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Abstract

This paper considers the generic problem of a central authority selecting an appropriate sub-

set of operators in order to perform a process (i.e. mission or task) in an optimized manner.

The subset is selected from a given and usually large set of ‘n’ candidate operators, with

each operator having a certain resource availability and capability. This general mission per-

formance optimization problem is considered in terms of Unmanned Aerial Vehicles (UAVs)

acting as firefighting operators in a fire extinguishing mission and from a deterministic and a

stochastic algorithmic point of view. Thus the applicability and performance of certain com-

putationally efficient stochastic multistage optimization schemes is examined and compared

to that produced by corresponding deterministic schemes. The simulation results show

acceptable accuracy as well as useful computational efficiency of the proposed schemes

when applied to the time critical resource allocation optimization problem. Distinguishing

features of this work include development of a comprehensive UAV firefighting mission

framework, development of deterministic as well as stochastic resource allocation optimiza-

tion techniques for the mission and development of time-efficient search schemes. The

work presented here is also useful for other UAV applications such as health care, surveil-

lance and security operations as well as for other areas involving resource allocation such

as wireless communications and smart grid.

1. Introduction

This paper considers the generic problem of selecting an appropriate subset of operators in

order to perform a process (mission/task). The subset is taken from a given and usually large

‘n’ elements set, with each operator having a certain resource availability/capability. The aim,

underpinning this selection procedure, is the successful and efficient completion of the mis-

sion. This is essentially a discrete optimization problem which requires knowledge of: i) a
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corresponding mission/task model (MM), ii) a mission performance objective measure

(MPOM) and iii) the resources available to operators and also associated resource related

constraints.

Furthermore in order to study such a generic problem, in conjunction with a real applica-

tion scenario, a firefighting mission paradigm has been adopted. In this case the above optimi-

zation problem is addressed in terms of the deployment of Unmanned Aerial Vehicles (UAVs)

acting as firefighting operators in a fire extinguishing mission. UAVs which can be deployed

from a single or from multiple geographical positions, are therefore required to deliver fire

extinguishing material(s) at the appropriate fire incident location (FL). Thus the selection of a

subset of available UAVs in a way that maximizes mission benefit (performance), given certain

resource related constraints, is effectively the nonlinear, binary variables optimization problem

whose efficient solution is the underlining theme of the paper.

The binary variables resource allocation optimization problem outlined above can be stated

as:

Minimize FðXÞ

Subject to : AX � Q

X 2 ð0; 1Þn

ð1Þ

where F is a real valued, continuous and non differentiable function, X is the vector whose

binary valued elements represent the absence (i.e. = 0) or participation (i.e. = 1) in the mission

for each of the n available operators, A is a resource related matrix and Q is a vector represent-

ing resource constraints.

In general, the problem of Resource Allocation (RA) can be addressed in a number of dif-

ferent ways. These may differ in the presentation of input data, the handling of constraints,

the search method used for finding the best solution and the computational complexity and

robustness of the optimization approach. There are also hybrid instances available in the litera-

ture of scenario-based presentations of input data. Mulvey, Vanderbei and Zenios [1], for

example, produced an approach that considers optimization formulations with a scenario-

based description of input data. Each scenario is associated with a set of possible instances of

uncertain problem data and with the probability of occurrence of that scenario. The authors

use this approach to enhance optimization robustness. Furthermore, they devised a model to

measure the trade-off between algorithmic optimization quality and robustness. In [2], Kouve-

lis and Yu present a more detailed account of scenario-based robust optimization techniques.

Deterministic optimization methods consider all the input variables and the resulting mis-

sion benefit as deterministic quantities whereas in stochastic optimization techniques, some

of the input variables and hence the mission benefit are subject to uncertainty. In the second

case, optimization robustness is of fundamental importance and is sought against variable

uncertainty and worst case scenarios. A detailed account of deterministic optimization tech-

niques is presented in [3]]. Note that variable and mission benefit uncertainty is a common

feature of real applications where the use of resource allocation procedures is required. Various

methods of implementing stochastic optimization techniques can be found in [4]. Robust sto-

chastic optimization methods, other than scenario based techniques have been considered by

Bertismas and Sim in [5].

A number of approaches have been developed for solving discrete mixed integer program-

ming problems, via their transformation into continuous problems. These include global

optimization techniques, semi-definite programming and spectral theory [6–8] and are
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particularly useful when the discrete to continuous transformations do not affect optimum or

near optimum solutions.

Direct discrete optimization can be achieved using: i) Heuristic or ii) Exhaustive search

techniques and clear tradeoffs between computational complexity and quality of optimization

exist. Exhaustive Optimization (EO) evaluates all possible combinations of decision variables

and the best solution that also satisfies resource constraints, is selected. Discrete EO is NP-

hard [9, 10] and provides globally optimum solutions, but is computationally expensive and

often intractable when the number of decision variables becomes large. Heuristic search algo-

rithms are application specific and they are often employed to quickly produce suboptimum

but “good enough” solutions. Using such Heuristic methods, decision variables can be selected

on the basis of one or more heuristics and constraints. Examples of Heuristic search tech-

niques can be found in Graph Theoretic [11] methods. Other popular search approaches

include Simulated Annealing [12], Genetic Algorithms [13] and Scatter Search techniques. A

detailed account of Heuristic type search techniques can be found in [14–17].

