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Abstract

This work explores the function and form of head movement and specifically

head nods in free conversation. It opens with a comparison of three theories that

are often considered as triggers for head nods: mimicry, backchannel responses,

and responses to speakers’ trouble. Early in this work it is assumed that head

nods are well defined in terms of movement, and that they can be directly at-

tributed, or at least better explained, by one theory compared to the others.

To test that, comparisons between the theories are conducted following two

different approaches. In one set of experiments a novel virtual reality method

enables the analysis of perceived plausibility of head nods generated by models

inspired by these theories. The results suggest that participants could not con-

sciously assess differences between the predictions of the different theories. In

part, this is due to a mixture of gamification and study design challenges. In

addition, these experiments raise the question of whether or not it is reasonable

to expect people to consciously process and report issues with the non-verbal

behaviour of their conversational partners. In a second set of experiments the

predictions of the theories are compared directly to head nods that are auto-

matically detected from motion capture data. Matching the predictions with

automatically detected head nods showed that not only are most predictions

wrong, but also that most of the detected head nods are not accounted by any

of the theories under question. Whereas these experiments do not adequately

answer which theory best describe head nods in conversation, they suggest new

avenues to explore: are head nods well defined in the sense that multiple peo-

ple will agree that a specific motion is a head nod? and if so, what are their

movement characteristics and what is their reliance on conversational context?

Exploring these questions revealed a complex picture of what people consider

to be head nods and their reliance on context. First, the agreement on what is

a head nod is moderate, even when annotators are presented with video snip-

pets that include only automatically detected nods. Second, head nods share

movement characteristics with other behaviours, specifically laughter. Lastly,

head nods are more accurately defined by their semantic characteristics than by

their movement properties, suggesting that future detectors should incorporate

more contextual features than movement alone. Overall, this thesis questions

the coherence of our intuitive notion of a head nod and the adequacy of cur-

rent approaches to describe the movements involved. It shows how some of the

common theories that describe head movement and nods fail to explain most

head movement in free conversation. In addition, it highlights subtleties in head



movement and nods that are often overlooked. The findings from this work can

inform the development of future head nods detection approaches, and provide

a better understanding of non-verbal communication in general.
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Chapter 1

Introduction

1.1 Motivations and contributions

This thesis explores head movement, and head nods in particular, in free con-

versation. The literature on head movement and nods is scattered around a few

theoretical branches that are rarely compared. For example, evidence suggests

that people tend to automatically and unconsciously mimic the head movement

of their conversational partners. Another branch of research shows that listen-

ers’ responses such as head nods appear when the speaker expects them at the

end of their turn, as presentations of acknowledgement or support. These two

explanations, among others, can often account for the same observed movement,

while also predict behaviours that are fundamentally different from each other.

These predictions were rarely compared in the past. One major goal of this

thesis is therefore to collect some of the common theories that explain head

nods and compare their predictions.

A comparison of the predictions of such theories, in the context of this work,

does not attempt to determine if one theory should be considered as a better

explanation of head nods than the others. After all, head nods can be attributed

to more than one theoretical explanation. Even a single head nod, in some cases,

can be attributed to more than one explanation. The comparison here therefore

tries to explore how well the theories account for the varied observed head

movement in conversation and what are the characteristics of the predictions of

each theory when compared to observed behaviour.

Another focus of this work is on the methodology of testing different theories

accounting for head movement. Studies of non-verbal communication often rely

on confederates or opt to employ embodied conversational agents (ECAs) and

restrict the conversation as ways to provide consistent manipulation. These

approaches are problematic in regards to the ecological validity of the results.
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Furthermore, when the manipulation is assessed with self-reported measures,

it is often done with post-experience questionnaires. These are known to be

problematic as participants often form a post-hoc rational for their action. To

solve these issues, a novel virtual reality (VR) method for studying non-verbal

communication is developed. Its goal is to enable the real-time manipulation

of non-verbal cues in a shared VR environment. At the same time, it provides

means for the participants to rate the plausibility of the non-verbal behaviour

of their conversational partners in real time through a gamified method.

Exploring and contrasting theories for head movement highlighted the im-

portance of turn-taking as context for their predictions. When analysing con-

versations computationally (as oppose to manual annotations), this context is

not always easy to extract. Many studies opt to employ sophisticated machine

learning (ML) algorithms to detect turn changes. These often lack real-time

processing capabilities. For example, they cannot be used to animate the body

language of speakers in virtual environments in real time. They are also hard to

implement and to integrate into other research software. A solution is suggested

in the form of a simple audio based algorithm that can detect turn changes in

real time, light on resources, and is simple to implement in almost any program-

ming language or environment.

Last but not least, this work recognises issues with the common definition of

head nods as an up and down head movement. These were discovered through

a series of studies that assume that head nods can be automatically detected

by analysing motion captured data. Their results show discrepancies between

the detected nods and the expected behaviour. A closer investigation of the

automatically detected nods, in comparison to annotated ones, reveals that

what people perceive as a head nod is significantly different from the up and

down head movement commonly described in the literature.

1.2 Thesis structure

Chapter 2 reviews the literature and state-of-the-art research that prepare

the reader to better understand the context and contributions presented

in this thesis.

Chapter 3 presents a simple algorithm for detecting floor control in conver-

sation. State-of-the-art approaches using ML can achieve good accuracy

but often lack the incremental, real-time processing needed by various

applications. They also require annotated data for training, and due to

their black box nature can be tricky to interpret. An alternative floor

control detection (FCD) algorithm that uses real-time audio signal pro-
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cessing, two main parameters and assumes separate microphones for each

participant is presented. Comparison of performance on a corpus of un-

structured dialogues shows that the algorithm is more accurate than a ran-

dom predictor and it performs as well as specially trained state-of-the-art

deep learning model. Depending on parameters the algorithm presented

here is also more stable and faster than all three comparison algorithms.

Additionally, it is language independent, robust to audio bleed between

microphones and models backchannel responses appropriately. Potential

applications include automatic annotation of dialogue for interaction re-

search, through meeting summaries, to driving animations of speakers and

listeners in social VR.

Chapter 4 proposes a VR system for studying non-verbal behaviours, and uses

it to compare three common theories that explain head nods in free conver-

sation. The system enables the development of what could be described

as partial Turing tests: models of non-verbal behaviour are implanted

into the virtual avatars of the participants and override parts of their be-

haviours on demand. At the same time, the participants are encouraged

to detect when the avatar is driven by the algorithm versus driven by

their conversational partner’s movement. This effectively provides ratings

for models of non-verbal cues. The system is used in a study to compare

models of head nods in free conversation based on three theories: mimicry,

backchannel responses, and listeners’ responses to speakers’ trouble. The

results highlight the advantages and disadvantages of the VR method, and

provide insights into gamified study designs in VR. The comparison be-

tween the theories, however, is inconclusive. It implies that people usually

do not process the non-verbal behaviours of their conversational partner

in a conscious way, hence cannot report when these go wrong.

Chapter 5 discusses the comparison of predictions from the three theories

mentioned above to movement data in conversation. Two studies are pre-

sented, one is conducted with participants conversing face-to-face while

the other replicates the same design but in a VR environment. In both

studies pairs of participants freely converse for 15 minutes while fitted

with a motion capture system. Head nods are automatically extracted

from the data, and compared to theoretical predictions. The results high-

light the differences between head nod patterns of speakers and listeners.

They suggest that the theories produce predictions that overlap above

what is expected by chance, suggesting that they are not mutually exclu-

sive. The predictions found to be significantly different from the detected

head nods, calling into question the competency of simple methods to de-
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tect head nods from movement data. In addition, the vast majority of the

observed head nods are not accounted by any of the investigated models,

implying that mimicry, backchannel responses, and responses to speech

disfluencies cannot explain head nods exhaustively.

Chapter 6 investigates the definition of a head nod. A naive description of

a head nod is a downwards movement of the head, followed by an up-

wards movement. This is inline with the automatic head nods detector

employed throughout this thesis. Using a dataset of short video snippets

of dialogues two sets of algorithmically detected head movements are ex-

tracted; a set of nods and a set of peak head movements. Annotation of

these datasets suggests that most algorithmically detected nods are not

perceived as nods. Clustering of annotations indicates that speaker and

listener head movements are perceived differently and involve a mixture

of other behaviours, most notably laughter and posture shifts. It shows

that head nods are more accurately defined by their semantic characteris-

tics than by their movement properties, suggesting that future detectors

should incorporate more contextual features than movement alone.

Chapter 7 Concludes with a general discussion and suggestions for future

work.

1.3 Associated publications

Portions of the work detailed in this thesis have been presented in national and

international scholarly publications. Some passages have been quoted verbatim

from these sources.

• The VR system discussed in Section 4.2 was published as a short confer-

ence paper (Gurion et al., 2018).

• The face-to-face study from Chapter 5 was published as a conference paper

(Gurion et al., 2020).

8



Chapter 2

Literature review of head

movement in conversation

This chapter reviews concepts related to head movement in conver-

sation. It touches the subject from a few different angles to explain

what behaviours are usually associated with head movement. One

prominent example, which is the centre of this thesis, is the idea

head nods, often described as the down then up movement of the

head. Head nods are discussed in the context of manual annotations

and automatic detection. The chapter also highlights some theories

related to non-verbal communication in general and head movement

and nods in particular that are discussed extensively throughout this

work.

2.1 Annotation schemes for head movement

Annotation schemes for head movements can provide insight into the properties

that researchers find important. The annotation schemes that are discussed

here are those that deal specifically with head movement, and aim to describe

the dynamics of the conversation. This is as oppose, for example, to annotation

schemes for emotional expression.

The MUMIN annotation scheme (Allwood et al., 2007) is designed to study

the function of multimodal communicative expressions, with emphasis on feed-

back, turn management, and sequencing functions. Table 2.1 presents the at-

tributes and possible values suggested by this annotation scheme. Note in par-

ticular the large set of possible head gestures, 12 in total. These include values

that can be easily mixed up like Single Jerk (which usually means a head nod

9



Attribute Possible values
Feedback give

Basic Contact & Perception, Contact Perception & Under-
standing

Acceptance Accept, Non-accept
Additional Emotion
/ Attitude

Happy, Sad, Surprised, Disgusted, Angry, Frightened,
Certain, Uncertain, Interested, Uninterested, Disap-
pointed, Satisfied, Other

Feedback elicit
(same attributes and values as Feedback give)

Turn-management
Turn-gain Turn-take, Turn-accept
Turn-end Turn-yield, Turn-elicit, Turn-complete
Turn-hold binary

Sequencing
Opening sequence binary
Continue sequence binary
Closing sequence binary

Hand gestures
Handedness Both hands, Single hand
Trajectory Up, Down, Sideways, Complex, Other
Semiotic type Indexical Deictic, Indexical Non-deictic, Iconic, Sym-

bolic
Communicative
function

Feedback give, Feedback elicit, Turn management, Se-
quencing

Facial display
General face Smile, Laughter, Scowl, Other
Eyebrows Frowning, Raising, Other
Eyes Exaggerated Opening, Closing-both, Closing-one,

Closing-repeated, Other
Gaze Towards interlocutor, Up, Down, Sideways, Other
Mouth Open mouth, Close mouth, Corners up, Corners down,

Protruded, Retracted
Head Single Nod, Repeated Nods, Single Jerk, Repeated

Jerks, Single Slow Backwards Up, Move Forward,
Move Backward, Single Tilt, Repeated Tilts, Side-turn,
Shake, Waggle

Semiotic type (same as Hand gestures)
Communicative
function

(same as Hand gestures)

Multimodal relations
Cross-modal func-
tion

Non-dependent, Dependent-compatible, Dependent-
incompatible

Table 2.1: Attributes and possible values of the MUMIN annotation scheme
(Allwood et al., 2007).
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Nod Shake Tilt

Figure 2.1: Canonic examples of movement associated with head nods, shakes,
and tilts.

that starts with a significant upwards stroke), and Single Slow Backwards

Up.

Three case studies demonstrate the application of the MUMIN annotation

scheme to video captured conversations (Allwood et al., 2007). In the first case

study two annotators annotated one minute of an interview of an actress for

Danish television. The annotators mostly agreed on the selection of “commu-

nicative gestures”: the first annotator selected 37 gestures, while the second 33

gestures, of these 29 overlapped. Inter-annotator agreement was calculated by

Cohen’s kappa. The annotators agreed (kappa >0.6) on the feedback (give and

elicit), turn-management, and on all of the facial display attributes but Head and

Gaze. They disagreed (kappa <0.6) on sequencing attributes, particularly on the

Continue sequence binary attribute. Inter-annotator agreement for hand ges-

tures annotations are not reported, although it is implied that the data contains

only facial displays and no hand gestures. Similarly, agreement on multimodal

relations is not reported. In the second case study one annotator annotated a

one minute video of a dialogue from a Swedish film. In the last case study a one

minute video of a television interview is annotated by two pairs of naive coders

(who worked together to produce one annotations file), and one expert coder.

This is equivalent to three annotators. Handedness, Trajectory, and Semiotic

type are reported for the hand gestures, from which only Handedness showed

agreement (kappa >0.6). Note that none of these case studies represent un-
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structured conversation well. This is because they are at least partially scripted

and with interactants taking asymmetric roles.

Various studies rely or extend the MUMIN annotation scheme (Navarretta,

2011; Paggio and Navarretta, 2012; Boholm and Allwood, 2010). Common to all

of these are the recognition of head nods, shakes, and tilts. Canonical examples

for these are illustrated in Figure 2.1.

Having a large set of descriptors for head movement is not unique to the

MUMIN annotation scheme. Nod, Backnod, Double nod, Shake, Upstroke,

Downstroke, Tilt, Turn, Waggle, Sidenod, Backswipe, and Sideswipe is the

list of possible head movement annotations suggested by de Kok (2013). Sim-

ilarly large number of values is available for other annotation schemes (e.g.

Kousidis et al., 2013; Blache et al., 2009; Karpiński et al., 2015). Common to

all these are nods, jerks (upwards nods), tilts, shakes, and waggles. With the ex-

ception of waggles (defined as irregular connected movement by Kousidis et al.,

2013), these can be described as either vertical or horizontal movement. Some

schemes also record single versus multiple repetitions (Boholm and Allwood,

2010; Blache et al., 2009), and the initial direction of the movement (Boholm

and Allwood, 2010; de Kok, 2013).

A common trend in the literature is to first ask annotators to mark regions

with movements that present a communicative function or response (Allwood

et al., 2007; Kousidis et al., 2013; de Kok, 2013). These are not defined by the

annotation scheme, leaving room for annotators to choose which movements

require annotation and which do not. de Kok (2013) describes this as follows:

“First the interesting regions with listener responses were identified. This was

done by looking at the video of the listener with sound of the speaker and

marking moments in which a response of the listener to the speaker was noticed.

In the second step these regions were annotated . . . In the third and final step

the onset of the response was determined.”

It is important to note that most of the annotation schemes discussed above

are evaluated with participants that are unfamiliar to each other (Boholm and

Allwood, 2010; Paggio and Navarretta, 2012). Whereas this is not a problem

by itself, it might explain differences in approach to most of the work presented

here, as the participants in most of the studies in this thesis are familiar with

each other.

Lastly, evaluations of the annotation scheme often rely on map tasks (Ander-

son et al., 1991), or otherwise structured or asymmetric conversations (Paggio

and Navarretta, 2010; de Kok, 2013). This poses a question for how well these

annotations schemes capture movement and semantics in free conversation.
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2.2 Automatic head nod detection

Automatic head nod detection techniques often appear in studies exploring the

development of embodied conversational agents (ECAs), as these should be able

to process verbal and non-verbal communication. Alternatively, these tech-

niques enable the automatic annotations of datasets, making research of large

corpora possible.

Head nod detection is often based on specialised motion capture equipment

(Cerrato and Svanfeldt, 2006; Healey et al., 2013; Chen et al., 2015), or on

processing of video data with computer vision (Kawato and Ohya, 2000; Kapoor

and Picard, 2001; Kang et al., 2006; Dong et al., 2007; Nguyen et al., 2012). One

advantage of motion capture approaches is that both 3 dimensional position and

rotation information are available. Computer vision approaches, on the other

hand, are easier to set up and are less obtrusive. They usually detect and

track pupils or face area for horizontal and vertical movement. The data from

either system is then processed by either a set of rules or machine learning (ML)

algorithms to detect head nods and other head gestures.

An early example of a computer vision rule-based detector is suggested by

Kawato and Ohya (2000). It tracks the point between the eyes at 13 frames per

second, while the resolution sets the distance between the eyes at approximately

14 pixels. Each frame is defined as stable, extreme, or transient, based on

the vertical position of the tracked point. If the 5 frames around the frame in

question have the point within 2 pixels from each other, the frame is stable. If

the point is the highest or lowest among the 5 frames around it the frame is an

extreme. Otherwise the frame is transient. If there are at least three extreme

frames with no stable frames between them, and adjacent extreme values differ

by at least 3 pixels, the system reports a head nod. This system is evaluated

against videos of participants instructed to move their heads up and down or

left and right, raising the question of the ecological validity of the results. The

results include average accuracy of 92% with recall of 94%.

Healey et al. (2013) suggest a similar approach to process the head height

information produced by a motion capture system. Their method is employed

extensively throughout this work, and is described in detailed in Section 4.1.1.

