| 1 |  |
|---|--|
|   |  |
|   |  |
| - |  |
|   |  |

## Title: The genomic history and global expansion of domestic donkeys

| 2  | Authors: Evelyn T. Todd <sup>1</sup> , Laure Tonasso-Calvière <sup>1</sup> , Lorelei Chauvey <sup>1</sup> , Stéphanie Schiavinato <sup>1</sup> ,                   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3  | Antoine Fages <sup>1</sup> , Andaine Seguin-Orlando <sup>1</sup> , Pierre Clavel <sup>1</sup> , Naveed Khan <sup>1,2</sup> , Lucía Perez                           |
| 4  | Pardal <sup>3,4</sup> , Laura Patterson Rosa <sup>5</sup> , Pablo Librado <sup>1</sup> , Harald Ringbauer <sup>6</sup> , Marta Verdugo <sup>7</sup> , John         |
| 5  | Southon <sup>8</sup> , Jean-Marc Aury <sup>9</sup> , Aude Perdereau <sup>9</sup> , Emmanuelle Vila <sup>10</sup> , Matilde Marzullo <sup>11</sup> , Ornella        |
| 6  | Prato <sup>11</sup> , Umberto Tecchiati <sup>11</sup> , Giovanna Bagnasco Gianni <sup>11</sup> , Antonio Tagliacozzo <sup>12</sup> , Vincenzo                      |
| 7  | Tinè <sup>13</sup> , Francesca Alhaique <sup>12</sup> , João Luís Cardoso <sup>14,15</sup> , Maria João Valente <sup>16</sup> , Miguel Telles                      |
| 8  | Antunes <sup>17</sup> , Laurent Frantz <sup>18,19</sup> , Beth Shapiro <sup>20,21</sup> , Daniel G. Bradley <sup>7</sup> , Nicolas Boulbes <sup>22</sup> , Armelle |
| 9  | Gardeisen <sup>23</sup> , Liora Kolska Horwitz <sup>24</sup> , Aliye Öztan <sup>25</sup> , Benjamin S. Arbuckle <sup>26</sup> , Vedat Onar <sup>27</sup> ,         |
| 10 | Benoît Clavel <sup>28</sup> , Sébastien Lepetz <sup>28</sup> , Ali Akbar Vahdati <sup>29</sup> , Hossein Davoudi <sup>30</sup> , Azadeh                            |
| 11 | Mohaseb <sup>28,30</sup> , Marjan Mashkour <sup>28,30,31</sup> , Olivier Bouchez <sup>32</sup> , Cécile Donnadieu <sup>32</sup> , Patrick Wincker <sup>9</sup> ,   |
| 12 | Samantha A. Brooks <sup>33</sup> , Albano Beja-Pereira <sup>3,4,34,35</sup> , Dong-Dong Wu <sup>36,37</sup> , Ludovic Orlando <sup>1</sup> *.                      |
| 13 | Affiliations:                                                                                                                                                      |
| 14 | <sup>1</sup> Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier;                                                                      |
| 15 | Toulouse 31000, France.                                                                                                                                            |
| 16 | <sup>2</sup> Department of Biotechnology, Abdul Wali Khan University; Mardan 23200, Pakistan.                                                                      |
| 17 | <sup>3</sup> CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório                                                               |
| 18 | Associado, Campus de Vairão, Universidade do Porto; Vairão 4485-661, Portugal.                                                                                     |
| 19 | <sup>4</sup> BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão,                                                                       |
| 20 | Universidade do Porto; Vairão 4485-661, Portugal.                                                                                                                  |
| 21 |                                                                                                                                                                    |

| 22 | <sup>5</sup> Department of Animal Science, Sul Ross State University, US-90, Alpine, TX 79830,         |
|----|--------------------------------------------------------------------------------------------------------|
| 23 | United States.                                                                                         |
| 24 | <sup>6</sup> Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology;        |
| 25 | Leipzig 04103, Germany.                                                                                |
| 26 | <sup>7</sup> Smurfit Institute of Genetics, Trinity College Dublin; Dublin D02 PN40, Ireland.          |
| 27 | <sup>8</sup> Earth System Science Department, University of California; Irvine, CA 92697, United       |
| 28 | States.                                                                                                |
| 29 | <sup>9</sup> Genoscope, Institut de biologie François Jacob, CEA, Université d'Evry, Université Paris- |
| 30 | Saclay ; Evry 91042, France.                                                                           |
| 31 | <sup>10</sup> Laboratoire Archéorient, Université Lyon 2; Lyon 69007, France.                          |
| 32 | <sup>11</sup> Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano; Milan     |
| 33 | 20122, Italy.                                                                                          |
| 34 | <sup>12</sup> Bioarchaeology Service, Museo delle Civiltà; Rome 00144, Italy.                          |
| 35 | <sup>13</sup> Soprintendenza archeologia belle arti e paesaggio per le province di Verona, Rovigo e    |
| 36 | Vicenza; Verona 37121, Italy.                                                                          |
| 37 | <sup>14</sup> ICArEHB, Campus de Gambelas, University of Algarve; Faro 8005-139, Portugal.             |
| 38 | <sup>15</sup> Universidade Aberta ; Lisbon 1269-001, Portugal.                                         |
| 39 | <sup>16</sup> Faculdade de Ciências Humanas e Sociais, Centro de Estudos de Arqueologia, Artes e       |
| 40 | Ciências do Património, Universidade do Algarve ; Faro 8000-117, Portugal.                             |
| 41 | <sup>17</sup> Centre for Research on Science and Geological Engineering, Universidade NOVA de          |
| 42 | Lisboa; Lisbon 1099-085, Portugal.                                                                     |

| 43 | <sup>18</sup> Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian                |
|----|---------------------------------------------------------------------------------------------------------|
| 44 | University; Munich, 80539, Germany.                                                                     |
| 45 | <sup>19</sup> School of Biological and Behavioural Sciences, Queen Mary University of London;           |
| 46 | London E1 4DQ, United Kingdom.                                                                          |
| 47 | <sup>20</sup> Department of Ecology and Evolutionary Biology, University of California; Santa Cruz,     |
| 48 | CA 95064, United States.                                                                                |
| 49 | <sup>21</sup> Howard Hughes Medical Institute, University of California; Santa Cruz CA 95064, United    |
| 50 | States.                                                                                                 |
| 51 | <sup>22</sup> Institut de Paléontologie Humaine, Fondation Albert Ier, Paris / UMR 7194 HNHP,           |
| 52 | MNHN-CNRS-UPVD / EPCC Centre Européen de Recherche Préhistorique, Tautavel                              |
| 53 | 66720, France.                                                                                          |
| 54 | <sup>23</sup> Archéologie des Sociétés Méditéranéennes, Université Paul Valéry - Site Saint-Charles 2 ; |
| 55 | Montpellier 34090, France.                                                                              |
| 56 | <sup>24</sup> National Natural History Collections, Edmond J. Safra Campus, Givat Ram, The Hebrew       |
| 57 | University; Jerusalem 9190401, Israel.                                                                  |
| 58 | <sup>25</sup> Archaeology Department, Ankara University; Ankara, 06100, Turkey.                         |
| 59 | <sup>26</sup> Department of Anthropology, University of North Carolina at Chapel Hill; Chapel Hill, NC  |
| 60 | 27599, USA.                                                                                             |
| 61 | <sup>27</sup> Osteoarchaeology Practice and Research Center and Department of Anatomy, Faculty of       |
| 62 | Veterinary Medicine, Istanbul University-Cerrahpaşa; Istanbul 34320, Turkey.                            |

- 63 <sup>28</sup>Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements, Muséum National
- 64 d'Histoire Naturelle; Paris 75005, France.
- <sup>65</sup> <sup>29</sup> Provincial Office of the Iranian Center for Cultural Heritage, Handicrafts and Tourism
- 66 Organisation, North Khorassan, Bojnord, Iran.
- <sup>67</sup> <sup>30</sup>Archaezoology section, Bioarchaeology Laboratory of the Central Laboratory, University of
- 68 Tehran; Tehran CP1417634934, Iran.
- <sup>69</sup> <sup>31</sup>Department of Osteology, National Museum of Iran; Tehran 1136918111, Iran.
- <sup>70</sup> <sup>32</sup>GeT-PlaGe Génome et Transcriptome Plateforme Génomique, GET Plateforme Génome &
- 71 Transcriptome, Institut National de Recherche pour l'Agriculture, l'Alimentation et
- 72 l'Environnement; Castaneet-Tolosan Cedex 31326, France.
- <sup>33</sup>Department of Animal Science, UF Genetics Institute, University of Florida; Gainesville, FL
- 74 32610, United States.
- <sup>75</sup> <sup>34</sup>DGAOT, Faculty of Sciences, Universidade do Porto; Porto 4169-007, Portugal.
- <sup>35</sup>Sustainable Agrifood Production Research Centre (GreenUPorto), Universidade do Porto;
- 77 Vairão 4485-646, Portugal.
- <sup>78</sup> <sup>36</sup>State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology,
- 79 Chinese Academy of Sciences; Kunming, 650201, China.
- <sup>80</sup> <sup>37</sup>Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese
- 81 Academy of Sciences; Kunming, Yunnan, 650223, China.
- 82 \* Ludovic Orlando, ludovic.orlando@univ-tlse3.fr

Abstract: Donkeys transformed human history as essential beasts of burden for long-distance 83 movement, especially across semi-arid and upland environments. They remain understudied 84 despite globally expanding and providing key support to low-to-middle income communities. To 85 elucidate their domestication history, we constructed a comprehensive genome panel of 207 86 modern and 31 ancient donkeys, including 15 wild equids. We found strong phylogeographic 87 structure in modern donkeys supporting a single domestication in Africa ~5,000 BCE, followed 88 by further expansions in this continent and Eurasia, ultimately returning back into Africa. We 89 uncover a new genetic lineage in the Levant ~200 BCE, which contributed increasing ancestry 90 91 towards Asia. Donkey management involved inbreeding and the production of giant bloodlines at a time when mules were essential to the Roman economy and military. 92 **One-Sentence Summary:** Ancient and modern genomes elucidate the origins, spread and 93

94 management practices underlying donkey domestication.

#### 96 Main Text:

Domestic donkeys (Equus asinus) have facilitated the movement of goods and people for 97 millennia, enabling trade and transport across a broad spectrum of landscapes (1). Despite their 98 importance to ancient pastoral societies, little is known about the deep history of donkeys and the 99 impact of human management on their genomes. This is most likely due to their undervalued 100 status and loss of utility in modern industrialized societies. Donkeys are, however, extraordinary 101 working animals and remain essential for developing communities, especially in semi-arid 102 environments (2). Understanding their genetic makeup is not only key to assess their contribution 103 to human history but also to improving their local management in the future. 104 105 The current archaeological record of early donkeys is limited (1, 3), which makes their domestic 106 origins and spread through the world contentious. The reduced body size of zooarchaeological ass remains in Egypt at El Omari (4,800–4,500 BCE) and Maadi (4,000–3,500 BCE) have been 107 interpreted as early evidence of domestication (4-7). Carvings on the Libyan palette, found in 108 Abydos, Egypt (3,200-3,000BCE), depict lines of walking asses, cattle, and sheep, also 109 suggesting a domestication context (8, 9). Together with contemporary remains from the same 110 region that show morphological evidence for load carrying (10), these findings suggest that 111 donkeys could have been first domesticated within a range extending from the northeastern 112 Sahara, the Nile Valley, the Atbara River, the Red Sea Hills, to Eritrea. In this model, donkeys 113 114 were domesticated by pastoralists to assist with mobility around 5,500-4,500 BCE due to the large-scale aridification of the Sahara (1). Independent evidence based on patterns of 115 mitochondrial (11, 12) and nuclear sequence variation (13) also point to African origins of the 116 117 donkey, due to their closer proximity to African wild asses (Equus africanus spp.), than to Asian wild asses (Equus hemionus spp.). 118

| 119 | However, candidate regions outside of Africa are also proposed as alternative domestication                  |
|-----|--------------------------------------------------------------------------------------------------------------|
| 120 | centers. In Ash Shuman (Yemen), for example, ass remains of disputed domestic status predate                 |
| 121 | those from Egypt by 2,000 years (~6,500 BCE) (14). Likewise, textual, iconographic and                       |
| 122 | zooarchaeological material indicate a possible additional center in Mesopotamia during the 4 <sup>th</sup>   |
| 123 | and 3 <sup>rd</sup> millennia BCE (15-19), a context in which first-generation hybrids of donkeys and Syrian |
| 124 | onagers have been identified genetically $(20)$ . Segregation of mitochondrial variation in two              |
| 125 | main clades may also support a dual domestication process, for which the Nubian wild ass                     |
| 126 | (Equus africanus africanus) is securely identified as the progenitor of Clade I (11, 12). As for the         |
| 127 | ancestor of Clade II, it could either be the extinct Atlas wild ass (Equus africanus atlanticus),            |
| 128 | endemic to northern Africa, or another undescribed subspecies that potentially ranged outside of             |
| 129 | Africa. Whether a single, maternally inherited marker captures the whole complexity of                       |
| 130 | underlying ancestries can, however, be questioned, following recent results from other animals               |
| 131 | (e.g., horses (21)). Furthermore, previous analyses of nuclear genetic variation in African and              |
| 132 | non-African donkeys have failed to disentangle their origins (13, 22). Overall, this lack of                 |
| 133 | consensus between genetic and archaeological data means that the geographic and temporal                     |
| 134 | origin of donkeys and whether they were domesticated more than once remains uncertain. The                   |
| 135 | global spread of donkeys is also unclear as their worldwide patterns of genomic diversity lacks              |
| 136 | extensive characterization.                                                                                  |

### 137 Modern donkeys originated in Africa and spread into Eurasia

138 To address these issues, we sequenced 49 modern donkey genomes from underrepresented

- regions, and combined these with 158 publicly available to capture worldwide diversity (13, 23-
- 140 25) (Fig. 1A, Table S1). We constructed a fine-scale recombination map from genomes
- 141 encompassing all phylogenetic groups, which we used to phase 13,013,551 variants (Table S3,

| 142 | S4). Principal Component Analysis (PCA; (26)) revealed strong geographical sub-structuring,      |
|-----|--------------------------------------------------------------------------------------------------|
| 143 | with donkeys from Africa, Europe, and Asia forming distinct genetic clusters (Fig. 1B, S1, S2).  |
| 144 | A Treemix phylogenetic reconstruction, grouping modern donkeys according to sampling             |
| 145 | locations (27), confirms the earliest split between African (Clade A) and mostly non-African     |
| 146 | donkeys (Clade B) (Fig. 1C). Further structure within Clade A separates donkeys from the Horn    |
| 147 | of Africa (Ethiopia and Somalia) plus Kenya, from those from western Africa (Ghana,              |
| 148 | Mauritania, Nigeria, and Senegal). Within Clade B, we find another major divergence between      |
| 149 | European and Asian donkeys, with east-to-west affinities in Europe from the Balkans (Croatia     |
| 150 | and Macedonia) to Iberia, Denmark, and Ireland. Conversely, Asian subpopulations show west-      |
| 151 | to-east sub-structuring from Iran and Central Asia to China and Mongolia. Combined, these        |
| 152 | findings suggest expansions from a central source into both continents.                          |
| 153 | In Clade B, some of the most basal donkeys are from the southern Arabian Peninsula (Oman and     |
| 154 | Yemen), whereas the single donkey from Saudi Arabia analyzed here shows European affinities      |
| 155 | indicative of a secondary translocation. Similarly, the Pega donkey from Brazil is nested within |
| 156 | Iberia, mirroring the colonization history of the Americas. Clade B also includes donkeys from   |
| 157 | Nubia (Egypt and Sudan) showing affinities to the Levant (Syria) and Anatolia (Turkey), as well  |
| 158 | as donkeys from Maghreb (Tunisia), with closer genetic proximity to European subpopulations.     |
| 159 | This suggests gene flow into Africa from donkeys native to Anatolia and the Levant, but not to   |
| 160 | the Arabian Peninsula. Overall, this phylogenetic reconstruction is compatible with both models  |
| 161 | of donkey domestication: a unique origin in Africa followed by dispersals out and back, or dual  |

162 origins in Africa and the southern Arabian Peninsula.

| 163 | The unique origin model posits a demographic expansion in Africa first, and subsequent waves                |
|-----|-------------------------------------------------------------------------------------------------------------|
| 164 | into Europe and Asia. In contrast, dual origins would result in an earlier split of demographic             |
| 165 | trajectories between African and Eurasian subpopulations, given their deep phylogenetic                     |
| 166 | divergence. To test these, we first performed demographic modelling using SMC++ $(28)$ , which              |
| 167 | revealed the first expansion around 5,200 BCE (7,186±742 years ago), in line with                           |
| 168 | archaeological evidence of domestication occurring at this time (Fig. 1D, S5). Additionally,                |
| 169 | when modelled from a possible African source, SMC++ trajectories indicated more recent and                  |
| 170 | nearly coincidental expansions into Asia around 2,600 BCE (4,573±577 years ago) and Europe                  |
| 171 | around 2,800 BCE (4,806±671 years ago) (Fig. 1D). This is in line with the unique origin model              |
| 172 | and the earliest archaeological evidence of donkeys in Asia (Iranian Plateau and the Indus                  |
| 173 | Valley), and Europe (Portugal, Greece and Cyprus) in the mid-to-late 3 <sup>rd</sup> millennia BCE (29-34). |
| 174 | Furthermore, Yemen and Oman subpopulations do not branch basal to Clade B according to                      |
| 175 | fineSTRUCTURE (35), in contrast to the expectations of the dual origins model, but within                   |
| 176 | Asian subpopulations (Fig. 2A, 2B). Lastly, pairwise genetic distances between Ethiopia and                 |
| 177 | non-African subpopulations were greater than those from Yemen (Fig. S5). They both increased                |
| 178 | linearly with geographic distances and supported identical dispersal rates (Fig. S5; p-                     |
| 179 | value=0.775), in line with a single wave of expansion at a constant pace. Therefore, our analyses           |
| 180 | support an early domestication in Africa, spreading at an even rate into the Arabian Peninsula              |
| 181 | and Eurasia, and flow back into Nubia and Maghreb. Modern subpopulations from the Horn of                   |
| 182 | Africa and Kenya so far best represent the descendants of earliest donkeys.                                 |
|     |                                                                                                             |

# 183 Ancient donkey genomes reveal early and rapid dispersal into Asia and secondary contacts 184 between Europe and western Africa

| 185 | Patterns of genetic variation within modern subpopulations may reflect recent breeding history     |
|-----|----------------------------------------------------------------------------------------------------|
| 186 | rather than early domestication (36). Additionally, they could under-represent the contribution of |
| 187 | lineages that were once important but have since declined $(37)$ . Dating population splits also   |
| 188 | assumes constant, yet unknown generation intervals. To address these caveats and validate the      |
| 189 | domestication history reconstructed above, we generated a genomic time series spanning the last    |
| 190 | ~4,000 years, that included 31 ancient donkeys from 11 different sites, ranging from the Atlantic  |
| 191 | shores (Portugal) to Central Asia (eastern Iran/Turkmenistan) (Fig. 3A, Table S2).                 |
| 192 | Ancient genomes sequenced to 0.77-5.05 fold coverage (Table S6) were analyzed using two            |
| 193 | complementary methods: pseudo-haploidization following (21) resulting in 4,833,570 nucleotide      |
| 194 | transversions, and genotype imputation following (38), at 7,161,029 polymorphic sites present at   |
| 195 | more than 5% frequency in modern donkeys (38, 39). Imputation accuracy was confirmed by            |
| 196 | high consistency rates between imputed and observed genotypes following down-sampling of           |
| 197 | high-coverage modern genomes, and downstream analyses largely consistent with those based on       |
| 198 | pseudo-haploidized data (Fig. S6, S7, S9, S10, S11, S12, S14, Table S6).                           |
| 199 | The three oldest samples from our dataset consist of donkeys from Anatolia (Acemhöyük,             |
| 200 | Turkey), radiocarbon dated to 2,564-2,039 BCE. Their age and phylogenetic placement within         |
| 201 | Clade B confirm an early expansion out of Africa by ~2,500 BCE, in agreement with SMC++            |
| 202 | time estimates (Fig. 2A, S10). These samples, and a donkey from eastern Iran/Turkmenistan          |
| 203 | affiliated to the Bactria-Margiana Archaeological Complex (BMAC, ~2,050 BCE; Chalow3),             |
| 204 | branch prior to the formation of modern subpopulations from central Asia (Kazakhstan,              |
| 205 | Kyrgyzstan, Turkmenistan) and eastern Asia (China, Mongolia, Tibet) (Fig. 2C). These               |
| 206 | subpopulations thus diverged after ~2,050 BCE, but potentially before the radiocarbon age of the   |

donkey from Doshan Tepe (1,049-928 BCE), which appears closer to modern subpopulations
from central Asia in one Treemix analysis (Fig. 2D, S10).

209 Ancient samples from Iran (Shahr-i-Qumis, 800 BCE-800 CE), including one Sassanid (AM805) are not more closely related to central than to eastern Asian modern subpopulations, although 210 their exact phylogenetic placement remains unclear (Fig. 2A, B, S10). Their fineSTRUCTURE 211 affinities to modern Iran, Anatolia (Turkey), the Levant (Syria), and Maghreb (Tunisia) support 212 different genetic ancestry profiles from those inferred at the nearby site of Doshan Tepe. This 213 indicates a population turnover in Iran after ~1,000 BCE but before ~500 CE, corresponding to 214 the radiocarbon time interval of Doshan Tepe and a single specimen from Shahr-i-Qumis. 215 216 Strikingly, all our ancient specimens from Europe cluster within modern European domesticates, supporting differentiation within this continent prior to the oldest European samples analyzed 217 (Tarquinia, 803–412 BCE, ~2,500 years ago; Fig. 3C). However, a donkey from a Roman 218 context in Marseille, a major seaport trading center in southern France (Centre Bourse Marseille, 219 0-500 CE), displayed strong genetic affinities with modern individuals from western Africa (Fig. 220 3B, 3D). Additionally, SNP and haplotype sharedness with modern western Africa were also 221 found in European donkeys from Islamic era in Portugal (Albufeira, 1,228-1,280 CE) and 222 Roman times in Northern France (Boinville-en-Woëvre, 200-500 CE) (Fig 3B, 3E). This reveals 223 multiple contacts between Europe and western Africa from the Antiquity to Middle Ages. 224 225 Despite ancient European donkeys showing western African ancestry, these contacts have impacted western Africa more than Europe, in line with Treemix inferring gene flow 226 predominantly in this direction than the reverse (Fig. 1C). Interestingly, all modern Irish donkeys 227 228 and the two Etruscan samples from Tarquinia are devoid of western African ancestry. This

- suggests the preservation of old European genetic lineages, at least in some modern
- 230 subpopulations of this continent.

#### 231 Donkey management involved inbreeding and introgression from divergent lineages

Inbreeding is a common reproductive strategy for breeding animals with desirable traits (40). To 232 233 assess whether ancient donkey breeders made use of inbreeding, we measured the proportion of 234 autosomal runs of homozygosity (ROH) using three independent techniques, all of which provided consistent results (Fig. S13, S14). We detected inbreeding, but no significant changes 235 236 in levels between modern and ancient donkeys (Wilcoxon rank sum test, p-value = 0.3951) (Fig. 4A, 4B, 4C). Conversely, modern horses show higher inbreeding levels than their ancient 237 counterparts (Wilcoxon rank sum test, p-value<0.001), mirroring previous reports of reduced 238 heterozygosity and increased deleterious mutation load in recent times (21, 41) (Fig. 4D, E, F). 239 Longer ROH tracts are more common in modern horses and donkeys than in the past, consistent 240 with inbreeding from closer generations in their genealogies (Fig. 4C, 4F). Overall, our analyses 241 support recent major changes in reproductive management inflating inbreeding in horses, but not 242 in donkeys. 243

244 Admixture modelling suggests ongoing introgression from African wild asses into modern

donkeys from Africa and the southern Arabian Peninsula (with between 0.24–6.99% of

admixture, Fig. 1A, S3, Table S5). This is in line with free-ranging local management practices
allowing for continued interbreeding with wild and feral subpopulations (*4, 42*). The limited but
significant amount of wild genetic material from kiangs in one modern donkey from China also
supports admixture between taxa generally regarded as separate species. This confirms previous
reports of mitochondrial introgression (*43*) and genomic admixture despite different karyotypes

(24). Interestingly, all but one ancient donkey (Tur168) carried remnants of outgroup material
(0.21-4.15%; Fig. 3B), potentially resulting from recent range contractions of wild
subpopulations and ancient management practices providing more opportunities for wild
introgression.

The genome of MV242, a donkey from Israel dating to the Hellenistic period (350-58 BCE), 255 displayed the largest fraction of divergent genetic material (Fig. 3B, 4.15%±0.019). In Treemix, 256 this sample showed a deeper placement than all donkeys present in our panel, except the Somali 257 wild ass (*E.a.som*) (Fig. 2E). Significantly positive f4(*E.a.som*, MV242; Horn+Ken, x) statistics 258 revealed MV242-related genetic ancestry in some modern subpopulations (x), especially towards 259 central and eastern Asia (Fig. 5E). This ancestry was already present in the BMAC sample from 260 261 Iran (Chalow3, Fig. 5F), indicating contact ~2050 BCE at the latest. It was, however, absent in Acemhöyük at that time, suggesting that the MV242 divergent lineage ranged into eastern 262 263 Iran/Turkmenistan, but not Turkey. This lineage also left genetic material in modern Anatolia, 264 the Levant, Nubia, and Maghreb, but not in western Africa, consistent with donkeys carrying MV242-related ancestry flowing back into some African regions. Finally, this ancestry was also 265 present in southwestern European subpopulations (CYK, ESP, PTG), but neither in the modern 266 Balkans and Ireland, nor in any ancient European sample analyzed here (Fig. 5E-F). Combined, 267 our results suggest a range for the MV242-related lineage from the Levant into Asia, rather than 268 Europe and Africa. 269

270 Despite its divergent genetic makeup, MV242 carries a mitochondrial haplotype characteristic of

271 Clade II (Fig. 5A). Our tip-calibrated coalescent analyses revealed that the time to the most

common recent ancestor of that Clade was 32,226 BCE and not 332,580-142,980 BCE (Fig. 5B),

as previously reported (12, 44). Since the same holds true for Clade I, both clades could have

coexisted in sympatry 25,000 years later as donkeys were first domesticated (Fig. 5B).

Additionally, no phylogeographic structure is apparent in patterns of mitochondrial variation,

both in modern and ancient subpopulations, as ancient specimens from Asia and Europe,

277 sometimes from the same archaeological sites, were placed across both clades (Fig 5A). Y-

chromosomal variation was also associated with little, if any, population structure (Fig. 5C, D).

Combined, our results dismiss mitochondrial DNA and the Y-chromosome as reliable markers ofdomestication history in donkeys.

