
This is a repository copy of Implementation relations and testing for cyclic systems: adding
probabilities.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/197992/

Version: Published Version

Article:

Núñez, M., Hierons, R. orcid.org/0000-0002-4771-1446 and Lefticaru, R. (2023)
Implementation relations and testing for cyclic systems: adding probabilities. Robotics and
Autonomous Systems, 165. 104426. ISSN 0921-8890

https://doi.org/10.1016/j.robot.2023.104426

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Robotics and Autonomous Systems 165 (2023) 104426

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Implementation relations and testing for cyclic systems: Adding
probabilities✩

Manuel Núñez a, Robert M. Hierons b, Raluca Lefticaru c,∗

a Design and Testing of Reliable Systems Research Group, Universidad Complutense de Madrid, Madrid, 28040, Spain
b Department of Computer Science, The University of Sheffield, Sheffield, SD1 4DP, UK
c Department of Computer Science, University of Bradford, Bradford, West Yorkshire BD7 1DP, UK

a r t i c l e i n f o

Article history:

Available online 6 April 2023

Keywords:

Probabilistic systems

Cyclic systems

Model-based testing

Implementation relations

a b s t r a c t

This paper concerns the systematic testing of robotic control software based on state-based models.
We focus on cyclic systems that typically receive inputs (values from sensors), perform computations,
produce outputs (sent to actuators) and possibly change state. We provide a testing theory for such
cyclic systems where time can be represented and probabilities are used to quantify non-deterministic
choices, making it possible to model probabilistic algorithms. In addition, refusals, the inability of
a system to perform a set of actions, are taken into account. We consider several possible testing
scenarios. For example, a tester might only be able to passively observe a sequence of events and so
cannot check probabilities, while in another scenario a tester might be able to repeatedly apply a test
case and so estimate the probabilities of sequences of events. These different testing scenarios lead to
a range of implementation relations (notions of correctness). As a consequence, this paper provides
formal definitions of implementation relations that can form the basis of sound automated testing in
a range of testing scenarios. We also validate the implementation relations by showing how observers
can be used to provide an alternative but equivalent characterisation.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

There has been growing use of robotics in a number of impor-

tant domains such as manufacturing and transport. The criticality

of these domains has led to significant interest in the develop-

ment of techniques for verifying robotic software, with additional

challenges resulting from the nature of such software and the

need for them to operate in complex, varying environments.

Testing remains a crucial component of the verification pro-

cess and so it is important to have test generation techniques

that are efficient and effective. Automated test generation and

execution are particularly desirable since they aid scalability,

reduce cost, and have the potential to limit the scope for human

error. Testing can occur at several points in the development pro-

cess. For example, one can test individual software and hardware

components and one can test the final deployed system.

✩ This work has been supported by EPSRC, United Kingdom grant

EP/R025134/2 RoboTest: Systematic Model-Based Testing and Simulation of

Mobile Autonomous Robots, the Spanish MINECO-FEDER grant PID2021-

122215NB-C31 (AwESOMe) and the Region of Madrid grant S2018/TCS-4314

(FORTE-CM) co-funded by EIE Funds of the European Union.
∗ Corresponding author.

E-mail addresses: mn@sip.ucm.es (M. Núñez), r.hierons@sheffield.ac.uk

(R.M. Hierons), r.lefticaru@bradford.ac.uk (R. Lefticaru).

The focus of this paper is testing robotic control software and

this testing can potentially be carried out within a simulation.

Simulations can be used in order to test a model of the system

(model-in-the-loop), to test the software (software-in-the-loop),

or to test a hardware component (hardware-in-the-loop). Such

testing can reveal design flaws before deployment, potentially

leading to a reduction in development time and cost. Typically, it

is often possible to run many more tests in simulation than one

feasibly could in deployment. An additional benefit is that there is

the potential to run tests that are not possible when testing a de-

ployed system since, for example, there may be safety concerns.

The importance of testing within simulation, for autonomous

systems, was highlighted in a recent survey of the literature and

interviews with practitioners [1]. It is important to note, however,

that testing within simulation is not sufficient on its own: it is still

important to test the deployed system since a simulation is only

ever an approximation for the system’s environment.

There are a number of domains, such as avionics and the

automotive industry, in which testing within simulation is rel-

atively common practice. Interestingly, an empirical study found

that many real faults could be discovered by testing within sim-

ulation [2]. Despite this, a recent study found that although

simulation-based testing was used within robotics development,

most developers did not use it to support test automation [3].

https://doi.org/10.1016/j.robot.2023.104426

0921-8890/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.robot.2023.104426
https://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2023.104426&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:mn@sip.ucm.es
mailto:r.hierons@sheffield.ac.uk
mailto:r.lefticaru@bradford.ac.uk
https://doi.org/10.1016/j.robot.2023.104426
http://creativecommons.org/licenses/by/4.0/

M. Núñez, R.M. Hierons and R. Lefticaru Robotics and Autonomous Systems 165 (2023) 104426

The aim of the work reported in this paper is to form the
basis for sound and systematic automated test generation for
the testing of robotic control software. We use models, in the
form of state machines, as the basis for testing since these are
available at a relatively early stage. There may be potential to use
simulation as the basis for generating test cases for deployment
testing but we see this as being a problem for future work; we
briefly comment on this in Section 8.

The use of models, to drive test generation, fits within the
wider area of model-based testing (MBT). MBT has been an area of
interest for many years, with work going back to the 1950s [4],
and there are associated professional software testing tools (see,
for example, [5,6]) and reports of successful use in industry (see,
for example, [5,7]). Additional benefits arise where the notation
used to describe the model has a formal semantics that allows one
to map a model to a mathematical entity that can be analysed. A
model written using such a notation can form the basis for sys-
tematic and sound automated test generation and execution (see,
for example, [8]). However, until relatively recently, it appears
that there has been very little use of state machines, written using
a notation with a formal semantics, in robotics.

The work described in this paper was motivated by the re-
cent development of RoboChart [9], a domain-specific state-based
notation for modelling robotic software, and RoboSim [10], the
corresponding notation for describing simulations. These nota-
tions are intended to be similar to the types of notations used by
robotocists to define control software. The models are thus cyclic,
representing software that reads values from sensors (receives
inputs), then performs computations, before sending values to
actuators (outputs). Importantly, these notations have been given
a semantics through a mapping to the process algebra CSP [11]
and CSP has a formal semantics. The existence of this formal
semantics leads to the potential to develop automated and sound
MBT techniques for RoboChart and RoboSim models in order
to support testing within simulation and also deployed robots.
Recent work has explored testing from RoboChart and RoboSim
models based on their CSP semantics [12–14]. The use of the
CSP semantics makes it possible to provide a common approach
across both notations, while the existence of mappings from
RoboChart and RoboSim to CSP ensures that developers do not
need to know CSP. A CSP model can be mapped to its semantics
in the form of a labelled transition system (LTS) and this is the
type of model we consider. LTSs can be used to represent the op-
erational behaviour of a system in terms of state and transitions
between states. Intuitively, an LTS is a graph with a distinguished
initial state and where edges are labelled. If the system is in a
certain state q and there is an edge with label a connecting q to
state q′, then the LTS can move from state q to state q′ through
the task/event associated with the label a.

The recent research on testing from RoboChart and RoboSim
models allowed software to be represented by a state-machine
with discrete time. Discrete time was used in order to be consis-
tent with both how simulations operate and also the typical cycle
seen in embedded control software: these read from actuators
(receive inputs), carry out computations, send values to actuators
(outputs) and then repeat the cycle. As a result, it is sufficient to
use discrete time when testing robotic control software. However,
once the hardware is included there is a need to move to contin-
uous time and so, potentially, hybrid models in which differential
equations are used to model physical properties/laws. The use of
continuous time and hybrid models is a problem for future work.

Recently, RoboChart has been extended to include probabilis-
tic information [15], making it possible to model probabilistic
algorithms used in robotics. The work described in this paper
extends the testing framework developed for RoboChart [14] to
include such probabilistic information. We follow the approach

taken in RoboChart [15], in which probabilities are used to model
algorithms but they are not used to model the environment. This
essentially allows a ‘most general’ environment: one that can do
anything and where one has no probabilistic information about
the environment.

There is potential to incorporate information about the envi-
ronment by either creating a simulation model of the expected
environment or by expressing properties of the environment
using a notation such as RoboWorld [16]. This would address a
potential disadvantage of the approach we take, in which the
environment can do anything: the test cases produced may not be
realistic. Note, however, that constraining the environment could
mean that testing does not reveal faults that can only be observed
in environments that do not satisfy these constraints. The models
would also be more complicated since they would contain both
continuous variables and discrete states; they would be hybrid.

This paper makes the following main contributions.

1. We provide a formalism to model cyclic systems where
discrete time can be represented and probabilities are used
to quantify non-deterministic choices. In addition, refusals,
the inability of a process to perform a set of actions, are
taken into account.

2. The models provided by our formalism are compatible
with the latest version of RoboChart [15]. In particular, our
models alternate between input states (that are an exten-
sion of non-probabilistic states in RoboChart) and output
states (that are the equivalent to probabilistic junctions in
RoboChart).

3. We define 15 implementation relations and analyse the
relations among them. Intuitively, an implementation re-
lation indicates whether a System Under Test (SUT) repre-
sents a valid implementation of a specification. Depending
on the interpretation of ‘valid’ we may have different re-
lations and the choice of implementation relation may
depend on what a tester can observe in testing. For ex-
ample, the consideration of probabilities within an im-
plementation relation only makes sense if the tester can
repeat a test multiple times and so estimate probabilities
within the SUT. These implementation relations vary from
the simplest version, where probabilities and refusals are
abstracted, to more involved ones. The simpler versions
will mark more SUTs as valid.

4. We present alternative characterisations of our implemen-
tation relations based on a notion of observer.

Within the context of testing of robotic control software, our
work provides the potential for sound automated test generation.
If we start with a RoboChart model then we can use a tool
(RoboTool [17]) to generate the corresponding CSP model. The
CSP model can be mapped to its semantics in the form of an LTS
(the type of state-based model that we consider). This overall
approach has the advantage of allowing the developer to use a
state-based notation (RoboChart) that is similar to those used in
robotics but also utilise sound, systematic techniques that are
based on the formal semantics (LTS) of the original model.

Test generation that uses the implementation relations we de-
fine is sound since it cannot reject a correct implementation (one
that conforms to the model under the implementation relation
used). There are then a number of ways in which test generation
can be automated. One option is to take the approach often
used when testing from formal state-based models, in which test
generation involves randomly generating sound test cases (see,
for example, [18]). Alternatively, one might seed faults in the
model M , to create mutants, and for each mutant N use a model-
checker to find a test case that reveals this fault. The resultant
test cases are guaranteed to find the corresponding faults in

2

M. Núñez, R.M. Hierons and R. Lefticaru Robotics and Autonomous Systems 165 (2023) 104426

the software. Such an approach has already been developed for
RoboChart models [12] but did not take into account either time
or probabilities.

We classify results between theorems and propositions by
taking into account the importance of a result in the context of
the whole framework. For some theorems we do not include a
proof because the proof is straightforward or, despite the result
being important, the theorem is a combination of previous re-
sults. Similarly, in most cases a proof is not given for a proposition
since this proof would be a simple application of some results or
definitions but there are exceptions. As a result of these factors,
we do not give an explicit proof for all the theorems and we do
provide proofs of some propositions.

The rest of the paper is organised as follows. We start, in
Section 2, by describing the context we consider and outlining
related work. Section 3 describes the types of models we use
and provides background concepts and definitions. In Section 4
we give the first set of implementation relations, which are
based on traces but without probabilities or refusals. In Section 5
we show how probabilities can be added and extend this to
include refusals in Section 6. We then consider, in Section 7, an
alternative characterisation, showing how a notion of observers
captures the observations we consider and so can be used as
the basis for providing alternative, but equivalent, definitions of
the implementation relations. Finally, we draw conclusions and
discuss possible future work in Section 8.

2. Technical context and related work

As explained in Section 1, the work described in this paper
is motivated by the development and use of the RoboChart [9]
and RoboSim [10] notations. These notations essentially allow
one to model a piece of robotic software as a state machine:
there are logical states, internal variables, and transitions be-
tween states. Transitions can have guards, which define condi-
tions under which the transitions can be triggered. Transitions
can also update the values of internal variables. Next, we present
the running example used in this paper.

Example 1. This example, abstracting a mail delivery robot,
is inspired by previous work, where it has been modelled in
PRISM [19] and later using the RoboChart notation [15]. The robot
is used for internal mail delivery in a workspace with several
offices, labelled 0−3. A map of the workspace is given in Fig. 1(a):
lines between offices represent corridors that can be used for
navigation. The robot can recharge its battery in office 0 and can
be called to any office to fetch mail and deliver it elsewhere.
Following a fetch command, the robot could move to another
office or remain in the same office, if the battery is almost empty,
following the Markov model in Fig. 1(b), that models only the
navigation between the offices. The transitions are labelled with
the associated probability. In this case, 1/3 means that the robot
could choose between the three possible actions, stay in the
office, move to one adjacent office, or move to the other adjacent
office, with the same probability. Fig. 1(c) extends the movement
state machine with additional states, for example charging states,
possible only in office 0 and other transitions, such as ready when
the battery is full, and keep charging while battery is notFull.
Some of these states are represented in a different colour, as they
will have a different meaning in our model, as will be explained
later.

Both RoboChart and RoboSim have been given a formal se-
mantics [9,10] through a mapping to the process algebra CSP. For
timed models, the mapping is actually to a timed version of CSP,
called tock-CSP [20, Chapter 14]; throughout this paper, when
we refer to CSP we actually mean tock-CSP. In turn, CSP itself

can be given a formal semantics that describes what it means
for an implementation to be correct with respect to a model
or specification [20]. Communication between CSP processes is
defined in terms of synchronisation and so the classical CSP
semantics does not distinguish between inputs and outputs. This
is problematic from a testing perspective since inputs and outputs
play very different roles in testing: the tester controls inputs and
the SUT controls outputs. However, recent work has shown how
the classical CSP semantics can be adapted by suitably treating
inputs and outputs and so can form the basis for testing [21,22].

