Edge proximity conditions for extendability in regular bipartite graphs

R.E.L. Aldred,
Department of Mathematics and Statistics
University of Otago, P.O. Box 56, Dunedin, New Zealand.
e-mail: raldred@maths.otago.ac.nz
Bill Jackson,
School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, England.
e-mail: b.jackson@qmul.ac.uk
Michael D. Plummer,
Department of Mathematics, Vanderbilt University, Nashville,TN 37215, U.S.A.
e-mail: michael.d.plummer@vanderbilt.edu

Abstract

Let m and r be positive integers with $r \geq 3$, let G be an r-regular cyclically $((m-1) r+1)$-edge-connected bipartite graph and let M be a matching of size m in G. In [10], Plummer showed that whenever $r \geq m+1$, there is a perfect matching of G containing M. When $r=3$, Aldred and Jackson [1], extended this result to the case when $m+1 \geq r=3$ by showing there is a perfect matching in G containing M whenever the edges in M are pairwise at least distance $f(m)$ apart where $$
f(m)= \begin{cases}1, & m=2 \\ 3, & 3 \leq m \leq 4 \\ 4, & 5 \leq m \leq 8 \\ 5, & m \geq 9\end{cases}
$$

In this paper we relax the condition that $r=3$ and the distance restriction introduced by Aldred and Jackson to show that, for $m \geq$ $r \geq 3$ and G an r-regular cyclically- $((m-1) r+1)$-edge-connected

bipartite graph, for each matching M in G with $|M|=m$ and such that each pair of edges in M is distance at least 3 apart, there is a perfect matching in G containing M.

1 Introduction

Throughout this paper the graphs considered will be finite simple graphs. A graph G with at least $2 m+2$ vertices is said to be m-extendable if for each set $M \subset E(G)$ of m independent edges in G, there is a perfect matching F of G with $M \subset F$. We also say that a given set $M \subseteq E(G)$ extends to a perfect matching in G if there is a perfect matching F of G with $M \subset F$.

Perfect matchings in r-regular bipartite graphs have been extensively studied. It is well known, for example, (c.f. König $[5,6]$) that every r-regular bipartite graph is r-edge-colourable and hence 1-extendable. See, for example, [2] - [11] for other results in this area.

Plummer [12] showed that an m-extendable graph must also be k-extendable for all $0 \leq k \leq m$ and also, if G is an m-extendable graph, then G must be $(m+1)$-connected. Thus an r-regular graph cannot be r-extendable. Indeed, in the case of an r-regular graph G with $|V(G)| \geq 2 r+2$, we can select any vertex $v \in V(G)$ and readily find a matching M with $|M| \leq r$ such that $N_{G}(v) \subseteq V(M)$ and $v \notin V(M)$. Clearly such a matching M cannot extend to a perfect matching of G.

There exist r-connected r-regular bipartite graphs which are not even 2extendable. To see this we can take two copies of $K_{r, r-1}$, one black dominated and the other white dominated. Form an r-connected r-regular bipartite graph G by joining these two graphs by a matching between r black vertices of the first copy of $K_{r, r-1}$ and the r white vertices of the second copy of $K_{r, r-1}$. Clearly no pair of edges in this matching can be included in a perfect matching of G.

While the connectivity of an r-regular graph is bounded above by r, there is no upper bound on the cyclic edge-connectivity of an r regular graph and we may ask whether the extendability of r-regular bipartite graphs increases with their cyclic edge-connectivity. This was confirmed, for $m \leq r-1$ by the following result of Plummer [10].

Theorem 1.1 Let G be an r-regular bipartite graph with $r \geq m+1$ for some positive integers m and r. Then G is m-extendable if the cyclic edgeconnectivity of G is at least $(m-1) r+1$.

This result is best possible since no r-regular graph can be m-extendable for $m \geq r$. Moreover, Plummer [10] showed that the cyclic edge-connectivity requirement is also sharp.

We will consider which m-tuples of edges in a given r-regular bipartite graph do extend to perfect matchings when $m \geq r$. To do this we must rule out the possibility that our m-tuple covers all vertices in the neighbourhood of a single vertex. Clearly, we cannot exclude this possibility with cyclic edge-connectivity alone.

In [1], Aldred and Jackson considered cubic bipartite graphs of high cyclic edge-connectivity with the additional requirement that the edges we want to extend to a perfect matching are pairwise suitably far apart. For edges $e, f \in E(G)$, we define the distance, $\operatorname{dist}(e, f)$ to be the length of a shortest path in G joining an end-vertex of e to an end-vertex of f. Using this idea, they established the following theorem.