ML approaches employ a variety of models like Hidden Markov Models and

Support Vector Machines to predict head nods from features like the head po-

sition, velocity, and frequency (Kapoor and Picard, 2001; Morency et al., 2005;

Kang et al., 2006; Nguyen et al., 2012; Chen et al., 2015). An early ML detec-

tor tracks the pupils with an infrared camera and process these with a Hidden

Markov Model to detect head nods and head shakes in real time (Kapoor and

Picard, 2001). Similarly to Kawato and Ohya (2000), the dataset for training
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their model, as well as for evaluating it, is collected by asking participants to

answer yes or no questions only by head nods or head shakes. Although this

dataset contains head nods, it is expected to be significantly different from head

movement found in free conversation. For example, head nods as backchannel

responses (discussed next) are not necessarily an answer to a question equivalent

to ‘yes’. The evaluation suggests that the recall of the system for head nods

is 92%, and for head shakes is 95%. The accuracy in both cases is perfect (no

false detections).

Many of these studies, however, do not suffer from this ecological validity

issue. More recent works often evaluate their detectors on free conversations

with annotated head nods (Nguyen et al., 2012; Chen et al., 2015).

Note that some of these detectors are able to detect more than just head

nods. In that case, they usually detect nods from vertical movements and

shakes from horizontal movements (Kawato and Ohya, 2000; Morency et al.,

2005), suggesting that these are the most basic division of head movement into

two distinct classes. This is inline with the common attributes suggested by

annotation schemes for head movements as discussed earlier in Section 2.1.

Whereas most studies process only head movement to determine head nods,

evidence suggests that incorporating conversational context improves detection.

This has been demonstrated by adding the speaker’s speaking state (Nguyen

et al., 2012), or information from the internal dialogue manager of an ECA

(Morency et al., 2005) as features to ML based head nods detectors.

Note also that some of the studies above analyse features that are based on

head height (or pupils height as a proxy; Kawato and Ohya 2000; Healey et al.

2013). Other studies consider the pitch — the rotation of the head around an

axis parallel to an imaginary line between the ears — as the basic feature for

detection (Chen and Harper, 2009).

2.3 Head movement mimicry

Conversational partners often mimic each other’ postures, gestures, use of lan-

guage, facial expression, and more. Evidence suggests that mimicry in conver-

sation has a persuasive power and can increase likeability, empathy, and feeling

of closeness (for a review see Chartrand and Lakin, 2013).

Chartrand and Bargh (1999) found an automatic tendency to imitate others

in social interactions. They call this mimicry behaviour the “chameleon effect”.

In three experiments participants interacted with confederates. In the first

experiment the confederates either rubbed their face or shook their foot, and

either smiled or not. Naive judges coded the video recorded interactions. Their

coding indicates significant mimicry of both facial expression and behaviour,
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and that behaviour matching (face rubbing) was independent of facial expres-

sion (smiling). In the second experiment the confederate either mimicked the

participant or not. After the experiment, the participants self-reported higher

levels of rapport for the mimicking confederates. In both studies, when asked,

the participants were unaware of the mimicry. The third experiment shows

correlation between perspective-taking — the ability to imagine yourself in the

shoes of someone else — and mimicry. The authors explain these results by the

perception-behaviour link: a cognitive mechanism that links together perception

and action and suggests that we have to act in order to perceive. This theo-

retical reasoning suggests that mimicry is an unconscious automatic behaviour

that is a by product of our ability to process social encounters.

Bailenson and Yee (2005) extend these ideas to virtual reality (VR). Using

a virtual agent they proposed a more concrete claim. They conducted an ex-

periment with participants telling a story to an agent, who either mimics their

head movement in a 4 seconds delay, or plays back a recorded movement from

an interaction with previous participants. Participants in the mimicry condition

reported higher levels of rapport. Using similar methods, later studies show that

there is a high correlation between social anxiety and lack of mimicry (Vrijsen

et al., 2010a,b); We are more open to outgroup members if they mimic (Hasler

et al., 2014); And that mimicry increases trust (Verberne et al., 2013).

The amount of mimicry we apply depends on context. When affiliation is

an explicit goal people tend to mimic each other more, and formal interactions

involve less mimicry than friendly encounters (Lakin and Chartrand, 2003). In

one study an experimenter was either friendly and informal or polite and highly

professional, and either mimicked the participant gesture, posture, and man-

nerisms or not. Participants reported that they felt physically colder when the

experimenter was friendly and non-mimicking or polite and mimicking (Lean-

der et al., 2012). Mimicry also depends on the type of the interaction. In a

competitive investment game, mimicking virtual agents did not increase neither

liking nor trust, whereas in a cooperative route planing game, the mimicking

agent was rated as more likeable and trustworthy (Verberne et al., 2013).

Some studies, however, provide evidence in the opposite direction to the

chameleon effect. Tiedens and Fragale (2003) compare the claims about mimicry

with a hypothesis that people compliment each others posture during interac-

tion: when one person pose is expanded, the other will opt for a submissive,

constricted stance, and vice versa. They conducted studies using confeder-

ates that presented expanded, natural, or constricted pose. Participants tended

to present the opposite posture to the confederate, supporting the researchers

hypothesis against the common mimicry claim. Furthermore, when the partic-

ipants were asked whether they liked the confederate and felt comfortable with
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them, their answers were more positive if they presented an opposite posture to

the confederate.

Recently, a study that explored the effect of mimicry on rapport found no

conclusive evidence (Hale and Hamilton, 2016). In their first experiment, par-

ticipants interact with a virtual agent that either mimics their head and torso

movement or not, in a 1 or 3 seconds delay. Participants reported higher level of

rapport to the mimicking agents in the 3 seconds condition. Other self-reported

measures, like trust and similarity to the agent, and the general smoothness

of the interaction, were not found to be affected by mimicry. In their second

experiment East Asian and European participants interacted with East Asian

or European agents, that either mimicked or not in 3 seconds delay. The re-

searchers hypothesised that in addition to an increased rapport for the mimicry

condition, participants rapport will also be higher for agents with matching eth-

nicity. Surprisingly, neither effect was found, not on rapport, nor on any of the

other self-reported measures.

Hale et al. (2019) recently challenged the mimicry time lag that many of

the studies above report. The common 4 seconds delay claim from Bailenson’s

work (Bailenson et al., 2004; Bailenson and Yee, 2005) suggests that mimicry is

not a reactive process and it relies on memory to operate. This seemed rather

unlikely to the authors, so they tested two alternative hypotheses. One alter-

native model describes mimicry as a predictive process, similar the mechanism

that allows musicians to coordinate their playing, and implies no time lag. The

other model describes mimicry as an immediate reactive response to other peo-

ple, thus implies a time lag on the order of 300-1000 milliseconds. They used

motion capture technologies to measure the head pitch in dyadic conversations

and found that listeners low-frequency head movement follows the speaker’s

head movement in a 600ms delay. Another finding from the same study is that

there is a negative correlation between speakers and listeners head movements

in higher frequencies. More specifically, listeners often move their head in 2.6–

6.5Hz while speakers rarely do so.

Most of the literature about head movement and mimicry does not specifi-

cally deal with head nods. When tested, researchers found that head nodding

mimicry correlates to ones overall communication skill (Wu et al., 2020). A

study with medical students and simulated patients shows that when the med-

ical student mimics the head nods of the patient they receive a higher score on

their post consultation survey, as reported by the patient.
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Provide a backchannel feedback upon detection of:
P1 a region of pitch less than the 26th-percentile pitch level and
P2 continuing for at least 110ms,
P3 coming after at least 700ms of speech,
P4 provided that no backchannel has been output within the preceding 800ms,
P5 after 700ms wait.

Table 2.2: Prosody based algorithm to predict backchannel responses (Ward
and Tsukahara 2000; copied from Poppe et al. 2010).

2.4 Head nods as backchannel responses

Natural and engaging conversations rely on the ability of the interlocutors to

achieve common ground. This process often involve feedback from listeners for

their understanding, or misunderstanding. Timed listeners responses, known as

backchannel responses (Yngve, 1970), can be non-verbal (e.g. head nods), or

paralingual (e.g. utterances like “uh-huh”). They are crucial for the speaker to

assess the listener engagement and adapt to it (Bavelas et al., 2000), and can

mediate turn-taking in conversation (Duncan et al., 1979).

Modelling backchannel responses is an increasingly relevant topic for re-

search. In addition to their contribution to our understanding of the cognitive

processes behind social interaction, they see applications in a wide array of

fields. Non-verbal and paralingual models can be implemented to make ECAs

more realistic, and may support new telecommunication technologies like social

VR.

Surface features like speaker-listener eye contact, speaker voice level, and

prosody are often enough to model backchannel responses. Ward and Tsukahara

(2000) suggest a prediction model that is based on the speaker prosody. Their

model, summarized in Table 2.2, provides a set of simple hand-crafted rules that

use the speaker “vocalisation state” (speaking or silent) and pitch, to predict

listeners’ backchannel responses. Many studies relay on this model, either as a

component for conversational systems (Maatman et al., 2005), or as a reference

point for an alternative, sometimes more complex, predictor (Morency et al.,

2008; Poppe et al., 2010).

Other models incorporate the speaker-listener eye-contact (Poppe et al.,

2010). These models are influenced by research of gaze in conversation (Good-

win, 1979) and experimental studies that found relationships between backchan-

nel responses and mutual gaze (Bavelas et al., 2002). Other approaches suggest

using the speaker head movements (Maatman et al., 2005; Gratch et al., 2006),

or surface text features (Lee and Marsella, 2006).

Whereas all of these studies use a set of carefully chosen rules to predict

backchannel responses, recent studies suggest data-driven approaches. Nishimura
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et al. (2007) predict listener responses using the pitch and power of the speaker

voice. Their model, however, isn’t constrained to predict only backchannel re-

sponses. A response generator uses audio features to choose between a backchan-

nel response, collaborative completions (e.g. suggesting a keyword to the speaker),

and other types of response. Their decision-tree model was trained using audio-

recorded and annotated conversations of the RWC multimodal dataset (Hayamizu

et al., 1996). Morency et al. (2008) followed a similar path but with a more ex-

haustive set of audio-based features, and speaker-listener gaze annotations. In

addition, they encoded each feature with a set of encoding templates that mod-

ified the appearance of the feature over time. Then, they applied probabilistic

methods to choose the feature with the most predictive power to incorporate

into the model. Huang et al. (2011) used a simplified model that is based only

on non-verbal information. Their model uses the speaker vocalisation state,

speaker-listener eye contact, and, interestingly, the speaker smile, to predict lis-

teners’ backchannel responses. A year later the model was improved to make it

more robust to different speaker behaviours (de Kok and Heylen, 2012). Note

that there is almost no direct comparison between the different models, mainly

due to the use of different datasets and different evaluation methods (Morency

et al., 2008).

2.5 Listeners’ responses to speakers’ troubles

The interactive nature of face-to-face conversations suggests that all of the par-

ticipants in a conversation involve in the effort to keep it going. Therefore,

listeners responses are especially important when the speaker encounters prob-

lems in producing a turn.

Disfluencies are often described as a 3-part structure of reparandom, inter-

regnum, and repair (the terms were proposed by Shriberg, 1994). This structure

is presented in the example bellow.

John Mary}

 reparandum

likes }

interregnum

uh }

repair

loves

Healey et al. (2013) searched for listeners’ backchannel responses after dis-

fluent utterances. They invited groups of 3 participants to discuss an ethical

dilemma in a motion captured space. The interaction was manually transcribed

to extract disfluencies and head nods were detected automatically from the mo-

tion capture data. Their results show that addressees tend to nod in the 1

to 3 seconds window after the disfluency. Similar results were found for side-

participants, although with less prominent effect. Moreover, unlike addressees,
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side-participants usually suppress backchannel responses as the speaking rate

increases. A later study added that upon speech disfluencies listeners gesture

more, and with gestures that are similar to the speaker gestures (Healey et al.,

2015).

Backchannel responses, however, are not the only possible listener response

to speech disfluencies. Listeners often shift their posture when the speaker

encounters problems in speech. This idea was proposed as one of many mecha-

nisms behind a multi-modal conversational systems (Maatman et al., 2005). To

my knowledge, no systematic evaluation of this claim was done to date.

More generally, it is important to note that disfluencies and repair are an in-

tegral part of face-to-face conversations (Schegloff, 1992). Surprisingly, increase

in disfluencies and repairs in conversations often predicts less misunderstand-

ing, and not more (McCabe et al., 2013). These properties alone were enough

to encourage researchers to develop disfluency detection algorithms, mainly to

enable conversational systems to process disfluencies properly.

Various techniques for disfluency detection were suggested throughout the

years. They can be generally classified by considering these 3 characteristics:

(a) using prosody or other low-level features versus text transcriptions; (b) rely-

ing on simple set of rules or machine-learning algorithms; (c) operating in real

time (sometime referred to as incremental) or not. Early real-time disfluency

detectors relied mainly on low level features, especially prosody (Shriberg et al.,

1997; Maatman et al., 2005). Accurate real-time speech-to-text solutions be-

came available in recent years (Hough and Schlangen, 2017). They open the

possibility to create transcript based disfluency detectors for real-time opera-

tion. One such detector is the “deep disfluency tagger” by Hough and Schlangen

(2017). They trained a deep-learning algorithm to tag disfluencies in natural

speech. Edit terms like “uh” and “I mean” were tagged with <e>, the start of

the repair was marked with <rpS> (stands for ‘repair start’), and the end of

the repair with <rpE>. The tagger’s performance on the disfluency-annotated

Switchboard dataset (Meteer, 1995) of phone conversations, is competitive with

state-of-the-art models on like-for-like disfluency detection comparison and is

the only known system to be usable on and evaluated on automatic speech

recognition results. In evaluation on transcripts, the F1 scores reached 0.92 for

<e> tags and 0.72 for <rpS> tags on a per-word basis. On automatic speech

recognition results these two F1 scores reached 0.73 and 0.56 using 10-second

time windows.
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2.6 Directions for research based on the litera-

ture

From the literature reviewed above, what is missing in terms of comprehensive

real-time testing of models of head nods in dialogue are the following:

• A simulation environment to allow for truly interactive testing of models

of nods in free conversation (Chapter 4).

• A turn-taking model for dialogue usable for real-time testing of models of

head movement that interact with turn taking structure (Chapter 3).

• A comparison of real-time predictive models of head nods in conversation

(Chapter 5).

• A critical evaluation of what underlies theories of head nods and auto-

matic methods of detection in relation to other communicative behaviours

(Chapters 5 and 6).
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Chapter 3

A simple algorithm for floor

control detection in

dialogue

This chapter suggests a simple algorithm for detecting floor control

in conversation. The performance of the algorithm on a corpus of

unstructured dialogue is evaluated and compared to random baseline

and a specially trained state-of-the-art deep learning model. This

algorithm is used extensively in the following chapters of this thesis

to derive, in the abscence of manual annotations, what would be

considered the ground-truth for floor control.

The first systematic attempt to describe the organisation of turn-taking in

conversation was provided by Sacks, Schegloff and Jefferson (1974). Starting

from the observation that people rarely talk over each other they proposed a

set of rules for turn-taking that apply independently of the number of people

talking, the topic of the conversation, and the length of any given utterance.

These rules appear to be universal across languages and provide a critical part

of the basic infrastructure of adult conversation and of language acquisition

(Stivers et al., 2009; Holler et al., 2016).

The turn-taking rules proposed by Sacks et al. are normative not syntactic;

they provide a framework in which the significance of different kinds of silence

or overlap between turns can be interpreted. Nonetheless, there are many po-

tential applications for computational systems that are able to track turn-taking

in conversation. One simple practical application is to automatically annotate

turns in a dataset, a task that is often done manually. These annotations are
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essential for calculating turn lengths, relative number of contributions by differ-

ent participants, patterns of feedback and interruption, and many other basic

features of interaction. Automatic turn-detection can reduce costs and effort,

and make the annotation of large interaction datasets a practical possibility.

Automatic detection of turn changes is also a pre-requisite for the development

of more complex applications. For example, modelling speakers’ and listen-

ers’ non-verbal behaviour (head nods, gestures, etc.) depends on the ability to

track who is speaking to whom. Telecommunication technologies can also ben-

efit from such algorithms if they can process data in real time. Social virtual

reality, for example, offers the opportunity to simulate and augment aspects

of non-verbal communication, including eye gaze, facial expressions, and finger

movements. Doing this effectively requires real-time monitoring of turn-taking

to allow generation of appropriate non-verbal cues.

The current state-of-the art for modelling turn-taking often employs rela-

tively complex models that require extensive training, particularly deep learning

approaches (e.g. Skantze, 2017), and are not always compatible with incremen-

tal and real-time processing of dialogue (Anguera et al., 2012). This limits their

range of potential applications.

In this chapter, a simple algorithm for floor control detection (FCD) is pre-

sented and compared to a state-of-the-art deep learning approach. The algo-

rithm is designed to detect the floor-holder1 from audio data in natural conver-

sations, in real time. It assumes audio coming from a separate microphone for

each interactant and utilises simple signal processing building blocks: root mean

square (RMS) calculation, filters, and a threshold. As a result it is relatively

simple to implement and adapt to many programming languages and environ-

ments. The algorithm is incremental in that it uses only past data for decision

making. It is a real-time algorithm in that it is computationally lightweight,

hence does not accumulate lag upon operation, and does not require additional

resources such as transcription or part-of-speech tagging to operate (like in

Skantze, 2017).

3.1 Background

One of the simplest approaches to detect floor control is voice activation detec-

tion (VAD) algorithms which aim to detect when someone is speaking. They

are used extensively in telecommunication, especially to minimise networking

by releasing communication bandwidth for non-speech audio (Benyassine et al.,

1997). A limitation of VAD classification is that it is usually too granular,

1Some authors distinguish between holding a turn and holding the floor (e.g. Edelsky,
1981). This distinction is suppressed for the purposes of this work.
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reporting alternating speech and non-speech segments at a much higher rate

than turns in conversation (Ivanov and Riccardi, 2010). Designed primarily for

telecommunication, VAD solutions are also prone to audio bleed between mi-

crophones in studies that are conducted with all participants in the same room

(Bertrand and Moonen, 2010).

