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A B S T R A C T 

We present an application of auto-encoders to the problem of noise reduction in single-shot astronomical images and explore 
its suitability for upcoming large-scale surv e ys. Auto-encoders are a machine learning model that summarizes an input to 

identify its key features, and then from this knowledge predicts a representation of a different input. The broad aim of our 
auto-encoder model is to retain morphological information (e.g. non-parametric morphological information) from the surv e y 

data while simultaneously reducing the noise contained in the image. We implement an auto-encoder with convolutional and 

max pooling layers. We test our implementation on images from the P anoramic Surv e y Telescope and Rapid Response System 

that contain varying levels of noise and report how successful our auto-encoder is by considering mean squared error, structural 
similarity index, the second-order moment of the brightest 20 per cent of the galaxy’s flux M 2 0 , and the Gini coefficient, while 
noting how the results vary between original images, stacked images, and noise-reduced images. We show that we are able to 

reduce noise, o v er man y dif ferent targets of observ ations, while retaining the galaxy’s morphology, with metric e v aluation on a 
tar get-by-tar get analysis. We establish that this process manages to achieve a positive result in a matter of minutes, and by only 

using one single-shot image compared to multiple surv e y images found in other noise reduction techniques. 

K ey words: methods: observ ational – techniques: image processing. 
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 I N T RO D U C T I O N  

oise is omnipresent in astronomical imaging and beyond. Broadly
efined, noise is the presence of unwanted artefacts within an image
hat can both litter and obscure the true target of interest contained
ithin a given image. This may arise from both external physical

ources such as incident cosmic rays affecting the image or be internal
o the physical hardware giving rise to the image itself, including
he thermal properties of the hardware. For astronomical images,
he presence of noise can have multiple effects, including, but not
imited to, downstream false segmentation, the incorrect computation
f derived quantities such as galaxy morphology and brightness levels
fluxes, magnitudes, etc.), and the imposition of cosmic rays that may
n and of themselves be reported as true (spurious) detections within
he image. More generally, noise can cause blurred images and, in
 xtremis, ev en completely block out the intended target of an image.
his form of contamination is seen in most surv e ys, but is routinely
bserved in single-shot images (see e.g. Wright et al. 2015 ). 
In some of our earlier work, Farage & Pimbblet ( 2005 ) examined

 variety of different ways in which noise could be identified and
emo v ed from single-shot images. That work investigated a variety
f common, different algorithms to reduce the effects of cosmic
ays. We summarize the four prime ones here. Developed by Rhoads
 2000 ), the first approach is to use an IRAF (Image Reduction and
 E-mail: O.J.Bartlett-2018@hull.ac.uk (OJB); d.benoit@hull.ac.uk (DMB); 
.pimbblet@hull.ac.uk (KAP) 
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Pub
nalysis Facility) task that makes use of a linear filtering process
hat involves the image’s point spread function (PSF). This process
pplies a function to the image that is created from the difference
etween a Gaussian PSF and a scaled delta function. This identifies
he cosmic ray pixels, since they are above a certain threshold.
his algorithm iterates multiple times to ensure that any and all
osmic ray pixels are identified. Ho we ver, it is worth noting that this
rocess loses some precision when a cosmic ray is atop a target.
an Dokkum ( 2001 ) presents an alternative algorithm based on a
aplacian approach to cosmic ray identification (the L.A . COSMIC

lgorithm). This acts as an edge detection algorithm that involves
arameters including the background standard deviation, rules for
etecting neighbouring pixels of cosmic rays, and a discrimination
etween cosmic rays and target objects. Pych’s ( 2004 ) approach
ncorporates the use of histogram analysis on sections of an image.
 frame is translated across the image, from which a histogram of

he counts is interpreted. With a set threshold value, any cosmic ray
ixels and neighbouring pixels are identified and removed from the
riginal image. In turn, this creates a cosmic ray map and cleaned
mage after the process has concluded. Finally, the algorithm XZAP is
eveloped by Dickinson (see within Farage & Pimbblet 2005 ). Their
ethod applies a spatial medium filter that performs an unsharp
asking process. This identifies pixels above a certain threshold.
o we ver, this process also requires that the user manually inputs a

ection of the clear background sky and thus is dependent on input
arameters that may not be accurate. Thus, there already exist a good
umber of algorithms to select between when deciding how to tackle
oise reduction and cosmic ray rejection. 
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To determine how successful such approaches are, the nominal 
etrics of measurement for a comprehensive performance analysis 

nclude false detection rate, the quality of the reconstruction of the 
mage, and the o v erall image denoising. The results from Farage &
imbblet ( 2005 ) suggest that the density of cosmic rays in an

mage does not impact the detection efficiency of said cosmic rays.
ignificantly, it is strongly linked by the density of real objects in

he image. They find that the algorithm presented by Rhoads ( 2000 )
roduces the best performance when detecting cosmic rays, but the 
lgorithm presented by van Dokkum ( 2001 ) has a high performance
hen it comes to both detecting and cleaning. 
There are other methods of noise reduction that do not simply focus 

n cosmic ray removal for single-shot images. As noted in Waters 
t al. ( 2020 ) among many other imaging works, stacking involves
aking multiple exposures of the target and overlaying them. In doing 
o, it is possible to o v erlay each e xposure to distinguish the target
ource and the noise source (see also Zhu et al. 2009 ) and hence
emo v e the noise. Clearly though, for single-shot images or where
ransient events are of paramount importance, this is not an option. 

Roscani et al. ( 2020 ) further note various noise removal tech-
iques, such as Gaussian smoothing, bilateral filtering [as introduced 
y Tomasi & Manduchi ( 1998 ) and adapted by Banterle et al. ( 2012 )],
otal variation denoising, structure–texture image decomposition, 
nd wavelet transforms. 

In this paper, we specifically aim to address the loss in data
rom single-shot images, with application to retaining as much 
orphological image (i.e. about galaxies) as possible. The central 

uestion can be stated as follo ws: Ho w do we reduce noise from
mages while retaining the morphological structure of the target? 
here are currently multiple ways in which noise can be reduced 

rom an image, as illustrated earlier, and one newer approach is to
nvolve machine learning. 

The practical applications of machine learning techniques for 
mage processing of surv e y data are e xtensiv e. The IA C W inter
chool 2018, documented by Baron ( 2019 ), notes a plethora of topics
rom supervised and unsupervised machine learning, to e v aluation 
ethods on proposed models, and multiple supervised learning algo- 

ithms. Mahabal et al. ( 2017 ) list examples that can be used to illus-
rate the practicality of such techniques, such as showing the distinc-
ion between seven classes of variable stars using a confusion matrix. 

