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Abstract

The thorough study of Conformal-Field-Theories (CFTs) and Super-Conformal Field

Theories (SCFTs) lies at the heart of the towering progress that our understanding of

Quantum Field Theories (QFTs) has witnessed in the last decades or so. SCFTs are

admitted to exist in spacetimes with dimension no greater than six and in this thesis

we closely examine some aspects of those Superconformal Field Theories (SCFTs) that

live in an even dimensional spacetime.

We start with the 6D (2,0) theory, which describes the low-energy dynamics of M5-

branes in M-theory. While in the case of multiple M5-branes, such model is believed

to be inherently non-lagrangian, writing a Lagrangian that captures the low-energy

dynamics of a single M5-brane is feasible but non-trivial, as one has to overcome the

notorious difficulties that arise when formulating a manifestly Lorentz-invariant action

for self-dual forms. Building on recent work of A. Sen, we surmount such difficulties and

introduce a lagrangian formalism that enables us to elucidate how self-dual forms couple

to a curved spacetime background and compute their partition function via a path

integral approach. As we show in full detail for the case of the compact chiral boson on a

two-dimensional torus, to evaluate their partition function via a path integral approach

it is crucial to use a Wick-rotation procedure obtained from a complex deformation of

the physical spacetime metric.

We then move down to 4D, where we are mainly interested in the non-perturbative

dynamics of SCFTs with N = 2 or N = 3 supersymmetry. In theories with N = 2

supersymmetry, one can find the so-called Coulomb-Branch Operators (CBOs), and we

give strong evidence for the fact that the Type-B Weyl anomalies associated to them

are covariantly constant along the conformal manifold, in both the conformal and the

spontaneously broken phases. In the case of N = 3 theories, we evaluate the Macdonald

limit of the superconformal index for some rank one and rank two S-fold SCFTs; we

achieve this by computing the vacuum character for the two dimensional N = 2 vertex

operator algebras which, via the 4D/2D correspondence, are supposed to correspond

to such theories.
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Chapter 1

Introduction and Outline

According to the modern perspective, Quantum Field Theory (QFT) is a powerful and

universal language that can be traced across many corners of physics (statistical me-

chanics, cosmology, condensed matter...) and mathematics (where, for instance, QFT

is behind the advancements in knot theory that led to one of the Fields Medals issued

in 1990).

QFT keeps playing a prominent role right in the field where it was first conceived – par-

ticle physics – as it provides, since its very birth, a framework for constructing quantum

mechanical models of the sub-atomic word. Despite many experimentally-verified suc-

cesses and Nobel prize-awarded discoveries (such as such as quantum-electrodynamics,

the Higgs boson, the standard model of electroweak theory...), numerous open questions

remain, and in general little is known of QFTs when considered beyond the perturbative

regime, where quantum corrections become dominant and standard mathematical tech-

niques break down. For example, more than a half-century has passed since we learnt

that the strong interactions are described by Quantum-Chromo-Dynamics (QCD) and,

yet, still we lack a complete explanation of how quarks stay confined in hadrons (which

is one of the “Millennum Prize Problems”).

The most important advancements in the understanding of QFTs have been un-

locked by learning how to exploit the symmetries that characterize a system: the larger

the set of symmetries that a QFT enjoys, the more constrained its dynamics.

There are two types of symmetries that make a QFT particularly amenable to mathe-

matical treatment: Conformal symmetry and Supersymmetry.

Conformal Field Theories describe phenomena where length or mass scales are

irrelevant, which is the case, for example, for statistical systems approaching their crit-

ical points.

From a phenomenological perspective, CFTs are important because theories that are
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CHAPTER 1. INTRODUCTION AND OUTLINE

asymptotically free - like QCD, at high energies get close to being conformal. In prac-

tice, these are alluring models because with modern techniques they can be studied

even without making reference to a Lagrangian, and therefore they constitute the right

arena where to develop the machinery needed to then tackle non perturbative phe-

nomena. The conformal bootstrap program [5] is one of these techniques, which can

provide precision calculations for the spectrum of a theory and it was successfully used

to derive bounds on the scaling dimensions of operators in the 3D Ising model at the

critical temperature [6] which are in agreement with the experimental measurements

done in the lab.

Moreover, from a theoretical point of view, CFTs sit in a privileged seat amongst the

vast landscape of QFTs, as they are the protagonists appearing on one side of the

famous and extensively celebrated AdS/CFT duality [7]: a CFT in a particular limit

(the planar one) can equivalently be reformulated as a certain theory of gravity in a

spacetime of one higher dimension. Remarkably, this is a weak/strong correspondence,

as it relates the non-perturbative regime of the CFT with the perturbative one of the

gravity theory, and viceversa. One can then apply familiar perturbative techniques on

the theory appearing in one side of the correspondence to learn about the complicated

non-perturbative physics happening in the dual theory.

Supersymmetric QFTs instead are invariant under a symmetry mapping fermions

and bosons into each other, through means of which it is possible to reorganize the

whole theory into rigid mathematical structures and thus keep the quantum correc-

tions under control. Although supersymmetry has not yet been detected in particle

accelerators, supersymmetric theories represent very interesting models which retain

some of the non-trivial phenomenology of experimentally realized QFTs, such as con-

finement. At the same time, supersymmetric QFTs provide a simplified setting where

extremely powerful techniques make computations (more) feasible and progress can

be made. Among them, it is mandatory to mention the supersymmetric localization

procedure of [8] and the modus operandi introduced in the seminal work of Seiberg-

Witten [9, 10] which in turn has led to a cascade of new technologies in the field (such

as the spectral network machinery of [11]).

Conformal symmetry and supersymmetry get together in the superconformal group,

which tightly regulates the dynamics of Super Conformal Field Theories (SCFTs).

These are the very special theories that have played a main role in research on QFT

over the last twenty years or so, as their highly constrained nature has enabled us to

make sensational progress in the understanding of non-perturbative phenomena and
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CHAPTER 1. INTRODUCTION AND OUTLINE

QFT in general. With this thesis we want to give our modest contribution to this

successful and well-established line of research.

According to the pioneering classification done by Nahm in [12], SCFTs are admitted

to live in a spacetime that is at most six-dimensional. At that time, physicists and

mathematicians used to believe that four was the maximum dimension for non-trivial

unitary conformal field theory, so of Nahm’s result little note was taken, initially. In-

deed, while his classification dates 1977, it was only much later that the first examples

of five and six-dimensional SCFTs were actually proven to exist [13–18]. This happened

during the second string revolution, in 1995.

One of the most intriguing examples of these theories are the so-called (2,0) theories,

which can be identified as the maximally supersymmetric local CFTs in the maximum

number of dimensions: they possess 2 chiral supersymmetries (16 supercharges) and

superconformal invariance in six dimensions. These are very captivating models. They

essentially yield an organizing principle for lower-dimensional supersymmetric dynam-

ics. From them it is possible to derive a multitude of lower-dimensional supersymmetric

field theories and understand that many of the latter actually must be connected via

a web of dualities ( [19–22]) and unexpected correspondences, like AGT, [23]. Despite

being at the very heart of some of the most towering successes of contemporary QFT,

most of the structures underlying (2,0) SCFTs are still a mystery, which lie beyond

the reach of existing techniques1 as these theories are believed, in their non-abelian

realizations, to be inherently non-lagrangian (see [26] for an executive summary).

Even the construction of a lagrangian describing the dynamics of the abelian (2,0)

SCFT - locally governed by gauge algebra u(1) - is non-trivial, although Lorentz in-

variant supersymmetric equations of motion have been constructed to all orders in [27].

This is due to the fact that the physical spectrum of this theory contains a chiral 2-

form2 and, as we will soon review in Chapter (2), there are plenty of difficulties in

writing down lagrangians for theories involving chiral forms.

The first half of this thesis, consisting of Chapters (2) and (3), is devoted to the study

of chiral forms. This is an old topic that we will consider with a fresh pair of eyes, by

exploiting the lagrangian for chiral forms that Sen proposed in 2015. In Chapter (2) we

will use his action to build an abelian (2,0) lagrangian in 6D and, upon clarifying how

the coupling to a curved spacetime background is achieved within this formulation, we

will test our construction by exploring various compactifications down to lower dimen-

sional field theories. In Chapter (3), we will move to the quantum aspects, which are

1With some few but important exceptions, such as the chiral algebra and the bootstrap approach
of [24,25].

