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Abstract

Let m and r be positive integers with » > 3, let G be an r-regular
cyclically ((m — 1)r + 1)-edge-connected bipartite graph and let M be
a matching of size m in G. In [10], Plummer showed that whenever
r > m + 1, there is a perfect matching of G containing M. When
r = 3, Aldred and Jackson [1], extended this result to the case when
m + 1 > r = 3 by showing there is a perfect matching in G containing
M whenever the edges in M are pairwise at least distance f(m) apart

where
1, m=2
3, 3<m<H4
fim) = 4, 5<m<8
5, m>9.
In this paper we relax the condition that » = 3 and the distance

restriction introduced by Aldred and Jackson to show that, for m >
r > 3 and G an r-regular cyclically-((m — 1)r + 1)-edge-connected
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bipartite graph, for each matching M in G with |M| = m and such
that each pair of edges in M is distance at least 3 apart, there is a
perfect matching in G containing M.

1 Introduction

Throughout this paper the graphs considered will be finite simple graphs. A
graph G with at least 2m + 2 vertices is said to be m-extendable if for each
set M C E(G) of m independent edges in GG, there is a perfect matching F' of
G with M C F. We also say that a given set M C E(G) extends to a perfect
matching in G if there is a perfect matching F' of G with M C F.

Perfect matchings in r-regular bipartite graphs have been extensively stud-
ied. It is well known, for example, (c.f. Konig [5, 6]) that every r-regular bi-
partite graph is r-edge-colourable and hence 1-extendable. See, for example,
[2] - [11] for other results in this area.

Plummer [12] showed that an m-extendable graph must also be k-extendable
for all 0 < k£ < m and also, if G is an m-extendable graph, then G must be
(m+1)-connected. Thus an r-regular graph cannot be r-extendable. Indeed,
in the case of an r-regular graph G with |V (G)| > 2r + 2, we can select any
vertex v € V(@) and readily find a matching M with |M| < r such that
Ng(v) C V(M) and v ¢ V(M). Clearly such a matching M cannot extend
to a perfect matching of G.

There exist r-connected r-regular bipartite graphs which are not even 2-
extendable. To see this we can take two copies of K, ,_1, one black dominated
and the other white dominated. Form an r-connected r-regular bipartite
graph G by joining these two graphs by a matching between r black vertices
of the first copy of K,,_; and the r white vertices of the second copy of
K, ,_;. Clearly no pair of edges in this matching can be included in a perfect
matching of G.

While the connectivity of an r-regular graph is bounded above by r, there
is no upper bound on the cyclic edge-connectivity of an r regular graph and
we may ask whether the extendability of r-regular bipartite graphs increases
with their cyclic edge-connectivity. This was confirmed, for m < r —1 by the
following result of Plummer [10].

Theorem 1.1 Let G be an r-reqular bipartite graph with r > m + 1 for
some positive integers m and r. Then G is m-extendable if the cyclic edge-
connectivity of G is at least (m — 1)r + 1.

O

This result is best possible since no r-regular graph can be m-extendable

for m > r. Moreover, Plummer [10] showed that the cyclic edge-connectivity
requirement is also sharp.
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We will consider which m-tuples of edges in a given r-regular bipartite
graph do extend to perfect matchings when m > r. To do this we must rule
out the possibility that our m-tuple covers all vertices in the neighbourhood
of a single vertex. Clearly, we cannot exclude this possibility with cyclic
edge-connectivity alone.

In [1], Aldred and Jackson considered cubic bipartite graphs of high cyclic
edge-connectivity with the additional requirement that the edges we want
to extend to a perfect matching are pairwise suitably far apart. For edges
e, f € E(G), we define the distance, dist(e, f) to be the length of a shortest
path in G joining an end-vertex of e to an end-vertex of f. Using this idea,
they established the following theorem.

Theorem 1.2 Let G be a cyclically (3m — 2)-edge-connected cubic bipartite
graph and let M be a matching in G with |M| = m > 2. If for each pair of
distinct edges e, f € M, dist(e, f) > f(m), then M is contained in a perfect
matching of G, where

1, m=

3, 3<m<A4
f(m) = 4, 5<m<8

5, m=>9

O

The sharpness of Theorem 1.2 with respect to the cyclic edge-connectivity

requirement was demonstrated in [1]. Our main result in this paper, Theorem

3.1, extends Theorem 1.2 to r-regular bipartite graphs for all » > 3 and shows

that the distance constraint on the edges of M can be replaced by the much

simpler condition that no vertex of GG is adjacent to r — 1 end-vertices of edges
in M.