Here, we make use of a known machine learning algorithm 

nown as an auto-encoder. Auto-encoders have been used for 
any different applications in various different architectures. Bank, 
oenigstein & Giryes ( 2021 ) discuss the intricate details of many
f these architectures, as well as general examples of how they have
een applied. For instance, variational auto-encoders have been used 
o generate new data sets by being trained on old ones. By making
 link between labels and approximate representation of a target, 
uto-encoders have also been attached to classification models. Mao, 
hen & Yang ( 2016 ) present their auto-encoder model that reduces
oise and can reconstruct images containing unw anted artef acts. This
odel is known as a denoising model, and is the focus of our work. 
These examples can be applied to the field of astrophysics in 
any different ways. Li et al. ( 2019 ) introduce their convolutional

enoising auto-encoder to assist in the reduction of unwanted 
isturbances on the frequency dimension caused by o v erlooked 
ore ground sources, as the y attempt to unco v er signals from the
poch of reionization. 

In this work, we will detail a new approach using a no v el auto-
ncoder to address the problem of noise in single-shot images. In
ection 2 , we present a breakdown of rele v ant machine learning

opics and concepts leading up to an explanation of auto-encoders. 
ur methodology is laid out in Section 3 , with Section 4 going o v er
o w to ef fecti vely e v aluate our results in a meaningful way, both
isibly and numerically. Section 5 presents the outcome of running 
he model on our chosen data set of galaxy images. Sections 6 and 7
ontain the discussion and conclusion of the work. 

 AU TO -EN C O D E R  

imply put, an auto-encoder is a specific formation of a neural
etwork. In turn, a neural network is a model comprised of many
onnected layers containing neurons that conduct certain functions, 
s described by Monta v on, Samek & M ̈uller ( 2018 ). 

Broadly, an input is presented to the network at the input layer, and
epending on the settings of the network, certain processes are then
one. In our case, a window (filter) is passed o v er areas of our image.
t certain intervals, the window conducts a calculation on the pixel
alues found within that frame (convolutional layers). In each layer, 
he neurons receive an acti v ation from the previous layer, and then

ore calculations and processes are conducted in those layers using 
he previous layer’s results. This cascades down until the model has
eached its end and an output is obtained. 

.1 Auto-encoder model 

n auto-encoder distinguishes key features of an input, encodes the 
nput into a representation of said key features, and decodes the
epresentation to produce an output that closely resembles the input, 
s listed by Li et al. ( 2019 ). A key feature in our scenario would
e objects with different pixel intensity values compared to their 
ackground and the noise mask applied. 
One of the main components of an auto-encoder is that they possess

 ‘pinch’. In essence, the input progresses through the encoded layers
f the auto-encoder, in which the auto-encoder reduces the input into
 representation of the key features of the input. This representation
s fully realized at the pinch, or bottleneck layer, as dubbed by Bank
t al. ( 2021 ). From this pinch layer, the representation is decoded to
ain the output. The representation found in the pinch section does
ot display the features observationally, but rather as a pattern of
ixel intensities. 
Once the auto-encoder has this representation in the pinch layer, 

he entire process is reversed. The output therefore is an unsumma-
ized version of the representation found in the pinch layer, and it
esembles the input as best as possible from this. This process is
llustrated in Fig. 1 , which shows our model structure and processes
t different layers. 

With this model, we train the auto-encoder to identify key features
f an image. This permits us to obtain a denoised image using
redictions based on what the auto-encoder has been trained on 
p until this point. By inputting noisy images, we aim for the auto-
ncoder to both recognize this noise and remo v e it as an output, as
ell as remo v e an y noise contained within the original image itself.
his concept can be seen in Fig. 2 , which is a simpler version of Fig. 1 ,
ut highlights the theory of our denoising auto-encoder model. 

 M E T H O D O L O G Y  A N D  DATA  

n order to utilize an auto-encoder to its maximum potential, it needs
o be trained on a large and comprehensive data set of single-shot
mages. We elect to use single images and via data augmentation
reate a data set of said image at random orientations. 

The data that we elect to use for this purpose come from the
 anoramic Surv e y Telescope and Rapid Response System (Pan-
MNRAS 521, 6318–6329 (2023) 
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Figure 1. A summarized version of the auto-encoder model we have used. With our input layer on the left-hand side, the auto-encoder processes the assigned 
weights down to smaller and smaller layers, until it reaches the pinch layer in the centre. From this narrow neuron layer, the process is reversed, only using what 
it has attained thus far, and we reach the output layer on the right-hand side. 

Figure 2. A representation of the structure of a denoising auto-encoder. This figure illustrates the effect of imparting noise on to an image, processing said 
image through the auto-encoder, and presenting the outcome with a comparison to the original. 

S  

a  

a  

p  

o  

s  

t  

T  

o  

g  

a  

s  

b  

t  

e  

o  

v  

C  

J  

a  

t  

c  

t
 

l  

I  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/521/4/6318/7068107 by U
niversity of H

ull user on 20 April 2023
TARRS1) (PS1) surv e y, e xplained in select papers, two of which
re Chambers et al. ( 2016 ) and Waters et al. ( 2020 ). Pan-STARRS is
 wide-field imaging and data processing facility that examines and
rocesses data from various astronomical topics, from Solar system
bjects to the high-redshift quasi-stellar objects (QSOs). The initial
ystem used was labelled as Pan-STARRS1 (PS1), and the surv e y
hat this system conducted is what we will be using for our work.
he reason for using PS1 surv e y data is that we sought a large suite
f images that co v er a wide area on the sky in order to co v er a
ood range of different objects (of various intrinsic morphologies)
cross a variety of target densities that are representative of upcoming
urv e ys, as well as an e xtensiv e range of images that co v er the grizy
ands, and the kpc scale can be changed for each target so we can
NRAS 521, 6318–6329 (2023) 
est the application of the auto-encoder on different resolutions. For
xample, the Large Synoptic Survey Telescope (LSST) is due to be in
peration in the near future, and will be able to probe 100 times more
olume in the search for transient objects, as stated in LSST Science
ollaboration ( 2009 ), Bonaldi & Braun ( 2018 ), and by extension

ohnston et al. ( 2008 ), who discuss the Square Kilometer Array
nd Australian Square Kilometer Array Pathfinder (ASKAP). All of
hese undertakings will provide an abundance of data and in turn data
hallenges, all due to the fact that it will be utilizing the largest radio
elescope in the world upon completion. 

The images that we have chosen from PS1 can be seen in the
eft-hand column of Fig. 3 . These images can be found via the PS1
mage Cutout Server. In brief, they represent a broad range of target

art/stad665_f1.eps
art/stad665_f2.eps
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Figure 3. A portion of all of the images that have been applied to our 
denoising auto-encoder process. They have been subjected to asinh scale 
adjustment for display purposes, and the flux scale in count s −1 is also 
displayed. The left-hand column contains all of the single images we have 
taken from Pan-STARRS. The central column shows the resultant denoised 
images. The right-hand column shows the stacked images created in Pan- 
STARRS. Going row by row down, we see NGC 1084, NGC 7222, the Ring 
Nebula, our dense cluster, M53, UGC 477, and NGC 4308. Also displayed 
are the flux scales for the original images after they have been converted to 
256 × 256. 