In this paper, both Suboptimal Heuristic and Optimal Exhaustive discrete non-linear com-

binatorial optimization methodologies with linear constraints are considered with respect to

deterministic and stochastic input variables. Whereas the deterministic optimization employed

in the case of deterministic input variables is conceptually straightforward, the adopted sto-

chastic approach used in the case of stochastic variables is based on the introduction of penalty

terms in the calculation of mission performance.

Thus several discrete optimization techniques are developed and their performance char-

acteristics examined within a firefighting mission driven framework. Computer simulation

based experimental results allow tradeoffs between computational complexity and quality of

optimization to be identified and thus for the performance of these methods to be effectively

compared.

The novel scientific contributions of this research work are summarized as follows.

1. The main contribution of the paper is development of novel optimization techniques for

resource allocation in UAVs firefighting mission in both deterministic and stochastic sce-

narios. The optimization techniques include exhaustive search as well as innovative and

efficient heuristic search methods.

2. In order to achieve the above-mentioned main contribution, novel UAV firefighting mission

framework and Mission Performance Objective Measure (MPOM) have been developed.

Task allocation among UAVs has been considered previously with different objectives such

as enhancement in wireless communication networks, see for instance [18–21]. The research

work presented here, models a firefighting mission to demonstrate the generic resource alloca-

tion problem which is applicable to a broad range of scenarios including the wireless networks

resource allocation.

The paper is organized as follows: Section 2 describes the adopted firefighting mission

framework that has been employed throughout the work and presents a mission model and

corresponding mission performance objective measure to be employed within this framework.

It also describes the generic deterministic and stochastic resource allocation optimization

methodologies which form the backbone of subsequently proposed efficient optimization

schemes. Several sub-optimal optimization techniques are presented in section 3. A simple

heuristically driven search optimization scheme is presented in section 3-A, whereas two fur-

ther multistage optimization schemes are described in section 3-B. The complexity characteris-

tics of the above schemes are considered in Section 3-C. Experimental results are presented in

section 4 which allow for a comparative study and appraisal of the proposed methods. The
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paper concludes with a summary of the proposed schemes as well as a few future work direc-

tions. Fig 1 gives overall flow of the presented research work.

2. UAV firefighting

Mission (FFM) framework Consider that nUAVs are located at L different geographical posi-

tions (bases) and that they are candidate members of a firefighting mission. Let the amount of

the ith resource (e.g. foam, powder, water etc.) available at base l beQl
i and l = 1, 2, . . ., L and

i = 1, 2, . . .,m and the capacity of the jth UAV located at base l to carry resource i be Al
i;j j = 1,

2, . . ., nl and that n1 + n2 + . . . + nL = n. The abovemmission related resources are made of

materials which a UAV can carry and deliver for fire suppression e.g. foam, water etc. In addi-

tion there are UAV “operational” types of resources that allow (or otherwise) a UAV to reach

Fig 1. Research flow.

https://doi.org/10.1371/journal.pone.0283923.g001
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the Fire Location (FL) e.g. fuel capacity, operational (communication) range etc. Thus UAVs

(operators) are of different types and capabilities, as related to their speed, fuel consumption

and fire extinguishing resource capacity.

Now given the locations of UAV Bases (BL) and FL, an initial per UAV route planning process

[22, 23] is performed to obtain n base-to-fire (plus fire-to-base) route paths (flight distancesDj,
j = 1, 2, . . ., n) see Fig 2. Thus given route trajectories and based upon specific UAV speed opera-

tional profiles, estimates can be obtained for times tarrival of UAV arrivals to FL, flight time during

resource delivery over FL, overall flight times TM and expected fuel consumptions Fc. In practice

UAVs tend to fly most of their routes at relatively constant speed and altitude and the models

used to calculate fuel consumption and time of arrival can vary significantly in terms of complex-

ity and accuracy, from simple to quite sophisticated and accurate. Since however these models

exist and are independent of the optimization techniques examined in this paper, they will not be

further pursued. Same applies to the control methodologies used across UAV platforms. The

interested reader may refer to [24–28] for an insight into UAV control methodologies.

Note that, in general, operational type of resources act as a “switch” that determines UAV

inclusion or exclusion from the optimization process. For example, UAVs whose fuel resource

(supply/capacity) is less than Fc giving rise to an overall flight time that is less than the required

time TM cannot safely contribute to the mission and are therefore excluded from the following

UAV selection/optimization process.

Now recall that essential to the optimization process is the development and use of a Mis-

sion Model (MM) and associated Mission Performance Objective Measure (MPOM). MM

and MPOM are application specific and, in practice, key to the success or otherwise of the mis-

sion driven resource optimization.