Theorem 1.2 Let G be a cyclically $(3 m-2)$-edge-connected cubic bipartite graph and let M be a matching in G with $|M|=m \geq 2$. If for each pair of distinct edges $e, f \in M$, $\operatorname{dist}(e, f) \geq f(m)$, then M is contained in a perfect matching of G, where

$$
f(m)= \begin{cases}1, & m=2 \\ 3, & 3 \leq m \leq 4 \\ 4, & 5 \leq m \leq 8 \\ 5, & m \geq 9\end{cases}
$$

The sharpness of Theorem 1.2 with respect to the cyclic edge-connectivity requirement was demonstrated in [1]. Our main result in this paper, Theorem 3.1, extends Theorem 1.2 to r-regular bipartite graphs for all $r \geq 3$ and shows that the distance constraint on the edges of M can be replaced by the much simpler condition that no vertex of G is adjacent to $r-1$ end-vertices of edges in M.

2 Preliminaries

Given a graph G and disjoint proper subsets $U, W \subset V(G)$ we use $E(U, W)$ to denote the set, and $e(U, W)$ the number, of edges of G from U to W. An edge cut of G is a set of edges of the form $E(U, \bar{U})$, where $\bar{U}=V(G) \backslash U$. The edge cut $E(U, \bar{U})$ is cyclic if both $G[U]$ and $G[\bar{U}]$ contain cycles. The graph G is cyclically k-edge-connected if each cyclic edge cut of G has size at least k. We say that an edge cut K covers a matching M of G if each edge of M either belongs to K or is adjacent to an edge of K. The matching M is minimally non-extendable in G if M is not contained in a perfect matching of G, but $M-e$ is contained in a perfect matching of G for all $e \in M$.

Lemma 2.1 Let G be an r-regular bipartite graph and let M be a matching in G with $|M|=m$. Suppose M is minimally non-extendable in G. Then there is an edge cut K of G which covers M and is such that

$$
|K| \leq \begin{cases}m(r-1)-r+\theta, & r \text { odd } \\ m r-r, & r \text { even } .\end{cases}
$$

where $\theta=|M \cap K|$.
Proof. Let (B, W) be the bipartition of G and $M=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$. Let $e_{i}=b_{i} w_{i}$ for each $e_{i} \in M$ where $b_{i} \in B$, and let $M_{B}=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$, $M_{W}=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$. Since M is not contained in a perfect matching of $G, H=G-M_{B}-M_{W}$ contains no perfect matching. By Hall's theorem, there exists a 'Hall set' $X \subseteq V(H) \cap B$ such that $\left|N_{H}(X)\right|<|X|$.

Since $|B|=|W|$ we also have $\left|N_{H}(Y)\right|<|Y|$ for $Y=W \backslash\left(M_{W} \cup N_{H}(X)\right)$. We shall analyze the structure of G based on the Hall sets X and Y for H. To this end we let $R_{B}=X, R_{W}=N_{H}(X), L_{B}=B \backslash\left(M_{B} \cup R_{B}\right)$ and $L_{W}=W \backslash\left(M_{W} \cup R_{W}\right)$, see Figure 1. It follows from the facts that G is r-regular and bipartite and $M-e$ is contained in a perfect matching of G for all $e \in M$, that $\left|R_{B}\right|=\left|R_{W}\right|+1,\left|L_{W}\right|=\left|L_{B}\right|+1, M_{W} \subseteq N_{G}\left(R_{B}\right)$ and $M_{B} \subseteq N_{G}\left(L_{W}\right)$. Let $e\left(L_{B}, R_{W}\right)=\rho, e\left(M_{B}, R_{W}\right)=\lambda, e\left(M_{B}, L_{W}\right)=\sigma$, $e\left(M_{W}, R_{B}\right)=\tau, e\left(M_{W}, L_{B}\right)=\kappa$, and $e\left(M_{W}, M_{B}\right)=m+\alpha$. Finally let

$$
S=\left\{v \in M_{B}: e\left(v, L_{W}\right) \geq\left\lceil\frac{r+1}{2}\right\rceil\right\}, s=\sum_{v \in S} e\left(v, L_{W}\right)
$$

and

$$
T=\left\{v \in M_{W}: e\left(v, R_{B}\right) \geq\left\lceil\frac{r+1}{2}\right\rceil\right\}, t=\sum_{v \in T} e\left(v, R_{B}\right) .
$$