Figure 3 – continued . A portion of all of the images that have been applied to 
our denoising autoencoder process. They have been subjected to asinh scale 
adjustment for display purposes, and the flux scale in count/s is also displayed. 
The left hand column contains all of the single images we have taken from 

PanSTARRS. The central column shows the resultant denoised images. The 
right hand column shows the stacked images created in PanSTARRS. Going 
ro w by ro w do wn, we see NGC 288, NGC 64 NGC 6543 and the Virgo 
Cluster. Also displayed are the flux scales for the Original images after they 
have been converted to 256x256. 
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orphologies, consisting of a spiral galaxy, a barred spiral galaxy, the
ing Nebula, a cluster of galaxies, Messier 53 – a globular cluster, a

ow-surface brightness galaxy, and an elliptical galaxy. We have also 
ncluded targets of similar nature to NGC 7222, the Ring Nebula,
ense, and M53 to test whether the auto-encoder is type dependent. 
hese targets are NGC 64, NGC 6543, the Virgo Cluster, and NGC
88. Our input images are 240 × 240 Flexible Image Transport 
ystem (FITS) image cut-outs, and the band and exposure time for
ach image can be seen in Table 1 . 

Our choice of images depended on what was available on a case-
y-case basis. For instance, certain bands for certain targets did 
ot have a full picture of said target; these images would contain
aps of missing pixels due to detector issues or non-useful pixel
reas. Therefore, with this in mind we chose images that contained a
omplete map of the target on a random basis for bands. The exposure
imes for each warp can be found in Table 1 , as well as in the header
f the fits file itself. 
A full list of the data can be found in Table 1 . For each target,

e obtain not only a final stacked image, but also an individual
bservation frame from within the stack. The stacked images are 
reated and stored in this server alongside the individual images that
ere used to create said stack. Both of these are displayed in Fig. 3 .
MNRAS 521, 6318–6329 (2023) 
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Table 1. The band and identification number of each of the single-shot images we have taken from the PS1 
image access. The stacked versions of the images used belong to the same band. 

Target Band ID RA (deg) Dec. (deg) Exposure time (s) 

NGC 1084 y 1153 .012 55786.62506 41 .450 − 7 .578 30 
NGC 7222 g 1405 .053 55799.35382 332 .716 2 .106 43 
Ring y 2069 .026 55460.27368 283 .396 33 .029 30 
Dense i 1805 .032 56817.27208 176 .662 21 .281 45 
M53 i 1725 .051 56355.61523 198 .230 18 .169 45 
UGC 477 i 1681 .087 55457.37481 11 .5547 19 .490 45 
NGC 4308 y 1971 .057 55214.62499 185 .487 30 .074 30 
NGC 288 z 717 .034 55566.20286 13 .198 − 26 .590 30 
NGC 64 g 1144 .024 56214.34293 4 .377 − 6 .825 43 
NGC 6543 y 2528 .063 55728.47759 269 .639 66 .633 30 
Virgo Cluster i 1636 .006 56002.56836 187 .697 12 .337 45 

T  

t  

i  

 

w  

s  

a  

i  

i  

i  

r  

t
 

o  

W  

a  

i
 

a  

d  

s  

f  

h  

a  

o  

h  

i  

c  

d  

t  

f  

n  

m  

r  

i  

o  

n  

t  

S  

r  

f  

P  

o  

d  

i  

r  

T  

u  

l  

R  

d  

s  

d  

r  

e  

c
 

t  

t  

b  

t  

p
 

a  

H  

t  

i
 

p  

l  

d  

p  

d  

s  

i  

d  

a  

L  

i  

t  

d  

s
 

b  

s  

l  

t  

d  

c  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/521/4/6318/7068107 by U
niversity of H

ull user on 20 April 2023
he former will ultimately give us an indicator of the resultant image
hat we want to obtain from the latter, with the strong caveat that it
s impossible to reco v er the stacked image from an individual frame.

A key point to recall here is the nature of the single-shot images
e wish to reduce noise from: for a single target during a single-shot

urv e y, there will not be a large enough data set available to train
nd test an auto-encoder on. Therefore, data augmentation must be
ncorporated. In other words, we take the input image – one of the
ndividual frames noted earlier – and from this spawn many further
mages to train with. To achieve this end, we take the images and
andomly rotate them through arbitrary angles and apply modest
ranslations to them. 

The single-frame input images may also contain noisy, transient
bjects, as would be expected from surveys such as PS1 and beyond.
e emphasize that if we input a noisy single-shot image into our

uto-encoder, our resultant output should still be similar to the input,
.e. the original noisy single-shot image. 

In order to output a cleaner image than our input, we incorporate
nd adapt the concept of a denoising auto-encoder. We divide our
ata up into training and testing, specifically a 70/30 split. These
ets are comprised of our original, noisy, single-shot images taken
rom stacks, as well as a noisier version of these images that we
ave deliberately added extra (statistically known) noise to. We have
pplied random Gaussian noise, Poisson noise, and read noise, in
rder to simulate the conditions found in single-shot images. This
as been done in other denoising projects. Vojtekova et al. ( 2020 )
ncorporate photon shot noise, dark noise, and read-out noise to
reate their short-exposure images, in which they use U-nets to
enoise said images. Roscani et al. ( 2020 ) apply Gaussian noise
o simulated surv e y images, which the y then run through different
orms of denoising algorithms to test each method’s ability to reduce
oise, detect the target source, and preserve the pixel intensity and
orphology of said target. Farage & Pimbblet ( 2005 ) present the

esults of different noise reduction models being applied to IRAF

mages, as well as real data. For their simulated images, they focus
n introducing cosmic rays, but alongside that they include Poisson
oise and read noise set at five electrons. Waters et al. ( 2020 ) detail
he detections and image processes performed by the Pan-STARRS1
cience Consortium, in which they discuss the effects of Gaussian,
ead, and Poisson noise. For these reasons presented, we chose to
ollow suit and incorporate simulated read, random Gaussian, and
oisson noise into our methodology. This co v ers noise that appears
n an image due to the transformation of signal detections to a
igital format, as well as the impact of temperatures, electronic
ssues, and the fluctuations of photons impacting the detector. For
NRAS 521, 6318–6329 (2023) 
andom Gaussian noise, we have set the noise intensity at 10 per cent.
he Poisson noise is created from the data themselves, as well as
sing a module called skimage.util . We have set the read noise
ev el to fiv e electrons of gain 2. We use a NUMPY package called
ANDOM.NORMAL to simulate read noise. It uses the probability
ensity function of the Gaussian distribution. For inputs are scale,
hape, and gain. Scale indicates the normal distribution’s standard
eviation, which is calculated by the division of the amount of
ead noise in elections and the gain of the camera, in units of
lectrons/ADU. Size simply dictates the output shape, which in our
ase we want it to be the same as its input. 