A. Mission model and mission performance objective measure

In this work MM and MPOM are based on Fire Intensity FI that is a function of time. In turn

FI(t) can be modelled as a linear or nonlinear function of time t, where

FIðtÞ ¼
1 � b
½maxðtÞ�z

tz þ b ð2Þ

Note that z = 1 provides a linear model. b is an initial FI value.

Fig 2. Router calculates three UAV routes commencing from three UAV locations (bases) to a single fire area,

while avoiding six static hazards and two moving objects. The work in [23] uses geodetic coordinates for route

generation which is converted to Cartesian coordinates for simplicity of calculations and resulting plots. The interested

reader may refer to [23] for further details. All axes show length in meters.

https://doi.org/10.1371/journal.pone.0283923.g002

PLOS ONE UAV optimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0283923 April 6, 2023 5 / 19

https://doi.org/10.1371/journal.pone.0283923.g002
https://doi.org/10.1371/journal.pone.0283923


The model is supported by a certain fire intensity threshold value FIth. When FI(t) becomes

larger than FIth, extinguishing materials will have no effect in the sense that fire damage is so

extensive that further fire suppression effort is not recommended.

The application of fire suppression materials at specific times will lead into decreasing fire

intensity values. Again this effect can be modelled as a linear or nonlinear decrease of Fire

Intensity (FI) over time. Here however the linear or nonlinear decrease of FI is a function of

the amount (in appropriate units) of the specific suppression material applied to the fire. Dif-

ferent material types have different rates of fire suppression over a given period of time. Fur-

thermore the time tsuppress allowed over which FI suppression is calculated is considered here

to be fixed. Thus different types and amounts of fire suppression resources have different FI
decrease rate profiles over the tsuppress period. Note that after this time period, FI will start

increasing again unless the FI = 0 fire state has been achieved. Finally in this model when mul-

tiple fire suppression deliveries occur within a period that is less than tsuppress, the overall FI
suppression effect is calculated over a period of time T commencing from the time of the first

delivery tarrival to the time of the last delivery plus tsuppress. Such multiple FI suppression effects,

due to multiple resource deliveries are therefore accumulated over the T period. A simple way

to implement this accumulation effect and thus define the reduction (FIR) in FI, per unit of

time, as a result of the delivery say of u different resources each having a1, a2,. . .., au units of

material, while assuming that a linear FI suppression model is employed, is

FIR ¼ K1

Xu

i¼1

ciai ð3Þ

The ci coefficients are representative of the effectiveness of different fire suppression materi-

als while K1 is a normalizing constant. A diagram illustrating FI(t) reduction when multiple

fire suppression deliveries occur, is shown in Fig 3. The “broken” red line extension of the blue

model line is indicative of the linearly increasing FI(t) without applying fire suppression. The

values of related parameters are given in S2 Appendix, section B1.

Note that multiple fire suppression deliveries have been modeled in a generic way. The model

uses only two parameters: i) Amount of resources ii) Effectiveness of resources in fire intensity

reduction. It means that the model needs to know only amount and effectiveness of a given

resource and not its name. For the sake of simplicity, same reduction effect, as given in (3), has

been used for all three resources. In Fig 3, an example scenario has been considered, where mul-

tiple UAVs arrive for firefighting at times (tarrival) given in the S2 Appendix, section B1 along

with matrices A and Q. Each column of matrix A gives amount of three different suppression

resources allocated to a UAV, while each row gives allocation of a single type of resource to 10

UAVs. Note that in S2 Appendix, section B1, L = 3 indicates that UAVs are present in three dif-

ferent bases. In each row of matrix A, UAVs 1–4 (n1) belong to base 1, UAVs 5–7 (n2) belong to

base 2 and UAVs 8–10 (n3) belong to base 3. The matrix Q gives total amount of three resources

available to UAVs at each base, with each row indicating total amount of three resources present

at a certain base. Each delivery reduces the fire for 5 seconds. When fire suppression due to one

delivery is in progress and the next delivery arrives (within 5 seconds of the first delivery) then

the effect of two deliveries gets combined according to (3). Hence, at times 54 and 58 seconds,
the rate of fire intensity reduction further increases and the fire state FI = 0 is achieved.

The MM model described in this firefighting application also provides a means for formu-

lating the required MPOM. Here MPOM has been implemented as

MPOM ¼
Z

FlðtÞdðtÞ ð4Þ

i.e. the area under the FI(t) curve, see Fig 3.
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The sooner the fire is extinguished, the smaller is this area and therefore the smaller is the

extent of damage caused by the fire. Thus the UAV resource allocation (RA) optimization pro-

cess can be driven by the minimization of this MPOM objective.

UAV firefighting mission framework includes Mission Performance Objective Measure

(MPOM) as given in (4). The MPOM depends on area under the fire intensity curve, see Fig 3

and Eq (2), and is used in both deterministic and stochastic optimization formulations, which

are given in the subsequent subsections.

