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Copy-number variations (CNVs) are an essential component of
genetic variation distributed across large parts of the human
genome. CNV detection from next-generation sequencing
data and artificial intelligence algorithms have progressed in
recent years. However, only a few tools have taken advantage
of machine-learning algorithms for CNV detection, and none
propose using artificial intelligence to automatically detect
probable CNV-positive samples. The most developed approach
is to use a reference or normal dataset to compare with the sam-
ples of interest, and it is well known that selecting appropriate
normal samples represents a challenging task that dramatically
influences the precision of results in all CNV-detecting tools.
With careful consideration of these issues, we propose here
ifCNV, a new software based on isolation forests that creates
its own reference, available in R and python with customizable
parameters. ifCNV combines artificial intelligence using two
isolation forests and a comprehensive scoring method to faith-
fully detect CNVs among various samples. It was validated us-
ing targeted next-generation sequencing (NGS) datasets from
diverse origins (capture and amplicon, germline and somatic),
and it exhibits high sensitivity, specificity, and accuracy. ifCNV
is a publicly available open-source software (https://github.
com/SimCab-CHU/ifCNV) that allows the detection of CNVs
in many clinical situations.
Received 1 March 2022; accepted 15 September 2022;
https://doi.org/10.1016/j.omtn.2022.09.009.

Corresponding author
E-mail: s-cabelloaguilar@chu-montpellier.fr
INTRODUCTION
Copy-number variations (CNVs) are a class of structural variations
that result from the deletion or duplication of a DNA fragment. About
1,500 CNV regions have already been discovered in humans, account-
ing for �12%–16% of the entire human genome,1 making it one of
most common types of genetic variation. Although the biological
impact of the majority of these CNVs remains uncertain, nearly 50%
of known CNVs overlap with protein-coding regions, and many are
involved in genetic diseases. Recent studies have demonstrated that
CNVs can be implicated inmany rare diseases, such as inherited retinal
dystrophies,2 and in diseases that involve dosage-sensitive develop-
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mental genes, such as Charcot-Marie-Tooth disease3 and DiGeorge
syndrome, among others.4–6 CNVs, resulting from gene amplification
(copy-number gain) as well as gene deletion (copy-number loss), are
common in cancer cells, and multiple studies have shown that dupli-
cation or deletion of specific genes can contribute to tumor growth7

and to resistance to anti-tumor therapies.8,9 In cancer cells, the size
of these molecular alterations can vary dramatically, from one or a
few exons to an entire chromosomal arm.

Although most CNVs found in cancer cells are likely to have accumu-
lated as a direct consequence of clonal evolution during the disease
course, some have been identified as playing a role in the early devel-
opment of cancer (e.g. CNVs located in BRCA1/2 in familial breast
and ovarian cancer10). In fact, it has been estimated that CNVs repre-
sent more than 10% of the molecular alterations linked to cancer pre-
disposition, making their detection a priority. Detection of acquired
(somatic) focal copy-number changes is also required for diagnosis,
prognosis, and the therapeutic management of patients with cancer.11

For example, loss of chromosomal arms 1p and 19q is closely associ-
ated with oligodendrogliomas, a subtype of primary brain tumors,
and with a favorable prognosis in diffuse gliomas.12 Focal copy-num-
ber increases are biomarkers predictive of responses to particular
therapies; for example, patients with oncogenic ERBB2 amplification
in breast cancer respond well to trastuzumab, and acquired resistance
to tyrosine kinase inhibitors is exhibited in patients withMET-ampli-
fied non-small cell lung carcinomas.13,14

Recently, the rapid implementation of high-throughput next-genera-
tion sequencing (NGS) methods, especially targeted DNA panels, in
clinical laboratories has led to the emergence of a fairly large number
of pipelines and algorithms able to detect CNVs from NGS data.15–27

Most of these studies use the read-depth approach, relying on the
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Figure 1. ifCNV workflow

