
ing the VCN. Since the initial associative layer is
empty, the corresponding tactile cluster cannot be
predicted (i.e. unknown terrains); see the gray im-
age in panel a2 of Fig. 4(b). However, once tactile
information is collected through the front foot inter-
acting with the terrain (panel b of Fig. 4(a)), a new
tactile cluster (i.e. cluster 1) will be created. In this
case, the associative layer containing the relationship
between the current visual cluster and tactile clus-
ter is established, which can be used to predict tac-

tile clusters from images. As the entire raw image in
panel b1 of Fig. 4(b) is purely asphalt, all patches in-
side this image correspond to the same tactile clus-
ter, i.e. cluster 1; see panel b2of Fig. 4(b). In panel c1
of Fig. 4(b), the image patch containing the foothold
of the front foot is classified as a different visual clus-
ter, implying that a new terrain appears; hence, con-
tact exploration is applied. After a new tactile cluster
(i.e. tactile cluster 2) is added, the associative layer
will be updated accordingly, which can predict the
corresponding tactile clusters for the entire image;
see panel c2 of Fig. 4(b), which includes cluster 2.
Similarly, in panels d1–j1 of Fig. 4(b), the robot up-
dates the associative layer with new visual clusters
and the corresponding tactile clusters until it reaches
the destination. The final associative layer builds a
mapping between eight types of visual clusters and
three types of tactile clusters. Note that visual clus-
ters 8 and 9 are not encountered during the whole
navigation task; thus, these clusters are not involved
in the final associative layer. Once the tactile clus-
ter is predicted from vision, the tactile parameters
can be estimated through the parameter distribution
of the cluster in the tactile cognition network (see
Fig. 3(e)). The process of updating the associative
layer is consistent with the way that animals per-
ceive and understand a new environment. As long as
the associative relationship is known, animals can in-
stantly estimate tactile features according to their vi-
sual observation in new scenarios.

Navigation application
In order to apply the prediction results of environ-
mental physical information to robot navigation, we
project the predictive tactile clusters onto an eleva-
tion map, and construct a physical map of the envi-
ronment using the open-source elevation mapping
package [43]. The entire procedure of building the
physical model includes converting raw images into
tactile segmentation images; transforming depth im-
ages and tactile images into semantic point clouds
in the coordinate of the depth camera (see D435i
in Fig. S5 within the online supplementary mate-
rial) according to the camera model; estimating the
pose of the depth camera with respect to the world
frame using the tracking camera (seeT265 in Fig. S5
within the online supplementarymaterial); thus, the
semantic point clouds can be projected to the eleva-
tion map. In order to mitigate the effect of location
drift arising from pose estimation, the tracking cam-
era is combined with a legged odometer to obtain a
more stable pose estimator.

Figure S7 within the online supplementary ma-
terial shows the constructed physical map in the
navigation task, where the blue area represents the
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Figure 4. Prediction of the physical characteristics. (a) Walking process of the hexapod robot. (b) Physical prediction map of the raw images, where
gray denotes unknown terrains, blue represents terrains that are rigid and with sufficient friction, yellow represents soft terrains and pink represents
slippery terrains.

terrain that is rigid and not slippery, the yellow ar-
eas represent soft terrains and the pink areas repre-
sent rigid but slippery terrains. It is worth mention-
ing that the grass area is viewed as risky terrain due to
the heavyweight of the robot, and thus the robotwill
bypass the grass area after it reaches it. In this way,
mapping the predicted tactile clusters into elevation
maps helps robots navigate safely from the start-
ing point to the destination, avoiding non-geometric
obstacles such as grass areas. More details about
the navigation experiment can be seen in Demon-
stration Video S1 within the online supplementary
material.