We train our auto-encoder using these two sets, each set amassing
o a total of 3000 images. From these sets, we ask the auto-encoder
o predict the output if we specify what its input would be. Having
een trained on data sets that comprise normal and extra noisy data,
his results in the auto-encoder identifying noise, and therefore its
rediction should in principle contain less noise than the input. 
Our hypothesis is that the auto-encoder will recognize noise as

n unwanted feature while preserving target features (e.g. galaxies).
ence, it should reduce not only the random Gaussian noise, but

he original noise as well, thus leaving us with an output that has an
mpro v ed signal-to-noise ratio than that or its original counterpart. 

The final issue to resolve is the well-known neural network
roblem of o v erfitting. Outlined by Sri v astav a et al. ( 2014 ), machine
earning models develop complex patterns between input and output
ata. Ho we ver, if there is a limited amount of data to produce these
atterns, these patterns only exist in the finite space between the used
ata, and cannot be applied to other data sets, even if taken from the
ame source. A way to reduce the effects of o v erfitting in our scenario
s to randomize the training and testing sets. This way, the model
oes not attribute rotation or translation as an identifiable pattern
nd risk o v erfitting. This method can be seen in Karnkawinpong &
impiyakorn ( 2019 ). Through our use of data augmentation on our

mages, this also assist in o v ercoming the o v erfitting issue. We note
hat we forgo the use of dropout layers in our model, which are
esigned to combat o v erfitting, as this is counterproductive to the
teps we have already taken with our data and model. 

Our model is adapted from a Keras example, a link to which can
e found in the Data Availability section at the end of the paper. As
een in Fig. 1 , our model contains convolutional and max pooling
ayers in the decoder and encoder sections of the auto-encoder, with
ranspose versions in the encoder section to reverse the process of the
ecoder. As stated by Lecun, Bengio & Hinton ( 2015 ), the role of a
onvolutional layer is to identify local conjunctions of features from
he previous layer in the network, and the role of a pooling layer is to
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ombine homogeneous features into one. Yamashita et al. ( 2018 ) go
nto more details on the nature of convolutional and max pooling 
ayers. They describe a convolutional layer as a key component 
or feature extraction, and the layer itself is comprised of linear 
nd non-linear operations. The linear operation in this case would 
e the convolution operation, the first step of which is creating a
eature map of the input. This is done by using different kernels
ith the tensor applied across the input. The result is a feature map

hat is an array smaller than that of the input. A parameter that
efines a convolutional operation is the size and number of kernels. 
or ours, we use a simple 3 × 3 matrix that is optimized by the
eural network. This helps describe the linear convolution operation, 
nd once set and passed through, the outputs progress through the 
on-linear section. This non-linear operation involves the acti v ation 
unction. For this, we used the rectified linear unit [detailed and used
y Lecun, Bengio & Hinton ( 2015 ) and Jia et al. ( 2019 )]. In order to
educe the dimensions of the input ef fecti v ely as it trav els through
he network, we incorporated certain pooling layers. In our work, we 
sed max pooling layers, specifically Maxpooling2D [Cire s ¸an, 
eier & Schmidhuber 2012 ; Hausen & Robertson 2020 (originally 

onceived of in Riesenhuber & Poggio 1999 )]. Max pooling keeps 
he maximum value of random patches from the feature map, and 
iscards the rest. Our max pooling layers have a window size of
 × 2. We have also incorporated Adam (Kingma & Ba 2017 ) and
inary crossentropy (Ruby & Yendapalli 2020 ) for our optimizer and 
oss functions. 

Described in its original paper by Kingma & Ba ( 2017 ), the
ptimizer is simple to put into the network, requires little memory 
o be ef fecti ve and ef ficient, good in cases of large data sets, and
andles noisy gradients well. Provided by the Keras model package, 
inary cross-entropy calculates the cross-entropy loss for a binary 
ask. Since we normalize our target images to be between 0 and 1 so
hat they can be inputted into the network, we consider intensities as
arying ways of ‘yes’ and ‘no’. In a way, we approximate it as if it
s a binary decision map, where we assume that the background is 0,
arget is 1, and everything else is in between. 

We decided to incorporate these as they are the most common 
pplications used to construct a neural network. We acknowledge 
hat while mean squared error (MSE) may have been better suited to
onstruct our model around due to its use as a metric, this is an initial
roof-of-concept piece to highlight that it can do well even with the
asic features. 

 EVALUATION  METRICS  

n order to define the ef fecti veness of our noise reduction auto-
ncoder, we must select our metrics of merit. If we have data that
ave had their noise reduced by other means, we could visually 
ompare our outcome with this. Ho we ver, this is solely based on
he human eye and what we would perceive as a difference, which is
ifferent from person to person. Furthermore, there may be segments 
hat have been removed surrounding a galaxy that may actually 
elong to the morphology of said galaxy. Thus, we need metrics 
hat can statistically identify change in noise contamination and 
imultaneously consider that less noise is a good change if the 
arget’s morphology remains intact. Accordingly, we consider and 
ncorporate a variety of metrics that include (a) the Gini coefficient; 
b) the second-order moment of the brightest 20 per cent of the
alaxy’s flux M 2 0 ; (c) MSE; and (d) structural similarity index 
easure (SSIM). 
First seen in Gini ( 1912 ), and demonstrated by Abraham, van

en Bergh & Nair ( 2003 ), the Gini coefficient is a useful tool that
an describe the o v erall morphology of all galaxy types. The Gini
oefficient measures the distribution flux on a pix el lev el throughout
he image it is analysing, as seen in the works of Tarsitano et al.
 2018 ). This can be seen as similar to the concentration metric used
n concentraction, asymetry and smoothness (CAS) (Abraham et al. 
994 ), but as noted in Cheng et al. ( 2021 ) the Gini coefficient is
ore sensitive to the small changes in pixel values. This is again

ighlighted by Abraham et al. ( 2003 ) where they measure the Gini
oefficient of local galaxies found in Sloan Digital Sky Survey, and
tate that the Gini coefficient is very similar to the measurement of
he targets’ central concentration. The difference between them is 
hat Gini identifies a significant scatter, which is due to changes in the
ean surface brightness of galaxies. First introduced in Gini ( 1912 ),

ater adapted into the field of observations by Abraham et al. ( 2003 ),
nd further described by Tarsitano et al. ( 2018 ), the equation used
o calculate the Gini coefficient, stating that a value of G = 1 means
hat all the light in an image is concentrated in one pixel, while a
alue of G = 0 means that the light has been equally distributed
cross the entire image. The formula the y pro vide is referenced in
quation ( 1 ). We note that the Gini coefficient code we have used is
ifferent to the equation we have listed here. The equation the code
s based off of can be found in the reading material listed in Section
. There, the author states that their equation is an estimate, and
hat by multiplying their equation by n /( n − 1) this gives the results
xpected from the equation listed here in this paper. Ho we ver, due
o the size of our images, the conversion results are negligible. 

 = 

1 
ˆ I n ( n − 1) 

n ∑ 

i 

(2 i − n − 1) ̂  I i , (1) 

where ̂  I is equal to the mean flux of the image pixels, ˆ I i is the flux
n the i th pixel, and n is the total number of pixels in said image, as
xplained in Povi ́c et al. ( 2015 ) as well. 