Since RoboChart and RoboSim have a formal semantics, and
this formal semantics provides a precise mathematical model,
there is potential for systematic and sound automated test gener-
ation. The focus on testing from RoboChart and RoboSim models
has thus been based on this CSP semantics (see, for example,
[12–14]). The corresponding test generation techniques allow
models to contain discrete time; as previously mentioned, the
use of discrete, as opposed to continuous, time was motivated by
systems and simulations often being cyclic.

The previous work on testing from RoboChart and RoboSim
did not allow models to be probabilistic and so could not be used
to test probabilistic properties of robotic algorithms. The work
described in this paper extends the testing framework developed
for RoboChart [14] to include probabilistic information as well as
time. In order to be consistent with the probabilistic version of
RoboChart [15], probabilities are used to model robotic software
but they are not used to model the environment. As a result,
probabilistic information can be provided regarding the output
produced, since outputs are produced by the SUT. In contrast,
probabilities are not used to define the likelihood of inputs in a
given state.

The main goal of this paper is to define a wide variety of
implementation relations that can be used to decide, taking into
account different characteristics and features of the analysed
systems, whether an SUT is a good implementation of a spec-
ification. We started by considering ioco [18]; this is a widely
used implementation relation to relate specifications and SUTs
but its original formulation does not take into account either time
or probabilities. There are several timed variants of ioco [23–25]
sharing the same name, tioco, aiming at extending ioco to cor-
rectly deal with the inclusion of time in the analysis of systems.
They differ from each other in several aspects. The most relevant
for our work is whether quiescence1 can be observed because
quiescence is indeed a particular case of refusal. Although we
could have started with one of these notions, we preferred to
build on top of our previous work [14] where we introduced an
implementation relation specifically targeting cyclic systems and
consistent with (tock-)CSP [20, Chapter 14].

Concerning work on testing probabilistic systems, the first
approaches considered testing frameworks where either tests
were passed with a certain probability or the semantic model
relied on the probability associated with performing a certain
trace [26–29]. However, early work did not distinguish between
inputs and outputs and so cannot be used within an ioco-inspired
framework. Subsequent work did distinguish between inputs and
outputs but only in the limited scope of probabilistic FSMs [30–
32]. Finally, proper probabilistic extensions of ioco in the con-
text of input–output probabilistic transition systems were intro-
duced [33–35]. We consider our previous work [34,35] as our
initial step but we have to take into account certain restrictions
to be consistent with recent work on adding probabilities to
RoboChart [15].

1 A system is in a quiescent state if it cannot change state or produce output

without first receiving an input.

3

M. Núñez, R.M. Hierons and R. Lefticaru Robotics and Autonomous Systems 165 (2023) 104426

Fig. 1. State machine model of a component of a mail delivery robot. (For interpretation of the colours in this figure, the reader is referred to Example 2).

Source: Inspired from [15,19].

Concerning refusals, the original formulation [36] did not in-
clude characteristics such as time, probabilities and a distinction
between inputs and outputs. There exists a testing framework
for probabilistic processes where refusals could be observed [37].
Unfortunately, this approach does not distinguish between inputs
and outputs and, therefore, it is not suitable for the situation con-
sidered in this paper. There is a variant of ioco where refusals can
be observed and inputs might be unspecified, that is, systems do
not need to be input-enabled [38]. Our approach departs from this
one in several lines (in addition to taking into account time and
probabilities). First, in order to be consistent with previous work
in formal modelling of cyclic systems, we only allow refusals to
be observed in states that do not have urgent actions, that is,
states from which no outgoing transition is labelled by an output.
Without this restriction, the tester is able to distinguish systems
that should be equivalent. Specifically, using a process algebraic
notation where actions preceded by ? and ! denote, respectively,
an input and an output and P +π Q denotes that P is chosen
with probability π and Q is chosen with probability 1 − π , we
have that (?i1; !o1; stop) +π (?i1; !o2; stop) and ?i1; ((!o1; stop) +π

(!o2; stop)) are semantically equivalent in all the implementation
relations studied in this paper. The reason for this is that we
cannot observe refusals in the states where outputs are available.
Second, this previous work [38] considers a distributed setting
in which there are multiple ports, at which input can be received
and to which output can be sent, and a restricted notion of input-
enableness. The restriction placed is that if an input at a port p

Table 1
Classification of related work.

Distinguish Time prob. Refusals

inputs & outputs

[21,22] Yes Yes No No
[14] Yes Yes No Yes
[18] Yes No No Limited (δ)

[23,25] Yes Yes No Limited (δ)

[24] Yes Yes No No
[26–29] No No Yes No
[30–32] Limited (FSM) No Yes No
[33,35] Yes No Yes Limited (δ)

[36] No No No Yes
[37] No No Yes Yes
[38] Yes No No Yes

is blocked then all inputs at p are blocked (for the corresponding
state). We only have one port (testing is not distributed) and so
do not have this constraint. Therefore, concerning observation of
refusals, we will build on top of our previous work [14].

In Table 1 we summarise the main characteristics of the dis-
cussed semantic frameworks. This table shows that there are
several approaches considering the features that we would like
to have, but none of them has all of them. Therefore, we consider
that this paper represents a novel testing theory, building on
top of ioco and our previous work [14] appropriately extended
with probabilistic information [35], to analyse robotic software

4

M. Núñez, R.M. Hierons and R. Lefticaru Robotics and Autonomous Systems 165 (2023) 104426

where time must be taken into account, probabilities govern non-
deterministic decisions and the refusal of a set of actions can be
observed.

3. Background and models

In this section we present the different formalisms used in this
paper to define models of robotic software. In addition, we review
the most relevant properties that we expect these models to have.

3.1. Cyclic models

We are interested in cyclic models, such as those of embedded
control systems, which can be found in robotics. Such systems
operate in cycles in which they read values from sensors (and
these are the inputs of the system), perform some calculations and
write values to actuators (and these are outputs of the system).
In addition, the passage of time is usually recorded between
the occurrence of these cycles. It is important to note that the
calculations might be probabilistic since probabilistic algorithms
are used in robotics (see, for example, [39]) as well as network
protocols such as the IEEE 802 standard.

3.2. Traces and LTSs

One of the main goals of this paper is to provide a testing
framework for cyclic systems where time is taken into account,
refusals can be observed and probabilities control some of the
decisions. In this line, we need to define what an observation
is. The most basic notion, which will be extended with other
information, is that in testing we observe sequences of actions
from a certain set A. As usual, we let A∗ (resp. Aω) be the set of
finite (resp. infinite) sequences of elements belonging to A. We
let ϵ ∈ A∗ denote the empty sequence.

The most basic formalism that we will use in this paper is
able to appropriately represent sequences of actions but still
does not include information concerning time, probabilities and
refusals. We will use a classical Labelled Transition System (LTS).
As explained in Section 1, LTSs provide the semantics for several
different notations used to represent robotic software and are
suitable for describing the types of cyclic software considered in
this paper.

Definition 1 (LTS). An LTS is a tuple p = (Q , q0, L, T) where

• Q is a countable, non-empty set of states;

• q0 ∈ Q is the initial state;

• L is a countable set of visible actions;
• T ⊆ Q × L × Q is the transition relation.

The LTS is initially in state q0, which can be seen as the
situation in which the software has just been switched on and
has yet to perform any computations. When the robotic soft-
ware performs actions, the internal state may change, and this
is represented by changing the state of the LTS. Formally, if the
LTS is in a state q ∈ Q and receives an action a such that
(q, a, q′) ∈ T , for a certain state q′ ∈ Q , then it can move
to state q′ through a. For example, consider the model given in
Fig. 1(c) and let us omit, for now, the probabilities labelling the
edges. When the modelled mail delivery robot is switched on,
it is in its initial state s0. After some actions, including charging
and moving between rooms, suppose that it is in state j2. In
this situation, the modelled robot is in room 2 and can move
to room 1, performing the transition (j2,move, q1), stay in room
2, performing the transition (j2,move, q2), or move to room 3,
performing the transition (j2,move, q1).

Next we introduce some notation concerning transitions and
their composition to form sequences.

Definition 2. Let p = (Q , q0, L, T) be an LTS, q, q′ ∈ Q be states
of p, P ⊆ Q be a set of states, a, a1, . . . , an ∈ L, with n > 1, be
actions and σ ∈ L∗ be a sequence of actions.

q
a
−→ q′ ⇔def (q, a, q′) ∈ T

q ̸
a
−→⇔def ̸ ∃q′ ∈ Q : (q, a, q′) ∈ T

q
ϵ

HH⇒ q′ ⇔def q = q′

q
a1...an

HHHH⇒ q′ ⇔def ∃q1, . . . , qn−1 ∈ Q : q
a1

−−→ q1 . . . qn−1
an

−−→ q′

q
σ

HH⇒⇔def ∃q′ ∈ Q : q
σ

HH⇒ q′

P
σ

HH⇒⇔def ∃r ∈ P : r
σ

HH⇒

q ̸
σ

HH⇒⇔def ̸ ∃q′ ∈ Q : q
σ

HH⇒ q′

P ̸
σ

HH⇒⇔def ∀r ∈ P : r ̸
σ

HH⇒

p
σ

HH⇒⇔def qo
σ

HH⇒

We define the language of p, denoted by L(p), as the set of

(finite) sequences of actions {σ ∈ L∗|q0
σ

HH⇒}.

As usual, the language of an LTS p is the set of (finite) se-
quences of actions that take p from its initial state to another
state of the LTS. In other words, we collect all the sequences of
actions that the modelled robotic software is allowed to perform.
For example, if we consider again the model given in Fig. 1(c) and
omit probabilistic information, one of the allowed behaviours cor-
responds to the charge notFull charge ready fetch move sequence,
meaning that the robot is charging, while it is not full, it continues
charging; then it is full and ready to work, it receives a fetch mail
request and moves to another room.

3.3. Probabilistic-timed models

Once we have the basic formalism, we go one step forward to
include time and probabilistic information. First, we would like to
split the set of actions appearing in a model into two sets: inputs
and outputs. Throughout the paper, I and O will represent the
(disjoint) input and output alphabets of the considered systems
and, therefore, we will have L = I ∪ O.

Next, we discuss how time is added. In this paper we use
discrete time and there are four main reasons for this. First,
we focus on testing the software part of a robotic system. If
we were testing the whole integrated robotic system (software
and hardware), then we would need to model and test a cyber–
physical system. In this case, it would be more appropriate to use
continuous time and apply a variant, including probabilities and
refusals, of one of the available hybrid conformance relations [40–
43]. Second, the types of models used in robotics, and more
generally embedded systems, are typically cyclic and have a step-
semantics: a sequence of computations occur within a step, then
time progresses, and a new cycle (step) occurs. Statecharts [44,45]
provide a particularly popular language for such models. Third,
simulators used in robotics also typically operate in such a step-
based manner. Finally, we needed an approach that is consistent
with the probabilistic extensions of the RoboChart language that
has been devised to support the development of robotic sys-
tems [15]. Therefore, we use time that discretely evolves and we
will use a special symbol, ⊖, to denote the passing of a unit of
time. In order to be consistent with (tock-)CSP [20, Chapter 14]
we also call this action ‘tock’.

There are several approaches to define formalisms including
probabilistic information [46,47]. The main distinguishing point is
related to how probabilities are associated with actions. A reactive
approach [48,49] considers that, for each state, the probabilities

5

M. Núñez, R.M. Hierons and R. Lefticaru Robotics and Autonomous Systems 165 (2023) 104426

Fig. 2. Alternating reactive/generative models.

associated with a specific action add up to 1. The idea is that a sys-
tem receives a certain action and probabilistically chooses, among
the transitions labelled by this action, which one is selected.
In a generative [48] approach we have that all the probabilities
associated with the actions that can be performed at a certain
state add up to 1. The idea is that a system probabilistically
chooses which action, among all the available possibilities, to
perform.

We have defined our formalism with two objectives in mind.
First, we would like to consider the most widely used approach
where there is a distinction between inputs and outputs: a com-
bined reactive/generative view.

• Probabilities associated with inputs are reactive. Specifically,
given a state s and an input ?i, if one or more transitions
from s have input ?i then there is a probability distribution
over all the transitions from s with input ?i. A graphical
example of this is state q0 in Fig. 2, where probabilities equal
to 1 are omitted.

• Probabilities associated with outputs are generative. Specif-
ically, given state s from which there are transitions with
outputs, there is a probability distribution over all the tran-
sitions from s that are labelled with an output. A graphical
example of this is state q1 in Fig. 2.

The second objective is to provide a formalism that is consis-
tent with recent work that has defined a probabilistic extension
of RoboChart [15]. In this work, there are states and junctions,
with states and junctions alternating: every transition from a
junction goes to a state and every transition from a state goes
to a junction. Transitions leaving junctions are assigned probabil-
ities and those leaving states have no probabilities. Transitions
from junctions represent system actions/computations and so
the use of probabilities on these transitions makes it possible
to represent probabilistic algorithms. Since we have both inputs
and outputs, probabilistic junctions can be simulated by states
where all the outgoing transitions are labelled by an output.
In addition, RoboChart ‘states’ can be simulated by states from
which all the outgoing transitions are labelled by inputs. We also
have to ensure that transitions departing a probabilistic junction
cannot reach another probabilistic junction. Note that a reactive

Fig. 3. Model without probabilistic choices between inputs.

choice can be easily transformed into a choice between inputs

by translating the corresponding probabilities to the subsequent

outputs. For example, the two models depicted in Figs. 2 (top)

and 3 are semantically equivalent under all the notions used in

this paper.