(A) ifCNV is composed of three steps: the pre-processing (blue), the core algorithm (green), and the output (yellow). CNV, copy-number variation; CNVneg, CNV-negative

samples; CNVpos, CNV-positive samples. (B) Top: 99th percentiles of the reads distribution according to the means of the reads distribution of the samples in a NGS

sequencing run; bottom: 1st percentiles of the reads distribution according to the means of the reads distribution of the samples in a NGS sequencing run. The red dots

correspond to the outlying samples. (C) In one CNVpos sample, the logarithm of the reads per target according to the logarithm of the mean normalized normal sample. The

red dots correspond to the outlying targets.
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hypothesis that the number of reads aligned to a genomic region is pro-
portional to the copy number of the region. In multiple sample
methods, CNVs are detected by comparing the read counts of the sam-
ple of interest to the read counts of a reference sample. The proper
building of the reference is one of the main difficulties. To that end,
two main solutions exist: (1) to gather a database of normal samples
or (2) to add normal samples into the NGS run. Nevertheless, both so-
lutions come with issues, mainly the presence of a batch effect and a
high cost, respectively. To avoid these problems, use of the single sample
method was previously proposed, which consists of statistical model-
ling of the target read counts within the sample of interest to detect
CNVs. Recent advances in artificial intelligence and, in particular, the
availability of accessible machine-learning packages28 have made it
possible for developers to improve their algorithms in many areas. To
date, only a few studies have taken advantage of these recent develop-
ments in the field of CNV detection from targeted NGS data.15,16,26

With careful consideration of these issues, we present ifCNV, a novel
machine-learning-based software, provided as a python and R pack-
age (https://github.com/SimCab-CHU/ifCNV and https://github.
com/SimCab-CHU/ifCNV-R, respectively). This approach combines
several advantages, among which is that it allows detection of CNVs
without the need for a reference sample and it is low resource
consuming.

To validate our model and explore its limitations in clinical practice,
we tested ifCNV on different synthetic datasets mimicking relevant
clinical situations and on datasets obtained from amplicon- or cap-
ture-based DNA library preparation technologies.

RESULTS
ifCNV workflow

ifCNV is a CNV detection tool based on read-depth distribution ob-
tained from NGS data (Figure 1A). It integrates a pre-processing step
to create a read-depth matrix using as input the aligned binary align-
ment map (.bam) files and a corresponding .bed file. This reads ma-
trix is composed of the samples as columns and the targets as rows.
Next, it uses an Isolation Forest (IF) machine-learning algorithm to
Molecular Therapy: Nucleic Acids Vol. 30 December 2022 175
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Figure 2. Performance assessment in detecting

CNVpos and CNVneg samples

(A) Heatmap of the detection rate of CNVpos samples as a

function of the CNR and the MTR, for CNRs between 2

and 10. (B) Heatmap of the detection rate of CNVpos

samples as a function of the CNR and the MTR, for CNRs

between 0 and 0.9. (C) Heatmap of the detection rate of

CNVneg samples as a function of the CNR and the MTR,

for CNRs between 2 and 9. (D) Heatmap of the detection

rate of CNVneg samples as a function of the CNR and the

MTR, for CNRs between 0 and 0.9. (E) Classification

indicators of the detection of a single CNVpos sample in a

set of several CNVneg samples. (F) Classification indicators

of the detection of multiple CNVpos samples in a set of

several CNVneg samples. CNR, copy-number ratio; MTR,

modified target ratio.
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detect the samples with a strong bias between the 99th percentile and
the mean (for amplifications, Figure 1B, top plot) and the 1st percen-
tile and the mean (for deletions, Figure 1B, bottom plot). These sam-
ples are assumed to be CNVpos. The samples with no bias, which are
therefore not detected by the IF as outliers, are considered CNVneg

samples. After filtering of the samples with a mean read depth per
target less than X (X = 10 by default but can be set by the user to
any value), the reads matrix is normalized by dividing each column
(i.e., the reads distribution of each sample) by its median. Then,
ifCNV creates a mean normalized normal sample by averaging all
CNVneg samples, to create the intra-run reference. The log ratio be-
tween each CNVpos sample and this reference is computed, and a sec-
ond IF is used to detect the outlying targets (Figure 1C). The log ratio
balances the differences between ratios under 1 (deletions) and ratios
over 1 (amplifications), increasing the ability of ifCNV to detect
outlying targets with a ratio under 1 (data not shown).