B. Deterministic optimization

The UAV selection/optimization problem that underpins the previously discussed FFM frame-

work can be stated now as Mission Objective:

Minimize Fx ¼ MPOM ¼
R
FlðtÞdðtÞ ð5Þ

Fig 3. Linear FI model used in firefighting mission. Resource delivery times are indicated by arrows. tsuppress = 5 seconds.

https://doi.org/10.1371/journal.pone.0283923.g003
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subject to
Xnl

j¼1

Al
i;jX

l
j � Q

l
j

with i ¼ 1; 2; . . . ;m

and n1 þ n2 þ . . .þ nL ¼ n

where X 2 [0, 1]n with vector X ¼ X1;X2; . . .XL and each sub-vector Xp 2 0; 1½ �
np having np

binary elements i.e. Xp ¼ Xp
1; x

p
2; . . . ; xpnp

n o
, with xpi ¼ 1 or 0.

Two issues should be raised with respect to the above deterministic problem formulation

and Exhaustive Search solution approach i) this formulation doesn’t reflect the stochastic

nature of parameters often encountered in real applications and ii) search complexity increases

exponentially with the number n of UAVs (operators) since the search space size is 2n.

C. Stochastic optimization

Consider that Al
i;j are random variables. This is justified due to the uncertainty that in practice

exists of the effect that the delivery of a given fire suppression resource will have on the mission

objective Fx. For example, uncertainty here is considered as being generated due to variability

in resource delivery accuracy. Let us also assume that the probability density functions (PDFs)

of the various Al
i;j variables are known. Of course different suppression resources will have dif-

ferent PDFs but we have assumed for simplicity that random variables are Gaussian with spe-

cific Al
i;j[mean] and standard deviation Al

i;j[SD] values.

In this way, for a given resource i, the sum of the random variables Al
i;j corresponding to

this resource and carried by the UAVs participating in the mission from base l, is itself a ran-

dom variable, i.e.

Vl
i ¼

X

k� suppðxljÞ

Al
i;k ð6Þ

where supp(xli) is the set of UAVs from base l participating in the mission.

Now given Vl
i as in (6), resource constraints can be considered with respect to the following

expectation,

E½Vl
i � Q

l
i� ð7Þ

Negative valued expectations imply that Ql
i related constraints are not violated. On the

other hand, positive valued expectations E Vl
i � Q

l
i�
þ

�
imply that corresponding solution vio-

lates the Ql
i condition. The exact derivation of E½Vl

i � Q
l
i�
þ

is usually computationally complex

and its inclusion within the optimization process is often computationally impractical.

Instead, a penalty term is introduced and applied in the estimation of theMPOM = Fx mea-

sure. This means that non-viable solutions will be penalised in the optimization process by

adding values to the objective function, which are proportional to the expected value of the

magnitude of the constraint violation.
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A scheme is therefore employed which estimates Vl
i by drawing sample values from random

sources representing Al
i;j variables, with P successive such sample drawing experiments (trials)

per resource i.
Denoting Al;p

i;j as the value of the Al
i;j coefficient in the pth drawing sample experiment,

1�p�P, the resulting estimate of the ith resource constraint violation, given l and i is:

E½Vl
i � Q

l
i�
þ
¼

1

p

XP

p¼1

X

j� suppðXljÞ

ðAl;p
i;j � Ql

iÞ
þ

2

6
4

3

7
5 ð8Þ

The MPOM = Fx measure used in the proposed stochastic case takes the form

�Fx þW
XL

l¼1

Xm

i¼1

E½Vl
i � Q

l
i�
þ

ð9Þ

�Fx is the mean of the Fx values produced by running a number (say TN) of trial experiments,

which estimate Fx deterministically, given that for each experiment the Al
i;j values are drawn

from resource related random sources with given probability distributions. W is a weighting

constant.

Optimization thus takes the form

Minimise �Fx þW
XL

l¼1

Xm

i¼1

E½Vl
i � Q

l
i�
þ

ð10Þ

to obtain an Fmin value and corresponding Xopt vector.

Again, as in the deterministic optimization case, an Exhaustive Search can be applied to

define Xopt. The choice of W depends on the nature of the application domain and level of pen-

alty severity required.

Note that any candidate solution vector X has a non-zero probability to be non-feasible by

violating the problem constraints. The weight W, as applied on the penalty terms, controls the

importance the optimization attaches to the constraints of the problem. Low W values tend to

bias the optimization in favour of solutions which are likely to violate these constraints i.e. the

probability of the solution being non-feasible, increases. Large W values have the opposite

effect.

Fig 4 illustrates the effect of W on Fmin values obtained by applying the stochastic optimiza-

tion scheme for 10 different mission scenarios and for different W values. The deterministic

optimization case is also included. Mission scenarios have been arranged across the horizontal

axis so that UAV arrival time values tarrival are increasing progressively and uniformly. As W

decreases the violation penalty term decreases and in turn the probability of obtaining poten-

tially unsuitable X vectors as solutions with minimum Fx increases. The values of different

parameters related to Fig 4 are given in S2 Appendix, section B2.