## Romans bred improved donkeys for producing mules essential for their military power and economy

Beyond documenting domestication history at the global scale, our genomic dataset also 283 included 3 jennies (females) and 6 jacks (males) from the same archaeological site (Boinville-en-284 Woëvre) (Fig. 3A). These were found in a dedicated farming area of a Roman villa, providing 285 insights into local management practices in Roman Northern France (200-500 CE). One jack 286 (GVA349) appeared particularly inbred with long ROH indicative of recent consanguinity (Fig. 287 4A) and was genetically related to four jacks and one jenny (family group GVA1, including 288 GVA125, GVA347, GVA348, GVA349, GVA353, and GVA354; Table S10). Additionally, two 289 jennies showed genetic relatedness coefficients equivalent to full siblings (family group GVA2 290 GVA355 and GVA358; Table S10). This indicates breeding management within close kin, 291 292 potentially aimed at selecting for desirable traits. Genotype imputation at TBX3 (13) revealed the presence of dun and derived colored coats, but no evidence for the dominant alleles associated 293 with white spots or long hair was found in the sequence alignments at KIT(45) and FGF5(46)294 295 (Table S7-9). The latter two phenotypes are, however, relatively common in modern breeds from France, suggesting post-Roman selection for these traits. 296

| 297 | The abundance of donkeys at Boinville-en-Woëvre stands as an exception in Roman France, as                    |
|-----|---------------------------------------------------------------------------------------------------------------|
| 298 | mules dominated all other assemblages from this time (47). Contemporaneous Roman sites                        |
| 299 | report mules of a large and uniform size, indicating selective breeding in the parental species for           |
| 300 | expensive animals of exceptional stature (Varo $(2, 6)$ ) (48). Interestingly, morphometric                   |
| 301 | measurements previously revealed five donkeys from family group GVA1 as giant (148-156cm                      |
| 302 | at the withers) (47). We found that GVA359 had a similarly large size (144cm) and genetic                     |
| 303 | affinities to western Africa. This may indicate restocking to enhance body size from distant                  |
| 304 | bloodlines carrying divergent ancestry, or from wild populations.                                             |
| 305 | Interestingly, outgroup admixture was significantly higher at Boinville-en-Woëvre than in other               |
| 306 | ancient donkeys except the divergent MV242 specimen ( $p$ -value = 0.045). Significantly negative             |
| 307 | f4(kiang, MV242; Fiumarella1, Boinville-en-Woëvre) statistics support restocking into family                  |
| 308 | group GVA1 only, from a lineage more divergent than MV242 (Fig. 5G). Additionally, f4(kiang,                  |
| 309 | <i>E.a.som</i> ; Fiumarella1, GVA1) statistics reject unbalanced allele sharedness between <i>E.a.som</i> and |
| 310 | GVA1, ruling out restocking from <i>E.a.som</i> or more divergent populations (Fig. 5H). Combined,            |
| 311 | these findings uncover a lineage, phylogenetically intermediate between MV242 and <i>E.a.som</i> ,            |
| 312 | contributing to the genetic makeup of some Roman donkeys at Boinville-en-Woëvre. Together                     |
| 313 | with the evidence of genetic relatedness and inbreeding, this suggests Boinville-en-Woëvre as a               |
| 314 | likely mule production center that maintained bloodlines of giant donkeys selected through                    |
| 315 | familial breeding and restocking. This center may illustrate how Romans sustained the enormous                |
| 316 | demand for mules, which is documented in the nearby Rhine frontier (49), and has fueled                       |
| 317 | transportation networks throughout the Empire (47).                                                           |

## **Discussion**

| 319 | Our study solves long-standing debates about donkey domestication. We support domestication           |
|-----|-------------------------------------------------------------------------------------------------------|
| 320 | starting from a unique African source ~5,000 BCE. Donkeys subsequently spread into Eurasia            |
| 321 | from ~2,500 BCE, and central and eastern Asian subpopulations differentiated ~2,000-1,000             |
| 322 | BCE. Genetic affinities characteristic of modern western Europe were already formed by 500            |
| 323 | BCE. Following early domestication, African donkeys further differentiated in the West and the        |
| 324 | Horn of Africa plus Kenya, but also received streams of genetic ancestry from western Europe as       |
| 325 | well as a region encompassing the Levant, Anatolia and Mesopotamia. Donkey domestication              |
| 326 | involved limited, but significant wild introgression. It did not entail inflated inbreeding in recent |
| 327 | times, in contrast to horses. In fact, the processes of donkey and horse domestication                |
| 328 | dramatically differed, as horses were domesticated twice $(50)$ and rapidly spread across Eurasia     |
| 329 | from the lower Don-Volga region ~2,000 BCE (21). Their regional differentiation remained              |
| 330 | relatively limited due to strong connectivity at continental distances early on and until oriental    |
| 331 | bloodlines were propagated throughout the world during the last 1,000 years (41, 51). The extent      |
| 332 | to which the different domestication trajectories of donkeys and horses were only driven by their     |
| 333 | respective roles in human societies or also reflected management practices adapted to their           |
| 334 | respective mating and social behavior (52), remains to be explored.                                   |

This work clarifies global patterns of donkey domestication and movements, but also highlights many directions for future research. For example, it remains unknown whether domestic donkeys only dispersed out of Africa by land through the Sinai Peninsula, or across the Red Sea from Ethiopia to Yemen. Additionally, modern subpopulations from the Horn of Africa plus Kenya were found to be the first expanding. This may suggest early domestication there, or donkeys domesticated elsewhere in Africa entering the region more recently. Further research is needed to clarify the timing of pastoral spread into the Red Sea Sudanese region and the Horn of Africa.

Current dates range from ~2500 BCE in Ethiopia and Eritrea (53) to ~3000 BCE in northern 342 Kenya (54). Donkeys are not present in the archaeological record of western Africa before the 343 beginning of the common era either (55), which postdates by 3,000 years the time when donkey 344 populations from Horn of Africa plus Kenya and western African are inferred to have split 345 genetically. This may indicate an early, yet undocumented arrival in the region, or a slow 346 347 migration westward, only reaching the modern range later. Improving the current African archaeological record thus appears paramount to refining the exact context underlying early 348 donkey domestication and subsequent population movements. 349

Further genomic studies in other regions would also largely benefit the understanding of donkey 350 diversity and history. Resolving the genetic structure of equine remains from the 3<sup>rd</sup> millennia 351 352 BCE of southwest Asia will be challenging due to postmortem DNA decay, but essential to map the geographic range of the divergent lineage identified here (MV242), as well as to understand 353 354 dispersal mechanisms in greater detail. The same holds true for Chalcolithic and Bronze Age 355 Europe, which remain genetically undocumented in our dataset, and onwards. Developing genetic knowledge of ancient European donkeys will further clarify patterns of exchange across 356 357 the Mediterranean region, including during and after Roman times, as revealed in this study. It 358 will also provide insights into the dispersal mechanisms underpinning the genetically supported presence of donkey remains in Portugal ~2,200 BCE (33). Genetic characterization of local 359 archaeological sites at the population scale may uncover additional mule breeding centers, other 360 361 than the one reported here. This will shed light on the diversity of breeding management strategies developed by Romans to supply their continental-wide economy and military with 362 adequate animal resources (49). For now, both the absence of mules and rarity of horse mares at 363 Boinville-en-Woëvre (47) suggest that mares were brought in for mating before returning 364

pregnant to their owners. Alternatively, donkey breeders may have visited other farms with their
 jacks to cover mares.

Efforts should continue to characterize the modern donkey diversity around the world, especially in Saudi Arabia, which is currently characterized by a single individual, as well as in Africa, for which no populations located south of the Equator have been sampled. Such efforts may not only refine the historical legacy of past populations into the modern world, but also uncover the genetic basis of desert adaptations, which could prove invaluable for future donkey breeding in the face of global warming.

#### 374 **References and notes**

- 3751.P. Mitchell, The donkey in human history: an archaeological perspective (Oxford
- 376 University Press, Oxford, UK, 2018).
- S. L. Norris, H. A. Little, J. Ryding, Z. Raw, Global donkey and mule populations:
   figures and trends. *PLOS ONE* 16, e0247830 (2021).
- 3. B. Kimura, F. Marshall, A. Beja-Pereira, C. Mulligan, Donkey domestication. *Afr Archaeol Rev* 30, 83-95 (2013).
- 4. F. Marshall, *Rethinking agriculture: archeological and ethnoarcheological perspectives*(Left Coast Press, Walnut Creek, CA, USA, 2007).
- 5. S. Bokonyi, "The animal remains of Maadi, Egypt: A preliminary report" in *Studi di*
- 384 *paletnologia in onore di Salvatore M. Puglisi* M. Liverani, A. Palmieri, R. Peroni, Eds.
- 385 (Università di Roma "La Sapienza,, Rome, 1985), pp. 495-499.
- 386 6. J. Boesneck, A. Von den Driesch, "Tierreste aus der vorgeschichtlichen siedlung von El-
- 387 Omari bei" in *El Omari : a neolithic settlement and other sites in the vicinity of Wadi*
- 388 *Hof, Helwan,* F. Debono, B. Mortensen, Eds. (1990), pp. 99-107.
- J. Boesneck, A. von den Driesch, R. Ziegler, "Die Tierreste von Maadi und dem Friedhof
  am Wadi Digla" in *Maadi III*, I. Rizkana, J. Seeber, Eds. (1989), pp. 87-128.
- 391 8. K. M. Cialowicz, Les palettes Egyptiennes aux motifs zoomorphes et sans decoration.
- 392 *Etudes de l'art predynastique* (Jagiellonian University, Krakow, Poland, 1991).
- 9. D. J. Brewer, D. B. Redford, S. Redford, *Domestic plants and animals: the Egyptian origins* (Warmister: Aries and Phillips, 1994).

| 395 | 10. | S. Rossel, F. Marshall, J. Peters, T. Pilgram, M. D. Adams, D. Connor, Domestication of    |
|-----|-----|--------------------------------------------------------------------------------------------|
| 396 |     | the donkey: timing, processes, and indicators. Proc. Natl. Acad. Sci. U.S.A. 105, 3715     |
| 397 |     | (2008).                                                                                    |
| 398 | 11. | A. Beja-Pereira, P. R. England, N. Ferrand, S. Jordan, A. O. Bakhiet, M. A. Abdalla et     |
| 399 |     | al., African origins of the domestic donkey. Science 304, 1781 (2004).                     |
| 400 | 12. | B. Kimura, F. B. Marshall, S. Chen, S. Rosenbom, P. D. Moehlman, N. Tuross et al.,         |
| 401 |     | Ancient DNA from Nubian and Somali wild ass provides insights into donkey ancestry         |
| 402 |     | and domestication. Proc. R. Soc. B 278, 50-57 (2011).                                      |
| 403 | 13. | C. Wang, H. Li, Y. Guo, J. Huang, Y. Sun, J. Min et al., Donkey genomes provide new        |
| 404 |     | insights into domestication and selection for coat color. Nat. Commun. 11, 6014 (2020).    |
| 405 | 14. | M. Cattani, S. Bokonyi, "Ash-Shumah. An early Holocene settlement of desert hunters        |
| 406 |     | and mangrove foragers in the Yemeni Tihama" in Essays on the Late Prehistory of the        |
| 407 |     | Arabian Peninsula. Serie Orientale Romana XCIII, S. Cleuziou, T. Maurizio, Z. Juris,       |
| 408 |     | Eds. (Istituto Italiano per l'Africa e l'Oriente, Roma, 2002).                             |
| 409 | 15. | R. H. Meadow, H. P. Uerpmann, Equids in the ancient world, vol. 2 (Wiesbaden, 1991).       |
| 410 | 16. | J. Clutton-Brock, The process of domestication. Mamm Rev. 22, 79-85 (1992).                |
| 411 | 17. | J. Zarins, R. Hauser, The domestication of equidae in third-millennium BCE                 |
| 412 |     | Mesopotamia. Cornell University Studies in Assyriology and Sumerology 24, XI + 432         |
| 413 |     | (2014).                                                                                    |
| 414 | 18. | E. Vila, "Data on equids from late fourth and third millennium sites in Northern Syria" in |
| 415 |     | Equids in Time and Space: Papers in Honour of Véra Eisenmann., M. Mashkour, Ed.            |
| 416 |     | (Oxford, Oxbow, 2006), pp. 101-123.                                                        |

| 417 | 19. | J. Boessneck, A. von den Driesch, U. Steger, Tierknochenfudne der ausgrabungen des         |
|-----|-----|--------------------------------------------------------------------------------------------|
| 418 |     | Deutschen Archäologischen Instituts Baghdad in Uruk-Warka, Iraq. Baghdader                 |
| 419 |     | Mitteilingen 15, 149-189 (1984).                                                           |
| 420 | 20. | A. E. Bennett, J. Weber, W. Bendhafer, S. Champlot, J. Joris Peters, G. M. Schwartz et     |
| 421 |     | al., The genetic identity of the earliest human-made hybrid animals, the kungas of Syro-   |
| 422 |     | Mesopotamia. Sci. Adv. 8, eabm0218 (2022).                                                 |
| 423 | 21. | P. Librado, N. Khan, A. Fages, M. A. Kusliy, T. Suchan, L. Tonasso-Calvière et al., The    |
| 424 |     | origins and spread of domestic horses from the Western Eurasian steppes. Nature 598,       |
| 425 |     | 634–640 (2021).                                                                            |
| 426 | 22. | S. Rosenbom, V. Costa, S. Chen, L. Khalatbari, G. H. Yusefi, A. Abdukadir et al.,          |
| 427 |     | Reassessing the evolutionary history of ass-like equids: Insights from patterns of genetic |
| 428 |     | variation in contemporary extant populations. Mol. Phylogenet. Evol. 85, 88-96 (2015).     |
| 429 | 23. | G. Renaud, B. Petersen, A. Seguin-Orlando, M. F. Bertelsen, A. Waller, R. Newton et al.,   |
| 430 |     | Improved de novo genomic assembly for the domestic donkey. Sci. Adv. 4, eaaq0392           |
| 431 |     | (2018).                                                                                    |
| 432 | 24. | H. Jónsson, M. Schubert, A. Seguin-Orlando, A. Ginolhac, L. Petersen, M. Fumagalli et      |
| 433 |     | al., Speciation with gene flow in equids despite extensive chromosomal plasticity. Proc.   |
| 434 |     | Natl. Acad. Sci. U.S.A. 111, 18655 (2014).                                                 |
| 435 | 25. | L. Zeng, H. Q. Liu, X. L. Tu, C. M. Ji, X. Gou, A. Esmailizadeh et al., Genomes reveal     |
| 436 |     | selective sweeps in kiang and donkey for high-altitude adaptation. Zool. Res. 42, 450-460  |
| 437 |     | (2021).                                                                                    |

- 438 26. A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, D. Reich,
- 439 Principal components analysis corrects for stratification in genome-wide association
  440 studies. *Nat. Genet.* 38, 904-909 (2006).
- 441 27. J. K. Pickrell, J. K. Pritchard, Inference of population splits and mixtures from genome442 wide allele frequency data. *PLoS Genet.* 8, e1002967 (2012).
- 443 28. J. Terhorst, J. A. Kamm, Y. S. Song, Robust and scalable inference of population history
  444 from hundreds of unphased whole genomes. *Nat. Genet.* 49, 303-309 (2017).
- 445 29. D. Reese, Faunal remains from early Helladix II Lerna (Argolid-Greece). *Mediterr.*446 *Archaeol. Archaeom.* 13, 289-320 (2013).
- B. A. Knapp, Bronze Age Mediterranean Island Cultures and the Ancient Near East. *The Biblical Archaeologist* 55, 52-72 (1992).
- S. Ratnagar, *Trading Encounters: from the Euphrates to the Indus in the Bronze Age*(Oxford: Oxford University Press, 2004).
- M. A. Zeder, "The equid remains from Tal-e Malyan, southern Iran" in *Equids in the Ancient World*, R. H. Meadow, H. P. Uerpmann, Eds. (Wiesbaden: Reichert, 1986), pp.
  164-193.
- J. L. Cardoso, J. T. Vilstrup, V. Eisenmann, L. Orlando, First evidence of Equus asinus L.
  in the Chalcolithic disputes the Phoenicians as the first to introduce donkeys into the
  Iberian Peninsula. J. Archaeol. Sci. 40, 4483-4490 (2013).
- 457 34. S. Amiri, M. Mashkour, F. Mohaseb, Naseri R, "The Subsistence Economy of a Highland
- 458 Settlement in the Zagros during the Bronze and Iron Ages. The Case of Gūnespān
- 459 (Hamadan, Iran)" in Archaeozoology of Southwest Asia and Adjacent Areas XIII:
- 460 Proceedings of the Thirteenth International Symposium, University of Cyprus, Nicosia,

- 461 *Cyprus, June 7-10, 2017.*, J. Daujat, A. Hadjikoumis, R. Berthon, J. Chahoud, V.
- 462 Kassianidou, J. D. Vigne, Eds. (2021), pp. 199-219.
- 463 35. D. J. Lawson, G. Hellenthal, S. Myers, D. Falush, Inference of population structure using
  464 dense haplotype data. *PLoS Genet.* 8, e1002453 (2012).
- 465 36. L. Girdland Flink, R. Allen, R. Barnett, H. Malmström, J. Peters, J. Eriksson et al.,
- Establishing the validity of domestication genes using DNA from ancient chickens. *Proc. Natl. Acad. Sci. U.S.A.* 111, 6184-6189 (2014).
- 468 37. L. A. F. Frantz, D. G. Bradley, G. Larson, L. Orlando, Animal domestication in the era of
  469 ancient genomics. *Nat. Rev. Genet.* 21, 449-460 (2020).
- 470 38. R. Hui, E. D'Atanasio, L. M. Cassidy, C. L. Scheib, T. Kivisild, Evaluating genotype
- imputation pipeline for ultra-low coverage ancient genomes. *Sci. Rep.* **10**, 18542 (2020).
- 472 39. B. l. Browning, S. R. Browning, Genotype imputation with millions of reference samples.
  473 *Am. J. Hum. Genet.* 98, 116-126 (2016).
- 474 40. T. N. Kristensen, A. C. Sørensen, Inbreeding lessons from animal breeding,
- 475 evolutionary biology and conservation genetics. *Animal Science* **80**, 121-133 (2007).
- 476 41. A. Fages, K. Hanghøj, N. Khan, C. Gaunitz, A. Seguin-Orlando, M. Leonardi et al.,

477 Tracking five millenia of horse management with extensive ancient genome time series.

- 478 *Cell* **177**, 1419-1435.e1431 (2019).
- 479 42. F. Marshall, L. Weissbrod, "The consequences of women's use of donkeys for pastoral
- 480 flexibility: Maasai ethnoarchaeology" in *Tracking Down the Past. Ethnohistory Meets*
- 481 Archaeozoology, G. Grupe, J. Peters, G. McGlynn, Eds. (Rahden/Westf. : M. Leidor,
- 482 2009), pp. 59-79.

| 483 | 43. | E. A. Bennett, S. Champlot, J. Peters, B. S. Arbuckle, S. Guimaraes, M. Pruvost et al.,   |
|-----|-----|-------------------------------------------------------------------------------------------|
| 484 |     | Taming the late Quaternary phylogeography of the Eurasiatic wild ass through ancient      |
| 485 |     | and modern DNA. PLOS ONE 12, e0174216 (2017).                                             |
| 486 | 44. | L. Wang, G. Sheng, M. Preick, S. Hu, T. Deng, U. H. Taron et al., Ancient mitogenomes     |
| 487 |     | provide new insights into the origin and early introduction of Chinese domestic donkeys.  |
| 488 |     | Front. Genet. 12, (2021).                                                                 |
| 489 | 45. | B. Haase, S. Rieder, T. Leeb, Two variants in the KIT gene as candidate causative         |
| 490 |     | mutations for a dominant white and a white spotting phenotype in the donkey. Anim.        |
| 491 |     | Genet. 46, 321-324 (2015).                                                                |
| 492 | 46. | R. Legrand, L. Tiret, M. Abitbol, Two recessive mutations in FGF5 are associated with     |
| 493 |     | the long-hair phenotype in donkeys. Genet. Sel. Evol 46, 65 (2014).                       |
| 494 | 47. | S. Lepetz, B. Clavel, D. Alioğlu, L. Chauvey, S. Schiavinato, L. Tonasso-Calvière et al., |
| 495 |     | Historical management of equine resources in France from the Iron Age to the Modern       |
| 496 |     | Period. J. Archaeol. Sci. Rep. 40, 103250 (2021).                                         |
| 497 | 48. | G. K. Kunst, Archaeozoological evidence for equid use, sex structure and mortality in a   |
| 498 |     | Roman auxiliary fort (Carnuntum-Petronell, lower Austria). Anthropozoologica 31, 109-     |
| 499 |     | 118 (2000).                                                                               |
| 500 | 49. | C. Johnstone, "Commodities or logistics? : The role of equids in Roman supply             |
| 501 |     | networks" in Feeding the Roman Army: The Archaeology of Production and Supply in          |
| 502 |     | NW Europe, S. Stalibrass, R. Thomas, Eds. (Oxbow Books, Oxford, 2008).                    |
| 503 | 50. | C. Gaunitz, A. Fages, K. Hanghøj, A. Albrechtsen, N. Khan, M. Schubert et al., Ancient    |
| 504 |     | genomes revisit the ancestry of domestic and Przewalski's horses. Science 360, 111-114    |
| 505 |     | (2018).                                                                                   |

| 506 | 51. | S. Felkel, C. Vogl, D. Rigler, V. Dobretsberger, B. P. Chowdhary, O. Distl et al., The    |
|-----|-----|-------------------------------------------------------------------------------------------|
| 507 |     | horse Y chromosome as an informative marker for tracing sire lines. Sci. Rep. 9, 6095     |
| 508 |     | (2019).                                                                                   |
| 509 | 52. | F. B. Marshall, K. Dobney, T. Denham, J. M. Capriles, Evaluating the roles of directed    |
| 510 |     | breeding and gene flow in animal domestication. Proc. Natl. Acad. Sci. U.S.A. 111, 6153-  |
| 511 |     | 6158 (2014).                                                                              |
| 512 | 53. | J. Lesur, E. A. Hildebrand, G. Abawa, X. Gutherz, The advent of herding in the Horn of    |
| 513 |     | Africa: new data from Ethiopia, Djibouti and Somaliland. Quat 343, 148-158 (2014).        |
| 514 | 54. | E. A. Hildebrand, K. M. Grillo, E. A. Sawchuk, S. K. Pfeiffer, L. B. Conyers, S. T.       |
| 515 |     | Goldstein et al., A monumental cemetery built by eastern Africa's first herders near Lake |
| 516 |     | Turkana, Kenya. Proc. Natl. Acad. Sci. U.S.A. 115, 8942-8947 (2018).                      |
| 517 | 55. | K. MacDonald, R. Hutton MacDonald, "The origins and development of domesticated           |
| 518 |     | animals in arid West Africa" in The origins and development of African livestock:         |
| 519 |     | archaeology, genetics, linguistics and ethnography., R. M. Blench, K. MacDonald, Eds.     |
| 520 |     | (University College London Press, London, UK, 2000).                                      |
| 521 | 56. | D. H. Alexander, K. Lange, Enhancements to the ADMIXTURE algorithm for individual         |
| 522 |     | ancestry estimation. BMC Bioinform. 12, 246 (2011).                                       |
| 523 | 57. | N. Patterson, A. L. Price, D. Reich, Population structure and eigenanalysis. PLoS Genet.  |
| 524 |     | <b>2</b> , e190 (2006).                                                                   |
| 525 | 58. | N. Patterson, P. Moorjani, Y. Luo, S. Mallick, N. Rohland, Y. Zhan et al., Ancient        |
| 526 |     | admixture in human history. Genetics 192, 1065 (2012).                                    |
| 527 | 59. | F. G. Vieira, A. Albrechtsen, R. Nielsen, Estimating IBD tracts from low coverage NGS     |
| 528 |     | data. Bioinformatics 32, 2096-2102 (2016).                                                |

- 529 60. B. Q. Minh, H. A. Schmidt, O. Chernomor, D. Schrempf, M. D. Woodhams, A. von
- 530 Haeseler *et al.*, IQ-TREE 2: new models and efficient methods for phylogenetic inference
- 531 in the genomic era. *Mol. Biol. Evol.* **37**, 1530-1534 (2020).

Fig. 1: Modern donkey dataset and population evolutionary history. A) Number and

533

geographical distribution of modern donkey samples (n=207). Pie charts show the 534 ADMIXTURE proportion of domestic ancestry (grey), African wild ass ancestry (white) and 535 kiang ancestry (black) averaged across all individuals from each country (56). For visualization, 536 the total surface of each pie chart is scaled to 2%. B) Smartpca (57) of modern donkeys, with the 537 538 imputed ancient samples in black. C) Treemix phylogeny of modern domesticates (excluding individuals with high wild introgression, n=201) (27). Node supports are estimated from 100 539 bootstrap pseudo-replicates (confidence < 90% in red). Percentage values indicate admixture 540 proportions inferred from Treemix (27). D) SMC++ demographic trajectories (colored) and split 541 time estimates (black) for pairs of main geographic regions (28), repeating the analysis on two 542 datasets of three individuals per population (the second dataset is shown in semi-transparency). 543 Modern donkeys are colored and shaped according to geographical location and continents in all 544 panels. 545

#### 546 Fig. 2: Haplotype sharedness and phylogenetic placement of ancient European donkeys. A)

Haplotype sharedness clustering of modern (n=168) and ancient donkeys (n=31) reconstructed 547 548 using fineSTRUCTURE (35). Modern domesticates are colored following Fig. 1 and ancient 549 individuals are numbered according to Fig. 3A. Cluster supports are shown in percentage on each node if >0.8. MV242 placement is incongruent with Treemix (Fig. 2E), due to the limited 550 representation of divergent ancestries in the modern reference panel used for imputation. B) Co-551 552 ancestry matrix based on haplotype sharedness. Co-ancestry values averaged for co-clustered individuals. C-E) Treemix phylogenies of three ancient specimens shown in black (C: Chalow3, 553 D: Doshan Tepe, E: MV242) placed within the subpopulations defined in Fig. 1C (27). Branches 554 that are not scaled are shown as dashed lines. 555

| 556 | Fig. 3: Ancient donkey dataset, genetic affinities to outgroups and modern donkeys. A)                     |
|-----|------------------------------------------------------------------------------------------------------------|
| 557 | Geographical distribution, estimated age and sample names of ancient donkeys ( $n=31$ ). Pie charts        |
| 558 | represent the proportion of individuals with dun coat color (white), heterozygotes (grey), and             |
| 559 | derived coat color (red) at each site. Genotype probabilities $\geq 0.99$ denoted with ** and $\geq 0.9$   |
| 560 | with *. B) Heatmap displaying outgroup f3-statistics in the form of (modern, ancient; kiang)               |
| 561 | (58). Bar charts represent the proportion of wild ancestry (kiang, onager, zebra, <i>E.a.som</i> ) in each |
| 562 | ancient individual with standard errors estimated from ADMIXTURE with 100 bootstrap                        |
| 563 | pseudo-replicates (56). C-E) Treemix phylogenies of ancient specimens from three                           |
| 564 | archaeological sites shown in black (C: Tarquinia (Tarquinia214, Tarquinia501), D: Bourse                  |
| 565 | (BourseB, BourseC), E: Albufeira) placed within the subpopulations defined in Fig. 1C (27).                |
| 566 | Branches that are not scaled are shown as dashed lines.                                                    |
| 567 |                                                                                                            |
| 568 | Fig 4: Inbreeding in domestic donkeys and horses. A) Distribution of total runs of                         |
| 569 | homozygosity (ROH) length in modern versus ancient donkeys. B) The total length of ROH in                  |
| 570 | donkey genomes through time. C-D) Same as A-B, but for 79 modern and 75 ancient horses.                    |
| 571 | ROH tracts were identified using ngsF-HMM (59).                                                            |

## 573 Fig. 5: Uniparental marker phylogenies and introgression of divergent lineages. A)

574 Mitochondrial phylogeny constructed using IQ-TREE (*60*) with 100 bootstrap pseudo-replicates 575 marked with a black triangle if >90%. B) Posterior distributions of the time to the most recent 576 common ancestors of all mitochondrial haplotypes, Clade I and Clade II labelled with their 577 modes. C-D) Same as A-B for the Y-chromosome. E-H) f4-statistics (*58*) exploring the genetic

- 578 contribution of divergent lineages into modern and ancient donkeys. Z scores were corrected for
- 579 multiple testing, and red bars with asterisks show p-value<0.05.

## 580 Acknowledgments:

| 581 | Funding: LKH would like to thank the director of the Tel es-Safi/Gath excavation, Prof.    |
|-----|--------------------------------------------------------------------------------------------|
| 582 | Aren Maeir, for facilitating sampling. The DonkeyBank collection of modern donkey DNA      |
| 583 | samples is supported by the European Union's Horizon 2020 Research and Innovation          |
| 584 | Programme (Grant Agreement Number 857251). Lucia Perez-Pardal is funded by national        |
| 585 | funds from FCT – Fundação para a Ciência e a Tecnologia, I.P. Genoscope and GeT-PlaGe      |
| 586 | sequencing platforms are partly funded by France Génomique National infrastructure, funded |
| 587 | as part of Investissement d'avenir' program managed by Agence Nationale pour la Recherche  |
| 588 | (contract ANR-10-INBS-09). This project has received funding from the CNRS, University     |
| 589 | Paul Sabatier (AnimalFarm IRP), and the European Research Council (ERC) under the          |
| 590 | European Union's Horizon 2020 research and innovation programme (Grant Agreements          |
| 591 | 885729-AncestralWeave, 295729-CodeX, 853272-PALAEOFARM, and; 681605-                       |
| 592 | PEGASUS).                                                                                  |
| 593 | Author contributions:                                                                      |
| 594 | Conceptualization: LO                                                                      |
| 595 | Materials and Reagents: JMA, AP, PW, ABP, DDW, LO                                          |
| 596 | Archaeological samples and contextual information: MV, EV, MM, OP, UT, GBG, AT,            |
| 597 | VT, FA, JLC, MJV, MTA, NB, AG, LKH, AÖ, BA, OV, BC, SL, AAV, HD, AM, MM.                   |
| 598 | Investigation: SBB, DLA, MPW, WCB.                                                         |
| 599 | Sampled modern donkeys: ABP, DDW, LPR, SAB.                                                |
| 600 | Radiocarbon dating: JS.                                                                    |
| 601 | DNA sequencing: MTC, LC, SS, ASO, AP, OB, CD, PW.                                          |

- 602 Data analysis: ETT, PL, LO.
- 603 Writing Supplemental Information: ETT, with input from LO
- 604 Writing Main Article: ETT, PL, LO, with input from all co-authors.
- 605 **Competing interests:** Authors declare that they have no competing interests.
- **Data and materials availability:** The sequence data generated in this study is available for
- download at the European Nucleotide Archive (Accession number = PRJEB52849). The
- accession numbers for each individual sample and all other data used in this study are
- included in Table S1, S2 and S11 of the Supplementary Information.