These assumed altered targets are then used to compute the localiza-
tion score per region of interest (seematerials andmethods). Finally, a
176 Molecular Therapy: Nucleic Acids Vol. 30 December 2022
threshold is applied on this score to select the
significantly altered regions that are compiled in
an html report containing a table and a graph
for easy user interpretation.

Performance of ifCNV

Detection of CNVpos samples

To quantify the ability of ifCNV to detect CNVpos

samples, we created a synthetic dataset of 1,500
targets and 30 samples in which we inserted one
CNVpos sample. It is noteworthy that if the
copy-number ratio (CNR) or the modified target
ratio (MTR; i.e., the number of altered targets,
located on CNV regions, divided by the total
number of targets in the panel) are low, the
CNVpos samples will resemble the CNVneg sam-
ples and therefore will be difficult to detect.
Thus, the performance of a CNV detector directly
depends on the CNR and the MTR. Taking this fact into consider-
ation, we iterated the CNR and MTR (from 0 to 10 and 0 to 0.1,
respectively) and performed 1,000 simulations for each iteration
(Figures 2A and 2B). The analysis of the attribution of CNVpos sam-
ples for a CNR greater than 1 is shown in Figure 2A. For CNRs greater
than 6, ifCNV correctly identified the abnormal sample in 99.58% of
simulations when the MTR is greater than 0.01 (Figure 2A). Further-
more, if the CNR was between 4 and 6 and the MTR was over 0.01,
ifCNV found the abnormal sample in 99.47% of simulations. Finally,
if the CNR was over 2 and the MTR over 0.01, ifCNV detected the
abnormal samples in 99.34% of simulations; this reached 99.83%
when the MTR was greater than 0.035.

ifCNV was also able to detect deletion (CNRs under 0); as for CNRs
greater than 1, the sensitivity was related to both the CNR and the
MTR (Figure 2B). For CNRs under 0.5, ifCNV detected the abnormal
sample in 92.26% of simulations. For CNRs over 0.5, ifCNV only de-
tected the abnormal sample in 27% of simulations. Although 27% is a
higher detection rate than a random choice, for which the probability



Figure 3. Classification indicators for the detection of

altered targets

MCC, Matthews correlation coefficient; PPV, positive pre-

dictive value.
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is 3.33% (1 sample out of 30), it is not satisfactory enough for diag-
nostic purposes given the importance of heterozygous deletion
(hDel) in several diseases.6 To overcome this pitfall, we assessed an
alternative solution based on the ability of the IF to accurately detect
the CNVneg samples. Indeed, samples labeled as CNVneg were consid-
ered to be normal and were adopted as an internal reference.

Identification of the CNVneg samples

To quantify the ability of ifCNV to detect CNVneg samples, we used
the same synthetic dataset, and we also iterated the CNR and the
MTR (from 0 to 10 and 0 to 0.1, respectively) and performed 1,000
simulations for each iteration (Figures 2C and 2D). ifCNV was able
to correctly identify the CNVneg samples in 99.87% of simulations,
regardless of the CNR and MTR. For CNRs over 2, this reached
99.9%. Interestingly, for CNRs under 1, ifCNV identified the
CNVneg samples in 98.57% of the simulations. Finally, a value of
99.69% was obtained for CNRs under 0.5.

Detection of one CNVpos sample in a set of several CNVneg

samples

Conventional hospital and research laboratories must determine the
CNV status of numerous samples. The number of samples in a
sequencing run can vary from a few to several dozen. We therefore
assessed the ability of ifCNV to correctly find a unique CNVpos

sample in a set of several negative samples. We created synthetic da-
tasets of 2 to 100 samples in which we inserted a CNVpos sample
harboring an amplification with a CNR of 5 and an MTR of 0.03.
We performed 100 simulations for each and calculated the sensitiv-
ities (Se), specificities (Sp), and accuracies (Acc) of the algorithm
(Figure 2E). For one CNVpos sample in a set of two, ifCNV failed
to label any sample as positive, leading to one true negative (TN)
and one false negative (FN) (Se = 0, Sp = 1, and Acc = 0.5). Inter-
estingly, for one CNVpos sample in three, ifCNV correctly labeled
the positive sample in every simulation and found one FP in less
than 50% of simulations. When increasing the number of samples
in the set, the Se remained close to 1 (0.992 from 3 to 100 samples),
and the Sp and the Acc tended to 0.9.
Molecular Ther
Detection of multiple CNVpos samples in a set