Spoken dialogue systems aim to avoid overlap with the user and eliminate

unintended long pauses. In general, they try to follow turn-taking behaviour

that is similar to human-human interaction, who aim to minimize both overlaps

and gaps (Sacks et al., 1974). Early research in turn-taking for spoken dialogue

systems attempted to predict turn changes at lexical or time threshold bound-

aries, by deciding if the dialogue system should take the turn (shift) or wait for

the user to continue speaking (hold) (Maier et al., 2017; Lala et al., 2018). This

decision is often based on speech prosody before the boundary, gap duration,

and lexical information (Ferrer et al., 2002; Schlangen, 2006).

An alternative approach is to continuously predict the possibility of a turn

change (Skantze, 2017; Lala et al., 2019). Skantze, for example, proposes a turn-

taking model that continuously predicts the probability that an interactant will

speak (Skantze, 2017). The probabilities generated by the models are then used

to predict the floor holder, by picking the interactant with the higher probability

to speak. This is tested as follows: segments ending with a pause, followed by

one and only one speaker in the following one second, are extracted from a

dataset. The task for the model is to predict who will be the next speaker

after the pause, equivalent to classifying each end of segment as a turn shift or

turn hold. The model generates a probability for each interactant separately

for 1 second following the pause. The interactant with the higher probability is

predicted to be the next floor holder. The performance of the model on this task

is significantly better than both a random baseline and human judges facing the

same task. Skantze’s model is replicated for this chapter as a principal point of

comparison.

Speaker diarization aims to answer the question “who spoke when?” (Anguera

et al., 2012). It usually deals with unknown number of speakers and one audio

source, and attempts to cluster the audio into segments and label the segments

by speakers. A few studies in the field suggests that they can achieve ‘real-time’

performance (e.g. Huang et al., 2007), in the sense that the time it takes to

analyse an audio source is shorter than its duration. This is different from the

notion of real-time processing discussed in this chapter. From this perspective

existing speaker diarization methods are not incremental and do not process

input data in real time.
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3.2 Floor control definition

Turn-taking is considered in terms of the transitions of turn ownership or floor

control. The task is posed as identifying, in real time, which conversation part-

ner holds the floor at any given moment, even if there are some concurrent

utterances from other interactants, or silence. The terms “turns” and “floor

control” are used interchangeably throughout this work. An interactant that

has the turn, or controls or holds the floor, is granted the permission to speak

by their conversational partners.

There is no one common way to define or annotate turns or floor control.

Studies in the field of speaker diarization often follow a similar approach as

the one described here: they are interested in segmenting time so that one

interactant is considered the speaker at any given moment. Another approach is

to define turns as continuous segments of speech. This way, multiple interactants

can have overlapping turns, or in the case of long pauses, no-one has the turn

(e.g. Ivanov and Riccardi, 2010).

A floor control definition poses some interesting implications for the cate-

gorisation of verbal listener responses like “uh-uh” and “yeah”, also known as

backchannel responses (Yngve, 1970). These are expected by speakers and are

a crucial component in conversation (Bavelas et al., 2000). In some cases they

are categorised as turns (e.g. Roddy et al., 2018) or changes of floor. This work

takes the opposite view: these listener specific behaviours do not indicate a turn,

or claim for the the floor. If floor control grants an interactant the permission to

speak, a listener response demonstrates that the interactant does not currently

hold the floor. This is especially important when the results of a FCD algorithm

are used to understand or generate non-verbal behaviour.

3.3 A simple floor control detection algorithm

The proposed FCD algorithm is illustrated in Figure 3.1. It processes buffers

of 20ms of audio at a time, arriving from each interactant’s microphone. The

power of the audio buffers is measured by RMS. The RMS values are passed

through a second order low-pass Butterworth filter with a cut-off frequency f .

Lastly, the filtered RMS values are compared as follows: If the ratio between the

higher and the lower filtered RMS values is greater than a comparison threshold

1 + k, then the interactant with the higher value is reported as the floor-holder.

Otherwise, the floor-holder detected in the previous buffer is reported again,

indicating they continue to hold the floor.

Default values for the parameters of this algorithm are manually picked by

testing the algorithm performance on one dialogue from the dataset used for
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Interactant with 
max(RMS) is
floor holder

Low pass filter
(f = 0.35Hz)

RMS
(root mean square)

(k = 0.1)
if (max(RMS) / min(RMS) > (1 + k))

Threshold

20ms
buffers

Previously reported
interactant is
floor holder

Low pass filter
(f = 0.35Hz)

RMS
(root mean square)

False True

Figure 3.1: Schematic diagram of the floor control detection algorithm.

25



the evaluation (detailed below), along with data from one session from the face-

to-face study described in Section 5.1. The filters’ cut-off frequency f is set to

0.35Hz and the comparison threshold k to 0.1. The filters with their low cut-

off frequency are used to slow down the changes in the RMS values and were

introduced to prevent rapid changes in the resulted floor. The threshold k is

chosen to prevent repeated floor changes when the interactants have a similar

speech level. This is especially noticeable when there is silence.

During initial testing a variation with VAD instead of the RMS calculation

was tried. In dialogues with no audio bleed between the two interactants’ micro-

phones the VAD based algorithm performed well. However, cases of audio bleed

with speech data in the audio of one interactant, even when only their partner

was speaking affected its accuracy. According to this initial investigation using

RMS is more robust when audio bleed is present.

A reference implementation for the FCD algorithm, written in Python,

and the code for reproducing the evaluation below, are publicly available on

GitHub.2

3.4 Evaluation

3.4.1 Data

The German subset of the DUEL dataset (Hough et al., 2016) is used for this

evaluation. It consists of 30 conversations of 5-20 minutes in length where there

are 10 conversations of each different task type, where a task type consists of the

following different prompts before the dialogue: (i) discuss a dream apartment

that the participants could share (ii) collaboratively design a funny television

sketch and (iii) do a role play of a border immigration interview where one par-

ticipant plays the role of a hostile border force agent and one plays the part of

an immigrant seeking entry to a fictional country. In the German subset there

are 19 different dialogue pairs and 38 different participants over these 30 con-

versations. The dataset provides annotations of utterances in Praat TextGrids

(Boersma et al., 2002). Each utterance is segmented according to the DUEL

project manual.3 An utterance is segmented into what Meteer (1995) called a

‘slash-unit’, which corresponds roughly to the grammatical unit of a sentence,

but can be below this if the contribution is incomplete.

The dataset also includes audio recordings with one participant on each

channel of a stereo audio file. The participants are co-located in the same room

during the dialogues, so there is some inevitable audio bleed between their

2https://github.com/Nagasaki45/floor-control/tree/phd-submission.
3http://www.dsg-bielefeld.de/DUEL/resources/DUEL_manual.pdf.
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Figure 3.2: Demonstration of calculating the annotated floor from the utterances
that are annotated in the dataset, in 4 steps. The horizontal axis represent
time. Blue and red rectangles represent intervals of annotated utterances by
interactants A and B. The five blocks, one below each other, show the process
and intermediate states.

microphones. Manual investigation of one of the dialogues suggests that the

bleed is about 20–25dB from one channel to the other. In others words, the

voice of one participant can be heard on the opposite channel at about 20–25dB

lower level.

The 30 interactions are divided into a training and test sets. Twenty two

interactions are in the training set and eight are in the test set (approximately

75% and 25%) where the performance of the competing algorithms is compared.

This division is largely for the purposes of training the long short-term memory

(LSTM) model (see below), which requires substantial amounts of training data

to converge. The results reported below are computed on the test set.

3.4.2 Ground-truth

The DUEL dataset does not include annotations for floor control matching the

definition described in Section 3.2. The ground-truth floor is therefore derived

automatically from the utterance annotations in the dataset. Figure 3.2 demon-

strates how the ground-truth floor is calculated in four steps of transforming

the original utterance annotations:

1. Consecutive utterances by the same interactant without interference from

their partner are merged together.

2. When interactant A has an utterance that is completely within interactant

B’s utterance it is deleted, and vice-versa.

3. Remaining overlap annotations are removed.
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4. The remaining utterances, free from overlaps, are used as the annotations

of who holds the floor.

As implied by Figure 3.2, short segments in the annotated floor remain am-

biguous. These segments, involving competition for the floor or silence, cannot

be automatically classified based solely on the annotated utterances without in-

troducing more assumptions. Also note that on average, for the entire dataset,

competition for floor or silence happen only 16.2% of the time.

Backchannel responses are timed listeners responses like “uh-huh” and head

nods (Yngve, 1970). As indicated by their name, verbal backchannel responses

accompany the speaker’s turn. As such, these listener responses should not occur

when holding the floor. In order to analyse backchannel responses correctly the

ground-truth for backchannels is extracted automatically from the dataset as

follows: an utterance is a backchannel if it is shorter than 500ms and consists

only of ‘ja’, ‘okay’, ‘ohm’, ‘mhm’, and ’genau’. This list of words was suggested

by a native German speaker after investigating the audio and the annotations

of one of the dialogues in the dataset.

3.4.3 Competitor algorithms

Three competitor algorithms demonstrate how the FCD algorithm compares to

a state-of-the-art deep learning turn-taking model and to chance performance

estimated by a pseudo random algorithm.

LSTM

This is a replication of the state-of-the-art, LSTM deep learning model of turn-

taking suggested by Skantze (2017). The model aims to continuously predict the

probability that an interactant will vocalise in the current frame and determine

the floor-holder as the interactant with the maximal value.

Skantze discusses two models in their paper. One that is based only on

prosodic features, and a full model that takes lexical features (part-of-speech)

into account. The replication here is of the prosody model. The prosody model

extracts local features from 50ms buffers of audio from the two interactants,

and feed these into an LSTM to predict the probability that an interactant will

vocalise at the following 60 frames, equivalent to the upcoming 3 seconds.

Below are the implementation details of this replication, including some

specific points of difference with Skantze’s original model. At the front end,

buffers of 50ms of audio are analysed for the following features:

Voice activity: This binary feature does not use audio as an input. It is based

on the ground-truth annotations instead. If the interactant is in the middle
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of an utterance the voice activity is True, False otherwise. As discussed

below, the use of ground-truth values puts it at an advantage over the

FCD model.

Absolute pitch: The fundamental frequency f of the sound in the buffer is

calculated using the YIN algorithm (De Cheveigné and Kawahara, 2002).4

Absolute pitch, in semitones5, is equal to

69 + log2(f/440)

Relative pitch: The absolute pitch is z-normalised per individual.

Voiced: This binary feature is under-specified in the original paper and its

description is included with the description of the pitch features. Aiming

to keep the features similar to the original paper, the voiced feature is

set to True when the YIN algorithm reports a valid frequency value and

False otherwise.

Power: This is the power (intensity) of the signal in decibels, calculated as

10 ∗ log10(

√
x2
0 + ... + x2

N

N
)

where x0...xN are the buffers’ samples. The result is z-normalized per

individual.

Spectral flux: In the original paper spectral stability is used, but it is unclear

how the fast Fourier transform analysis is divided into bins. To overcome

this spectral flux is used instead (Giannoulis et al., 2013), with window

size and hop size equal to the entire buffer length (i.e. no overlap between

windows). The results are z-normalised per individual.

Two models are trained separately for each speaker. Each one predicts the

probability of one interactant’s vocalisation independently of the other. The

inputs for the models are sequences of 10 seconds of the 12 features listed above

(6 for each interactant). In the original paper the author used sequences of 60

seconds. The decision to use shorter sequences aims to simplify the coding of the

model and to reduce training time. Nonetheless, turn-taking is locally managed

on a turn-by-turn basis (Sacks et al., 1974). With turns of approximately 3.5

seconds in length on average in the dataset, it is reasonable to assume that the

information necessary for predicting floor control should be available in the last

4Implementation is based on https://github.com/patriceguyot/Yin and is available with
the analysis code.

5This representation of semitones is known as MIDI note. It was chosen out of convenience.
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10 seconds of the conversation. The target for training is the value of the voice

activity feature in the following 3 seconds (60 frames).

The model’s architecture consists of 10 LSTM input nodes, with tanh ac-

tivation function, and L2 regularization of 0.001. These were followed by one

densely connected node with a sigmoid activation function. The loss function

is mean squared error, the optimiser is an RMSprop with a learning rate of 0.01.

The model is trained over 100 epochs. The Truncated Backpropagation

Through Time procedure that Skantze employs over sequences of 60 seconds

with an input length of 10 seconds is omitted. As explained above, using se-

quences of 10 seconds as the input instead should produce a similar result.

Another deviation from the original model is the batch size for training. A

batch size of 512 sequences is used instead of 32. When trying to train the

model with batch sizes of 32, 64, 128, and 256 sequences it failed due to the

exploding gradient problem.6

After training the floor is calculated as suggested by the original paper: The

audio data is processed by the two models, one per interactant, to calculate the

probability of an interactant to vocalise in the next frame. The interactant with

the higher probability is determined to be the floor-holder.

Partial LSTM

This model is identical to the LSTM model above, except for not using the

golden voice-activity as a feature. By omitting the ground-truth from the fea-

tures array it aims to provide a fairer comparison to the FCD algorithm.

Random

The random algorithm is used as a baseline estimate of chance performance.

It is a simulation in which floor control alternates between the interactants.

The duration of each floor control segment is exponentially distributed with

the average duration equal to the average floor control duration found in the

dataset. The average value, 3.53 seconds, is calculated from the annotated floor

described above, for the entire dataset.

3.4.4 Performance measures

Four measures are applied to test the algorithms’ performance on a test set of

8 dialogues. They intend to highlight the different properties of the algorithms.

The averages across the dialogues are summarised in table 3.1.

6The exploding gradient problem is apparently a known issue with this type of neural
networks. It is somewhat documented online: https://stackoverflow.com/a/37242531/

1224456, https://github.com/keras-team/keras/issues/2134.
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algorithm Accuracy Backchannels Stability Lag
FCD 0.857 0.871 0.908 0.422
Optimised FCD 0.874 0.721 0.470 0.105
LSTM 0.888 0.816 0.291 0.163
Partial LSTM 0.871 0.770 0.243 0.169
Random 0.483 0.509 0.961 1.757

Table 3.1: Summary of four performance measures for the floor control de-
tection algorithm, with default and optimised parameters, and the competitor
algorithms.

Accuracy

The accuracy measure represent the ratio of frames in which a algorithm agrees

with the ground-truth floor described in Section 3.4.2. The annotated floor

is compared to the prediction of each algorithm every 10 seconds. This time

interval has been chosen to make sure the samples are independent.7 For each

frame without competition for floor nor silence the algorithm’s prediction is

compared with the ground-truth floor to determine if they agree with each

other or not. Averaging across all of these frames per dialogue produces the

accuracy value.

Backchannel responses classification

The reported floor-holder is extracted for the starting point of every ground-

truth backchannel. In line with the definition of floor-holding, if the backchannel

does not belong to the floor-holder predicted by the algorithm it is correctly cate-

gorised, and incorrectly categorised otherwise. The ratio of correctly categorised

backchannel responses is calculated for each dialogue.

Stability

An algorithm for floor control detection should not report unnecessary changes

in floor control. One can say that such algorithm is unstable. To calculate

stability the number of floor changes in the ground-truth floor is divided by

the number floor changes reported by each algorithm. Values close to 1 in-

dicate that the algorithm reports changes in floor at a similar rate to that of

the ground-truth annotations. Smaller values indicate that the algorithm re-

ports too many floor changes (i.e. unstable), and larger values indicate that the

algorithm predicts too few floor changes (i.e. unresponsive).

7See discussion about the locality of turn-taking in Section 3.4.3.
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Lag

Another requirement from these algorithms is to have a minimal lag. When the

floor-holder changes, the algorithm should indicate that as quickly as possible.

In some cases, when the algorithm predicts changes, this can be instantaneously,

or even with “negative lag”. These negative lags are ignored in this study.

For every floor holding segment reported by an algorithm, if, at the start of

the segment, the ground-truth floor agrees with the algorithm, the lag is the

time from the beginning of the annotated floor segment to the beginning of the

reported segment. If the algorithm’s floor control decisions are unstable within

a segment of the annotated floor (i.e. reporting multiple floor changes) only the

first lag is considered and the rest are ignored. These lag values are averaged

across each dialogue.

3.4.5 Optimising the algorithm’s parameters

The FCD algorithm relies on two parameters: the filters’ cut-off frequency f

and the comparison threshold k. The optimal parameters for the best accuracy

according to basin-hopping optimisation (Wales and Doye, 1997) on the training

set are cut-off frequency f = 1.789Hz and comparison threshold k = 1.067.

The performance on the four measures, calculated on the test set, is presented

in table 3.1.

3.4.6 Estimating the differences between the algorithms

Table 3.1 displays the averages each algorithm achieved on each performance

measure. It does not, however, indicate how different the algorithms actually are

from each other. A Bayesian approach is chosen to evaluate these differences.

For each algorithm and performance measure combination the mode is estimated

using the test set as followed.

The accuracy measure indicates the ratio of frames that agree with the

ground-truth floor. These frames are modelled as Bernoulli distributed with a

parameter from the dialogue mode. The parameter for the dialogue mode is

beta distributed with mode sampled from the global mode, and concentration

sampled from the global concentration. The prior for the global mode is a

uniform distribution from 0 to 1 and the prior for the global concentration is

gamma distribution (shifted by two so concentration is always >2) with mode

and standard deviation of 20. The backchannels measure is modelled the same

way.

As opposed to the first two measurements above, the stability measure-

ment produces only one value per dialogue. This value is modelled as gamma
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Figure 3.3: 95% highest density intervals for the performance measurements’
modes of the FCD, LSTM, and random algorithms, as well as the estimate for
the differences between the modes.
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distributed with mode and standard deviation sampled from the global mode

and global standard deviation. The prior for the global mode and the global

standard deviation are Gamma distributions with mean and standard deviation

equal to one.