3. Sub-optimum search (SBS) techniques

The Exhaustive Search (ES), which has been mentioned in the deterministic and stochastic

optimization methodologies described in previous sections, is optimal and a global minimum

solution can always be found. Its complexity however increases exponentially with respect to

the size n of the vector X and ES becomes impractical for large values of n. Thus efficient, in

terms of complexity and performance, suboptimal search methods are of considerable interest.
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Within the UAV FFM framework the paper considers search efficient techniques, in terms

of i) Heuristics, i.e. using application specific information to influence the search and ii) neigh-

bourhood similarity, between vectors X, which can be employed within a Multistage Optimiza-

tion process to reduce the size of the search area. These suboptimal techniques are indicative

of search methodologies which can be formulated and incorporated into the deterministic and

stochastic FFM resource optimization approaches. Their development and inclusion here

allows a comparative study to be carried out in terms of mission performance versus complex-

ity and possible tradeoffs to be examined regarding different firefighting scenario configura-

tions and strategies.

A. Multistage heuristic search (MHS)

Heuristic search algorithms have been proposed in different research works for various appli-

cations, see for instance [29–31]. The work presented here is generic in nature and may be

applied to any similar applications.

Fig 4. Fmin results for 10 different experiments (EXPj), with UAV arrival time values tarrival progressively and uniformly increasing for

j = 1,2,..,10.

https://doi.org/10.1371/journal.pone.0283923.g004
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In its simplest form, an application specific Heuristic Measure (HM) is calculated, for each

operator, that is indicative of the operator’s worthiness to the mission. Consider that a central

authority performs the selection across all the UAV bases participating in the mission. UAVs

are listed in an ascending (or descending) order from a min (or max) to a max (or min) value

of this measure. A multistage UAV selection process then follows whereby in the first stage the

UAV at the top of the list is tested for violation of any mission related constraints. A clear i.e.

no-violation test result ensures the UAV’s inclusion in the mission and the scheme measures

the UAV’s effect on mission performance Fx. The second UAV in the list is then considered

during the second stage of this process and its inclusion and contribution to Fx is examined, as

in the first stage. The process continues until all available for consideration UAVs are exam-

ined or a stage is reached where Fx is zero.

A Heuristic measure used in such a simple suboptimal MHS can be based on one or a com-

bination of mission parameters/resources. Thus, for example, HM can be equal to estimated

UAV arrival times tarrival to fire location FL, since an earlier intervention can be thought as

beneficial to the minimization of Fx. Alternatively HM can be a weighted combination of tarrival
values and Al

i;j resource capacity values, for example,

HMj ¼ w1:tarrival þ w2

XM

i¼1

biA
l
i;j ð11Þ

where the w and b weights are constants and

w1 þ w2 ¼ 1 ;
XM

i¼1

bi ¼ 1

B. Multistage neighbourhood search (MNS)

The above MHS method examines one operator i.e. UAV, at each stage of the search process

and thus formulates sequentially the required mission vector X. In contrast, the MNS strategy

examines at each stage a relatively small subset of the X vectors space. Thus at each stage, say j,
MNS searches a subset of vectors in order to identify the one vector having minimum Fx(j)
value. This vector is then used as a “seed” vector to define the next subset to be searched in the

following (j+1) stage. The process continues for a pre-specified number of stages according to

complexity and associated search time considerations. Alternatively, a Measure of Change

(MC) of mission performance, that at stage j is a function of k previous absolute values [Fx(j) −
Fx(j − 1)] i.e.

MC ¼ f ðabsðFxðjÞ � Fxðj � iÞÞÞ; i ¼ 0; 1; 2; . . . ; k

can be defined across successive stages and used as a criterion that allows MNS to terminate

automatically whenMC��th; �th being a small threshold value. Please note that the indices i
and j used here are specific to this section only and should not be confused with the previously

used indices. As the MNS method proceeds across stages, its convergence towards a near opti-

mum solution vector X depends upon i) the initial subset of vectors and ii) the method used to

define subsequent subsets. Note that the initial subset of vectors can be selected by sampling

the search space i) randomly or ii) by using application specific knowledge. In this work a mea-

sure D(Xi,Xj) that reflects the similarity between two solutions Xi and Xj has been employed for

deriving the next stage subset of possible vectors X. When dealing with binary vectors, a conve-

nient such distance is the Hamming Distance DH. DH(Xi,Xj) is equal to the value of the differ-

ence between the number of 1s contained in Xi and Xj. Thus member vectors of the next, say
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jth subset of possible solutions differ from the binary seed vector, which has been identified in

the previous i.e. (j-1) stage as having minimum Fx, by only a 1 valued element replacing a 0 or

conversely a 0 replacing a 1. This MNS scheme, that is effectively based on the similarity condi-

tion | DH(Xi,Xj) = 1 |, is referred hereafter as MNS-1.