of several CNVneg samples

As several CNVpos can be present in the same
sequencing run, we tested the performance of
ifCNV in such situations. We randomly chose 2
to 25 samples in a synthetic dataset of 50 samples.
We then added randomCNRs (from 2 to 6) to 3%
of the targets of these samples and performed 100
iterations to determine the Se, Sp, and Acc of our
algorithm (Figure 2F). ifCNV exhibited relatively
high Se, Sp, and Acc (around 0.85, 0.7, and 0.75,
respectively), regardless of the number of CNVpos samples in the da-
taset. Notably, when half of the tested set (25/50) was CNVpos, ifCNV
correctly labeled a mean of 20 samples across all simulations.

Detection of altered targets

The second step of ifCNV consists of labeling the targets that are
modified among the CNVpos samples. To assess its performance,
we created a synthetic dataset of 30 samples and 300 targets. One
sample was CNVpos with one modified target randomly chosen at
each iteration, with a CNR from 0 to 5. We then performed 1,000
iterations and calculated the Se, Acc, positive predictive value
(PPV), and Matthews correlation coefficient (MCC) (Figure 3).
On the one hand, ifCNV exhibited a Se very close to 1 for CNRs
from both 0 to 0.3 (deletions) and 3 to 5 (amplification), meaning
that the modified target was accurately labeled in almost every
simulation. On the other hand, the PPV and the MCC were low
(�0.02 and �0.1, respectively), reflecting a high number of FPs.
However, the Acc was �0.87 and stayed approximately unchanged,
meaning that the number of TNs was high and dominated the num-
ber of FPs.

Thresholding on the localization score

To test the ability of the score to discriminate the FPs from the TPs,
we used the same synthetic dataset as before and grouped targets
(from 2 to 15) together to mimic regions. We then modified all the
targets corresponding to a randomly chosen region. Finally, we
computed the localization score and calculated the Se, Acc, PPV,
and MCC before (Figure 4A, left panel) and after thresholding (Fig-
ure 4A, right panel).

As Figure 3 shows, before thresholding, the Se was close to 1, and
the PPV and MCC were low (around 0.1 and 0.2, respectively).
Acc was lower using the grouped targets (around 0.4) because, by
construction, the total number of regions in the dataset is lower
than the number of targets, and therefore the number of TN is
smaller. After thresholding, we observed that the PPV, MCC, and
Acc increased to reach values very close to 1 for CNRs over 2, while
apy: Nucleic Acids Vol. 30 December 2022 177
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Figure 4. Performance assessment of the localization

score thresholding

(A) Classification indicators for the detection of altered tar-

gets before (left panel) and after (right panel) thresholding.

(B) ROC curve. (C) Associated table. FPR, false positive

rate; Se, sensitivity; ROC, receiver operating characteristic.

Molecular Therapy: Nucleic Acids
the Se had only slightly decreased, meaning that the score threshold-
ing enables the TPs to be kept while the FPs are discarded. The
localization score thresholding approach can therefore be validated
and represents an important improvement in the performance of
our algorithm.

To characterize the dependence on the score, we iterated the
threshold from 0 to 15, calculated the corresponding TP rate (TPR)
and FP rate (FPR), and plotted a receiver operating characteristic
(ROC) curve (Figure 4B). The corresponding table in Figure 4C
shows that, on the simulated data, CNVs with a score over 4 were
100% TPs and that less than 5% FPs and CNVs with a score over 8
were 100% TPs and �1% FPs.

Evaluation of ifCNV on patient datasets

We then tested ifCNV on three real datasets. First, we used the ICR96
dataset and then used two in-house datasets for which we had NGS
and array comparative genomic hybridization (aCGH) results to
compare to. Tables 1 and 2 present the results.