SSIM and MSE are intrinsic to the auto-encoders model, and 
herefore we e v aluate these metrics on the full image. In the cases of
ini and M 2 0 , ho we ver, we apply a segmentation map to retain the

arget and exclude the background. The segmentation map removes 
ll non-target pixels, meaning that all measurements are solely 
onducted upon the targets. We have applied this process to a number
f our targets, but we do note that value for sigma in the code is
ltered from 1.5 to 0.0 for Ring, Dense, M53, NGC 288, and the
irgo Cluster. This is due to the fact that the segmentation map is
ot designed to isolate clusters of targets, and altering this value
roduced a result that encompassed as much of the key features of
he targets as possible. For the segmentation process, we kept the
entre of the galaxy’s coordinates to be 128 × 128, and the map was
reated on the original image and then applied to the other images.
e found for most targets this position was approximate enough to

ts centre, and in the case of clusters we decided to leave the centre
alue unchanged. 

Described by Lotz, Primack & Madau ( 2004 ), M 2 0 is the second-
rder moment of the brightest 20 per cent of the target. To calculate
 2 0 , we first need to calculate M t o t , described in equation ( 2 ). 

 tot = 

n ∑ 

i 

M i = 

n ∑ 

i 

f i [( x i − x c ) 
2 + ( y i − y c ) 

2 ] , (2) 

where x i and x c represent the pixel coordinates of the selected
ixel and the pixel designated as the image’s chosen centre, all in the
 -axis. This is the same for y i and y c . f i is equal to the selected pixel’s
ntensity. 
MNRAS 521, 6318–6329 (2023) 
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Table 2. The MSE results. The closer the values are to 0, the more alike the compared images are to each other. For a positive result, we expect our denoised 
image to be most similar to the reference, or at the very least very different from the noisy image. 

NGC1084 NGC7222 Ring Dense M53 UGC477 NGC4308 NGC288 NGC64 NGC6543 Virgo Cluster 

Original versus noisy 0.0027 0.0034 0.0033 0.0043 0.0028 0.0034 0.0030 0.0046 0.0029 0.0027 0.0034 
Original versus denoised 0.0014 0.0009 0.0003 0.0105 0.0022 0.0045 0.0005 0.0000 0.0003 0.0003 0.0041 
Reference versus noisy 0.0048 0.0051 0.0035 0.0244 0.0033 0.0093 0.0050 0.0050 0.0091 0.0088 0.0261 
Reference versus denoised 0.0004 0.0006 0.0004 0.0093 0.0035 0.0005 0.0003 0.0001 0.0045 0.0025 0.0197 
Reference versus original 0.0010 0.0010 0.0003 0.0323 0.0015 0.0029 0.0006 0.0001 0.0037 0.0038 0.0252 
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Once we have calculated M t o t , we can calculate M 2 0 via equation
 3 ) below. 

 20 ≡ log 10 

(∑ 

i M i 

M tot 

)
, while 

∑ 

i 

f i < 0 . 2 f tot . (3) 

As we did with Gini, we apply the M 2 0 metric to targets that have
ndergone the segmentation map process. 
Our final pair of metrics includes the MSE metric and the SSIM.

nlike the abo v e, these are not morphological measurements in and
f themselves but a measure of the similarity of two images. 
The MSE metric finds the difference between the images by

ubtracting the pixel intensities, squaring these differences, summing
hese, and dividing the sum by the total number of pixels. An MSE
alue of zero means that both images in a pair are perfectly similar:
here is no difference in the intensity of pixels between these images.
he equation for this metric is seen in equation ( 4 ), below. 

SE = 

1 

MN 

M ∑ 

x= 1 

N ∑ 

y= 1 

[ u xy − v xy ] 
2 (4) 

As stated by Fischer, M ̈uller & De Moortel ( 2017 ), M and N
epresent sizes of the two images that are being compared, with u
nd v representing said images. x and y here indicate the coordinates
f the two images. 
SSIM views the images as a whole via the use of windows placed

 v er the image and takes in the average balance of pixels per window.
he difference between the two images via the windows formulates

he measure as a statistical measure of similarity. These windows
re of size 11 × 11 pixels, as stated by the documentation for
kima g e.metrics . Equation ( 5 ) describes how to calculate SSIM. 

SIM ( x , y ) = 

(2 μx μy + c 1 )(2 σxy + c 2 ) (
μ2 

x + μ2 
y + c 1 

)(
σ 2 

x + σ 2 
y + c 2 

) (5) 

Found in the works of Torres-Forn ́e et al. ( 2016 ) and Llorens-
onteagudo et al. ( 2019 ), c 1 and c 2 represent constants, and x and y

epresent the two images that are being compared. μx is the average
f x , and this is the same for μy and y . This is also the case with σ 2 

x ,
ith this being the variance of μx . Noted in Wang et al. ( 2004 ) and
hou & Bovik ( 2009 ), the constants are for the purpose of stabilizing

he equation in the situation where certain values approach zero.
hese constants are derived from the range of pixel values used, as
ell as another constant that is less than or equal to one. Finally, σ xy 

s the covariance of x and y . For the results of the metric, if the value
f the compared image is closer to 1, the images are more similar. If
hey are closer to 0, they are more different. 

 RESULTS  

ere, we present the visual and statistical results of our work. From
ere, we have our original image (the single-shot image taken from
 stack found in PS1), the denoised image that is the resultant of the
NRAS 521, 6318–6329 (2023) 
uto-encoders processing of the noisy image, which is the original
mage with artificial noise placed upon it, and our reference image
the stack image taken from PS1). 

First, we observationally examine the results of our own work
efore referring to the metrics used. Nearly all of the images can
e seen to have an impro v ement in noise reduction and target
orphology structure. While we knew noise could not be completely

emo v ed from a single-shot image, the reduction of noise across all
f the images is evident. Prime examples of this can be seen with
GC 1084, M53, UGC 477, NGC 4308, NGC 64, NGC 6543, and

he Virgo Cluster. All of the other targets also exhibit this, but not as
rominently. One worth noting is our dense cluster image can still be
een with some amount of noise, but it has done well in highlighting
he targets scattered throughout the image. We believe that it did
ot do as well with noise reduction as a result of the pixel intensity
f the targets being too low, and the noise atop them being too
rominent, that the auto-encoder struggled somewhat telling them
part. 