An alternative MNS scheme, namely MNS-2, has also been developed. In this case an initial

vector X that contains all 0 elements is used as the initial seed to generate the stage one subset

of vectors with | DH(Xi,Xj) = 1 |. In all subsequent stages the similarity measure used is | DH
(Xi,Xj) = 1 | and DH(Xi,Xj)< 0. This effectively means that at each stage of the search, say STk,
the subset under examination consists of vectors whose number of vector elements repre-

sented by 1, say STNk, is one more than the corresponding number of 1s found in the vectors

of the previous stage subset, i.e. STNk = STNk−1 + 1. MNS-2 can be therefore described as a

multistage search where at each stage an iterative search determines the most appropriate (in

terms of Fx of the remaining UAVs to be added to the mission. The process terminates when

Fx = 0 or when all UAVs have been considered.

C. SBS complexity characteristics

The main motivation in developing Sub-optimum Search (SBS) techniques is the reduction of

search complexity. Recall that the complexity of the optimal Exhaustive Search (ES) grows

exponentially with increase in the number of operators n. Complexity here is considered in

terms of the number of vectors X examined during the search process. Thus with X having size

n, an Exhaustive Search examines 2n possible solution vectors.

In contrast, the Multistage Heuristic Search (MHS) examines only up to n vectors whereas

the Multistage Neighbourhood Search -1 (MNS-1) examines up to Kn vectors, where k is the

number of stages adopted by the search. Finally the Multistage Neighbourhood Search-2

(MNS-2) scheme examines up to n(n+1)/2 vectors. Note that all of these SBS schemes have

considerably better complexity characteristics (with respect to n) than ES.

Fig 5 shows the maximum number of solution vectors X examined by the above schemes,

as a function of n. i.e. the number of candidate UAVs considered by the search. MHS offers

the lowest complexity followed by the MNS schemes. A comparison between MNS-1 and

MNS-2 depends on the number of stages K used by MNS-1. Fig 5 seems to roughly indicate

that values of K less than 5 allow MNS-1 to be less complex than MNS-2. In fact for a given

value of n the two schemes have equal complexity when K = Ke = [(n+1)/2]. MNS-1 is less

complex when K< Ke.
Note that all search schemes can be applied to both the deterministic and stochastic optimi-

zation approaches.

4. Experimental results

In order to study and compare the characteristics of the previously described UAV resource

allocation methodologies, experimentation has been carried out via computer simulation.

The performance of all schemes is considered with respect to achieved Fmin values. These are

obtained by performing experiments for 10 different firefighting scenarios and by allowing

only one resource allocation parameter to vary systematically across scenarios.

Thus Fig 6(a) provides Fmin obtained from the D = ES, D-MHS, D-MNS-1, D-MNS-2,

S-ES, S-MHS, S-MNS-1, S-MNS-2 methods with scenario parameters defined in S2 Appendix,

section B3. On top of Fmin values, text box (NE) indicates mission failure (Not Extinguished)

while absence of this box indicates mission success (Fire Extinguished). Success implies that

the FI(t) = 0 state has been achieved. Failure implies that i) at the end of the mission FI(t) is

not zero or ii) FI(t)� FIth. A value of FIth = 0.9 has been used. Variation between experiments
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is obtained here by increasing the amount of available resources for individual UAVs i.e. by

increasing uniformly the values of all elements in resource matrix A. Note that as fire suppres-

sion resource values Ai,j increase, Fmin values obtained from all methods are not always

decreasing. This is due to the fact that increasing resources can violate the resource constraints.

In four out of the ten mission scenarios the optimal D-ES scheme fails which implies that all

remaining sub-optimum schemes will also fail. In the remaining six missions, all schemes suc-

ceed in extinguishing the fire but with a varying degree of success in minimizing fire damage

i.e. Fmin values. The largest deviation from D-ES Fmin values is produced by S-MHS, see experi-

ment 3 (i.e. 15.3055). Also note that in several experiments D-MNS-2 delivers the same Fmin
values with the optimal D-ES.

It is clear from Fig 6, that the MHS method, although very efficient in terms of complexity,

yields Fmin which are considerably larger than those obtained from the MNS based methods.

This performance behaviour is applicable to both deterministic and stochastic optimization

scenarios.

The average Fmin values related to Fig 6(a) have been plotted in Fig 6(b), showing average

based performance comparison of all deterministic and stochastic schemes, and highlighting

Fig 5. Complexity comparison between ES and SBS schemes.

https://doi.org/10.1371/journal.pone.0283923.g005
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again the effectiveness of MNS-2 schemes. The schemes illustrated in Fig 6(a) select a subset of

operators (UAVs) for each experiment. In order to elaborate UAV selection in the experi-

ments, Deterministic Exhaustive Search (D-ES) results are opted as specimen. Table 1 shows

UAV selection results for ten different experiments with variations in Ai,j values. In the first

two experiments, only one UAV is excluded by the optimization process governed by (5).