2A form is said to be chiral when its field strength is self-dual (with respect to the usual Hodge-star
operation).
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quite subtle in the presence of a chiral form, and we will compute the path-integral

associated to Sen’s action, with particular attention to the case of a chiral boson in 2D

and a chiral 2-form in 6D. Interestingly enough, to take care of the convergence prop-

erties of Sen’s action, we will be forced to implement the Wick rotation via a procedure

where, in place of the time-coordinate, the curved spacetime metric gets complexified

instead, along the lines of [28–30].

In the second half of the thesis we will instead consider SCFTs in a four-dimensional

spacetime and we will study two of the tools most commonly employed in the analysis

of non-perturbative phenomena in SCFTs – anomalies and indices, which will be the

protagonists respectively of Chapters (4) and (5). In short, these are very useful objects

as they prove to be robust quantities which change in a controlled way upon certain

deformations (like turning up the values of the couplings that regulate the intensity of

interactions, for instance) and many times they effectively introduce non-trivial con-

straints on the dynamics of the system, no matter how complicated this might be.

In Chapter (4), we will focus on a particular kind of Weyl anomalies – the Type-B Weyl

anomaly associated to integer scaling dimension operators [31,32]. These anomalies can

be easily identified in 4D N = 2 SCFTs, where the so-called Coulomb-Branch opera-

tors are available to study. These are operators that are protected by supersymmetry

in a way that makes their scaling dimension an integer number. We will study their

associated Weyl anomalies which, in general, exhibit a non-trivial dependence on the

marginal couplings of the theory, [33]. We will give strong evidence that these anoma-

lies must be covariantly constant across the conformal manifold, even when the theory

is considered in a vacuum that spontaneously breaks conformal invariance. As our ar-

guments will be non-perturbative in their nature, when the anomalies in the conformal

phase and in the spontaneously broken phase match at a particular point of the con-

formal manifold, they must keep doing so even away from it and in this way we might

be able to constrain some non-perturbative physics via performing a tree-level check.

For example, it is worth mentioning that this sort of anomaly matching has found an

interesting application in [34] within the context of dimensional deconstruction [35].

According to the latter conjecture, the dynamics of a certain non-abelian (2,0) SCFT

on a two-dimensional torus can be understood3 as a limit-case of a particular 4D N = 2

SCFT in the so-called Higgs phase, where conformal invariance is spontaneously bro-

ken; therefore, the fact that the anomaly of the four-dimensional theory in this vacuum

agreed, at tree-level, with the one computed in the conformal phase implied that some

3For the sake of completeness, we mention that there is also another conjecture expressing the non-
abelian (2,0) SCFT in terms of a lower-dimensional theory. In [36,37] indeed it was suggested that the
(2,0) theory on a circle could be viewed as the 5D N = 2 super Yang-Mills theory upon including in
the latter also all the instanton contributions.
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data of the six-dimensional (2,0) SCFT should be captured by doing a supersymmetric

localization computation in the conformal phase of the four-dimensional theory.

In Chapter (5), we will investigate another robust observable, the superconformal in-

dex [38] which, for any four-dimensional N ≥ 1 SCFT, can be understood as the Witten

index [39] for the theory in radial quantization. It encodes the information related to

the protected spectrum of the theory modulo recombination rules and it is thus invari-

ant under exactly marginal deformations, see [40]. We will be especially interested in

the Macdonald limit of this observable, which collects only the contributions coming

from a particular set of protected operators, the so-called Schur operators [41]. Re-

markably, in [42] it was discovered that the Schur subsector of any 4D N ≥ 2 SCFT is

captured by a chiral algebra. The latter, roughly speaking, is something analogous to

a two-dimensional CFT and it can be used to easily compute quantities of the associ-

ated four-dimensional theory. As in two dimensions the conformal group enhances to

a infinite-dimensional symmetry, the Schur/chiral correspondence of [42] gives a very

good computational handle on the Schur spectrum of four-dimensional theories, to

such a point that a minimal amount of info about the four-dimensional theory (central

charges, moduli spaces) is sufficient to make an educated guess for the associated chiral

algebra. It is in this spirit that in [43] chiral algebras for some non-lagrangian theories

were put forward and, by exploiting these findings, we will compute the Macdonald

limit of the superconformal index of some N = 3 SCFTs in 4D. The latter are isolated

non-lagrangian SCFTs that were discovered to actually exist only in 2015 ( [44]) and

our results yield the first Macdonald indices for such theories in the literature. As

a byproduct of our brute-force computations, we will be able to confirm the proposal

of [45], according to which some 4D N = 3 SCFTs could be realized, up to a N = 1 pre-

serving marginal deformation, as the IR description of some lagrangian N = 1 SCFTs.

We will conclude the thesis with some final words in Chapter (6).
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Chapter 2

Geometrical Aspects of An

Abelian (2,0) Action

In this chapter we first review the problems associated with a lagrangian formulation

of chiral forms and we explain how Sen action differs from the ones that had previously

appeared in the literature. Then, we focus on the particular case of a chiral 2-form in

six dimensions and, by building on his work [46, 47], we construct the full supersym-

metric completion to an abelian (2, 0) superconformal lagrangian including matter. We

explore various geometrical aspects of such action; we elucidate the coupling to general

backgrounds and investigate the non-standard diffeomorphism properties of the fields

and their relation to the hamiltonian formulation. We also test the action by consider-

ing compactifications on a circle, K3 and a Riemann surface. The results are consistent

with expectations for an action describing the low-energy physics of a single M5-brane

in M-theory.

The contents of this chapter are based on the paper [1]. The abelian (2,0) theory pro-

posed in this paper was later generalized in [48] to an action which fully describes an

M5-brane in the eleven-dimensional supergravity background and was reformulated via

a superspace approach in the work of [49].

2.1 Introduction

Let M be a D−dimensional-spacetime endowed with a Lorentzian metric g and with

local coordinates xµ. The Hodge operator ?g with respect to the metric g is given by

?gωp =
√
−det(g)

1

p!

1

(D− p)!
εµ1...µD−pν1...νpg

ν1ρ1 ...gνpρpωρ1...ρpdx
µ1 ∧ ... ∧ dxνD−p (2.1)

for any p−form ωp = 1
p!ων1...νpdx

ν1 ∧ ...∧dxνp . Throughout the whole thesis, we will be

using the mostly plus signature and ε012...(D−1)D = −1, while the rest of the conventions

14
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for any differential structure (forms, wedge product, inner product, differential etc.) are

the same of [50] if not otherwise stated.

We say that a p−form ωp is respectively self-dual or antiself-dual when its field strength

dωp is an eigenvector of the Hodge operator with eigenvalue ±1, i.e.

?g dωp = ±dωp . (2.2)

Of course, such an equation makes sense only when the spacetime is even-dimensional,

D = 2(p + 1). On the other hand, from (2.1), we can straightforwardly deduce that

(?g)
2ωp = (−1)1+(p+1)(D−p−1)ωp hence (anti)self-dual forms can exist only if p + 1 is

odd, that is only if

D = 4k + 2 k ∈ N0 . (2.3)

(Anti)Self-dual fields are ubiquitous in Physics.

D=2. In two dimensions, the (anti)self-duality equation (2.2) for a boson φ reads

as ∂0φ = ±∂1φ, and the propagating degrees of freedom consists of only right/left-

moving modes. This is the reason why (anti)self-dual forms are also called

(anti)chiral forms. Chiral bosons enter the description of the two-dimensional

quantum Hall effect [51] and they can be found at the very heart of the world-

sheet description of Heterotic String Theory [52–54] - the String Theory most

commonly used in String Phenomenology.

The (anti)self-dual boson is the only (anti)self-dual form that figures in Condensed

Matter, as Low-Energy physicists like to work in a world that is at maximum four-

dimensional. String theorists, instead, believe that our universe is secretly ten di-

mensional and that otherwise curled-up dimensions should open up at extremely high

energies.4 Remarkably, self-dual forms enter the spectrum of string theory in ten di-

mensions in an indispensable way.

D=10. Indeed, one of the excitations of Type-IIB superstring is a 4-form with

self-dual field strength, which contributes to the miraculous cancellation of the

gravitational anomaly [56], making type-IIB supergravity/superstring theories

quantum mechanically consistent.