In conclusion, we consider a version of Probabilistic Input–

Output Transition Systems [34,35] (PIOTSs) where we impose a

separation between inputs and outputs and have an alternation

between inputs and outputs in the sense that transitions labelled

by inputs (resp. outputs) cannot reach a state where inputs (resp.

outputs) are available. As we mentioned before, in order to extend

our previous work and provide the formalism with the capability

to represent time, we have added ⊖ as an action denoting the

passage of one time unit.

Definition 3 (ptockLTS). A probabilistic labelled transition system

with tock (or ptockLTS) is a tuple p = (Q , q0, I,O, T) where

• Q is a countable, non-empty set of states;

• q0 ∈ Q is the initial state;

• I and O are countable disjoint sets of inputs and outputs

respectively, with L = I ∪ O being the set of actions;

• T ⊆ Q × ({⊖} ∪ (L × (0, 1])) × Q is the transition relation,

where ⊖ denotes that one unit of time passes.

Transitions belonging to T must also satisfy the following:

• p has urgent outputs, that is, for all q ∈ Q and !o ∈ O, if

(q, (!o, π), q′) ∈ T then there does not exist q′′ ∈ Q such

that (q,⊖, q′′) ∈ T .

• p is time deterministic, that is, for all q1, q2, q3 ∈ Q we have

that (q1,⊖, q2) ∈ T and (q1,⊖, q3) ∈ T implies q2 = q3.

• p is reactive for inputs, that is, for all q ∈ Q and ?i ∈ I if

(q, (?i, π), r) ∈ T then
∑

{| π ′|∃q′ ∈ Q : (q, (?i, π ′), q′) ∈ T |} = 1

where {| and |} are multiset delimiters.

• p is generative for outputs, that is, for all q ∈ Q and !o ∈ O if

(q, (!o, π), r) ∈ T then
∑

{| π ′|∃q′ ∈ Q , !o′ ∈ O : (q, (!o′, π ′), q′) ∈ T |} = 1

• p has a separation between inputs and outputs, that is, for all

q ∈ Q if there exist π ∈ (0, 1], r ∈ Q and ?i ∈ I (resp. !o ∈ O)

such that (q, (?i, π), r) ∈ T (resp. (q, (!o, π), r) ∈ T), then

there do not exist π ′ ∈ (0, 1], q′ ∈ Q and !o ∈ O (resp. ?i ∈ I)

such that (q, (!o, π ′), q′) ∈ T (resp. (q, (?i, π ′), q′) ∈ T). If all

the probabilistic transitions departing from a state q ∈ Q

are labelled by inputs, then we will say that q is an input

state; otherwise, we will say that q is an output state. Note

that, due to urgency, a state having only a unique transition

labelled by ⊖ is an input state.

6

M. Núñez, R.M. Hierons and R. Lefticaru Robotics and Autonomous Systems 165 (2023) 104426

• p is alternating, that is, for all q ∈ Q if there exist π ∈ (0, 1],
r ∈ Q and ?i ∈ I (resp. !o ∈ O) such that (q, (?i, π), r) ∈ T
(resp. (q, (!o, π), r) ∈ T), then there do not exist π ′ ∈ (0, 1],
q′ ∈ Q and ?i′ ∈ I (resp. !o′ ∈ O) such that (r, (?i′, π ′), q′) ∈
T (resp. (r, (!o′, π ′), q′) ∈ T).

• p does not have redundant transitions, that is, for all q, q′ ∈ Q
there do not exist π1, π2 ∈ (0, 1], π1 ̸= π2, and a ∈ L such
that (q, (a, π1), q

′) ∈ T and (q, (a, π2), q
′) ∈ T .

• The initial state of p is an input state, that is, for all (q0, (a, π),
q) ∈ T we have that a ∈ I . Note that q0 may have a transition
labelled by ⊖.

We denote by pTockLTS(I,O) the set of ptockLTSs having I as
input set and O as output set.

Let us comment on the restrictions associated with transitions
of a ptockLTS. First, urgency of outputs is usually required to
guarantee consistency with the normal behaviour of cyclic sys-
tems. Second, time determinism implies that a ptockLTS cannot
branch as the result of time passing (that is, by performing a
transition labelled by ⊖). As explained before, we combine a
reactive model for inputs with a generative model for outputs
and we do not allow mixed states: given a state, either all the
available probabilistic actions are inputs or all the available prob-
abilistic actions are outputs. We also want that our models are
alternating: transitions labelled by an input (resp. output) cannot
reach a state where an input (resp. output) is available. The
lack of redundant transitions helps us to simplify subsequent
computations involving probabilities: if we had two transitions
with the same action and initial and final states, we could simply
add the probabilities and consider a single transition. Finally, for
compatibility with previous work, we require that the initial state
is an input state. Note that we do not have any restriction on
the states reached after the performance of a tock: it must depart
from an input state but it can reach either an input or an output
state.

Example 2. In Fig. 4 we present a ptockLTS corresponding to the
state machine described in Example 1. Let probot = (Q , s0, I,O, T)
denote this ptockLTS, with this having state set Q = {s0, q0 −
q3, j0 − j3, c0, c−,−, j−,−}, initial state s0, action sets I = {?c, ?f }
and O = {!m, !n, !r, !s}. Essentially, the events that trigger transi-
tions in Fig. 1 are transformed into input symbols (?f stands for
fetch, ?c stands for charge) while responses are transformed
into output symbols (!m stands for move, !s means stay in the
same office, !r stands for ready, meaning battery is full and
!n stands for battery notFull). The states q0 − q3 show the
current office (0 − 3) where the robot is located; in case the
robot receives an ?f input (for fetch), the next office will be
probabilistically chosen. The states j0 − j3 are junctions and a
state labelled jk,l shows it will move from office k to office l.
Moreover, the model has ⊖ actions to simulate the passing of time
(e.g. moving from one room to another or charging the battery
takes time). In addition, to show the passing of time while no
input is provided, self loops with ⊖ actions are added in states
s0, q0 −q3. Since ptockLTS models have urgent outputs, ⊖ actions
cannot occur in the output states. Also, probot satisfies the other
ptockLTS properties: it has time determinism, it is reactive for
inputs and generative for outputs. The model has a separation
between input and output states. In the graphical representation
given in Fig. 4 we use two colours2 to denote these states: light
blue for input states and green for output states. For example,
some input states are s0, q0 and j0,1 while some output states are
c0, j0 and j1. It can be easily checked that probot is alternating and
it does not have redundant transitions.

2 Since this model is more involved, we use colours to distinguish between

types of states. In the rest of the models depicted in the paper we use a single

colour for all the states.

The original RoboChart model [15] that served as inspiration
for Examples 1 and 2 is more complex: it has three state machines
to model movement control, battery and task management, the
first one inspiring our running example. We simplified the move-
ment control model, in order to make it more readable, in several
ways. We used a smaller office map, with 4 offices instead of the
9 in the original specification. In addition, a RoboChart model can
include variables, constants, triggers, transitions with guards and
other actions associated that are not captured in our ptockLTS
formalism. For example, there are variables for the battery level,
with transitions in the original model expressing how the battery
is charging or how its level is decreased when the robot is mov-
ing. These are simplified in our ptockLTS model: we essentially
say that a battery is empty or full. This battery level/status is
represented through the state structure rather than the use of a
variable; we have essentially expanded out the values for a vari-
able that represents the battery status. Since all the variables used
in the original RoboChart model have discrete values, from finite
sets, one could just expand out the state space and eliminate all
of the variables and data types, leading to a larger model but with
no variables.

Although we use a simpler model to help with the exposition,
the work we describe would apply to more complex models: one
could again expand out the values variables or abstract out their
values where appropriate. The resultant state machine would
have no variables or guards and one could then generate (ab-
stract) test cases based on the ptockLTS model. Note that if the
values of some variables have been abstracted, then the resultant
test cases need to be mapped to concrete test cases for either the
testing of the SUT in simulation or the testing of the deployed
system. Typically, this is achieved by building an adapter or it
may be possible to use, for example, a model-checker [50,51] or
a search-based testing technique [52].

We can adapt Definition 2 in the expected way (i.e. probabili-
ties are included) to the new model. Therefore, we do not repeat

the definition of ‘double arrows’ such as q
σ

HH⇒ q′ or q ̸
σ

HH⇒.

We do need, however, to define a notion of trace in the new
model where probabilities are taken into account. In particular, a
sequence of actions can be performed several times (via different
states) and, therefore, we have to add these probabilities.

Definition 4 (Traces). Let p = (Q , q0, I,O, T) be a ptockLTS, q ∈ Q
be a state and σ ∈ (I ∪ O ∪ {⊖})∗ be a sequence of input,
output and tock actions. We let prob(q, σ) denote the probability
of performing the sequence σ from state q. Formally,

prob(q, σ) =
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 if σ = ϵ

prob(q′, σ ′) if σ = ⊖σ ′∧

(q,⊖, q′) ∈ T
∑

{| π · prob(q′, σ ′)|(q, (a, π), q′) ∈ T |} if σ = aσ ′ ∧ a ∈ I ∪ O

The set of timed traces of p is defined as

traces(p) = {σ ∈ (I ∪ O ∪ {⊖})∗ | prob(q0, σ) > 0}

The set of probabilistic-timed traces of p is defined as

Ptraces(p) = {(σ , prob(q0, σ)) | σ ∈ (I ∪ O ∪ {⊖})∗}

We define two languages for a ptockLTS. First, timed traces
simply forget the probability with which the trace can be per-
formed as long as it is positive. This set is a conservative extension
of our previous work [14] where probabilities were not involved.
In the second notion, probabilistic-timed traces, a trace is a pair
(sequence of actions, probability of performing the sequence).
Note that if σ /∈ traces(p) then we have (σ , 0) ∈ Ptraces(p).

7

M. Núñez, R.M. Hierons and R. Lefticaru Robotics and Autonomous Systems 165 (2023) 104426

Fig. 4. ptockLTS mailing robot model. (For interpretation of the colours in this figure, the reader is referred to Example 2).

Next, we introduce additional notation to compute the set of
states that can be reached after performing a given sequence of
actions. Note that probabilities are abstracted when defining this
concept.

Definition 5. Let p = (Q , q0, I,O, T) be a ptockLTS, q ∈ Q be a
state, P ⊆ Q be a set of states and σ ∈ (I∪O∪{⊖})∗ be a sequence
of actions. We define the following notions:

1. q after σ =def {q′ ∈ Q | q
σ

HH⇒ q′}

2. P after σ =def

⋃

{q after σ | q ∈ P}.

Finally, we would like to impose two additional restrictions on
the ptockLTSs that we are going to use. First, they must allow time
to progress. Technically, for each state of p, it must be possible to
perform a sequence of inputs and outputs that leads to a state
where ⊖ is available. Second, we do not allow ptockLTSs to show
Zeno behaviour, that is, it is not possible to perform an infinite
sequence of actions in finite time. Note that, again, probabilities
are not taken into account when defining these properties.

Definition 6 (Time Progressing and Zeno Behaviour). Let p =

(Q , q0, I,O, T) be a ptockLTS. We say that p is time progressing

if for all q ∈ Q there exists σ ∈ (I ∪ O)∗ such that q
σ⊖
HH⇒. We

say that p has Zeno behaviour if there exists a state q ∈ Q and an
infinite path from q with finitely many tock actions.

Example 3. Consider again the model given in Fig. 4. We
illustrate now some of the concepts previously defined on probot .
For example, if σ =?c!r⊖?f !m⊖, then the following set can be
computed s0 after σ = {q1, q3} and we can say that σ is a
trace, that is, σ ∈ traces(probot). Moreover, after computing the

associated probability of the trace, prob(s0, σ) = 1 · 1
3

· 1 · 1 ·
(

1
3

· 1 + 1
3

· 1
)

= 2
9
, it results that (σ , 2

9
) ∈ Ptraces(probot).

Considering ⊖ actions, note that they are allowed in all input
states of this model, thus ensuring time progression. If probot
would not have, for example, state c0,S and instead of the two
transitions (c0, (!n,

2
3
), c0,S) and (c0,S,⊖, s0) it would only have

had one transition (c0, (!n,
2
3
), s0), then the model would exhibit

Zeno behaviour, given an infinite path (?c·!n)ω that has a finite
number of ⊖ actions (more precisely, 0).

It is easy to prove, taking into account the two previous
restrictions imposed on ptockLTSs, that they fulfil the following
property. This property explicitly states that a time progressing
ptockLTS cannot stop time.

Proposition 1. Let p = (Q , q0, I,O, T) be a ptockLTS. For all q ∈ Q
there exists an infinite path σ = µ1 ⊖ µ2 ⊖ µ3 . . . ∈ ((I ∪ O)∗{⊖})ω

such that q
σ
H⇒ and for all i we have that µi ∈ (I ∪ O)∗.

This paper concerns the definition of implementation relations
that define what it means for an SUT to be a correct imple-
mentation of a specification. In order to be able to formalise
implementation relations, one needs to assume that the SUT can
be represented by a model and it is normal to assume that this
model (of the SUT) is one that can be expressed using the formal-
isation being used (the minimum hypothesis [53]). As previously
noted, the formalism allows one to model the reading of values
of sensors (represented as inputs) and the sending of values to
actuators (represented as outputs). The formalism also has the
cyclic step-based structure used in robotic software and also
simulations. We assume that the behaviour of the SUT can be
represented using the same formalism as the specification, and
so the paper makes the following assumptions.

8

M. Núñez, R.M. Hierons and R. Lefticaru Robotics and Autonomous Systems 165 (2023) 104426

1. The specification is a ptockLTS q.

2. The behaviour of the SUT can be represented by an un-
known ptockLTS p that has the same sets of inputs and
outputs as q.