Increasing resource quantities Ai,j causes two UAVs to be excluded in the third experiment,

however remaining UAVs get enough quantities of resources to achieve FI(t) = 0 state. Experi-

ments 3–8 achieve success in the mission, while experiments 9 and 10 fail since a greater num-

ber of UAVs are excluded due to constraint violation in (5). Note that a similar mechanism of

UAV selection is involved in all the other experiments, although only Fmin values and fire sup-

pression status are used to indicate the bahaviour and outcome of the optimization processes.

The effect that the standard deviation value, used in the Gaussian PDF of each type of resource,

has on the performance of the stochastic search schemes is shown in Table 2. In the first four

columns Al
i;j [SD] = 0.05 x Al

i;j [mean] whereas in the following four columns Al
i;j [SD] is set to

Fig 6. (a) Fmin and success/failure results with Ai,j resource values decreasing systematically as experiment number increases from 1 to 10. (b)

Performance comparison in terms of average Fmin values for experiments involving variations in allocated resource values. Al
i;j½SD� ¼ 0:1� Al

i;j [mean].

https://doi.org/10.1371/journal.pone.0283923.g006

Table 1. UAV Selection obtained from 10 deterministic exhaustive search experiments of Fig 6(a).

Exp. No. UAV1 UAV2 UAV3 UAV4 UAV5 UAV6 UAV7 UAV8 UAV9 UAV10

1 ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
2 ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
3 ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔
4 ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔
5 ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔
6 ✔ ✔ ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✔
7 ✔ ✔ ✔ ✔ ✘ ✘ ✔ ✔ ✔ ✔
8 ✔ ✔ ✔ ✔ ✘ ✘ ✔ ✔ ✔ ✘
9 ✔ ✔ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✘

10 ✔ ✔ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✘

https://doi.org/10.1371/journal.pone.0283923.t001
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2 x Al
i;j [mean]. All other system parameters used are the same with those used in Fig 6, see S2

Appendix, section B3. As expected, Fmin vary accordingly across experiments and systems as

compared to corresponding values in Fig 6. The average objective function values are also

given in the last row giving average based performance comparison among all schemes for two

different standard deviations.

Fig 7(a) also presents Fmin values and success / failure results for all scenarios and combina-

tions of deterministic/stochastic optimization search methods. System parameters are given in

S2 Appendix, section B4. Here however the total value of each resource Qi, that is available in

all UAV bases, is decreasing across experiments whereas again all other scenario related

parameters remain constant. This type of resource related action amplifies the effect of optimi-

zation constraints and as a result Fmin tend to increase across optimization scenarios and for

all search methods.

The superiority of MNS-2 over MNS-1 is also highlighted here and MHS remains the least

effective method. In fact MHS provides a failure result in experiments 4 and 5 (for both

D-MHS and S-MHS) whereas all other methods succeed in extinguishing the fire. This has

been indicated by a separate text box (NE) along with arrows in Fig 7(a). The accompanying

average based performance comparison is given in Fig 7(b).

In a similar way, Fig 8(a) shows the effect that UAV time of arrival tarrival has on all the

above resource allocation schemes. Here UAV tarrival values are allowed to increase uniformly

across 10 experiments. System parameters are given in S2 Appendix, section B5. Note that Fmin
are increasing as UAV arrival times are progressively delayed and only scenarios 1 to 4 manage

successfully to extinguish the fire (indicated by Ext in the Table 2). In all other scenarios the

arrival of a number of UAVs is so late that the FI(t)> FIth condition is valid and the mission is

declared as failure (indicated by NE in the Table 2). Again in Table 2, Fmin values produced by

Table 2. Fmin performance results of stochastic schemes. Ai,j resource values increase uniformly across the 10 experiments and results are given for two different Al
i;j [SD]

values.

Al
i;j½SD� ¼ 0:05� Al

i;j [mean] Al
i;j½SD� ¼ 2� Al

i;j [mean]

Exp. No. S-ES S-MHS S-MNS-1 S-MNS-2 S-ES S-MHS S-MNS-1 S-MNS-2

1 32.7489

(NE)

41.0255

(NE)

37.1054

(NE)

33.9125

(NE)

34.9217

(NE)

44.0147

(NE)

39.1013

(NE)

36.6873

(NE)

2 33.0231

(NE))

42.5937

(NE)

37.9527

(NE)

34.3619

(NE)

36.2839

(NE)

45.1552

(NE)

40.9016

(NE)

36.3902

(NE)

3 23.0528

(Ext)

37.1037

(Ext)

31.9527

(Ext)

25.8261

(Ext)

26.1054

(Ext)

39.9216

(Ext)

34.4288

(Ext)

28.7377

(Ext)

4 22.0162

(Ext)

32.1558

(Ext)

26.2463

(Ext)

23.5515

(Ext)

25.6015

(Ext)

35.5637

(Ext)

28.1452

(Ext)

26.9257

(Ext)

5 21.2996

(Ext)

26.6233

(Ext)

25.8239

(Ext)

22.1602

(Ext)

26.1052

(Ext)

29.7261

(Ext)

27.9557

(Ext)

27.7618

(Ext)

6 21.2306

(Ext)

24.9928

(Ext)

22.9015

(Ext)

22.0516

(Ext)