ICR96 dataset

To compare the performance of ifCNV wtih that of other
methods,17,23–25,29 we compared our results with those obtained
by Moreno-Cabrera et al.,30 who benchmarked five widely used
tools with the ICR96 dataset.31 This dataset, however, only possess
one target per exon, rendering the advantage of the ifCNV score
thresholding strategy not practicable in this case. As an alternative
strategy, we decided to take advantage of the ability to change the
contamination parameter of the IF. This main actionable parameter
178 Molecular Therapy: Nucleic Acids Vol. 30 December 2022
is the proportion of outliers in the dataset. By
default, it can be set to a value between 0 and
0.5 and to “auto,” for an automatic detection
of the proportion of outliers. In ifCNV, we
added the ability to set this parameter to
“none”; it is then calculated as 1 on the number
of samples in the dataset. We thus iterated
several values of the contamination parameter
and calculated the correspondent binary classifi-
cation indicators (Figure 5). We also compiled
the results obtained with the two pre-set
contamination values (auto and none) with the
results from the other tools (Table 1). We
observed that ifCNV exhibits performances in
the same order of magnitude as the other tools,
with the clear advantage of having an easily
tunable parameter allowing the user to expect either no FNs
(contamination = auto) or no FPs (contamination = none).

TSCA dataset

Next, we aimed to validate the performance of ifCNV on an in-house
dataset (Table 2). Its particularities are (1) it is composed of tumor
samples containing variable percentages of altered cells, and (2) it
possesses a small number of targets per region (range: 1–40, median:
4). Using this dataset, we found that ifCNV correctly labeled 19 of the
21 amplifications present in the dataset; the 2 FNs were measured as a
gain of two copies (CNR = 2) by aCGH. In addition, 14 of 17 deletions
were detected with no FPs. The 3 undetected deletions were from
samples that have a lower percentage of tumor cells.

Juno dataset

Finally, we also assessed our tool on a distinct library preparation
approach with a larger number of targets per region composed of a
larger panel than the TSCA dataset (range: 1–164, median: 17) from
tumor samples (Table 2). Interestingly, we could detect all amplifica-
tions with no FPs and 17 out of the 19 deletions, leading to an overall
Acc of 0.96 and MCC of 0.93. Interestingly, the 2 missed deletions are
on a gene that represents only 0.4% of the panel (MTR = 0.004).

DISCUSSION
In recent years, numerous computational methods for detecting and
measuring CNVs from NGS data have been developed. However,
most of these are based on the use of internal or external reference
samples. To date, only a few have taken advantage of easy-to-use ma-
chine-learning packages.15,16,26



Table 1. Description of the datasets used in the study

Datasets Samples Positives Negatives Number of alterations Amplifications Deletions

ICR96 96 (germline) 68 28 296 80 216

TSCA 81 (somatic) 25 56 39 21 17

Juno 43 (somatic) 26 17 28 9 19

www.moleculartherapy.org
Several artificial intelligence (AI)-based outlier detection methods
exist. The main ones are the minimum covariance determinant32

(MCD), the local outlier factor33 (LOF), the IF,34 and the elliptic en-
velope algorithm35 (EEA). Each method has its benefits and draw-
backs. Briefly, MCD and EEA were created to treat input variables
with Gaussian distribution, LOF was designed for data with low
dimensionality, and IF is a tree-based algorithm effective on high-
dimensional data and no underlying assumption on the distribution
of the data. The read-depth data obtained from targeted NGS do
not follow a Gaussian distribution and can be of high dimensionality
depending on the number of features of the panel and the sequencing
run. Thus, the IF algorithm appears to be the most suitable to process
this data. Therefore, we describe here ifCNV, a bioinformatics tool us-
ing the IF algorithm, that allows detection of CNVs without the need
for a reference sample.

Moreover, in routine clinical practice, the variety of pathologies
involving specific molecular alterations leads to a broad diversity in
the datasets generated. Thus, in general, most CNV software that is
developed for a specific data type has suboptimal reliability for use
in routine practice with diversified samples. In addition, most of
the genetic workflows are either developed in Python or R, and, to
our knowledge, no existing CNV detection tool is available in both
languages.