Indoor experiments
Varying terrain environments call for adaptivity of
robots, and we carry out indoor experiments to ver-
ify the ability of the proposedmethod to solve cogni-
tive conflicts. indoor scene 1, as shown in Fig. 5(a),
includes a marble floor, a blue blanket, an artificial
grass area, a soft foam board, a pink rubber floormat
and an overlapped terrain with a blanket terrain over
a foam board. The navigation task in scene 1 is illus-
trated inFig. 5(d)–(i),where theprocedureof build-
ing the associative layer is similar to the outdoor
experiment (Fig. 4) at its early stage until the robot
touches an overlapped terrain (i.e. a blue blanket
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image is its navigation screenshot from rviz (the visualization tool of ROS). (j) Walking process of the second indoor experiment.
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terrain placed over a foamboard).However, the pre-
vious blanket terrain seen in Fig. 5(d) was relatively
hard and with high friction, but the estimated soft-
ness parameter of the overlapped terrain in Fig. 5(h)
is unexpectedly small, corresponding to the same
tactile cluster as the soft foam board. In order to
address the cognitive conflict, the robot continu-
ously touches the overlapped terrain a few times,
then updates the spiking neuron in the associative
layer. Specifically, as shown in Fig. 5(c), for spike
times from 0 to 6, the activation intensity between
the visual cluster of the blue blanket and the tac-
tile cluster of the soft foam board rises (when the
activation intensity γ > 0.85, the pair is fully ac-
tivated), while the activation intensity between the
visual cluster and the tactile cluster associated with
the blanket decreases until γ ≤ 0.15. The predicted
tactile map is shown in Fig. 5(i), where the color
corresponding to the observed overlapped terrain
changes from green to red. Note that a part of the
overlapped terrain is still depictedby the green color,
implying that this part has not been observed.There-
fore, an updated associative layer without cognitive
conflicts is obtained. Since the tactile features of the
blanket and the rubber floor mat are similar, both
terrains are united into one tactile category; see the
green areas in Fig. 5(d)–(i); the marble floor, which
has high stiffness and low friction, is highlighted
blue; the softer and more slippery grass is high-
lighted orange; finally, the very soft foam board is
highlighted pink. All terrain parameters are summa-
rized in Table S1 within the online supplementary
material.

The indoor experiment in scene 2 also shows the
conflict-solving ability of our method. Indoor scene
2 shown in Fig. 5(b) is classified into two regions. In
region A, there are three types of terrain: a marble
floor, bluemats and redmats, with themats glued to
the floor. In region B, apart from the marble floor,
we design two kinds of terrain: blue mats placed
over soft foam boards, where the boards are glued
to the floor, and slippery red mats (without glue).
From Fig. 5(j), we can see that the hexapod robot is
able to distinguish terrains with similar appearances
butdifferentphysical parameters. In this experiment,
once the robot recognizes a dangerous area (i.e. the
overlapped and slippery mats), it can avoid placing
footholds within the dangerous area. More details
can be found in Demonstration Video S3 within the
online supplementary material.

Comparison experiments
We performed a comparison between our solution
and a self-supervised method [39,40]. Unlike the

self-supervised method that requires the collection
of hundreds of labeled training data in the form of
image patches and their corresponding tactile pa-
rameters in advance, ourmethoddoes not need such
labeled training data since it creates and updates a
TCN online and thus allows for predicting tactile
features using visual observation. In this experiment,
the Elspider tries to traverse an unknown environ-
ment (see Fig. 6), where there are three types of
terrain, including hard soil, gravel and gravel with a
hole under it. For the proposed method, the robot
touches the gravel terrain in Fig. 6(d), finding that
the physical parameter is much softer than that of
the gravel in Fig. 6(c), so the robot avoids walk-
ing on the gravel area and traverses the scene safely
(see Fig. 6(e) and (f)). By contrast, the robot using
the self-supervised perception considers the gravel
in Fig. 6(h) as a safe terrain even after severe subsi-
dence, and later continues to walk through this ter-
rain (see Fig. 6(i) and (j)) since the physical predic-
tive model is unchanged. However, as depicted in
Fig. 6(b), the robot’s posture will change dramati-
cally, which may lead to the robot capsizing.

The gravel terrain has two different physical
properties during the walking process: one is solid
and slippery, while the other is extremely soft and
with greater friction (gravel with a hole under it).
Figure 6(k) and (m) show the physical parameter
prediction of gravel along the motion of the robot
from point A to point D in Fig. 6(a). During the
AB phases, the gravel terrain is not predicted be-
cause the mapping relationship between the vision
and tactile data of gravel is not established. Once the
robot touches the gravel at point B, there are pre-
dictions of the gravel as normal distributions (ksoft
∼ N(3.67, 0.49), kfri ∼ N(2.58, 0.31)). However,
when the robot touches the gravel with a hole under
it at point C, because of the predictive tactile clus-
ter changes in the associative layer, the prediction
parameter distributions changed (ksoft ∼ N(18.12,
1.10), kfri ∼ N(4.05, 0.47)). After that, when the
robot touches point D, the prediction tactile clus-
ter does not change but adds a new tactile node in
the TCN, leading to an update of the prediction pa-
rameter distributions (ksoft ∼ N(17.13, 1.30), kfri ∼
N(4.15, 0.51)).