Type-IIB is one of the five different Superstring Theories that, perturbatively, are

known to yield a consistent theory of Quantum Gravity. There is an intricate web

of dualities connecting them, which makes them appear as if they were just different

facets of the same underlying theory. This is called M-theory [57,58], which is populated

4We refer to [55] for a complete introduction to the basic concepts underlying String Theory and
related ideas (such as M-theory, F-theory, etc).
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not by strings but by extended objects (M2- and M5-branes) interacting in an eleven-

dimensional spacetime. Little is known about this mysterious M-theory. One way

to study it is via the AdS/CFT correspondence which, in its original and simplest

inception [7], essentially introduced an equivalence between M-theory on particular

backgrounds and the non-abelian field theories that live on a stack of multiple M2- or

M5-branes. This is just one of the many reasons why string theorists have extensively

worked to arrive at a proper formulation of the low-energy theory on the world-volume

of M2/M5-branes. While this has successfully been achieved for the M2-branes [59–61],

much is still left to be discovered about the theory of multiple coincident M5-branes.

D=6. The latter is some interacting six-dimensional field theory with (2, 0)

superconformal symmetry, which is believed to be non-Lagrangian - see [26, 62]

and references therein - and where a non-abelian generalization of chiral 2-forms

(also known as gerbes) are supposed to play a fundamental role, [63,64]. When the

M5-branes are moved far away from each other, this complicated theory simplifies

enormously and the dynamics on each M5-brane can be analysed independently.

This is what we will do in this chapter, which is devoted to the study of the

low-energy theory living on a single M5-brane. This is the theory of a free chiral

2-form and a bunch of free scalars, appropriately supersymmetrized.

The cases mentioned above do not constitute an exhaustive list of all the corners of

High Energy Physics where chiral forms appear. For example, we have not mentioned

that in six dimensions chiral 2-forms enter the spectrum also of the so-called Little

String Theories [65,66], which are non-gravitational theories having several string-like5

properties, from whose low-energy limit six-dimensional superconformal field theories

(such as the (2, 0) theory) can arise too. Moreover, it is enough to change the signature

of spacetime to allow for self-dual fields in dimensions different from (2.3).

The bottom-line is that (anti)self-dual fields feature prominently in High-energy

Physics and it is therefore desirable to have a proper formulation for them.

2.1.1 Lagrangians for self-dual forms

Chiral forms are peculiar objects. Even though their excitations obey to the Bose

statistics, it is fair to say that they are somehow reminiscent of a fermionic behaviour as,

in the first place, the (anti)self-duality condition itself is a field equation which is linear

in the derivatives. Furthermore, they lead to species doubling [67] when one tries to

define them on a lattice [68] and they are sources for gravitational anomalies [56,69,70].

This analogy becomes even more striking in two dimensions, if one thinks about the

5Relativistic Lorentz-invariant superstring theories necessarily leave in ten dimensions only when
the interaction among strings is perturbative.
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bosonization procedure, first introduced in [71] and then completed in [72] with an

analysis of the underlying global aspects; this essentially is an equivalence between

chiral bosons and Weyl fermions in two dimensions, in light of which it is only natural

to expect that chiral forms must come with something analogous to a spin structure,

in order to be properly defined [73].

As we often describe fermionic theories in terms of their chiral constituents, we would

like to arrive at a formulation of bosonic theories where their chiral parts are seen as

the true fundamental and independent building blocks. This is easily achieved within

the hamiltonian formalism. But things get soon complicated if one wants to describe

chiral forms via the lagrangian formalism, where traditional folklore used to require

Lorentz invariance to be present in a manifest fashion.

That something must go wrong with an action principle can be appreciated already

by noticing that there is no natural lagrangian for a chiral form, as the standard and

manifestly-Lorentz invariant kinetic term would identically vanish:

dωp ∧ ?gdωp = dωp ∧ (±dωp) = 0 . (2.4)

One could introduce the self-duality condition as a constraint imposed by hand on the

equations of motion, after deriving the latter from an action principle for a non-chiral

form. This is fine at the classical level, at which stage the self-duality equation (2.2)

together with the Bianchi identity for the field strength are indeed enough to describe

a chiral form. Nevertheless, we demand an action principle which automatically leads

to (2.2) because we will ultimately want to study the quantized theory - via the path

integral technique, most notoriously. Furthermore, it is worth struggling for a proper

lagrangian of chiral forms, as this would naturally shed light on the global aspects

and the geometric nature of self-dual fields and clarify how they couple to curved-

backgrounds, external sources, etc, some of which features are not that transparent

within an hamiltonian formalism.

In the next section we will briefly scan through some of the methodologies that have

been proposed to write a lagrangian for chiral fields. There is an enormous literature

on the subject; we will sketch only those ideas that will help us appreciate the novelties

of Sen’s work [46, 47], which is the approach to chiral fields which we will employ in

this and in the following chapter of the thesis.

2.1.2 A little bit of history

It was already pointed out by Marcus and Schwarz [74] in 1982 that a theory written

in terms of only the chiral field and the metric could not be described by a local
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and manifestly Lorentz invariant action functional6. All the various formulations that

emerged in the subsequent 15 years schematically fall in two classes, as they all worked

around Marcus&Schwarz’s no-go theorem by either incorporating auxiliary fields into

the Lagrangian or by giving up on manifest Lorentz invariance.

Additional auxiliary fields. Let’s consider, for concreteness, the case of a

chiral boson φ in 2D. The naivest idea of introducing a Lagrangian multiplier λ

to impose the self-duality constrain on φ as in

Llinear = −1

2
dφ ∧ ?dφ− λ ∧ (dφ− ?dφ) (2.5)

does not work, as this system describes not one, but two dynamical chiral forms

and there is no natural way to single out just one of them. Indeed, the equation

of motion following from (2.5) are

dφ = ?dφ and d(λ+ ?λ) = d ? dφ = 0 , (2.6)

where in the second equation we have used the first one. What we learn from the

simple model (2.5) is that to avoid doubling the degrees of freedom of the system,

we should introduce the auxiliary field in a more sophisticated way.

One of the first efforts in this direction was made by Siegel [75] who considered

the possibility of imposing the self-duality via a lagrangian multiplier λ which

enters the lagrangian via a cubic term as in7

LSiegel =
1

2
(∂0φ)2 − 1

2
(∂1φ)2 + λ (∂0φ+ ∂1φ)2 , (2.7)

so that λ drops out of the field equations and there is indeed hope for it to be

gauged away through some non-standard gauge transformations. However, the

quantization of (2.7) turned out to be technically very subtle - even controversial

[76–80] - and it is possible [81] that, at the end of the day, λ becomes propagating

at the quantum level albeit it can be gauged away at the classical level. To fix

this problem, one could think of introducing more auxiliary fields that are able to

compensate each other’s propagating degrees of freedom. It should not surprise

then to know that formulations of chiral forms with an infinite number of auxiliary

fields soon appeared. This approach was first proposed by McClain, Wu and Yu

in [82] (see also [83] and [68]) for the case of the chiral boson in 2D and was later

extended to chiral forms in higher dimensions in [84, 85]. Interestingly, this type

of lagrangians was derived, independently, from a formulation of type-IIB closed

6See also [68].
7This action can be recast in a manifestly Lorentz-invariant way.
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superstring field theory8 in [86,87].

Non-manifest Lorentz invariance. Dealing with an infinite number of auxil-

iary fields might seem a little bit cumbersome. A more tractable approach is then

to write a lagrangian where Lorentz invariance is not apparent [81,88]. However,

the system is Lorentz invariant as the action is invariant under some transforma-

tions of the fields which - possibly upon using the equations of motion - reduce

to the standard Lorentz ones [89] or satisfy the Lorentz algebra in flat space-

time [90,91].

The archetype of such mechanism was explored for the chiral boson in 2D by Flo-

reanini and Jackiw in [89]. There are more equivalent ways to recast their action,

here we display the most commonly used one in the literature, which reads as

LFJ = ∂0φ∂1φ+ ∂1φ∂1φ . (2.8)

The equation of motion are of the second order in the derivatives

∂1(∂0φ+ ∂1φ) = 0 (2.9)

from which the chirality condition follows only up to an undetermined function ϕ

of time, i.e. (∂0 + ∂1)φ(x0, x1) = ϕ(x0). Just by looking at the particular recipe9

that Floreanini and Jackiw followed to arrive at the lagrangian (2.8), it is clear

that, somehow, ϕ cannot be propagating; and indeed ϕ can be gauged away, via

a mechanism carefully reviewed in [92].

The work of Floreanini and Jackiw was soon after adapted to chiral forms in

dimension greater than two by Henneaux and Teitelboim [81].

Another lagrangian for chiral forms that has been extensively used in the litera-

ture which does not exhibit Lorentz invariance manifestly is the one proposed by

Perry and Schwarz in [90].

