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Abstract

Let m and r be positive integers with r ≥ 3, let G be an r-regular
cyclically ((m− 1)r + 1)-edge-connected bipartite graph and let M be
a matching of size m in G. In [10], Plummer showed that whenever
r ≥ m + 1, there is a perfect matching of G containing M . When
r = 3, Aldred and Jackson [1], extended this result to the case when
m+ 1 ≥ r = 3 by showing there is a perfect matching in G containing
M whenever the edges in M are pairwise at least distance f(m) apart
where

f(m) =


1, m = 2
3, 3 ≤ m ≤ 4
4, 5 ≤ m ≤ 8
5, m ≥ 9.

In this paper we relax the condition that r = 3 and the distance
restriction introduced by Aldred and Jackson to show that, for m ≥
r ≥ 3 and G an r-regular cyclically-((m − 1)r + 1)-edge-connected
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bipartite graph, for each matching M in G with |M | = m and such
that each pair of edges in M is distance at least 3 apart, there is a
perfect matching in G containing M .

1 Introduction
Throughout this paper the graphs considered will be finite simple graphs. A
graph G with at least 2m + 2 vertices is said to be m-extendable if for each
set M ⊂ E(G) of m independent edges in G, there is a perfect matching F of
G with M ⊂ F . We also say that a given set M ⊆ E(G) extends to a perfect
matching in G if there is a perfect matching F of G with M ⊂ F .

Perfect matchings in r-regular bipartite graphs have been extensively stud-
ied. It is well known, for example, (c.f. König [5, 6]) that every r-regular bi-
partite graph is r-edge-colourable and hence 1-extendable. See, for example,
[2] - [11] for other results in this area.

Plummer [12] showed that anm-extendable graph must also be k-extendable
for all 0 ≤ k ≤ m and also, if G is an m-extendable graph, then G must be
(m+ 1)-connected. Thus an r-regular graph cannot be r-extendable. Indeed,
in the case of an r-regular graph G with |V (G)| ≥ 2r + 2, we can select any
vertex v ∈ V (G) and readily find a matching M with |M | ≤ r such that
NG(v) ⊆ V (M) and v 6∈ V (M). Clearly such a matching M cannot extend
to a perfect matching of G.

There exist r-connected r-regular bipartite graphs which are not even 2-
extendable. To see this we can take two copies of Kr,r−1, one black dominated
and the other white dominated. Form an r-connected r-regular bipartite
graph G by joining these two graphs by a matching between r black vertices
of the first copy of Kr,r−1 and the r white vertices of the second copy of
Kr,r−1. Clearly no pair of edges in this matching can be included in a perfect
matching of G.

While the connectivity of an r-regular graph is bounded above by r, there
is no upper bound on the cyclic edge-connectivity of an r regular graph and
we may ask whether the extendability of r-regular bipartite graphs increases
with their cyclic edge-connectivity. This was confirmed, for m ≤ r− 1 by the
following result of Plummer [10].

Theorem 1.1 Let G be an r-regular bipartite graph with r ≥ m + 1 for
some positive integers m and r. Then G is m-extendable if the cyclic edge-
connectivity of G is at least (m− 1)r + 1.
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This result is best possible since no r-regular graph can be m-extendable
for m ≥ r. Moreover, Plummer [10] showed that the cyclic edge-connectivity
requirement is also sharp.
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We will consider which m-tuples of edges in a given r-regular bipartite
graph do extend to perfect matchings when m ≥ r. To do this we must rule
out the possibility that our m-tuple covers all vertices in the neighbourhood
of a single vertex. Clearly, we cannot exclude this possibility with cyclic
edge-connectivity alone.

In [1], Aldred and Jackson considered cubic bipartite graphs of high cyclic
edge-connectivity with the additional requirement that the edges we want
to extend to a perfect matching are pairwise suitably far apart. For edges
e, f ∈ E(G), we define the distance, dist(e, f) to be the length of a shortest
path in G joining an end-vertex of e to an end-vertex of f . Using this idea,
they established the following theorem.