22.5637

(Ext)

27.4917

(Ext)

24.9144

(Ext)

23.0133

(Ext)

7 17.1545

(Ext)

25.1028

(Ext)

23.0104

(Ext)

21.5104

(Ext)

18.5068

(Ext)

27.0129

(Ext)

25.4872

(Ext)

20.2612

(Ext)

8 18.0129

(Ext)

23.0129

(Ext)

21.7210

(Ext)

19.6474

(Ext)

20.0149

(Ext)

25.6210

(Ext)

23.8198

(Ext)

21.6635

(Ext)

9 32.5283

(NE)

44.6105

(NE)

34.5244

(NE)

34.1745

(NE)

37.0682

(NE)

48.8129

(NE)

39.5379

(NE)

37.8279

(NE)

10 28.5106

(NE)

39.5735

(NE)

34.1935

(NE)

30.4842

(NE)

33.1537

(NE)

43.9120

(NE)

38.1822

(NE)

35.5941

(NE)

Av. 24.9578 33.6795 29.5432 26.768 28.0325 36.7232 32.2474 29.4862

https://doi.org/10.1371/journal.pone.0283923.t002
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MNS-2 are relatively close to those obtained from the optimal D-ES scheme and offer mission

performance advantages over all the other sub-optimal schemes. The same conclusions are

drawn by inspecting the accompanying average based performance comparison provided in

Fig 8(b).

Finally note that in all of Figs 6–8 experimental results, Fmin obtained from schemes

involving stochastic optimization are higher than the corresponding values produced by

deterministic optimization schemes. This reflects the uncertainty associated with stochastic

optimization and the fact that a number of valid and relatively low Fmin vectors X can be

declared as invalid by the stochastic optimization process.

Fig 7. (a) Fmin and success/failure results with total resource values decreasing systematically as experiment number increases from 1 to 10. (b)

Performance comparison in terms of average values for experiments involving variations in resource values.

https://doi.org/10.1371/journal.pone.0283923.g007

Fig 8. (a) Fmin and success/failure results. UAV time of arrival tarrival values are increasing uniformly as experiment number changes from 1 to 10 (b)

Performance comparison in terms of average Fmin values for experiments involving time of arrival variations.

https://doi.org/10.1371/journal.pone.0283923.g008
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5. Conclusions

The generic resource allocation optimization problem of selecting an appropriate subset of

operators in order to perform a given mission or task, has been addressed in this paper in an

innovative manner and with algorithmic efficiency and maximization of mission success being

the main drivers of this work. Furthermore, and in order to formulate this problem in a realis-

tic and application specific way, the deployment of Unmanned Aerial Vehicles (UAVs) acting

as firefighting operators in a fire extinguishing mission framework has been considered and a

mission model and associated mission performance measure have been defined. The resulting

binary variables resource allocation optimization has been formulated with respect to both

deterministic and stochastic input variables. Whereas optimization based on deterministic

input variables is conceptually straightforward, the adopted stochastic optimization approach

used in the case of stochastic variables is based on the introduction of penalty terms in the cal-

culation of mission performance.

Thus both optimal Exhaustive Search (i.e. D-ES, S-ES) and Suboptimal, Multistage discrete

non-linear combinatorial optimization (i.e. D-MHS, S-MHS, D-MNS-1, D-MNS-2, S-MNS-1,

S-MNS-1) methodologies with linear constraints, have been developed with respect to deter-

ministic and stochastic input variables.

Exhaustive Search based schemes are particularly complex and impractical when a large

value n of operators is employed. Suboptimal, Multistage search schemes attempt to provide

near optimal performance at a considerably reduced algorithmic complexity. The very simple

MHS multistage scheme has shown relatively bad performance as compared to all other

schemes (see Figs 6–8) and has been included as an extreme example taken from a possible

spectrum of methods with widely varying complexity characteristics. For instance, see Fig 6,

where the D-MHS Average Fmin is 35.17% higher than that of D-ES. Similarly S-MHS Average

Fmin is 33.38% higher than that achieved by S-ES. On the other hand the proposed suboptimal

Schemes MNS-1 and MNS-2 exhibit both relatively low complexity and a mission perfor-

mance characteristic that is often slightly worse than or equal (particularly for MNS-2) to that

provided by the complex optimal ES schemes.

Note that in all experiments and according to Fmin results, the proposed MNS-2 scheme

outperforms MNS-1. Average Fmin taken from Fig 6 indicate 8.46% and 9.38% inferior perfor-

mance for D-MNS-1 and S-MNS1 as compared to D-MNS-2 and S-MNS-2 respectively. The

corresponding percentages from Figs 7 and 8 are 3.59%, 3.56% and 2.66%, 2.31% respectively.

As a future direction, this work can be extended to communication based fully coordinated

system. Some good research articles have already been surfaced demonstrating benefits of

communicating UAVs for different applications, see for instance [32–34]. Furthermore, inclu-

sion of UAV flight dynamics and path planning is also suggested in order to enhance the

resource allocation work presented here.
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