3ifCNV is available in both languages, making it more easily to
implement in pre-existing pipelines. Also, by successfully creating
its own normal reference inside each analyzed NGS run, ifCNV
frees itself from any batch effect inherent to tools using external ref-
erences. It also avoids the need for reference samples that are copy-
number neutral to be sequenced in the same batch, which is an
efficient but not cost-effective solution. ifCNV also has a simple
framework: it is made up of only three main steps on which the
Table 2. Classification indicators for ifCNV and the tools described in Morena-

Tool TP TN FP FN Total FNR

ifCNV – auto 296 27,017 1,858 0 28,875 0

ifCNV – none 252 28,875 0 44 28,875 0.1486

DECoN 286 28,473 106 10 28,875 0.0338

panelcn.MOPS 284 28,236 343 12 28,875 0.0405

CoNVaDING 283 28,068 511 13 28,875 0.0439

exomedepth 283 28,507 72 13 28,875 0.0439

CODEX2 275 28,503 76 21 28,875 0.0709

Acc, accuracy; FN, false negative; FP, false positive; Sp, specificity; TN, true negative; TP, tr
user has full control through tunable parameters. Furthermore, its
efficiency makes it possible to run on hardware with limited
computing resources.

Using simulated data, we demonstrate that ifCNV is highly reliable
and adapts to several relevant clinical situations including (1) when
one CNVpos sample is present in a set of several CNVneg samples,
(2) when multiple CNVpos samples are present in a set of several
CNVneg samples, (3) when only one target is altered, and (4) when
the CNRs are close to one, which can correspond to small alterations
or to mixtures of normal and altered cells. ifCNV also performed well
using datasets generated from amplicon- or capture-based libraries
prepared from germline or somatic clinical samples.

Analyses of real data also demonstrated that ifCNV’s performance
was comparable to that of other widely used tools30 but with substan-
tial specific advantages. Our solution has a tuneable control of the
FPR thanks to localization score thresholding and to the contamina-
tion parameter, which can both be optimized according to the dataset
by an entry-level user. ifCNV was also able to accurately detect CNVs
in difficult samples, such as those composed of a mixture of normal
cells and tumoral cells, which dilutes the CNR of samples.

Even if we demonstrated that ifCNV can process various targeted da-
taset, as is, it cannot be applied to whole-genome sequencing (WGS)
and third-generation sequencing (TGS) datasets. The concept of the
method should be pertinent to treat these data types but would
need further development. Indeed, pre-processing and both IF pa-
rameters will need to be adapted and benchmarked. This would be
the subject of a new study.

In conclusion, ifCNV is a highly flexible tool that can detect CNVs in
germline and somatic clinical samples with similar performances.
Cabrera et al. on the ICR96 dataset

FPR Se Sp PPV Acc MCC

0.065 1 0.9350 0.1374 0.9363 0.3586

0 0.8513 1 1 0.9984 0.9219

0.0037 0.9662 0.9963 0.7296 0.9959 0.8377

0.012 0.9595 0.988 0.453 0.9877 0.6547

0.0179 0.9561 0.9821 0.3564 0.9818 0.5778

0.0025 0.9561 0.9975 0.7972 0.9970 0.8716

0.0027 0.9291 0.9973 0.7835 0.9966 0.8515

ue positive.
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Table 3. Classification indicators on the TSCA and Juno datasets

Dataset CNV type TP TN FP FN FNR FPR Se Sp PPV Acc MCC

TSCA

amplification 19 59 1 2 0.10 0.02 0.90 0.98 0.95 0.96 0.90

deletion 14 64 0 3 0.21 0 0.82 1 1 0.96 0.89

total 33 123 1 5 0.15 0.01 0.87 0.99 0.97 0.96 0.90

Juno

amplification 9 19 0 0 0 0 1 1 1 1 1

deletion 17 9 0 2 0.12 0 0.89 1 1 0.93 0.86

total 26 28 0 2 0.08 0 0.93 1 1 0.96 0.93
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ifCNV now represents an essential component of the cancer
diagnosis pipeline that we routinely use to analyze samples from pa-
tients in our laboratory. We believe that the flexibility, high accuracy,
easy implementation, and low hardware infrastructure afforded by
our method will help other laboratories in increasing their
throughput and improve disease characterization by accurate CNV
detection.