In 1997, these two different philosophies found a meeting point in the work of Pasti

Sorokin and Tonin [93, 94], which proved to be very successful [70, 95–103]. By intro-

ducing a single auxiliary scalar field a they wrote a manifestly Lorentz invariant action

8In principle, it should be possible to derive type-IIB supergravity from a particular limit of type-
IIB superstring field theory. Therefore, a formulation for the latter can be used to guess the rough
structure of the former. As type-IIB supergravity contains a 4-form with self-dual field strength, the
bosonic part of its action can then be generalized to an action for chiral forms in any dimensions.

9The starting point is an hamiltonian system for the field χ yielding the correct self-duality constraint
as hamiltonian equation of motion: (∂0 +∂1)χ(x0, x1) = 0. Via Legendre transformation they obtained
a first-order lagrangian system in terms of χ which can be more nicely rewritten as in (2.8) upon a
field redefinition χ 7→ φ(χ). As the original hamiltonian described a chiral boson (and nothing else), ϕ
must be a collateral damage of the field redefinition.
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that, upon fixing the gauge transformations that makes a a Stuckelberg field, reduces

to the Floreanini-Jackiw-Henneaux-Teitelboim or Perry-Schwarz formulations. More-

over, the Pasti-Sorokin-Tonin action depends on a in a non-polynomial way and it is

therefore intuitively clear that such an action should correspond to a formulation with

infinitely many auxiliary fields; indeed, it can be related to the McClain-Wu-Yu action,

see [104].

The Pasti-Sorokin-Tonin action heavily relies on a set of gauge transformations. For

example, it enjoys a redundancy parametrized by arbitrary variations of a. As the

quantity
√
gµν∂νa∂µa enters the denominator of the lagrangian, not all the configura-

tions of a are permitted. In particular the fact that a can not be gauged to a constant

or to a light-like coordinate implies the existence of two distinct branches within the

Pasti-Sorokin-Tonin system: the one in which a can be gauged to coincide with a spa-

tial coordinate (in which case the Perry-Schwarz action is recovered) and the one in

which the gauge a = x0 is accessible (which makes the Pasti-Sorokin-Tonin collapse to

the Floreanini-Jackiw-Henneaux-Teitelboim action).

As it happens within the Floreanini-Jackiw-Henneaux-Teitelboim formalism (see for-

mula (2.9)), also the variation of the Pasti-Sorokin-Tonin action delivers a second order

equation of motion. In D = 2(p+ 1) dimensions, this essentially is d(?gdωp± dωp) = 0,

from which the (anti)self-duality constraint follows, locally, only up to exact terms.

The latter can be gauged away as the Pasti-Sorokin-Tonin action possesses one further

gauge symmetry, which does not act on a and which should not be confused with the

standard gauge redundancy characterizing usual p−forms theories. But when the pth

Betti number of the spacetime does not vanish, the chirality constraint can be deduced

only up to closed (but non-exact) contributions which, surprisingly enough [92,105], can

be gauged away as well only in the branch of the theory where the Pasti-Sorokin-Tonin

can be reduced to the Floreanini-Jackiw-Henneaux-Teitelboim theory. Therefore, the

Floreanini-Jackiw-Henneaux-Teitelboim is a better formulation than the Perry-Schwarz

one, as the latter does not seem to correctly describe a single chiral boson when this is

supposed to move through a topologically non-trivial spacetime.

That global aspects play an important role within the Pasti-Sorokin-Tonin action could

already been appreciated by the fact that, having
√
∂νa∂νa at the denominator, their

lagrangian is not well-defined in spacetimes which lack of nowhere vanishing vector

fields. However, in this case some generalization of the Pasti-Sorokin-Tonin mecha-

nism which employs not just one but q > 1 auxiliary scalars (a1, ..., aq) could be still

defined [106, 107], as in these formulations the requirement of a nowhere vanishing

∂νa∂
νa is relaxed into the requirement of a nowhere vanishing determinant for the

q × q matrix Y rs := ∂νa
r∂νas. By playing with the gauge fixing of these q scalars,

one can then generate lagrangian descriptions where Lorentz invariance is not manifest

anymore as they involve a D = q + (D − q) splitting of spacetime (as we saw above,
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for q = 1 these are the Perry-Schwarz and Floreanini-Jackiw-Henneaux-Teitelboim ac-

tions). This type of lagrangians [108, 109] deserve to be explored more, as they might

experience some difficulties when formulated on non-trivial spacetime (as it happens

for the Perry-Schwarz action).

Broadly speaking, all the lagrangians that we have mentioned throughout this sec-

tion are based on the same strategy, which consists in: writing a lagrangian in terms

of the non-chiral form ωp, making sure that it is ingenious enough to admit some non-

standard local redundancies, using the latter to derive from the equations of motion

the chirality constraint (2.2) on the exact field strength dωp. The non-standard gauge

transformations are essential in this game given that, without them, there is no hope to

turn a second order equation (like the ones that typically follow from a bosonic action)

into the chirality constraint, which is a first order field equation. At the same time,

the presence of additional redundancies in the system requires some subtle analysis,

especially when the theory is formulated in spacetimes with non-trivial topology and

when one is interested in quantizing the theory.

Sen’s action introduces a concrete shift of paradigm, as it manages to describe the dy-

namics of chiral forms without employing any non-standard redundancies. In his formu-

lation, the auxiliary degrees of freedom that are deployed to evade Marcus&Schwarz’s

no-go theorem form a dynamical non-unitary sector which simply decouples from the

physics of the chiral form and therefore there is no need to introduce fancy local re-

dundancies to gauge them away.

Maybe the most intuitive way to present Sen construction is to look back at the la-

grangian (2.5), which is clearly equivalent to

Llinear = −1

2
dφ ∧ ?dφ− 2λ ∧ dφ (2.10)

where λ is now assumed to satisfy the self-duality condition λ = ?λ even off-shell. The

equations of motion can be recast as

dφ = ?dφ and d

(
λ− 1 + ?

2
dφ

)
= 0 , (2.11)

and of course we still have two chiral forms in the spectrum – λ and dφ – as in (2.6). We

hope to arrive at a lagrangian where there is a clear distinction between these degrees

of freedom and it seems a good idea then to switch to a formulation where λ is replaced

by λ̂ := λ − 1+?
2 dφ, as this is a chiral form satisfying dλ̂ = 0 even without using the
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equation of motion of φ. In terms of λ̂, (2.10) reads as

Llinear = +
1

2
dφ ∧ ?dφ− 2λ̂ ∧ dφ . (2.12)

If we now forget the relation between λ and λ̂, then (2.12) is essentially Sen action in

flat spacetime. Even though it still contains two chiral forms in the spectrum, there is

a big difference with respect to (2.10). The fact that the kinetic term of φ has flipped

sign yields a criterion through which it is possible to isolate a single chiral form out of

the two: the physics must come with λ̂ and we need to make sure that the non-unitary

excitations of φ do not interact with the λ̂ sector at any order in perturbation theory,

even in the presence of external sources or when the theory is formulated in a curved

background.

In this chapter we will show that indeed this is the case and that φ decouples from

the physical spectrum of the theory. But before initiating an in-depth analysis of Sen’s

action, we would like to conclude this long excursus by mentioning other interesting

works on chiral form lagrangians [110–118].

2.1.3 Sen’s action

In 2015, drawing inspiration from the string field theory that he had previously con-

structed in [119], Sen put forward a new proposal for a lagrangian description of chiral

2k-forms in 4k + 2 dimensions [46] (see also [47]), where the self-duality condition

holds off-shell. This deploys auxiliary degrees of freedom in a polynomial way, while

preserving manifest Lorentz invariance. The invariance of the action under general

diffeomorphisms is not manifest, because the coupling to gravity is realised in a non-

standard fashion. Moreover, the action does not couple the fields to the metric in the

usual covariant way and, therefore, there is room to evade the no-go theorems regarding

the compactifications of chiral 2k-forms actions [120]. These attractive properties make

this proposal worthy of further study.

We will focus on the action for chiral 2-form in 6D given by [47]

SH =

∫ (
1

2
dB ∧ ?ηdB − 2H ∧ dB +H ∧ M̃(H)

)
. (2.13)

Here B is a generic “2-form”, while H is a chiral “3-form” subject to the self-duality

condition H = ?ηH. This expression has some unconventional features. For instance,

the coupling to the background is achieved via the interaction term involving M̃, which

is a function of the metrics g, η only. We stress that, although the background is
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generically curved (g 6= η), the Hodge star entering the kinetic term of B is defined

with respect to the flat Minkowski metric η. As a result, B and H are not standard

differential forms, a fact that is also reflected in their non-standard transformation

properties under diffeomorphisms. It turns out that SH encodes on-shell the degrees of

freedom carried by—not one but—two free 2-forms with self-dual field strength: in the

hamiltonian formulation, it can be shown that the theory contains an unphysical sector

(with a wrong-sign kinetic term) that explicitly decouples from the physical one [47].