Lastly, each lag is modelled as exponentially distributed with mean taken

from the dialogue. Dialogue mean lags are modelled as gamma distributed with

mode and standard deviation sampled from the global mode and the global

standard deviation. The priors for these are, again, gamma distributions with

mean and standard deviation of one.

Figure 3.3 shows the estimates for the algorithm’s modes for the performance

measurements. These are illustrated in the form of 95% highest density inter-

vals, indicating the values that are the most probable for the modes. Only the

FCD with the default parameters, the LSTM, and the random algorithms are

presented here for brevity. The difference between the algorithms is considered

insignificant if the difference crosses x = 0 (indicated by a dashed vertical line).8

The vertical dotted line marks the expected chance performance.

Apart from the comparison in Figure 3.3, comparing the LSTM algorithm

and the partial LSTM model shows that the difference between them, on all

performance measurements, are insignificant. Similarly, comparing the FCD

with the default parameters to the optimised FCD suggests that the difference

in accuracy is insignificant. The lag improves due to the optimisation, while the

default parameters perform better for backchannel responses categorisation and

stability.

3.5 Examples of floor control detection

Figures 3.4 and 3.5 show the output from the FCD algorithm with the default

parameters and the LSTM model, for two short snippets from the dataset. The

figures present the audio wave for each interactant at the top. Next they show

the annotations, including the ground-truth floor and backchannels, as calcu-

lated from the utterances as described in Section 3.4.2. At the bottom there are

the outputs from the algorithms. Items coloured in blue represent interactant

A, and those coloured in red represent B. These can be audio, utterances, or

floor control segments.

The 13 second snippet shown in Figure 3.4 demonstrates some of the main

differences between the FCD and the LSTM algorithms. Whereas they both

mostly agree with the annotated floor, the LSTM model’s instability is shown

as it reports many unnecessary floor changes during this snippet. The rela-

8Regions of practical equivalence are excluded from the analysis for simplicity. Note,
however, that the reported results won’t change if these would have been included.
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Figure 3.4: Thirteen seconds snippet from a conversation by two interactants,
showing the floor control decisions by the FCD and LSTM algorithms compared
to the annotations and the audio.

tively longer lag of the FCD algorithm is also presented here. For example,

approximately at 2 seconds the floor changes from interactant A to B. It takes

the LSTM model less time to report that change than to the FCD algorithm.

Lastly, there is a backchannel by interactant B at approximately 6 seconds. On

the one hand, the FCD algorithm lags in indicating the floor change to inter-

actant A, thus miscategorises the backchannel. On the other hand, the LSTM

categorises the backchannel correctly only to report a wrong floor change im-

mediately after.

Figure 3.5 shows another snippet that demonstrates the behaviour of the

FCD and the LSTM algorithms. As demonstrated before, the FCD algorithm

has some lag, but is less jittery than the LSTM model. This time there are

three backchannel responses by interactant A during interactant B’s turn (‘ja’,

‘ja’, and ‘ja ja’). The FCD algorithm keeps reporting the floor correctly without

reporting the backchannel responses as turn changes. Between approximately 5

and 7 seconds it seems that there is a competition for the floor. In this case, the

FCD algorithm reports interactant B as the floor holder while the LSTM model

predict multiple floor changes. It is hard to argue which output is favorable in

this context, and ultimately this should depend on the application.

3.6 Discussion

The accuracy measure represents the ratio of frames in which an algorithm re-

ports the same floor-holder as the one annotated in the dataset. The random

algorithm’s accuracy is about 0.5. This is expected, and can be explained an-
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Figure 3.5: Another snippet of a conversation from the dataset. In these 9
seconds there are extended periods of overlap. It shows how the algorithms
(FCD and LSTM) cope with a more complex turn taking example.

alytically: a decision by an algorithm, per frame, can either agree or disagree

with the annotations. If we assume that each participant holds the floor, on

average, half of the time, a random guess will be correct half of the time. The

FCD and the LSTM algorithms perform better than random, or chance, in this

context, but without significant difference between them.

Backchannel responses are correctly classified if an algorithm reports them

as happening when not holding the floor. The random algorithm, in this case, is

correct about half of the time. Following the same reasoning from the previous

paragraph this performance is expected by chance. As in the accuracy case,

the FCD and LSTM algorithms’ backchannel responses categorisation is better

than chance, with insignificant difference between them. It is important to

note that the LSTM model is not designed for this task, and still performs it

surprisingly well. The FCD algorithm, on the contrary, is designed with this

task in mind. The low-pass filters essentially slow down the changes in loudness

(the RMS values). Therefore, on one hand, short utterances are unable to

gain a significant increase in level past the filters, and on the other the level

at the end of a long utterance drops quite slowly. As a result, the comparison

of loudness levels past the filters usually reports the interactant that had the

longer utterance as the floor-holder for a while.

The working definition for backchannel responses includes short utterances

with the word ‘ja’ (loosely translated to ‘yes’/’yeah’). This was suggested by

a native German speaker after investigating one dialogue from the dataset, as

discussed earlier in Section 3.4.2. Such utterances might also occur as a pos-

itive answer to a question, which usually won’t be considered as backchannel
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responses. This is a limitation of the automatic ground-truth extraction method

employed here.

The stability measure reflects the effect of the filter and the comparison

threshold. Here, the FCD algorithm with the default parameters performs bet-

ter than the LSTM model and the optimised FCD algorithm. Note, however,

that it is not better than the random algorithm. The latter takes the aver-

age floor duration into account, and shifts floor between interactants randomly

while maintaining this average. It is expected to produce the same number of

floor changes as the annotations and therefore have a stability value close to

1. The filters, as highlighted earlier, smooth out and slow down the changes

in the power of the audio. The comparison with the threshold makes sure that

close values do not trigger multiple erroneous floor changes, which would reduce

the stability. No similar mechanism is presented for the LSTM model. As a

consequence it displays considerable jitter. It applies a relatively simple com-

parisons between values that are produced independently for each interactant.

Similar techniques to the ones integrated into the FCD algorithm, namely, the

filter and the comparison with a threshold, could have been integrated into the

LSTM comparison to increase stability. Testing this, however, is outside the

scope of this study that aims to compare the FCD algorithm to an off-the-shelf

state-of-the-art approach.

The lag measures the time it takes from the moment a floor change occurs

till the moment an algorithm first reports the change. Follow a similar reasoning

as before, the random algorithm’s lag is expected to be close to half the average

turn duration, at 1.76 seconds. All algorithms performed much better than the

random algorithm in that regard, with the optimised FCD algorithm and the

LSTM models performing best, followed by the FCD with the default parame-

ters. One of the main goals of the LSTM model is to predict turn changes, not

only to react to them. Therefore, it is not surprising that it achieved a relatively

low lag. The FCD algorithm was originally designed with some lag, coming from

the filters, as a way to correctly classify backchannel responses and increase sta-

bility. Therefore, the lag is expected. Optimising the FCD algorithm increased

the cut-off frequency f from 0.35Hz to above 1.5Hz, reducing the effect of the

low-pass filters, and decreasing the lag on the expense of stability.

The optimisation of the FCD algorithm for highest accuracy did not im-

prove accuracy significantly. This is perhaps because the algorithm with the

hand-picked parameters managed to achieve the almost maximal accuracy per-

formance possible with this algorithm design. The optimisation, however, im-

proved lag on the expense of stability and backchannel responses categorisation.

Note that there is no one ideal FCD algorithm. The design and optimisation

should depend on the intended application. Driving non-verbal behaviour for an

37



embodied conversational agent (ECA), for example, might require minimal lag,

whereas automatic dataset annotation would benefit from maximum accuracy.

The LSTM model achieves its results by exploiting features that the other

models do not employ. First, the ground-truth floor annotation of the previous

frame is one of its inputs. The development of the partial LSTM model aims

to eliminate that advantage. This model is identical to the LSTM model but

with the ground-truth floor annotation omitted from its features list. The per-

formance of the partial LSTM model found to be very close to the performance

of the LSTM model. Second, the LSTM is not strictly a real-time model as

many of the features are z-normalised. Implementing an incremental variant

of z-normalisation is possible but also might affect the results. Testing this is

outside of the scope for this research.

A model for turn-taking should perform consistently across multiple kinds

of conversations, tasks, and contexts. Machine learning (ML) models like the

LSTM are sensitive to the characteristics of the training dataset. As for any

black-box deep learning model, it is unclear a priori how well the trained model

will perform in a different context. The FCD algorithm, on the other hand, uses

signal processing with two main parameters designed around the way turns are

organised in conversation. In principle, it should perform well on other datasets.

An interesting example is the case of multi-party conversation. With some

modifications9 the FCD algorithm should perform well in this case, whereas the

LSTM model would probably require both significant modifications and retrain-

ing. Similarly, the FCD algorithm is anticipated to be more robust to audio

bleed between the interactants’ microphones than the competitor algorithms.

Validating these assumptions remains outside the scope of this work.

Whereas the simplicity of the FCD algorithm is its main selling point, it

has some clear weaknesses. First, it cannot predict floor changes, but react to

them. The LSTM model predicts the probability that an interactant will speak,

and as demonstrated here, can also predict floor changes. Predictive models

can be used in multiple applications that are outside the capacity of the FCD

algorithm like the development of spoken dialogue systems.

Second, the FCD algorithm operates with some lag when achieving higher

stability. A real-time system that relies on the FCD algorithm with the proposed

default parameters would report floor changes on average 400ms after they oc-

cur. Depending on the context, this may or may not impact task success. For

offline use, like in the case of automatic analysis for corpus studies, shifting the

9The main and possibly only modification for adapting the FCD algorithm for multi-party
conversation is to change the comparison component to check if the maximal RMS divided by
the next maximal RMS value (instead of the minimal RMS value) would be larger than the
threshold. Note that for dialogues this adaptation results in an equivalent algorithm, because
the next maximal value and the minimal value are the same when there are only 2 values.
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reported floor changes backwards in time might produce more accurate results.

This idea, however, requires further investigation to assess its accuracy.

Third, one of the downsides of the way the FCD algorithm segments the

conversation is that it provides no details about overlaps or pauses. If there is

an overlap of speech the algorithm reports the interactant that speaks louder

as the floor-holder. This simplistic view misses much of the structure that

can be found in overlapping speech (Schegloff, 2000). It also provides very little

information about pauses. Note that this is less of a result of the algorithm itself

and more a consequence of the way floor control is defined in this work. On

the other hand, together with utterance annotations, like the ones shown in the

examples, or VAD output, the algorithm can provide interesting insights about

pauses. For example, a pause can be associated with a floor-holder, showing

who is expected to speak.

Lastly, conversation contains much more than just speech. Laughter, crying,

exaggerated aspiration and so on are common features accompanying talk (Hep-

burn and Bolden, 2013). The FCD algorithm was not designed with these in

mind, and is expected to make mistakes when analysing, for example, a segment

of laughter. More about that in Chapter 6.

As a general outcome of this work, it demonstrates how simple signal process-

ing techniques and design driven by knowledge of real-time dialogue, can com-

pete with much more sophisticated ML systems in the analysis of behavioural

data.
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Chapter 4

Manipulating head nods in

virtual reality

This chapter proposes a virtual reality (VR) system for studying

non-verbal behaviours. The system enables the development of what

could be described as partial Turing tests: models of non-verbal

behaviour are implanted into the virtual avatars of the participants

and override parts of their behaviours on demand. A gamified study

design encourages the participants to rate these models. The system

is used in a study to compare three common theories that explain

head nods in free conversation: mimicry, backchannel responses, and

listeners’ responses to speakers’ trouble.

Non-verbal cues are an important aspect of communication, both in face-

to-face conversations and in upcoming telecommunication technologies such as

social VR. Generative models can support the recreation of non-verbal cues in

virtual environments, and the development of embodied conversational agents

(ECAs) that can naturally converse with people. Various theories aim to explain

non-verbal behaviours in conversation. For example, mimicry theories argue

that people unconsciously and automatically mimic each other in conversation.

Another branch of research shows that non-verbal responses such as head nods

are timed to satisfy the speaker, signalling acknowledgement or understanding

by the listener in crucial moments in the conversation. These theories can often

provide alternative explanations for the same observed behaviour, but generally

predict movements that fundamentally differ from one another. Furthermore,

comparisons between this type of theories are rare. In this chapter three theo-

ries that aim to explain head nods are compared. These are nods as mimicry,

backchannel responses, and listeners’ responses to speakers’ trouble. Extensive
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overview of each of these theories is available in Sections 2.3–2.5.

Research of non-verbal behaviour often, but not always, analyses free con-

versations. In this case, the analysis can rely on annotations (Goodwin, 1979;

Boholm and Allwood, 2010; de Kok, 2013), objective measures like motion cap-

ture data (Hadar et al., 1983a; Wu et al., 2020), or a mixture of both (Healey

et al., 2013). The downside of these approaches is that it is often hard to ar-

gue for causal relationships without the ability to systematically manipulate

non-verbal behaviours (Brady, 2011). As a naive (and rather unrealistic) ex-

ample, consider study results showing that listeners tend to nod immediately

after a head nod by the speaker. This can be seen as mimicry, but it can also

be explained by a tendency of speakers to nod when yielding the turn and of

listeners to nod when taking the turn. Another approach is to systematically

manipulate the non-verbal behaviour of one interactant, and measure the effect

on their conversational partner. Considering the example above, adjusting the

timing of the speakers’ head nods can tell if the listeners’ mimic or rather nod at

turn transitions. To implement this researchers usually employ trained confed-

erates (Bavelas et al., 2000; Chartrand and Bargh, 1999; Tiedens and Fragale,

2003), or ECAs (Bailenson and Yee, 2005; Gratch et al., 2007). Study designs

with confederates can be problematic as their behaviour might be significantly

different than naive participants (Kuhlen and Brennan, 2012). In studies with

ECAs the conversation is always restricted in one way or another. For example,

the ECA can take a prescribed role of a speaker or a listener. This is mainly

a technical limitation, as ECAs are not yet able to converse freely with people,

neither in robotic form nor in virtual environments. Another way to frame this

is that they do not pass a conversational (as opposed to textual) Turing test.

This results in questionable ecological validity.

To overcome these challenges this chapter introduces a novel VR method.

Its goal is to compare perceived plausibility of head nods generated by models.

The models in question, for this chapter, are based on the theories mentioned

above. Nevertheless, the method described here can be applied to study a wide

range of non-verbal and multimodal behaviours. The models are embedded into

a collaborative virtual environment. Users in the environment can give control

over their avatar to models that generate non-verbal responses. Doing so is

described as “faking attention”: the user still attends the conversation, but their

body language is overridden by an algorithm. A game-like scenario encourages

the users to detect fakers, and by doing so, they effectively provide perceived

plausibility ratings for the models. This setting enables direct experimental

tests of different models of non-verbal behaviours, implemented as alternative

algorithms for controlling the avatars.
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4.1 Head nodding models

The models below track aspects of the conversation in real time to generate

timed head nod predictions. They are incremental in the sense that only past

data is considered, and operates in real time in the sense of not accumulating

lag due to processing constraints. The choice of real-time incremental models

is a necessity in this chapter, as they are deployed into a system that manip-

ulates non-verbal behaviours on the fly. Nevertheless, they pose some general

theoretical advantages. First, when we interact with other people we only have

the current information about the world, and we process it incrementally. In-

cremental models can therefore be similar to cognitive processes, at least in

that very specific sense. Second, real-time models can be used in a vast range

of applications that non real-time models cannot cope with. One prominent

example is the development of ECAs. The models below fire when a head nod

is expected. For example, a head nodding mimicry model tracks the partner’s

head movement until a head nod is detected, waits a pre-defined amount of

time, and fires a prediction for a head nod.

4.1.1 Head nods detection

Head nods are detected based on the vertical position of a head mounted display.

Appendix A lists a pseudo code for the model. To guarantee a constant rate,

the vertical head position is up-sampled linearly to 100Hz (i.e. a sample every

10 milliseconds). These samples are then filtered with two second order But-

terworth filters: a low-pass at 4Hz followed by an high-pass at 1Hz. The model

predicts a head nod if the result is smaller than -4 millimetres. The system

won’t report another head nod until the movement stabilise (a sample between

-2 and 2 millimetres). This technique is based on Healey et al. (2013): “low

frequency movements (1Hz and below) and high frequency movements (4Hz and

above) were eliminated . . . head nods were identified as vertical movements at

a speed >0.3 mm/frame”. The authors did not specify what type of filters are

used. The choice of Butterworth filters is due to their ease of implementation

and their appearance in the literature in the context of head movement filtering

(Hale et al., 2019). In addition, the above study processes data at 60 frames

per second. The threshold of 0.3 millimetres per frame therefore translates to

0.18 millimetres per millisecond, or 1.8 millimetres per sample at the current

100Hz sample rate. The detector was tested manually with this parameter by

actively trying to nod or move the head without nodding while wearing the head

mounted display. This showed that a value suggested by the literature is too

sensitive. It was increased to 4 millimetres per samples, as described above, to

make sure detections do not trigger by random head movement.
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4.1.2 Backchannels

Ward and Tsukahara (2000) suggest a prosody based backchannel responses

prediction model. Their model, summarised in Table 2.2, provides a set of

hand-crafted rules that use the pitch of the speaker’s voice, and speaking start

and stop timing, to predict hearers’ responses.

This model is chosen for its simplicity and ease of interpretation. Whereas

machine learning (ML) based model (e.g. Morency et al., 2008) clearly out-

perform it, they are usually harder to interpret. This property of the model is

especially important when comparing competing models that represent theoret-

ically different non-verbal behaviours.

The model used here has a slight deviation from the one in the original paper.