In terms of MSE, we refer to Table 2 , where we have to bear
n mind two things: that the closer the value is to zero, the more
like the images are in terms of MSE, and that even if the difference
n values is small, this still resembles a change. For NGC 1084,
e see that the lowest value belongs to the comparisons between

eferenced and denoised, implying that our denoised image resembles
he stacked image more so than the original image. This means
hat our denoised method has done its job correctly in terms of

SE and reduced noise down significantly compared to its original
tate, while retaining the targets morphology. This scenario can also
e seen for NGC 7222, Dense, UGC 477, and NGC 4308. M53’s
enoised image is not as similar to our reference image than our
oisy or original image is, and this may be due to the multiple targets
hat make up the image, or that our denoised M53 image has a
oticeable difference in pixel intensity compared to its original and
oisy counterpart. Our denoised Ring image is not quite as close to
he reference image than our original image, and this could be again
ue to pixel intensity differences in each image. The original versus
enoised, reference versus denoised, and reference versus original
esults for NGC 288 are all very close. There are less point sources
ompared to similar targets we hav e observ ed, such as M53, and this
ould be why the difference between results is so small. For the case
f NGC 64, our denoised image resembles the original image more
o than the reference image. The reference image, ho we ver, has less
ixel intensity in the ring and bar of the galaxy compared to what we
an see in the original and denoised images. Therefore, this could
e a reason why our denoised image is more similar to our original
mage. This is the same for NGC 6543. For the Virgo Cluster, we
an see that our denoised image is more like the reference image
pposed to comparing the original image to the reference image.
mplying noise has been reduced o v erall. 

Results for the SSIM metric are shown in Table 3 . Similar to when
e discussed the MSE results, we restate that if the resultant value
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Table 3. The SSIM results. Comparing images under the SSIM metric produces these results, where if the value is closer to 1 the more similar the images are to 
each other. Having a denoised image be more similar to the reference image, and/or for the denoised image to be very different from the noisy image is evident 
our model is functioning correctly. 

NGC1084 NGC7222 Ring Dense M53 UGC477 NGC4308 NGC288 NGC64 NGC6543 Virgo Cluster 

Original versus noisy 0.62 0.51 0.48 0.77 0.55 0.59 0.55 0.19 0.62 0.61 0.78 
Original versus denoised 0.90 0.70 0.86 0.59 0.85 0.36 0.84 0.98 0.93 0.97 0.62 
Reference versus noisy 0.50 0.36 0.48 0.37 0.64 0.26 0.29 0.14 0.34 0.11 0.36 
Reference versus denoised 0.97 0.89 0.85 0.65 0.71 0.88 0.96 1.00 0.65 0.35 0.60 
Reference versus original 0.89 0.91 0.99 0.44 0.94 0.56 0.75 0.99 0.64 0.28 0.47 

Figure 4. The Gini results for all targets after the segmentation map process: the original image, denoised image, and reference image. Due to each target being 
significantly different in morphology and intensity, we focus more on the relationship of each target’s image, rather than a comparison of targets as a whole. 
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s closer to one, the more similar the images are to each other for
his metric. Our denoised results are most similar to the reference 
mages in the cases of NGC 1084, Dense, UGC 477, NGC 4308,
nd NGC 288. Therefore, the noise reduction on these targets when 
sing SSIM as a metric of comparison has been a success. NGC 7222
as our denoised image and our original image being very similar to
he reference, with the original being slightly more similar. This is
lso seen somewhat in for Ring and M53. A potential reason for this
ay be again due to the intensities in the denoised images. It may

e also due to the size of the windows used, as these cases contain
he least objects in their images. NGC 64, NGC 6543, and the Virgo
luster show that the denoised image is more similar to the reference

mage compared to the original image. Ho we ver, the denoised image
s more similar to the original image. We still see this in a positive
ight in that with the reference as a benchmark the denoised image
as impro v ed o v er the original image. 

With the Gini coefficient, we recall that G = 0 equates to each
ixel in the image containing the same level of intensity, and G = 1
quating to a single pixel containing all of the intensity in said image.
his metric is slightly more in depth as we e v aluate each image as
 separate case due to its morphology and intensity; on average, 
ow-intensity galaxies should have a Gini coefficient closer to 0, but 
ith noise this may be higher or lower depending on the form of
oise found. In our case, our noise is spread throughout the image,
o in most situations the noise should lower our Gini values. For the
ase of potentially increasing the Gini value, cosmic rays would be 
 prime example. In an attempt to combat this, we only apply Gini
o the versions of the targets that have undergone the segmentation 
ap process. We therefore briefly examine each case individually. 
hese results can be cross-examined with Fig. 4 and Table 4 . The
 t  
lot sho ws ho w the denoised image of a target tends to resemble
ither the original or reference image. 

(i) NGC 1084: The denoised Gini value lies in between the original 
ini value and the reference Gini value. The separation between the
alues is near ev en. Howev er, the denoised value is slightly closer to
he reference value. This is a positive trend; it is more similar to our
eference image than our original image. 

(ii) NGC 7222: Here, we see that the denoised target has the
ighest Gini value in this case. However, it is closer to the reference
alue than the original value. Therefore, while not in between the
riginal and reference values, the fact that the denoised value is
losest to the reference value is still seen positively. 

(iii) Ring Nebula: The Gini value of our denoised Ring Nebula 
gain is closest to the reference value than the original. This implies
hat, in terms of this metric, the image that has been denoised from
he auto-encoder process is more similar to the reference image 
roduced by stacking, compared to the original single-shot image 
ontaminated with noise. 

(iv) Dense cluster: The denoised Gini value is one of the lowest.
he reason for this is unclear. Perhaps the amount of sources with
arying intensities confused the auto-encoders performance with 
ight concentration. That taken with the fact that the segmentation 
ap highlighted multiple point sources tells us that the denser the

arget image, the more the auto-encoder may struggle. 
(v) Messier 53: The denoised value is one of the highest here,

mplying that the noise around the target point sources has been
educed, making each point source contain more pixel intensity over 
he entire image. Ho we ver, it is also closer to the original Gini value
han the reference value. Coupled with our discussion on the dense
MNRAS 521, 6318–6329 (2023) 
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Table 4. The Gini results when calculated on the segmentation map of the original target. This means only the target is considered, not background or non-target 
objects. Each target is discussed individually, but again we aim for our denoised image to be as close to the reference image as possible. Values approaching 0 
means that the intensity of the pixels in the image is more spread out o v er the whole image, and values approaching 1 means that the intensity of the pixels in 
the image is all contained in one pixel. 

NGC1084 NGC7222 Ring Dense M53 UGC477 NGC4308 NGC288 NGC64 NGC6543 Virgo Cluster 

Original 0.201 0.296 0.134 0.117 0.531 0.135 0.307 0.586 0.178 0.323 0.132 
Denoised 0.213 0.391 0.193 0.124 0.587 0.225 0.341 0.755 0.185 0.326 0.122 
Reference 0.222 0.361 0.143 0.152 0.491 0.185 0.410 0.707 0.217 0.425 0.142 

Table 5. The M 2 0 results when calculated on the segmentation map of the original target. This means only the target is considered, not background or non-target 
objects. We e v aluate each target individually, and compare the result trends with the Gini segmentation results. 