Thus one expects the physical sector to correctly describe the physics of free chiral

2-forms on generic manifolds.

The supersymmetric completion of this model to a (2, 0) theory for Minkowski space

was constructed in [26]. In this chapter of the thesis we further investigate and extend

several aspects of this (2, 0) lagrangian. In Sec. 2.2 we first elucidate the nature of

the coupling of the dynamical degrees of freedom to arbitrary backgrounds, providing

an alternative to the perturbative construction of M̃ given in [47]; we also discuss the

introduction of sources. We then revisit the (non-manifest) diffeomorphism invariance

of the theory and show that the action reproduces standard results following from

diffeomorphism-invariant theories, by e.g. evaluating the energy-momentum tensor.

This information allows us to identify two particular combinations of the lagrangian

fields B and H

H(s) :=H +

(
1 + ?η

2

)
dB

H(g) :=H − M̃(H) , (2.14)

which respectively correspond (on shell) to a singlet “3-form” and a standard chiral

3-form under diffeomorphisms. We then re-examine the hamiltonian formulation of the

theory and make apparent the fact that H(s) and H(g) are, respectively, the unphysical

and physical chiral degrees of freedom of the theory. We also determine the hamilto-

nian in terms of H(s) and familiar geometric quantities such as the energy-momentum

tensor of H(g). At the end of Sec. 2.2, we provide an extension to the supersymmetric

completion of the action for arbitrary backgrounds, that is for arbitrary M̃.

Then, in Sec. 2.3, we proceed to consider some applications and consistency checks

of the action by dimensionally reducing it on a circle, K3 and a non-compact Riemann

surface. The reductions are non-trivial and we use either the lagrangian or hamiltonian

formulation on a case-by-case basis. The first example leads to the expected spectra

of a five-dimensional Maxwell theory, whose lagrangian scales inversely with the radius

R, whereas the second example leads to the heterotic string transverse to R5×T3, plus

some unphysical, decoupled degrees of freedom. The case of the Riemann surface is

more interesting as the reduction depends on the scalars and hence is itself dynamical.

We follow the approach of [121, 122] with the aim to reproduce the four-dimensional
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N = 2 Seiberg–Witten effective action [9]. We arrive at an action for two—instead

of one—sets of real, abelian gauge fields subject to a constraint that relates them via

electric-magnetic duality. Furthermore, in this case the unphysical sector does not en-

tirely decouple but rather acts as a background. We conclude with a summary and

some open questions in Sec. 2.4.

2.2 Abelian (2,0) Action on a Generic Manifold

We begin our discussion with a recap of the relevant background. In flat six-dimensional

Minkowski spacetime one can write down the following action for the fields of the free

(2,0) tensor multiplet [26]

S =

∫ (
1

2
dB ∧ ?dB − 2H ∧ dB − 1

2
∂µX

I∂µXI +
i

2
Ψ̄Γµ∂µΨ

)
, (2.15)

where H = ?ηH. This is invariant under the superconformal transformations

δXI = iε̄ΓIΨ

δBµν = −iε̄ΓµνΨ

δHµνλ =
3i

2
ε̄Γ[µν∂λ]Ψ +

3i

2 · 3!
εµνλρστ ε̄Γ

ρσ∂τΨ− i

2
∂ρε̄ΓρΓµνλΨ

δΨ = ΓµΓI∂µX
Iε+

1

3!
ΓµνλHµνλε−

2

3
ΓIXIΓρ∂ρε , (2.16)

with

∂µε =
1

6
ΓµΓρ∂ρε . (2.17)

A key point of this system is that

H(s) =
1

2
(dB + ?dB) +H , (2.18)

is a supersymmetry singlet and on-shell decouples from the rest of the fields. Of course,

the latter statement is rather trivial as all fields are free and decoupled. But one can

come up with interacting lagrangians for which H(s) is still decoupled.

It is desirable to extend this action to a general curved spacetime with metric g. In

principle, one could easily try to couple it in the usual way:

S =

∫ (
1

2
dB ∧ ?gdB − 2H ∧ dB − 1

2
dXI ∧ ?gdXI +

i

2
Ψ̄Γµdx

µ ∧ ?g∇Ψ− 1

5
RXIXI

)
,

(2.19)

where R is the Ricci scalar, H = ?gH with ?g the Hodge dual evaluated with respect
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to the metric g, and ∇ is the corresponding covariant derivative on spinors. Indeed

this will still be supersymmetric if all expressions in (2.16) are replaced with covariant

ones and by assuming that there exists a spinor satisfying ∇µε = 1
6ΓµΓρ∇ρε. However,

this would imply that the spurious degrees of freedom associated with H(s) also couple

to the metric.

Rather, to make B truly decoupled Sen [46,47] considers the following

S = SH + Smat , (2.20)

where Smat is the usual action for the matter fields and SH is given by

SH =

∫ (
1

2
dB ∧ ?ηdB − 2H ∧ dB +H ∧ M̃(H)

)
, (2.21)

while still imposing the self-duality condition H = ?ηH. Here we have introduced a

subscript on ?η to emphasise that, although the spacetime metric is nontrivial, the

Hodge dual is evaluated with the flat Minkowski metric. This is not the expected

behaviour for 3-forms on a nontrivial metric; we will in fact see in due course that this

is reflected in their unusual transformation properties under diffeomorphisms. In the

last term above, M̃ is a linear map:

M̃(H)µνλ =
1

3!
M̃αβγ

µνλHαβγ . (2.22)

Since only the anti-self-dual part of M̃(H) appears in the action, and hence equations

of motion, it can be assumed that

M̃(H) = − ?η M̃(H) . (2.23)

Similarly, it can be assumed that M̃ is also symmetric the sense that

H1 ∧ M̃(H2) = H2 ∧ M̃(H1) , (2.24)

holds for any two self-dual three-forms H1, H2. We note that in [46, 47] the following

notation is employed

Mµνλ;αβγ =
4

3!
εµνλρστM̃αβγ

ρστ = −4ηµρηνσηλτM̃αβγ
ρστ , (2.25)

where in the last step we used (2.23).
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The role of the last term in SH is to change the equations of motion to

d

(
1

2
?η dB +H

)
= 0

dB − M̃(H) = ?η

(
dB − M̃(H)

)
, (2.26)

which can be recast into

dH(s) = 0

d
(
H − M̃(H)

)
= 0 . (2.27)

2.2.1 A construction for M̃

We would next like to find M̃ such that

?g

(
H − M̃(H)

)
= H − M̃(H) , (2.28)

for arbitrary H, self-dual with respect to ?η. One can then define

H(g) := H − M̃(H) , (2.29)

which satisfies H(g) = ?gH(g) by construction and dH(g) = 0 by the equations of motion.

To achieve (2.28), observe that M̃ is a linear map from self-dual three-forms to anti-

self-dual three forms (with respect to ?η). However, it is helpful to extend its action

to arbitrary 3-forms. Requiring that the symmetry property (2.24) holds for arbitrary

3-forms implies that M̃ should vanish on anti-self-dual three-forms (with respect to

?η). This property can be made explicit by re-writing

M̃ → 1

4
(1− ?η)M̃(1 + ?η) . (2.30)

Given that H = 1
2(1 + ?η)H, the condition (2.28) becomes

1

4
(1− ?g)(1− ?η)M̃(1 + ?η) =

1

2
(1− ?g)(1 + ?η) , (2.31)

and can be viewed as a linear-operator equation acting on arbitrary 3-forms.

To solve this, we consider a basis of 3-forms given by

ωA+ , ω−A for A = 1, ..., 10 , (2.32)

where the subscript ± indicates their eigenvalue under ?η. The number of self-dual and

anti-self-dual forms are equal so we have used the same index to label them (but one
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upstairs and one downstairs). When acting on this basis we can write M̃ in terms of

a matrix M̃AB:

M̃(ω−A) = 0 , M̃(ωA+) = M̃ABω−B . (2.33)

Note that if we choose a basis where

ωA+ ∧ ωB− = 2δABdx
0 ∧ ... ∧ dx5 , (2.34)

then the symmetry condition (2.24) reduces to M̃AB = M̃BA.

Equation (2.31) is trivially satisfied when acting on ω−A. However, acting on ωA+

gives

M̃AB(1− ?g)ω−B = (1− ?g)ωA+ , (2.35)

which can be re-arranged to

(1− ?g)
(
ωA+ − M̃ABω−B

)
= 0 , (2.36)

implying that ωA+ − M̃ABω−B is self-dual with respect to ?g.