#### 610 Supplementary Materials:

- 611 Materials and Methods
- 612 Figs. S1 to S15
- 613 Tables S1 to S11
- 614 References 61-137



## Supplementary Materials for

## The genomic history and global expansion of domestic donkeys

Evelyn T. Todd, Laure Tonasso-Calvière, Lorelei Chauvey, Stéphanie Schiavinato, Antoine Fages, Andaine Seguin-Orlando, Pierre Clavel, Naveed Khan, Lucía Perez Pardal, Laura Patterson Rosa, Pablo Librado, Harald Ringbauer, Marta Verdugo, John Southon, Jean-Marc Aury, Aude Perdereau, Emmanuelle Vila, Matilde Marzullo, Ornella Prato, Umberto Tecchiati, Giovanna Bagnasco Gianni, Antonio Tagliacozzo, Vincenzo Tinè, Francesca Alhaique, João Luís Cardoso, Maria João Valente, Miguel Telles Antunes, Laurent Frantz, Beth Shapiro, Daniel G. Bradley, Nicolas Boulbes, Armelle Gardeisen, Liora Kolska Horwitz, Aliye Öztan, Benjamin S. Arbuckle, Vedat Onar, Benoît Clavel, Sébastien Lepetz, Ali Akbar Vahdati, Hossein Davoudi, Azadeh Mohaseb, Marjan Mashkour, Olivier Bouchez, Cécile Donnadieu, Patrick Wincker, Samantha A. Brooks, Albano Beja-Pereira, Dong-Dong Wu, Ludovic Orlando.

Correspondence to: ludovic.orlando@univ-tlse3.fr

This PDF file includes:

Materials and Methods Figs. S1 to S15 Tables S1 to S11 References 61-137

## 1 Summary

- 2 This document describes the methods that have been involved in this study. The first part of 3 these analyses focusses on a panel of 207 modern donkey and 15 wild equid genomes, 49 of
- 4 which are newly described in this study. These genomes were used to: 1) call variants
- 5 (GraphTyper (version 2.5.1) (61)); 2) create a recombination map (LDHat (version 2.2) (62));
- 6 3) call phased haplotypes (BEAGLE (version 5.1) (39)); and 4) infer the population history
- 7 and structure (PLINK (version 1.9) (63), ADMIXTURE (version 1.3.0) (56), qpAdm (version
- 8 810) (64), Treemix (version 1.13) (27), SMC++ (version 1.15.4) (28) and ADMIXTOOLS2
- 9 (58, 65)).
- 10 Additionally, the second part of the analysis leverages the modern genome panel, supplemented
- 11 with 31 ancient donkey genomes spread across central Asia to western Europe and spanning
- 12 the last 4,500 years. We created two datasets to fully exploit the genetic information of these
- 13 samples, both pseudo-haploidising genomes at transversion sites (n=4,833,570), and imputing
- 14 genomes for the set of variants identified in the modern panel (n=7,161,029) (BEAGLE
- versions 4.0 and 5.1). Those datasets were used to infer the past population dynamics and assess
- 16 breeding management through ADMIXTURE, PLINK, Treemix, fineSTRUCTURE (version
- 17 4.1.1) (35), KING (version 2.2.7) (66), NgsRelate (version 2) (67), NgsF-HMM (version 1)
- 18 (59) and qpDstat (version: 751) (58, 65).
- Finally, modern and ancient sequences aligned against the mitochondrial genome and Y-chromosome were used to infer phylogenetic relationships within both maternal and paternal
- 21 lineages and reconstruct their past demographic trajectory (IQ-TREE (version 1.6.12) (60) and
- 22 BEAST (version 2.6.5)) (68-70).

## 23 Materials and Methods

## 24 <u>Sample collection, DNA extraction and genome sequencing of modern samples</u>

We extracted and sequenced DNA from 48 tissue samples of domestic donkeys kindly provided 25 from the existing collection of Dr. Albano Beja-Pereira, which were collected between 2000 26 and 2002 (DonkeyBank, CIBIO-InBIO, University of Porto). The sampling was revised and 27 approved by CIBIO bioethic board. Samples from this collection have been used across the 28 years in several published studies (11, 12, 71). The curation of this sample bank is oriented by 29 30 the principles of the 3Rs, avoiding unnecessary sampling of animals whenever the collection 31 has samples representing a region or the desired donkey phenotype. Only from 2015 onward, did export and ethical and animal welfare permits start to be required from the samples stored 32 33 in this collection. Up to this date, it was not a general practice to require such permits from domestic animals, and unfortunately, even less in the case of the donkey. When these samples 34 were collected, the owners first approached the animal to calm them down. The marginal region 35 of the ear was cleaned with 70% ethanol and a single-use sterile punch biopsy was used to take 36 a tiny piece of skin about 0.2 cm<sup>3</sup> from each individual. Particular attention was devoted to 37 collecting the tissue along the margin and not across the ear, as this area is poorly irrigated and 38 not sensitive. The punch biopsy device automatically cauterizes the possible small capillary 39 vessels from the place where a sample was taken. Usually, this takes a split second and does 40 not require holding the animals for blood sampling and animals do not generally react. After 41 42 sampling, blue spray disinfectant was applied to the region. Nervous or frightened animals were avoided and the animal was observed for some minutes after having been sampled. 43

44 Around 20 plucked hairs (with roots) were instead collected from animals for which the owner 45 expressed a preference for plucking hairs instead of tissue. Normally, dorsum or neck hairs

- 46 were individually plucked from the animal without the need of restraining the animal. The
- 47 collected hairs or tissues were stored in the plastic tube and completely submerged in
- 48 preservative (96% alcohol) with at least three parts of ethanol for each part of the tissue. DNA
- 49 from DonkeyBank tissues were extracted from the tissues using the JetQuick<sup>™</sup> Tissue DNA
- 50 Spin Kit (Genomed, GmbH) and the concentration of DNA extracts was measured using a
- 51 Qubit Fluorimeter (Thermo Fisher Scientific).

52 A single specimen from a Pega donkey was provided by the Brooks Equine Genetics Lab

53 (University of Florida, Gainesville, FL, USA). The sampling was revised and approved by the

- 54 UF IACUC Protocol #201408411. The hair sample, including hair roots, was pulled from the
- 55 tail of the individual, and stored in a clean paper envelope. DNA from this sample was extracted
- using a modified lysis protocol described by Cook and colleagues (72).

Publicly available fastq files for 158 domestic donkeys, 2 Asiatic wild asses, 1 *E. africanus somaliensis (E.a.som)*, 1 *E. zebra hartmannae*, 1 *E. zebra grevyi*, 1 *E. zebra burchelli*, 2 *E. hemionous* and 7 *E. kiang* were downloaded from the National Library of Medicine and
Genome Sequence Archive database (*13, 24, 73*).

- Details and accession numbers for all samples sequenced and downloaded from publicdatabases can be found in Table S1.
- 63 <u>Archaeological samples and context (Provenance)</u>

The following section describes the archaeological contexts associated with all ancient donkeys sequenced in this study. The full name of each site is composed of the modern country where the excavation site lays followed by the age in Before Common Era (BCE) or Common Era (CE) as estimated from radiocarbon dating or inferred from archaeological context. The accession number and associated metadata for each ancient donkey genome included in this paper can be found in Table S2.

## • **TUK\_2564-2039BCE:** Acemhöyük, Turkey (samples: AC14380, AC14415, MV051).

Acemhöyük is a large mound site located in the Aksaray province of central Turkey 71 72 representing an important urban center in the Early and Middle Bronze Age (EBA and MBA, 73 ~2,800-1,700 BCE). The site is located at an elevation of approximately 950 m above sea level on the alluvial fan of the Melendiz river near the central Anatolian Great Salt Lake (Tüz Gölü). 74 75 Acemhöyük consists of twelve major occupational levels with deposits representing EBA, MBA, Early Iron Age, Hellenistic, and modern occupations. The site is best known for its well-76 preserved Sarıkaya and Hatıplar 'palace' structures, which were built in the early 18<sup>th</sup> century 77 BCE and destroyed by a violent fire in the mid-18<sup>th</sup> century BCE (74). These remains were 78 excavated and studied by Dr. Nimet Özgüç, who documented extensive connections between 79 80 the Sarıkaya palace at Acemhöyük and Kültepe-Kanesh, the kingdom of Karkemis on the Syrian-Turkish border, as well as the Assyrian kingdom of Šamši Adad (75). More recent 81 excavations by Dr. Aliye Öztan have explored administrative buildings within the city center 82 associated with the MBA occupation (including the 'Hizmet binası'), which were also 83 destroyed by the fire that likely ended the settlement's role as a political center towards the end 84 of the MBA (74). Moreover, Öztan's excavations have uncovered extensive exposures of the 85 EBA occupation including 75 meters length of the EBA city wall on the south-eastern margin 86

of the mound as well as associated buildings dating to mid to late 3<sup>rd</sup> millennium BCE (EBIII)
(76-78). Deposits associated with EBA levels XI and X include evidence for the destruction of
city wall including as many as 1500 biconical clay balls interpreted as sling stones, human
remains subject to violent death, as well as extensive pits filled with burnt and ashy deposits
(79, 80). Based on a direct radiocarbon date on human bone from area AB/52 associated with
these deposits (Sk4: BETA464596, 3920±30 bp, 95% 2480 - 2299 cal BC), this destruction is

93 dated to the second half of the  $3^{rd}$  millennium BCE (80).

All three donkey specimens from Acemhöyük utilized in this study are petrosal portions of the 94 temporal bone derived from grid square EB/50 and assigned to stratigraphic level XI or X 95 dating to the EBA (EBIII). Specimen AC14380 (derived from mekan C) was recovered on the 96 23<sup>rd</sup> of July, 2012. The specimen AC14415 was recovered on the 24<sup>th</sup> of July 2015; while 97 specimen MV051 (recorded as specimen AC13084 in the Acemhöyük zooarchaeological 98 database) was recovered on August 17th, 2012. All of these specimens derive from deposits 99 representing multiple complete or partial donkey burials located in close proximity to the level 100 XI city wall (MNI of 8 donkeys recovered from this area). They were recovered from shallow 101 deposits directly under the remains of structures associated with the modern village, which 102 currently surrounds the mound and were initially thought to be modern pits related to the 103 disposal of donkey remains. However, it became clear that these donkey burials, as well as 104 others in adjacent areas DB/50 (MNI=3) and DB/48 (MNI=3) are associated with the EBA 105 occupation of the city. Specimen MV051 has been directly dated by radiocarbon assay placing 106 it in the last quarter of the 3<sup>rd</sup> millennium BCE, which corresponds with the phasing of the 107 stratigraphic context to levels XI and X (UBA-30288, 3784±41 BP; 2285-2141 cal. BCE). 108 Samples AC14380 and AC14415 were also radiocarbon dated and returned the same 109 measurement (UCIAMS-199621 and UCIAMS-199619, 3945±20 BP; 2564-2346 cal. BCE) 110 (Table S2). 111

### • IRA\_ 2400BCE-2039BCE: Chalow, Iran (sample: Chalow3)

113 Chalow cemetery is located in the North Khorasan Province in the North East of Iran. It was 114 first located by Dr. Ali Akbar Vahdati in 2006 and the discovery of material culture placed this 115 site in the Middle-Late Bronze / Bactria-Margiana Archaeological Complex (BMAC) (2200 to 116 1900 BCE) (*81*). In Trench 41E, Grave 6 East, excavated by Dr. Vahdati and Dr. Raffaele 117 Biscione in 2015, an equid was discovered buried beside a human skeleton. This equid was 118 later identified as a donkey and included in the current study (Table S2).

• **IRA\_1049BCE-928BCE**: Doshan Tepe, Iran (sample: DoshanTepe).

Doshan Tepe is one of the five archaeological sites of the Ozbaki archaeological zone located 120 in the Savojbolagh plain, 75 kilometers towards the north-west of Tehran, with excavations 121 starting in 1998. The site of Doshan Tepe is located 250 meters to the west of the Main Tepe 122 (Ozbaki Median Fortress). The plain was occupied form the 6th millennium BCE with 123 excavations leading to the identification of 3 periods of the Iron Age. The latest is 124 contemporaneous to the Median period and the two earliest periods are dated from the second 125 half of the second millennium to the advent of the Median dynasty. The presence of grey 126 pottery suggests non-local traditions. Doshan Tepe had also an important role in the region 127 since cuneiform tablets were found in the Ozbaki archaeological zone. Studies of the faunal 128 remains identified numerous equids at this sites, including 29 donkeys, 11 hemiones, 8 horses 129 and 4 probable hybrids and 93 unidentified equids (82). The donkey sample in this study 130

belongs to the Iron Age II chronology in Iran. It was directly radiocarbon dated to 1049-928
cal. BCE (UCIAMS-223195, 2840±15 BP) (Table S2).

- 133
- ITA\_803-412BCE: Tarquinia, Italy (samples :Tarquinia214, Tarquinia501).

The 'monumental complex' of Tarquinia offers the extraordinary opportunity to monitor the 134 cultural development of an Etruscan area sacred to the major female goddess of the Etruscans. 135 Archaeological evidence sheds light on the continuity and memory of the sacred area over the 136 centuries up to the encounter with Rome. From the end of the 10<sup>th</sup> century BCE, offerings 137 located by a natural cavity show the cult of a divinity of Nature, who catalyzed the very first 138 139 community. Ritual sealing of a number of votive pits of different size contain a considerable 140 number of animal bones (83). Samples Tarquinia214 and Tarquinia501 were found in the texture of pavements of structures belonging to the Archaic phase of the site. Both samples 141 were directly radiocarbon dated. The date obtained for specimen Tarquinia214, 750-412 BCE 142 (UCIAMS-224884, 2445±20 BP), overlaps the archaeological context (~550BCE). Two dates 143 144 were obtained for specimen Tarquinia501, which returned a range slightly older than those estimated based on the archaeological context (803-547 BCE vs 520-500BCE) (UCIAMS-145 224885 and UCIAMS-224886, 2515±20 BP and 2656±20 BP) (Table S2). 146

• ISR\_350\_58BCE: Nizzana, Israel (sample: MV242).

Nizzana (sometimes also written as Nessana) is located 52km to the South-West of the city Beersheba. The site was first occupied in the Hellenistic period, and settlement continued throughout the Roman and Byzantine periods until its abandonment in the Early Islamic period. Architectural remains include residential buildings, a Late Roman military fort, three Byzantine churches and a monastery and notably was a 6–7<sup>th</sup> century CE papyrus archive (*84-86*). The sample MV242 dates back to the Hellenistic period and was radiocarbon dated to 350-58 cal. BCE (UCIAMS-199283, 2150±20 BP) (Table S2).

IRA\_800BCE-800CE: Shahr-i-Qumis, Iran (samples: AM39, AM44, AM66, AM71, AM805, AM89).

Shahr-i-Qumis is a site in Northeast Iran, consisting of several isolated mounds spread across 157 an area of 28 kilometers. This site dates back to the Parthian and Sassanian periods, although 158 some recent radiocarbon dating of faunal remains show a longer period of occupation, from 159 the 8<sup>th</sup> century BCE to the 8<sup>th</sup> century CE (87, 88). The site has been identified as Hekatompylos 160 (41, 88), the capital of the Parthian Empire and major hub of the Silk Road and Great Khorasan 161 Road. Excavations at Shahr-i-Qumis revealed a very large quantity of equine skeletons. Sample 162 AM805 was radiocarbon dated to 415-542 CE (UCIAMS-223584 and UCIAMS0223188, 163 1615±20 and 1585±15; Table S2). This places it either during the kingdom of Yazdegerd II 164 (438–457 CE) or his brother Peroz I (457–484 CE). In the beginning of the 5<sup>th</sup> century CE, 165 nomadic groups (in particular the Hephthalites or White Huns) attacked Persia several times, 166 invading parts of eastern Persia for several years. These events may have also impacted the 167 equine population. A large set of animal bones including an important assemblage of equine 168 bones has been studied by Dr. Marjan Mashkour and Dr. Azadeh Mohaseb from 2002 and later 169 other collaborators (Hossein Davoudi, Homa Fathi, Sansaz Beizaee Doost and Roya Khazaeli) 170 at the British Institute of Persian studies in Tehran (89). The assemblage was then transferred 171 to the National Museum of Iran where Azadeh Mohaseb is currently performing a 172 morphometric geometric study of the equid bones. 173
FRA\_200-500CE: Boinville-en-Woëvre, France (samples : GVA125, GVA347, GVA348, GVA349, GVA353, GVA354, GVA355, GVA358, GVA359).

The Gallo-Roman villa of Boinville-en-Woëvre, Déviation Est d'Etain, is located in the department of Meuse, in Northern France. The excavation was carried out in 2005 under the direction of S. Viller (Inrap). Within the Pars Rustica, approximately fifteen pits were discovered, containing 22 complete or sub-complete skeletons of horses and donkeys (9 of which were included in this study, Table S2). Individuals are dated from the Late Antiquity (200-500 CE) (*47*).

• **FRA\_0-500CE:** Centre Bourse Marseille, France (samples: BourseB, BourseC)

The equid bones come from ancient excavations carried out in 1968-1969 at the horn of the ancient port of Marseille. They are dated to late Roman times and were studied by Lucien Jourdan who delivered one of the first archaeozoological theses for the Roman period in 1976. Although the chronological resolution is limited, the assemblages can be associated to a complex of carcass deposits accumulated by marine movements between 0-500 CE (*90*). A horse and two donkeys were identified from this site (*47*).

• **TUK\_552-987CE:** Yenikapi, Turkey (samples: Tur168, Tur177, Tur179, Tur277)

Yenikapi excavations area is located at the Yenikapi section of Istanbul which lies at the west 190 of Namik Kemal Avenue leading from Aksaray down to the Marmara Sea. The site occupies 191 approximately 58,000 m<sup>2</sup> and covers 1.5 km inlands from the Marmara Sea. During the 192 construction work of the Marmaray and Metro railway project at Yenikapı a large number of 193 antique shipwrecks and animal skeletons were discovered. In the light of these important 194 findings, organized excavations began as early as 2004. The results of the analyses indicate 195 various dates ranging from the early through to the late Byzantine period. About 57 animal 196 species have been identified from the faunal assemblage of the site, and the majority of them 197 are comprised from horse, donkey and mule remains (91-93). 198

• **PTG\_1228-1280CE:** Albufeira , Portugal (sample: Albufeira1x1)

This site is in the historic center of Albufeira, on an old peninsula which is surrounded by an 200 inlet to the east and the north. Two silos were found located to the east of the small church of 201 Misericórdia. One silo, that was uncovered during construction work was filled with 202 archaeological material. The finding of coins indicated that this material is no older than the 203 13<sup>th</sup> century, during the last phase of Islamic Rule (Almohad Period). The Almohad dominion 204 of Albufeira lasts until 1249 and was the last Alcazaba (city) to be conquered by the Christians. 205 The ceramic materials found at this site are typical from the Almohad period and one of the 206 coins is from the reign of King Afonso III (1248-1279). 207

Abundant remains of mammological and malacological fauna were identified, including deciduous teeth of a horse and donkey on the top layer of the silo (94). The radiocarbon date for the donkey sample (1228-1280 cal. CE; UCIAMS-208877, 765±15 BP, Table S2) suggests its death in the last decades of the Almohad period or shortly after the conquest. However, Islamic people remained in Algarve under the rule of the Christians, so the sample has been considered as Late Islamic.

• **ITA\_1683-1936CE:** Fiumarella, Italy (sample: Fiumarella1)

The site of Riparo della Fiumarella di Tortora is located in the valley of the Fiumarella di
Tortora stream, close to the modern town of Tortora (Cosenza, Calabria, Southern Italy) and

- not far from the Tyrrhenian coast. This strategic position, along one of the routes between thecoast and more inland territories, may hint to the importance of the site in the region.
- 219

The site was excavated in 2000 by the Soprintendenza Speciale al Museo Preistorico Etnografico "Luigi Pigorini", now part of the Museo delle Civiltà (Rome). The stratigraphic sequence and the archaeological materials evidenced that the site was in use from at least the late Chalcolithic to the MBA (95). The chronological and cultural attributions are based on ceramic typology and few bronze artifacts.

225

The site is now a rock-shelter, but in the past, possibly until the beginning of the MBA, it was a larger cave that collapsed just before the last phases of prehistoric occupation. The relatively small faunal assemblage (n=299) from all the archaeological layers includes mainly domestic mammals, although some remains of red deer and wild boar as well as tortoise were also recovered. Most of the remains represent food refuses although animals probably used for other purposes (e.g., dog, equids) are also present.

232

Caprine herding represents the main economic activity especially in the MBA when there is a 233 corresponding decrease in the number of pig remains, while cattle rearing was not relevant 234 throughout the archeological sequence. Dogs were extremely rare. Hunting was moderately 235 important during the EBA occupation (20% of the identified specimens). Of particular interest 236 to this study is the presence of two remains of small equids: a femur head from the EBA 2 237 levels (ca. 1950-1650 BCE), and a third lower molar belonging to a young individual from the 238 MBA 3 - Apennine Culture levels (ca. 1450-1350 BCE). Based on genetic analyses, both 239 specimens were identified as donkey and the latter one was included in the present study due 240 to its high content in endogenous DNA. 241

The presence of donkeys at such an early date was unexpected because according to current archaeozoological data the earliest occurrence of domestic donkey in Italy is documented only at sites referable to more recent phases of the Bronze age (e.g., Spina, Monte Titano, Coppa Nevigata, Madonna del Petto; (*96-99*)). Therefore, to assess the actual antiquity of the tooth, the specimen was directly dated (UCIAMS-229410, 165±25 BP; Table S2). Unfortunately, the results indicated that the specimen represents modern intrusive material within the Bronze Age

- 248 levels, however its genetic data have been integrated in this research.
- 249 DNA extraction and genome sequencing of ancient samples

The procedures of DNA extraction, library construction and shallow sequencing followed the 250 procedures outlined by Seguin-Orlando and colleagues (100) and Librado and colleagues (21). 251 The drilling and DNA extractions from osseous material of ancient equids were carried out in 252 the ancient DNA facilities of the Centre for Anthropobiology and Genomics of Toulouse 253 (CAGT), France. Briefly, the methods involved: 1) powdering a total of 100-590mg of osseous 254 material using the Mixel Mill MM200 (Retsch) Micro-dismembrator; 2) extracting the DNA 255 following the procedure outlined by (101), which was tailored to facilitate the recovery of even 256 the shortest DNA fragments; 3) treating DNA extracts with the USER<sup>™</sup> (NEB) enzymatic 257 258 cocktail to eliminate a fraction of post mortem DNA damage (102); 4) constructing from double-stranded DNA templates DNA libraries in which two internal indexes are added during 259 adapter ligation and one external index is added during PCR amplification; and 5) 260 amplification, purification and quantification of DNA libraries before pooling 20-50 DNA 261

- 262 libraries for low-depth sequencing. After screening for library content using a Miniseq
- instrument (high-output 80PE mode) at the CAGT (France), sequencing was performed on
- various Illumina platforms, including HiSeq2500 instruments, at the Centre for GeoGenetics
- 265 (University of Copenhagen, Denmark) and HiSeq4000 instruments at the Genoscope (Evry,
- France). Sequence trimming, mapping, filtering and base calibration at damaged sites were
- carried out following the methodology from Librado and colleagues (21).

### 268 <u>Radiocarbon dating</u>

- Radiocarbon dates were estimated for 14 of the 31 (45%) ancient donkey samples in this
- study. Dating was carried out at the Keck Carbon Cycle AMS Laboratory, UC Irvine
- following collagen extraction and ultra-filtration from approximately 1 g of osseous material.
- 272 IntCal20 calibration (103) was performed using OxCalOnline (104). Calibrated dates are
- 273 provided in Table S2. The ages of ancient samples that were not radiocarbon dated were
- 274 inferred from their established archaeological contexts.

### 275 <u>Read alignment, rescaling and trimming</u>

For each raw fastQ file, sequencing reads were demultiplexed, collapsed and trimmed using 276 AdapterRemoval2 (version 2.3.0) (105) following the methodology from Gaunitz and 277 278 colleagues (50) for single indexed DNA libraries, and the methodology from Librado and colleagues (21) for triple indexed libraries. AdapterRemoval2 also ensured that paired-end 279 280 reads showing sufficient sequence overlap were collapsed and trimmed (truncated) if ends showed insufficient qualities. Collapsed, truncated and those paired end reads not collapsed 281 282 (paired) were then parsed through PALEOMIX version 1.2.13.2 (106) for Bowtie2 mapping against the donkey mitochondrial (CM027722.1), and nuclear reference sequence 283 284 (GCA\_016077375.1,https://ftp.ncbi.nlm.nih.gov/genomes/genbank/vertebrate\_mammalian/E quus\_asinus/all\_assembly\_versions/GCA\_016077325.1\_EquAsi1.0). Finally, the optimized 285 parameters recommended by Poullet and Orlando (107) were considered for mapping, and 286 alignments were locally realigned around indels using the IndelRealigner procedure from 287 GATK (13). Sequence alignments shorter than 25 nucleotides, and/or representing PCR 288 duplicates were removed, as well as reads with mapping quality scores inferior to 25. 289

290 Subject to trimming, the software mapDamage2 (24) was used to check for the presence of 291 nucleotide mis-incorporation profiles characteristic of ancient DNA data at the library level, randomly selecting 100,000 reads. We observed the expected increase of C to T (G to A) mis-292 incorporation rates at read starts (read ends) for both USER<sup>TM</sup>-treated and non-USER<sup>TM</sup>-treated 293 data, although of lower magnitude for the former, as expected. Furthermore, genomic positions 294 preceding read starts were higher in purines in non-USER<sup>TM</sup> read alignments, consistently with 295 post-mortem DNA fragmentation being depurination-driven. In USER<sup>TM</sup>-treated read 296 alignments, these positions were enriched in cytosine residues, in line with the excision of 297 deaminated cytosines by the sequential activities of Uracil DNA 298 glycosylase and Endonuclease VIII enzymes present in the USER<sup>TM</sup> mix. In order to limit the 299 impact of remnant mis-incorporations in downstream analyses, we applied the computational 300 procedure combining end trimming and base quality rescaling based on the post-mortem DNA 301 damage profiles, as described in Seguin-Orlando and colleagues (100) and Librado and 302 colleagues (21). Briefly, this procedure relies on PMDtools (108) to sort read alignments into 303 those likely affected by and those devoid of post-mortem DNA damage. The former alignments 304 were then subjected to base rescaling at those positions likely incorporating nucleotide mis-305

- incorporations reflecting post-mortem cytosine deamination using mapDamage2 (109), before
- trimming their ends for 10 nucleotides, while the latter were directly subjected to end trimming
- 308 for 5 nucleotides.
- 309 Variant calling pipeline
- 310

# • Alignment to the reference genome and rescaling of modern individuals

We determined the sex of each individual by comparing the relative depth of reads between the autosomes and X chromosomes in the bam files using the "depth" function in SAMtools (version 1.7-12-g17a2483)(*110*). Individuals with a relative depth of 1 between the autosomes and X chromosome were considered to be female and an autosomal depth twice that of the X chromosome were considered to be male (Table S1, S2).

316

## • Variant calling and quality control filtering of modern individuals

We called variants (single nucleotide polymorphisms (SNPs) and insertions or deletions of 317 bases (INDELs)) from the mapped and rescaled bam files of modern equids using Graphtyper, 318 running each chromosome in parallel (version 2.5.1) (61) (n=45,031,411 variants, Table S3). 319 We then applied the recommended variant filters using the "vcffilter" function from Vcflib 320 (version 1.0) (111): ABHet < 0.0, ABHet > 0.33, BHom < 0.0, ABHom > 0.97, MaxAASR > 321 0.4, MQ > 30. We used GATK (version 4.0.8.1) (112) and BCFtools (version 1.8) (110) to 322 apply the following genotype filters: Phred score > 20, minor allele frequency (MAF) >= 0.01, 323 324 Hardy-Weinberg equilibrium p-value  $\geq 0.001$  and genotype missingness  $\leq 0.2$ , and conditioning on biallelic variants only. After filtering, we removed the 18 scaffolds with no 325 variants remaining and the sex chromosomes, leaving the variants on the 30 autosomes for 326 further analysis (*n*=13,013,551 variants, Table S4). 327

### • Generation of the recombination map and phasing of modern individuals

329 We selected 25 donkeys to generate a recombination map for all autosomal variants that passed 330 QC filters (n=13,013,551). In order to select individuals that provided a representative subset of all subpopulations, we constructed a Principal Component Analysis (PCA) using PLINK 331 (version 1.9) (63) with all domestic donkey samples (n=206). We finally selected 25 domestic 332 donkeys representing the different geographical locations sampled, so no two individuals were 333 chosen from the same country. In order to prevent selecting individuals with high levels of 334 inbreeding, we estimated levels of inbreeding as runs of homozygosity (ROH) across all 335 autosomes using PLINK (version 1.9) (63). Considering that the data used to generate the 336 recombination map were unimputed, we also selected individuals with the lowest proportion 337 of missing SNPs (Table S1). 338

- To calculate the effective population size of the 25 donkeys, we used the formula  $N_e = \theta/4\mu$ , where  $\mu$  is the per generation mutation rate,  $N_e$  is the effective population size, and  $\theta$  is the nucleotide diversity. We used a per generation per site  $\mu$  value of 7.242e-09 as estimated for horses (*113*), assuming a generation interval of 8 years. We calculated theta ( $\theta$ ) for the 25 selected individuals by calling variants using ANGSD (version 0.930) (*114*), conditioning only on variants that passed the previous quality control filters with the parameters: "-GL 1 -C 50 minQ 25 -minmapq 30 -doMaf 1 -baq 1". We estimated  $\theta$  as 0.000875 for autosomal variants, and *N* for demestic donkeys as 20,222
- and  $N_e$  for domestic donkeys as 30,222.