The original model waits for a region of pitch with less than the 26th-percentile

pitch level (rule P1 in Table 2.2). This assumes access to the pitch data of the

entire conversation, and therefore implies a non incremental operation. To adapt

the algorithm to incremental processing appropriate for real-time applications

a rotating 10 seconds buffer is introduced. This buffer always keeps the pitch

profile of the last 10 seconds. Percentile calculation is done against this rotating

buffer.

The model is implemented in the programming language PureData (Puck-

ette, 1996), and wrapped by a server to simplify integration with various soft-

ware systems1. One instance of the model is run for each participant. It analyses

their voice and predicts backchannel responses for their conversational partners.

The inputs of the model are the audio stream from the participant microphone,

and binary variable indicating if the participant is currently speaking or not.

4.1.3 Mimicry

Whereas many studies of mimicry are normative rather than generative, mimicry

research in VR often implement it with 4 seconds lag. This lag was recently

questioned by Hale et al. (2019), who suggest a shorter lag, of 600 milliseconds,

which is the value used in this study. In other words, a head nod is predicted

600 milliseconds after a head nod is detected for the conversational partner, as

described in Section 4.1.1.

Note that the mimicry model here specifically deals with head nods mimicry,

and not head movement mimicry as most mimicry studies suggest. There are

two reasons for this decision: First, this chapter aim to compare mimicry and

backchannel responses as possible explanations for communicative head move-

ment. Therefore, to obtain a meaningful comparison, both models should

1The backchannels algorithm and server are available online at https://github.com/

Nagasaki45/backchannels.
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operate on the same physical movement. Second, the literature implies that

mimicry is a general phenomenon that should operate on multiple levels. If the

perception-behaviour link is a fundamental cognitive mechanism, as Chartrand

and Bargh (1999) suggest, it should also operate on head nods. Furthermore,

even when head movement mimicry is investigated, scholars often conclude that

head nods are mimicked in conversation. For example, in a study that explored

head movement mimicry, Hale et al. (2019) concluded that “the cognitive mech-

anisms generating mimicry of head nods act with a constant lag of around 0.588

msec”. In addition, whereas head nods mimicry is usually implied by the liter-

ature, some studies explore it directly (Wu et al., 2020).

4.1.4 Disfluency

Speaker’s disfluencies are detected using IBM Watson’s speech-to-text service2,

and the “deep disfluency” software library (Hough and Schlangen, 2017). Au-

dio from each participant’s microphone is continuously streamed to a disfluency

detection server.3 The server sends the audio to IBM Watson, receives a tran-

scription of this audio, passes it through the disfluencies tagger and sends the

tags back to the client. Edit term tags (<e>) and repair start tags (<rpS>) are

interpreted as disfluencies by the client.

The time between the timestamp IBM Watson reports as the end of the

word, and the time the message is received back to the client, is on average 1

second. The disfluencies tagger internal latency is on average 0.25 seconds, but

with spikes going up to 25 seconds. These are caused by the library update

mechanism that sends new predictions for previously reported tags based on

new information from the speech-to-text service. Nothing here really tells the

time from the actual end of the word to the time the message about it is logged.

It is impossible to assess this overall latency without transcribing some audio

first.

Note that according to Healey et al. (2013) primary recipients react to

speaker’s troubles in a 1 to 4 seconds delay, suggesting that the networking

latency shouldn’t be a major issue. This delay was not implemented into the

model.

4.2 System description

The system for this project is inspired by social VR applications. These telecom-

munication applications allow groups of remote users to interact in the same

2https://www.ibm.com/uk-en/cloud/watson-speech-to-text
3Code available at https://github.com/Nagasaki45/deep_disfluency_server.
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virtual environment. Uniquely to this system, users can press a button that

initiates automatic algorithmic control over their avatar’s movements. This be-

haviour is presented to the users as “faking attention”, and the time spent faking

is referred to as faking periods (FPs) throughout this chapter. Fakers are muted

from the audio chat so they still hear everything but cannot be heard.

For every FP one of the 3 models described in Sections 4.1.2–4.1.4 is picked at

random. When a model predicts a head nod, a head nod animation immediately

starts. The animation is picked randomly from a set of 3 manually designed

animations. This variety of fake head nods aims to make the fake behaviours

look less repetitive and therefore more realistic. If a new prediction arrives

before the previous animation finishes there is a 100 milliseconds cross-fade to

the new animation. This behaviour ensures that the fake head nods are both

smooth and representative of the output from the model.

Avatars should continue to produce appropriate non-verbal responses while

faking. Their hands, for example, cannot just freeze. A few additional mech-

anisms provide a baseline behaviour to which the automated head nods are

added. A basic approximation of attention in a conversation is to always look

at the speaker (Fujie et al., 2009). Therefore, faking avatars slowly rotate to-

wards the speaker. The speaker, in this case, is the participant who has their

audio chat’s voice activation detection (VAD) component turned active the most

recently. To keep the head of the automated avatars moving a small amount of

randomness is added to the head looking direction. Instead of looking directly

to the speaker, the head slowly rotates towards a random point on a sphere

around the speaker head. This point is updated every 1.5 seconds, triggering a

new slow rotation each time. Lastly, the system always keeps a 4 seconds buffer

of the participants hands movement. When the participants trigger the faked

behaviour this recorded movement starts playing in a loop. To ensure smooth

movement the buffer is first played backwards from the last recorded sample.

When the playback reaches the beginning of the buffer the playback direction

flips, and this backwards and forwards playback continues repeatedly. The deci-

sion to keep the last 4 seconds aims to give a long enough recording to make the

faked behaviour look natural, but in the same time not to include old movement

data. If the faker was involved in different type of activity a few seconds ago,

like speaking for example, it is better to discard these body movements as they

are probably inappropriate in the new context.

The system is implemented using commercial VR hardware (HTC Vive4)

which combines a head mounted display and two hand-held controllers. These

components are tracked in 3-dimensional space, allowing the avatars to mirror

the users’ physical movement. The microphone and headphones’ connection on

4https://www.vive.com/uk/
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Figure 4.1: Example view of the virtual environment and the avatar design.

the headset are used for a voice chat between the users. The state reported

by the VAD component of the voice chat is sent to the backchannels model as

the speaking state input. This system is developed in Unity3D5, a game engine

commonly used to create VR experiences. Its source code is open and available

online.6

A scoring mechanism is used to incentivise users to fake and detect fakers.

Participants see their own score in a floating message in front of them as shown

in Figure 4.1. When they fake attention a ‘Snake’ game7 pops up above the

score. Collecting a snake’s food pellet increases the user’s score by five points.

Another way to get points is by detecting users as they fake attention. A correct

detection is worth one point, but an incorrect one loses a point.

Figure 4.2 shows the user interface for controlling the system. Users fake

5https://unity3d.com/
6The repository of this project is at https://github.com/Nagasaki45/UnsocialVR/tree/

study-2. A video demonstrating the environment can be found at https://youtu.be/

OOp1pARFM8I.
7https://en.wikipedia.org/wiki/Snake_(video_game_genre)
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Fake listening button
Hold to fake

Accusation button
Press to accuse your partner

Snake controller
The touch joystick controller steers
the snake

Figure 4.2: The user interface includes buttons to start and stop faking, accuse
others for faking, and control the snake game while faking.

attention by pressing a button on the left hand-held controller with their index

finger. While faking, the joystick like button under the left thumb controls the

snake game. Detecting fakers is done by looking at them and using the index

finger trigger on the right hand-held controller. Note that there is no need to

point at users to accuse them for faking, as this “pointing and shooting” gesture

might interfere with the social dynamics.

The avatars’ design can be seen in Figure 4.1. These are cartoon-ish gender-

neutral head and hands figures. When the chat application detects voice activity,

the mouth of the avatar is animated to open and close in a steady rate. This

compensates for the lack of actual tracking of lip movement and to help users

to identify the current speaker, as all of the avatars look the same.

4.3 Pilot studies and motivation

Two pilot studies were conducted before the main study reported here. Dis-

cussing them provide more detailed picture of how the participants respond to

the study and the virtual environment. In addition, they highlight possible mis-

takes in the development of the virtual environment and can provide insights

for future gamified VR based studies.

The two pilot studies used earlier versions of the system. The virtual setting
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was a cocktail party on the beach rather than an office. Participants were stand-

ing and walking through the environment as the virtual space was significantly

larger. The system relied on the room scale feature of the VR headset that

allows users to move freely inside a predefined physical boundary constrained

mainly by the physical space in the room (Gepp, 2017). To support easier move-

ment in the environment a teleportation feature was added. Participants could

press a button to aim and teleport to different spots in the environment. Similar

teleportation mechanisms are common in commercial VR games and environ-

ments (Boletsis and Cedergren, 2019). The participants’ task while faking was

to collect floating yellow tokens that appeared around them rather than playing

snake. These tokens were visible and collectable only while faking. Collecting

these tokens required traversing the environment, usually by a combination of

teleportation and some amount of physical movement. Similar to the snake

game, collecting a box increased the participant’s score by 5. Correct detection

of fakers resulted in stealing one point from the faker, while incorrect detection

resulted in losing one point that is gained by the mistakenly accused partici-

pant. Unlike the main study, in the pilot studies the score was hidden from

the participants and there was no feedback for correct or incorrect detection of

fakers.

In the first pilot study only one automated behaviour was implemented.

The experiment was designed to test whether or not participants notice the

difference between real non-verbal behavior and an algorithmic one. The sec-

ond pilot introduces the comparison between the three models: backchannels,

mimicry (with 4 seconds delay), and disfluency. Four groups of three partici-

pants participated in the first pilot study, and five groups in the second pilot

study.

The two pilot studies indicated that the teleportation feature is problematic

in the context of the study. Using it frequently disrupt the conversation and

triggered many detections. It is assumed that participants found it hard to

distinguish between faking and abruptly teleporting away from the conversation.

In addition, because the avatars all look the same, teleportation made it harder

to know who is who and required repeated checks by the participants to make

sure they know who they are talking with. Lastly, informal analysis of the videos

suggests that familiarity with VR and the controllers had significant effect on

how well the participants used this feature. Proficient users were faster to get

tokens using the teleportation feature and made less teleportation mistakes.

For these reasons, the setting for the main study was changed to a sitting office

environment, and the faking task was changed to the snake game that has no

spatial component.

The pilot studies also indicate that the task of detecting fakers was hard:
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most FPs went undetected (more on this in Section 4.5.3), and some participants

reported that they preferred to collect tokens to increase their score than trying

to detect fakers. This diminished the number of detections, resulting in less data

points for comparing the models. Feedback for correct or incorrect detections

was introduced to encourage the participants to detect fakers. In addition, the

score was made visible for the main study. These changes assumed that clear

feedback will help the participants to improve in detecting fakers and incentivise

them to detect more often and more accurately to increase their score.

4.4 Methods

4.4.1 Participants

Thirty students from Queen Mary University of London participated in the

study. They were recruited using mailing lists, and by approaching friends and

classmates directly and asking them to participate. Each participant compen-

sated with £10 for their time. The study was conducted in 10 sessions, with

3 participants in each. Data from 5 of these sessions was discarded because of

technical issues. The remaining participants were 7 female and 8 male, age 18

to 33 (mean: 23.3, std 3.8).

4.4.2 Procedure

The participants first filled demographic, familiarity with VR, and social close-

ness questionnaires (available in appendices C.1, C.2, and C.3). Then, they

were introduced to the system and the user interface was explained. They par-

ticipated in a 10 minutes practice phase, together, in the virtual environment,

in which they were encouraged to try out the interface and learn how to oper-

ate the system. They had no particular task to complete during this practice

phase. After the practice phase they were presented with the hot air balloon

task, in which they had to discuss an ethical dilemma and reach a consensus

(for further details about the hot air balloon task see Howes et al., 2012). They

were instructed to try to get the highest score while still attempting to reach

an agreement in the hot air balloon task. The experiment phase ran for 15

minutes, during which the VR view of each participant was recorded using a

screen capture software, and the participants were video recorded. After it the

participants filled the post-experience questionnaire (available in appendix C.4).
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Figure 4.3: Histograms of FPs duration at the top and the time since the end
of the previous FP at the bottom.

4.5 Results

As discussed earlier, for each FP a model is picked at random to generate ani-

mated head nods for the faker. The FPs characteristics and detection patterns

provide insights for how well these models perform.

4.5.1 Faking periods characteristics

Each FP is on average 2.74 seconds, with insignificant differences between the

models. The histogram of the FPs durations, shown in the top panel of Figure

4.3, suggests that the duration of the FPs is bi-modal. There are short, below

1 seconds, FPs and long ones, centred around 2–3 seconds in length. The

feedback from the participants and manual observation of the screen capture

videos suggest that participants start faking and stop immediately as a strategy.

When the snake game pops up on their screens they evaluate how easy it would

be to collect a food palette. If the food palette is too far away, they often stop

and started a new FP hoping that this time the snake’s food palette will spawn

closer to them. These short FPs are very hard to detect, due to the limited
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Figure 4.4: The average number of fake head nods generated in each FP by the
models.

time the partners have to assess the automated behaviour. Therefore, all FPs

that are shorter than 1 second are omitted from the rest of the analysis.

The time between FPs, averaging 8.93 seconds, with insignificant differences

between the models, is also bi-modal distributed. As seen at the bottom panel

of Figure 4.3, some of them are centred roughly around 200 milliseconds and

some around 7 seconds. FPs that start promptly after the previous one ended

are probably harder to detect. The real behaviour that appears between the

two FPs might confuse the partner and suggest that no faking occur. Therefore,

FPs with less than 1 second from the end of the previous one are also omitted

from the analysis.

Figure 4.4 shows the average number of fake head nods generated per FP.

Considering that FPs by the different models are generally of the same duration,

it clearly shows that the models generate head nods in different rates. This is

not a problem by itself, as there is no theoretical reason to assume that head

nods generated by mimicry should be similar in rate to backchannel responses,

for example. Yet, it is important to note the differences as they might affect

the ability of the participants to detect FPs. For example, the mimicry model

generated almost no head nods.

4.5.2 Detection of fake behaviour

Figure 4.5 shows the percentage of FPs that are detected correctly at least

once per model. On average, 25% of the FPs are detected, with insignificant

differences between the models. In other words, no model produces nods that

are easier nor harder to detect as less-plausible than the others.

Figure 4.6 shows the detection rate (number of detections per second) for

each FP per model. The detection rate is on average 0.61 detections per sec-
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Figure 4.5: Percentage of detected FPs per model.

Figure 4.6: Detection rate per model.
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Pilot 1 Pilot 2 Main study
Correct detections 29% 22% 63%
Detected FPs 21% 9% 18%
Time spent faking 22% 14% 21%

Table 4.1: Comparison of results between the pilot studies and the main study.

ond, without significant differences between the models. This value might seem

surprisingly high considering the low number of FPs that are detected (25%),

and their average duration (2.74). Note, however, that the participants always

receive feedback for correct or incorrect detection by sound and visible score.

Therefore, when they eventually find a faker, they usually repeatedly trigger

detections as quick as possible to increase their score. More on this behaviour

later.

4.5.3 Comparisons to the pilot studies

The results of the pilot studies, summarised in Table 4.1, are generally inline

with the results of the main study. As in the main study, a low percentage of FPs

is detected.8 Similarly, the second pilot study, which introduces the three models

for automating head nods while faking, does not show significant differences in

detected FPs and detection rates between the models. The percentage of correct

detections, however, increases in the main study compared to the pilot studies.

This is a result of providing feedback to the participants for their detections.

A common strategy in the main study became to randomly detect fakers until

finding one, and then retriggering the detection as quickly as possible on the

faker to accumulate points. Needless to say, this strategy is impossible when

the score is hidden and no feedback is provided as in the pilot studies.

4.6 Discussion

The system used for this study and the study design demonstrate some of the

advantages of VR based studies for social cognition research. Evaluating non-

verbal behaviour models is often done by implementing these models into ECAs.

Such study designs usually restrict the conversation, for example by assigning

the role of the speaker to the participant, and lets the agent produce only listen-

ing behaviours (Bailenson and Yee, 2005; Maatman et al., 2005; Gratch et al.,

2006, 2007; Hale and Hamilton, 2016). Doing so reduces the ecological validity

8In the table all of the FPs are analysed, including those that are shorter than 1 second and
those that started with less than 1 second gap since the previous FP. This is for consistency
with the data collection and analysis of the pilot studies.
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of the results, as they describe a scenario that is different than real-life con-

versation. The reasons for these restriction are straightforward. ECAs still do

not pass a Turing test, hence cannot participant fully in a conversation, and

even if they were, restricting the conversation provides a way to test specific

components in the ECA implementation (e.g. backchannel responses). Driving

the avatar with real human behaviour most of the time, and replacing it tem-

porarily with an automated behaviour, simplifies the agent implementation and

allows direct testing of specific ECA components.

Another intended advantage of the gamified VR environment is its ability to

directly measure credibility of an automated behaviour, as perceived by partici-

pants during a shared task. Many studies that use VR as a method to investigate

social interaction rely on self-reported measures. For example, by presenting a

mimicking or not mimicking agent to participants who are later asked to rate

the agent on multiple forced-choice questions (Bailenson and Yee, 2005; Gratch

et al., 2006, 2007; Hale and Hamilton, 2016). Relying on self-reported measures

is inherently problematic in social research, as participants often form a post

hoc logical explanation for their behaviour (Nisbett and Wilson, 1977).