Regarding the parameter prediction accuracy,
the hexapod robot is controlled to collect the tactile
data (each terrain contains 20 samples) as the base-
line to be compared with the prediction parameters.
The baseline parameters are shown in Fig. 6(l) and
(n), represented by dots on the abscissa. The black
dots are the parameters of the gravel at point B,while
the blue and purple dots represent the parameters of
the gravel at points C and D. If the average param-
eter of each distribution is taken as our predictive
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Figure 6. Comparison experiments. (a) Experimental scene. (b) Roll and pitch angles of the robot during the walking process using the comparison
method. (c–f) Navigation process using the proposed method. (g–j) Navigation process using the comparison method, where yellow circles show
severe subsidence of the robot. (k–n) Physical parameter prediction results. (o–q) Comparison simulation environments.

physical parameter, the prediction accuracy of tactile
parameters is calculated as

accuracy = 1 −
∑N

i=1 |s i − p|/N
p

, (2)

where si is the parameter of sample i, p is the pre-
diction parameter and N is the number of samples.

The prediction accuracy is shown in Table S9 within
the online supplementary material. It can be seen
that the prediction accuracy of ourmethod is around
90%, and the accuracy is negatively correlated with
the variance of the predictive distribution. By con-
trast, when the terrain’s physical property changes,
the prediction using the comparison method differs
significantly from the baseline.
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To quantify the advantages of our method over
the comparison methods in robot navigation, we
generated 10 different terrain environments to com-
pare the navigation results using the two prediction
methods in the simulation, as shown in Fig. 6(o)–
(q). A simulator named MarsSim [44] developed
upon the ROS/Gazebo platform that supports both
physical and visual realistic simulations is adopted as
our simulator. The self-supervised method requires
the collection of labeled training data in the form
of image patches and their corresponding tactile pa-
rameters (around3000 samples for an environment)
in an environment where the physical parameters
of the terrain do not change to train the prediction
model, while the proposed method only needs to
collect environmental images quickly in advance and
update its prediction model online. For each sim-
ulation environment, the mechanical parameters of
a terrain with a similar appearance change in or-
der to imitate challenging environments, and the
robot is required tomove to two goals with the same
starting point using the prediction model trained
by different methods. During the movement, the
number of severe slips (slip over 3 cm for a foot)
and jolt cases (roll or pitch angle over 5◦) is regis-
tered. Meanwhile, the task completion is recorded.
The comparison simulation results are shown in
Table S10 within the online supplementary mate-
rial. We can see that the robot using the proposed
method performs all tasks while avoiding severe
bumps and slips due to the advantage of adjust-
ing the prediction model of physical characteristics
along with the changing environments. However, if
using the prediction model trained by the data col-
lected in advance, the robot cannot predict the phys-
ical characteristics accurately when those of the ter-
rain change. Because of overtrust in previous expe-
rience, the robot fails to adjust its motion in time,
which in turn results in substantial sinking and slip-
ping. Admittedly, prudent exercise consumes more
time to reach the goal, but the strategy is safer and
more reliable in meeting the complex environment.
More details can be found in Video 5 within the on-
line supplementary material.

DISCUSSION
This paper introduced a novel method for legged
robots to autonomously learn the physical charac-
teristics of an environment, which is the first step to
realizing learning in an autonomous, real-time and
incremental way. Compared with previous studies,
the proposed method is also the first to solve the
cognitive conflict problem. By introducing the for-
getting mechanism, the robot can continuously up-

date the predictionmodel of physical characteristics
in dynamic environments, endowing the robot sys-
tem with higher adaptability.

In terms of the visual model, the proposed
method builds a terrain segmentation model with-
out any human labels and classifies terrains into
proper categories. In terms of the tactile model, the
proposed features consisting of the friction and soft-
ness parameters can distinguish different terrains ef-
ficiently. By constructing the E-SOINN network, a
TCN is constructed incrementally so that the robot
can continuously collect tactile data by interact-
ing with terrains. Finally, the visual-tactile associa-
tive layer can predict the physical characteristics of
terrains without touching them, helping the robot
to navigate safely. More importantly, the proposed
method can resolve cognitive conflicts and update
old cognition in a dynamic environment that greatly
improves the robot’s adaptability compared to other
methods.