To generate the recombination map, we first calculated the population scaled recombination 347 rate  $(\rho)$  between each variant using of LDHat (version 2.2) (62). To achieve this, we split each 348 chromosome into overlapping windows of 2,000 variants with an overlap of 200 variants 349 between each window. We generated a log likelihood lookup table for 50 chromosomes for the 350 25 diploid individuals using the  $\theta$  estimated using ANGSD with the "complete" function of 351 LDHat. We then estimated p for each region using the "intervals" function of LDHat with the 352 parameters: "-its 10000000 -samp 2000 -bpen 5". We discarded the first 20 million burnins and 353 averaged the remaining iterations using the "stat" function of LDHat with the parameter: "-354 burn 50", before combining the p values for each window back into complete chromosomes 355 and converting the p values to centimorgans (cM) using the estimated Ne value (Table S4, Fig. 356 S1). We found that the average rate of recombination 0.599 cM/Mb per chromosome, which is 357 lower than a previous estimate for horses (1.16 cM/Mb)(115), and in the lower range for 358 mammalian species. Next, we used the recombination map to phase missing variants for each 359 individual using BEAGLE (version 5.1) (39). 360

#### 361 <u>Population genetic analysis of modern donkeys</u>

362 We used the phased variants to construct PCA analyses using PLINK for three subsets of the

population: all individuals (n=222 individuals, Fig. S2), domestic donkeys and *E.a.som* (n=208 individuals).

individuals, Fig. S3), domestic donkeys only (n=206 individuals, Fig. 1B).

A PCA of all samples (n=222, Fig. S2) showed that domestic donkeys clustered closely 365 together compared to the wild equids, which is consistent with all individuals originating from 366 a single domestication process. The closest wild equid to the cluster of domestic donkeys was 367 *E.a.som*, in agreement with previous findings that donkeys were most likely domesticated from 368 wild African ass species (11-13). Early evidence of hunted Equus a. africanus at Gebel Gharbi 369 (modern day Libya, radiocarbon dated to 16,750 years ago) suggests a long history of human 370 contact with wild asses in Africa (116). However, the absence of the other two African wild 371 ass subspecies in the dataset (E. a. africanus or E. a. atlanticus) makes it impossible to 372 determine which of these subspecies is genetically closest to the donkey. Interestingly, the 7 373 kiangs in the dataset separated into two clusters which diverged on the PC2 axis only, which 374 may represent two different subspecies of kiang that have previously been found to be 375 genetically distinct (22). Of the two publicly available samples labelled as "Asiatic Wild Ass" 376 (Accession numbers: AW 1 (SRS3167373) and AW 2 (SRS3167374)), one clustered with a 377 group of kiangs and the other was most genetically similar to *E.hemionus*. 378

The PCA including only domestic donkeys and their closest relative showed *E.a.som* as divergent from the domestic donkeys but closest to East African donkeys (Fig. S3). One donkey from Ethiopia clustered between *E.a.som* and the other domesticates, which is indicative of wild genetic material being present in the genome of this individual (Fig. S3). Additionally, another donkey from Ethiopia and one from Algeria also shifted closer to *E.a.som* compared to PCA plots with domesticates only, also indicating the presence of wild genetic material in these individuals.

Within the domestic donkey population only, we observed strong sub-structuring of donkeys
from different geographical locations (Fig. 1B). African donkeys were diverged from the rest
of the donkeys on all PCA plots. European donkeys were genetically differentiated on the PC1
axis, with Irish donkeys highly drifted from individuals sampled from mainland Europe. There

was a further spread of donkeys along the bottom half of the PC2 axis moving through Asia
with all Chinese, Mongolian and Tibetan donkeys clustering together at the bottom of the PC2
axis.

We also found genetic differentiation between donkeys sampled from the same country. 393 394 Ethiopian donkeys cluster closely together with other African individuals, except for one 395 donkey clustering close to individuals from the Balkans (Macedonia and Croatia). One individual from Turkey clustered distinctly as well, between Egyptian and European donkeys, 396 so was most likely the product of interbreeding between donkeys from different regions. 397 Additionally, Somalian donkeys form two distinct clusters. Two donkeys cluster with 398 individuals from the neighbouring countries of Ethiopia and Algeria. However, three donkeys 399 are more genetically similar to individuals sampled from Tunisia, Turkey, Syria and Iran, 400 seemingly the result of secondary translocations of donkeys from the Middle East back into 401 this region of the world. 402

403 We conducted an admixture analysis for all modern equids using ADMIXTURE (version 1.3.0) (56) (Fig. S4). We thinned the variants using the "--indep-pairwise 50 10 0.2 --maf 0.05" 404 parameters in PLINK, leaving 531,322 unlinked variants. We used these variants for 405 ADMIXTURE analysis, with K values between 2-5. The ADMIXTURE analysis showed a 406 distinctive (red) ancestral component that differentiates wild equids from domestic donkeys for 407 all K values. The optimal K value of 4 showed a green ancestral component, which almost 408 completely makes up the genetic material of Irish donkeys with the navy component 409 predominating the genetic makeup of Asian donkeys, with the Kenyan samples showing a 410 yellow ancestral component. The additional (blue) ancestral component at K=5 was 411 predominate in donkeys from the Canary Islands, Spain and Portugal. These findings agree 412 with the substructures seen on the PCA and indicate that genetic drift has occurred in some 413 414 subpopulations of donkeys, mostly those from more geographically isolated locations such as Ireland, Iberia and the Horn of Africa plus Kenva. 415

We found that the genomes of all kiangs, onagers and zebras consisted entirely of the red 416 ancestral component (named "wild ancestry"). However, only half the genome of the single 417 *E.a.som* individual only consisted of wild ancestry, which may be due to high levels of 418 inbreeding and genetic drift due to low population size in this species or because it is the closest 419 genetic ancestor to domesticates (23, 24). We found that the red ancestral component was also 420 present in the genomes of some domesticated individuals (named "wild ancestry"). To 421 determine the proportion of wild ancestry in the genome of each domestic donkey, we reran 422 the ADMIXTURE analysis with 100 bootstrap pseudo-replicates. We estimated the average 423 proportion of wild ancestry and the standard deviation for each domestic donkey across the 424 bootstraps Individuals with a standard deviation larger than the average wild ancestry 425 proportion (with ancestry proportion estimates intercepting zero) were assigned a wild ancestry 426 proportion of 0 (Fig. 1A). Donkeys with a proportion of wild ancestry larger than their standard 427 deviation were considered to carry significant admixture proportions and were named 428 "admixed donkeys" (*n*=20 individuals). 429

Within the domestic samples, one individual sampled from Ethiopia had a high proportion of
wild ancestry (6.99%), and was also identified on the PCA as showing a closer genetic
relationship with *E.a.som* compared to the other domesticates. We found measurable levels of

- wild introgression in 18 other individuals from Africa and the southern Arabian Peninsula(Yemen and Oman), and one individual from China (Fig. 1A).
- To determine which wild equid population contributed wild ancestry to the hybrid donkeys, we 435 constructed qpAdm models (version 810) (64). The right (reference) populations consisted of 436 437 two outgroup domestic donkey populations (determined as donkey populations on different 438 clades to the individual of interest with no admixture from Treemix models and with differential genetic components from the ADMIXTURE analysis) and two wild populations 439 (Table S5). To investigate possible sources of admixture, we selected domestic donkeys that 440 showed a similar genetic makeup to the target individuals based on the ADMIXTURE analysis 441 442 and a wild equid population as another potential ancestral group.
- Population modelling with qpAdm identified the source of wild admixture in all individuals
  from the Horn of Africa + Kenya and the southern Arabian Peninsula was from a closely related
  source to *E.a.som*. However, without whole genome sequence data for the other African wild
  ass species, it was not possible to determine whether this wild admixture occurred from *E.a.som*directly or another sister subspecies. One individual from China showed admixture from kiangs
  which are a native wild equid species found in the area and may have been the result of human
  experimentation.
- 450 Interestingly, donkeys from Yemen and Oman also showed introgression from African wild asses despite being outside the species historical and current habitat range. This is possibly due 451 to sustained trade of donkeys across the Red Sea with Africa. Additionally, introgression of 452 wild African asses was also found in donkeys sampled from western Africa despite this region 453 also being outside the species historical and current habitat range, which may be due to the 454 455 wider distribution of African wild asses in the past (12). Wild introgression into domestic donkeys is consistent with the extensive reporting of interbreeding between donkeys and wild 456 asses throughout history (52, 117, 118), as well as observations in other domesticated species 457 including sheep (119) and cattle (120, 121). Such practices may have aimed to a further fitness 458 advantage by providing a new phenotype or increasing heterozygosity levels. Further sampling 459 of domestic donkeys in the future would confirm if wild introgression is continuing to occur or 460 if management practices have changed in recent times. 461
- We constructed phylogenetic models using Treemix (version 1.13) (27) with 0-5 migration 462 edges for domestic donkeys + E.a.som (n=200). We excluded donkeys with the highest levels 463 of wild genetic material (n=6 with over 0.5% wild genetic material, as determined by the 464 ADMIXTURE analysis, and n=2 that were hybrids between multiple subpopulations), as they 465 introduced unnecessary complexity to the graph. Inclusion of these individuals resulted in 466 strong migration edges to the outgroup and each other, making it impossible to see admixture 467 between other groups of donkeys. We grouped the remaining donkeys into subpopulations 468 based on their geographical location, and then thinned the variants using the "--indep-pairwise 469 50 10 0.2 --maf 0.05" parameters in PLINK (632,429 variants remaining after pruning). We 470 estimated the optimal number of migration edges using a mixed linear model implemented in 471 the optM R package (https://cran.r-project.org/web/packages/OptM/index.html). Using the tree 472 with the optimal number of migration edges (m=3), we estimated bootstrap confidence 473 intervals for each node using modified scripts from the BITE package with 100 pseudo-474 replicates (122) (Fig. 1C). 475

The Treemix analyses showed distinctive population sub-structuring within domestic donkeys from different geographical locations, with two main branches forming between African (Clade A) and African and non-African donkeys (Clade B), with further differentiation of Asian and European donkeys into separate clusters. The Pega donkey from Brazil was highly divergent but most genetically similar to individuals from the Canary Islands and Iberia. Therefore, the genetic makeup of this rare breed of donkey suggests that is most likely the result of importation of stocks from Iberia during Portuguese colonisation.

483 With the optimal number of migration edges (m=3) and exclusion of hybrid individuals, there was evidence of shared genetic material between donkeys from the Clade A (Horn of Africa + 484 Kenya and western Africa) with individuals from Sudan (34.5%), which cluster on Clade B. 485 Bootstrapping the tree revealed low confidence at this node (Fig. 1C), which is likely due to 486 the high level of admixture with donkeys from Clade A. Most likely donkeys in this region are 487 bred from stocks sourced from Egypt in the north and other donkey populations in Africa. A 488 migration edge with a lower weight (21.7%) is also observed between the cluster of donkeys 489 from Spain, Portugal, the Canary Islands, Saudi Arabia and Brazil with individuals from 490 western Africa, which likely reflects trade over the Mediterranean, resulting in the importation 491 of donkeys between these regions. Finally, a migration edge between the single donkeys 492 sampled from Saudi Arabia and Brazil (39.8%) was also observed. The genetic similarity 493 between the donkey sampled from Saudi Arabia with the European donkeys compared to others 494 from the Arabian Peninsula (Yemen and Oman) is likely due to translocations of stocks back 495 into this region. 496

To further elucidate whether modern individuals are derived from one or two domestication 497 processes, we plotted the correlation between the genetic versus the geographic distance of 498 each subpopulation compared to donkeys from Ethiopia (Clade A) and Yemen (Clade B) (Fig. 499 500 S5). First, we determined regions of the genome contributed by wild ancestors by modelling the admixed individuals in PCAdmix (123) with the ancestral populations as determined by 501 ADMIXTURE and qpAdm using the default parameters. We then created a masked VCF file 502 503 of all domestic donkeys by removing all variants from regions attributed to wild ancestry (n=11,576,248 variants remaining after filtering). We then estimated the genetic distance (f2) 504 between populations using ADMIXTOOLS2 (124, 125) and the geographic distance between 505 populations as the haversine distance using the geosphere package in R (https://cran.r-506 project.org/web/packages/geosphere/index.html). 507

To avoid closely related subpopulations confounding regression trends, we excluded those from the same geographic regions which clustered on Treemix with Ethiopia (Kenya and Somalia) and Oman (Yemen). We calculated a separate regression line for individuals from western Africa (Ghana, Mauritania, Nigeria and Senegal), as our demographic trajectories indicated that they split from the subpopulations in the Horn of Africa+ Kenya early on before the expansion out of Africa (Fig. 1D). We also excluded individuals that were translocations back into geographic regions (ALG, BRA, SAU).

515 We found a strong linear trend of increasing genetic distance verses geographic distance from 516 Ethiopia (r=0.767, r<sup>2</sup>=0.460) and Oman (r=0.662, r<sup>2</sup>=0.438). The strong linear correlations fits 517 with modern donkeys being derived from a single source population similar to Ethiopia, as a 518 break in the trend would indicate that individuals out-of-Africa contained genetic material from

another source. The Z-statistic between the coefficients of the two models found no significant

difference (p-value=0.775). The same rate of regression from Oman and Ethiopia further
 suggests that donkeys expanded out from a single source in Africa into the Arabian Peninsula
 and then into Eurasia.

To determine the demographic history and split timing of donkey subpopulations, we selected 523 524 4 main subpopulations based on Treemix modelling, ADMIXTURE and PCA analysis 525 comprising of individuals from the Horn of Africa + Kenya (Horn+Ken), western Africa (WAfrica), Asia and Europe. We selected three individuals from each subpopulation and 526 converted the variants in the VCF file to SMC++ format, masking regions with wild 527 introgression and tandem repeats using the "vcf2smc" function in the SMC++ package (version 528 529 1.15.4) (28). We then constructed pseudo-bootstrap replicates of each file by randomly resampling 90% of each chromosome in chunks with 10 replicates based on a modified script 530 from MSMC2 package (126, 127), which was developed and implemented by Zheng and 531 colleagues (127). We then modelled the population split timing between subpopulations using 532 the split function in SMC++. Next, we obtained the split times from each model using the 533 standard plot function from SMC++ with a generational interval of 8 years (Fig. 1D, S6). We 534 estimated the mean and standard deviation for the split times of each model across the 10 535 bootstrap pseudo-replicates (Table S14). Additionally, we repeated the same analysis using a 536 different subset of three individuals from each subpopulation to confirm the robustness of the 537 model outputs. 538

539 Our demographic modelling using SMC++ showed a decrease followed by a rapid expansion 540 in effective population size for all donkey subgroups around 5,000 BCE, in line with theories 541 that donkeys are derived from a domestication process in Africa around the time of the 542 aridification of the Sahara desert (*1*) (Fig. S6). Further, the models estimated that the first 543 population split occurred between donkeys now found in the Horn of Africa plus Kenya and 544 western Africa, indicative of early genetic isolation occurring within the African continent (Fig. 545 1D).

Concurrent population split times of European and Asian subpopulation with donkeys from the 546 Horn of Africa plus Kenya indicates a rapid population expansion out of Africa, which suggests 547 that donkeys spread almost simultaneously and extremely rapidly throughout the Old World 548 by the third millennium BCE. This, and the strong phylogeographic structure detected amongst 549 modern populations, indicate that early herders maintained high local reproductive stocks 550 within the areas where donkeys were imported to sustain their further geographic spread. In 551 contrast, effective population size of the donkeys now found in western African only achieved 552 stabilisation around 1,000 years ago. 553

#### 554 <u>Imputation of ancient genomes</u>

We imputed the ancient genomes based on the pipeline developed and tested by Hui and 555 colleagues (38). In line with this method, we created a reference panel consisting of all modern 556 domestic donkeys (n=206) and variants with a MAF >=0.05. We selected only ancient donkeys 557 with a genome coverage of over 0.75X as candidates for imputation (n=31 individuals, Fig. 558 3A, Table S2). Before imputation we pseudo-haploidized the ancient individuals using the 559 "dohaplo" flag in ANGSD, conditioning only on positions found in the modern reference panel. 560 We then projected the ancient individuals onto the PCA of modern domesticates using the 561 "lsqproject" function in the smartpca program from the EIGENSOFT package (version 6.1.4) 562 (26, 57) (Fig. S7). We found that all ancient individuals clustered closely with the modern 563

domesticates, indicating that they have a similar genetic makeup and that the reference panelof modern variants can be used for the imputation of the ancient samples.

After confirming that the ancient samples clustered with the modern individuals, we genotyped 566 all variants found in the modern reference panel using ANGSD with the following parameters: 567 "-doMajorMinor 3 -GL 1 -doMaf 1 -snp\_pval 1e-6 -doGeno 4 -doPost 1 -postCutoff 0.99 -568 remove\_bads 1 -C 50 -minMapQ 25 -minQ 30 -uniqueOnly 1 -baq 1". After variant calling the 569 genotypes in the ancient samples from the reference panel of variants, we compared the 570 proportion of missing variants to the level of coverage in each sample (Table S7). We found 571 that the level of coverage was approximately inversely proportional to missingness in our 572 ancient samples. The lowest rate of missing variants was 0.558 (55.8%) in a sample with 4.92X 573 coverage and the highest proportion of missing variants was 0.973 for the samples with the 574 lowest level of coverage (0.77X and 0.93X). 575

- We applied a pre-imputation filter of "GP >=0.99" using BEAGLE (version 4.0) to our ancient variant panel We then imputed the genotypes of our ancient individuals with BEAGLE (version 5.1), using only the filtered variants, the reference panel of modern donkeys and the recombination map previously generated. We reapplied the filter "GP >=0.99" post-imputation (n=7,161,029 variants (TI/TV=2.17), and n=2,245,992 variants (TI/TV=2.21) that were present in all ancient individuals after post-imputation filtering). We then merged the variants from ancient and modern individuals into a single file using the "merge" function in BCFtools.
- 583 To examine the accuracy of this method on the imputation of donkey genomes, we randomly knocked out an increasing proportion of variants (0.2, 0.5, 0.5, 0.9, 0.92, 0.94, 0.96 and 0.99) 584 from ten modern individuals with the lowest rates of missing SNPs (pre-phasing and excluding 585 586 the donkey that was used for the reference genome). We then re-imputed the variants for these individuals using the same imputation pipeline as outlined above. and after filtering, compared 587 them with the original variants for the same sample to measure the accuracy of imputing 588 samples with different rates of missingness (Fig. S8). Based on this imputation accuracy test, 589 590 we predicated that all samples have an overall imputation accuracy between 98.1% and 98.6% (Fig. S8, Table S6). 591
- After imputation, we projected the ancient, imputed samples onto the PCA with the nonimputed, pseudo-haploidized data for the same ancient donkeys and the modern donkeys used in the reference dataset (Fig. S7). We found that after imputation each ancient individual clustered very similarly to the non-imputed data, albeit moving away from the 0,0-axis due to more data being available (including heterozygous variants). This further provided an indication that the imputation did not change the genetic makeup of the ancient samples relative to the modern individuals, but helped gain resolution.
- To test for the effects of post-mortem damage on the accuracy of imputation in ancient samples, we genotyped alleles for the ancient donkey with the highest coverage (GVA348, 5.05X), using ANGSD and conditioning on sites with a coverage of at least 8X ("setMinDepth 8").We then compared these genotyped alleles to the imputed variants and found that we recovered the same alleles for 99.99% of sites (541,969 out of 541,981 sites), further providing evidence that our method is highly accurate for imputing variants in samples with post-mortem damage.
- 605 <u>Population genetic analysis using imputed variants</u>

606 We performed an ADMIXTURE analysis conditioning on all modern equids and ancient 607 donkeys using imputed variants (Fig. S4). We first thinned all imputed autosomal variants in 608 PLINK using the parameters: "--indep-pairwise 50 10 0.2 --maf 0.05", then calculated 609 admixture proportions for models with K values between 2 and 5 using ADMIXTURE (n=253 610 individuals and n=494,050 variants after filtering). An optimal K value of 4 was estimated by 611 comparing the cross-validation values of the different models.

PCA analysis showed that ancient donkeys clustered most closely with modern donkeys, and also showed a similar genetic makeup on the ADMIXTURE analysis. However, an ancient donkey from Israel (MV242; Nizzana, 350-58BCE) showed high amounts of ancestry from a divergent wild outgroup. Bootstrapped ADMIXTURE (100 bootstrap pseudo-replicates) found that MV242 contained 4.15±0.19 % wild genetic material (Fig. 2C).

We conducted a haplotype-based clustering analysis of all modern and ancient domestic 617 618 donkeys using fineSTRUCTURE (version 4.1.1) (35). We converted the variants in the VCF file and the recombination map present in all individuals (n=2,245,992) to the required input 619 file formats using custom R scripts and the provided perl scripts from the fineSTRUCTURE 620 package. We excluded 58 Chinese and Tibetan donkeys so as to avoid overrepresenting this 621 622 region. Additionally, we removed modern individuals that were identified in the previous 623 ADMIXTURE analysis as having a high proportion of wild admixture (n=6) and admixture between different populations (n=2), which were found to confound the output, resulting in a 624 final dataset of 172 individuals. FineSTRUCTURE was run with default parameters to paint 625 the chromosomes and model haplotype sharing between individuals. The maximum likelihood 626 tree and co-ancestry matrix was plotted from the output files using modified versions of the R 627 scripts provided with the fineSTRUCTURE package (Fig. 2A, 2B, S9). 628

To estimate the genetic sharedness between each ancient individual with the modern subpopulations, we calculated outgroup f3-statistics in the form of (modern, ancient; kiang) using ADMIXTOOLS2 (58, 65), using only variants present in all individuals (n=2,245,992).We used the mean and standard error from the outgroup f3-statistics to plot a heatmap comparing relatedness between the ancient individuals to the modern populations (Fig. 3B).

To further confirm the genetic makeup of our ancient individuals, as inferred by 635 fineSTRUCTURE analysis and outgroup f3-statistics, we constructed Treemix models using 636 the imputed matrix with variants present in all individuals, first pruning the matrix in PLINK 637 using the parameter "--indep-pairwise 50 10 0.2" (n=175,093 variants after filtering). In 638 accordance with earlier Treemix models (Fig. 1B), we removed modern donkeys with high 639 proportions of wild admixture or that were hybrids between different regions, and included 640 *E.a.som*, with the kiangs as an outgroup (n=207 modern individuals). We then grouped modern 641 donkeys according to the branches on Fig. 1B into HORN+KEN (ETH,KEN,SOM), WAFR 642 (GHA, MAU,NIG, SEN), SAPEN (OMA,YEM), CASIA (TKM,KYR,KAZ), EASIA 643 (CHI,TIB,MON), IRA (IRA), TTS (TUK, TUN, SYR), NUBIA (EGY,SUD), EEUR 644 (YUM,YUC), IRE (IRE,Eas), and WEUR (ESP,PTG,CYK,BRA). Ancient donkeys were 645 added to the Treemix model separately, grouped according to their archaeological site (Table 646 S2, Fig. S10). However, in two sites, fineSTRUCTURE analysis showed potentially different 647 genetic makeup in individuals from Yenikapi and Shahr-i-Qumis, so were modelled separately. 648 Each Treemix model was run for 0-10 migration events with 5 replicates and a k value of 1000. 649 The optimal migration edges were inferred using optM, and the 100 bootstraps were preformed 650 using the BITE package as above (Fig. 2C, 2D, 2E 3C, 3D, 3E, S10). 651

A deletion in *TBX3* has been found to be responsible to the phenotypic change from a grey dun coat to a coloured coat in donkeys (*13*). A single nucleotide deletion in the *TBX3* gene (CT>C- 654 ) results in derived coat colours in homozygous individuals, which has previously been
655 annotated to JADWZW01000009.1:42742556 on this version of the assembly (*13*). We
656 genotyped all ancient and modern individuals in our dataset. As a confirmation of the validity
657 of this genotyping, we found that all wild individuals were genotyped for the dun coat colour,
658 but the reference individual (a black donkey) was genotyped for a derived coat colour.

With a post-imputation filter of GP>=0.99, 19 out of 31 ancient donkeys were genotyped for 659 the TBX3 locus. However, with a GP>=0.9, the TBX3 genotype of 25 ancient individuals could 660 be inferred. Coat color phenotypes in ancient donkeys showed that derived coat colors were 661 present across multiple locations, ranging from western Asia (Iran, Shahr-i-Qumis) to Iberia 662 (Portugal, Albufeira) (Fig. 3A). Colored coats appeared almost simultaneously in our dataset 663 in samples from Shahr-i-Qumis and Boinville-en-Woëvre. However, one of our oldest samples 664 (Chalow3) was heterozygous, indicating that this variant was segregating in donkeys by at least 665 this time (~2050BCE). The presence of black donkeys have been recorded in Iraq (Assur) in 666 the 2<sup>nd</sup> millennium BCE, which further suggests that the mutation in the *TBX3* gene was present 667 in early donkey populations (128). Derived coat colors appeared at high frequencies in modern 668 domesticates out of Africa, indicating that selection in more modern times may have favored 669 derived coat colors in donkeys in some regions of the world (Fig. S11). 670

671 However, we found that variants underlying long hair and white spots were not present in our phased variant panel for modern donkeys. Two recessive mutations in the FGF5 gene have 672 been associated with long hair in donkeys (46). The missense mutation (G>A) was mapped to 673 JADWZW01000004.1:161390091 and frameshift deletion (delAT) 674 a to JADWZW010000004.1:161397694 on the reference genome used in this study. Additionally, 675 a dominant mutation associated with white spotting has been identified in splice donor site in 676 the KIT gene (T>A, JADWZW01000004.1:139925278) (45). Analysis of sequence 677 alignments of the 31 ancient donkeys did not find any individuals homozygous for either FGF5 678 mutation, although one individual was heterozygous for the missense mutation (AM89) (Table 679 S7), and another for the deletion (Tur179) (Table S8). This indicates that these mutations were 680 segregating in ancient donkeys, but likely reached higher frequency in some modern breeds at 681 later dates. None of the ancient donkeys carried the mutation associated with white spotting, 682 suggesting that this phenotype was not commonly found in the past (Table S9). 683

To gain insights into the breeding management of ancient donkeys, we estimated the level of 684 relatedness between ancient donkeys from the same site using KING (version 2.2.7) (66) on 685 the panel of imputed variants, conditioning on transversions that were common across all 686 individuals (n=31 individuals, n=619,981 transversions, Table S10). We found evidence of 687 close familial relatedness between 6 donkeys from Boinville-en-Woëvre. Two other donkeys 688 from this site had a high level of genetic relatedness, indicative of full siblings. Additionally, 689 the two donkeys from Tarquinia showed a 4<sup>th</sup> degree of genetic relatedness. No close genetic 690 relatedness was inferred between donkeys at any other site. However, ancient donkeys from 691 the same site may be from different generations, which could explain the lack of genetic 692 relatedness between them. 693

Errors in imputation may lead to over- or underestimates of relatedness between ancient individuals. Therefore, we also estimated the relatedness between modern and ancient donkeys using NgsRelate (version 2) (67). Variants were first called using ANGSD for all modern and ancient donkeys (n=238) separately for each chromosome with the following parameters: "-

baq 1 -doCounts 1 -C 50 -skipTriallelic 1 -doMajorMinor 1 -SNP\_pval 1e-6 -doMaf 1 -698 rmTriallelic 1e-4 - -minQ 30 -minMapQ 25 -uniqueOnly 1 -remove bads 1 -doPost 1 -699 beagleProb 1 -doGlf 2 -GL 2 -P 2 -MAF 0.05", with sites covered in at least 75% of individuals. 700 Transitions were removed and the separate chromosome files were merged together, before 701 running NgsRelate (n=473,263 variants). High correlations between the KING coefficient 702 estimated using NgsRelate and the IBD coefficient estimated for the phased and imputed data 703 using the KING software (r=0.871, r<sup>2</sup>=0.759) showed that accurate relationship inferences 704 could be inferred using imputed data (Fig. S12). 705

We estimated inbreeding as runs of homozygosity (ROH) for all modern and ancient donkeys using three methods. First, using PLINK using the "--homozyg" function for all imputed transversions (n=238 individuals, n=1,949,850 transversions), with a cut off length of at least 1 MB. Estimating runs of homozygosity requires dense haplotypes, however imputation errors in the low-coverage ancient samples may lead to inaccurate calculations of inbreeding levels. To account for imputation errors which may break up ROHs, we allowed for up to 4 heterozygous variants in each 50 SNP sliding window (Fig. S13A).

713 We examined the effects of imputation errors on ROH estimations using imputed variants in

PLINK by down-sampling and re-imputing 10 high coverage modern donkey genomes: 5 with

the highest ROH and 5 with the lowest total length of ROH (as estimated by PLINK). We found

716 little change in the total length of ROH when up to 96% of variants were knocked out and re-

imputed, which was the highest rate of missingness in our ancient samples (Fig. S14A). This

agrees with the estimations of high imputation accuracy in these samples and provides evidence

that ROHs can still be inferred using PLINK with a low rate of errors.