3. Both p and q are time progressing and do not have Zeno
behaviour.

3.4. Including refusals

Finally, we will extend our formalism to consider refusals.
Intuitively, a model can refuse a set of actions at a certain state if
none of these actions is immediately available. However, we need
to impose certain restrictions on when a model can refuse actions.
The underlying step semantics leads to models that perform a
(possibly empty) sequence of actions and then a time unit elapses,
that is, a tock action is performed. In order to effectively observe
the refusal of a set X , we need the tester to offer the SUT only the
actions in X and then observe a deadlock. In testing, deadlocks are
usually observed through a timeout. As a result, the observation
of a refusal takes time and so we only allow a refusal to be
observed immediately before time has passed, that is, before the
performance of a tock action.

An immediate consequence of this situation is that refusals can
only be observed in input states because, due to the urgency of
output actions, tock actions are not available at output states. As
a result of this, whenever a refusal is observed the SUT must be
in a state where all outputs can be refused. The observation of
the refusal of a set of outputs thus provides no more information
than the refusal of the empty set; it simply implies stability. Thus,
we do not include outputs in refusal sets.

Example 4. Consider again the model given in Fig. 4. Refusals
are not observed in output states. For example, if the robot is in
state j0 then it will probabilistically choose whether to stay in
room 0 or move to rooms 1 or 3, but it will not be possible to
observe the refusal of a set of actions. However, if the robot is
in an input state, then it is possible to observe the robot being
in a state where it can refuse certain inputs. For example, if the
robot is in state q0 then the robot cannot refuse either a fetch or
a charge command. In contrast, if it is in state s0, then the robot
can refuse a fetch command. Note that refusing this (input) action
will not change the state of the robot.

Definition 7 (Refusal). Let p = (Q , q0, I,O, T) be a ptockLTS, with
L = I ∪ O, q ∈ Q be a state and X ⊆ I be a set of inputs. We

say that q refuses X , denoted by q
R(X)
−−→ q, if the following two

conditions hold:

1. q
⊖
−→ and

2. for all a ∈ X we have that q ̸
a
−→ .

We use R(X) to denote the refusal of set X and R(L) to denote
the set of all possible refusals, that is, the set {R(X)|X ⊆ I}.

Note that the previous definition implicitly extends the set of
transitions of a ptockLTS with the appropriate self-loop transi-
tions labelled by refusals.

It is worth noting that this notion of refusals does not consider
only maximal sets of refusals: it may happen that we have both

q
R(X)
−−→ q and q

R(Y)
−−→ q even if Y ⊂ X . Indeed, refusals are

downwardly closed: if q
R(X)
−−→ q and Y ⊆ X then we must have

that q
R(Y)
−−→ q. When we define implementation relations that use

refusals it will be clearer why restricting ourselves to maximal
refusals would lead to some undesired results.

Finally, we can extend the definition of trace: a sequence of
inputs and outputs, possible interspersed with ⊖ actions, with

occurrences of refusals as long as these occurrences are followed
by a ⊖ action. In addition, since the observation of a refusal takes
time, we will impose the requirement that a trace cannot end
with a refusal; it can end with the subsequent ⊖ action. Therefore,
in contrast with usual sets of traces, this set is not prefix closed.
Note that similar to the notion of probabilistic trace given in
Definition 4 we allow traces having probability equal to 0 of being
performed.

Definition 8 (Probabilistic Timed Refusal Traces). Let p =

(Q , q0, I,O, T) be a ptockLTS, with L = I∪O. The set of probabilistic
timed refusal traces of p is defined as

PRtraces(p) = {(σ , prob(q0, σ)) | σ ∈ (L ∪ {⊖} ∪ (R(I){⊖}))∗}

Example 5. Let us consider probot given in Fig. 4. We can add
refusals as self-loops in all input states since all of them have

an outgoing transition labelled by ⊖. For example, s0
R({?f })
−−−−→ s0,

q0
R(∅)
−−→ q1, q3

R({?c})
−−−−→ q3 and j0,0

R(I)
−−→ j0,0 among others.

The following sequences are timed refusal traces of probot :
σ1 =?c!r⊖?f !m ⊖ R({?c})⊖
σ2 = R({?f })⊖?c!n⊖?c!r⊖?f !s⊖
Finally, we can easily compute the associated probabilistic

timed refusal traces: (σ1,
2
9
), (σ2,

2
27
) ∈ PRtraces(probot).

4. Implementation relations based on traces

If the environment can only observe traces of visible actions
and time (i.e. it cannot observe refusals) then we have a number
of associated implementation relations. We start with the sim-
plest of these, which only requires that every behaviour (trace)
of the SUT is also a trace of the specification. It therefore does
not consider probabilities.

Definition 9. Let p and q be two ptockLTSs. We say that p con-
forms to q under timed trace inclusion if and only if traces(p) ⊆

traces(q). We denote this p ⪯ q.

The following property is immediate from Definition 9.

Proposition 2. The timed trace inclusion relation is reflexive and
transitive but need not be symmetric or anti-symmetric.

Timed trace inclusion is a natural notion of correctness if a
specification or model is being used to define the set of allowed
behaviours (timed traces) of a system. However, this notion of
correctness can be too restrictive and to see this, consider the
situation in which no behaviour of the specification includes a
particular input ?i after a trace σ : σ is a trace of the specification
but σ?i is not a trace of the specification. Under timed trace inclu-
sion, if the SUT produces the timed trace σ , then it cannot follow
this by the input of ?i. Such a restriction, on ?i not being allowed
after σ , makes sense if an input being undefined in the specifica-
tion corresponds to that input not being allowed. This situation
might occur, for example, if there is a requirement that the field
or option corresponding to ?i does not appear on the interface
or a particular sensor has been turned off. However, sometimes
we have that ?i not being specified after σ corresponds to ‘do
not care’: all behaviours are allowed after σ?i. In such situations,
timed trace inclusion is not the right implementation relation.

As a result of the above observation, we define two additional
implementation relations. Both of these take the approach that
any behaviour is allowed if an unspecified input is received. They
differ, however, in when they consider an input ?i to not be
defined after a trace σ and are consistent with the (untimed)
implementation relations ioco and uioco [18].

9

M. Núñez, R.M. Hierons and R. Lefticaru Robotics and Autonomous Systems 165 (2023) 104426

Fig. 5. Models (un)related by variants of trace inclusion.

Under one approach, which corresponds to uioco, ?i is said to
be unspecified after σ if σ can take the specification to a state q
in which ?i is not defined. Where this is the case, any behaviour is
allowed if the SUT receives ?i after σ . The intuition is that, after
σ , the specification might have been in a state where ?i is not
defined and so any behaviour should then be allowed.

Definition 10. Let p and q be two ptockLTSs. We say that p ⪯u q
if and only if for all σ ∈ traces(p) either σ ∈ traces(q) or there
exists a prefix σ1?i of σ , with ?i ∈ I , such that σ1 ∈ traces(q)

and there is a state q1 such that q
σ1
H⇒ q1 and q1 ̸

?i
H⇒.

The following result is immediate from Definition 10.

Proposition 3. The relation ⪯u is reflexive but need not be sym-
metric or anti-symmetric.

It is interesting to note that, as the following example shows,
⪯u need not be transitive. This lack of transitivity is essentially
a result of not requiring that models are input-enabled. Since
we have an alternating model, input-enableness has a slightly
different meaning than the usual one: given a state of a system,
if the state is an input state then there are outgoing transitions
labelled by each input of the alphabet.

Example 6. Consider the three ptockLTSs p, q and r given in Fig. 5.
We have that p ⪯u q since q does not indicate what a correct
implementation (in this case, p) should do concerning ?i and the
subsequent behaviours. In addition, we have q ⪯u r because, in
particular, we have q ⪯ r . However, it is obvious that p ⪯u r does
not hold.

However, if we restrict ourselves to input-enabled models
then ⪯u is transitive.

Proposition 4. Let p, q, and r be input-enabled ptockLTSs. If p ⪯u q
and q ⪯u r then p ⪯u r.

Proof. Let σ be a trace of p. We will prove that σ must be a trace
of r . By Definition 10, since q is input-enabled, p ⪯u q, and σ is
a trace of p, we have that σ is also a trace of q. Similarly, since r
is input-enabled, q ⪯u r , and σ is a trace of q, we have that σ is
also a trace of r .

This shows that every trace of p is also a trace of r and it
immediately follows that p ⪯u r .

We can interpret the way in which ⪯u handles undefined in-
puts in terms of completing the specification so that all undefined
behaviours are included. Since we are comparing traces of the
specification and the SUT, we will remove probabilities in this
extended specification.

Definition 11. Let p = (Q , q0, I,O, T) be a ptockLTS. The
completion of p, denoted C(p), is the LTS (Q ∪ {qc}, q0, L

′, T ′) in
which qc ̸∈ Q is a fresh state, L′ = I∪O∪{⊖} and T ′ = T0∪T1∪T2
in which:

1. T0 = {(q, a, q′)|(q, (a, π), q′) ∈ T } ∪ {(q,⊖, q′) ∈ T }.

2. T1 = {(q, ?i, qc)|q ∈ Q∧?i ∈ I ∧ q ̸
?i
H⇒}

3. T2 = {(qc, a, qc)|a ∈ I ∪ O ∪ {⊖}}.

Note that the above defines an LTS whose set of actions is the
set of the inputs and outputs of the original ptockLTS and ⊖.

Example 7. For the ptockLTS model given in Fig. 4, we build
its completion LTS C(probot) by keeping all the states of probot and
adding a fresh new state qc . For every (probabilistic) transition in
the probot ptockLTS, we will have a corresponding transition in the
LTS C(probot), with the probability removed (T0 set). Then, for those
states that do not accept some inputs, T1 will include transitions
from these state to the new qc state, labelled with all these inputs.
For example, we will have (s0, ?f , qc), (q1, ?c, qc), (j0, ?c, qc),
(j0,0, ?f , qc) ∈ T1. Last, the new state qc has self-loops la-
belled with all the visible actions: (qc, a, qc) ∈ T2, where a ∈
{?c, ?f , !m, !n, !r, !s,⊖}.

Then we have the following result. The proof follows easily
from the fact that ⪯u extends ⪯ by accepting undefined be-
haviours. This is exactly the role of C(q) with respect to q: it
extends q with all potential behaviours after unspecified inputs.

Theorem 1. Given ptockLTS p and q with the same alphabets,
p ⪯u q if and only if traces(p) ⊆ L(C(q)).

Note that in the above we did not use ⪯ to compare p and
C(q) since the latter is an LTS and ⪯ relates ptockLTSs. Therefore,
we compared the set of traces of the original SUT and of the
completed specification.

As previously noted, the ⪯u implementation relation deals
with undefined inputs in a similar way to the (untimed) im-
plementation relation uioco. It is also similar to how undefined
inputs are considered in work on testing from a finite state
machine (see, for example, [54–57]). The implementation relation
ioco, however, takes a different approach that essentially says that
the response to input ?i after σ is defined in specification q if

there is some state q1, that can be reached through σ (q
σ
H⇒ q1)

and ?i is defined in q1. The following adapts timed trace inclusion
by following this approach.

Definition 12. Let p and q be two ptockLTSs. We say that p ⪯i q
if and only if for all σ ∈ traces(p) either σ ∈ traces(q) or there
exists a prefix σ1?i of σ , with ?i ∈ I , such that σ1 ∈ traces(q)

and for all q1 such that q
σ1
H⇒ q1 we have that q1 ̸

?i
H⇒.

We cannot represent ⪯i, using completion, in the way we did
with ⪯u, because completion adds behaviours not allowed under
⪯i. However, we can first convert the specification ptockLTS into
a deterministic version. This process will use an approach that
is similar to the classical transformation from non-deterministic
to deterministic finite automata [58]. Given ptockLTS q, we let
det(q) denote the determinised version; states of det(q) will be
sets of states of q reached by a common trace. The idea is that
all transitions departing from a given state and labelled by the
same action are unified. This goal is achieved by using the after

function introduced in Definition 5.

Definition 13. Let p = (Q , q0, I,O, T) be a ptockLTS. We write
det(p) to denote the LTS (P(Q), {q0}, L

′, T ′) in which L′ = I ∪O∪
{⊖} and (Q1, a,Q2) ∈ T ′ for Q1,Q2 ∈ P(Q) and a ∈ I ∪ O ∪ {⊖} if
and only if Q2 = Q1 after a.

Example 8. Let us consider the probot model given in Fig. 4.
We will provide a few states and transitions of its determinised
LTS. For the deterministic transitions, the construction is straight-
forward: probabilities disappear from the transitions and states

10

M. Núñez, R.M. Hierons and R. Lefticaru Robotics and Autonomous Systems 165 (2023) 104426

Fig. 6. ⪯u and ⪯i are not equivalent: p ⪯u q but p ̸⪯i q.

like s0 or c0 are replaced by singleton sets {s0} and {c0}, re-
spectively. Then, we have some sources of non-determinism.
For example, the two transitions labelled by !m, departing from
j0. The two states j0,1 and j0,3 will be replaced in det(probot)

by a new state {j0,1, j0,3}, and the transition {j0}
!m
−→{j0,1, j0,3}

will appear in det(probot). Further on, after computing the set

{j0,1, j0,3} after ⊖, we have the transition {j0,1, j0,3}
⊖
−→{q1, q3}.

Following the same approach we obtain, for example,

{j1, j3}
!m
−→{j1,0, j1,2, j3,0, j3,2}, then {j1,0, j1,2, j3,0, j3,2}

⊖
−→{q0, q2},

{q0, q2}
?f
−→{j0, j2} and {q0, q2}

?c
−→{c0}.

We obtain the following result. This follows by simply observ-
ing that in det(q), an input ?i is specified after σ if and only if

we have that q
σ

HH⇒ q1 for a state q1 such that q1
?i
−→.