While this method opens up new possibilities, it also has limitations. Social

interaction in VR might be significantly different from face-to-face conversa-

tions. This is essentially an empirical question and the answer will change as

the capabilities of the technology change. It is important to note, however,

that social VR is an increasingly important mode of communication in its own

right (Wallis, 2016). Studying communication in social VR might help us un-

derstand and build better virtual agents and environments even if the findings

cannot seamlessly transfer to the physical world. Another limitation is that

the current system uses data from specific hardware with specific capabilities:

tracking a head mounted display and two hand-held controllers in 3-dimensional

space. This implies that only behaviours that are tracked by the system can be

generated by the models and checked for their credibility. For example, facial

expressions, eye gaze, fine fingers movement, and torso pose, are not tracked by

the system, and cannot be tested. More advanced sensing hardware, however,

might improve this in the future.

The results suggest that the participants performance in detecting fakers

or differentiate between the model is quite low. Presenting the study as a

competitive game contributes to this issue, as participants search for a strategy

that maximises their score. In the pilot studies this strategy was to abandon

the conversation altogether and search for the yellow tokens. In the main study

this strategy is to try to detect others, every few seconds, until a faker is found,

and than repeatedly detect them as quickly as possible. Needless to say, neither

of these strategies encourage the participants to notice differences in head nods
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and provide useful information about the perceived credibility of the models.

Lastly, these studies raise the question of whether or not it is reasonable to

expect participants to consciously signal issues with their partners’ non-verbal

behaviour. Vast amount of research highlight the impact of non-verbal cues,

but to my knowledge no studies explore the participants conscious processing of

non-verbal communication, especially not when asked about them in real-time

during a conversation.
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Chapter 5

Comparing models of head

nods in conversation

This chapter analyses the predictions from the three theories from

Chapter 4, namely: mimicry, backchannel responses, and listeners’

responses to speakers’ trouble. In two studies, one in face-to-face

settings and one in virtual reality (VR), pairs of participants freely

converse for 15 minutes while fitted with a motion capture system.

Head nods are automatically extracted from the data, and compared

to predictions generated by models based on the three theories. The

goal of the comparison is to discuss the characteristics of the predic-

tions each theory generates, to understand the correlations between

the predictions that originate from different theoretical streams, and

to assess how well, overall, the theories account for the observed head

nods.

Chapter 4 aims to compare three theories that explain head nods in conver-

sation: mimicry, backchannel responses, and responses to speakers’ trouble. It

does so using a novel VR based method. In general, the results do not show dif-

ferences between the theories in terms of their plausibility as generators of head

nods. As discussed in length in Section 4.6, there are two main reasons for this.

First, the gamified environment did not encourage the participants to notice

differences between the theories. Second, consciously indicating if non-verbal

behaviour is plausible, in real time, is not a straightforward task.

The current chapter compares the same theories again, but with simplified

methods. In the two studies reported below pairs of participants engage in

free conversation while fitted with a movement caption system. Their head

movement is analysed for head nods and these are compared to the predicted
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behaviour according to the three theories above. This way, the predictions can

be assessed by their precision (the ratio of predictions that match an actual head

nod) and recall (the ratio of head nods that are predicted). The first study takes

place in a collaborative VR environment, with the two participants physically

located in different rooms. The second study is a face-to-face implementation

of the first study. Its goal is to show that the findings are not specific to VR.

In addition, whereas two of the theories in question (backchannel responses

and responses to speaker’s troubles) are specific to listeners, mimicry theory

is agnostic to conversational roles. In other words, the mimicry literature in

general ignore speaker-hearer roles: whereas some studies show that the hearer

mimics the speaker others present the opposite. This research aims to shed a

light on the differences between the theories in respect to speaker-hearer roles.

More specifically, it provides ways to assess how well these theories explain

speakers versus hearers head nods.

The results of the face-to-face study are inline with the results from the VR

study. Therefore, for brevity, and unless noted otherwise, the reported methods

and results are for the face-to-face study. Where relevant, values related to the

VR study are reported inside parentheses in italics.

5.1 Methods

5.1.1 Participants

Thirteen (6 in the VR study) pairs of native English speakers that knew each

other in advance participated in the study. Fourteen (7 ) participants identified

as female, and 12 (5 ) as male, of 18–26 (24–56 ) years old (mean: 20.8 (30.8 ),

std: 1.9 (9.2 )). Most of the participants were undergraduate and master stu-

dents in STEM, who were recruited through university mailing lists. Each of

them received £10 compensation for their participation.

5.1.2 Apparatus

Two participants at a time participated in the study. In the face-to-face study

they were seated in the same room, two metres apart, facing each other. Each

participant was recorded by a dash microphone and a video camera that is

placed next to their conversational partner. This setup is shown in Figure 5.1.

In the VR study they were seated in different rooms and joined a collaborative

VR environment that shares the same environment and avatar design, as well

as voice chat, as the system described in Section 4.2.

To track head movement in the face-to-face study the participants wear
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Figure 5.1: A snapshot from a conversation session from the face-to-face dataset.

baseball caps fitted with HTC Vive trackers1 on their visors. They also held

HTC Vive handheld controllers2 that tracked their hands movement. Usually,

the HTC Vive controllers and trackers work alongside the HTC Vive headset.

Because the headsets were not necessary for this study they were set aside at

a table near the participants and their movement data wasn’t recorded. In

both studies the logged movement data includes the head and hands position

(Cartesian X, Y, and Z values) sampled at the frame rate of the motion data

capture application, which varies between 60Hz and 90Hz.3

Another difference between the face-to-face and the VR studies is the pro-

cessing of speech audio. Recording the participants’ voices in the same room in

the face-to-face study introduced a significant audio bleed. That is, the micro-

phone of one participant recorded a significant portion of their partner’s voice.

Therefore, and because of the models’ dependency on audio, the audio from the

microphones is first processed by the iZotope RX 6 De-bleed4 software to re-

duce the bleed as much as possible. The reduction strength was set to maximum

and the artefact smoothing to 0. No other settings were tested. The reduction

in bleed is not tested exhaustively, but a few measurements suggest that after

processing the bleed is reduced by up to 40dB. This version of the audio files

is used instead of the original audio files for the floor control detection (FCD)

algorithm (described next), and the backchannels and disfluency models.

Predictions for the backchannels, mimicry, and disfluency models described

in Section 4.1 are calculated per participant. For the backchannels model, the

existence of speech in the audio data is detected by the voice activation detection

(VAD) application py-webrtcvad5. The library is set to process the audio in 30

milliseconds buffers with aggressiveness set to 2. In addition to the mimicry

with 600 milliseconds lag, the predictions of a mimicry model with 4 seconds

1https://www.vive.com/us/vive-tracker/
2https://www.vive.com/us/accessory/controller/
3The application for running this study is available online at https://github.com/

Nagasaki45/F2F-study/tree/study-4.
4https://www.izotope.com/en/products/repair-and-edit/rx/

features-and-comparison/de-bleed.html
5https://github.com/wiseman/py-webrtcvad
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lag are also calculated. The first is reported below as mimicry600, while the

second as mimicry4000.

5.1.3 Ground-truth

In both studies the FCD algorithm described in Section 3.3 processed the audio

from the participants’ microphones to determine the ground-truth floor holder

at any given moment. The head height of the participants, as captured by the

tracker in the face-to-face study or by the headset in the VR study is used to

detect head nods as described in Section 4.1.1. These head nods are considered

ground-truth for the purposes of this chapter.

5.1.4 Procedure

First, the participants filled a demographic questionnaire (see appendix C.1),

followed by a questionnaire about their social relationship (see appendix C.3).

Then they were introduced to the Dream Apartment design task (described in

detail in Hough et al., 2016), in which they are asked to discuss the design of an

apartment for them to share. The exact instructions given to the participants

can be found in appendix B. The participants were then fitted with the motion

capture system, discussed the task for 15 minutes, until the experimenter asked

them to stop.

5.2 Results

5.2.1 Head nods frequency

First, head nods frequency is calculated separately for floor holders and non

floor holders. For each participant, the number of head nods while holding

the floor is divided by the total time they held the floor to find the nodding

frequency. Nodding frequency for non floor holders is calculated in a similar

fashion. Comparing these values suggest that floor holders nod more frequently

(mean=0.27Hz, std=0.14) than non floor holders (mean=0.19Hz, std=0.09;

t(25) = 3.96, p < 0.001). This is inline with the results from the VR study

(p < 0.05).

5.2.2 Overlap between models

Here the question of whether the models actually differ from each other is ad-

dressed. Whereas they are driven by different theories, there is no reason to

assume that the models produce different predictions.
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Figure 5.2: The difference between overlap and overlap expected by chance
for combinations of models, per participant. Model combinations with overlap
significantly higher than chance are marked with an asterisk.

To test that, the overlap for every combination of 2, 3, or all 4 models is

calculated. A window of 400 milliseconds is defined around each prediction.

The overlap for a combination of models is defined as the percentage of time for

which the windows intersect, plus the percentage of time for which no window

is reported (i.e. a logical XNOR operation on the windows). Let us consider

an example with two models and a total duration of one second. If model A

predicts a head nod at 0.2 seconds and model B predicts a head nod at 0.4

seconds the 400 milliseconds windows intersect on the interval 0.2–0.4 seconds

and no window is reported for the interval 0.6–1 seconds. Therefore, they agreed

on 60% of the time, and this is their overlap.

For each combination of models a chance overlap is also calculated. This is

the overlap that is expected from models that output windows with the same

summed duration as the windows produced by the actual models, but at random

timestamps.

Figure 5.2 shows the difference between the overlap and the overlap expected

by chance for all combinations of models. Each dot indicates a participant to

visualise the distribution. Most of the combinations of models produce higher

overlap than chance. Significantly higher than chance combinations are indi-

cated with an asterisk (assessed by t-tests with Bonferroni correction for multi-

ple tests thus α < 0.05
11 ).

From the combinations that has significantly higher overlap than chance in

the face-to-face study, the following combinations in the VR study are insignifi-

cant: mimicry600 ∩ mimicry4000, mimicry600 ∩ disfluency, and mimicry600

∩ mimicry4000 ∩ disfluency.

The significant overlap between the backchannels and the disfluency models,

found in both studies, can be interpreted in a few ways. First, these mod-
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Figure 5.3: Precision, recall, and F1-score for the models’ predictions for partic-
ipants holding or not holding the floor. The error bars indicate a 95% confidence
interval of the mean.

els use speech audio as an input and design to predict head nods by listeners.

The calculated chance, on the other hand, ignores conversational roles com-

pletely. Another possible explanation for the higher than chance overlap is that

disfluencies share prosodic characteristics with the backchannels model. This

is discussed in depth by the authors that proposed the backchannels model

(Ward and Tsukahara, 2000). Furthermore, they claim that disfluencies elicit

backchannel responses.

The overlap between the mimicry600 and the disfluency models is also sig-

nificantly above chance level. This finding is in line with previous studies that

found increased gestures’ similarity in free conversations during disfluent utter-

ances (Healey et al., 2015). This is, however, only supported by the results of

the face-to-face study, as the VR study does not show significantly higher than

chance overlap between these models.

No theoretical argument, nor an implementation detail, could explain the

higher than chance overlap for the mimicry600 ∩ mimicry4000 combination

found in the face-to-face study.

Lastly, given the overlaps found between combinations of two models, it is

not surprising that combinations of 3 and 4 models also overlap.

5.2.3 Models comparison

Precision, recall, and F1-scores (the harmonic mean of precision and recall) are

calculated, per participant, to assess how well the models perform. Because

the models’ predictions and the detected head nods are timed events the usual

precision and recall definitions have been adapted as follows.

• True positives: A prediction is correct if a head nod is detected in the
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400ms window around it, as suggested by Poppe et al. (2010). To make

sure not to inflate the number of true positives no more than 1 true positive

per detected head nod is allowed.

• Precision: Number of true positives divided by the number of predic-

tions.

• Recall: Number of true positives divided by the number of detected nods.

This method is common for backchannel models evaluation (de Kok, 2013),

and because the predictions here are similar (temporal point processes) this

method should be appropriate.

Figure 5.3 shows the precision, recall, and F1-score of the models while

predicting for participants while holding and not holding the floor. The results

suggest that there are no major differences between precision values for the

different models. On the other hand, all models achieve higher precision when

predicting speaker head nods than when predicting hearer head nods. This

effect can be explained by the higher frequency of head nods while holding the

floor, as discussed before, as this increase the chance of a prediction to match

an actual head nod.

The backchannels and disfluency models achieve higher recall for hearers

versus speakers. These models are designed for hearers, so it makes sense that

they would perform better in that case. In addition, unlike the other models

these rely on speech information to operate. The same input is also used to

determine the floor holder. By relying on the same input for the models and for

analysis the model can achieve arbitrary high recall. For example, predicting

head nods in a high rate for hearers and none at all for speakers can produce an

almost perfect recall for hearers and zero for speakers. Therefore, conclusions

based on recall about the performance of the backchannels and disfluency models

in relation to conversational role should be taken cautiously.

The mimicry600 model also has a higher recall for participants not holding

the floor compared to floor holders. It might suggest that mimicry of speakers

is more common than mimicry of hearers. Another possible explanation is the

increased nodding frequency for floor holders discussed earlier. Because the

head nods frequency of floor holders is higher than non floor holders, more

predictions are generated for non floor holders, and therefore more detected

head nods match with a prediction, inflating the recall value. The mimicry4000

model is not expected to be affected by this, as the average turn duration is 3.2

seconds (4.07 seconds in the VR study). In other words, the predictions of the

mimicry4000 model often happen beyond the turn that triggered them, so the

influence of the floor on this model’s recall is negligible.
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Figure 5.4: Recall performance of each model (left) and number of predictions
generated by each model per participant, when holding and not holding the
floor (right). The error bars indicate a 95% confidence interval of the mean.

Figure 5.4 provides another explanation for the differences in recall values

between the models. The left bar graph shows the recall values of the models,

for floor holders and non floor holders (same as the middle panel of Figure

5.3), while the right bar graph shows the count of predictions in each of these

conditions. For a fixed number of detected head nods, a higher number of

predictions will result in an increased recall value. The similarity between the

graphs suggests that the differences between the models in terms of their recall

values is a direct result of the number of predictions in each condition. This

might disprove the suggestion that different models capture speaker and hearer

head nods behaviour better than others, as these differences could be due to

prediction frequency alone.

5.2.4 Accounted head nods

This section assesses how many of the detected head nods are accounted by any

of the models. A union of all four models is defined by all of the predictions of

the models. Considering the definition of recall from the previous section, the

recall of this union model indicates how many of the detected head nods are

predicted by any of the models.

The average union model’s recall across all participants is 0.29 (0.30 in the

VR study). This low value indicates that the vast majority of the detected head

nods are not accounted by any of the models under investigation. The recall

for floor holders is 0.20 (0.22 ) and for non floor holders is 0.38 (0.39 ). As two

out of the four models, the backchannels and disfluency models, are designed

specifically for listeners, the union’s recall for non floor holders is expected to

be higher. Nevertheless, even for non floor holders most of the detected head
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nods in the data are left unexplained.

One possible explanation to this low number of accounted head nods is the

400 milliseconds window used for deciding if a prediction is correct. As discussed

earlier, this value is common in research of backchannel responses (Poppe et al.,

2010), but it is on the shorter side of the spectrum in the literature (de Kok,

2013, page 70). A longer window should increase this number, though the

window size choice should not be decided by this result. Another possibility

is that the head nods detection picks movements that are not necessarily head

nods. This general issue with the current study is discussed further in the next

chapter. Lastly, although the models discussed here cover a few different theories

that are extensively studied, it is clear that they do not cover the entire range

of head movement and head nods found in free conversations. As shown earlier,

speakers nod more than listeners, and no model here is designed to address this

specific nodding behaviour. A theory that specifically deals with speakers’ head

movement and nods might shed a light on the head nods that the models here

failed to predict.

5.3 Discussion

This study compares predictions of three head nodding models to automatically

detected head nods in free dialogues. It argues that there are significant overlaps

between the models, suggesting that the same head nods can often be explained

adequately by multiple theories.

The differences between the models and their performance for different con-

versational roles is not conclusive. All models achieve higher precision when

predicting speakers head nods than when predicting hearers head nods. This is

expected because speakers nod more and by that increase the chance of a predic-

tion to match a detected head nod. Whereas some theories achieve higher recall

for specific conversational roles the difference is usually caused by increased

number of predictions generated for these roles.

Most of the observed head nods in the data went undetected by any of

the models under investigation. This can be a result of technically insufficient

methods of detecting head nods and matching these with predictions. The next

chapter addresses this issue. In addition, this research relies on a method to

evaluate predictions for timed events that does not produce precision and recall

as commonly used, but a slight variations of them. It is used in the literature

for similar tasks (Poppe et al., 2010), but no evaluation of this method nor the

window choice could be found in the literature. Alternatively, the low number of

detected head nods that are accounted by the models might suggest that these

theories are not enough to explain head nods by speakers and listeners in free
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conversation.
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Chapter 6

What is a head nod?

This chapter investigates the definition of a head nod. A naive de-

scription of a head nod is a downwards movement of the head, fol-

lowed by an upwards movement. This is inline with the automatic

head nods detector employed throughout this thesis. To challenge

this, short video snippets of dialogues containing automatically de-

tected head nods and peaks in head movement are extracted. The

video snippets are then manually annotated and analysed to assess

agreement between annotators on what is a head nod, and relation-

ships between movement and semantics.

The previous chapter tests how well models that predict head nods fit with

automatically detected head nods in conversation. The generally negative re-

sults suggest that the mismatch between the predictions and the detected head

nods stem from the over simplified head nods detector. One possible conclu-

sion is to question what is a head nod in terms of movement and semantic

characteristics.

Head nods are an important communicative cue in conversation. While

their function is often discussed (e.g. backchannel responses Yngve, 1970), the

description of the movement associated with them is often rather simplistic.