To further test the robustness of the imputed data in accurately estimating ROHs in our ancient samples, we also estimated ROHs using the method implemented NgsF-HMM (version 1) (59) on the unimputed data from all modern and ancient donkeys (n=238 individuals). We estimated ROHs using NgsF-HMM, using the same files as generated for NgsRelate (n=473,263variants), and using a minimum epsilon of 1e-8. We then filtered the ROHs to only select those with a total length over 1MB, containing more than 100 SNPs and with at least one SNP per 50KB on average, in line with the parameters defining an ROH in PLINK (Fig. 4A, Fig. 4B).

We also estimated ROHs from the bam files of the modern and ancient donkeys by searching 727 for regions with a low density of heterozygous variants. First, we down sampled the bam file 728 for each modern and ancient donkey to the lowest coverage sample in our dataset (0.77X) using 729 SAMtools. Next, we generated counts files using ANGSD with the parameters: "-doCounts 1 730 -dumpCounts 4", conditioning only on sites with a MAF  $\geq =0.05$  in modern donkeys. We then 731 filtered the sites for each individual for a depth greater than 2, then grouped the remaining sites 732 into bins of 200 SNPs. Bins with less than 6 heterozygous variants (a frequency of 0.03) were 733 considered to be a ROH. These parameters were optimised by comparing the size and 734 distribution of ROHs in high coverage modern individuals to those estimated in PLINK. We 735 then summed the length of all ROH bins together to obtain the total proportion of the genome 736 in ROH for each individual (Fig. S13B). We then compared the total ROH in the genome of 737 each individual to that estimated by PLINK and ngsF-HMM. The three methods showed high 738 correlation, indicating that the estimates were robust to imputation or phasing errors (Fig. S14). 739

We plotted the total length of ROH in the genome of each donkey as a function of time foreach of the three methods (Fig. 5B, Fig. S13), separating the modern donkeys by continent and

- grouping the ancient donkeys by site and inferring their age through radiocarbon dates where
- available or the archaeological context of the sample. Visually, little change was seen in the
- overall proportion of ROH in the genomes of modern versus ancient donkeys. A Wilcoxon
- rank sum test using the NgsF-HMM output confirmed that there was no significant difference
- in the total length of ROH between the two groups (W=2904 *p*-value=0.395, n=238) (Fig. 5A).
- In line with their close familial relationships, a Wilcoxon rank sum test determined that the five
   donkeys from Boinville-en-Woëvre had significantly higher proportions of their genomes in
- ROH compared to the other ancient individuals (Wilcoxon rank sum test, W = 139, *p*-value =
- 750 0.045, *n*=31).
- Next, we estimated ROH from publicly available whole genome sequences of 75 ancient and 752 79 modern horses, using NgsF-HMM with the same method as for donkeys (Table S11, Fig. 753 4C, 4D, n=963,418 transversions). A Wilcoxon rank sum test confirmed that modern horses 754 were more significantly inbred than ancients (W= 4541, *p*-value>0.001, n=154), in contrast to
- donkeys (Fig. 5C). The total ROH for each horse was plotted as a function of time, as for
- 756 donkeys (Fig. 5D).

### 757 <u>Pseudo-haploidized matrix</u>

Variation in ancient individuals that is not represented in modern populations may affect the 758 accuracy of population models conditioning on modern variation only. To confirm the accuracy 759 760 of our analyses using imputed ancient genomes that were conditioned on modern variation, we 761 constructed a pseudo-haploidized matrix for the ancient and modern individuals included in the Treemix analysis, following the procedure from Gaunitz and colleagues (2018) and Librado 762 and colleagues (2021) (21, 50). Variants were called in ANGSD with the parameters: "-minQ 763 20 -minMapQ 25 -remove\_bads 1 =uniqueOnly 1 -baq 1 -C 50 -doHaploCall 1", conditioning 764 only on transversions (n=4,833,570 transversions). We used this matrix for Treemix analyses 765 using the same method as above, LD pruning the variants (n=496,697 after pruning). We added 766 767 ancient donkeys from each site to the Treemix models separately, then estimating the optimal number of migration edges and performed 100 bootstrap pseudo-replicates for each model. We 768 found that placement on ancient donkeys on the Treemix models constructed using imputed 769 and pseudo-haploidized data was highly similar, confirming the accuracy of our imputation 770 panel (Fig. S10). Next, we constructed a neighbour joining tree to further confirm the 771 population structure of the modern and ancient donkeys. We first calculated pairwise genetic 772 distances between all samples using PLINK, then retrieved the tree topology by implementing 773 the bioNJ algorithm in FastME (version 2.1.4)(129), with 100 bootstrap pseudo-replicates to 774 assess node supports (Fig. S15). 775

The genome of MV242 was found to contain divergent genetic material, as confirmed by 776 ADMIXTURE analysis and Treemix phylogenies using imputed data (Fig. 2E, 3A, S4, S10, 777 S15). However, because there may be errors in the imputed haplotypes of this individual due 778 to the divergent genetic makeup, we used pseudo-haplodized data for further analysis. We 779 modelled f4(E.a.som, MV242; HORN+KEN, x) statistics to determine whether genetic 780 material from this lineage was present in modern donkey subpopulations (x) using qpDstat 781 (version 751) from the Admixtools package (58, 65). We grouped modern donkeys into the 782 same subpopulations used on the Treemix models (Fig. S10). P-values were obtained through 783 multiple test correction of Z-scores with a significance threshold of 0.05. Positive and 784

significant f4-statistics provided evidence of MV242 ancestry in modern donkeys from eastern
Asia, Nubia, central Asia, Turkey, Syria, Tunisia, Iran and western Europe (Fig. 5E).

Next, we tested for the presence of genetic material in the ancient donkeys with  $f_4(E.a.som)$ , 787 MV242; Fiumarella1, x) statistics, where x are the ancient donkeys grouped by site according 788 789 to the Treemix models (Fig. S10). An excess of sharedness with the MV242 lineage was found 790 in the individual Chalow3 as the f4-statistics were positive and significant (Fig. 5F). However, significantly negative f4-statistics showed a deficit in sharedness in a family group of 6 791 donkeys from Boinville-en-Woëvre (GVA125, GVA347, GVA348, GVA349, GVA353, 792 GVA354) (Fig. 5G), which showed evidence of wild genetic material in ADMIXTURE 793 794 analysis (Fig. 3A). To determine whether this wild genetic material is derived from a source more divergent than MV242 we tested f4(kiang, MV242; Fiumarella1, x) statistics, where x 795 are the three family groups from Boinville-en-Woëvre. This statistic was negative and 796 significant for family group GVA1 only, which supports restocking in this population from a 797 lineage more divergent than MV242. The f4(kiang, *E.a.som*; Fiumarella1, x) statistics, for the 798 family groups at Boinville-en-Woëvre were balanced, which suggests that this wild genetic 799 material is not from a population more divergent than *E.a.som* (Fig. 5H). 800

#### 801 <u>Uniparental markers</u>

To construct the mitochondrial phylogeny, we called variants with "-doHaploCall 1 -minMapQ 25 -minQ 30 -doDepth 5" using ANGSD. Additionally, we included the mitochondrial genomes of three *Equus hemionus hemippus* (accession numbers: ERS7669491, ERS7669492, ERS7669493) (20) (n=2,805 variants, n=256 individuals. We generated a tree with IQ-TREE (version 1.6.12) (60), using 100 bootstrap pseudo-replicates for assessing node support (Fig. 5A). The tree was rooted between the zebras and hemiones+ kiangs, as per Jónsson and colleagues (24).

To construct the Y-chromosome phylogeny, we called variants using ANGSD with the parameters: "-isHap 1 -baq 1 -remove\_bads 1 -uniqueOnly 1 -minMapQ 25 -minQ 30 rmTriallelic 1e-4-SNP\_pval 1e-6 -C 50" for all male equids in our dataset (n=125), conditioning on transversions only and including only variants present in more than 90% of individuals, leaving a total of 3,171 variants in the final dataset. We generated a tree with IQ-TREE (version 1.6.12) (60), using the same parameters as those used to generate the mitochondrial tree (Fig. 5B).

816 To estimate the time to the most recent common ancestor (TMRCA), we constructed Bayesian skyline plots using mitochondrial and Y-chromosome variation of domestic donkeys only 817 (n=238 and 121 individuals, respectively) using BEAST (version 2.6.5) (68-70). We estimated 818 the optimal substitution model for both datasets using the BIC scores estimated from IQ-TREE. 819 we converted the multi-alignment fasta files to BEAST input files using BEAUTi (version 820 2.5.26) (68-70) specifying the following parameters: 1) the optimal model for all three datasets 821 was GTR, with an empirical distribution and a gamma category count of 4. 2) Tips of the 822 ancient individuals were dating in years before present using radiocarbon dates, where 823 available, or the mean of the time period estimated from archaeological context. For ancient 824 donkeys from Shahr-i-Qumis, their age was inferred from the single individual radiocarbon 825 dated at this site (AM805). 3) Selecting the Bayesian skyline demographic model and 826 uncorrelated log-Normal relaced molecular clocks with mean values= [1e-07] per site per year 827 [sampling from a uniform prior between 1e-08 and 1e-05]. BEAST (version 2.5.1) (68-70) was 828

- run for a total of 500,000,000 iterations for Y-chromosomal and 350,000,000 for mitochondrial
- 831 (version 1.7.1) (*130*) with 20% as burn-in (Fig. 4B, D).

**Table S1:** Sample information for all modern donkeys and wild equids (*n*=222). The country

of origin, short country code, genome depth-of-coverage, the proportion of missing variants

after variant calling and accession number are reported. Accessions numbers starting with

836 "SRS" were downloaded from the National Library of Medicine, "ERS" from the European

837 Nucleotide Archive, and those starting with "SAMC" from the Genome Sequence Archive

838 database.

| ID                      | Species             | coverage | Proportion<br>missing<br>variants | sex | Country       | short<br>country<br>code | Accession   |
|-------------------------|---------------------|----------|-----------------------------------|-----|---------------|--------------------------|-------------|
| ALG_01                  | Equus asinus        | 25.378   | 0.008                             | М   | Algeria       | ALG                      | ERS12239254 |
| IRE_EnglishWpureIrish_1 | Equus asinus        | 10.369   | 0.271                             | F   | Ireland       | IRE                      | SRS3167383  |
| IRE_EnglishWpureIrish_2 | Equus asinus        | 9.086    | 0.35                              | F   | Ireland       | IRE                      | SRS3167384  |
| IRE_pureIrish_3         | Equus asinus        | 8.589    | 0.377                             | F   | Ireland       | IRE                      | SRS3167387  |
| IRE_pureIrish_4         | Equus asinus        | 8.33     | 0.402                             | F   | Ireland       | IRE                      | SRS3167408  |
| IRE_pureIrish_5         | Equus asinus        | 9.339    | 0.344                             | F   | Ireland       | IRE                      | SRS3167409  |
| IRE_pureIrish_6         | Equus asinus        | 10.265   | 0.28                              | F   | Ireland       | IRE                      | SRS3167406  |
| IRE_pureIrish_7         | Equus asinus        | 9.055    | 0.367                             | F   | Ireland       | IRE                      | SRS3167407  |
| IRE_pureIrish_8         | Equus asinus        | 9.021    | 0.369                             | М   | Ireland       | IRE                      | SRS3167410  |
| Aw_1                    | Asiatic wild ass    | 11.057   | 0.178                             | М   | NA            | AW                       | SRS3167373  |
| Aw_2                    | Asiatic wild<br>ass | 11.464   | 0.163                             | F   | NA            | AW                       | SRS3167374  |
| CHI_dz                  | Equus asinus        | 150.067  | 0.003                             | F   | China (plain) | CHI                      | SRS7835299  |
| CHI_Guangling_3         | Equus asinus        | 9.817    | 0.28                              | М   | China (plain) | CHI                      | SRS3167352  |
| CHI_Guangling_4         | Equus asinus        | 10.497   | 0.23                              | F   | China (plain) | CHI                      | SRS3167350  |
| CHI_HetianGray_1        | Equus asinus        | 10.168   | 0.253                             | М   | China (plain) | CHI                      | SRS3167356  |
| CHI_HetianGray_2        | Equus asinus        | 9.831    | 0.274                             | F   | China (plain) | CHI                      | SRS3167354  |
| CHI_HetianGray_3        | Equus asinus        | 9.527    | 0.292                             | F   | China (plain) | CHI                      | SRS3167361  |
| CHI_HetianGray_4        | Equus asinus        | 9.993    | 0.253                             | F   | China (plain) | CHI                      | SRS3167381  |
| CHI_BY02A               | Equus asinus        | 13.477   | 0.105                             | F   | China (plain) | CHI                      | SRS3167450  |
| CHI_BY03A               | Equus asinus        | 11.341   | 0.176                             | F   | China (plain) | CHI                      | SRS3167463  |
| CHI_BY06A               | Equus asinus        | 12.584   | 0.11                              | М   | China (plain) | CHI                      | SRS3167461  |
| CHI_BY07A               | Equus asinus        | 10.626   | 0.211                             | М   | China (plain) | CHI                      | SRS3167462  |
| CHI_GL03A               | Equus asinus        | 11.589   | 0.152                             | F   | China (plain) | CHI                      | SRS3167460  |
| CHI_GL04A               | Equus asinus        | 12.789   | 0.119                             | F   | China (plain) | CHI                      | SRS3167357  |
| CHI_HL06                | Equus asinus        | 5.968    | 0.641                             | F   | China (plain) | CHI                      | SAMC048978  |
| CHI_HL28                | Equus asinus        | 6.461    | 0.571                             | М   | China (plain) | CHI                      | SAMC048979  |
| CHI_HL29                | Equus asinus        | 6.229    | 0.597                             | М   | China (plain) | CHI                      | SAMC048980  |
| CHI_JM01A               | Equus asinus        | 11.482   | 0.152                             | F   | China (plain) | CHI                      | SRS3167380  |
| CHI_JM05A               | Equus asinus        | 10.701   | 0.183                             | М   | China (plain) | CHI                      | SRS3167379  |
| CHI_JM06A               | Equus asinus        | 11.65    | 0.149                             | F   | China (plain) | CHI                      | SRS3167378  |
| CHI_JM07A               | Equus asinus        | 11.037   | 0.174                             | М   | China (plain) | CHI                      | SRS3167377  |
| CHI_JM11A               | Equus asinus        | 10.004   | 0.24                              | М   | China (plain) | CHI                      | SRS3167392  |
| CHI_KL02A               | Equus asinus        | 10.818   | 0.192                             | F   | China (plain) | CHI                      | SRS3167391  |
| CHI_KL03A               | Equus asinus        | 13.283   | 0.105                             | F   | China (plain) | CHI                      | SRS3167389  |

| CHI_KL04A      | Equus asinus       | 11.804 | 0.147 | F | China (plain) | CHI  | SRS3167390  |
|----------------|--------------------|--------|-------|---|---------------|------|-------------|
| CHI_KL05A      | Equus asinus       | 9.689  | 0.266 | F | China (plain) | CHI  | SRS3167388  |
| CHI_XJ1        | Equus asinus       | 5.939  | 0.635 | F | China (plain) | CHI  | SAMC049000  |
| CHI_XJ2        | Equus asinus       | 5.798  | 0.65  | F | China (plain) | CHI  | SAMC049001  |
| CHI_XJ3        | Equus asinus       | 5.891  | 0.641 | F | China (plain) | CHI  | SAMC049002  |
| CHI_XJ5        | Equus asinus       | 7.545  | 0.476 | F | China (plain) | СНІ  | SAMC049003  |
| CHI_XJ6        | Equus asinus       | 6.481  | 0.576 | F | China (plain) | СНІ  | SAMC049004  |
| CHI_YM01       | Equus asinus       | 6.365  | 0.591 | М | China (plain) | CHI  | SAMC049023  |
| CHI_YM04       | Equus asinus       | 6.346  | 0.588 | М | China (plain) | CHI  | SAMC049024  |
| CHI_YM05       | Equus asinus       | 5.749  | 0.655 | F | China (plain) | CHI  | SAMC049025  |
| CHI_YM12       | Equus asinus       | 5.585  | 0.676 | F | China (plain) | CHI  | SAMC049026  |
| CHI_Qingyang_1 | Equus asinus       | 10.453 | 0.228 | М | China (plain) | CHI  | SRS3167413  |
| CHI_Qingyang_2 | Equus asinus       | 10.786 | 0.224 | F | China (plain) | CHI  | SRS3167414  |
| CHI_Qingyang_3 | Equus asinus       | 10.631 | 0.239 | М | China (plain) | CHI  | SRS3167415  |
| CHI_Qingyang_4 | Equus asinus       | 10.647 | 0.251 | М | China (plain) | CHI  | SRS3167411  |
| CHI_Turfan_1   | Equus asinus       | 10.508 | 0.246 | F | China (plain) | CHI  | SRS3167412  |
| CHI_Turfan_2   | Equus asinus       | 8.709  | 0.386 | F | China (plain) | CHI  | SRS3167424  |
| CHI_Turfan_3   | Equus asinus       | 7.963  | 0.421 | М | China (plain) | CHI  | SRS3167423  |
| CHI_Turfan_4   | Equus asinus       | 8.699  | 0.367 | F | China (plain) | CHI  | SRS3167422  |
| CHI_Turfan_5   | Equus asinus       | 7.969  | 0.441 | F | China (plain) | CHI  | SRS3167421  |
| CHI_Xinjiang_1 | Equus asinus       | 11.005 | 0.215 | F | China (plain) | CHI  | SRS3167454  |
| CHI_Xinjiang_2 | Equus asinus       | 9.063  | 0.336 | М | China (plain) | CHI  | SRS3167473  |
| CHI_Xinjiang_3 | Equus asinus       | 9.652  | 0.285 | М | China (plain) | CHI  | SRS3167474  |
| CHI_Xinjiang_4 | Equus asinus       | 8.417  | 0.393 | М | China (plain) | CHI  | SRS3167475  |
| CHI_Xinjiang_5 | Equus asinus       | 9.763  | 0.3   | F | China (plain) | CHI  | SRS3167470  |
| CHI_Yunnan_1   | Equus asinus       | 10.606 | 0.247 | М | China (plain) | CHI  | SRS3167371  |
| CHI_Yunnan_2   | Equus asinus       | 10.24  | 0.271 | F | China (plain) | CHI  | SRS3167369  |
| CHI_Yunnan_3   | Equus asinus       | 10.891 | 0.212 | М | China (plain) | CHI  | SRS3167370  |
| Easi_Willy2    | Equus asinus       | 28.839 | 0.025 | М | Denmark       | Eas  | SRS431817   |
| Eboe_0227A     | Equus<br>burchelli | 22.537 | 0.142 | F | NA            | Eboe | ERS559290   |
| EGY_1          | Equus asinus       | 11.642 | 0.166 | F | Egypt         | EGY  | SRS3167452  |
| EGY_2          | Equus asinus       | 10.872 | 0.225 | F | Egypt         | EGY  | SRS3167456  |
| EGY_3          | Equus asinus       | 10.963 | 0.221 | М | Egypt         | EGY  | SRS3167455  |
| EGY_4          | Equus asinus       | 7.997  | 0.436 | М | Egypt         | EGY  | SRS3167382  |
| EGY_5          | Equus asinus       | 7.275  | 0.506 | F | Egypt         | EGY  | SRS3167358  |
| Egre_0228A     | Equus grevyi       | 18.65  | 0.126 | F | NA            | Egre | SRS1208552  |
| EGY_155        | Equus asinus       | 14.498 | 0.136 | М | Egypt         | EGY  | SRS3167349  |
| EGY_161        | Equus asinus       | 8.868  | 0.39  | М | Egypt         | EGY  | SRS3167353  |
| EGY_169        | Equus asinus       | 8.949  | 0.368 | М | Egypt         | EGY  | SRS3167359  |
| EGY_02         | Equus asinus       | 27.085 | 0.007 | М | Egypt         | EGY  | ERS12239300 |
| EGY_14         | Equus asinus       | 35.048 | 0.004 | F | Egypt         | EGY  | ERS12239301 |
| EGY_17         | Equus asinus       | 29.792 | 0.005 | М | Egypt         | EGY  | ERS12239302 |

| Ehar_0229A  | Equus<br>hartmannae               | 19.301 | 0.144 | F | NA         | Ehar | SRS861660   |
|-------------|-----------------------------------|--------|-------|---|------------|------|-------------|
| Ekia_0231A  | Equus kiang                       | 14.887 | 0.125 | F | NA         | Eki  | SRS861663   |
| Ekiang_XZYL | Equus kiang                       | 7.79   | 0.587 | F | NA         | Eki  | SAMC049022  |
| Ekiang_YP21 | Equus kiang                       | 6.723  | 0.679 | F | NA         | Eki  | SAMC049027  |
| Ekiang_ZYL  | Equus kiang                       | 6.649  | 0.667 | F | NA         | Eki  | SAMC049051  |
| Ekiang_kun1 | Equus kiang                       | 5.825  | 0.636 | М | NA         | Eki  | SAMC048991  |
| Ekiang_kun2 | Equus kiang                       | 6.132  | 0.592 | F | NA         | Eki  | SAMC048992  |
| Eona_0230A  | Equus<br>hemionus                 | 21.498 | 0.102 | М | NA         | Eon  | SRS474403   |
| Eona_0261A  | Equus<br>hemionus                 | 9.497  | 0.29  | F | NA         | Eon  | SRS693024   |
| Esom_0226A  | Equus<br>africanus<br>somaliensis | 25.869 | 0.087 | F | NA         | Esom | SRS861674   |
| ETH_1       | Equus asinus                      | 9.15   | 0.291 | М | Ethiopia   | ETH  | SRS3167398  |
| ETH_10      | Equus asinus                      | 8.783  | 0.352 | М | Ethiopia   | ETH  | SRS3167432  |
| ETH_2       | Equus asinus                      | 8.508  | 0.388 | М | Ethiopia   | ETH  | SRS3167445  |
| ETH_3       | Equus asinus                      | 8.565  | 0.379 | М | Ethiopia   | ETH  | SRS3167444  |
| ETH_4       | Equus asinus                      | 9.482  | 0.289 | М | Ethiopia   | ETH  | SRS3167442  |
| ETH_5       | Equus asinus                      | 8.008  | 0.478 | М | Ethiopia   | ETH  | SRS3167443  |
| ETH_6       | Equus asinus                      | 8.088  | 0.41  | М | Ethiopia   | ETH  | SRS3167430  |
| ETH_7       | Equus asinus                      | 8.006  | 0.426 | F | Ethiopia   | ETH  | SRS3167433  |
| ETH_8       | Equus asinus                      | 9.409  | 0.29  | F | Ethiopia   | ETH  | SRS3167428  |
| ETH_9       | Equus asinus                      | 8.617  | 0.362 | М | Ethiopia   | ETH  | SRS3167431  |
| ETH_14B     | Equus asinus                      | 32.065 | 0.005 | М | Ethiopia   | ETH  | ERS12239255 |
| ETH_5B      | Equus asinus                      | 35.773 | 0.051 | М | Ethiopia   | ETH  | ERS12239256 |
| ETH_6B      | Equus asinus                      | 28.247 | 0.037 | М | Ethiopia   | ETH  | ERS12239257 |
| GHA_01      | Equus asinus                      | 20.988 | 0.014 | М | Ghana      | GHA  | ERS12239258 |
| GHA_07      | Equus asinus                      | 29.092 | 0.005 | F | Ghana      | GHA  | ERS12239259 |
| IRA_D2      | Equus asinus                      | 10.35  | 0.423 | F | Iran       | IRA  | SAMC048970  |
| IRA_D7      | Equus asinus                      | 6.842  | 0.572 | М | Iran       | IRA  | SAMC048971  |
| IRA_D9      | Equus asinus                      | 7.274  | 0.546 | М | Iran       | IRA  | SAMC048972  |
| IRA_D10     | Equus asinus                      | 10.796 | 0.338 | М | Iran       | IRA  | SAMC048965  |
| IRA_D11     | Equus asinus                      | 6.628  | 0.613 | М | Iran       | IRA  | SAMC048966  |
| IRA_D13     | Equus asinus                      | 9.359  | 0.46  | F | Iran       | IRA  | SAMC048967  |
| IRA_D14     | Equus asinus                      | 12.299 | 0.267 | М | Iran       | IRA  | SAMC048968  |
| IRA_D16     | Equus asinus                      | 10.518 | 0.332 | F | Iran       | IRA  | SAMC048969  |
| KAZ_04      | Equus asinus                      | 27.202 | 0.006 | F | Kazakhstan | KAZ  | ERS12239260 |
| KAZ_07      | Equus asinus                      | 29.988 | 0.005 | F | Kazakhstan | KAZ  | ERS12239261 |
| KEN_YPO86   | Equus asinus                      | 12.269 | 0.262 | М | Kenya      | KEN  | SAMC049038  |
| KEN_YPO97   | Equus asinus                      | 10.148 | 0.452 | F | Kenya      | KEN  | SAMC049048  |
| KEN_YPO98   | Equus asinus                      | 8.334  | 0.491 | М | Kenya      | KEN  | SAMC049049  |
| KEN_YPO101  | Equus asinus                      | 7.208  | 0.6   | М | Kenya      | KEN  | SAMC049028  |
| KEN_YPO102  | Equus asinus                      | 8.117  | 0.544 | М | Kenya      | KEN  | SAMC049029  |

| KEN_YPO104  | Equus asinus | 8.768  | 0.391 | F | Kenya        | KEN  | SAMC049030  |
|-------------|--------------|--------|-------|---|--------------|------|-------------|
| KEN_YPO106  | Equus asinus | 11.438 | 0.261 | М | Kenya        | KEN  | SAMC049031  |
| KEN_YPO89   | Equus asinus | 12.803 | 0.231 | М | Kenya        | KEN  | SAMC049041  |
| KEN_YPO99   | Equus asinus | 8.575  | 0.494 | М | Kenya        | KEN  | SAMC049050  |
| KEN_YPO87   | Equus asinus | 9.529  | 0.353 | М | Kenya        | KEN  | SAMC049039  |
| KEN_YPO88   | Equus asinus | 10.558 | 0.353 | М | Kenya        | KEN  | SAMC049040  |
| KEN_YPO90   | Equus asinus | 12.444 | 0.275 | F | Kenya        | KEN  | SAMC049042  |
| KEN_YPO91   | Equus asinus | 11.092 | 0.335 | М | Kenya        | KEN  | SAMC049043  |
| KEN_YPO92   | Equus asinus | 11.048 | 0.36  | М | Kenya        | KEN  | SAMC049044  |
| KEN_YPO93   | Equus asinus | 12.105 | 0.191 | М | Kenya        | KEN  | SAMC049045  |
| KEN_YPO95   | Equus asinus | 10.662 | 0.34  | М | Kenya        | KEN  | SAMC049046  |
| KEN_YPO96   | Equus asinus | 12.505 | 0.27  | М | Kenya        | KEN  | SAMC049047  |
| Kia_1       | Equus asinus | 27.447 | 0.067 | F | NA           | Eki  | SRS3167376  |
| KYR_Sdonk3  | Equus asinus | 8.328  | 0.478 | F | Kyrgyzstan   | KYR  | SAMC048996  |
| KYR_Sdonk6  | Equus asinus | 29.255 | 0.487 | F | Kyrgyzstan   | KYR  | SAMC048997  |
| KYR_Sdonk7  | Equus asinus | 8.071  | 0.585 | М | Kyrgyzstan   | KYR  | SAMC048998  |
| KYR_Sdonk9  | Equus asinus | 6.826  | 0.28  | F | Kyrgyzstan   | KYR  | SAMC048999  |
| KYR_Sdonk12 | Equus asinus | 5.903  | 0.006 | М | Kyrgyzstan   | KYR  | SAMC048993  |
| KYR_16      | Equus asinus | 9.971  | 0.406 | F | Kyrgyzstan   | KYR  | ERS12239262 |
| KYR_31      | Equus asinus | 9.053  | 0.346 | F | Kyrgyzstan   | KYR  | ERS12239263 |
| KYR_Sdonk1  | Equus asinus | 29.519 | 0.524 | М | Kyrgyzstan   | KYR  | SAMC048994  |
| KYR_Sdonk2  | Equus asinus | 9.799  | 0.007 | М | Kyrgyzstan   | KYR  | SAMC048995  |
| MAU_2990    | Equus asinus | 23.125 | 0.009 | F | Mauritania   | MAU  | ERS12239299 |
| MAU_3094    | Equus asinus | 24.434 | 0.007 | F | Mauritania   | MAU  | ERS12239298 |
| MAU_3261    | Equus asinus | 27.093 | 0.006 | F | Mauritania   | MAU  | ERS12239297 |
| MON_08      | Equus asinus | 28.569 | 0.005 | F | Mongolia     | MON  | ERS12239264 |
| MON_10      | Equus asinus | 27.899 | 0.006 | F | Mongolia     | MON  | ERS12239265 |
| NIG_YPO62   | Equus asinus | 10.673 | 0.389 | М | Nigeria      | NIG  | SAMC049032  |
| NIG_YPO63   | Equus asinus | 11.36  | 0.327 | F | Nigeria      | NIG  | SAMC049033  |
| NIG_YPO64   | Equus asinus | 8.866  | 0.458 | М | Nigeria      | NIG  | SAMC049034  |
| NIG_YPO65   | Equus asinus | 10.422 | 0.318 | М | Nigeria      | NIG  | SAMC049035  |
| NIG_YPO66   | Equus asinus | 10.574 | 0.349 | F | Nigeria      | NIG  | SAMC049036  |
| NIG_YPO67   | Equus asinus | 14.534 | 0.224 | М | Nigeria      | NIG  | SAMC049037  |
| OMA_38      | Equus asinus | 28.817 | 0.005 | F | Oman         | OMA  | ERS12239266 |
| OMA_39      | Equus asinus | 25.459 | 0.022 | М | Oman         | OMA  | ERS12239267 |
| OMA_46      | Equus asinus | 28.281 | 0.005 | F | Oman         | OMA  | ERS12239268 |
| PTGm_02     | Equus asinus | 32.589 | 0.004 | F | Portugal     | PTGM | ERS12239269 |
| PTGm_10     | Equus asinus | 23.579 | 0.008 | F | Portugal     | PTGM | ERS12239270 |
| SAU_11      | Equus asinus | 28.634 | 0.007 | М | Saudi Arabia | SAU  | ERS12239271 |
| SEN_10      | Equus asinus | 28.175 | 0.005 | F | Senegal      | SEN  | ERS12239272 |
| SOM_01      | Equus asinus | 29.409 | 0.045 | F | Somalia      | SOM  | ERS12239273 |
| SOM_05      | Equus asinus | 31.333 | 0.028 | F | Somalia      | SOM  | ERS12239274 |