Theorem 2. Given ptockLTS p and q with the same alphabets,
p ⪯i q if and only if traces(p) ⊆ L(C(det(q))).

Similar to Theorem 1, we did not use ⪯ to compare p and
C(det(q)) since the latter is an LTS and ⪯ relates ptockLTSs. Again,
we compared the set of traces of the original SUT and of the
extended specification but now we determinise the specification
before completing it.

It is important to note that the application of det(q) could lead
to states of the new LTS corresponding to infinite sets of states of
the original ptockLTS q. If this happens then we might not be able
to construct det(q), even using bounded approaches. In order to
overcome this problem, it is usually assumed that we work with
finitely-branching systems.

Definition 14. Let q = (Q , q0, I,O, T) be a ptockLTS. We say
that q is finitely-branching if for every state q1 ∈ Q and action
a ∈ I ∪ O ∪ {⊖} we have that q1 after a is finite.

The following result, whose proof follows easily by induction
on the length of the considered trace σ , says that the states of the
LTS det(q) that are reached by finite traces are finite.

Proposition 5. Let q be a ptockLTS, q1 a state of q, and σ ∈
traces(q) be a trace of q. If q is finitely-branching then q1 after σ

is finite.

The following result gives relationships between the imple-
mentation relations introduced in this section.

Theorem 3. Given ptockLTSs p = (Q , q0, I,O, T) and q =
(Q ′, q′

0, I,O, T ′):

1. If p ⪯ q then we also have both p ⪯u q and p ⪯i q.

2. Neither p ⪯u q nor p ⪯i q implies p ⪯ q.

3. If p ⪯i q then we also have p ⪯u q.

4. p ⪯u q does not imply p ⪯i q.

Proof. The first result is an immediate consequence of the
definitions of ⪯, ⪯u and ⪯i.

For the second result, let q given in Fig. 5 (centre) be a speci-
fication ptockLTS and p given in Fig. 5 be an SUT ptockLTS. First,
it is obvious that we have both p ⪯u q and p ⪯i q since under
these implementation relations, a valid implementation of q can
do anything after the input ?i1. However, p ⪯ q does not hold
because, for example, ?i1!o1 ∈ traces(p) but ?i1!o1 ̸∈ traces(q).

For the third result, note that p ⪯i q implies that given a
sequence σ ∈ traces(p), we have that either σ ∈ traces(q)
or there exists a prefix σ1?i of σ , with ?i ∈ I , such that σ1 ∈

traces(q) and for all q1 such that q
σ1
H⇒ q1 we have that q1 ̸

?i
−→.

Next, the second part of the previous condition implies that there
exists a prefix σ1?i of σ , with ?i ∈ I , such that σ1 ∈ traces(q)

and there is a state q1 such that q
σ1
HH⇒ q1 and q1 ̸

?i
−→ . This means

that σ is allowed under both p ⪯u q and p ⪯i q. Therefore, we
conclude with the desired result.

For the last part of the result, we have to find two ptockLTSs
p and q such that p ⪯u q but p ⪯i q does not hold. Consider the
ptockLTSs p and q depicted in Fig. 6. The only difference between
these processes is that they can perform different actions after
the sequence ?i1!o1?i1: p can perform !o1 and q can perform ⊖.
First, we have that p ⪯u q since the sequence ?i1!o1 can take q
to a state (q3) in which ?i1 is not specified. Therefore, using the
definition of ⪯u, all behaviours are allowed after ?i1!o1?i1. Second,
p ⪯i q does not hold because the sequence ?i1!o1 can take q to a
state (q2) in which ?i1 is specified and so, taking into account the
definition of the ⪯i implementation relation, the only behaviours
allowed after ?i1!o1?i1 are those that are traces of q.

Finally, we study the relationships between our first three
implementation relations if we do not have unspecified inputs.

Theorem 4. Let p = (Q , q0, I,O, T) and q = (Q ′, q′
0, I,O, T ′) be

ptockLTSs. If q is input-enabled then our implementation relations
relate the same ptockLTSs, that is, we have

p ⪯ q ⇐⇒ p ⪯u q ⇐⇒ p ⪯i q

The previous trace-based implementation relations where
probabilities have been abstracted are a simple way to relate
specifications and SUTs and have some nice properties. Moreover,
they can be alternatively characterised as inclusion of two sets
of traces: the one corresponding to the ptockLTS representing
the SUT and the one representing either the specification (for
⪯) or an LTS constructed from the specification (for ⪯u and ⪯i).
However, probabilities have been completely abstracted because
we use traces where the only relevant quantity is whether the
trace can be performed with probability greater than zero. In the
next section we study how the previous implementation relations
can be extended to consider additional probabilistic information.

5. Implementation relations with probabilities

In this section we assume that the environment can still only
observe traces of visible actions and time (i.e. it cannot observe
refusals yet) but we will take into account the probability with
which these traces can be performed. Our first implementation
relations follows the idea of trace containment: if a sequence is
a trace of the SUT then it must be a trace of the specification.
However, we have to appropriately deal with probabilities. Intu-
itively, we would like to allow valid SUTs to not perform some
traces of the specification but if the trace can be performed, then
it should do it with the specified probability or a higher proba-
bility. The idea is that the allowed options absorb the probability
associated with the missing options. For example, consider the

11

M. Núñez, R.M. Hierons and R. Lefticaru Robotics and Autonomous Systems 165 (2023) 104426

models depicted in Fig. 2. We have r ⪯ q and we would like that
this relation stays in the probabilistic case. Since r1 and r3 have
fewer outputs, respectively, than q1 and q3, the traces associated
with the available outputs will have a higher probability. This is
reflected in the following definition.

Definition 15. Let A, B be two sets of probabilistic traces. We
write A ≼ B if for all (σ , π) ∈ A we have that either π = 0 or
there exists (σ , π ′) ∈ B such that π ≥ π ′ > 0.

Let p and q be two ptockLTSs. We say that p conforms to q un-
der probabilistic timed trace inclusion if and only if Ptraces(p) ≼
Ptraces(q). We denote this p ⪯P q.

The proof of the following result is immediate from Defini-
tion 15.

Proposition 6. The probabilistic timed trace inclusion relation
⪯P is reflexive and transitive but need not be symmetric or anti-
symmetric.

Our next step is to adapt the ⪯u and ⪯i relations to the new
probabilistic setting. The role of these implementation relations
is to provide a satisfactory answer when there are unspecified
inputs in the specification, that is, when no behaviour of the spec-
ification includes a particular input ?i after a trace σ . In ⪯u we
considered that this is the case if σ can take the specification to a
state q in which ?i is not defined. Given a model p, a probabilistic
interpretation of this is that (σ , π), (σ?i, π ′) ∈ Ptraces(p), with

π > 0 and π > π ′.3 In particular, note that if p ̸
σ?i

HH⇒, then

this case is also covered because π ′ = 0, that is, (σ?i, 0) ∈

Ptraces(p). Intuitively, if we have π = π ′, then we can claim
that there are outgoing transitions labelled by ?i departing from
all the states that we reach after σ (note that we always have
π ≥ π ′). Therefore, if we have π > π ′, then we know that
in at least one of the states reached after σ we have that ?i is
unspecified. In the case of ⪯i we request that none of the states
reached after σ can perform ?i. In probabilistic terms we can say
that (σ , π), (σ?i, 0) ∈ Ptraces(p), with π > 0.

Definition 16. Let p and q be two ptockLTSs. We say that p ⪯u
P

q
if and only if for all (σ , π) ∈ Ptraces(p) with π > 0 either
(σ , π ′) ∈ Ptraces(q) with π ≥ π ′ > 0 or there exists a prefix
σ1?i of σ , with ?i ∈ I , such that (σ1, π1), (σ1?i1, π2) ∈ Ptraces(q)
with π1 > π2.

We say that p ⪯i
P

q if and only if for all (σ , π) ∈ Ptraces(p)
with π > 0 either (σ , π ′) ∈ Ptraces(q) with π ≥ π ′ >

0 or there exists a prefix σ1?i of σ , with ?i ∈ I , such that
(σ1, π1), (σ1?i1, 0) ∈ Ptraces(q) with π1 > 0.

We can adapt Theorem 3 to consider the new implementation
relations. The proof of the result follows in the same way and,
therefore, we omit it.

Theorem 5. Let p = (Q , q0, I,O, T) and q = (Q ′, q′
0, I,O, T ′) be

ptockLTSs. Then we have:

1. If p ⪯P q then we also have both p ⪯u
P

q and p ⪯i
P

q.

2. Neither p ⪯u
P

q nor p ⪯i
P

q implies p ⪯P q.

3. If p ⪯i
P

q then we also have p ⪯u
P

q.

4. p ⪯u
P

q does not imply p ⪯i
P

q.

We also adapt Theorem 4 to the probabilistic setting concern-
ing the case when specifications are input-enabled.

3 We could omit π > 0 because this is a consequence of π > π ′ , since

π ′ ≥ 0, but we prefer to explicitly mention it so that it is clear that p can

perform σ .

Theorem 6. Let p = (Q , q0, I,O, T) and q = (Q ′, q′
0, I,O, T ′) be

ptockLTSs. If q is input-enabled then the following three statements
are equivalent: p ⪯P q; p ⪯u

P
q; and p ⪯i

P
q.

We can now compare the implementation relations previously
defined with those introduced in Section 4. The proof of the
following result easily follows from the fact that in addition to the
relation between the traces of specification and SUT that we con-
sidered in Section 4, we now take into account the probabilities
with which traces are performed.

Proposition 7. Let p = (Q , q0, I,O, T) and q = (Q ′, q′
0, I,O, T ′) be

ptockLTSs. Then the following hold.

1. If p ⪯P q then p ⪯ q.

2. If p ⪯u
P

q then p ⪯u q.

3. If p ⪯i
P

q then p ⪯i q.

As expected, the converse of the previous result does not hold.

Proposition 8. Let I and O be countable disjoint sets of inputs and
outputs, respectively. There exist processes p, q ∈ pTockLTS(I,O)
such that:

1. p ⪯ q but p ⪯P q does not hold.

2. p ⪯u q but p ⪯u
P

q does not hold.

3. p ⪯i q but p ⪯i
P

q does not hold.

The previous probabilistic implementation relations allowed
an SUT to show less behaviours that the specification. In this
case, in particular if we have missing outputs, it makes sense
that the remaining options have a higher probability and this fact
motivates the definition of ⪯P and its two variants. However,
under some circumstances we require that all of the specified
outputs are possible and these must have the probabilities given
in the model. To see this, consider the running example. Here,
navigation is probabilistic and it is important that all moves that
are possible in the model are also possible in the SUT: otherwise a
valid implementation might choose to stay in a room indefinitely
or to cycle between only a few of the rooms. These considerations
lead to a new set of implementation relations.

Definition 17. Let A, B be two sets of probabilistic traces. We
write A ⊑ B if for all (σ , π) ∈ A we have that either π = 0 or
(σ , π) ∈ B.

Let p and q be two ptockLTSs. We say that p strictly con-
forms to q under probabilistic timed trace inclusion if and only if
Ptraces(p) ⊑ Ptraces(q). We denote this p ≲sP q.

The following result, whose proof is immediate from Defini-
tion 17, shows the main properties of the ≲sP implementation
relation.

Proposition 9. The strict probabilistic timed trace inclusion rela-
tion ≲sP is reflexive and transitive but need not be symmetric or
anti-symmetric.

Next, we can adapt Definition 16 to the new implementation
relation.

Definition 18. Let p and q be two ptockLTSs. We say that p ≲u
sP q

if and only if for all (σ , π) ∈ Ptraces(p) with π > 0 either
(σ , π) ∈ Ptraces(q) or there exists a prefix σ1?i of σ , with ?i ∈ I ,
such that (σ1, π1), (σ1?i1, π2) ∈ Ptraces(q) with π1 > π2.

We say that p ≲i
sP q if and only if for all (σ , π) ∈ Ptraces(p)

with π > 0 either (σ , π) ∈ Ptraces(q) or there exists a prefix
σ1?i of σ , with ?i ∈ I , such that (σ1, π1), (σ1?i1, 0) ∈ Ptraces(q)
with π1 > 0.

12

M. Núñez, R.M. Hierons and R. Lefticaru Robotics and Autonomous Systems 165 (2023) 104426

Fig. 7. Models related by probabilistic timed (refusal) trace inclusion.

The following result shows the relation between ⪯P and ≲sP

and their variants. The proof is trivial.

Proposition 10. Let p, q be ptockLTSs. We have that

1. p ≲sP q implies p ⪯P q but the converse might not hold.

2. p ≲u
sP q implies p ⪯u

P
q but the converse might not hold.

3. p ≲i
sP q implies p ⪯i

P
q but the converse might not hold.

Although the implementation relations defined in this section
appropriately take into account probabilistic information, it is
interesting to study whether we can strengthen them by allowing
refusals to be observed and obtain finer implementation relations.
The following example illustrates the type of behaviours that we
might try to distinguish.

Example 9. Let us consider the models given in Fig. 7. We have
that p and q are related under all the implementation relations
previously presented. In particular, they have the same proba-
bilistic timed traces. We have a similar situation for r and s in
Fig. 8. However, the intuitive behaviour of these pairs of processes
is different. On the one hand, we expect p and q to be related
in both directions of all the implementation relations presented
in this paper because outputs cannot be controlled by the envi-
ronment. In other words, a choice between outputs should work
exactly as the corresponding internal choice between inputs. For
example, even though !o1 and !o2 are simultaneously available at
p1, a user cannot choose which of them will be performed. On the
other hand, r and s should not be equivalent. The issue is that a
user of these systems should be able to choose between different
available inputs as is the case, for instance, in a vending machine.
However, the sets of available inputs differ depending on how
the internal choice appearing in states r1 and s1 is resolved. For
example, from r1 and after performing !o1, with probability 1

2
we will reach a state where neither ?i3 nor ?i4 are available,
while this situation has probability 0 if we start from s1. The
implementation relations that we present in the next section
address this issue.