MATERIALS AND METHODS
IF algorithm

The IF algorithm was developed by Liu et al.34 It “isolates” observa-
tions using a binary tree structure called an isolation tree. In this isola-
tion tree, anomalies are more likely to be isolated closer to the root,
whereas normal points are more likely to be isolated at the deeper
end. The IF algorithm builds its isolation trees for a given dataset
by randomly selecting a feature and then randomly selecting a split
value between the maximum and minimum values of the selected
feature. The number of splittings required to isolate a sample is equiv-
alent to the path length from the root node to the terminating node.
This path length is then averaged over a forest of such isolation trees
to produce a decision value. The smaller the value, the more likely it is
that the sample represents an anomaly.

Synthetic datasets

To create synthetic datasets that reproduce faithfully those obtained
in routine clinical practice, we selected 1,910 samples from in-house
targeted NGS data with no CNVs. We extracted the total reads on
each target from the aligned .bam files with the bedtools36 (https://
bedtools.readthedocs.io) multicov function and created a reference
reads matrix ordered with samples as columns and targets as rows.
This reference reads matrix was then normalized by dividing each col-
umn by its median. All medians were used to create a median reads
distribution that was needed for the rescaling process. Next, we
created a normalized target reads distribution from each row of the
normalized matrix. Thus, to generate synthetic datasets, we filled
each line by taking a normalized target reads distribution, in which
we randomly picked a value for each column. To rescale this
matrix, we multiplied each column with a value randomly picked
from the median distribution. Finally, to create CNVpos samples
within this synthetic dataset and test the algorithm, we modified
the desired number of targets by multiplying it by a factor ranging
from 0 to 10.
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ICR96 dataset

The dataset ICR96 exon CNV validation series31 was downloaded
from the European Genome-phenome Archive (EGA) (EGA:
EGAD00001003335). This dataset consists of the read counts of 96
germline samples sequenced on a targeted panel for which the copy
number, at the exon level, was validated using high-resolution multi-
plex ligation-dependent probe amplification (MLPA) experiments
(Table 3).

In-house datasets

DNA extracted from clinical somatic samples was analyzed alongside
by two molecular approaches: aCGH as a reference method, and NGS
using two different library preparation protocols.

DNA extraction of formalin-fixed paraffin-embedded samples

DNAwas extracted from tissue samples using the Maxwell RSC DNA
FFPE Kit (Promega, Madison, WI, USA) according to the manufac-
turer’s recommendations. DNA was quantified using the Qubit
dsDNA BR Assay Kit and a Qubit Fluorometer (Thermo Fisher Sci-
entific, Wilmington, DE, USA).

Comparative genomic hybridization

aCGH profiling was performed with the Human Agilent Sureprint G3
8 � 60 K Microarray Kit (Agilent Technologies, Santa Clara, CA,
USA). Tumor DNA was labeled with cyanine 5 (Cy5), while reference
DNA from an individual of the same sex as the patient was labeled
with Cy3. Sample and reference DNAs were pooled and hybridized
for 24 h at 67�C on the arrays. The fluorescence was read by an Agi-
lent SureScan Microarray scanner, and the Cy5/Cy3 fluorescence ra-
tios were converted into log2-transformed values with Cytogenomics
software (Agilent).

The threshold of the absolute value of the log2 fluorescence ratio re-
tained to define a chromosomal anomaly was 0.25. A mean log2 ratio
was calculated when, for at least three probes located on contiguous po-
sitions on the chromosome, a log2 ratio absolute value greater than 0.25
and of the same sign was measured. The minimum size of the anom-
alies considered in the interpretation of the results was set at 1 Mb.

The different chromosomal anomalies were defined by the Cytoge-
nomics software according to the mean log2 ratio values, as follows:
homozygous deletion for a value <�1, loss of one gene copy for a
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Figure 5. ROC curve for the ICR96 dataset

Some points of interest are highlighted: contamination = “auto” (pink),

0.01 < contamination < 0.14 (blue), and contamination = “none” (orange). TPR, true

positive rate. ifCNV is a new software that combines artificial intelligence using two

isolation forests and a comprehensive scoring method to faithfully detect CNVs

among various samples. ifCNV is a publicly available open-source software (https://

github.com/SimCab-CHU/ifCNV) that allows the detection of CNVs in various

clinical situations.
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value between �0.25 and �1, gain of one gene copy for a value be-
tween 0.25 and 1, and amplification (gain of at least five copies) for
a value >2.