We first consider the edge cuts $K_{1}=E\left(L_{W}, M_{B}\right) \cup E\left(L_{B}, M_{W}\right) \cup E\left(L_{B}, R_{W}\right)$ and $K_{2}=E\left(R_{B}, M_{W}\right) \cup E\left(R_{W}, M_{B}\right) \cup E\left(R_{W}, L_{B}\right)$. Then $\left|K_{1}\right|=\sigma+\kappa+\rho$ and $\left|K_{2}\right|=\tau+\lambda+\rho$. We next modify K_{1}, K_{2} as follows. For each vertex $v \in S$ replace $E\left(v, L_{W}\right)$ in K_{1} by $E\left(v, M_{W} \cup R_{W}\right)$ to form K_{1}^{\prime} with $\left|K_{1}^{\prime}\right|=\sigma+\kappa+\rho-2 s+|S| r$. Similarly for each vertex $v \in T$ replace $E\left(v, R_{B}\right)$ in K_{2} by $E\left(v, M_{B} \cup L_{B}\right)$ to form K_{2}^{\prime} with $\left|K_{2}^{\prime}\right|=\tau+\lambda+\rho-2 t+|T| r$. This gives us the following identity for $\left|K_{1}^{\prime}\right|+\left|K_{2}^{\prime}\right|$.

$$
\begin{align*}
\left|K_{1}^{\prime}\right|+\left|K_{2}^{\prime}\right| & =\sigma+\kappa+\tau+\lambda+2 \rho-2(s+t)+r(|S|+|T|) \\
& =2(r-1) m-2 \alpha+2 \rho-2(s+t)+r(|S|+|T|) . \tag{1}
\end{align*}
$$

As we are trying to establish the existence of a 'small' edge cut which covers M, we shall bound the sizes of s and t from below, starting with s. To

Figure 1: The structure of the graph G in Lemma 2.1.
do this, we consider $e\left(M_{B}, W\right)$.

$$
\begin{aligned}
e\left(M_{B}, W\right) & =r m \\
& =e\left(M_{B}, M_{W}\right)+e\left(M_{B}, L_{W}\right)+e\left(M_{B}, R_{W}\right) \\
& =m+\alpha+s+e\left(\left(M_{B} \backslash S\right), L_{W}\right)+\lambda .
\end{aligned}
$$

Rearranging this gives us

$$
e\left(\left(M_{B} \backslash S\right), L_{W}\right)=(r-1) m-s-\alpha-\lambda .
$$

Since $e\left(\left(M_{B} \backslash S\right), L_{W}\right) \leq\left\lceil\frac{r-1}{2}\right\rceil(m-|S|)$ by the definition of S, we have

$$
\left\lceil\frac{r-1}{2}\right\rceil(m-|S|) \geq(r-1) m-s-\alpha-\lambda .
$$

This gives

$$
s \geq\left\lfloor\frac{r-1}{2}\right\rfloor m+\left\lceil\frac{r-1}{2}\right\rceil|S|-\lambda-\alpha .
$$

Similarly,

$$
t \geq\left\lfloor\frac{r-1}{2}\right\rfloor m+\left\lceil\frac{r-1}{2}\right\rceil|T|-\kappa-\alpha .
$$

Substituting into (1) above, we have

$$
\begin{aligned}
\left|K_{1}^{\prime}\right|+\left|K_{2}^{\prime}\right| \leq & 2(r-1) m+2 \rho-4\left\lfloor\frac{r-1}{2}\right\rfloor m-2\left\lceil\frac{r-1}{2}\right\rceil|S|+2 \lambda \\
& -2\left\lceil\frac{r-1}{2}\right\rceil|T|+2 \kappa+(|S|+|T|) r+2 \alpha \\
= & 2 \delta m+2 \rho+(1-\delta)(|S|+|T|)+2 \kappa+2 \lambda+2 \alpha, \\
& \text { where } \delta= \begin{cases}1, & r \text { even; } \\
0, & r \text { odd. }\end{cases}
\end{aligned}
$$

We can now use the fact that $\rho=m(r-1)-\kappa-\lambda-r-\alpha$, obtained by equating expressions for $e\left(L_{W}, L_{B}\right)$ and $e\left(L_{B}, L_{W}\right)$ and using $\left|L_{W}\right|=\left|L_{B}\right|+1$, to deduce that

$$
\left|K_{1}^{\prime}\right|+\left|K_{2}^{\prime}\right| \leq 2 \delta m+2 m(r-1)-2 r+(1-\delta)(|S|+|T|) .
$$

Since $|S|=M \cap K_{1}^{\prime}$ and $|T|=\left|M \cap K_{2}^{\prime}\right|$, this implies that either K_{1}^{\prime} or K_{2}^{\prime} will satisfy the conclusion of the lemma.