6. Implementation relations with refusals and probabilities

Finally, we consider implementation relations where refusals
can be observed. We take as a starting point the implementation
relations defined in the previous section. First, we consider the
extension with refusals of ⪯P , the relation where we allowed the
SUT to exhibit a subset of the behaviours of the specification.

Definition 19. Let p and q be two ptockLTSs. We say that
p conforms to q under probabilistic timed refusal trace inclusion
if and only if PRtraces(p) ≼ PRtraces(q). We denote this
p ⪯PR q.

Observe that the above provides the natural extension of
Definition 15, produced by moving from Ptraces(p) to
PRtraces(p).

We now compare models with variants of the classical set
inclusion operator. Since we can only ‘lose’ traces by ‘losing’
inputs and the refusal of inputs is observable in a state where

Fig. 8. Models unrelated by probabilistic timed refusal trace inclusion.

tock is available, one might ask whether it is possible to have
PRtraces(p) ⊆ PRtraces(q) but not PRtraces(p) =

PRtraces(q). In other words, can we defined two models p
and q such that PRtraces(p) ⊂ PRtraces(q)? The answer is
positive. Consider s and t given in Fig. 8. We have PRtraces(s) ⊂

PRtraces(t). Although these two processes have the same prob-
abilistic timed traces, there is an important distinction concerning
refusals. Specifically, we can refuse any non-empty set of inputs
at state t3 while this is not the case if we consider the sets that
can be refused at s2 and s3.

We now examine this implementation relation before consid-
ering alternatives that treat unspecified inputs in different ways.

13

M. Núñez, R.M. Hierons and R. Lefticaru Robotics and Autonomous Systems 165 (2023) 104426

First, we present an example showing some relations between

models. As part of this, we see why one cannot define a suitable

implementation relation in terms of the maximal refusals.

Example 10. Consider again the models p and q given in

Fig. 7. We cannot add refusals to traces in states p1, q1 and q3
because they are not stable. Therefore, we have PRtraces(p) =

PRtraces(q) and this implies p ⪯PR q and q ⪯PR p.

Consider now r , s and t given in Fig. 8. We have that these

three processes have the same probabilistic timed traces. There-

fore, they are equivalent under all the implementation relations

defined in Sections 4 and 5. Assuming that I = {?i1, ?i2, ?i3, ?i4}

and O = {!o1}, we have the following sets4 of probabilistic timed

refusal traces:

PRtraces(r) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(?i1!o1⊖, 1),

(?i1!o1R(∅)⊖, 1),

(?i1!o1R({?i1})⊖, 1
2
),

(?i1!o1R({?i2})⊖, 1
2
),

(?i1!o1R({?i1, ?i2})⊖, 1
2
),

. . .

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

PRtraces(s) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(?i1!o1⊖, 1),

(?i1!o1R(∅)⊖, 1),

(?i1!o1R({?i1})⊖, 1
2
),

(?i1!o1R({?i3})⊖, 1
2
),

(?i1!o1R({?i1, ?i3})⊖, 1
2
),

. . .

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

PRtraces(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(?i1!o1⊖, 1),

(?i1!o1R(∅)⊖, 1),

(?i1!o1R({?i1})⊖, 1
2
),

(?i1!o1R({?i2})⊖, 1
2
),

(?i1!o1R({?i1, ?i2})⊖, 1
2
),

(?i1!o1R({?i1})⊖, 1
2
),

(?i1!o1R({?i3})⊖, 1
2
),

(?i1!o1R({?i1, ?i3})⊖, 1
2
),

(?i1!o1R({?i1, ?i2, ?i3})⊖, 1
2
),

(?i1!o1R({?i1, ?i2, ?i4})⊖, 1
2
),

. . .

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

It is easy to check that we have neither r ⪯PR s nor s ⪯PR r .

We have PRtraces(r) ⊆ PRtraces(t), so that r ⪯PR t but the

converse is not the case. For example, (?i1!o1R({?i1, ?i3})⊖, 1
2
) ∈

PRtraces(t) but we have (?i1!o1R({?i1, ?i3})⊖, 0) ∈

PRtraces(r). Therefore, PRtraces(t) ≼ PRtraces(r) does not

hold and we conclude that t ⪯PR r does not hold. Similarly, we

have PRtraces(s) ⊆ PRtraces(t) bu t ⪯PR s does not hold.

We can use r and t to show why we cannot restrict ourselves

to only computing the maximal refusal sets. If we were to do this,

the timed probabilistic refusal traces of r would be
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(?i1!o1⊖, 1),

(?i1!o1R({?i1, ?i2})⊖, 1
2
),

(?i1!o1R({?i3, ?i4})⊖, 1
2
),

. . .

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

4 We only enumerate the relevant elements to show the differences between

the models.

but the ones corresponding to t would be
⎧

⎨

⎩

(?i1!o1⊖, 1),

(?i1!o1R({?i1, ?i2, ?i3, ?i4})⊖, 1
2
),

. . .

⎫

⎬

⎭

and we would no longer have the ≼ relation between the traces
of r and the ones of t .

The proof of the following result is immediate from Defini-
tion 19.

Proposition 11. The probabilistic timed trace inclusion relation
⪯PR is reflexive and transitive but need not be symmetric or anti-
symmetric.

Next, we present the adaptions of the implementation rela-
tions introduced in Definition 16.

Definition 20. Let p and q be two ptockLTSs. We say that
p ⪯u

PR
q if and only if for all (σ , π) ∈ PRtraces(p) with π > 0

either (σ , π ′) ∈ PRtraces(q) with π ≥ π ′ > 0 or there exists
a prefix σ1?i of σ , with ?i ∈ I , such that (σ1, π1), (σ1?i1, π2) ∈

PRtraces(q) with π1 > π2.
We say that p ⪯i

PR
q if and only if for all (σ , π) ∈

PRtraces(p) with π > 0 either (σ , π ′) ∈ PRtraces(q) with
π ≥ π ′ > 0 or there exists a prefix σ1?i of σ , with ?i ∈ I , such
that (σ1, π1), (σ1?i1, 0) ∈ PRtraces(q) with π1 > 0.

We can adapt Theorem 5 to consider these last three imple-
mentation relations. The proof of the result follows in the same
way as the one corresponding to Theorem 3.

Theorem 7. Let p = (Q , q0, I,O, T) and q = (Q ′, q′
0, I,O, T ′) be

ptockLTSs. Then we have:

1. If p ⪯PR q then we also have both p ⪯u
PR

q and p ⪯i
PR

q.

2. Neither p ⪯u
PR

q nor p ⪯i
PR

q implies p ⪯PR q.

3. If p ⪯i
PR

q then we also have p ⪯u
PR

q.

4. p ⪯u
PR

q does not imply p ⪯i
PR

q.

We also adapt Theorem 6 to the new setting where refusals
are taken into account.

Theorem 8. Let p = (Q , q0, I,O, T) and q = (Q ′, q′
0, I,O, T ′) be

ptockLTSs. If q is input-enabled then the following three statements
are equivalent: p ⪯PR q; p ⪯u

PR
q; and p ⪯i

PR
q.

We can now compare the implementation relations previ-
ously defined with those introduced in Section 5. The proof
of the following result easily follows from the fact that if we
have PRtraces(p) ⊆ PRtraces(q) and remove those traces
with occurrences of refusals we trivially have Ptraces(p) ⊆

Ptraces(q).

Proposition 12. Let p = (Q , q0, I,O, T) and q = (Q ′, q′
0, I,O, T ′)

be ptockLTSs. Then the following hold.

1. If p ⪯PR q then p ⪯P q.

2. If p ⪯u
PR

q then p ⪯u
P

q.

3. If p ⪯i
PR

q then p ⪯i
P

q.

As expected, the converse of the previous result does not hold.

Proposition 13. There exist ptockLTSs p and q such that:

1. p ⪯P q but p ⪯PR q does not hold.

2. p ⪯u
P

q but p ⪯u
PR

q does not hold.

3. p ⪯i
P

q but p ⪯i
PR

q does not hold.

14

M. Núñez, R.M. Hierons and R. Lefticaru Robotics and Autonomous Systems 165 (2023) 104426

Proof. In order to prove this it is sufficient to give an example of
such ptockLTSs. Consider r and s depicted in Fig. 8. It is obvious
that Ptraces(r) = Ptraces(s). Therefore, s ⪯P r . However,
as explained in Example 10, we do not have s ⪯PR r . Similarly,
s ⪯u

P
r but s ⪯u

PR
r does not hold and s ⪯i

P
r but s ⪯i

PR
r does

not hold.

The combination of Propositions 12 and 13 show that if we
can observe refusals then we have more powerful implementa-
tion relations than the ones we obtain when we only consider
probabilistic timed traces.

Finally, we present adaptions of Definitions 17 and 18 to
include refusals.

Definition 21. Let p and q be two ptockLTSs. We say that
p strictly conforms to q under probabilistic timed refusal trace
inclusion if and only if PRtraces(p) ⊑ PRtraces(q). We denote
this p ≲sPR q.

We write p ≲u
sPR

q if and only if for all (σ , π) ∈ PRtraces(p)
with π > 0 either (σ , π) ∈ PRtraces(q) or there exists a
prefix σ1?i of σ , with ?i ∈ I , such that (σ1, π1), (σ1?i1, π2) ∈
PRtraces(q) with π1 > π2.

We write p ≲i
sPR

q if and only if for all (σ , π) ∈ PRtraces(p)
with π > 0 either (σ , π) ∈ PRtraces(q) or there exists a
prefix σ1?i of σ , with ?i ∈ I , such that (σ1, π1), (σ1?i1, 0) ∈
PRtraces(q) with π1 > 0.

The relation between the implementation relations presented
in this section is given in the following result whose proof is
trivial.

Proposition 14. Let p, q be ptockLTSs. We have that

1. p ≲sPR q implies p ⪯PR q but the converse might not hold.

2. p ≲u
sPR

q implies p ⪯u
PR

q but the converse might not hold.

3. p ≲i
sPR

q implies p ⪯i
PR

q but the converse might not hold.

7. Alternative characterisation based on observers

The earlier sections defined alternative implementation rela-
tions that varied in terms of what could be observed: they were
informed by a notion of what the environment (e.g. a tester)
could observe when interacting with the SUT. The idea is that we
should not reject an SUT if, to the environment, its behaviours are
consistent with those of the specification. We therefore aimed to
describe the ability of the environment to distinguish between
models. Here, we define the notion of an observer, that interacts
with the SUT, and show that this leads naturally to the richest
notion of observation we consider, where we have probabilities,
time and refusals.

We build upon the use of observers for cyclic timed testing
in which there are no probabilities [14]. An observer will be an
LTS that interacts with a ptockLTS through a definition of syn-
chronisation and, in doing so, it will capture a type of observation
that can be made. Below we define observers and also how they
interact with ptockLTSs but first we explain the approach we take.

As noted, observers are LTSs and their transitions are defined
so that they mimic the observations that an environment might
make. One approach would be to extend observers to include
(expected/required) probabilities within transitions: the label of a
transition would be a pair (a, π) for an event a and probability π .
This would suggest that a tester could determine, or estimate, the
probability of a particular event at a given point in a computation.
However, if a tester wanted to estimate the probability of an
event or transition at some point in a computation, a tester would
have to observe an event, take the system back to the previous
state, and repeat this process multiple times. Normally this can-
not be done in testing and so, although we could include expected

(required) probabilities within the definition of an observer, the
resultant observers would not represent the ability of a tester to
make observations regarding a system and so such a definition of
an observer would be unsuitable.

As a result, we take a different approach in which one does
not include probabilities within the definition of an observer
and instead reasons about the probability of an observer making
a particular observation. We can therefore reuse the previous
definition of an observer [14], for cyclic systems without prob-
abilities; differences will appear in the definition of how an
observer and a ptockLTS interact.

Similar to the approach taken with ioco [18], observers include
a special action θ to denote a refusal being observed.

Definition 22 (Observer [14]). Let I and O be countable dis-
joint sets of inputs and outputs, respectively. An observer u =

(Q , q0, I ∪ O ∪ {⊖, θ}, T) is an LTS that satisfies the following
properties for each state q ∈ Q :

1. If q ̸
⊖
−→ and there is at least one event a ∈ I ∪ O such that

q
a
−→ then for all a ∈ O we have that q

a
−→.

2. There exists at most one q′ ∈ Q such that q
⊖
−→ q′.

3. If (q, θ, q′) is a transition of u then ⊖ is the only action
available in state q′.

We let U(I,O) denote the set of observers with input set I and
output set O.

Note that if a refusal is observed (that is, if a θ transition
is performed) then the next event must be a ⊖; this reflects
the observation of a refusal taking time. The other rules ensure
that outputs can always be observed if the observer has not
terminated: for output !o and state q, if there are transitions
from q then there must be a transition with label !o from q. The
exception to this rule is where a ⊖ is possible: the synchronisation
rules below will ensure that such a state can only be reached if
the SUT cannot engage in any outputs.

It would be straightforward to update the definition of an ob-
server to make it alternating. However, this would lead to a more
complicated definition and would not be required; the alternating
nature of ptockLTSs plus the definition of synchronisation given
below ensure that if, for example, the ptockLTS is in an input state
then outputs cannot be observed irrespective of the state of the
observer.

Example 11. In Fig. 9 we present an observer for the ptockLTS
mailing robot model from Fig. 4. It is worth mentioning that there
are many possible observers and the graphical representation
from Fig. 9 captures only a part of an observer. For example, the
states 12, 17 or 18 could be further expanded. Also, due to space
constraints, all the transitions labelled by output symbols, depart-
ing from the states 9 and 10 have been omitted and replaced in
the figure with dots. The example highlights the observation of
a refusal (the θ-labelled transitions), time passing (⊖-transition,
that is the only one possible after a refusal) and acceptance of all
outputs.