This work still has some limitations. First, the
UAV was controlled by a user to collect surround-
ing images of the legged robot, which may limit
its applications, e.g. the human operation is un-
realistic in planetary exploration tasks. Second, in
order to better train the contrastive learning net-
work, the UAV needs to collect sufficient images for
each terrain; in this case, the imbalanced samples
may hinder the training of the network. Third, the
training time of the vision cognitive network is 2–
3 hours, which may prohibit its deployment when
the environment changes dramatically and rapidly.
For example, when the robot is operating on an
urgent task but the weather changes suddenly, the
robot should retrain the network with new images
quickly.

This paper covers a wide range of areas, which
could inspire research in many fields of robotics.
In the field of multi-modal perception, the com-
bination of autonomous cognitive techniques and
mobile robotics can often achieve much better re-
sults than traditional technologies, which has been
a research focus recently. In the context of robot
navigation, this paper proposes to characterize the
physical information of the environment (includ-
ing non-geometric obstacles) using a contact me-
chanics model so that safe navigation of the robot
is ensured. From the perspective of machine cog-
nition, the solutions to represent, summarize and
forget knowledge, as well as resolve cognitive con-
flicts, are necessary for general artificial intelligence.
For multi-robot collaboration, we use remote UAVs
to enlarge the perception domain of legged robots,
which verifies the effectiveness of such collabora-
tion and could further boost research interests in this
direction.
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METHODS
In this section we cover four main parts: visual
feature extraction, tactile feature extraction, cog-
nitive network construction and associative layer
construction.

Visual feature extraction
Manually designed features or the supervised
learning method cannot adapt to the outdoor envi-
ronment with changing conditions. The contrastive
learning method [45] is adopted to extract visual
features from different terrains. The surrounding
images collected by a UAV are segmented into
patches as training data by a SLIC method, which
can help each patch containing a single type of ter-
rain as much as possible. Similar terrain patches are
used as positive samples and different terrain blocks
are treated as negative ones for training, making
positive samples close together while negative ones
far away in the feature space. The encoder trained
by the contrastive learningmethod is adopted as the
feature extractor.

Tactile feature extraction
When a legged robot is walking on the ground, its
feet interact with the ground, where the contact
forces are usually decoupled into normal and tan-
gential forces. Following our previouswork [22], the
normal and tangential contact models between dif-
ferent types of feet and different terrains are unified.
Furthermore, the single parameters characterizing
the softness and friction of terrains are proposed as
tactile features. In order to identify ground parame-
ters, we let the robot execute predefinedmotion tra-
jectories consisting of normal press and tangential
rub. The collected force and feet displacement pro-
files are used to estimate the softness and friction de-
gree of the terrain, respectively (see Fig. S4 within
the online supplementary material).

Cognitive network
The cognitive layer is constructed using E-SOINN
[46]—an improved version of SOINN [47]. E-
SOINN is a competitive learning-based neural net-
work with only two layers, which can perform un-
supervised online clustering of dynamic input data
without labels, represented by topological struc-
tures. The incremental nature of E-SOINN allows it
to discover and learn new patterns that appear in the
data stream without affecting the previous learning.
Another key feature of E-SOINN is that it does not
need a prior assumption about the cluster number,
thusmaking itmore suitable for our problem.Asnew
tactile and visual features are collected, E-SOINN

updates the network and clusters similar terrains
incrementally.

Associative layer
The associative layer consists of the mapping pairs
Pk, which include two clusters and three scalars,Pk =
{Vi, Tj, na, nc, γ }, where Vi represents the ith visual
cluster of the terrain in the VCN, Tj represents the
jth tactile cluster of theTCN, na denotes the number
of matched pairs, nc denotes the frequency of con-
flicting pairs and γ ≥ 0 denotes the activation inten-
sity of the pair. A spiking neural network [48] is used
to connect thepairs,where the activationof a neuron
is triggered by discrete spikes. Through the leaky-
integrate-and-fire (LIF) model [49], the activation
intensities of the pairs change adaptively, making it
capable of forgetting and dynamic updating.

More details about the methods can be found
in Section S1 within the online supplementary
material.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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