TruSeq Custom Amplicon library preparation assay: TSCA

dataset

Library preparation was performed as previously described.37 Briefly,
extracted DNA was qualified using KAPA Sybr Fast qPCR (Kapa Bio-
systems, Boston, MA, USA). A home-made panel targeting specific
exons of 35 clinically relevant cancer genes was used for amplification
of regions of interest. For each sample, dual-strand libraries were pre-
pared using a TruSeq Custom Amplicon protocol, as described by the
manufacturer (Illumina, San Diego, CA, USA). After amplification,
PCR products were purified using AMPure XP beads (Beckman
Coulter, Brea, CA, USA) and quantified, normalized, and pair-end
sequenced on aMiSeq instrument (2� 150 cycles, Illumina). This data-
set is composed of 81 samples from 59 different sequencing runs, with
25 CNVpos samples (Table 1).

Advanta Solid Tumor NGS library preparation assay: Juno

dataset

Libraries were prepared using the Advanta Solid Tumor NGS Library
Prep Assay with the automated Juno system on integrated fluidic cir-
cuits (LP 8.8.6 IFC) (Fluidigm, San Francisco, CA, USA) following
the manufacturer’s procedure. The panel is developed to allow the
detection of somatic mutations in 53 oncology-relevant genes (234
kb, 1,508 assays). Briefly, the LP 8.8.6 IFCs were primed with 20 ng
DNA per sample in the PCRmix. After amplification, pooled harvested
samples were purified usingAMPureXP beads (BeckmanCoulter), and
a second PCR was performed to integrate the sequencing adapters. Li-
braries were then quantified, normalized, and pair-end sequenced on a
NextSeq instrument (2� 150 cycles, Illumina). In this dataset, there are
43 sampleswith26CNVpos from20different sequencing runs (Table 1).

Binary classification indicators

TPR (or sensitivity), FPR, TN rate (TNR; or specificity), FN rate
(FNR), PPV, Acc, and the MCC were used to measure the perfor-
mance of ifCNV. These were computed as

TPR = Se =
TP
P

=
TP

TP + FN

FPR = 1 � Sp =
FP
N

=
FP

TN + FP

TNR = Sp =
TN
N

FNR =
FN
P

PPV =
TP

TP + FP

Acc =
TP +TN

TP + FP +TN + FN

MCC =
TP:TN � FP:FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞðTP + FNÞðTN + FPÞðTN + FNÞp

Localization scoring

Specific regions of biological significance (gene or exon) can be covered
by several targets. In the event that a region is altered, all the targets in
the region should be modified. By contrast, if only one target in the re-
gion is modified, it is likely to be an FP.We integrated this reasoning to
develop a localization score in order to reduce the number of FPs. The
localization score depends on the number of modified targets in the re-
gion, the number of targets in the region, and the total number of targets
in the panel. A semi-open log scale incorporating the ratio of modified
targets in the region was chosen. It is calculated as follows:

score = log

���n
N

�k
:
�
1 � n

N

�n� k
�� 1��k

n

�

with k the number of modified targets on the region;
n the number of targets on the region;
N the total number of targets

Pre-processing

ifCNV requires the .bam sequence files as an input but does not pro-
vide a function to create them. Therefore, the user needs to generate
Molecular Therapy: Nucleic Acids Vol. 30 December 2022 181
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the proper .bam files from the raw sequence .fastq files. ifCNV’s pre-
processing step uses the bedtools multicov function to generate the
reads matrix. It takes as input the aligned .bam files and outputs a
read-depth matrix that was used for the CNV detection analysis. In
this study, the .bam files were created using the Burrows-Wheeler
Alignment (BWA) tool:38 the .fastq files were aligned against the
reference genome with bwa mem.

Data availability statement

All the datasets used in this study are available at https://github.com/
SimCab-CHU/ifCNV.
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