The composition of an observer and a ptockLTS will define an
LTS rather than a ptockLTS. We therefore first extend the notion
of an LTS to include probabilities.

Definition 23 (p-LTS). A p-LTS is a tuple p = (Q , q0, L, T) where

• Q is a countable, non-empty set of states;

• q0 ∈ Q is the initial state;

• L is a countable set of visible actions;
• T ⊆ Q × ({⊖} ∪ (L × (0, 1])) × Q is the transition relation.

15

M. Núñez, R.M. Hierons and R. Lefticaru Robotics and Autonomous Systems 165 (2023) 104426

Fig. 9. Observer example.

We define the language of p, denoted by L(p), as the set of

(finite) sequences of actions {σ ∈ (L ∪ {⊖})∗|q0
σ

HH⇒}.

Note that L(p) includes the set of sequences of visible actions
and tocks that p can perform; probabilities are discarded. It is
trivial to adapt Definition 4 to the new formalism so that we can
compute the probability with which a p p-LTS performs a certain
trace σ . We denote this probability by prob(p, σ).

We now define a parallel composition operator, ⌉| , that
defines how a ptockLTS and an observer interact. Here, we include
probabilities; since observers are not probabilistic, the probabil-
ities come from the ptockLTS. Since p-LTSs include probabilities
for all events except ⊖, we will need to consider a probability
whenever we include the observation of a refusal; clearly this
probability is always 1.

Definition 24 (Synchronised Parallel Communication). Let I and O
be countable disjoint sets of inputs and outputs, respectively. Let
p = (Q , q0, I,O, T) ∈ pTockLTS(I,O) and u = (Q ′, q′

0, I ∪ O ∪
{⊖, θ}, T ′) ∈ U(I,O). The composition of the observer u and the
model p, denoted by u ⌉| p, is a p-LTS (Q × Q ′, (q0, q

′
0), I ∪ O ∪

R(I), T ′′) in which T ′′ is defined as follows:

• If (q1, (a, π), q2) ∈ T and (q′
1, a, q

′
2) ∈ T ′, with a ∈ I∪O, then

we have ((q1, q
′
1), (a, π), (q2, q

′
2)) ∈ T ′′.

• If (q1,⊖, q2) ∈ T and (q′
1,⊖, q′

2) ∈ T ′, then we have
((q1, q

′
1),⊖, (q2, q

′
2)) ∈ T ′′.

• Let X ⊆ I . If (q1,⊖, q2) ∈ T and (q′
1, θ, q′

2) ∈ T ′ then
((q1, q

′
1), (R(X), 1), (q1, q

′
2)) ∈ T ′′ if and only if the following

conditions hold:

– for all a ∈ I we have that either there does not exist q3
such that (q1, a, q3) ∈ T or there does not exist q′

3 such
that (q′

1, a, q
′
3) ∈ T ′.

– for all a ∈ X we have that there exists q′
3 such that

(q′
1, a, q

′
3) ∈ T ′.

The application of an observer u to a ptockLTS can observe the
following set of traces:

obsθ (u, p) = L(u ⌉| p)

As one would expect, in the last rule, since q1 may evolve via
⊖ and outputs are urgent in ptockLTSs, no outputs are enabled
in q1. As a result, the state of p does not change. The conditions

Fig. 10. Composition of a tockLTS with an observer.

associated with the third bullet, where refusals are produced,
indicate, on the one hand, that the model and the observer cannot
synchronise and, on the other hand, that all the actions included
in the refusal X can be performed by the observer. Note that as a
result of the first condition, if an action can be performed by the
observer then it cannot be performed by the model and, therefore,
the model refuses all the actions belonging to X .

Example 12. Fig. 10 illustrates a fragment of the composition of
the observer given in Example 11 (see Fig. 9) with the ptockLTS
model from Fig. 4. It aims to highlight the observation of a refusal,
followed by time passing.

We now show how the observations that can be made by an
observer relate to the semantics of the ptockLTS. The following is
a direct consequence of the definition of u ⌉| p; a proof follows
easily by induction on the length of the trace considered.

Proposition 15. Let I and O be countable disjoint sets of inputs
and outputs, respectively. Given σ ∈ (I ∪ O ∪ {⊖} ∪ R(I))∗ and
p in pTockLTS(I,O), there exists an observer u ∈ U(I,O) such that
σ ∈ obsθ (u, p) if and only if σ is a prefix of a timed refusal trace of
p. In addition, if this is the case then prob(p, σ) = prob(u ⌉| p, σ).

It is then possible to rephrase implementation relations in
terms of the observations that can be made. The following is
one such result, which is immediate from Proposition 15; similar
results hold for the other implementation relations.

Theorem 9. Let p, q ∈ pTockLTS(I,O), for countable sets I and O.
We have that p ≲sPR q if and only if for all u ∈ U(I,O) we have
that the following hold:

1. obsθ (u, p) ⊆ obsθ (u, q); and

2. for all σ ∈ obsθ (u, p) we have that prob(u ⌉| p, σ) =

prob(u ⌉| q, σ).

The above results tell us both that probabilistic timed refusal
traces correspond to observations that could be made in testing
and that our implementation relations are appropriate extensions
of previously defined implementation relations.

Note that there is an implicit assumption that an environ-
ment (tester) can determine the true probability of a trace. How-
ever, the best one can actually do is to estimate the probability
of a trace through experiments. We are working on a testing
framework where this idea is implemented and we will provide
additional details when we discuss lines for future work.

8. Conclusions and future work

If one has a formal model that describes the allowed be-
haviours of the SUT, then this model can form the basis of testing
and this observation has led to the development of many test gen-
eration techniques. There has been particular interest in testing
from transition systems, with a number of resultant techniques
and tools. However, in order to test from a formal model in

16

M. Núñez, R.M. Hierons and R. Lefticaru Robotics and Autonomous Systems 165 (2023) 104426

a manner that is guaranteed to be sound, it is necessary to
first define a suitable implementation relation between SUTs and
specifications. This paper concentrated on defining and compar-
ing implementation relations for a class of (cyclic state-based)
models, motivated by their use in robotics.

The motivation for the work was the use of state-based models
to model the required behaviour of the control software of robotic
systems. We took particular inspiration from the RoboChart and
RoboSim languages, which define cyclic state-based models and
use a notation similar to that used by those developing robotic
software. There is a tool (RoboTool [17]) that will map a model
in RoboChart or RoboSim to a tock-CSP model. In turn, a tock-CSP
model can be given a formal semantics as a labelled transition
system that is probabilistic. There is then the potential to auto-
mate the generation of sound test cases that can be used to test
the SUT within simulation. However, it is first necessary to define
suitable implementation relations that define what behaviours
(SUTs) are considered to be correct implementations of a model.

We started by defining the notion of a ptockLTS, which makes
it possible to include probabilities and discrete time within cyclic
models. The basic implementation relations were defined in
terms of the possible traces of such models. These implementa-
tion relations are therefore suitable for circumstances in which
one cannot determine the probability of an observation/trace.
This is the case, for example, in both run-time monitoring and
passive testing, since for both of these one passively observes the
behaviour of a system but one cannot, for example, repeatedly
apply a test case.

Having defined implementation relations in terms of traces,
we then considered scenarios in which a tester can make a richer
set of observations. First, we allowed probabilities to be consid-
ered and this makes sense if a tester is able to repeatedly apply
a test case and then estimate the probabilities of observations
made. Here, there were a number of ways in which one could
treat the situation in which there is more than one allowed
output in a given state. We considered two scenarios: the first
was where these different outputs represent valid alternatives
and it was not necessary to include all; the second was when a
correct system must implement all of the allowed outputs. This
led to groups of implementation relations, with the choice of
implementation relation to use being dependent on the scenario.
Finally, we extended the probabilistic implementation relations
to consider the situation in which a tester can observe that certain
inputs are not allowed by the SUT, with this being represented in
terms of refusals. For example, a sensor or sub-system might be
switched off or a field unavailable.

Having defined implementation relations, we have the ques-
tion of whether they are suitable: whether the types of be-
haviours they considered might actually be observed by a tester.
In order to validate this we defined the notion of an observer,
with the resultant set of observations being exactly what one
would expect.

The focus on this paper has been on defining suitable imple-
mentation relations and showing how these relate. The practical
benefit is that the implementation relations can form the ba-
sis for sound, systematic testing based on models. The testing
process becomes sound if a suitable implementation relation is
used: if a failure is observed during testing then it must be a
consequence of the SUT not being a correct implementation of
the specification.

Now that we have implementation relations, it is possible to
devise test generation algorithms based on these and this is one
of our main lines of current and future work on the applica-
tion of formal approaches to robotics. Test cases will not have
probabilistic information. At each state, a test case might offer
an input, observe a refusal, or let time pass. In addition, a test

case must always be ready to observe an output produced by
the SUT. There are at least two possible approaches to automated
test generation: either one randomly generates test cases that are
guaranteed to be sound, as is done for implementation relations
such as ioco [18], or one uses a fault-based approach and gener-
ates test cases that are guaranteed to detect certain faults. For the
latter approach, we intend to extend our fault-based technique
that was developed for models that do not include probabilities.
This technique involved using a tool to insert possible faults into a
model and then another tool (a model-checker) to automatically
generate test cases guaranteed to find such faults [12].

The next problem that we will tackle is to define how test
cases are applied to the SUT. If we are testing deterministic sys-
tems, then it is enough to apply each test case once. If the system
is non-deterministic, then the test case must be applied several
times and it is necessary to use a fairness condition to assume that
all potential paths are eventually traversed. In the probabilistic
case, we do not need to consider a fairness condition but need
to apply the same test case several times. Having done this, it
is possible to produce estimates of probabilities based on the
frequencies with which the different sequences of actions are ob-
served. Then, we need to perform hypothesis contrasts to decide,
up to a confidence degree, whether the estimated probability
distributions conform to the specified probability distributions.

There are several additional possible lines of future work.
First, once test generation techniques have been developed, there
is a need to evaluate these in the testing of robotic software
in simulation. As previously noted, there may be potential to
use testing within simulation as the basis for generating test
cases for deployment testing. One potential approach is to use
fault seeding (mutation) and find test cases that expose seeded
faults within simulation (see, for example, [12]): it may then be
possible to use these as the starting point for generating test
cases that would find corresponding faults in deployed systems.
An additional avenue of future work is to incorporate information
about the environment in order to avoid generating ‘unrealistic’
test cases. In addition, there may be scope to develop techniques
that map a (class of) ptockLTS to a probabilistic finite state ma-
chine and then utilise test generation techniques that have been
developed for such models.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] Q. Song, E. Engström, P. Runeson, Concepts in testing of autonomous

systems: Academic literature and industry practice, in: 1st IEEE/ACM

Workshop on AI Engineering - Software Engineering for AI, WAIN@ICSE’21,

IEEE, 2021, pp. 74–81.

[2] C.S. Timperley, A. Afzal, D.S. Katz, J.M. Hernandez, C. Le Goues, Crashing

simulated planes is cheap: Can simulation detect robotics bugs early? in:

11th IEEE Int. Conf. on Software Testing, Verification and Validation,

ICST’18, IEEE, 2018, pp. 331–342.

[3] A. Afzal, C. Le Goues, M. Hilton, C.S. Timperley, A study on challenges

of testing robotic systems, in: 13th IEEE Int. Conf. on Software Testing,

Verification and Validation, ICST’20, IEEE, 2020, pp. 96–107.

[4] E.P. Moore, Gedanken experiments on sequential machines, in: C. Shannon,

J. McCarthy (Eds.), Automata Studies, Princeton University Press, 1956.

[5] J. Peleska, Model-based avionic systems testing for the airbus family, in:

23rd IEEE European Test Symposium, ETS’18, IEEE Computer Society, 2018,

pp. 1–10.

17

http://refhub.elsevier.com/S0921-8890(23)00065-9/sb1
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb1
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb1
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb1
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb1
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb1
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb1
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb2
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb2
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb2
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb2
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb2
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb2
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb2
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb3
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb3
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb3
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb3
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb3
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb4
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb4
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb4
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb5
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb5
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb5
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb5
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb5

M. Núñez, R.M. Hierons and R. Lefticaru Robotics and Autonomous Systems 165 (2023) 104426

[6] M. Shafique, Y. Labiche, A systematic review of state-based test tools, Int.

J. Softw. Tools Technol. Transfer 17 (1) (2015) 59–76.

[7] W. Grieskamp, N. Kicillof, K. Stobie, V. Braberman, Model-based quality

assurance of protocol documentation: tools and methodology, Softw. Test.

Verif. Reliab. 21 (1) (2011) 55–71.

[8] R.M. Hierons, K. Bogdanov, J.P. Bowen, R. Cleaveland, J. Derrick, J. Dick, M.

Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Luettgen, A.J.H. Simons, S.

Vilkomir, M.R. Woodward, H. Zedan, Using formal specifications to support

testing, ACM Comput. Surv. 41 (2) (2009) 9:1–9:76.

[9] A. Miyazawa, A. Cavalcanti, P. Ribeiro, W. Li, J. Woodcock, J. Timmis,

RoboChart Reference Manual, Technical Report, University of York, 2019.

[10] A. Cavalcanti, P. Ribeiro, A. Miyazawa, A. Sampaio, M.C. Filho, A. Didier,

RoboSim Reference Manual, Technical Report, University of York, 2019, URL

https://www.cs.york.ac.uk/circus/RoboCalc/robosim/robosim-reference.pdf.

[11] A.W. Roscoe, The Theory and Practice of Concurrency, Prentice Hall, 1998.