Theorem 1.2 Let G be a cyclically (3m − 2)-edge-connected cubic bipartite
graph and let M be a matching in G with |M | = m ≥ 2. If for each pair of
distinct edges e, f ∈ M , dist(e, f) ≥ f(m), then M is contained in a perfect
matching of G, where

f(m) =


1, m = 2
3, 3 ≤ m ≤ 4
4, 5 ≤ m ≤ 8
5, m ≥ 9.

2

The sharpness of Theorem 1.2 with respect to the cyclic edge-connectivity
requirement was demonstrated in [1]. Our main result in this paper, Theorem
3.1, extends Theorem 1.2 to r-regular bipartite graphs for all r ≥ 3 and shows
that the distance constraint on the edges of M can be replaced by the much
simpler condition that no vertex of G is adjacent to r−1 end-vertices of edges
in M .

2 Preliminaries
Given a graph G and disjoint proper subsets U,W ⊂ V (G) we use E(U,W )
to denote the set, and e(U,W ) the number, of edges of G from U to W . An
edge cut of G is a set of edges of the form E(U,U), where U = V (G)\U . The
edge cut E(U,U) is cyclic if both G[U ] and G[U ] contain cycles. The graph
G is cyclically k-edge-connected if each cyclic edge cut of G has size at least
k. We say that an edge cut K covers a matching M of G if each edge of
M either belongs to K or is adjacent to an edge of K. The matching M is
minimally non-extendable in G if M is not contained in a perfect matching
of G, but M − e is contained in a perfect matching of G for all e ∈M .
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Lemma 2.1 Let G be an r-regular bipartite graph and let M be a matching
in G with |M | = m. Suppose M is minimally non-extendable in G. Then
there is an edge cut K of G which covers M and is such that

|K| ≤
{
m(r − 1)− r + θ, r odd;
mr − r, r even.

where θ = |M ∩K|.

Proof. Let (B,W ) be the bipartition of G and M = {e1, e2, . . . , em}. Let
ei = biwi for each ei ∈ M where bi ∈ B, and let MB = {b1, b2, . . . , bm},
MW = {w1, w2, . . . , wm}. Since M is not contained in a perfect matching of
G, H = G −MB −MW contains no perfect matching. By Hall’s theorem,
there exists a ‘Hall set’ X ⊆ V (H) ∩B such that |NH(X)| < |X|.

Since |B| = |W | we also have |NH(Y )| < |Y | for Y = W\(MW ∪NH(X)).
We shall analyze the structure of G based on the Hall sets X and Y for
H. To this end we let RB = X, RW = NH(X), LB = B\(MB ∪ RB) and
LW = W\(MW ∪ RW ), see Figure 1. It follows from the facts that G is
r-regular and bipartite and M − e is contained in a perfect matching of G
for all e ∈ M , that |RB| = |RW | + 1, |LW | = |LB| + 1, MW ⊆ NG(RB)
and MB ⊆ NG(LW ). Let e(LB, RW ) = ρ, e(MB, RW ) = λ, e(MB, LW ) = σ,
e(MW , RB) = τ , e(MW , LB) = κ, and e(MW ,MB) = m+ α. Finally let

S = {v ∈MB : e(v, LW ) ≥
⌈
r+1

2

⌉
}, s =

∑
v∈S

e(v, LW )

and
T = {v ∈MW : e(v,RB) ≥

⌈
r+1

2

⌉
}, t =

∑
v∈T

e(v,RB).