Next, we can also construct a basis ϕA of self-dual three-form solutions with respect

to ?g. In particular, at any given point we can write:

ϕA = NA
Bω

B
+ +KABω−B . (2.37)

The condition that ωA+ − M̃ABω−B is self-dual with respect to ?g implies that we can

find a ΘA
B such that

ωA+ − M̃ABω−B = ΘA
Bϕ

B

= ΘA
BNB

Cω
C
+ + ΘA

BKBCω−C . (2.38)

Since the ωA+ and ωA− form a basis of three-forms, this implies that

ΘA
B = (N−1)AB , (2.39)

and also results into an expression for M̃:

M̃AB = −(N−1)ACKCB . (2.40)

It is important to note that these are all local considerations which are valid at a generic

point in spacetime. There could be global issues as both NA
B and KAB are only defined

locally and NA
B may not be invertible everywhere. However if at any point N is not
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invertible then there exists a self-dual 3-form with respect to ?g, which is anti-self-dual

with respect to ?η. However, this is not possible if the spacetime is orientable.

Lastly, let us check that (2.40) is compatible with the symmetry condition M̃AB =

M̃BA. To this end we can construct, for any choice of A and B,

(N−1)ACϕ
C = ωA+ − M̃ACω−C

(N−1)BDϕ
D = ωB+ − M̃BDω−D . (2.41)

These are both self-dual forms with respect to ?g and therefore their wedge product

vanishes:

0 = (N−1)ACϕ
C ∧ (N−1)BDϕ

D

= −M̃BDωA+ ∧ ω−D − M̃ACω−A ∧ ωB+ , (2.42)

where we have used the fact that the wedge product of two self-dual or two anti-self-dual

forms with respect to ?η also vanishes. Using the condition (2.34) we see that

0 = 2(M̃AB − M̃BA)dx0 ∧ . . . ∧ dx5 , (2.43)

which ensures that indeed M̃AB = M̃BA.

It is interesting to observe that, although H(g) = H−M̃(H) is self-dual with respect

to ?g, it is not typically equal to 1
2(H + ?gH). Rather we find

H(g) =
1

2
(H + ?gH)− 1

2
(1 + ?g)M̃(H) . (2.44)

In particular if H = HAω
A
+ then (see (2.41))

H(g) = (N−1)ABHAϕ
B . (2.45)

We can introduce a more compact notation as follows: for any (not necessarily self-dual)

three-form ω we have M̃(M̃(ω)) = 0 so that if we define the map

m : ω 7→ ω − M̃(ω) , (2.46)

then its inverse is

m−1 : ω 7→ ω + M̃(ω) . (2.47)

The map m takes ?η-self-dual 3-forms to ?g-self-dual 3-forms but acts as the identity

on ?η-anti-self-dual 3-forms. It does not make all 3-forms ?g-self-dual.
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If H(g) is ?g-self-dual then the map m can be used to write

H(g) = m

(
1

2
(1 + ?η)H(g)

)
. (2.48)

This is due to M̃ being anti-self-dual with respect to ?η; see (2.23). Indeed, if H(g) is

?g-self-dual, there is always an ?η-self-dual H such that H(g) = m(H). We get

1

2
(1 + ?η)H(g) =

1

2
(1 + ?η)(H − M̃(H)) = H , (2.49)

and hence (2.48).

2.2.2 Introducing Sources

To consider sources J , the action we would like to consider is [47]

SJH =

∫ (
1

2
dB ∧ ?ηdB − 2H ∧ dB +H ∧ M̃(H) + 2H ∧ M̃(J) + 2H ∧ J

)
. (2.50)

As before, H(s) = 1
2dB + 1

2 ?η dB + H is still a free ?η-self-dual form: H(s) = ?ηH(s)

and, on-shell, dH(s) = 0. However, if we now define

HJ
(g) := m(H + J+) = H + J+ − M̃(H + J+) , (2.51)

where J± = 1
2(1± ?η)J , then the equation of motion becomes

dHJ
(g) = dJ , (2.52)

while HJ
(g) = ?gH

J
(g) holds by construction.

With the identification HJ
(g) = dA + J , (2.52) is the same equation of motion one

would find from the usual action

SA = −1

2

∫
(dA+ J) ∧ ?g(dA+ J) +

∫
dA ∧ J , (2.53)

where the self-duality condition dA+ J = ?g(dA+ J) must be imposed by hand. One

could also add to SH a term

SJ =

∫
J ∧ M̃(J)− 1

2
J ∧ ?ηJ , (2.54)

which does not affect the equations of motion but makes the actions SJH + SJ and SA

identical on-shell if we identify HJ
(g) = dA+ J . In this case the complete action can be

29



CHAPTER 2. GEOMETRICAL ASPECTS OF AN ABELIAN (2,0) ACTION

written as

SJH =

∫ (
1

2
dB ∧ ?ηdB − 2H ∧ dB + (H + J+) ∧ M̃(H + J+) + 2H ∧ J− − J− ∧ J+

)
(2.55)

and under

δΛB = Λ (2.56)

δΛJ = dΛ (2.57)

δΛH = −
(1 + ?η

2

)
dΛ , (2.58)

it transforms as

SJH → SJH +

∫
dΛ ∧ (dB − J) . (2.59)

In the next chapter of the thesis, we will see that (2.59) will play an important role in

the interpretation of the partition function for the chiral form.

2.2.3 Diffeomorphisms

We now turn to the issue of diffeomorphisms, which are already known to enter the

discussion in a novel way from [46,47]. Here we will expand on the latter discussion by

utilising the construction of M̃ from the previous sections.

Let us begin by examining how diffeomorphisms act on the original fields B and

H. In particular, consider an infinitesimal coordinate transformation xµ → xµ + ξµ(x).

We will denote the transformation on B by δξB and assume that

δξH = −
(1 + ?η

2

)
dδξB , (2.60)

so that H(s) is invariant: δξH(s) = 0, as one expects from a field that does not gravitate

(as we will see later, H(s) completely decouples from the physical degrees of freedom).

By neglecting the boundary term
∫
d(δξB ∧ dB) we find

δξSH =

∫
−2(H − M̃(H)) ∧ dδξB +H ∧ δξM̃(H) . (2.61)

Note that, since M̃(H) and δξM̃(H) are both anti-self-dual with respect to ?η, the

second term can be written as (H −M̃(H))∧ δξM̃(H) and therefore we can also write

this as

δξSH =

∫
−2H(g) ∧ dδξB +H(g) ∧ δξM̃(H) , (2.62)
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where H(g) = H − M̃(H).

We now need to ensure that H(g) remains self-dual with respect to ?g after the

diffeomorphism:

0 = δξ
[
(1− ?g)H(g)

]
= −δξ ?g H(g) + (1− ?g)δξH(g) . (2.63)

Note that

δξH(g) = m(δξH)− δξM̃(H) , (2.64)

with δξH = ?ηδξH, so m(δξH) is ?g-self-dual and on the one hand (2.63) simply gives

δξ ?g H(g) = (1− ?g)δξH(g) = −(1− ?g)δξM̃(H) . (2.65)

On the other hand, a direct computation results in

δξ ?g H(g) = ∇ρξρH(g) −
1

2
(∇µξρ +∇ρξµ)H

(g)
νλρdx

µ ∧ dxν ∧ dxλ ,

where we used that δξgµν = −2∇(µξν). Therefore we obtain

δξM̃(H) =
1

2
∇µξπH(g)

νλπdx
µ ∧ dxν ∧ dxλ + Ξ− M̃(Ξ) . (2.66)

Here Ξ is any 3-form which is self-dual with respect to ?η so that the combination

Ξ− M̃(Ξ) is self-dual with respect to ?g and hence does not contribute to (2.65). We

will fix Ξ shortly.

To proceed, we observe that

−2

∫
H(g) ∧ d(iξH(g)) = −1

2

∫
H(g) ∧

(
∇µξπH(g)

νλπdx
µ ∧ dxν ∧ dxλ

)
= −

∫
H(g) ∧ δξM̃(H) , (2.67)

using H(g) = ?gH(g) and up to a total derivative, with iξ the standard inner derivative.

Note that once again the Ξ−M̃(Ξ) term in δξM̃(H) does not contribute here as both

it and H(g) are self-dual with respect to ?g and hence their wedge product vanishes.