2 Preliminaries

Given a graph G and disjoint proper subsets U, W C V(G) we use E(U, W)
to denote the set, and e(U, W) the number, of edges of G from U to W. An
edge cut of G is a set of edges of the form E(U,U), where U = V(G)\U. The
edge cut E(U,U) is cyclic if both G[U] and G[U] contain cycles. The graph
G is cyclically k-edge-connected if each cyclic edge cut of G has size at least
k. We say that an edge cut K covers a matching M of G if each edge of
M either belongs to K or is adjacent to an edge of K. The matching M is
minimally non-extendable in G if M is not contained in a perfect matching
of G, but M — e is contained in a perfect matching of G for all e € M.
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Lemma 2.1 Let G be an r-regular bipartite graph and let M be a matching
in G with |M| = m. Suppose M is minimally non-extendable in G. Then
there is an edge cut K of G which covers M and is such that

K| < { m(r—1)—r+60, r odd;

mr —r, r even.

where 0 = |[M N K|.

Proof. Let (B,W) be the bipartition of G and M = {ej,es,...,e,}. Let
e; = bjw; for each e; € M where b; € B, and let Mg = {b1,by,..., by},
My = {wy,ws, ..., wy,}. Since M is not contained in a perfect matching of
G, H = G — Mg — My contains no perfect matching. By Hall’s theorem,
there exists a ‘Hall set” X C V(H) N B such that |Ng(X)| < |X]|.

Since |B| = |W| we also have [Ny (Y)| < |Y] for Y = W\(Mwy U Ny (X)).
We shall analyze the structure of G based on the Hall sets X and Y for
H. To this end we let Rg = X, Ry = Ny(X), Lg = B\(Mp U Rg) and
Ly = W\(Mw U Rw), see Figure 1. It follows from the facts that G is
r-regular and bipartite and M — e is contained in a perfect matching of G
for all e € M, that |RB‘ = |Rw| + 1, ’Lw| = ‘LB’ + 1, My C NG(RB)
and MB - Ng(Lw> Let €(LB,Rw) = p, 6(MB,RV[/') = /\, €<MB,Lw) = 0,
e(Mw,Rp) =1, e(Mw, Lg) = Kk, and e(My, M) = m + «. Finally let

S={veMp:e(v,Lw)> [}, s =) e(v, L)

veES

and

T={veMy:e(v,Rg) > []}, t = Ze(U,RB).

veT

We first consider the edge cuts Ky = E(Lw, Mp)UE(Lg, My )JUE(Lp, Ry)
and K; = E(RB, Mw) U E(Rw, MB) U E(Rw,LB) Then |K1| =0+K+p
and |K3| = 7+ XA+ p. We next modify K, Ky as follows. For each ver-
tex v € S replace E(v,Ly) in K; by E(v, My U Ry) to form K with
|Ki| = 0+ Kk+p—2s+|S|r. Similarly for each vertex v € T replace E(v, Rp)
in Ky by E(v, Mg U Lg) to form K} with |K}| =7+ X+ p—2t+ |T|r. This
gives us the following identity for |K7| + | K}

K|+ |Ky| =0+k+T7+AX+2p—2(s+1t)+ (S| +|T))

=2(r—1m—2a+2p—2(s+t)+r(S|+|T)). (1)

As we are trying to establish the existence of a ‘small’ edge cut which
covers M, we shall bound the sizes of s and ¢ from below, starting with s. To
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Figure 1: The structure of the graph G in Lemma 2.1.

do this, we consider e(Mg, W).
e(Mg,W) = rm
= e(Mp, My)+e(Mp, Lyw) 4+ e(Mg, Ry)
= m+a+s+e((Mg\S),Lw)+ A
Rearranging this gives us
e((Mp\S),Lw)=(r—1)m—s—a—A\.
Since e((Mp\S), Lw) < [552](m — |S]) by the definition of S, we have

2

(S (m—=|S)) > (r—1)m—s—a— A

This gives
s> |5 m+ [S5H]1S] — A —a.
Similarly,
t> |5 m+ [T -k —a.
Substituting into (1) above, we have
K7+ K < 2(r—1)m+2p—4 5 m—2[52] ]S +2)
=2 [T + 26 + (|S] + [T|)r + 2cx
= 20m+2p+ (1 =08)(|S|+|T]) + 2k + 2X + 2,

1, 7 even;

where ¢ = { 0, r odd.
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We can now use the fact that p = m(r — 1) — k — A — r — a, obtained by
equating expressions for e(Ly, Lg) and e(Lg, Ly ) and using |Lw| = |Lg|+1,
to deduce that

|K| + | K5 < 20m +2m(r — 1) —2r + (1 —0)(|S| + |T)).

Since |S| = M N Kj and |T| = |M N K}|, this implies that either K| or K}
will satisfy the conclusion of the lemma. O

3 The Main Result

We will now use Lemma 2.1 to prove our main result.