Common descriptions found in the literature include: “The main stroke of the

vertical head movement is downwards” (de Kok, 2013), “Rotation down-up on

pitch axis” (Kousidis et al., 2013), “a forward movement of the head going up

and down, which can be multiple” (Allwood and Cerrato, 2003), and “a vertical

up-and-down movement of the head rhythmically raised and lowered” (Kapoor

and Picard, 2001). When the goal is to automatically process non-verbal com-

munication, for example, for the development of embodied conversational agents

(ECAs), a more accurate definition of what constitutes as a head nod is required.
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This often results in a set of rules for processing motion capture data to detect

head nods (e.g. Cerrato and Svanfeldt, 2006; Healey et al., 2013), or alterna-

tively done by training a machine learning (ML) model from data (Morency

et al., 2005).

To complicate the question of what is a head nod further, features related

to periodicity of the head movement found to interact with both function and

meaning. For example, the number of repetitions in head movement change

based on conversational role, and interact with other modalities (e.g. gaze) Poggi

et al. (2010); Boholm and Allwood (2010). In addition, up and down head

movement happens in a variety of behaviours, not just nodding. These include

speech Hadar et al. (1983b) and laughter Griffin et al. (2013) among others.

Understanding what behaviours have similar movement properties to nodding

can help us understand it better.

Both the simplistic definitions and the more sophisticated head nod detection

approaches assume that head nods are well defined, distinct phenomena, that

can be found by analysing head motion. This chapter questions that argument.

It checks to what degree people agree whether a head movement is a nod. Then,

it explores whether a head nod is a description of movement or of contextual

behaviour mixing movement and semantics, and investigates the behaviours

that share similar movement or semantic characteristics but are otherwise not

considered as head nods.

6.1 Methods

This study builds upon the face-to-face portion of the dataset collected and

described in Chapter 5.

6.1.1 Points of interest

The analysis here uses a concept of points of interest (POIs). These are times-

tamps in the conversation that are extracted automatically in two methods, per

participant. The first POI type is automatically detected head nods. These are

extracted as described in Section 4.1.1.

The second POI type is peaks in head movement. These are calculated

from the motion captured head position data. The velocity of the head is

calculated for each sample (distance between adjacent samples divided by the

sample rate). Plotting the velocity over time while inspecting the videos showed

a few outliers per participant. These are sudden jumps in velocity, usually for

only one sample. Possible explanations for these are tracking issues of the

motion capture system or sample rate inconsistencies. An autoregressive model

67



# overlapping
snippets

Average
distance

(seconds)
All snippets 36% 1.09
Detected head nods 20% 1.71
Peaks in head movement 3% 4.94

Table 6.1: Overlap between video snippets for annotations.

is employed as an outliers detector. For every sample of velocity data the model

receives the previous 20 samples to predict a value. If the absolute difference

between the predicted and the actual value is greater than 0.5 metres per second

the actual value is replaced by the previous sample. A simplified method of

applying a hard threshold to the velocity data was also tested, but, depending

on the threshold value, it either reports too many or does not detect enough

outliers. After removing outliers, local peaks in velocity data with minimum of

2 seconds between peaks are extracted, these are the peaks in head movement

POIs.

6.1.2 Video snippets

Detected head nods and peaks in head movement are found for each participant.

These POIs are marked as belonging to a speaker or a listener based on the

floor control detection (FCD) algorithm from Chapter 3. For each of these sets

(e.g. detected head nods by participant 1 while speaking) the timestamps of

the 5 POIs with the highest head velocity are extracted. In total these are 520

timestamps (26 participants times 2 POI types times 2 floor control states times

5 top velocity instances). For each of these timestamps a 6 seconds video snippet,

starting 3 seconds before the timestamp, is rendered. These contain audio from

the participants’ microphones. Figure 5.1 shows a snapshot from such a snippet.

The choice of 6 seconds is based on information from the FCD algorithm that

the average turn duration for this dataset is 4.35 seconds. Combined with the

argument that turns in conversations are locally managed (Sacks et al., 1974),

6 seconds should provide enough context to annotate the videos.

Table 6.1 summarises the overlap between the video snippets for annotation.

The overlap indicates the percentage of snippets that overlap with a previous

snippet, while distance is the time between their mid-point timestamps. For

the entire dataset, 37% of the video snippets partially overlap with a previous

snippet. The average distance for these (not counting snippets that do not

overlap) is 1.09 seconds. When analysed separately, the detected head nods and

the peaks in head movement snippets overlapped less, and with larger average

distances. The head nods detector aims to support the detection of multiple
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Attribute Possible values
Semantic
Direction give, elicit
Acceptance accept, reject
Semiotic function deictic, non-deictic, iconic, symbolic
Movement
Body part head, torso
Sagittal binary
Repetition partial, single, multiple
Binary
Head nod binary
Laughter binary
Face touching binary
Distraction binary
Technical issue binary

Table 6.2: Attributes and possible values suggested by the annotation scheme.

repeating head nods, firing once at each downwards stroke. Therefore, overlap-

ping detected head nods snippets are expected. The peaks in head movement

are limited to reporting peaks with at least 2 seconds between them, so they

overlap less. It seems that most of the overlap in the dataset is caused by both

algorithms firing at similar times upon high intensity motion.

6.1.3 Annotation scheme

The annotation scheme used here aims to explore relationships between head

movement and their meaning. The manual for annotators is available in ap-

pendix D.

The annotation scheme defines a list of attributes and possible values that

are filled for each video snippet, considering the middle of the video snippet

(time-wise) as the movement to annotate. There are three semantic attributes,

broadly copied from the MUMIN annotation scheme (Allwood et al., 2007).

These are Direction with possible values of give or elicit, Acceptance with

possible values of accept or reject, and Semiotic function with possible val-

ues of deictic, non-deictic, iconic, and symbolic (consult Allwood et al.,

2007, for details). These attributes can be filled in or left empty if they do not

describe the motion well. Allwood’s feedback annotations are especially inter-

esting in the context of head movement as the literature claims that head move-

ment takes significant roles in signalling understanding and/or attention (e.g.

backchannel responses). The differentiation between contact, perception, and

understanding, and contact and perception (without signalling understanding)

is omitted because it seems ambiguous in the context of head movement. The
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emotion or attitude attribute is also omitted as it does not aim to explain rela-

tionships between form and function. The inclusion of the Semiotic function

attribute aims to capture the semantics of speakers’ head movement. Whereas

this attribute is originally designed for hand gestures, all possible values can

be found in the dataset. Iconic head gesture often appear when participants

describe moving something into something else. For example, by saying “put

into the cupboard” while tilting their head and moving it to the side as pushing

something with it. This head movement is accompanied by sideways movement

of the hands. It is important to note that the annotation scheme asks for the

semiotic function of the movement that coincide with the head or torso move-

ment, so it can describe a movement of both hands and head. Symbolic head

movements are more rare, but there are some in the dataset. For example, one

participant does a gesture of counting money with their hands, and articulate

every note they go through with their head.

Another set of attributes describes the physical properties of the movement.

The Body part is filled in with possible values of head or torso, Sagittal with

yes or no, and Repetitions with partial, single, or multiple. If one of these

attributes is filled in, all three are required. These attributes and possible values

aim to capture a rich set of possible movements while still remaining relatively

simple to annotate and to interpret. They are based on piloting a few versions

of annotation schemes and finding commonalities between existing annotation

schemes. Early experimentation with the dataset suggested that differentiating

between head movement and torso movement with only one head tracker is

tricky (Chen et al., 2015), and head movements are expected to be very different

from torso movements both in terms of form, and of semantic meaning.

Coming from anatomy, the sagittal plane is perpendicular to the ground, sep-

arating the body left from right. The Sagittal binary attribute splits movement

into two broad categories: those within the sagittal plane, and those outside it,

as shown in Figure D.1. This plane is often discussed alongside the coronal

(dividing the body front to back) and transverse (upper and lower) planes to

describe the body and orient anatomical diagrams. There are three reasons for

describing a movement within or outside the sagittal plane, and not as belong-

ing to one of the three anatomical planes. First, describing movement along

the shared axis of the three planes is ambiguous. For example, a forward move-

ment can be described as a movement along the sagittal plane, but also as a

movement along the transverse plane. Second, the three planes cannot describe

rotations whereas sagittal and non-sagittal movements can be defined for both

displacements and rotations. Lastly, the two most basic classes of head move-

ment found in all annotation schemes are movement on the sagittal plane (e.g.

nods and jerks) and outside the sagittal plane (e.g. tilts and shakes). Defining
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movements in terms of within or outside the sagittal plan is therefore useful to

capture this, and alongside the other movement attributes it can help differen-

tiate multiple types of movements in an easy to annotate and easy to interpret

way.

The third movement attribute is Repetition. The partial value captures

movements that start and finish at different positions or rotations without any

repetition. These are often associated with posture shifts when associated with

torso movement, or head tilts when associated with head movement. Another

value is single for cyclic motions that finish at the same position or rotation.

Lastly, the value multiple captures repeated cyclic movements. It is introduced

to search for different meanings of single versus repeated head nods, similarly

to Boholm and Allwood (2010).

The next two attributes, Head nod and Laughter, are filled with true, or

false. Leaving these empty is not allowed. Annotated head nods are included

to enable comparison to the detected head nods, and to assess agreement on

head nods. Early iterations of the annotation scheme showed that many video

snippets contain laughter as the source of the movement, hence its inclusion.

Lastly, following the pilots the Face touching, Distraction, and Technical

issue binary attributes are collected to drop problematic video snippets from

analysis. Participants sometimes touch their face and the hat, and hence move

the tracker around without moving their head. There are a few instances of par-

ticipants rotating towards the experimenter, towards a window when someone

passes in the corridor, or receiving a phone call (hence taking their phone out of

their pocket) in the middle of the experiment. The Distraction attribute aims

to capture these. Another possible issue is tracking failures (usually of single

or just a few frames) that causes a jump in the tracking data and causes both

POI algorithms to fire. The Tracking issue attribute aims to record these

instances.

6.1.4 Subset for inter-annotator agreement

One annotator (the author) annotated all of the 520 video snippets. Two naive

annotators annotated a 52 videos subset to assess agreement and validate the

annotation scheme. This subset was selected by randomly picking 13 videos

of each POI type (detected head nod and peak in head movement) and floor

holding (speaker and listener) combination. The random selection excludes one

practice video and 4 examples of snippets containing semiotic functions.

In terms of procedure, the naive annotators received the annotation scheme

first, the 4 example videos, one practice video, and a practice spreadsheet. The

practice spreadsheet, as well as the main spreadsheet for the annotation of the
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Pair of annotators (1, 2) (1, 3) (2, 3)
POI type
Detected head nod 0.521 0.519 0.553
Peak in head movement 0.487 0.530 0.537

Table 6.3: Average Cohen’s kappa agreement per pair of annotators. Annotator
1 is the author.

Figure 6.1: Average Cohen’s kappa agreement between three pairs of annotators.

52 video snippets, has one column per annotation scheme’s attribute. Each row

in the spreadsheets is for annotating one video snippet. Learning the annotation

scheme, watching the examples, and doing the practice took approximately 45

minutes. This was followed by a short (<15 minutes) video call with the author

to make sure the task is clear. Then they received the 52 snippets, each in

randomised order, to complete over 2 weeks. The average time to annotate 1

video snippet is approximately 3 minutes. The annotators received £15 per

hour for their participation and the durations estimated here are based on the

times they reported.

6.2 Results

6.2.1 Inter-annotator agreement on head nods and seman-

tics

The inter-annotator agreement on the 52 video snippets subset is measured in

terms of Cohen’s kappa agreement coefficient. For every pair of annotators,

agreement is calculated separately for each attribute, per POI type. Table

6.3 shows the agreement per pair when averaged across attributes, with the

author being annotator 1, and annotators 2 and 3 the naive annotators. No

differences between the pairs could be found (post hoc two-way ANOVA with
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pair of annotators and POI type as independent variables; F (pair) = 0.112;

p > 0.05). Figure 6.1 shows the inter-annotator agreement averages across pairs

of annotators.

In general, the three semantic attributes achieved only fair to moderate

agreement (Landis and Koch, 1977), lower than the rest of the attributes in the

annotation scheme (except for Distraction, more on this later).

Next are the three motion attributes, with moderate agreement (0.4–0.6).

High agreement was expected on the Head nod attribute, especially for the de-

tected head nods POI type, as these video snippets suppose to include mainly

canonical head nods. Although a value of 0.60 for detected head nods is con-

sidered as substantial agreement, it is lower than expected here. A lower value

here might raises the question of whether or not humans have a widely agreed

definition of head nodding behaviour.

The last three attributes are designed for filtering out problematic video

snippets. Surprisingly, the agreement on the Distraction attribute is very low.

This column is therefore excluded from further analysis or discussion.

The rest of the analysis uses the entire set of 520 video snippets and the

annotations by the author.

6.2.2 Excluded data

Out of the 520 annotated video snippets 58 are annotated as containing a tech-

nical issue. 55 of these correspond to the participant sitting in the same position

in the room, highlighting significant tracking issues in this side of the room.

Another 22 video snippets are annotated as face touching. Whereas face

touching can often have communicative meaning, in this dataset it is often

related to adjusting the position of the hat with the motion capture tracker,

therefore producing significant amount of movement. Also, the participants

held handheld trackers, so the expressivity of their hands is assumed to be

significantly reduced, suggesting that there is a low chance of them touching

their face as a communicative act.

After dropping these the remaining 440 video snippets are used for the anal-

ysis.

6.2.3 Annotator agreement with automatic head nod de-

tection

The annotations for head nods provide a way to assess the performance of the

head nods detector. Only 16.6% of the video snippets are annotated as head

nods. Separated by POI type, 17.8% of the detected head nods and 15.3%

of the peaks of head movement video snippets are annotated as head nods.
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Annotated head nods False True

Detected head nods
False 15 2
True 185 40

Table 6.4: Confusion matrix of automatically detected head nods versus manu-
ally annotated head nods.

Figure 6.2: Counts of snippets annotated as head nods and laughter for sagittal
and non-sagittal movements.

These values are surprisingly low, especially for the detected head nod POI

type, suggesting that the head nods detector generally fails to capture head

nods successfully.

To assess how many of the annotated head nods are captured by the head

nods detector the video snippets in the dataset that do not contain any detected

head nod are found. These are 17 videos of peaks of head movements, of which

two are annotated as containing head nods. A confusion matrix of detected

against annotated head nods is shown in Table 6.4. These values can be con-

verted to precision and recall figures for the head nods detector against human

annotations, resulting in 17.8% and 95.2% respectively.

6.2.4 Head nods or laughter

Piloting the annotation scheme suggested that laughter is a significant source

of movement in the dataset, hence its inclusion as an attribute. 82.8% of the

video snippets that are annotated as laughter are also annotated as sagittal

movement, raising the question of movement similarity between laughter and

head nods. From the video snippets that are annotated as sagittal, there is

no difference between the number of snippets that are annotated as head nods

to those annotated as laughter (post hoc Wilcoxon test; T = 98.0; p > 0.05).

This finding suggests that, without additional considerations, sagittal move-
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ments are equally associated with laughter as with head nods. Note, however,

that although nods are equally likely as sagittal movements, they are rare as

non-sagittal movements, whereas laughter can still be non-sagittal, as shown in

Figure 6.2.

6.2.5 How behaviours are grouped?

This section searches for meaningful ways of group the different behaviours in

the dataset based on similarities between annotations. An analysis of groups

of video snippets containing similarly annotated data can reveal relationships

between the different attributes within each cluster and especially highlight ties

between movement and semantics. For example, clustering together video snip-

pets containing annotated head nods that also give feedback while not holding

the floor is an expected outcome.

The kmodes1 Python library for categorical data clustering groups the video

snippets based on the annotations and floor state. Figure 6.3 shows the results

obtained by clustering into 4 clusters, per POI type, with one cluster per row

and counts of attributes’ values per column. The left panel of Figure 6.3a, for

example, indicates that most video snippets in cluster 1 are for floor holders

(i.e. speaker), while cluster 2 in Figure 6.3b captures more snippets of listeners.

The choice of 4 clusters is arbitrary and is used here to keep the analysis and

discussion concise. Values from 3 to 5 clusters have also been tested, so claims

that fall short for different number of clusters will be highlighted.

The clusters in Figure 6.3 can be described as follows. Cluster 1 in Figure

6.3a is associated with speakers who mainly move their head and more often in

non-sagittal movements of single repetition. These are rarely nods, nor laughter.

The rest of the clusters are associated with listeners as indicated by their left-

most Floor panels. Cluster 2 in Figure 6.3b captures head nods. In terms of

movement, the cluster is dominated by multiple sagittal head movements. It

is also the only cluster with Direction and Acceptance annotated. Cluster 3

in Figure 6.3c captures laughter. With no clear semantics, it is mainly a single

torso sagittal movement. The last cluster in Figure 6.3d is for partial torso

movements, and can be thought of as posture shifts.

When clustering into 3 clusters one cluster captures a variety of speakers’

behaviours. The other two are roughly split by laughter, suggesting that it is

the most significant classifier for listeners’ intense head movement. While the

laughter cluster is similar to the one discussed earlier, the listeners’ non-laughter

cluster is characterised by repeating head movement, with mixed sagittal val-

ues. It gives feedback, that is either accepting or rejecting (not other), and

1https://github.com/nicodv/kmodes
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(a) Cluster 1 - speakers.

(b) Cluster 2 - listeners’ head nods.

(c) Cluster 3 - listeners’ laughter.

(d) Cluster 4 - listeners’ posture shifts.

Figure 6.3: Counts of attributes’ values after clustering the video snippets by
the annotations into 4 clusters, one per row.
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contains most of the annotated head nods in the dataset, although the majority

of snippets here are still annotated as not a head nod. Generally it seems like

a variety of feedback giving, head based, listener responses.