3 The Main Result

We will now use Lemma 2.1 to prove our main result.
Theorem 3.1 Let $m \geq r \geq 3$ be integers and G be an r-regular cyclically-$((m-1) r+1)$-edge-connected bipartite graph. Suppose M is a matching of size $m=|M|$ and no vertex of G is adjacent to $r-1$ end-vertices of edges in M. Then M extends to a perfect matching of G.

Proof. Suppose, for a contradiction, that M is minimally non-extendable. Then, by Lemma 2.1, there is an edge cut K in G with $|K| \leq(m-1) r$ such that K covers M and G has the general structure indicated in Figure 1.

We may assume, without loss of generality, that K separates $L_{B} \cup L_{W}$ from $R_{B} \cup R_{W}$. Since, by hypothesis, no vertex v in L_{W} has more than $(r-2)$ neighbours in M_{B}, each vertex in L_{W} has at least 2 neighbours in L_{B}. Since $\left|L_{W}\right| \geq\left|L_{B}\right|$, this implies that $G\left[L_{W} \cup L_{B}\right]$ contains a cycle. The same argument tells us that $G\left[R_{B} \cup R_{W}\right]$ contains a cycle and hence K is a cyclic edge cut in G. This contradicts the hypothesis that G is cyclically $((m-1) r+1)$-edge-connected and completes the proof of the theorem.

This immediately gives:
Corollary 3.2 Suppose m and r are integers with $m \geq r \geq 3$, and G is an r-regular cyclically- $((m-1) r+1)$-edge-connected bipartite graph. If M is a matching in G of size $m=|M| \geq r$ and each pair of edges in M is distance at least 3 apart, then M extends to a perfect matching of G.

Remark: Clearly, when $r=3$ and $m \geq 3$, Corollary 3.2 provides a stronger result than Theorem 1.2, requiring only distance 3 for all values of $m \geq 3$. It should be noted however that Corollary 3.2 uses distance 3 to ensure that in the hypotheses of Theorem 3.1, the requirement that no vertex of G is adjacent to $r-1$ end-vertices of edges in M is met. The hypotheses of Theorem 3.1 do not impose any inherent distance restriction on the edges in M per se. Indeed, for Theorem 3.1 it is perfectly fine if pairs of edges in the
matching M are distance 1 apart or distance 2 apart, so long as there is no set of $r-1$ edges in M pairwise joined by paths of length 2 all of which pass through a single vertex.

The results expressed in Theorem 3.1 and Corollary 3.2 are best possible in the following sense. Given integers m and r with $m \geq r \geq 3$, we can construct a cyclically $((m-1) r)$-edge-connected r-regular bipartite graph G in which there is a set M of m edges, pairwise distance arbitrarily far apart (and hence no $r-1$ of them have a vertex as a common neighbour if this distance is at least 3) such that no perfect matching of G contains M. One such construction is as follows. Let k, m and r be integers such that $k \geq 1$ and $m \geq r \geq 3$. Let H be a cyclically $((r-2)(k+1)(m-1)(r-1)+1)$-edge connected r-regular bipartite graph, with vertices coloured black and white according to the bipartition of H. (That such graphs exist see, for example, Theorem 6 of [9].) Then H has girth at least $(k+1)(m-1)(r-1)+1$. Let H^{1}, H^{2} be two copies of H and choose a set of edges $E^{i}=\left\{e_{j}^{i}=x_{j}^{i} y_{j}^{i} \in\right.$ $\left.E\left(H^{i}\right): 1 \leq j \leq(m-1)(r-1)-1,1 \leq i \leq 2\right\}$ and a vertex $z^{i} \in V\left(H^{i}\right)$ such that x_{j}^{i} and z^{2} are black, y_{j}^{i} and z^{1} are white and the elements of $E^{i} \cup\left\{z^{i}\right\}$ are pairwise distance at least k apart in H^{i}. (For example by choosing them to be close to equally spaced around a shortest cycle in H^{i}.)