We first consider the edge cutsK1 = E(LW ,MB)∪E(LB,MW )∪E(LB, RW )
and K2 = E(RB,MW ) ∪ E(RW ,MB) ∪ E(RW , LB). Then |K1| = σ + κ + ρ
and |K2| = τ + λ + ρ. We next modify K1, K2 as follows. For each ver-
tex v ∈ S replace E(v, LW ) in K1 by E(v,MW ∪ RW ) to form K ′1 with
|K ′1| = σ+κ+ρ−2s+ |S|r. Similarly for each vertex v ∈ T replace E(v,RB)
in K2 by E(v,MB ∪ LB) to form K ′2 with |K ′2| = τ + λ+ ρ− 2t+ |T |r. This
gives us the following identity for |K ′1|+ |K ′2|.

|K ′1|+ |K ′2| = σ + κ+ τ + λ+ 2ρ− 2(s+ t) + r(|S|+ |T |)

= 2(r − 1)m− 2α+ 2ρ− 2(s+ t) + r(|S|+ |T |). (1)

As we are trying to establish the existence of a ‘small’ edge cut which
covers M , we shall bound the sizes of s and t from below, starting with s. To
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Figure 1: The structure of the graph G in Lemma 2.1.

do this, we consider e(MB,W ).

e(MB,W ) = rm

= e(MB,MW ) + e(MB, LW ) + e(MB, RW )
= m+ α + s+ e((MB\S), LW ) + λ.

Rearranging this gives us

e((MB\S), LW ) = (r − 1)m− s− α− λ.

Since e((MB\S), LW ) ≤ d r−1
2 e(m− |S|) by the definition of S, we have⌈

r−1
2

⌉
(m− |S|) ≥ (r − 1)m− s− α− λ.

This gives
s ≥

⌊
r−1

2

⌋
m+

⌈
r−1

2

⌉
|S| − λ− α.

Similarly,
t ≥

⌊
r−1

2

⌋
m+

⌈
r−1

2

⌉
|T | − κ− α.

Substituting into (1) above, we have

|K ′1|+ |K ′2| ≤ 2(r − 1)m+ 2ρ− 4
⌊
r−1

2

⌋
m− 2

⌈
r−1

2

⌉
|S|+ 2λ

−2
⌈
r−1

2

⌉
|T |+ 2κ+ (|S|+ |T |)r + 2α

= 2δm+ 2ρ+ (1− δ)(|S|+ |T |) + 2κ+ 2λ+ 2α,

where δ =
{

1, r even;
0, r odd.
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We can now use the fact that ρ = m(r − 1) − κ − λ − r − α, obtained by
equating expressions for e(LW , LB) and e(LB, LW ) and using |LW | = |LB|+1,
to deduce that

|K ′1|+ |K ′2| ≤ 2δm+ 2m(r − 1)− 2r + (1− δ)(|S|+ |T |).

Since |S| = M ∩K ′1 and |T | = |M ∩K ′2|, this implies that either K ′1 or K ′2
will satisfy the conclusion of the lemma. 2

3 The Main Result
We will now use Lemma 2.1 to prove our main result.

Theorem 3.1 Let m ≥ r ≥ 3 be integers and G be an r-regular cyclically-
((m − 1)r + 1)-edge-connected bipartite graph. Suppose M is a matching of
size m = |M | and no vertex of G is adjacent to r− 1 end-vertices of edges in
M . Then M extends to a perfect matching of G.

Proof. Suppose, for a contradiction, that M is minimally non-extendable.
Then, by Lemma 2.1, there is an edge cut K in G with |K| ≤ (m− 1)r such
that K covers M and G has the general structure indicated in Figure 1.

We may assume, without loss of generality, that K separates LB ∪ LW

from RB ∪ RW . Since, by hypothesis, no vertex v in LW has more than
(r − 2) neighbours in MB, each vertex in LW has at least 2 neighbours in
LB. Since |LW | ≥ |LB|, this implies that G[LW ∪ LB] contains a cycle. The
same argument tells us that G[RB ∪ RW ] contains a cycle and hence K is
a cyclic edge cut in G. This contradicts the hypothesis that G is cyclically
((m− 1)r + 1)-edge-connected and completes the proof of the theorem. 2

This immediately gives:

Corollary 3.2 Suppose m and r are integers with m ≥ r ≥ 3, and G is an
r-regular cyclically-((m − 1)r + 1)-edge-connected bipartite graph. If M is a
matching in G of size m = |M | ≥ r and each pair of edges in M is distance
at least 3 apart, then M extends to a perfect matching of G.