NGC1084 NGC7222 Ring Dense M53 UGC477 NGC4308 NGC288 NGC64 NGC6543 Virgo Cluster 

Original −1.710 −1.926 −0.693 −0.754 −0.666 −0.966 −1.993 −0.681 −1.513 −1.080 −0.698 
Denoised −1.734 −2.095 −0.684 −0.780 −0.676 −0.696 −2.095 −0.690 −1.681 −1.082 −0.689 
Reference −1.743 −1.992 −0.678 −0.931 −0.663 −0.896 −2.092 −0.685 −1.518 −0.986 −0.671 
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luster , future in vestigations and considerations for this type of target
hould be implemented. 

(vi) UGC 477: The Gini value lies higher than the original and
eference v alues. Ho we ver, like NGC 7222 and the Ring Nebula, the
enoised value is closer to the reference value. Once again, we take
his as a positive result. 

(vii) NGC 4308: This is a similar case to NGC 1084; ho we ver,
he separation between the original and reference values is greater.

e also see that the denoised value fa v ours slightly more towards
he original value. With that said, it still lies between the two other
alues, and therefore this is a positive result. 

(viii) NGC 288: The denoised value is abo v e, but closest to, the
eference value, and there is a large separation between them and the
riginal value, with the original value being much lower. This would
mply that noise has been reduced on the entire target and the point
ources are clearer since they would contain the majority of pixel
ntensities across the target image. 

(ix) NGC 64: We see that the denoised value lies in between the
eference and original values. While fa v ouring the original, this is
till a positive result. This, however, is evidence to back our claim that
ur auto-encoder model can reduce noise significantly on a single
mage, but will not be able to fully achieve the clarity that stacking
an provide most of the time. 

(x) NGC 6543: Similar to previous targets, the denoised value lies
n between the original and reference values, but greatly fa v ours the
riginal value. We therefore see this as a positive result overall. 
(xi) Virgo Cluster: The only denoised Gini value that is below the

riginal and reference values, seen in a similar manner to our dense
arget, wherein multiple targets with a considerable amount of noise
lready on the image result in the auto-encoder being o v erwhelmed.

The results from the Gini metric show that the model works
s intended, to reduce noise across the image. A point for future
xperimentation is the effect it has on the intensity of the target
ixels. In certain cases, this is not seen, and in others it is. This may
e due to the morphology of the target. Narrowing down what targets
his is seen on would be an interesting step forward in the future, as
t seems certain that clusters are prone to this, whereas ellipticals and
pirals are not. The results of Gini when applied to the segmentation
aps of the targets reinforce this point, as well as the M 2 0 results

emonstrate a positive trend. 
As the M 2 0 metric allows us to evaluate how the intensity of a

arget is distributed while considering the target’s total pixel intensity
NRAS 521, 6318–6329 (2023) 
pread for a certain total percentage, we conduct our M 2 0 e v aluation
pproach to that of our Gini e v aluation; a positi v e result involv es the
enoised value being in between the original and reference values
nd/or closer to the reference value. We will once again discuss
ach target individually. Results for M 2 0 can be seen in Table 5 . We
ecognize that this process is not designed for certain targets, such
s clusters, and have altered the settings of the code to account for
his as much as we could. 

(i) NGC 1084: The denoised value lies between the original and
eference values. Better still, it is closer to the reference value. This is
n ideal result, and therefore a success for this target when examined
y this metric. 
(ii) NGC 7222: Here, we see that the denoised value has exceeded

ast the original and reference v alues. Ho we ver, it is closest to the
eference value, and we can take this as a positive result. This follows
ts Gini counterpart in a similar trend, and this could mean that for
his target the pixel intensity is preserved for the morphology of the
arget in the segmentation map, but due to the map being taken from
he original image this provides different features to be highlighted
nd considered. 

(iii) Ring Nebula: We see that the denoised value lies between the
riginal and reference values. Also, we can see that it is closest to the
eference value, and therefore meets the criteria for the ideal case of
enoising. 
(iv) Dense Cluster: Similar to some previous targets, the denoised

alue lies between the original and reference v alues. Ho we ver, in this
ase it is closer by a significant amount towards the original value.
his is still a positive result based on its position still. 
(v) M53: The denoised value is closest to the original value, and

ot in between the original value and reference value. The difference
etween all values is small compared to other targets, however.
53’s segmentation map has also been altered to capture as much of

he point sources as possible. Therefore, while we acknowledge the
esult, we also state that this examination is not ideal for this target
ype. Investigations into auto-encoder application for clusters would
e needed in a future paper, as well as potential other metrics specific
o this type of target. 

(vi) UGC 477: Here, we see that the denoised value is not in
etween the original and reference values, but it is closest to the
eference value. We do note the larger difference between the
enoised and reference values and the original and reference value,
ven though we also consider this to be an overall positive result. 
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Figure 5. A collection of targets that have been created via image subtraction 
and division. The denoised has been subtracted by the reference image in order 
to get the resulting images in the left-hand column. The right-hand column is 
created by taking the images from the left-hand column and dividing them by 
the original images for each respective target. This shows an o v erall reduction 
of noise while not affecting the target’s structure. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/521/4/6318/7068107 by U
niversity of H

ull user on 20 April 2023
(vii) NGC 4308: We see a positive position for the denoised value, 
herein it is extremely close to the reference value. Even though it

s not in between the original and reference values, it is so close to
he reference that we can see this in a positive position. 

(viii) NGC 288: The denoised value is the lowest for this target, 
ut closest to the reference value. We can see that the original and
eference values have a smaller separation compared to the denoised 
nd reference values, but compared to other targets these differences 
re minuscule. 

(ix) NGC 64: In a similar position to its comparative part- 
er, NGC 7222, the denoised value is closest to the reference 
alue, but is separated greatly from said reference value. Again, 
ue to its comparative partner, we suggest future papers to 
nvestigate the denoising effect on pixel intensities for such 
argets. 

(x) NGC 6543: Here, the original and denoised values are ex- 
remely close together. As well as that, the denoised value is not
n between the original and reference values. The reference image 
s drastically different to the original, and as much as the auto-
ncoder has remo v ed noise, it cannot achieve the same results as the
tacking process with only one image at its disposal. Ho we ver, we
eiterate its abilities to denoise targets to such an extent with only
ne image available to it, while preserving the target’s pixel intensity 
nd morphology. 

(xi) Virgo Cluster: The denoised value is in between the original 
nd reference values, but is closer to the original value. Therefore, 
ven for this cluster, we see a positive result. 

Alongside our metric results, we have decided to include a sub-
raction and division figure to show what is being retained and what
s being dismissed during our noise reduction process. Specifically, 
e investigate into whether low-surface brightness features of targets 

re still present after the denoising process. This is seen in Fig. 5 .
e can see that for most cases the targets are preserved, while noise

cross the images has been reduced. There are a few cases where
he structure has been affected slightly, such as NGC 6543, but in
ummary the process has made a positive impact. 