Let $x_{(r-1)(m-1)}^{1}, x_{(r-1)(m-1)+1}^{1}, x_{(r-1)(m-1)+2}^{1}, \ldots x_{(r-1)(m-1)+r-2}^{1}, x_{(r-1) m}^{1}$ be the r neighbours of z^{1} in H^{1} and $y_{(r-1)(m-1)}^{2}, y_{(r-1)(m-1)+1}^{2}, y_{(r-1)(m-1)+2}^{2}, \ldots$, $y_{(r-1)(m-1)+r-2}^{2}, y_{(r-1) m}^{2}$ be the r neighbours of z^{2} in H^{2}.

Let G be the cyclically $((m-1) r$)-edge-connected r-regular bipartite graph with vertex set $V(G)=\left(V\left(H^{1}\right)-z^{1}\right) \cup\left(V\left(H^{2}\right)-z^{2}\right) \cup\left\{x_{(r-1) m+i}, y_{(r-1) m+i}\right.$: $1 \leq i \leq m\}$ and edge set $E(G)=\left(E\left(H^{1}-z^{1}\right)-E_{1}\right) \cup\left(E\left(H^{2}-z^{2}\right)-E_{2}\right) \cup$ $\left\{x_{(r-1) m+i} y_{(r-1) m+i}, x_{(r-1) m+i} y_{i+j m}^{2}, y_{(r-1) m+i} x_{i+j m}^{1}: 1 \leq i \leq m, 0 \leq j \leq r-2\right\}$ $\cup\left\{x_{j}^{2} y_{j}^{1}: 1 \leq j \leq(m-1)(r-1)-1\right\}$.

In G the m edges $\left\{x_{(r-1) m+i} y_{(r-1) m+i}: 1 \leq i \leq m\right\}$ are pairwise distance at least k apart and cannot all be contained in the same perfect matching of G since the black vertices in $\left(V\left(H^{1}\right)-z^{1}\right)$ form a Hall set in $G-$ $\left\{x_{(r-1) m+i}, y_{(r-1) m+i}: 1 \leq i \leq m\right\}$. (Note that the edges $\left\{x_{(r-1) m+i} y_{(r-1) m+i}\right.$: $1 \leq i \leq m\} \cup\left\{x_{j}^{2} y_{j}^{1}: 1 \leq j \leq(m-1)(r-1)-1\right\}$ form a minimal cyclic edge cut in G of size $(m-1) r$.)

References

[1] Aldred, R. E. L. and Jackson, B., Edge proximity conditions for extendability in cubic bipartite graphs, J. Graph Theory, 55, (2007) 112 120.
[2] Aldred, R. E. L., Holton, D. A., Lou, Dingjun and Saito, Akira, M-
alternating paths in n-extendable bipartite graphs. Discrete Math., 269, (2003), 1-11.
[3] Holton, D. A. and Plummer, M. D., Matching extension and connectivity in graphs. II. Graph theory, combinatorics, and applications. Vol. 2 (Kalamazoo, MI, 1988), 651-665, Wiley-Intersci. Publ., Wiley, New York, 1991.
[4] Holton, D.A. and Plummer, M. D., 2-extendability in 3-polytopes. Combinatorics (Eger, 1987), 281-300, Colloq. Math. Soc. János Bolyai, 52, North-Holland, Amsterdam, 1988.
[5] König, D., Über Graphen und ihre Andwendung auf Determinantentheorie und Mengenlehre, Math. Ann. 77 , (1916), 453-465.
[6] König, D., Graphok és alkalmazásuk a determinánsok és a halmazok elméletére, Math. Termész. Ért. 77, (1916), 104-119.
[7] Lou, Dingjun and Wang, Wei, Characterization of 1-extendable bipartite graphs. Acta Sci. Natur. Univ. Sunyatseni, 42, (2003), 117-118.
[8] Lou, Dingjun, On the structure of minimally n-extendable bipartite graphs. Discrete Math., 202, (1999), 173-181.
[9] Lou, Dingjun and Holton, D. A., Lower bound of cyclic edge connectivity for n-extendability of regular graphs. Discrete Math., 112, (1993), 139150.
[10] Plummer, M. D., Matching extension in regular graphs, Graph Theory, Combinatorics, Algorithms and Applications (San Francisco, CA 1989), 416-436, SIAM, Philadelphia, PA, 1991.
[11] Plummer, M. D., Matching extension in bipartite graphs. Proceedings of the seventeenth Southeastern international conference on combinatorics, graph theory, and computing (Boca Raton, Fla., 1986). Congr. Numer., 54, (1986), 245-258.
[12] Plummer, M. D., On n-extendable graphs, Discrete Math., 31, (1980), 201-210.