Theorem 3.1 Let m > r > 3 be integers and G be an r-reqular cyclically-
((m — 1)r + 1)-edge-connected bipartite graph. Suppose M is a matching of
size m = |M| and no vertex of G is adjacent to r — 1 end-vertices of edges in
M. Then M extends to a perfect matching of G.

Proof. Suppose, for a contradiction, that M is minimally non-extendable.
Then, by Lemma 2.1, there is an edge cut K in G with |K| < (m — 1)r such
that K covers M and G has the general structure indicated in Figure 1.

We may assume, without loss of generality, that K separates Lg U Ly,
from Rp U Ry . Since, by hypothesis, no vertex v in Ly has more than
(r — 2) neighbours in Mp, each vertex in Ly has at least 2 neighbours in
Lg. Since |Ly| > |Lg|, this implies that G[Lw U Lg| contains a cycle. The
same argument tells us that G[Rp U Ry/| contains a cycle and hence K is
a cyclic edge cut in GG. This contradicts the hypothesis that G is cyclically
((m — 1)r + 1)-edge-connected and completes the proof of the theorem. O

This immediately gives:

Corollary 3.2 Suppose m and r are integers with m > r > 3, and G is an
r-reqular cyclically-((m — 1)r + 1)-edge-connected bipartite graph. If M is a
matching in G of size m = |M| > r and each pair of edges in M is distance
at least 3 apart, then M extends to a perfect matching of G.

O
Remark: Clearly, when » = 3 and m > 3, Corollary 3.2 provides a stronger
result than Theorem 1.2, requiring only distance 3 for all values of m > 3.
It should be noted however that Corollary 3.2 uses distance 3 to ensure that
in the hypotheses of Theorem 3.1, the requirement that no vertex of G is
adjacent to r — 1 end-vertices of edges in M is met. The hypotheses of
Theorem 3.1 do not impose any inherent distance restriction on the edges in
M per se. Indeed, for Theorem 3.1 it is perfectly fine if pairs of edges in the
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matching M are distance 1 apart or distance 2 apart, so long as there is no
set of r — 1 edges in M pairwise joined by paths of length 2 all of which pass
through a single vertex.

The results expressed in Theorem 3.1 and Corollary 3.2 are best possible
in the following sense. Given integers m and r with m > r > 3, we can
construct a cyclically ((m — 1)r)-edge-connected r-regular bipartite graph G
in which there is a set M of m edges, pairwise distance arbitrarily far apart
(and hence no r — 1 of them have a vertex as a common neighbour if this
distance is at least 3) such that no perfect matching of G contains M. One
such construction is as follows. Let k,m and r be integers such that £ > 1
and m > r > 3. Let H be a cyclically ((r—2)(k+1)(m —1)(r — 1)+ 1)-edge
connected r-regular bipartite graph, with vertices coloured black and white
according to the bipartition of H. (That such graphs exist see, for example,
Theorem 6 of [9].) Then H has girth at least (k + 1)(m — 1)(r — 1) + 1.
Let H', H* be two copies of H and choose a set of edges E* = {¢} = z}y} €
E(HY) : 1<j<(m—1)(r—1)—1,1 <4 <2} and a vertex 2* € V(H") such
that % and 2* are black, g5 and z' are white and the elements of E* U {2'}
are pairwise distance at least k apart in H'. (For example by choosing them
to be close to equally spaced around a shortest cycle in H".)

Let x%rfl)(mfl)’ x%rfl)(mfl)Jrl’ x%rfl)(mfl)JrQ’ x ‘xérfl)(mfl)+r727 ‘(L%rfl)m be
the r neighbours of z! in H' and ?J(Qr—1)(m—1)v y(27"—1)(m—1)+17 y(27"—1)(m—1)+2’ e
y(27’—1)(m—1)+r—27 y(QT_l)m be the r neighbours of 22 in H2.

Let G be the cyclically ((m—1)r)-edge-connected r-regular bipartite graph
with vertex set V(G) = (V(H') — 2") U (V(H?) — 2*) U{Z(r—1)mtis Yr—1)mai ©
1 <i<m} and edge set E(G) = (E(H' — 2') — Ey) U (E(H? — 2*) — Fy) U
(T Dymai¥r—1ymti> Tr—Dymti¥is jms Yr—Dymtiliyjm 1 <1 <m0 < j <r—2}
Ufadyj:1<j<(m—1)(r—1)—1}.

In G the m edges {Z(—1)ym+i¥r—1)mti : 1 < i < m} are pairwise distance
at least k apart and cannot all be contained in the same perfect match-
ing of G since the black vertices in (V(H') — z') form a Hall set in G —
{x(r—l)m—s—i; Y(r—1)ym+i * 1 < 1 < m} (Note that the edges {x(r_l)m+iy(r_1)m+i .
1<i<m}U{aly; :1<j < (m—1)(r—1)—1} form a minimal cyclic edge
cut in G of size (m — 1)r.)
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