| SOM_19                | Equus asinus | 31.999 | 0.005 | F | Somalia        | SOM | ERS12239275 |
|-----------------------|--------------|--------|-------|---|----------------|-----|-------------|
| SOM_20                | Equus asinus | 34.065 | 0.004 | F | Somalia        | SOM | ERS12239276 |
| SOM_21                | Equus asinus | 36.165 | 0.004 | F | Somalia        | SOM | ERS12239277 |
| ESP_Andalusian_1      | Equus asinus | 9.683  | 0.36  | М | Spain          | ESP | SRS3167402  |
| ESP_Basque_10         | Equus asinus | 11.632 | 0.186 | F | Spain          | ESP | SRS3167401  |
| ESP_Basque_11         | Equus asinus | 9.909  | 0.267 | F | Spain          | ESP | SRS3167400  |
| ESP_Basque_12         | Equus asinus | 10.066 | 0.268 | М | Spain          | ESP | SRS3167399  |
| ESP_Basque_13         | Equus asinus | 9.553  | 0.304 | F | Spain          | ESP | SRS3167404  |
| ESP_ZamoranoLeones_14 | Equus asinus | 10.128 | 0.282 | F | Spain          | ESP | SRS3167403  |
| ESP_ZamoranoLeones_15 | Equus asinus | 12.438 | 0.192 | F | Spain          | ESP | SRS3167405  |
| ESP_ZamoranoLeones_16 | Equus asinus | 11.581 | 0.232 | F | Spain          | ESP | SRS3167385  |
| ESP_ZamoranoLeones_17 | Equus asinus | 11.841 | 0.187 | F | Spain          | ESP | SRS3167386  |
| ESP_Baleares_18       | Equus asinus | 9.217  | 0.457 | F | Spain          | ESP | SRS3167372  |
| ESP_Andalusian_2      | Equus asinus | 11.462 | 0.215 | F | Spain          | ESP | SRS3167368  |
| ESP_Andalusian_3      | Equus asinus | 9.061  | 0.455 | F | Spain          | ESP | SRS3167367  |
| CYK_IslasCanarias_4   | Equus asinus | 10.154 | 0.248 | М | Canary Islands | СҮК | SRS3167465  |
| CYK_IslasCanarias_5   | Equus asinus | 12.988 | 0.15  | М | Canary Islands | СҮК | SRS3167464  |
| CYK_IslasCanarias_6   | Equus asinus | 9.165  | 0.353 | F | Canary Islands | СҮК | SRS3167472  |
| CYK_IslasCanarias_7   | Equus asinus | 11.042 | 0.203 | М | Canary Islands | СҮК | SRS3167441  |
| CYK_IslasCanarias_8   | Equus asinus | 9.904  | 0.273 | М | Canary Islands | СҮК | SRS3167469  |
| CYK_IslasCanarias_9   | Equus asinus | 9.155  | 0.332 | М | Canary Islands | СҮК | SRS3167471  |
| SUD_20                | Equus asinus | 25.12  | 0.007 | F | Sudan          | SUD | ERS12239278 |
| SUD_49                | Equus asinus | 30.011 | 0.005 | М | Sudan          | SUD | ERS12239279 |
| SUD_55                | Equus asinus | 31.734 | 0.004 | М | Sudan          | SUD | ERS12239280 |
| SYR_06                | Equus asinus | 32.131 | 0.005 | F | Syria          | SYR | ERS12239281 |
| SYR_19                | Equus asinus | 32.954 | 0.004 | F | Syria          | SYR | ERS12239282 |
| TIB_DQFS2             | Equus asinus | 9.408  | 0.4   | F | Tibet          | TIB | SAMC048957  |
| TIB_XZCD05            | Equus asinus | 8.972  | 0.382 | F | Tibet          | TIB | SAMC048958  |
| TIB_XZCM09            | Equus asinus | 8.816  | 0.399 | М | Tibet          | TIB | SAMC048959  |
| TIB_XZCM18            | Equus asinus | 10.206 | 0.285 | М | Tibet          | TIB | SAMC048960  |
| TIB_DQFS1             | Equus asinus | 6.518  | 0.578 | F | Tibet          | TIB | SAMC048973  |
| TIB_DQFS4             | Equus asinus | 6.837  | 0.537 | F | Tibet          | TIB | SAMC048974  |
| TIB_DQFS6             | Equus asinus | 6.658  | 0.555 | F | Tibet          | TIB | SAMC048975  |
| TIB_XZCD01            | Equus asinus | 7.04   | 0.526 | F | Tibet          | TIB | SAMC049005  |
| TIB_XZCD02            | Equus asinus | 5.867  | 0.64  | М | Tibet          | TIB | SAMC049006  |
| TIB_XZCD06            | Equus asinus | 5.985  | 0.63  | F | Tibet          | TIB | SAMC049007  |
| TIB_XZCM01            | Equus asinus | 6.331  | 0.588 | F | Tibet          | TIB | SAMC049008  |
| TIB_XZCM02            | Equus asinus | 5.934  | 0.627 | М | Tibet          | TIB | SAMC049009  |
| TIB_XZCM05            | Equus asinus | 5.968  | 0.623 | М | Tibet          | TIB | SAMC049010  |
| TIB_XZCM06            | Equus asinus | 6.112  | 0.62  | М | Tibet          | TIB | SAMC049011  |
| TIB_XZCM10            | Equus asinus | 6.77   | 0.534 | М | Tibet          | TIB | SAMC049012  |
| TIB_XZCM12            | Equus asinus | 5.808  | 0.652 | F | Tibet          | TIB | SAMC049013  |

| TIB_XZCM17     | Equus asinus | 6.1    | 0.599 | М | Tibet        | TIB | SAMC049014  |
|----------------|--------------|--------|-------|---|--------------|-----|-------------|
| TIB_XZSNQS02   | Equus asinus | 6.194  | 0.607 | F | Tibet        | TIB | SAMC049015  |
| TIB_XZSNQS03   | Equus asinus | 5.695  | 0.66  | М | Tibet        | TIB | SAMC049016  |
| TIB_XZSNQS04   | Equus asinus | 5.636  | 0.667 | М | Tibet        | TIB | SAMC049017  |
| TIB_XZSNQS05   | Equus asinus | 5.97   | 0.632 | М | Tibet        | TIB | SAMC049018  |
| TIB_XZSNQS06   | Equus asinus | 5.97   | 0.647 | F | Tibet        | TIB | SAMC049019  |
| TIB_XZSNQS07   | Equus asinus | 6.327  | 0.585 | М | Tibet        | TIB | SAMC049020  |
| TIB_XZSNQS23   | Equus asinus | 7.006  | 0.516 | М | Tibet        | TIB | SAMC049021  |
| TKM_107        | Equus asinus | 31.802 | 0.005 | М | Turkmenistan | ТКМ | ERS12239283 |
| TUK_07         | Equus asinus | 32.266 | 0.004 | М | Turkey       | TUK | ERS12239284 |
| TUK_08         | Equus asinus | 31.102 | 0.005 | F | Turkey       | TUK | ERS12239285 |
| TUK_26         | Equus asinus | 28.86  | 0.005 | F | Turkey       | TUK | ERS12239286 |
| TUN_06         | Equus asinus | 30.823 | 0.005 | М | Tunisia      | TUN | ERS12239287 |
| TUN_11         | Equus asinus | 35.539 | 0.004 | F | Tunisia      | TUN | ERS12239288 |
| TUN_19         | Equus asinus | 40.152 | 0.004 | F | Tunisia      | TUN | ERS12239289 |
| BRA_PegaDonkey | Equus asinus | 13.706 | 0.065 | F | Brazil       | BRA | ERS12239290 |
| YEM_08         | Equus asinus | 29.615 | 0.005 | F | Yemen        | YEM | ERS12239291 |
| YEM_11         | Equus asinus | 40.052 | 0.003 | М | Yemen        | YEM | ERS12239292 |
| YEM_17         | Equus asinus | 31.904 | 0.004 | F | Yemen        | YEM | ERS12239293 |
| YUC_08         | Equus asinus | 27.058 | 0.007 | М | Croatia      | YUC | ERS12239294 |
| YUM_08         | Equus asinus | 28.304 | 0.006 | М | Macedonia    | YUM | ERS12239295 |
| YUM_13         | Equus asinus | 24.307 | 0.009 | М | Macedonia    | YUM | ERS12239296 |

**Table S2:** Sample information and naming for each ancient individual. Radiocarbon dates

841 were calibrated using Oxcal online and the IntCal20 calibration curve (*103, 104*). Ages

marked with a star are inferred from radiocarbon dates and archaeological context is shown

843 outside the bracket.

| ID           | Site                    | Country | Latitude | Longitude | Radiocarbon<br>dated age                                   | Age                         | Estimated<br>Time<br>period<br>(years) | Period                               | Sex | Accession<br>number |
|--------------|-------------------------|---------|----------|-----------|------------------------------------------------------------|-----------------------------|----------------------------------------|--------------------------------------|-----|---------------------|
| AC14380      | Acemhöyük               | Türkiye | 38.41123 | 33.83569  | 3945±20<br>(UCIAMS<br>199621)                              | 2455BCE                     | 2564BCE-<br>2346BCE                    | Bronze<br>Age                        | М   | ERS12239303         |
| AC14415      | Acemhöyük               | Türkiye | 38.41123 | 33.83569  | 3945±20<br>(UCIAMS<br>199619)                              | 2455BCE                     | 2564BCE-<br>2346BCE                    | Bronze<br>Age                        | М   | ERS12239304         |
| MV051        | Acemhöyük               | Türkiye | 38.41123 | 33.83569  | 3784 <u>+</u> 41<br>(UBA-30288)                            | 2219BCE                     | 2400BCE-<br>2039BCE                    | Bronze<br>Age                        | М   | ERS12239305         |
| Chalow3      | Chalow                  | Iran    | 37.10355 | 56.88528  | N/A                                                        | 2050BCE                     | 2200BCE-                               | BMAC                                 | F   | ERS12239306         |
| DoshanTepe   | Doshan<br>Tepe          | Iran    | 35.6833  | 51.5      | 2840±15<br>(UCIAMS<br>223195)                              | 989BCE                      | 1049BCE-<br>928BCE                     | Iron Age                             | F   | ERS12239307         |
| Tarquinia214 | Tarquinia               | Italy   | 42.0542  | 11.7576   | 2445±20<br>(UCIAMS<br>224884)                              | 550BCE<br>(*581BCE)         | 750BCE-                                | Etruscan<br>(Archaic<br>Period)      | М   | ERS12239308         |
| Tarquinia501 | Tarquinia               | Italy   | 42.0542  | 11.7576   | 2515±20 and<br>2565±20<br>(UCIAMS<br>224885 and<br>224886) | 520-<br>500BCE<br>(*680BCE) | 803BCE-<br>594BCE<br>and               | Etruscan<br>(Archaic<br>Period)      | F   | ERS12239309         |
| MV242        | Nizzana                 | Israel  | 30.88569 | 34.84694  | 2150±20<br>(UCIAMS<br>199283)                              | 204BCE                      | 350BCE-                                | Hellenistic<br>Period                | F   | ERS12239310         |
| AM39         | Shahr-i-<br>Qumis       | Iran    | 36.5511  | 54.0175   | N/A                                                        | 800BCE-<br>800CE            | 800BCE-                                | Parthian<br>&<br>Sassanian<br>Period | F   | ERS12239311         |
| AM44         | Shahr-i-<br>Qumis       | Iran    | 36.5511  | 54.0175   | N/A                                                        | 800BCE-<br>800CE            | 800BCE-                                | Parthian<br>&<br>Sassanian<br>Period | М   | ERS12239312         |
| AM66         | Shahr-i-<br>Qumis       | Iran    | 36.5511  | 54.0175   | N/A                                                        | 800BCE-<br>800CE            | 800BCE-                                | Parthian<br>&<br>Sassanian<br>Period | М   | ERS12239313         |
| AM71         | Shahr-i-<br>Qumis       | Iran    | 36.5511  | 54.0175   | N/A                                                        | 800BCE-<br>800CE            | 800BCE-                                | Parthian<br>&<br>Sassanian<br>Period | М   | ERS12239314         |
| AM805        | Shahr-i-<br>Qumis       | Iran    | 36.5511  | 54.0175   | 1615±20 and<br>1585±15<br>(UCIAMS<br>223584 and<br>223188) | 481CE                       | 415-538CE<br>and 421-<br>542CE         | Parthian<br>&<br>Sassanian<br>Period | М   | ERS12239315         |
| AM89         | Shahr-i-<br>Qumis       | Iran    | 36.5511  | 54.0175   | N/A                                                        | 800BCE-<br>800CE            | 800BCE-                                | Parthian<br>&<br>Sassanian<br>Period | М   | ERS12239316         |
| BourseB      | Marseille               | France  | 43.29774 | 5.374613  | N/A                                                        | 0CE-<br>500CE               | 0CE-                                   | Late<br>Antiquity                    | М   | ERS12239317         |
| BourseC      | Marseille               | France  | 43.29774 | 5.374613  | N/A                                                        | 0CE-<br>500CE               | 0CE-                                   | Late<br>Antiquity                    | М   | ERS12239318         |
| GVA125       | Boinville-<br>en-Woëvre | France  | 49.1858  | 5.6733    | N/A                                                        | 200CE-                      | 200CE-                                 | Roman<br>Period                      | М   | ERS12239319         |
| GVA347       | Boinville-<br>en-Woëvre | France  | 49.1858  | 5.6733    | N/A                                                        | 200CE-                      | 200CE-                                 | Roman<br>Period                      | М   | ERS12239320         |
| GVA348       | Boinville-<br>en-Woëvre | France  | 49.1858  | 5.6733    | N/A                                                        | 200CE-                      | 200CE-                                 | Roman<br>Period                      | М   | ERS12239321         |
| GVA349       | Boinville-<br>en-Woëvre | France  | 49.1858  | 5.6733    | N/A                                                        | 200CE-                      | 200CE-                                 | Roman<br>Period                      | М   | ERS12239322         |

| GVA353       | Boinville-<br>en-Woëvre | France   | 49.1858 | 5.6733  | N/A                           | 200CE- | 200CE-            | Roman<br>Period              | М | ERS12239323 |
|--------------|-------------------------|----------|---------|---------|-------------------------------|--------|-------------------|------------------------------|---|-------------|
| GVA354       | Boinville-<br>en-Woëvre | France   | 49.1858 | 5.6733  | N/A                           | 200CE- | 200CE-            | Roman<br>Period              | F | ERS12239324 |
| GVA355       | Boinville-<br>en-Woëvre | France   | 49.1858 | 5.6733  | N/A                           | 200CE- | 200CE-            | Roman<br>Period              | F | ERS12239325 |
| GVA358       | Boinville-<br>en-Woëvre | France   | 49.1858 | 5.6733  | N/A                           | 200CE- | 200CE-            | Roman<br>Period              | F | ERS12239326 |
| GVA359       | Boinville-<br>en-Woëvre | France   | 49.1858 | 5.6733  | N/A                           | 200CE- | 200CE-            | Roman<br>Period              | М | ERS12239327 |
| Tur168       | Yenikapi                | Türkiye  | 40.9997 | 28.9498 | 1485±20<br>(UCIAMS<br>250285) | 596CE  | 552CE-<br>640CE   | Byzantine<br>Period          | М | ERS12239328 |
| Tur177       | Yenikapi                | Türkiye  | 40.9997 | 28.9498 | 1125±15<br>(UCIAMS<br>250291) | 937CE  | 887CE-<br>986CE   | Byzantine<br>Period          | F | ERS12239329 |
| Tur179       | Yenikapi                | Türkiye  | 40.9997 | 28.9498 | 1140±20<br>(UCIAMS<br>250292) | 881CE  | 774CE-<br>987CE   | Byzantine<br>Period          | М | ERS12239330 |
| Tur277       | Yenikapi                | Türkiye  | 40.9997 | 28.9498 | 1295±15<br>(UCIAMS<br>250363) | 721CE  | 666CE-<br>775CE   | Byzantine<br>Period          | М | ERS12239331 |
| Albufeira1x1 | Albufeira               | Portugal | 37.0891 | -8.2479 | 765±15<br>(UCIAMS<br>208877)  | 1254CE | 1228CE-<br>1280CE | Islamic<br>Period            | F | ERS12239332 |
| Fiumarella1  | Fiumarella              | Italy    | 39.589  | 16.8127 | 165±25<br>(UCIAMS<br>229410)  | 1810CE | 1683CE-<br>1936CE | Bronze<br>Age<br>(Intrusive) | М | ERS12239333 |

**Table S3:** The number of variants identified by GraphTyper (version 2.5.1)(61) for modern individuals (n=222) before and after filtering for high quality variants.

|                                  | Number of variants | SNPs       | INDELs    |
|----------------------------------|--------------------|------------|-----------|
| Raw (all scaffolds)              | 45,031,411         | 40,234,452 | 4,796,959 |
| After filtering (all scaffolds)  | 13,267,291         | 11,655,167 | 1,680,089 |
| After filtering (autosomes only) | 13,013,551         | 11,426,298 | 1,587,253 |

**Table S4:** The number of variants remaining per autosome for the modern individuals
 

(n=222) before and after filtering. The length of each autosome in base pairs and centimorgans, and the rate of recombination in cM/Mb is also reported. 

| Chromosome        | Raw<br>variants | Filtered<br>variants | cM      | Base pairs<br>(bp) | cM/Mb |
|-------------------|-----------------|----------------------|---------|--------------------|-------|
| JADWZW01000002.1  | 2169745         | 637112               | 53.924  | 119293623          | 0.452 |
| JADWZW01000003.1  | 4493039         | 1328891              | 120.098 | 238843737          | 0.503 |
| JADWZW010000004.1 | 3304316         | 1021216              | 93.066  | 183770576          | 0.506 |
| JADWZW010000005.1 | 1646778         | 474536               | 50.987  | 92920267           | 0.549 |
| JADWZW01000006.1  | 2151743         | 628929               | 61.797  | 112287698          | 0.55  |
| JADWZW01000007.1  | 1726889         | 500863               | 51.792  | 93367529           | 0.555 |
| JADWZW01000008.1  | 2350964         | 689712               | 60.556  | 123522326          | 0.49  |
| JADWZW01000009.1  | 2124123         | 714987               | 63.363  | 104245332          | 0.608 |
| JADWZW010000010.1 | 1191724         | 342829               | 39.723  | 64678186           | 0.614 |
| JADWZW010000011.1 | 1769988         | 531435               | 47.142  | 90664430           | 0.52  |
| JADWZW010000012.1 | 1660121         | 525478               | 44.934  | 85786229           | 0.524 |
| JADWZW010000013.1 | 1965805         | 578347               | 46.365  | 106341547          | 0.436 |
| JADWZW010000014.1 | 1107198         | 307520               | 43.321  | 64917852           | 0.667 |
| JADWZW010000015.1 | 876130          | 249858               | 36.895  | 47664211           | 0.774 |
| JADWZW010000016.1 | 991742          | 284692               | 33.995  | 50230352           | 0.677 |
| JADWZW010000017.1 | 941418          | 276091               | 30.639  | 50732407           | 0.604 |
| JADWZW010000018.1 | 986503          | 315280               | 37.799  | 47651278           | 0.793 |
| JADWZW010000019.1 | 670734          | 202542               | 20.526  | 33165847           | 0.619 |
| JADWZW010000020.1 | 545920          | 165635               | 20.42   | 26995809           | 0.756 |
| JADWZW010000021.1 | 1931507         | 585299               | 54.196  | 100519399          | 0.539 |
| JADWZW010000022.1 | 1817414         | 517089               | 49.405  | 98587405           | 0.501 |
| JADWZW010000023.1 | 705216          | 202045               | 21.852  | 38358317           | 0.57  |
| JADWZW010000024.1 | 875823          | 262496               | 25.965  | 47367245           | 0.548 |
| JADWZW010000025.1 | 865649          | 260065               | 23.107  | 46609582           | 0.496 |
| JADWZW010000026.1 | 817711          | 237991               | 26.279  | 47151018           | 0.557 |
| JADWZW010000027.1 | 581105          | 182904               | 22.156  | 28688911           | 0.772 |
| JADWZW010000028.1 | 672875          | 208766               | 23.347  | 32167345           | 0.726 |
| JADWZW010000029.1 | 1226740         | 356584               | 42.517  | 63892262           | 0.665 |
| JADWZW010000030.1 | 754861          | 227618               | 24.809  | 37452155           | 0.662 |
| JADWZW010000031.1 | 623338          | 196741               | 22.059  | 30281758           | 0.728 |
|                   | •               | Total                | 1293.04 | 2,308,154,633      | 0.599 |

| ID           | Source 1 | Source 2 | Weight 1 | Weight 2 | <i>p</i> -value |
|--------------|----------|----------|----------|----------|-----------------|
| ETH_5B       | ETH      | E.a.som  | 0.818    | 0.182    | < 0.001*        |
| SOM_19       | IRA      | E.a.som  | 0.951    | 0.049    | < 0.001*        |
| ETH_6B       | ETH      | E.a.som  | 0.956    | 0.044    | < 0.001*        |
| SOM_20       | IRA      | E.a.som  | 0.963    | 0.038    | < 0.001*        |
| SOM_21       | IRA      | E.a.som  | 0.968    | 0.032    | < 0.001*        |
| ALG_01       | ETH      | E.a.som  | 0.974    | 0.026    | < 0.001*        |
| YEM_08       | EGY      | E.a.som  | 0.981    | 0.019    | < 0.001*        |
| SUD_49       | SUD      | E.a.som  | 0.981    | 0.019    | < 0.001*        |
| YEM_11       | EGY      | E.a.som  | 0.983    | 0.017    | < 0.001*        |
| OMA_46       | EGY      | E.a.som  | 0.983    | 0.017    | < 0.001*        |
| YEM_17       | EGY      | E.a.som  | 0.984    | 0.016    | < 0.001*        |
| OMA_38       | EGY      | E.a.som  | 0.985    | 0.015    | < 0.001*        |
| MAU_3261     | NIG      | E.a.som  | 0.987    | 0.013    | 0.021*          |
| OMA_39       | EGY      | E.a.som  | 0.988    | 0.012    | 0.005*          |
| MAU_2990     | NIG      | E.a.som  | 0.991    | 0.009    | 0.568           |
| GHA_07       | NIG      | E.a.som  | 0.993    | 0.007    | 0.183           |
| SEN_10       | NIG      | E.a.som  | 0.995    | 0.005    | 0.281           |
| CHI_Turfan_2 | CHI      | E.kiang  | 0.995    | 0.005    | 0.003*          |
| MAU_3094     | NIG      | E.a.som  | 0.996    | 0.004    | 0.626           |
| NIG_YPO67    | NIG      | E.a.som  | 0.997    | 0.003    | 0.259           |

Table S5: Ancestral populations and ancestry proportions for hybrid individuals, calculated
using qpAdm modelling (version 810) (64). Significant *p*-values are indicated with a \*.

**Table S6:** Genome coverage, proportion of missing variants and predicted accuracy of

imputation based on tests conducted on modern variants for all ancient samples (n=31

<sup>857</sup> individuals, *n*=7,161,029 variants, TI/TV=2.17).

| Samuela      | Missimoness | Corroração | Predicted Imputation    |
|--------------|-------------|------------|-------------------------|
| Sample       | Missingness | Coverage   | Accuracy (all variants) |
| AM66         | 0.558       | 4.920      | 0.986                   |
| GVA348       | 0.600       | 5.050      | 0.986                   |
| Tur168       | 0.604       | 4.640      | 0.986                   |
| Tur179       | 0.612       | 4.693      | 0.986                   |
| Tur177       | 0.727       | 3.693      | 0.985                   |
| GVA349       | 0.731       | 4.090      | 0.985                   |
| AC14415      | 0.785       | 3.370      | 0.985                   |
| Tarquinia501 | 0.799       | 2.900      | 0.985                   |
| AM805        | 0.812       | 2.870      | 0.985                   |
| Tur277       | 0.827       | 2.951      | 0.984                   |
| BourseC      | 0.858       | 2.240      | 0.984                   |
| GVA125       | 0.862       | 2.060      | 0.984                   |
| Tarquinia214 | 0.864       | 2.250      | 0.984                   |
| MV242        | 0.879       | 2.510      | 0.984                   |
| GVA347       | 0.883       | 2.100      | 0.984                   |
| AC14380      | 0.892       | 2.120      | 0.984                   |
| Chalow3      | 0.895       | 2.110      | 0.984                   |
| MV051        | 0.901       | 1.270      | 0.984                   |
| AM89         | 0.901       | 1.570      | 0.984                   |
| AM44         | 0.903       | 1.670      | 0.984                   |
| AM71         | 0.910       | 1.540      | 0.984                   |
| BourseB      | 0.915       | 1.600      | 0.984                   |
| Albufeira1x1 | 0.919       | 1.620      | 0.983                   |
| Fiumarella1  | 0.930       | 1.440      | 0.983                   |
| DoshanTepe   | 0.938       | 1.540      | 0.983                   |
| GVA359       | 0.944       | 1.230      | 0.983                   |
| GVA355       | 0.953       | 1.210      | 0.983                   |
| GVA353       | 0.963       | 1.060      | 0.982                   |
| GVA358       | 0.963       | 1.105      | 0.982                   |
| AM39         | 0.973       | 0.770      | 0.981                   |
| GVA354       | 0.973       | 0.953      | 0.981                   |

**Table S7:** The depth of reads and variants 5 base pairs either side of the missense mutation

860 (G>A) at position JADWZW010000004.1:161390091 in *FGF5* (46) for 31 ancient donkeys.