[12] A. Cavalcanti, J. Baxter, R.M. Hierons, R. Lefticaru, Testing robots using CSP,

in: 13th Int. Conf. on Tests and Proofs, TAP’19, LNCS 11823, Springer, 2019,

pp. 21–38.

[13] R. Lefticaru, R.M. Hierons, M. Núñez, An implementation relation for cyclic

systems that uses refusals and discrete time, in: 17th Int. Conf. on Software

Engineering and Formal Methods, SEFM’19, LNCS 11724, Springer, 2019,

pp. 393–409.

[14] R. Lefticaru, R.M. Hierons, M. Núñez, Implementation relations and testing

for cyclic systems with refusals and discrete time, J. Syst. Softw. 170 (2020)

110738:1–20.

[15] K. Ye, A. Cavalcanti, S. Foster, A. Miyazawa, J. Woodcock, Probabilistic

modelling and verification using RoboChart and PRISM, Softw. Syst. Model.

21 (2) (2022) 667–716.

[16] A. Cavalcanti, J. Baxter, G. Carvalho, RoboWorld: Where can my robot

work? in: 19th Int. Conf. on Software Engineering and Formal Methods,

SEFM’21, LNCS 13085, Springer, 2021, pp. 3–22.

[17] J. Baxter, A. Miyazawa, P. Ribeiro, K. Ye, RoboTool - RoboChart Tool Manual,

Technical Report, University of York, 2022.

[18] J. Tretmans, Model based testing with labelled transition systems, in:

Formal Methods and Testing, LNCS 4949, Springer, 2008, pp. 1–38.

[19] PRISM Model Checker, PRISM lab session, part B: Mail delivery

robot. Available at http://www.prismmodelchecker.org/courses/aims1617/

deliveryRobot.php.

[20] A.W. Roscoe, Understanding Concurrent Systems, in: Texts in Computer

Science, Springer, 2010.

[21] J. Baxter, A. Cavalcanti, M. Gazda, R.M. Hierons, Testing using CSP models:

time, inputs, and outputs, ACM Trans. Comput. Log. 24 (2) (2023) 1–40.

[22] A. Cavalcanti, R.M. Hierons, S.C. Nogueira, Inputs and outputs in CSP:

a model and a testing theory, ACM Trans. Comput. Log. 21 (3) (2020)

24:1–24:53.

[23] L. Brandán Briones, E. Brinksma, A test generation framework for quiescent

real-time systems, in: 4th Int. Workshop on Formal Approaches to Testing

of Software, FATES’04, LNCS 3395, Springer, 2004, pp. 64–78.

[24] M. Krichen, S. Tripakis, Conformance testing for real-time systems, Form.

Methods Syst. Des. 34 (3) (2009) 238–304.

[25] J. Schmaltz, J. Tretmans, On conformance testing for timed systems, in: 6th

Int. Conf. on Formal Modeling and Analysis of Timed Systems, FORMATS’08,

LNCS 5215, Springer, 2008, pp. 250–264.

[26] L. Cheung, M. Stoelinga, F. Vaandrager, A testing scenario for probabilistic

processes, J. ACM 54 (6) (2007) 29.

[27] R. Cleaveland, Z. Dayar, S.A. Smolka, S. Yuen, Testing preorders for

probabilistic processes, Inform. and Comput. 154 (2) (1999) 93–148.

[28] Y. Deng, R. van Glabbeek, M. Hennessy, C. Morgan, Characterising testing

preorders for finite probabilistic processes, Log. Methods Comput. Sci. 4

(4) (2008).

[29] M. Núñez, Algebraic theory of probabilistic processes, J. Log. Algebr.

Program. 56 (1–2) (2003) 117–177.

[30] R.M. Hierons, M.G. Merayo, Mutation testing from probabilistic and

stochastic finite state machines, J. Syst. Softw. 82 (11) (2009) 1804–1818.

[31] I. Hwang, A.R. Cavalli, Testing a probabilistic FSM using interval estimation,

Comput. Netw. 54 (7) (2010) 1108–1125.

[32] N. López, M. Núñez, I. Rodríguez, Specification, testing and implementation

relations for symbolic-probabilistic systems, Theoret. Comput. Sci. 353

(1–3) (2006) 228–248.

[33] M. Gerhold, M. Stoelinga, Model-based testing of probabilistic systems,

Form. Asp. Comput. 30 (1) (2018) 77–106.

[34] R.M. Hierons, M. Núñez, Using schedulers to test probabilistic distributed

systems, Form. Asp. Comput. 24 (4–6) (2012) 679–699.

[35] R.M. Hierons, M. Núñez, Implementation relations and probabilistic sched-

ulers in the distributed test architecture, J. Syst. Softw. 132 (2017)

319–335.

[36] I. Phillips, Refusal testing, Theoret. Comput. Sci. 50 (3) (1987) 241–284.

[37] C. Gregorio, M. Núñez, Denotational semantics for probabilistic refusal

testing, in: 1st Int. Workshop on Probabilistic Methods in Verification,

PROBMIV’98, ENTCS 22, Elsevier, 1999, pp. 111–137.

[38] L. Heerink, J. Tretmans, Refusal testing for classes of transition systems

with inputs and outputs, in: 19th Joint Int. Conf. on Protocol Spec-

ification, Testing, and Verification and Formal Description Techniques,

FORTE/PSTV’97, Chapman & Hall, 1997, pp. 23–38.

[39] R. Michelmore, M. Wicker, L. Laurenti, L. Cardelli, Y. Gal, M. Kwiatkowska,

Uncertainty quantification with statistical guarantees in end-to-end au-

tonomous driving control, in: 27th IEEE Int. Conf. on Robotics and

Automation, ICRA’20, IEEE, 2020, pp. 7344–7350.

[40] B.K. Aichernig, H. Brandl, F. Wotawa, Conformance testing of hybrid

systems with qualitative reasoning models, in: 6th Int. Workshop on For-

mal Engineering Approaches To Software Components and Architectures,

FESCA’06, ENTCS 253(2), 2009, pp. 53–69.

[41] T. Dang, Model-based testing of hybrid systems, in: Model-Based Testing

for Embedded Systems, CRC Press, 2011, pp. 383–424.

[42] N. Khakpour, M.R. Mousavi, Notions of Conformance Testing for Cyber-

Physical Systems: Overview and Roadmap (Invited Paper), in: 26th

Int. Conf. on Concurrency Theory, CONCUR’15, in: Leibniz International

Proceedings in Informatics 42, Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, 2015, pp. 18–40.

[43] M. van Osch, Hybrid input-output conformance and test generation, in: 1st

Combined Int. Workshops on Formal Approaches to Software Testing and

Runtime Verification, FATES/RV’06, LNCS 4262, Springer, 2006, pp. 70–84.

[44] D. Harel, Statecharts: A visual formulation for complex systems, Sci.

Comput. Program. 8 (3) (1987) 231–274.

[45] D. Harel, M. Politi, Modeling Reactive Systems with Statecharts: The

STATEMATE Approach, McGraw-Hill, New York, 1998.

[46] N. López, M. Núñez, An overview of probabilistic process algebras and their

equivalences, in: C. Baier, B.R. Haverkort, H. Hermanns, J. Katoen, M. Siegle

(Eds.), Validation of Stochastic Systems - a Guide to Current Research, LNCS

2925, Springer, 2004, pp. 89–123.

[47] A. Sokolova, E.P. de Vink, Probabilistic automata: System types, parallel

composition and comparison, in: C. Baier, B.R. Haverkort, H. Hermanns,

J. Katoen, M. Siegle (Eds.), Validation of Stochastic Systems - a Guide to

Current Research, LNCS 2925, Springer, 2004, pp. 1–43.

[48] R. van Glabbeek, S.A. Smolka, B. Steffen, Reactive, generative and stratified

models of probabilistic processes, Inform. and Comput. 121 (1) (1995)

59–80.

[49] K. Larsen, A. Skou, Bisimulation through probabilistic testing, Inform. and

Comput. 94 (1) (1991) 1–28.

[50] G. Fraser, F. Wotawa, P. Ammann, Issues in using model checkers for test

case generation, J. Syst. Softw. 82 (9) (2009) 1403–1418.

[51] D. Peled, Model checking and testing combined, in: 30th Int. Colloquium

on Automata, Languages and Programming, ICALP’03, LNCS 2719, Springer,

2003, pp. 47–63.

[52] M. Harman, P. McMinn, A theoretical and empirical study of search-based

testing: Local, global, and hybrid search, IEEE Trans. Softw. Eng. 36 (2)

(2010) 226–247.

[53] M.-C. Gaudel, Testing can be formal, too!, in: 6th Int. Joint Conf.

CAAP/FASE, Theory and Practice of Software Development, TAPSOFT’95,

LNCS 915, Springer, 1995, pp. 82–96.

[54] R.M. Hierons, Testing from partial finite state machines without

harmonised traces, IEEE Trans. Softw. Eng. 43 (11) (2017) 1033–1043.

[55] R.M. Hierons, FSM quasi-equivalence testing via reduction and observing

absences, Sci. Comput. Program. 177 (2019) 1–18.

[56] A. Petrenko, N. Yevtushenko, Testing from partial deterministic FSM

specifications, IEEE Trans. Comput. 54 (9) (2005) 1154–1165.

[57] A. Petrenko, N. Yevtushenko, G.v. Bochmann, Testing deterministic imple-

mentations from their nondeterministic FSM specifications, in: 9th IFIP

Workshop on Testing of Communicating Systems, IWTCS’96, Chapman &

Hall, 1996, pp. 125–140.

[58] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory,

Languages, and Computation, third ed., Addison-Wesley, 2006.

Manuel Núñez received a Ph.D. degree in Mathematics

and an M.S. degree in Economics. He is a Professor of

Computer Science with the Complutense University of

Madrid, Spain. He belongs to the IEEE SMC Technical

Committee on Computational Collective Intelligence;

he is a member of several Editorial Boards and has

served on more than 130 Programme Committees of

international events in Computer Science.

18

http://refhub.elsevier.com/S0921-8890(23)00065-9/sb6
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb6
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb6
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb7
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb7
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb7
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb7
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb7
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb8
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb8
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb8
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb8
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb8
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb8
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb8
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb9
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb9
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb9
https://www.cs.york.ac.uk/circus/RoboCalc/robosim/robosim-reference.pdf
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb11
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb12
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb12
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb12
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb12
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb12
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb13
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb13
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb13
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb13
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb13
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb13
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb13
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb14
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb14
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb14
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb14
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb14
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb15
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb15
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb15
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb15
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb15
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb16
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb16
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb16
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb16
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb16
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb17
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb17
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb17
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb18
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb18
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb18
http://www.prismmodelchecker.org/courses/aims1617/deliveryRobot.php
http://www.prismmodelchecker.org/courses/aims1617/deliveryRobot.php
http://www.prismmodelchecker.org/courses/aims1617/deliveryRobot.php
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb20
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb20
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb20
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb21
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb21
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb21
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb22
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb22
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb22
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb22
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb22
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb23
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb23
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb23
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb23
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb23
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb24
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb24
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb24
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb25
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb25
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb25
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb25
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb25
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb26
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb26
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb26
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb27
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb27
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb27
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb28
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb28
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb28
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb28
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb28
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb29
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb29
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb29
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb30
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb30
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb30
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb31
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb31
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb31
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb32
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb32
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb32
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb32
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb32
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb33
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb33
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb33
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb34
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb34
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb34
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb35
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb35
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb35
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb35
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb35
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb36
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb37
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb37
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb37
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb37
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb37
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb38
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb38
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb38
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb38
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb38
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb38
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb38
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb39
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb39
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb39
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb39
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb39
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb39
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb39
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb40
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb40
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb40
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb40
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb40
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb40
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb40
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb41
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb41
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb41
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb42
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb42
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb42
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb42
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb42
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb42
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb42
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb42
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb42
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb43
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb43
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb43
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb43
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb43
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb44
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb44
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb44
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb45
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb45
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb45
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb46
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb46
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb46
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb46
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb46
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb46
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb46
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb47
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb47
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb47
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb47
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb47
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb47
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb47
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb48
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb48
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb48
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb48
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb48
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb49
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb49
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb49
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb50
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb50
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb50
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb51
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb51
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb51
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb51
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb51
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb52
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb52
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb52
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb52
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb52
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb53
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb53
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb53
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb53
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb53
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb54
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb54
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb54
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb55
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb55
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb55
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb56
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb56
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb56
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb57
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb57
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb57
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb57
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb57
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb57
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb57
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb58
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb58
http://refhub.elsevier.com/S0921-8890(23)00065-9/sb58

M. Núñez, R.M. Hierons and R. Lefticaru Robotics and Autonomous Systems 165 (2023) 104426

Robert M. Hierons received a B.A. in Mathematics

(Trinity College, Cambridge), and a Ph.D. in Computer

Science (Brunel University). He then joined the De-

partment of Mathematical and Computing Sciences at

Goldsmiths College, University of London, before re-

turning to Brunel University in 2000. He was promoted

to full Professor in 2003 and joined The University of

Sheffield in 2018.

Raluca Lefticaru received a B.Sc. degree in Mathe-

matics and Computer Science, then M.Sc. and Ph.D.

degrees in Computer Science. She has been a Lecturer

at the University of Bucharest, Romania, and has held

several research positions in the UK. She is currently an

Assistant Professor at the University of Bradford and a

Visiting Researcher at the University of Sheffield, UK.

19

	Implementation relations and testing for cyclic systems: Adding probabilities
	Introduction
	Technical context and related work
	Background and models
	Cyclic models
	Traces and LTSs
	Probabilistic-timed models
	Including refusals

	Implementation relations based on traces
	Implementation relations with probabilities
	Implementation relations with refusals and probabilities
	Alternative characterisation based on observers
	Conclusions and future work
	Declaration of Competing Interest
	Data availability
	References