Therefore we can define

δξB = iξH(g) , (2.68)

so that δξS = 0, up to a total derivative.
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Lastly, we need to fix Ξ to ensure that δξM̃(H) is anti-self-dual with respect to ?η:

0 = (1 + ?η)δξ
(
M̃(H)

)
=

1

2
(1 + ?η)∇µξπH(g)

νλπdx
µ ∧ dxν ∧ dxλ + 2Ξ , (2.69)

where we have used the facts (1 + ?η)M̃(Ξ) = 0 and (1 + ?η)Ξ = 2Ξ. Therefore we let

Ξ = −1

4
(1 + ?η)∇µξπH(g)

νλπdx
µ ∧ dxν ∧ dxλ , (2.70)

and hence, if we introduce the notation

ξ(ω) :=
1

(p− 1)!
∇µξλωλµ1...µp−1dx

µ ∧ dxµ1 ∧ . . . ∧ dxµp−1 , (2.71)

for any p-form ω, then

δξM̃(H) =
1

2
(1− ?η)

[
ξ(H(g)) + M̃

(
ξ(H(g))

)]
=

1

2
(1− ?η)

[
ξ(H)− ξ(M̃(H)) + M̃(ξ(H))− M̃(ξ(M̃(H)))

]
. (2.72)

Note that we also can write this as

δξM̃(H) =
(1− ?η

2

)
m−1(ξ(m(H))) , (2.73)

where the map m(ω) = ω − M̃(ω) was defined in (2.47). This transformation law for

M̃ is analogous to that of a connection. In particular, if M̃ vanishes in one frame it

need not vanish in another and it is not consistent to set it to zero by fiat in (2.21) if

one wants to maintain diffeomorphism invariance.

We can use the above result to finally determine the transformation properties of

H(g). From its definition, we find that

δξH(g) = δξH − M̃(δξH)− δξM̃(H)

= −ξ(H(g)) + m

(
1

2
(1 + ?η)

(
−d(iξH(g)) + ξ(H(g))

))
, (2.74)

but since

−d(iξH(g)) + ξ(H(g)) = iξ(dH(g))− ξπ∇πH(g) (2.75)
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we have, on-shell i.e. using dH(g) = 0, that

δξH(g) = −ξ(H(g))−m
(

1

2
(1 + ?η)ξ

π∇πH(g)

)
= −ξ(H(g))− ξπ∇πH(g)

= −£ξH(g) , (2.76)

where we have used the fact that ?gξ
π∇πH(g) = ξπ∇πH(g) along with (2.48), and we

denoted the standard Lie derivative with £ξ. Thus we recover on shell the usual tensor

transformation law for H(g) under a diffeomorphism.

In the presence of a source J we simply modify (2.68) by considering

δξB = iξH
J
(g) − iξJ , (2.77)

where HJ
(g) = H + J+ −M̃(H + J+). Using the usual expression for the variation of J

δξJ = −ξ(J)− ξπ∇πJ = −£ξJ , (2.78)

we recover the standard tensorial variation δξH
J
(g) = −£ξH

J
(g) on-shell.

It is worth emphasising that, although B and H have many properties associ-

ated with familiar differential forms, they have non-standard transformations under

diffeomorphisms. Therefore, it might be more appropriate to refer to them as “pseudo-

forms”.

2.2.4 Energy-Momentum Tensor

To further exhibit how the action (2.21) reproduces standard results following from

diffeomorphism-invariant theories, we can use the M̃ term to compute the energy-

momentum tensor as the response to the action from a variation of the spacetime

metric.10

As usual we define

Tµν := − 2√
−g

∂L
∂gµν

= − 2√
−g

HAHBω
A
+ ∧

∂M̃
∂gµν

(ωB+) , (2.79)

where we have expanded H = HAω
A
+. To compute this we note that

(1− ?g)(ωB+ − M̃(ωB+)) = 0 , (2.80)

10Here we will set the matter fields to zero as their contribution can be computed by regular means.
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which, when varied with respect to the metric g, yields

(1− ?g)δM̃(ωB+) = −δ ?g (ωB+ − M̃(ωB+)) . (2.81)

Therefore, for any ϕA = ?gϕ
A,

2ϕA ∧ δM̃(ωB+) = −ϕA ∧ δ ?g (ωB − M̃(ωB+)) , (2.82)

and hence from (2.45) we find

2δM̃BCϕA+ ∧ ωC− = −(N−1)BCϕ
A ∧ δ ?g ϕC . (2.83)

On the other hand from (2.34) we have

ϕA ∧ ωC− = NA
Dω

D
+ ∧ ωC− , (2.84)

and hence

δM̃BCωD+ ∧ ωC− = −1

2
(N−1)DA(N−1)BCϕ

A ∧ δ ?g ϕC

= −1

2

(
ωD+ − M̃(ωD+ )

)
∧ δ ?g

(
ωB+ − M̃(ωB+)

)
. (2.85)

Lastly, we contract this with HB, HD to find

Tµν =
1√
−g

(
H − M̃(H)

)
∧ ∂?g
∂gµν

(
H − M̃(H)

)
. (2.86)

This has a simple interpretation. We first consider the familiar lagrangian

L̃ = −1

2
H̃ ∧ ?gH̃ , (2.87)

where H̃ is an arbitrary 3-form and compute its energy-momentum tensor:

T̃µν =
1√
−g

H̃ ∧ ∂?g
∂gµν

H̃

=
1

2
H̃µλρH̃ν

λρ − 1

12
gµνH̃λρτ H̃

λρτ . (2.88)

Then to find our energy-momentum tensor Tµν we set H̃ = H − M̃(H) = H(g) and so

Tµν =
1

2
H

(g)
µλρg

λσgρτH(g)
νστ . (2.89)

As usual, we can recover the conservation of the energy-momentum tensor from the

invariance of the theory under general coordinates transformations. Indeed, consider a
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constant infinitesimal vector ξµ and re-write (2.62) as

0 =

∫
−2dH(g) ∧ δξB +H ∧ ∂M̃(H)

∂gµν
δξg

µν

=

∫
−2dH(g) ∧ δξB −

1

2
Tµνδξg

µν√−gd6x , (2.90)

where we used (2.79). Thus, by using δξg
µν = 2∇(µξν) and the equation of motion

dH(g) = 0, we recover ∇µTµν = 0.

The above discussion can be straightforwardly extended to include sources by per-

forming the replacement H(g) = H − M̃(H) 7→ HJ
(g) = H + J+ − M̃(H + J+).

2.2.5 Hamiltonian Formulation

It will be useful to also express the theory in the hamiltonian formulation; this is the

language that was first employed in [46, 47]. To this end we introduce i, j = 1, 2, .., 5.

Using self-duality the only independent fields are Hijk, Bij and Ai := B0i. However,

only Bij has a conjugate momentum:

ΠB
ij = −1

2

(
∂0Bij − 2∂[iAj]

)
+

1

3!
εijklmHklm , (2.91)

where εijklm = −ε0ijklm. The associated Poisson bracket is

{Bij(~x, t),ΠB
kl(~y, t)} = δi[kδl]jδ(~x− ~y) , (2.92)

and as a result we find that Ai and Hijk impose the constraints

∂iΠ
B
ij = 0

1

2
εijklmΠB

lm = Hijk − M̃ijk(H) +
3

2
∂[iBjk] . (2.93)

Following [46,47] we introduce

Π±ij :=
1

2

(
ΠB
ij ±

1

4
εijklm∂kBlm

)
, (2.94)

so that the constraints (2.93) become

∂iΠ
±
ij = 0

Π−ij =
1

2 · 3!
εijklm(Hklm − M̃klm(H)) . (2.95)
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In particular, we use the second constraint to determine Hijk as a function of Π−ij ,

H = H(Π−). The dynamical variables are then simply Π±ij with Poisson brackets:11

{Π±ij(~x, t),Π
±
kl(~y, t)} = ±1

8
εijklm

∂

∂xm
δ(~x− ~y)

{Π+
ij(~x, t),Π

−
kl(~y, t)} = 0 . (2.96)

Explicit calculation reveals that the hamiltonian density can be written as

H = Πij∂0Bij − L = H+ +H− , (2.97)

with

H+ = − 2Π+
ijΠ

+
ij − 4Π+

ij∂iA
+
j

H− = 2Π−ijΠ
−
ij +

1

3
εijklmΠ−ijM̃klm(H(Π−)) + 4Π−ij∂iA

−
j . (2.98)

Note that we have introduced two independent constraints to impose ∂iΠ
+
ij = 0

and ∂iΠ
−
ij = 0, rather than the single combined constraint ∂iΠ

B
ij = ∂i(Π

+
ij + Π−ij) = 0

that is obtained directly from the Legendre transform of the lagrangian. The reason is

that in the lagrangian formulation the constraint ∂iΠ
B
ij = 0 implies both ∂iΠ

+
ij = 0 and

∂iΠ
−
ij = 0, as the difference vanishes due a Bianchi identity. However, in the hamiltonian

formulation there is no Bianchi identity and we need to impose independent constraints

to ensure we do not just impose the less-restrictive constraint ∂i(Π
+
ij + Π−ij) = 0. In

other words, A+
j +A−j imposes the constraint ∂iΠ

B
ij and A+

j −A
−
j imposes the Bianchi

identity on ∂i(Π
+
ij−Π−ij). Thus we see that Π+

ij degrees of freedom are unphysical, with

the wrong sign for their energy, but are decoupled from the physical Π−ij degrees of

freedom.