861

| sample       | depth of<br>reads | С | С | А | G | Т | G/A  | G | A | G | С     | С |
|--------------|-------------------|---|---|---|---|---|------|---|---|---|-------|---|
| AC14380      | 3                 | • | • |   |   | • |      | • |   |   |       |   |
| AC14415      | 4                 | • | • |   |   | • |      |   |   |   |       |   |
| Albufeira1x1 | 1                 | • | • |   |   | • |      |   |   |   |       |   |
| AM39         | 2                 | • | • |   |   | • |      | • |   | • |       |   |
| AM44         | 1                 | • | • |   |   | • |      |   |   |   |       |   |
| AM66         | 5                 |   | • |   |   | • |      |   |   | • |       |   |
| AM71         | 4                 |   |   |   |   |   |      |   |   |   |       |   |
| AM805        | 6                 |   |   |   |   |   |      |   |   |   |       |   |
| AM89         | 3                 |   |   |   |   |   | A(1) |   |   |   |       |   |
| BourseB      | 0                 |   |   |   |   |   |      |   |   |   |       |   |
| BourseC      | 0                 |   |   |   |   |   |      |   |   |   |       |   |
| Chalow3      | 2                 |   |   |   |   |   |      |   |   |   |       |   |
| DoshanTepe   | 1                 |   |   |   |   |   |      |   |   |   |       |   |
| Fiumarella1  | 1                 |   |   |   |   |   |      |   |   |   |       |   |
| GVA125       | 0                 |   |   |   |   |   |      |   |   |   |       |   |
| GVA347       | 3                 |   |   |   |   |   |      |   |   |   |       |   |
| GVA348       | 4                 |   |   |   |   |   |      |   |   |   |       |   |
| GVA349       | 3                 |   |   |   |   |   |      |   |   |   |       |   |
| GVA353       | 0                 |   |   |   |   |   |      |   |   |   |       |   |
| GVA354       | 0                 |   |   |   |   |   |      |   |   |   |       |   |
| GVA355       | 0                 |   |   |   |   |   |      |   |   |   |       |   |
| GVA358       | 1                 |   |   |   |   |   |      |   |   |   |       |   |
| GVA359       | 4                 |   |   |   |   |   |      |   |   |   |       |   |
| MV051        | 0                 |   |   |   |   |   |      |   |   |   |       |   |
| MV242        | 3                 |   |   |   |   |   |      |   |   |   |       |   |
| Tarquinia214 | 1                 |   |   |   |   | • |      | • |   |   |       |   |
| Tarquinia501 | 4                 |   |   |   |   |   |      |   |   |   |       |   |
| Tur168       | 3                 |   |   |   |   |   |      |   |   |   |       |   |
| Tur177       | 2                 |   |   |   |   |   |      |   |   |   | G (1) |   |
| Tur179       | 3                 |   |   |   |   |   |      |   |   |   |       |   |
| Tur277       | 2                 |   |   |   |   |   |      |   |   |   |       |   |

**Table S8:** The depth of reads and variants 5 base pairs either side of the frameshift deletion

(delAT) at position (JADWZW01000004.1:161397694) in *FGF5* (46) for 31 ancient
 donkeys.

| Sample       | depth of<br>reads | Т | Α | G | С    | G    | A/-  | Т/-  | G | Т    | С    | A    | A |
|--------------|-------------------|---|---|---|------|------|------|------|---|------|------|------|---|
| AC14380      | 2                 |   |   |   | •    |      |      |      |   |      |      |      |   |
| AC14415      | 6                 |   |   |   |      |      |      |      |   |      |      |      |   |
| Albufeira1x1 | 0                 |   |   |   |      |      |      |      |   |      |      |      |   |
| AM39         | 1                 |   |   |   |      |      |      |      |   |      |      |      |   |
| AM44         | 1                 |   |   |   |      |      |      |      |   |      |      |      |   |
| AM66         | 8                 |   |   |   |      | A(1) |      |      |   |      |      |      |   |
| AM71         | 0                 |   |   |   |      |      |      |      |   |      |      |      |   |
| AM805        | 5                 |   |   |   |      |      |      |      |   |      |      |      |   |
| AM89         | 2                 |   |   |   |      |      |      |      |   |      |      |      |   |
| BourseB      | 2                 |   |   |   | T(1) |      | •    |      |   |      |      |      |   |
| BourseC      | 4                 |   |   |   |      |      |      |      |   |      |      |      |   |
| Chalow3      | 3                 |   |   |   |      | A(1) |      |      |   |      |      |      |   |
| DoshanTepe   | 1                 |   |   |   |      |      |      |      |   |      |      |      |   |
| Fiumarella1  | 1                 |   |   |   |      |      |      |      |   |      |      |      |   |
| GVA125       | 5                 |   |   |   |      | A(1) |      |      |   | A(1) | G(1) | G(1) |   |
| GVA347       | 3                 |   |   |   |      |      |      |      |   |      |      |      |   |
| GVA348       | 10                |   |   |   |      |      |      |      |   |      |      |      |   |
| GVA349       | 2                 |   |   |   |      |      |      |      |   |      |      |      |   |
| GVA353       | 3                 |   |   |   |      |      |      |      |   |      |      |      |   |
| GVA354       | 1                 |   |   |   |      |      |      |      |   |      |      |      |   |
| GVA355       | 0                 |   |   |   |      |      |      |      |   |      |      |      |   |
| GVA358       | 1                 |   |   |   | T(1) |      |      |      |   |      |      |      |   |
| GVA359       | 1                 |   |   |   |      |      |      |      |   |      |      |      |   |
| MV051        | 1                 |   |   |   |      |      |      |      |   |      |      |      |   |
| MV242        | 4                 |   |   |   |      |      |      |      |   |      |      |      |   |
| Tarquinia214 | 4                 |   |   |   |      | A(1) |      |      |   |      |      |      |   |
| Tarquinia501 | 5                 |   |   |   |      |      |      |      |   |      |      |      |   |
| Tur168       | 4                 |   |   |   |      |      |      |      |   |      |      |      |   |
| Tur177       | 6                 |   |   |   | T(1) |      |      |      |   |      |      |      |   |
| Tur179       | 3                 |   |   |   | -(1) | -(1) | -(1) | -(1) |   |      |      |      |   |
| Tur277       | 5                 |   |   |   |      |      |      |      |   | •    |      |      |   |

866

| Sample       | depth of<br>reads | G | Α    | G | G    | T/A | A | Α | Α | G    | С    |
|--------------|-------------------|---|------|---|------|-----|---|---|---|------|------|
| AC14380      | 0                 |   |      |   |      |     |   |   |   |      |      |
| AC14415      | 5                 |   | T(1) |   |      |     |   |   |   | T(1) | T(1) |
| Albufeira1x1 | 2                 |   |      |   |      |     |   |   |   |      |      |
| AM39         | 0                 |   |      |   |      |     |   |   |   |      |      |
| AM44         | 1                 |   |      |   |      |     |   |   |   |      |      |
| AM66         | 3                 |   |      | • |      | •   | • |   | • |      |      |
| AM71         | 2                 |   |      |   |      |     |   |   |   |      |      |
| AM805        | 3                 |   |      |   |      |     |   |   |   |      |      |
| AM89         | 5                 |   |      |   |      |     |   |   |   |      |      |
| BourseB      | 1                 |   |      |   |      |     |   |   |   |      |      |
| BourseC      | 8                 |   |      |   |      |     |   |   |   |      |      |
| Chalow3      | 1                 |   |      |   |      |     |   |   |   |      |      |
| DoshanTepe   | 1                 |   |      |   |      |     |   |   |   |      |      |
| Fiumarella1  | 1                 |   |      |   |      |     |   |   |   |      |      |
| GVA125       | 1                 |   |      |   |      |     |   |   |   |      |      |
| GVA347       | 1                 |   |      |   |      |     |   |   |   |      |      |
| GVA348       | 3                 |   |      |   |      |     |   |   |   |      |      |
| GVA349       | 3                 |   |      |   |      |     |   |   |   |      |      |
| GVA353       | 0                 |   |      |   |      |     |   |   |   |      |      |
| GVA354       | 2                 |   |      |   |      |     |   |   |   |      |      |
| GVA355       | 0                 |   |      |   |      |     |   |   | • |      |      |
| GVA358       | 2                 |   |      |   |      |     |   |   |   |      |      |
| GVA359       | 0                 |   |      |   |      |     |   |   |   |      |      |
| MV051        | 2                 |   |      |   |      |     |   |   |   |      |      |
| MV242        | 3                 |   |      |   | T(1) |     |   |   |   |      |      |
| Tarquinia214 | 4                 |   |      |   |      |     |   |   |   |      |      |
| Tarquinia501 | 2                 |   |      |   |      |     |   |   | • |      |      |
| Tur168       | 6                 |   |      |   |      |     |   |   |   |      |      |
| Tur177       | 6                 |   |      |   |      |     |   |   |   |      |      |
| Tur179       | 5                 |   |      |   |      |     |   |   |   |      |      |
| Tur277       | 2                 |   |      |   |      |     |   |   |   |      |      |

Table S9: The depth of reads and variants 5 base pairs either side of the T>A splice site
mutation in *KIT* at position JADWZW010000004.1:139925278 for 31 ancient donkeys (45).

- 871 **Table S10:** Levels of relatedness between ancient individuals estimated using KING (version
- 872 2.2.7) (66) with the imputed variant panel, conditioning on transversions only (n=31
- individuals, n=619,981 transversions). Only relationships between individuals inferred to
- show genetic relatedness are shown.

| ID1          | ID2          | <b>Proportion of IBD</b> | Degree of relatedness |
|--------------|--------------|--------------------------|-----------------------|
| GVA355       | GVA358       | 0.705                    | 1st                   |
| GVA125       | GVA353       | 0.250                    | 2nd                   |
| GVA347       | GVA353       | 0.238                    | 2nd                   |
| GVA125       | GVA348       | 0.201                    | 2nd                   |
| GVA348       | GVA353       | 0.189                    | 2nd                   |
| GVA348       | GVA354       | 0.188                    | 2nd                   |
| GVA125       | GVA354       | 0.178                    | 2nd                   |
| GVA347       | GVA354       | 0.166                    | 3rd                   |
| GVA125       | GVA347       | 0.162                    | 3rd                   |
| GVA347       | GVA348       | 0.159                    | 3rd                   |
| GVA353       | GVA354       | 0.154                    | 3rd                   |
| GVA348       | GVA349       | 0.138                    | 3rd                   |
| GVA347       | GVA349       | 0.125                    | 3rd                   |
| GVA349       | GVA353       | 0.124                    | 3rd                   |
| GVA125       | GVA349       | 0.108                    | 3rd                   |
| GVA349       | GVA354       | 0.101                    | 3rd                   |
| Tarquinia214 | Tarquinia501 | 0.081                    | 4th                   |
| GVA348       | GVA355       | 0.052                    | 4th                   |
| GVA348       | GVA358       | 0.051                    | 4th                   |

**Table S11**: Sample information and accession numbers for each modern (*n*=79) and ancient

878 horse (n=75) used for estimating inbreeding levels (Fig. 4D, E, F). Whole-genome sequence

ata and metadata on the site, country and age (inferred from the radiocarbon dates) for the

ancient horses were obtained from (21, 41, 50, 131). Whole-genome sequence data for

881 modern horses were obtained from (132-137)

| ID                             | Site | Country | Age    | age2 | label | Accession number |
|--------------------------------|------|---------|--------|------|-------|------------------|
| Akha_0248A_AKT001              | NA   | NA      | 2000CE | 2000 | M1    | ERS1246351       |
| Akha_0302A_AKT003              | NA   | NA      | 2000CE | 2000 | M2    | ERS1246352       |
| Arabian_UFL_948_ERR3465834     | NA   | NA      | 2000CE | 2000 | M3    | ERS3631438       |
| Bava_0183A_BY01                | NA   | NA      | 2000CE | 2000 | M4    | ERS1263371       |
| CDM12_Chaidamu_DulanQinghai    | NA   | NA      | 2000CE | 2000 | M5    | SRS4251825       |
| CDM15_Chaidamu_DulanQinghai    | NA   | NA      | 2000CE | 2000 | M6    | SAMN28422840     |
| CuTr_0137A_CU_COL163706        | NA   | NA      | 2000CE | 2000 | M7    | ERS1560528       |
| CuTr_0138A_CU_COL163725        | NA   | NA      | 2000CE | 2000 | M8    | ERS1560529       |
| DB35_DeBa_Debao_Guangxi        | NA   | NA      | 2000CE | 2000 | M9    | SAMN28422841     |
| DT12_DaTo_Datong_QilianQinghai | NA   | NA      | 2000CE | 2000 | M10   | SAMN28422842     |
| DT3_DaTo_Datong_QilianQinghai  | NA   | NA      | 2000CE | 2000 | M11   | SAMN28422843     |
| Dutc_0308A                     | NA   | NA      | 2000CE | 2000 | M12   | ERS1246371       |
| ELC21_Erlunchun_InnerMongolia  | NA   | NA      | 2000CE | 2000 | M13   | SRS4251811       |
| Fjor_0142A_Fjord               | NA   | NA      | 2000CE | 2000 | M14   | SRS438157        |
| Frie_0298A_SAMEA3951220        | NA   | NA      | 2000CE | 2000 | M15   | ERS1138354       |
| Frie_0300A_SAMEA3951222        | NA   | NA      | 2000CE | 2000 | M16   | ERS1138356       |
| FrMo_0041A_FM0001              | NA   | NA      | 2000CE | 2000 | M17   | ERS1246356       |
| FrMo_0065A_FM1798              | NA   | NA      | 2000CE | 2000 | M18   | ERS1246364       |
| Hafl_0309A_HF0002              | NA   | NA      | 2000CE | 2000 | M19   | ERS1982326       |
| Hafl_0310A_HF0003              | NA   | NA      | 2000CE | 2000 | M20   | ERS1982327       |
| Hano_0172A_HAN01               | NA   | NA      | 2000CE | 2000 | M21   | ERS1263372       |
| Hano_0312A_HN001               | NA   | NA      | 2000CE | 2000 | M22   | ERS1982322       |
| Hols_0173A_HOL01               | NA   | NA      | 2000CE | 2000 | M23   | ERS1263373       |
| Icel_0144A_P5782               | NA   | NA      | 2000CE | 2000 | M24   | SRS309532        |
| Icel_0247A_IS074               | NA   | NA      | 2000CE | 2000 | M25   | ERS709890        |
| JC5_JiCh_Jianchang_SW          | NA   | NA      | 2000CE | 2000 | M26   | SAMN28422844     |
| Jeju_0274A_SAMN01057171        | NA   | NA      | 2000CE | 2000 | M27   | SRS346578        |
| Jeju_0275A_SAMN01057172        | NA   | NA      | 2000CE | 2000 | M28   | SRS346579        |
| JZ3_JiZi_JiangziTibet          | NA   | NA      | 2000CE | 2000 | M29   | SRS4251838       |
| JZ4_JiZi_JiangziTibet          | NA   | NA      | 2000CE | 2000 | M30   | SRS4251838       |
| Lipi_0187A_CSess113            | NA   | NA      | 2000CE | 2000 | M31   | SRS1818811       |
| Lipi_0188A_FRal169             | NA   | NA      | 2000CE | 2000 | M32   | SRS1818795       |
| LKZ22_Langkazi_Tibet           | NA   | NA      | 2000CE | 2000 | M33   | SAMN28422845     |
| LKZ28_Langkazi_Tibet           | NA   | NA      | 2000CE | 2000 | M34   | SRS4251851       |
| Marw_0239A_SRR1275408          | NA   | NA      | 2000CE | 2000 | M35   | SRS603966        |
| Mixd_0314A_UKH4                | NA   | NA      | 2000CE | 2000 | M36   | ERS1076964       |
| Mong_0153A_KB7754              | NA   | NA      | 2000CE | 2000 | M37   | ERS805731        |
| Mong_0216A_TG1111D2629         | NA   | NA      | 2000CE | 2000 | M38   | SRS543625        |
| Morg_0096A_EMS595              | NA   | NA      | 2000CE | 2000 | M39   | ERS806987        |

| Morg_0315A_EQ053                   | NA           | NA                | 2000CE | 2000 | M40 | ERS1982319              |
|------------------------------------|--------------|-------------------|--------|------|-----|-------------------------|
| MZH22_Mozhu_MozhugongTibet         | NA           | NA                | 2000CE | 2000 | M41 | SAMN28422846            |
| MZH24_Mozhu_MozhugongTibet         | NA           | NA                | 2000CE | 2000 | M42 | SAMN28422847            |
| NM2_NiMu_Tibet                     | NA           | NA                | 2000CE | 2000 | M43 | SAMN28422848            |
| NM20_NiMu_Tibet                    | NA           | NA                | 2000CE | 2000 | M44 | SAMN28422849            |
| Nori_0316A_NO180                   | NA           | NA                | 2000CE | 2000 | M45 | ERS1982325              |
| NQ9916_NiQi_NingqiangShaanxi       | NA           | NA                | 2000CE | 2000 | M46 | SAMN28422850            |
| Olde_0176A_OLD01                   | NA           | NA                | 2000CE | 2000 | M47 | ERS1263375              |
| Olde_0177A_OLD02                   | NA           | NA                | 2000CE | 2000 | M48 | ERS1263376              |
| Pain_0319A_UKH16                   | NA           | NA                | 2000CE | 2000 | M49 | ERS1076966              |
| Pain_0320A_UKH29                   | NA           | NA                | 2000CE | 2000 | M50 | ERS1076967              |
| Quar_0321A_QH070                   | NA           | NA                | 2000CE | 2000 | M51 | ERS1246372              |
| Quar_0322A_QH225                   | NA           | NA                | 2000CE | 2000 | M52 | ERS1246374              |
| Reit_0323A_DR011                   | NA           | NA                | 2000CE | 2000 | M53 | ERS1982318              |
| Reit_0324A_DR033                   | NA           | NA                | 2000CE | 2000 | M54 | ERS1982315              |
| Shet_0249A_SPH020                  | NA           | NA                | 2000CE | 2000 | M55 | ERS715262               |
| Shet_0250A_SPH041                  | NA           | NA                | 2000CE | 2000 | M56 | ERS715261               |
| Sorr_0236A_SAMN02439778            | NA           | NA                | 2000CE | 2000 | M57 | SRS513153               |
| Sorr_0270A_SAMN03955413            | NA           | NA                | 2000CE | 2000 | M58 | SRS1022305              |
| Stan_0325A_AS002                   | NA           | NA                | 2000CE | 2000 | M59 | ERS1230234              |
| Standardbred_UFL_CU1406_ERR3465842 | NA           | NA                | 2000CE | 2000 | M60 | ERS3631446              |
| Standardbred_UFL_CU2446_ERR3465843 | NA           | NA                | 2000CE | 2000 | M61 | ERS3631447              |
| Swis_0326A_RAO310_2                | NA           | NA                | 2000CE | 2000 | M62 | ERS1263382              |
| Swis_0327A_RAO441_2                | NA           | NA                | 2000CE | 2000 | M63 | ERS1263383              |
| Thor_0290A_SAMN01047706            | NA           | NA                | 2000CE | 2000 | M64 | SRS345336               |
| Thoroughbred_UFL_CU3903_ERR3465845 | NA           | NA                | 2000CE | 2000 | M65 | ERS3631449              |
| Trak_0178A_TRA01                   | NA           | NA                | 2000CE | 2000 | M66 | ERS1263377              |
| Trak_0179A_TRA02                   | NA           | NA                | 2000CE | 2000 | M67 | SRS1818810              |
| UFL_QH140147_ERR3465848            | NA           | NA                | 2000CE | 2000 | M68 | ER\$3631452             |
| Wels_0330A_WP006                   | NA           | NA                | 2000CE | 2000 | M69 | ERS1982316              |
| Wels_0331A_WP007                   | NA           | NA                | 2000CE | 2000 | M70 | ERS1982323              |
| West_0180A_WF01                    | NA           | NA                | 2000CE | 2000 | M71 | ERS1263379              |
| West_0181A_WF02                    | NA           | NA                | 2000CE | 2000 | M72 | ERS1263380              |
| WMG8_Mongolian_Mongolia            | NA           | NA                | 2000CE | 2000 | M73 | SAMN28422851            |
| Wurt_0182A_BW01                    | NA           | NA                | 2000CE | 2000 | M74 | ERS1263370              |
| WZ6_MoGo_InnerMongolia             | NA           | NA                | 2000CE | 2000 | M75 | SRS4251803              |
| Yaku_0164A_Yak2                    | NA           | NA                | 2000CE | 2000 | M76 | ERS849387               |
| Yaku_0169A_Yak7                    | NA           | NA                | 2000CE | 2000 | M77 | ERS849392               |
| YL2_YiLi_Zhaosu_Pair               | NA           | NA                | 2000CE | 2000 | M78 | SAMN28422852            |
| YQ29_YaQi_Yanqi_Xinjiang           | NA           | NA                | 2000CE | 2000 | M79 | SAMN28422853            |
| ARUS_0222A_CGG101397               | Tumeski      | Russia            | 1825CE | 1825 | A1  | SRS497178,<br>SRS497177 |
| WitterPlace_UK17_267               | Witter Place | United<br>Kingdom | 1750CE | 1750 | A2  | ERS3213633              |
| Beauvais_GVA375_467                | l'Isle Adam  | France            | 1550CE | 1550 | A3  | ERS3213470              |
| TavanTolgoi_GEP13_730              | Tavan Tolgoi | Mongolia          | 1287CE | 1287 | A4  | ERS3213603              |
| TavanTolgoi_GEP14_730              | Tavan Tolgoi | Mongolia          | 1287CE | 1287 | A5  | ERS3213604              |

| TavanTolgoi_GEP21_730             | Tavan Tolgoi           | Mongolia   | 1287CE | 1287 | A6  | ERS3213605   |
|-----------------------------------|------------------------|------------|--------|------|-----|--------------|
| Yenikapi_Tur150_1443              | Yenikapi               | Turkey     | 961CE  | 961  | A7  | ERS3213646   |
| Yenikapi_Tur145_1156              | Yenikapi               | Turkey     | 951CE  | 951  | A8  | ERS3213642   |
| Saadjarve_Saa1_1117               | Saadjärve              | Estonia    | 900CE  | 900  | A9  | ERS3213583   |
| Nustar_5_1187                     | Nuštar                 | Croatia    | 830CE  | 830  | A10 | ERS3213573   |
| Marvele_18_1189                   | Marvele cemetery       | Lithuania  | 829CE  | 829  | A11 | ERS3213561   |
| Marvele_32_1144                   | Marvele cemetery       | Lithuania  | 829CE  | 829  | A12 | ERS3213565   |
| Yenikapi_Tur229_1443              | Yenikapi               | Turkey     | 827CE  | 827  | A13 | ERS3213660   |
| Grigorevka4_PAVH2_1192            | Gregorevka             | Kazakhstan | 825CE  | 825  | A14 | ERS1892698   |
| Yenikapi_Tur193_1443              | Yenikapi               | Turkey     | 792CE  | 792  | A15 | ERS3213657   |
| Yenikapi_Tur140_1289              | Yenikapi               | Turkey     | 777CE  | 777  | A16 | ERS3213638   |
| Khotont_UCIE2012x85_1291          | Khotont                | Mongolia   | 725CE  | 725  | A17 | ERS3213547   |
| BozAdyr_KYRH10_1267               | Boz-Adyr               | Kyrgyzstan | 700CE  | 700  | A18 | ERS3213485   |
| BozAdyr_KYRH8_1267                | Boz-Adyr               | Kyrgyzstan | 700CE  | 700  | A19 | ERS3213486   |
| Yenikapi_Tur172_1695              | Yenikapi               | Turkey     | 674CE  | 674  | A20 | ERS1892707   |
| Yenikapi_Tur194_1360              | Yenikapi               | Turkey     | 657CE  | 657  | A21 | ERS3213658   |
| Yenikapi_Tur142_1396              | Yenikapi               | Turkey     | 648CE  | 648  | A22 | ERS3213640   |
| Yenikapi_Tur141_1430              | Yenikapi               | Turkey     | 640CE  | 640  | A23 | ERS3213639   |
| Yenikapi_Tur170_1443              | Yenikapi               | Turkey     | 601CE  | 601  | A24 | ERS3213649   |
| SharIQumis_AM115_1557             | Shar-I-Qumis           | Iran       | 472CE  | 472  | A25 | ERS3213596   |
| Yenikapi_Tur146_1730              | Yenikapi               | Turkey     | 350CE  | 350  | A26 | ERS3213643   |
| Yenikapi_Tur171_1689              | Yenikapi               | Turkey     | 336CE  | 336  | A27 | ERS3213650   |
| FrankfurtHeddernheim_Fr1_1863     | Frankfurt-Heddenheim   | Germany    | 180CE  | 180  | A28 | ERS3213533   |
| Chartrage CVA26 1017              | Chartres, boulevard de | From an    | 110CE  | 110  | A20 | ED \$2012500 |
| Chartres_GVA26_1917               | Chartres, boulevard de | France     | TIOCE  | 110  | A29 | EK55215502   |
| Chartres_GVA4_1917                | la Courtille           | France     | 110CE  | 110  | A30 | ERS3213506   |
| Chartres_GVA43_1917               | la Courtille           | France     | 110CE  | 110  | A31 | ERS3213507   |
| Chartres_GVA81_1917               | la Courtille           | France     | 110CE  | 110  | A32 | ERS3213518   |
| GolModII_Mon24_1993               | Gol Mod II             | Mongolia   | 40CE   | 40   | A33 | ERS3213535   |
| GolModII_Mon23_2007               | Gol Mod II             | Mongolia   | 35CE   | 35   | A34 | ERS3213534   |
| GolModII_Mon26_1999               | Gol Mod II             | Mongolia   | 27CE   | 27   | A35 | ERS3213537   |
| GolModII_Mon28_1988               | Gol Mod II             | Mongolia   | 27CE   | 27   | A36 | ERS1892697   |
| GolModII_Mon25_2011               | Gol Mod II             | Mongolia   | 17CE   | 17   | A37 | ERS3213536   |
| GolModII_Mon27_2011               | Gol Mod II             | Mongolia   | 17CE   | 17   | A38 | ERS3213538   |
| SaintJust_GVA242_2250             | Saint-Just-en-Chaussée | France     | 75BCE  | -75  | A39 | ERS3213589   |
| Actiparc_GVA308_2312              | Actiparc               | France     | 210BCE | -210 | A40 | ERS3213454   |
| AC7970_AMIS-1-00131_Tur_m290      | Acemhoyuk              | Turkey     | 290BCE | -290 | A41 | ER\$7255955  |
| OlonKurinGol_OKG2_2367            | Olon Kurin Gol         | Mongolia   | 350BCE | -350 | A42 | ERS3213577   |
| Fetusx9m_CGG-1-022147_Spa_m475    | Els Vilars             | Spain      | 475BCE | -475 | A43 | ERS7256018   |
| SV2019x18_AMIS-1-02382_Tun_m581   | Althiburos             | Tunisia    | 581BCE | -581 | A44 | ERS7256181   |
| 18ELTu18_AMIS-1-01102_Spa_m588    | El Turuñuelo           | Spain      | 588BCE | -588 | A45 | ERS7255954   |
| SV2019x19 AMIS-1-02383 Tun m643   | Althiburos             | Tunisia    | 643BCE | -643 | A46 | ERS7256182   |
| UE4618_CGG_1_020962               | Els Vilars             | Spain      | 655BCE | -655 | A47 | ERS3213526   |
| Hasanlu1140_CGG-1-019998 Ira m663 | Tepe Hasanlu           | Iran       | 663BCE | -663 | A48 | ERS7256042   |
| UE11080x11082_CGG-1-              | F1 X7'1                | g .        | (CADOD |      |     | ED 9705 (100 |
| 020973_Spa_m664                   | Els Vilars             | Spain      | 004BCE | -664 | A49 | EKS/200188   |
| Rid1_CGG_1_018468                 | Ridala                 | Estonia    | 700BCE | -700 | A50 | ERS7256148   |

| Rid2_CGG_1_018469                 | Ridala        | Estonia  | 700BCE  | -700  | A51 | ERS7256149 |
|-----------------------------------|---------------|----------|---------|-------|-----|------------|
| Hasanlu2327_CGG-1-019995_Ira_m768 | Tepe Hasanlu  | Iran     | 768BCE  | -768  | A52 | ERS7256043 |
| Hasanlu3398_CGG-1-019986_Ira_m768 | Tepe Hasanlu  | Iran     | 768BCE  | -768  | A53 | ERS7256046 |
| HasanluV31E_CGG-1-021461_Ira_m768 | Tepe Hasanlu  | Iran     | 768BCE  | -768  | A54 | ERS7256049 |
| Hasanlu3394_CGG-1-019997_Ira_m790 | Tepe Hasanlu  | Iran     | 790BCE  | -790  | A55 | ERS7256045 |
| Fen4_CGG-1-018396_Chi_m800        | Fengtai       | China    | 800BCE  | -800  | A56 | ERS7256017 |
| Hasanlu2405_CGG-1-019992_Ira_m868 | Tepe Hasanlu  | Iran     | 868BCE  | -868  | A57 | ERS7256044 |
| Hasanlu368_CGG-1-019994_Ira_m878  | Tepe Hasanlu  | Iran     | 878BCE  | -878  | A58 | ERS7256048 |
| Hasanlu3461_CGG-1-020003_Ira_m913 | Tepe Hasanlu  | Iran     | 913BCE  | -913  | A59 | ERS7256047 |
| CD5203_AMIS-1-00107_Tur_m985      | Çadır Höyük   | Turkey   | 985BCE  | -985  | A60 | ERS7255998 |
| UushgiinUvur_Mon45_3080           | Uushgiin Uvur | Mongolia | 1065BCE | -1065 | A61 | ERS3213624 |
| UushgiinUvur_Mon37_3085           | Uushgiin Uvur | Mongolia | 1075BCE | -1075 | A62 | ERS3213617 |
| UushgiinUvur_Mon39_3085           | Uushgiin Uvur | Mongolia | 1075BCE | -1075 | A63 | ERS3213618 |
| UushgiinUvur_Mon84_3123           | Uushgiin Uvur | Mongolia | 1075BCE | -1075 | A64 | ERS1892705 |
| UushgiinUvur_Mon86_3039           | Uushgiin Uvur | Mongolia | 1075BCE | -1075 | A65 | ERS1892706 |
| SAGxS27_CGG-1-019559_Ira_m1102    | Sagzabad      | Iran     | 1102BCE | -1102 | A66 | ERS7256175 |
| UushgiinUvur_Mon87_3117           | Uushgiin Uvur | Mongolia | 1103BCE | -1103 | A67 | ERS3213626 |
| Mon43_CGG_1_018079                | Uushgiin Uvur | Mongolia | 1106BCE | -1106 | A68 | ERS3213622 |
| UushgiinUvur_Mon42_3130           | Uushgiin Uvur | Mongolia | 1110BCE | -1110 | A69 | ERS3213621 |
| CD1819_AMIS-1-00115_Tur_m1299     | Çadır Höyük   | Turkey   | 1299BCE | -1299 | A70 | ERS7255996 |
| Bateni_Rus16_3350                 | Bateni        | Russia   | 1336BCE | -1336 | A71 | ERS3213468 |
| TP4_CGG-1-018394_Geo_m1578        | Tachti Perda  | Georgia  | 1578BCE | -1578 | A72 | ERS7256186 |
| AC9016_AMIS-1-00134_Tur_m1900     | Acemhoyuk     | Turkey   | 1900BCE | -1900 | A73 | ERS7255957 |
| Sintashta_NB46_4023               | Sintashta     | Russia   | 2009BCE | -2009 | A74 | ERS821436  |
| AC8811_AMIS-1-00133_Tur_m2125     | Acemhoyuk     | Turkey   | 2125BCE | -2125 | A75 | ERS7255956 |






















**Fig. S1:** Recombination rates across all 30 donkey autosomes as estimated using LDHat

894 (version 2.2) (62).