2

Remark: Clearly, when r = 3 and m ≥ 3, Corollary 3.2 provides a stronger
result than Theorem 1.2, requiring only distance 3 for all values of m ≥ 3.
It should be noted however that Corollary 3.2 uses distance 3 to ensure that
in the hypotheses of Theorem 3.1, the requirement that no vertex of G is
adjacent to r − 1 end-vertices of edges in M is met. The hypotheses of
Theorem 3.1 do not impose any inherent distance restriction on the edges in
M per se. Indeed, for Theorem 3.1 it is perfectly fine if pairs of edges in the
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matching M are distance 1 apart or distance 2 apart, so long as there is no
set of r− 1 edges in M pairwise joined by paths of length 2 all of which pass
through a single vertex.

The results expressed in Theorem 3.1 and Corollary 3.2 are best possible
in the following sense. Given integers m and r with m ≥ r ≥ 3, we can
construct a cyclically ((m− 1)r)-edge-connected r-regular bipartite graph G
in which there is a set M of m edges, pairwise distance arbitrarily far apart
(and hence no r − 1 of them have a vertex as a common neighbour if this
distance is at least 3) such that no perfect matching of G contains M . One
such construction is as follows. Let k,m and r be integers such that k ≥ 1
and m ≥ r ≥ 3. Let H be a cyclically ((r− 2)(k+ 1)(m− 1)(r− 1) + 1)-edge
connected r-regular bipartite graph, with vertices coloured black and white
according to the bipartition of H. (That such graphs exist see, for example,
Theorem 6 of [9].) Then H has girth at least (k + 1)(m − 1)(r − 1) + 1.
Let H1, H2 be two copies of H and choose a set of edges Ei = {eij = xijy

i
j ∈

E(H i) : 1 ≤ j ≤ (m−1)(r−1)−1, 1 ≤ i ≤ 2} and a vertex zi ∈ V (H i) such
that xij and z2 are black, yij and z1 are white and the elements of Ei ∪ {zi}
are pairwise distance at least k apart in H i. (For example by choosing them
to be close to equally spaced around a shortest cycle in H i.)

Let x1
(r−1)(m−1), x

1
(r−1)(m−1)+1, x

1
(r−1)(m−1)+2, . . . x

1
(r−1)(m−1)+r−2, x

1
(r−1)m be

the r neighbours of z1 in H1 and y2
(r−1)(m−1), y

2
(r−1)(m−1)+1, y

2
(r−1)(m−1)+2, . . . ,

y2
(r−1)(m−1)+r−2, y

2
(r−1)m be the r neighbours of z2 in H2.

Let G be the cyclically ((m−1)r)-edge-connected r-regular bipartite graph
with vertex set V (G) = (V (H1)− z1)∪ (V (H2)− z2)∪ {x(r−1)m+i, y(r−1)m+i :
1 ≤ i ≤ m} and edge set E(G) = (E(H1 − z1)−E1) ∪ (E(H2 − z2)−E2) ∪
{x(r−1)m+iy(r−1)m+i, x(r−1)m+iy

2
i+jm, y(r−1)m+ix

1
i+jm : 1 ≤ i ≤ m, 0 ≤ j ≤ r−2}

∪ {x2
jy

1
j : 1 ≤ j ≤ (m− 1)(r − 1)− 1}.

In G the m edges {x(r−1)m+iy(r−1)m+i : 1 ≤ i ≤ m} are pairwise distance
at least k apart and cannot all be contained in the same perfect match-
ing of G since the black vertices in (V (H1) − z1) form a Hall set in G −
{x(r−1)m+i, y(r−1)m+i : 1 ≤ i ≤ m}. (Note that the edges {x(r−1)m+iy(r−1)m+i :
1 ≤ i ≤ m} ∪ {x2

jy
1
j : 1 ≤ j ≤ (m− 1)(r− 1)− 1} form a minimal cyclic edge

cut in G of size (m− 1)r.)
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