With 5 clusters the 4 clusters from Figure 6.3 re-appear. The new cluster

captures a mixture of speakers’ and listeners’ partial non-sagittal head move-

ment. Similar to posture shifts, these can be thought of as head tilts.

In addition to manipulating the number of clusters, dropping the direction

and Semiotic function attributes, which do not achieve moderate inter-annotator

agreement (Cohen’s kappa <0.4), results in very similar clusters to the original

four. This suggests that the clustering is robust enough to produce similar

results when the weaker attributes of the annotation scheme are ignored.

6.3 Discussion

This chapter opens with the question of what a head nod is. It attempts to

answer this by defining an annotation scheme for head and torso movement

and semantics that is informed by the literature and a corpus of video recorded

dialogues. Annotations of short video snippets containing dialogues reveal that

up and down movements of the head are not necessarily head nods. Sometimes

they are, but they are equally likely to correlate with laughter.

The annotations made clear that the automatic head nods detector gen-

erally fails to capture the movement people consider head nods. This raises

interesting questions regarding the ability to automatically detect head nods,

and the nature of head nods in general. To eliminate confusion between head

and torso movement, future head nod detection techniques can be improved by

motion capturing both and process them to extract head movement relative to

the torso. Nevertheless, the relationships between head nods, floor control, and

semantics, highlighted by the clustering of annotations, suggest that annotated

head nods are contextual and rely on semantic function. This idea that what

we perceive as head nods depends on context and is not merely a description

of movement is supported by the literature (Nguyen et al., 2012). Therefore,

automatic head nod detection should probably rely on semantics as well.

Although the annotation scheme borrows its semantic attributes from the

literature, most of them achieved relatively low inter-annotator agreement, ques-

tioning their robustness and usefulness. One possible solution for this is to

develop head (and possibly torso) specific semantic vocabulary, instead of bor-

rowing from existing annotation schemes that concentrate on hand gestures.

This is especially noticeable by examining the annotated semiotic functions.

These are predominantly marked as “other”, showing that the possible values

do not suffice for capturing most of the observed behaviours. In addition, the
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clustering of annotations, regardless of the number of clusters, group speak-

ers into one cluster. This suggests that the annotation scheme is not nuanced

enough to differentiate and properly describe a variety of head and torso driven

speakers’ behaviours.

It is important to note that these findings and conclusions are based only

on short video snippets containing the most intense movement extracted from

longer dialogues (regardless of POI type). One possible side effect of this is

the increased focus on laughter in expense of more subtle movements. This

effect might have been further exaggerated by using the apartment design task,

and recruiting participants who know each other in advance, especially while

compared to datasets that use a map task done by strangers (e.g. Paggio and

Navarretta, 2010) or formal interviews (e.g. Allwood et al., 2007).

Overall, the findings presented here suggest that research into head nods,

and head movement in particular, should go beyond the simplistic view that a

head that moves down and up is in fact nodding.
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Chapter 7

General discussion

This thesis explores head movement and specifically head nods in free conversa-

tion. It begins with questioning which of three common theories for non-verbal

behaviour best explains head nods. Chapter 4 discusses a series of experiments

that employ a novel virtual reality (VR) method to test this. This method is

unique in its ability to precisely swap specific non-verbal behaviours, in real

time, with algorithmic alternatives. For example, the head nods of the con-

versational partners’ avatars can be overridden by an algorithm while keeping

the rest of their movement properties intact. This can be described as a way

to conduct a “partial Turing test”: instead of developing an embodied con-

versational agent (ECA) that can fully participate in free conversation, only

the behaviour a researcher is interested in can be implemented to override that

non-verbal behaviour of a participant in the conversation. This approach allows

researchers to concentrate on the behaviour in question without worrying about

the implementation of all the mechanisms that are required to actually pass a

full Turing test. Alternatively, and more realistically, it can replace study de-

signs in which the ECA takes a predefined conversational role (e.g. listener) or

designs that restrict the conversations in other means. This, in turn, increases

the ecological validity of the results. Another goal of this VR method is to

allow participates to effectively rate the plausibility of the non-verbal behaviour

of their conversational partners in real-time. This approach is unique as most

studies in that field that rely on self-reported measures collect these after the

experience, usually in the form of questionnaires.

Although this method is motivated by the literature, and while the pilot

studies highlighted multiple possible advantages, it uncovered a series of issues

that ultimately led to challenge the presuppositions of the original research ques-

tion. These were initially assumed to be problems with the methodology but

eventually raised deeper conceptual issues. The experiments asked the partici-

79



pants to consciously report the plausibility of the non-verbal behaviour of their

conversational partners. On top of that, they were required to do so in real time

while actively participating in a conversation, playing a mini-game, and trying

to achieve a high score in a somewhat complex gamified study. Whereas many

studies highlight our sensitivity to the non-verbal behaviour of our conversa-

tional partners there is no claim in the literature that we are able to consciously

process these and report when they go wrong.

In retrospect, the idea of conducting these partial Turing tests looks like a

strength of this work that should be pursued further. The advantages of VR

based methods are often discussed, highlighting their consistency and repro-

ducibility. The ability to manipulate movement of people in conversation in

such a granular way should, hopefully, be added to the list of advantages and

appear more often in future research. On the other hand, and although inter-

esting, the real-time subjective assessment of the participants’ behaviour might

not have been the best method to test theories of non-verbal behaviour.

Chapter 5 aims to answer the same research question by eliminating the

reliance on the assumption that people can report problems in their partners’

non-verbal behaviour. The active head movement manipulation is dropped,

and instead of asking the participants to effectively rate head nods, the output

of an automatic head nods detector is compared directly to the predictions

from the three theories. This also led to the development of the floor control

detection (FCD) algorithm discussed in Chapter 3, as it became clear that non-

verbal behaviours should be analysed with basic conversational context in mind.

This algorithm is employed multiple times throughout this work, facilitating the

analysis of head nods.

The results from comparing the theories’ predictions to the detected head

nods suggest that the theories produce predictions that are fundamentally dif-

ferent from the output from the head nods detector. On the one hand, most of

the detected head nods are not accounted by any of the theories. On the other

hand, most of the predictions by the theories cannot be paired to a detected

head nod. There are a few ways to interpret this. Either the theories do not

capture head movement and nods sufficiently, or, the detected head nods do

not align with our intuitive notion of a head nod. Realistically, the answer is

somewhat a mixture of both.

Chapter 6 originates from the attempt to validate the automatic head nods

detector. The decision to explore this avenue, as opposed to searching for the-

ories that capture a larger percentage of the detected head nods, stems from

the desire to make sure head nods and their characteristics are well defined

in this work. Otherwise, the meaning of the comparison between the theories

can be questionable. For example, imagine that the head nods detector would
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have been found to systematically trigger only when speakers use their head

to emphasise their speech. This would affect the interpretation of the compar-

ison between theories significantly. So, from that point forward, the focus of

this work is shifted from the comparison between existing theories to a some-

what lower level interest in the motion and semantic characteristics of head

nods, as perceived by annotators, in comparison to motion capture based detec-

tor. The naive head nods detector employed throughout this work reflects the

idea that a head nod is a movement downwards then upwards of the head. It

seems that this overly simplified assumption is common in the literature. When

tested a more nuanced picture is revealed. First, the agreement on what is a

head nod is moderate, even when annotators are presented with video snip-

pets that include only automatically detected nods. Second, head nods share

movement characteristics with other behaviours, specifically laughter. Lastly,

head nods are more accurately defined by their semantic characteristics than

by their movement properties, suggesting that future detectors should incorpo-

rate more contextual features than movement alone. In addition, and although

unintentionally, this chapter provides partial answers to the questions raised in

the previous chapter regarding the adequacy of existing theories to explain head

movement in conversation. Relying on standard annotation methods, the clus-

tering analysis generally fails to break down speakers’ behaviours into discrete

recognisable groups. This implies that our vocabulary to describe speakers’

non-verbal behaviour is generally lacking.

Chapter 6 concludes that the agreement on what is considered a head nod is

moderate at best and that their movement characteristics are not as well defined

as naively thought. Does this mean that head nods are not a useful construct

for the analysis and understanding of head movement? In my view the answer

to this question is no. Head nods found to have clear semantic meaning. They

are associated with listeners, give feedback, and show acceptance. Future work

that aim to automatically detect head nods should therefore develop ways to

understand the conversational context better, rather than invest in movement

processing alone. This might include exploring co-occurrences of head nods and

verbal responses, linguistic features, and deeper understanding of turn taking

structures.

When looking at this work as a whole an interesting pattern emerge. Whereas

it seems natural for a scientific work to suggest further research that relies on its

findings and builds on top of them, this thesis generally follows a different theme.

The relationship between each two subsequent chapters is mainly of unravelling

assumptions. Each chapter finishes by highlighting problems with its implied

expectations, and is followed by a chapter that tries to simplify the problem

to answer a more basic question. This, in a sense, tells something about our
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understanding of head movement, head nods, and the literature around these.

More often than not, the descriptions of head nods in the literature are rather

simplistic. Head movement, in general, is partially explained by multiple the-

ories, that are rarely compared. This opens a lot of room for future research,

while at the same time does not provide solid enough ground to rely on.

This observation does not aim to disprove the evidence around existing the-

ories and their predictions in regards to head movement. For example, this work

does not claim to disprove the existence of head movement mimicry, nor supply

additional evidence to support it. What it tries to say is that this theory, and

the other ones explored here, are perhaps minor effects in the general scheme

of how non-verbal cues are used in free conversation. Hopefully, future research

will delve deeper into the nature of head nods, find better ways to define them

and contextualise them. This can help the development of future theories that

might, eventually, be able to explain a larger proportion of the varied behaviours

we observe in free conversation.
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Blache, P., Bertrand, R., and Ferré, G. (2009). Creating and exploiting multi-

modal annotated corpora: The ToMA project. In Multimodal Corpora, pages

38–53. Springer Berlin Heidelberg.

Boersma, P. et al. (2002). Praat, a system for doing phonetics by computer.

Glot international, 5.

Boholm, M. and Allwood, J. (2010). Repeated head movements, their function

and relation to speech. In Proceedings of LREC workshop on multimodal

corpora advances in capturing coding and analysing multimodality, pages 6–

10. Citeseer.

Boletsis, C. and Cedergren, J. E. (2019). Vr locomotion in the new era of

virtual reality: an empirical comparison of prevalent techniques. Advances in

Human-Computer Interaction, 2019.

Brady, H. E. (2011). Causation and Explanation in Social Science. Oxford

University Press.

Cerrato, L. and Svanfeldt, G. (2006). A method for the detection of commu-

nicative head nods in expressive speech. In The Second Nordic Conference on
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Appendix A

Head nod detection pseudo

code

# Thresho lds in m i l l ime t r e s

nodding = −4

not nodding = 2

# Are we ready to d e t e c t nods?

ready = true

# In t e r p o l a t o r to up−sample from a r b i t r a r y f requency to 100Hz

i n t e r p o l a t o r = In t e r p o l a t o r ( f r e q =100)

# 2nd order Butterworth f i l t e r s

lowpass = LowPassFi l ter ( f r e q=4)

highpass = HighPassF i l t e r ( f r e q=1)

# This func t i on i s c a l l e d by the a p p l i c a t i o n at vary ing i n t e r v a l s

def proce s s ( h e a d v e r t i c a l p o s i t i o n ) :

now = time . now( )

for x in i n t e r p o l a t o r . i n t e r p o l a t e (now , h e a d v e r t i c a l p o s i t i o n ) :

x = lowpass . f i l t e r ( x ) ;

x = highpass . f i l t e r ( x ) ;

i f ready and x < nodding :

ready = f a l s e ;

# HEAD NOD DETECTED!

e l i f −nod nodding < x < not nodding :

ready = true ;
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Appendix B

Apartment design task

Imagine the following: You’ve been given substantial resources (let’s say, £500k)

to use on an apartment that you will share with your conversational partner.

There are only the constraints that there can only be one kitchen (which will be

shared), one bathroom (which will be shared), and one living room (which will

be shared). Your task now is to plan this apartment together, both the shared

and private areas as well as furniture, decoration, things like TV etc. You have

15 minutes for this task.
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Appendix C

Questionnaires

Note that some questionnaires include open questions. Space to write an elab-

orated answer is removed in this appendix for brevity. The questionnaires given

to the participants include space for a paragraph per open question.

C.1 Demographic questionnaire

• What is your age?

• What gender do you identify with?

– Male

– Female

– Other

– Prefer not to say

C.2 Familiarity with virtual reality questionnaire

• Have you experienced virtual reality with a head mounted display?

– Never

– Once

– A few times

– Regularly

• Have you experienced virtual reality with a room scale feature (the ability

to freely walk in the virtual reality environment as opposed to just standing

or sitting)?
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– Never

– Once

– A few times

– Regularly

• Have you experienced social virtual reality (hanging out with other people

in a shared virtual environment)?

– Never

– Once

– A few times

– Regularly

C.3 Social closeness questionnaire

Please answer the following questions considering your experimental

partner

• How many years have you known your experimental partner?

• How often are you in contact with your experimental partner?

– Never

– Occasionally

– A few times a month

– A few times a week

– Daily

• Please circle the picture which best describes your relationship.

C.4 Post-experience questionnaire

• What were your strategies to maximize your score?

• What were your strategies to detect that someone is faking attention?

• Any other comment?
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Appendix D

Head and torso movement

annotation scheme

This manual explains how to annotate movement in short video snippets con-

taining dialogues between two participants. The annotations should be filled in

the supplied spreadsheet, with each video snippet corresponding to one row in

the spreadsheet.

The filename of the video snippet to annotate is indicated in the Filename

column in the spreadsheet. Only one participant should be annotated per row,

as indicated in the Participant column in the spreadsheet. If the value is Left,

fill in the relevant information about the participant on the left side of the video

frame. If the value is Right, you guessed it. . .

The video snippets are 6 seconds long, and might contain several movements.

Your goal is to annotate the one closest to the middle time point of the snippet.

First, watch the snippet a few times to decide what movement to annotate. Fill

in the columns, left to right, following the instructions below. Unless otherwise

noted a column can be left empty, and the values in a column are not expected

to be evenly balanced (e.g. an hypothetical column C may have a lot more video

snippets annotated with the value x than with y).

D.1 Feedback

D.1.1 Direction

This column indicates whether the motion is meant to give feedback, or to

elicit feedback. Fill in one of these values if that is the participant’s aim, in

your opinion, in producing this motion.
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D.1.2 Acceptance

This column indicates whether the motion signals acceptance (fill in accept) or

rejection (fill in reject). Fill in one of these values if that is the participant’s

aim, in your opinion, in producing this motion.

D.2 Movement

If you chose to fill in any of the Movement sub-columns make sure to fill in all

of them.

D.2.1 Body part

This column indicates whether the movement is mainly a head movement or a

torso movement. Other body parts should be ignored. Your decision should

be based on the body part that describes the movement better. If in doubt bias

towards torso movement. Leave this column empty if what you see in the video

snippet cannot be described as a head or torso movement.

D.2.2 Sagittal

Coming from anatomy, the sagittal plane is perpendicular to the ground, sep-

arating the body left from right. This column should be filled in with either

yes or no. A value of yes indicates that the movement is contained within

the sagittal plane, while a value of no indicates that the movement is outside

of the sagittal plane. Some examples of head movements are depicted in Fig-

ure D.1. The top row shows movements that should be annotated with yes

in the Sagittal column. The bottom row shows movements that should be

annotated with no. Note that sagittal and non-sagittal movement can describe

displacement (change in head or torso position) as well as rotation.

D.2.3 Repetitions

This column indicates, qualitatively, how many repetitions happen in the ob-

served movement. The possible values for this column are:

partial means that the movement does not complete a full circle. For example:

moving the head from one side to the other, once, without returning it to

the original position.

single means that the movement returns to its original position or rotation.

For example: a single head nod.
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Figure D.1: Examples of sagittal (top row) and non-saggital (bottom row) move-
ments.
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multiple means that the movement repeats more than once. For example:

multiple shakes of the head from left to right as done while displaying

disagreement.

D.3 Semiotic function

This column indicates the communicative nature of the movement. When filling

in this column think about the motion you choose to annotate. Ignore hand

gestures and utterances that do not coincide that movement (e.g. a thumbs

up gesture immediately after the head motion you are annotating). Note that

head nods and backchannels that indicate, for example, the listener’s attention

/ acceptance, do not fall into any of these categories. This manual is supplied

with one video snippet exemplifying each semiotic function. The possible values

for this column are:

deictic for indexical deictic gestures that locate aspects of the discourse in

the physical space, for example by pointing. They can be used to address

people. They can refer to objects within the room, or to hypothetical

objects that could have been in the room.

non-deictic for indexical non-deictic gestures that indicate a causal relation

between the gesture and the effect it establishes. The small movements

that accompany speech and underline its rhythm, and that some people

have called batonic or beat gestures, fall into this category.

iconic gestures (including so-called metaphoric gestures) express some seman-

tic feature by similarity or homomorphism. Examples are gestures done

with two hands to comment on the size (length, height, etc.) of an object

mentioned in the discourse.

symbolic gestures (emblems) are gestures in which the relation between form

and content is based on social convention (e.g. the okay gesture). They

are culture-specific.

D.4 Binary features

The last few columns should be filled with either yes or no. Do not leave any

of these columns empty.

Head nod : whether or not the movement is, or contains, a head nod.

Laughter : whether or not the participant is laughing.
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Face touching : whether or not the participant touches their face or head

tracking sensor (attached to the cap).

Distraction : whether the motion you observe is a result of something external

to the conversation. For example, when the participant turns to approach

the experimenter, receives a phone call and pulls their phone from their

pocket, rotates to check some noises from outside the room, etc.

Technical issue : whether you think there is no movement in the video snip-

pet and it is provided for annotation by mistake.
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