Fig. S2: PCA of domestic donkeys and wild ass species using the phased variant panel
 (*n*=222 individuals, *n*=13,013,551 variants, TI/TV=2.18) using PLINK (version 1.9) (63).



Fig. S3: PCA of domestic donkeys and wild ass species (*E.a.som*) using the phased variant panel (n=208 individuals, n=13,013,551 variants, TS/TV=2.18) using PLINK (version 1.9)

901 (63).







**Fig. S5:** Genetic distance (f2, estimated using ADMIXTOOLS2) (*124, 125*) verses

907 geographical distance (estimated as haversine distance) from: A) donkeys from Ethiopia, and

- B) donkeys from Yemen. Two separate linear regressions were fitted for each dataset: one for
- subpopulations from western Africa only, and another for all other subpopulations. F2
- statistics were estimated for all phased SNPs, but masking regions that were attributed to wild encostry of estimated using PCA dmin (n-1) 577 521 variants. TU(TV-2.18)
- 911 ancestry as estimated using PCAdmix (n=11,577,531 variants, TI/TV=2.18).



Fig. S6: SMC++ (version 1.15.4) (28) population models dating splits from Horn of Africa + 913 Kenya (Horn+Ken), western Africa (WAfrica), Asia (Asia) and Europe (Europe) with an 914 assumed generational time interval of 8 years. Three donkeys from each subpopulation were 915 916 used, with 10 bootstrap pseudo-replicates (resampling 90% of each chromosome) for two different datasets. Samples used for the first dataset were Horn+Ken: KEN YPO90, ETH 4, 917 SOM\_01, WAfrica: SEN\_10, GHA\_01, NIG\_YPO62, Asia: CHI\_KL02A, CHI\_GL04A, 918 TIB\_DQFS1, Europe: PTGm10, ESP\_Andalusian\_1, CYK\_IslasCanarias\_4. The samples 919 used for the second dataset were Horn+Ken: KEN\_YPO89, SOM\_05, ETH\_5, WAfrica: 920 NIG\_YPO63, NIG\_YPO65, NIG\_YPO66, Asia: CHI\_JM05A, CHI\_XJ6, TIB\_XZSNQS07, 921 Europe: PTGm02, ESP\_Andalusian\_3, ESP\_Basque\_10. A) Estimated effective population 922 sizes over time (the second dataset is shown in semi transparency). B) Estimated population 923 split times between the subpopulations for the two datasets with standard deviation bars. 924





**Fig. S7:** PCA of ancient imputed donkeys (black, n=31) and modern donkeys (coloured,

n=206) using the smartpca program from the EIGENSOFT package (version 6.1.4) (75, 76).

928 The pseudo-haploidized genomes of the ancient donkeys (n=31) were projected onto the PCA929 and labelled and colored in grey.





- as estimated by downscaling modern donkey variants (*n*=10 individuals). Accuracy of all
  variants (blue), homozygotes only (yellow) and heterozygotes only (purple) and plotted
- 932 variants (blue), homozygotes only (yellow) and heterozygotes only (purple) and plotted933 separately. The same imputation pipeline was used as that to impute the ancient donkey
- genomes. The proportion of missing variants for each ancient sample (n=31) are shown as red
- 935 dotted lines.



Fig. S9: Maximum likelihood tree and heatmap generated from haplotype sharedness
estimated using fineSTRUCTURE (version 4.1.1) for donkeys (n=141 modern and 31 ancient

939 individuals) using imputed variants (n=2,245,992, TI/TV= 2.21) (35). Only node support

- values less than 1 are shown on the tree. The heatmap is colour coded according to the
- 941 number of shared haplotype chunks in the genome.











- 945 Fig. S10: Treemix (version 1.13)(27) phylogenies for modern donkeys grouped into
- 946 populations according to Fig. 1C, with kiang as an outgroup. The left column shows the
- 947 Treemix inferred from pseudo-haploidized variants (n=496,697) and the right from imputed
- 948 variants (n=175,093 variants). The trees on each row are from the same site of ancient
- 949 donkeys, with the site and individuals labelled in the centre of the row. The optimal number
- 950 of migration edges are shown for each tree, and nodes coloured according to support values
- 951 from 100 bootstrap replicates.



- 952 Fig. S11: The proportion of modern donkeys with dun and derived coat colors from each
- 953 subpopulation (n=207). The total number of donkeys from each subpopulation is shown
- above each bar.



Fig. S12: The relationship between relatedness coefficients calculated using phased and
imputed variants in KING (version 2.2.7) (n=2,245,992 variants) (66) and unimputed variants
using NgsRelate (version 2) (n=473,263, variants, transversions only) (67). Only pairs
modern donkey from the same country and ancient donkeys from the same site were included
in the analysis (n=2096 pairs). Pairs of ancient donkeys were coloured in red and modern

960 donkeys in black (r=0.871, r<sup>2</sup>=0.759).



962

Fig. S13: A) Total length of runs of homozygosity in kilobases, estimated using PLINK
(version 1.9) (63) plotted as a function of time for all modern and ancient donkeys (n=238
individuals), conditioning on transversions only (n=1,949,850 variants). B) Total length of
runs of homozygosity in kilobases, from depth-based estimated using variants called by
ANGSD (version 0.930) (114) counts plotted as a function of time for all modern and ancient

968 donkeys (*n*=238 individuals).





970 (PLINK (version 1.9) (63), ngsF-HMM (version 1) (59) and from depth-based estimated

using variants called by ANGSD (version 0.930) (114)). B) The total length of ROH

972 estimated in PLINK for 10 modern donkeys after down-sampling and re-imputing variants



- **Fig. S15:** Neighbour joining tree constructed using FastME (version 2.1.4) (*129*) with 100
- bootstrap pseudo-replicates of modern donkeys, ancient donkeys and kiangs which were
- 976 included in the Treemix analysis. Two ancient hemippes with coverage over 1X were also
- 977 included. Bootstrap support values over 90% are labelled with a black triangle.

| 978  | References |                                                                                                     |  |
|------|------------|-----------------------------------------------------------------------------------------------------|--|
| 979  |            |                                                                                                     |  |
| 980  | 61.        | H. P. Eggertsson, H. Jonsson, S. Kristmundsdottir, E. Hjartarson, B. Kehr, G. Masson                |  |
| 981  |            | et al., Graphtyper enables population-scale genotyping using pangenome graphs. Nat.                 |  |
| 982  |            | Genet. 49, 1654-1660 (2017).                                                                        |  |
| 983  | 62.        | A. Auton, G. McVean, Recombination rate estimation in the presence of hotspots.                     |  |
| 984  |            | Gen. Res. 17, 1219-1227 (2007).                                                                     |  |
| 985  | 63.        | S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender et al.,                   |  |
| 986  |            | PLINK: a tool set for whole-genome association and population-based linkage                         |  |
| 987  |            | analyses. Am. J. Hum. Genet. 81, 559-575 (2007).                                                    |  |
| 988  | 64.        | W. Haak, I. Lazaridis, N. Patterson, N. Rohland, S. Mallick, B. Llamas et al., Massive              |  |
| 989  |            | migration from the steppe was a source for Indo-European languages in Europe.                       |  |
| 990  |            | Nature <b>522</b> , 207-211 (2015).                                                                 |  |
| 991  | 65.        | B. M. Peter, Admixture, population structure, and f-statistics. <i>Genetics</i> <b>202</b> , 1485   |  |
| 992  |            | (2016).                                                                                             |  |
| 993  | 66.        | A. Manichaikul, J. C. Mychaleckyi, S. S. Rich, K. Daly, M. Sale, W. M. Chen,                        |  |
| 994  |            | Robust relationship inference in genome-wide association studies. <i>Bioinformatics</i> <b>26</b> . |  |
| 995  |            | 2867-2873 (2010).                                                                                   |  |
| 996  | 67.        | K. Hanghøi, I. Moltke, P. A. Andersen, A. Manica, T. S. Korneliussen, Fast and                      |  |
| 997  | 011        | accurate relatedness estimation from high-throughput sequencing data in the presence                |  |
| 998  |            | of inbreeding. <i>GigaScience</i> <b>8</b> . (2019).                                                |  |
| 999  | 68.        | R. Bouckaert, T. G. Vaughan, J. Barido-Sottani, S. Duchêne, M. Fourment, A.                         |  |
| 1000 | 001        | Gavryushkina <i>et al.</i> , BEAST 2.5: An advanced software platform for Bayesian                  |  |
| 1001 |            | evolutionary analysis. <i>PLoS Comput. Biol.</i> <b>15</b> , e1006650 (2019).                       |  |
| 1002 | 69         | A J Drummond S Y W Ho M J Phillips A Rambaut Relaxed phylogenetics                                  |  |
| 1003 | 07.        | and dating with confidence. <i>PLoS Biol.</i> <b>4</b> , e88 (2006).                                |  |
| 1004 | 70         | A J Drummond A Rambaut B Shapiro O G Pybus Bayesian coalescent                                      |  |
| 1005 | / 01       | inference of past population dynamics from molecular sequences. <i>Mol. Biol. Evol.</i> 22          |  |
| 1006 |            | 1185-1192 (2005)                                                                                    |  |
| 1007 | 71         | S Rosenbom V Costa N Al-Araimi E Kefena A S Abdel-Moneim M A                                        |  |
| 1008 | , 11       | Abdalla <i>et al.</i> , Genetic diversity of donkey populations from the putative centers of        |  |
| 1009 |            | domestication Anim Genet 46 30-36 (2015)                                                            |  |
| 1010 | 72         | D Cook S Brooks R Bellone, E Bailey Missense mutation in exon 2 of SLC36A1                          |  |
| 1011 |            | responsible for champagne dilution in horses <i>PLoS Genet</i> <b>4</b> , e1000195 (2008).          |  |
| 1012 | 73         | L Zeng H O Liu X L Tu C M Ji X Gou A Esmailizadeh <i>et al.</i> Genomes                             |  |
| 1013 | 101        | reveal selective sweeps in kiang and donkey for high-altitude adaptation Zool Res 42.               |  |
| 1014 |            | 450-460 (2021)                                                                                      |  |
| 1015 | 74         | S W Manning L Wacker, U Büntgen C Bronk Ramsey M W Dee B Kromer et                                  |  |
| 1016 | ,          | al. Radiocarbon offsets and old world chronology as relevant to Mesopotamia. Egypt.                 |  |
| 1017 |            | Anatolia and Thera (Santorini) <i>Sci Rep.</i> <b>10</b> 13785 (2020)                               |  |
| 1018 | 75         | N Özgüc "Seal impressions from the palaces at Acembövük" in Ancient Art in Seals                    |  |
| 1019 | 70.        | E Porada Ed (Princeton University Press Princeton 1980) pp 61-99                                    |  |
| 1020 | 76         | Y Kamis "Acembövük Buluntuları İsiğinda Erken Tunc Cağı'nda Orta Anadolu'nun                        |  |
| 1021 | /0.        | Günevinde Cark Yanımı Seramiğin Ortava Cıkısı" in <i>Adalya</i> (Umran Sayas İnan                   |  |
| 1021 |            | Istanbul 2018) vol 21 pp 59-84                                                                      |  |
| 1022 | 77         | A Öztan 2010 Yılı Acemböyük Kazıları <i>Kazı Sonucları Toplantısı</i> 393-412 (2012)                |  |
| 1024 | 78         | A. Öztan, 2013 Yılı Acemböyük Kazıları ve Sonucları Kazı Sonucları Toplantışı <b>36</b>             |  |
| 1025 | , 0.       | 61-72 (2014).                                                                                       |  |
| 1026 | 79         | Y. S. Erdal, K. Özdemir, Ö. D. Erdal, "Acemhövük'ten Bir İnsan İskeletinde                          |  |
| 1027 |            | Saptanan Yaralanmaların Adli Antropolojik Acıdan İncelenmesi " in Samsat'tan                        |  |
| /    |            |                                                                                                     |  |

| 1028<br>1029<br>1030 | 80. | Acemhöyük'e Eski Uygarlıkların Izinde: Prof. Dr Aliye Öztan'a Armağan, S. Özkan,<br>H. Hüryılmaz, A. Türker, Eds. (Ege Üniversitesi Basımevi, Izmir, 2017), pp. 105-119.<br>Y. Kamış, A. Öztan, 2018 Yılı Acemhöyük Kazıları. Kazı Sonuçları Toplantısı Kazı |
|----------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1022                 | 01  | A Validati D. Dissions D. La Earing M. Mashkour M. Tangharg, H. Eathi <i>et al.</i>                                                                                                                                                                          |
| 1032                 | 01. | A. Valuali, K. Disciole, K. Le Falilla, M. Masikoui, M. Teligoeig, H. Falil <i>et al.</i> ,                                                                                                                                                                  |
| 1024                 |     | (BMAC) finds in the plain of Jajarm NE Iran " in The Iranian Plateau during the                                                                                                                                                                              |
| 1025                 |     | (DWAC) finds in the plain of Jajann, NE fian. In The Trantan Finiteau auring the<br>Bronze Age Development of Urbanisation, Production and Trade, I. W. Meyer, F.                                                                                            |
| 1025                 |     | Vila M Mashkour M Casanova R Vallet Eds (MOM Éditions 2010) pp 179-                                                                                                                                                                                          |
| 1027                 |     | 200                                                                                                                                                                                                                                                          |
| 1037                 | 82  | M Mashkour A E Mohaseh "Hunting and husbandry in the Ozbaki archaeological                                                                                                                                                                                   |
| 1030                 | 02. | Zone (Savoibolagh plain) from the 6th millennium until the Iron Age:                                                                                                                                                                                         |
| 1035                 |     | Archaeozoological study of Jeiran Tene, Maral Tene, Doshan Tene and Tene Ozbaki"                                                                                                                                                                             |
| 1040                 |     | in The Archaeological Excavation of Ozbaki Vol 1 Art and Architecture (ICHTO                                                                                                                                                                                 |
| 1041                 |     | Editions 2011) pp 273–302 597–601                                                                                                                                                                                                                            |
| 1043                 | 83  | Bagnasco Gianni G A Garzulino M Marzullo "The last ten years of research at                                                                                                                                                                                  |
| 1044                 | 05. | Targuinia" in Knowledge Analysis and Innovative Methods for the Study and the                                                                                                                                                                                |
| 1045                 |     | Sissemination of Ancient Urban Areas Proceedings of the KAINUA 2017                                                                                                                                                                                          |
| 1046                 |     | International Conference in Honour of Professor Giuseppe Sassatelli's 70th Birthday                                                                                                                                                                          |
| 1047                 |     | (Bologna, 18-21 Aprile 2017). S. Garagnani, A. Gaucci, Eds. (CNR - Istituto di                                                                                                                                                                               |
| 1048                 |     | Scienze del Patrimonio Culturale, 2017), vol. Archeologia e Calcolatori 28.2, pp. 211-                                                                                                                                                                       |
| 1049                 |     | 221.                                                                                                                                                                                                                                                         |
| 1050                 | 84. | A. Negev, "Nessana" in The New Enclyclopedia of Archaeological Excavations in the                                                                                                                                                                            |
| 1051                 |     | Holy Land, E. Stern, Ed. (Israel Exploration Society Jerusalem, 1993), pp. 1145–                                                                                                                                                                             |
| 1052                 |     | 1149.                                                                                                                                                                                                                                                        |
| 1053                 | 85. | D. Urman, Nessana: Excavations and Studies (Ben Gurion University, Beer Sheva,                                                                                                                                                                               |
| 1054                 |     | 2004), vol. 7.                                                                                                                                                                                                                                               |
| 1055                 | 86. | G. Avni, The Byzantine–Islamic transition in Palestine (Oxford University Press,                                                                                                                                                                             |
| 1056                 |     | Oxford, 2014).                                                                                                                                                                                                                                               |
| 1057                 | 87. | J. Hansman, D. Stronach, Excavations at Shahr-i Qūmis, 1967. J. R. Asiat. Soc. 102,                                                                                                                                                                          |
| 1058                 |     | 29-62 (1970).                                                                                                                                                                                                                                                |
| 1059                 | 88. | J. Hansman, D. Stronach, A Sasanian Repository at Shahr-i Qūmis. J. R. Asiat. Soc.,                                                                                                                                                                          |
| 1060                 |     | 142-155 (1970).                                                                                                                                                                                                                                              |
| 1061                 | 89. | M. Mashkour, H. Davoudi, F. A. Mohaseb, D. S. Beizaee, R. Khazaeli, S. Amiri et                                                                                                                                                                              |
| 1062                 |     | al., "Human and animal interactions in the Iranian Plateau. Research conducted by the                                                                                                                                                                        |
| 1063                 |     | Osteology Department of Iran National Museum. " in Iran National Museum                                                                                                                                                                                      |
| 1064                 |     | publications and Institut Français de Recherche en Iran, Bibliothèque iranienne N°85                                                                                                                                                                         |
| 1065                 |     | (2021), pp. 86-99.                                                                                                                                                                                                                                           |
| 1066                 | 90. | L. Jourdan, La faune du site gallo-romain et paléo-chrétien de la Bourse (Marseille)                                                                                                                                                                         |
| 1067                 |     | (Editions du CNRS, France, 1976), vol. 1.                                                                                                                                                                                                                    |
| 1068                 | 91. | V. Onar, H. Alpak, G. Pazvant, A. Armutak, A. Chrószcz, Byzantine horse skeletons                                                                                                                                                                            |
| 1069                 |     | of Theodosius harbour: 1. Paleopathology. Rev. Med. Vet. 163, 139-146 (2012).                                                                                                                                                                                |
| 1070                 | 92. | V. Onar, G. Pazvant, H. Alpak, N. G. Ince, A. Armutak, Z. Kiziltan, Animal skeletal                                                                                                                                                                          |
| 1071                 |     | remains of the Theodosius harbor: general overview. Turkish J. Vet. Anim. Sci. 37,                                                                                                                                                                           |
| 1072                 |     | 81-85 (2013).                                                                                                                                                                                                                                                |
| 1073                 | 93. | V. Onar, G. Pazvant, E. Pasicka, A. Armutak, H. Alpak, Byzantine horse skeletons of                                                                                                                                                                          |
| 1074                 | 0.4 | Theodosius Harbour: 2. Withers height estimation. <i>Rev. Med. Vet.</i> <b>166</b> , (2015).                                                                                                                                                                 |
| 1075                 | 94. | M. T. Antunes, A. C. Balbino, P. M. Callapez, E. Crespo, P. Legoinha, P. R. Mein <i>et</i>                                                                                                                                                                   |
| 1076                 |     | al., Silo Islâmico de Albufeira (Rua Henrique Calado). Estudos Arqueozoológicos e                                                                                                                                                                            |

Arqueobotânicos. (Instituto de Arqueologia e Paleociências (IAP). Universidade Nova 1077 1078 de Lisboa, Lisbon, Portugal, 2012). 95. V. Tinè, "Gli scavi nel Riparo della Fiumarella di Tortora (Cosenza)" in Proceedings 1079 of the XXXVII Scientific Meeting "Prehistory and Protohistory of Calabria" (Scalea, 1080 Papasidero, Praia a Mare, Tortora, 29 September - 4 October 2002) (IIPP - Italian 1081 Institute of Prehistory and Protohistory, Florence, 2004), pp. 781-789. 1082 A. Curci, I resti faunistici dell'insediamento dell'età del Bronzo di Madonna del Petto, 96. 1083 scavi 1977. Taras XV, 204-215 (1995). 1084 P. Farello, I reperti faunistici. Primi Insediamenti sul Monte Titano. Scavi e Ricerche 97. 1085 (1997-2004), 87-95 and 135-140 (2009). 1086 98. A. Riedel, Notizie preliminari sullo studio della fauna di Spina. Atti dell'Accademia 1087 delle Scienze di Ferrara 55, 1-7 (1978). 1088 1089 99. G. Siracusano, La fauna del Bronzo tardo del sito stratificato di Coppa Nevigata: una visione d'insieme. Origini XV, 201-217 (1992). 1090 100. A. Seguin-Orlando, R. Donat, C. Der Sarkissian, J. Southon, C. Thèves, C. Manen et 1091 al., Heterogeneous hunter-gatherer and steppe-related ancestries in late Neolithic and 1092 1093 bell beaker genomes from present-day France. Curr. Biol. 31, 1072-1083.e1010 1094 (2021).101. C. Gamba, K. Hanghøj, C. Gaunitz, A. H. Alfarhan, S. A. Alguraishi, K. A. Al-1095 1096 Rasheid et al., Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing. Mol. Ecol. Resour. 16, 459-469 (2016). 1097 N. Rohland, E. Harney, S. Mallick, S. Nordenfelt, D. Reich, Partial uracil-DNA-1098 102. 1099 glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 370, 20130624 (2015). 1100 P. J. Reimer, W. E. N. Austin, E. Bard, A. Bayliss, P. G. Blackwell, C. Bronk Ramsey 103. 1101 1102 et al., The IntCal20 northern hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon 62, 725-757 (2020). 1103 104. C. Bronk Ramsey, Bayesian analysis of radiocarbon dates. *Radiocarbon* **51**, 337-360 1104 (2016). 1105 M. Schubert, S. Lindgreen, L. Orlando, AdapterRemoval v2: rapid adapter trimming, 1106 105. identification, and read merging. BMC Res. Notes 9, 88 (2016). 1107 M. Schubert, H. Jónsson, D. Chang, C. Der Sarkissian, L. Ermini, A. Ginolhac et al., 1108 106. Prehistoric genomes reveal the genetic foundation and cost of horse domestication. 1109 Proc. Natl. Acad. Sci. U.S.A. 111, E5661-5669 (2014). 1110 M. Poullet, L. Orlando, Assessing DNA sequence alignment methods for 1111 107. 1112 characterizing ancient genomes and methylomes. Front. Ecol. Evol. 8, (2020). 108. P. Skoglund, B. H. Northoff, M. V. Shunkov, A. P. Derevianko, S. Pääbo, J. Krause et 1113 al., Separating endogenous ancient DNA from modern day contamination in a 1114 1115 Siberian Neandertal. Proc. Natl. Acad. Sci. U.S.A. 111, 2229-2234 (2014). 109. H. Jónsson, A. Ginolhac, M. Schubert, P. L. Johnson, L. Orlando, mapDamage2.0: 1116 fast approximate Bayesian estimates of ancient DNA damage parameters. 1117 Bioinformatics 29, 1682-1684 (2013). 1118 110. H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer et al., The sequence 1119 alignment/map format and SAMtools. Bioinformatics 25, 2078-2079 (2009). 1120 111. E. Garrison, Z. N. Kronenberg, E. T. Dawson, B. S. Pedersen, P. Prins, Vcflib and 1121 tools for processing the VCF variant call format. bioRxiv, 2021.2005.2021.445151 1122 (2021). 1123 1124 112. A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky et al., The Genome Analysis Toolkit: a MapReduce framework for analyzing next-1125 generation DNA sequencing data. Gen. Res. 20, 1297-1303 (2010). 1126

113. L. Orlando, A. Ginolhac, G. Zhang, D. Froese, A. Albrechtsen, M. Stiller et al., 1127 Recalibrating Equus evolution using the genome sequence of an early Middle 1128 Pleistocene horse. Nature 499, 74-78 (2013). 1129 114. T. S. Korneliussen, A. Albrechtsen, R. Nielsen, ANGSD: analysis of next generation 1130 sequencing data. BMC Bioinform. 15, 356 (2014). 1131 S. K. Beeson, J. R. Mickelson, M. E. McCue, Equine recombination map updated to 115. 1132 EquCab3.0. Anim Genet 51, 341-342 (2020). 1133 116. F. Alhaique, F. Marshall, Preliminary report on the Jebel Gharbi fauna from site SJ-1134 00-56 (2000 and 2002 excavations). Africa 54, 498-507 (2009). 1135 117. F. Marshall, L. Weissbrod, Domestication processes and morphological change: 1136 through the lens of the donkey and African pastoralism. Curr. Anthropol. 52, S397-1137 S413 (2011). 1138 1139 118. L. Shackelford, F. Marshall, J. Peters, Identifying donkey domestication through 1140 changes in cross-sectional geometry of long bones. J. Archaeol. Sci. 40, 4170-4179 1141 (2013). 119. Y. X. Zhao, J. Yang, F. H. Lv, X. J. Hu, X. L. Xie, M. Zhang et al., Genomic 1142 1143 reconstruction of the history of native sheep reveals the peopling patterns of nomads and the expansion of early pastoralism in East Asia. Mol. Biol. Evol. 34, 2380-2395 1144 1145 (2017). 120. J. E. Decker, S. D. McKay, M. M. Rolf, J. Kim, A. Molina Alcalá, T. S. Sonstegard et 1146 al., Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. 1147 PLoS Genet. 10, e1004254 (2014). 1148 1149 121. M. P. Verdugo, V. E. Mullin, A. Scheu, V. Mattiangeli, K. G. Daly, P. Maisano Delser et al., Ancient cattle genomics, origins, and rapid turnover in the Fertile 1150 Crescent. Science 365, 173-176 (2019). 1151 1152 122. M. Milanesi, S. Capomaccio, E. Vajana, L. Bomba, J. F. Garcia, P. Ajmone-Marsan et al., BITE: an R package for biodiversity analyses. bioRxiv, 181610 (2017). 1153 A. Brisbin, K. Bryc, J. Byrnes, F. Zakharia, L. Omberg, J. Degenhardt et al., 1154 123. PCAdmix: principal components-based assignment of ancestry along each 1155 chromosome in individuals with admixed ancestry from two or more populations. 1156 Hum. Biol. 84, 343-364 (2012). 1157 124. D. Reich, K. Thangaraj, N. Patterson, A. L. Price, L. Singh, Reconstructing Indian 1158 population history. *Nature* **461**, 489-494 (2009). 1159 G. Bhatia, N. Patterson, S. Sankararaman, A. L. Price, Estimating and interpreting 125. 1160 Fst: the impact of rare variants. Gen. Res. 23, 1514-1521 (2013). 1161 1162 126. S. Schiffels, K. Wang, MSMC and MSMC2: The multiple sequentially markovian coalescent. Methods Mol. Biol. 2090, 147-166 (2020). 1163 Z. Zheng, X. Wang, M. Li, Y. Li, Z. Yang, X. Wang et al., The origin of 127. 1164 1165 domestication genes in goats. Sci. Adv. 6, eaaz5216 (2020). C. Michel, The Old Assyrian trade in the light of Recent Kültepe Archives. Journal of 128. 1166 the Canadian Society for Mesopotamian Studies 3, 71-82 (2008). 1167 129. V. Lefort, R. Desper, O. Gascuel, FastME 2.0: a comprehensive, accurate, and fast 1168 distance-based phylogeny inference program. Mol. Biol. Evol. 32, 2798-2800 (2015). 1169 A. Rambaut, A. J. Drummond, D. Xie, G. Baele, M. A. Suchard, Posterior 130. 1170 summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901-904 1171 (2018). 1172 P. Librado, C. Gamba, C. Gaunitz, C. Der Sarkissian, M. Pruvost, A. Albrechtsen et 131. 1173 1174 al., Ancient genomic changes associated with domestication of the horse. Science **356**, 442-445 (2017). 1175

- 1176 132. X. Liu, Y. Zhang, Y. Li, J. Pan, D. Wang, W. Chen *et al.*, EPAS1 gain-of-function
  1177 mutation contributes to high-altitude adaptation in Tibetan horses. *Mol. Biol. Evol.* 36, 2591-2603 (2019).
- 1179 133. V. Jagannathan, V. Gerber, S. Rieder, J. Tetens, G. Thaller, C. Drögemüller *et al.*,
  1180 Comprehensive characterization of horse genome variation by whole-genome
  1181 sequencing of 88 horses. *Anim. Genet.* 50, 74-77 (2019).
- 1182 134. L. S. Andersson, M. Larhammar, F. Memic, H. Wootz, D. Schwochow, C.-J. Rubin *et al.*, Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. *Nature* 488, 642-646 (2012).
- 1185 135. B. Wallner, N. Palmieri, C. Vogl, D. Rigler, E. Bozlak, T. Druml *et al.*, Y
  1186 Chromosome Uncovers the Recent Oriental Origin of Modern Stallions. *Curr. Biol.*1187 27, 2029-2035.e2025 (2017).
- 1188 136. C. Der Sarkissian, L. Ermini, M. Schubert, M. A. Yang, P. Librado, M. Fumagalli *et al.*, Evolutionary genomics and conservation of the endangered Przewalski's horse.
  1190 *Curr. Biol.* 25, 2577-2583 (2015).
- 1191 137. J. Metzger, M. Karwath, R. Tonda, S. Beltran, L. Águeda, M. Gut *et al.*, Runs of homozygosity reveal signatures of positive selection for reproduction traits in breed and non-breed horses. *BMC Genom.* 16, 764 (2015).