We also investigated what the auto-encoder would produce if we 
ncreased the size of the image to include more of the target. In
he case of NGC 1084, for example, we recognize that some of the
arget’s morphology is cut off at the top and bottom of the image. We
elt that this would be important to investigate into, but also difficult
o address for the large-sized galaxies that form part of the sample.
s we expand the image size and increase the kpc scale to include
ore of the target, the images invariably encounter chip edges due 

o the CCD. These chip edges are very significant for single-shot
mages as they can dramatically influence the outcomes of metrics 
e.g. M 2 0 ) and are problematic to remo v e in a clean manner without
lso clipping the image down. Hence why we have gone for Pan-
TARRS’ default 240 × 240 dimensions. With all this stated, we 
ave managed to find a target where this issue is not as dramatic and
mpactful. We have investigated into NGC 64 by doubling the size 
f the image and rerunning our approach on this version of the target
hat now contains more of the target within it. We report our results in
able 6 and show the difference between the two versions in Fig. 6 .
e note that the trends seen in the 480 × 480 version broadly line

p with the trends seen in 240 × 240. Indeed, this is expected since
e are not comparing absolutes, but instead the differentials, and 

hus clipping the sizes of images should not dramatically alter the 
ifferential comparisons made. 
Each target has been discussed on a case-by-case basis, but it is

orth noting the general positive outcome of noise reduction, with 
MNRAS 521, 6318–6329 (2023) 

art/stad665_f5a.eps


6328 O. J. Bartlett et al. 

MNRAS 521, 6318–6329 (2023) 

Figure 5 – continued . 

Table 6. The metric results for NGC 64 when the kpc of the target image 
has been increased, and the input dimensions are 480 × 480 instead of 240 ×
240. Increasing the dimensions shows more of the image, but also displays 
chip edges of the CCD used during the surv e y. We also note that we keep the 
auto-encoder settings the same, meaning a 480 × 480 image is downscaled 
in resolution to 256 × 256 (input layer dimensions). 

240 × 240 
NGC64 

480 × 480 
NGC64 

MSE – original versus noisy 0 .0029 0 .0026 
MSE – original versus denoised 0 .0003 0 .0066 
MSE – reference versus noisy 0 .0091 0 .0191 
MSE – reference versus denoised 0 .0045 0 .0052 
MSE – reference versus original 0 .0037 0 .0194 
SSIM – original versus noisy 0 .62 0 .67 
SSIM – original versus denoised 0 .93 0 .74 
SSIM – reference versus noisy 0 .34 0 .37 
SSIM – reference versus denoised 0 .65 0 .86 
SSIM – reference versus original 0 .64 0 .56 
Gini – original 0 .178 0 .242 
Gini – denoised 0 .185 0 .271 
Gini – reference 0 .217 0 .355 
M 2 0 – original − 1 .513 − 1 .210 
M 2 0 – denoised − 1 .681 − 1 .174 
M 2 0 – reference − 1 .518 − 1 .151 

Figure 6. The single-shot image (warp) of NGC 64 when the kpc scale has 
been changed. On the left is the version used alongside the other targets in 
our work, and on the right is a larger image containing more of the target, but 
also chip edges due to the CCD. 
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ositive signs for morphology and pixel intensity preservation on a
ase-by-case basis. 

 DI SCUSSI ON  

n terms of time, the process o v erall takes approximately 5 min 30 s.
he data implementation and augmentation takes a total of 1 min,
nd the auto-encoder process takes just under 4 min. This is with
he code set for developing 3000 images in total, and running the
uto-encoder with an epoch of 20 iterations. This is also taking into
onsideration that we are running this on GOOGLE COLAB PRO , which
s able to provide approximately 27 GB of RAM, operating on a
esla T4 or P100 GPU and/or Intel R © Xeon R © CPU. 
To take this initial project further would mean investigating into

raining the network on multiple images of galaxies at once. As it
tands now, we train it on one image and then reset the network once
e have the results. Therefore, the next logical step would be for the
etwork to retain the information of multiple galaxy formations, so
hat it could be used in a pipeline. With how it has performed thus
ar, we cannot see any major issue with this potential future for the
 ork. It w ould also be beneficial to investigate into the removal of

rtefacts, and set a goal to preserve target pixel intensity more so than
as been addressed in this proof of concept. Another application of
his model that could coincide with the implementation of multiple
alaxy formation recognition would be the use of alternate inputs.
urrently, we have only applied our model to images in the grizy
ands, but this can be expanded upon to take in new images from other
lters and wavelengths. The next logical step then would be to supply
adio inputs and see what the model makes of those. This would lead
ell into this model being integrated into future surv e y pipelines. As
entioned before, LSST and ASKAP are planned surv e ys due to be in

ull operation in the near future. Since these surv e ys will be observing
ifferent fields of view, different depths, and at different wavelengths,
his would be an ideal opportunity to expand our model’s capabilities
nd parameters while also establishing it in a live survey setting.
nother avenue to take with this project is to apply different target

ormations to the model. These could range from being more varied in
rder to distinguish key features among many different formations,
r the project could be to see whether any specific feature among
ifferent targets of the same formation is more important than others,
r have noise reduced upon it more so than other features. 

 C O N C L U S I O N S  

e have managed to use a machine learning model to reduce the
ffect of noise on single-shot image targets. This has been achieved
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hanks to an auto-encoder, a machine learning model. This model 
ummarizes an input image and reconstructs the image based on the 
ummarized data it created. Using this concept, our auto-encoder has 
een trained to identify noise on transient images and leave out as
uch as it can identify during the auto-encoder process. This process

as been applied to a variety of transient images from Pan-STARRS,
he results of which have been measured by appearance to the user,
s well as using measures of metrics such as SSIM, MSE, and Gini.
verall, we see an improvement in the denoised images compared to 

heir original state, during which we also compare our denoised 
mages to an alternate cleaned image created via stacking. Our 
pplication of an auto-encoder has achieved these noise reduction 
esults in a short amount of time, as well as with the input of a single
ransient image. This is an impro v ement compared to stack cleaning.

Due to the nature of the data and how we are processing them
hrough the auto-encoder, our results cannot hope to achieve the 
ame levels of noise reduction as previously mentioned methods. In 
ight of this, we still brand this as a new technique for noise reduction,
tating that this process takes a small amount of time and processing
ower to achieve desirable results, and with the main feature being 
hat it uses only one single-shot image, whereas for example stacking 
equires multiple, this process is one to be further implemented into 
ngoing surv e y pipelines. 
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ur auto-encoder model is adapted from the example produced by 
ERAS , which can be found at keras.io . The data augmentation was

nspired by towardsdatascience.com . The data we used can be found 
ia the PS1 Image Cutout Service website. Our model can be found
n our GitHub repository, wherein you can find the PYTHON code 
ontaining the image preparation, data augmentation, auto-encoder 
odel, and metrics we have used, as well as the data we have used. 
Noise calculations are derived from mwcraig.github.io , and are 

isted in the source code for this project. The MSE code can be found
t pyimagesearch.com , the SSIM code at scikit-image.org , and the 
ini code at Github.com with a supplementary explanation of their 
ork found at st at sdirect.com . 
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