It is interesting to note that in terms of the original lagrangian variables we have

Π+
ij = −1

2
H

(s)
0ij

Π−ij =
1

2 · 3!
εijklmH

(g)
klm

=
1

2

√
−gH0ij

(g) , (2.99)

11In principle, these should be Dirac brackets but in this particular case they reduce to standard
Poisson brackets [46,47].
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where indices are raised using gµν . We also observe that

2Π−ijΠ
−
ij +

1

3
εijklmΠ−ijM̃klm(H) = Π−ij

(
2Π−ij +

1

3
εijklmM̃klm(H)

)
= Π−ij

( 1

3!
εijklmHklm +

1

3!
εijklmM̃klm(H)

)
= Π−ij

(
−H0ij + M̃0ij(H)

)
= −Π−ijH

(g)
0ij

= −1

2

√
−gH0ij

(g)H
(g)
0ij , (2.100)

where we first used (2.95), then the (anti)self-duality properties of H and M̃ with

respect to ?η, and finally (2.99). Thus in terms of the lagrangian variables we see that,

after imposing the constraints ∂iΠ
±
ij = 0, the hamiltonian can be written as

H =

(
−1

2
H

(s)
0ijH

(s)
0ij −

√
−gT 0

0

)
. (2.101)

Here T 0
0 = g0µTµ0 where Tµν the energy-momentum tensor found in (2.89). There-

fore, we can construct the hamiltonian by first using familiar geometric techniques to

compute T 0
0 and then re-writing it in terms of Π−ij = 1

2

√
−gH0ij

(g) (i.e. one is required

to solve for H
(g)
0ij in terms of H0ij

(g) and hence Π−ij).

As a specific example, let us consider the case of a static-like spacetime with g0i = 0.

In that case we simply find

H
(g)
0ij = g00gikgjlH

0kl
(g) =

2√
−g

g00gikgjlΠ
−
kl , (2.102)

and hence

H = −2Π+
ijΠ

+
ij − 4Π−ij∂iA

+
j −

2√
−g

g00gikgjlΠ
−
ijΠ
−
kl + 4Π−ij∂iA

−
j . (2.103)

External sources can be included by leaving the definitions of Π±ij unchanged but

modifying the constraint for Π−ij to

Π−ij =
1

2 · 3!
εijklm(H

(g)
klm − Jklm)

=
1

2

√
−g(H0ij

(g) − J
0ij) . (2.104)

In this case we find, imposing the constraints ∂iΠ
±
ij = 0 and focussing once again on
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the case of static spacetimes for which g0i = 0,

H = −1

2
H

(s)
0ijH

(s)
0ij−

1

2

√
−g(HJ 0ij

(g) − J0ij)(HJ
(g)0ij − J0ij)

+
1

3!
(?ηJ)ijk(J − ?gJ)ijk , (2.105)

where the indices are raised using gµν . In terms of the hamiltonian variables Π±ij (2.103)

remains unchanged but now includes terms quadratic in the sources arising from the

last line in (2.105).

2.2.6 Supersymmetry

Here we will write the (on-shell) supersymmetric completion of the action (2.21), gen-

eralising the results of [26] to arbitrary backgrounds. We will not introduce sources

although some cases along these lines were considered in [26]. We assume that the

six-manifold admits a conformal Killing spinor that satisfies

∇µε = Γµζ , (2.106)

for some ζ = 1
6Γρ∇ρε.12 The matter fields XI and Ψ can be covariantly coupled to the

non-trivial metric as usual

Smat =

∫ (
−1

2
dXI ∧ ?gdXI +

i

2
Ψ̄Γµdx

µ ∧ ?g∇Ψ− 1

5
RXIXI

)
, (2.107)

with the action remaining invariant under the extended supersymmetry variations

δXI = iε̄ΓIΨ

δΨ = ΓµΓI∂µX
Iε− 2

3
ΓIXIΓρ∇ρε+ δHΨ , (2.108)

where δHΨ is yet to be determined. Here all geometric quantities are those associated

with a curved spacetime and hence {Γµ,Γν} = 2gµν . A short calculation shows that

the terms in δSmat involving XI cancel out, leaving

δSmat = −
∫
i
√
−g∇µΨ̄ΓµδHΨ . (2.109)

12From this one can derive that ∇2ε = − 1
10
Rε with R the Ricci curvature. Throughout this section

we use the conventions of [123].
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Let us now look at δSH and take

δBµν = −iε̄ΓµνΨ

δHµνλ =
3i

2
∂[λ(ε̄Γµν]Ψ) +

3i

2 · 3!
εµνλρστη

ραησβητγ∂γ(ε̄ΓαβΨ) . (2.110)

A key observation at this point is that

δH = −
(1 + ?η

2

)
dδB , (2.111)

and hence δH(s) = 0, i.e. we have a reducible representation of (2, 0) supersymmetry

where H(s) is a singlet.13 On the other hand, from δSH we have a non-vanishing

contribution from H ∧ dδB and an additional term14 from δ(H ∧ M̃(H)) = −2dδB ∧
M̃(H) which combine to give

δSH =

∫
i

3!
εµνλρστ∂µ(Ψ̄Γνλε)

(
H − M̃(H)

)
ρστ

=

∫
i
√
−g∇µ(Ψ̄Γνλε)(H − M̃(H))µνλ , (2.112)

where we have used the fact that H−M̃(H) is self-dual with respect to ?g and that the

Christoffel terms drop out of a covariant derivative involving anti-symmetrised indices.

Everything is now in purely geometric terms.

To continue, we note that if ∇µε = Γµζ then Γ012345ζ = −
√
−det g ζ, hence Ψ̄Γµνλζ

is self-dual. As a result the ∇µε term drops out of δSH and we find

δSH =

∫
i
√
−g∇µΨ̄Γνλε(H − M̃(H))µνλ. (2.113)

It is then easy to check that

δHΨ =
1

3!
Γµνλ(H − M̃(H))µνλε , (2.114)

will lead to a supersymmetric action.

In summary, we have that the action S = SH +Smat is invariant under the on-shell

13One expects the fact that H(s) is a supersymmetry singlet. It is also a singlet under all diffeomor-
phisms and supersymmetry acts, roughly speaking, as the square root of a translation.

14Clearly, δM̃ = 0, since M̃ = 0 is a function of the background metric only.
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supersymmetry, realised by the transformations

δXI = iε̄ΓIΨ

δBµν = −iε̄ΓµνΨ

δHµνλ =
3i

2
ε̄Γ[µν∇λ]Ψ +

3i

2 · 3!
εµνλρστη

ραησβητγ ε̄Γαβ∇γΨ

− i

4
∇ρε̄ΓρΓµνλΨ− i

4 · 3!
εµνλρστη

ραησβητγ∇ω ε̄ΓωΓαβγΨ

δΨ = ΓµΓI∂µX
Iε− 2

3
ΓIXIΓρ∇ρε+

1

3!
Γµνλ(H − M̃(H))µνλε , (2.115)

for any spinor that satisfies ∇µε = 1
6ΓµΓρ∇ρε and Γ012345ε =

√
−g ε.

2.3 Reductions of the Abelian (2,0) Theory

Having developed this geometric formulation we now turn to its compactification. We

will focus on three examples: that of a circle, K3 and a Riemann surface. The first

reproduces five-dimensional Maxwell theory, while the second gives a heterotic string

transverse to R5 × T3. The Riemann-surface reduction leads to the Seiberg–Witten

effective action for a four-dimensional N = 2 Yang-Mills gauge theory. The first two

cases are consistent with expectations whereas the third gives rise to some new features.

In this section we set the fermions to zero for simplicity as we do not expect them to

provide any novel physics.

2.3.1 Reduction on a Circle

The simplest case to consider is a six-dimensional manifold with a product metric of

the form

g =

(
η5 0

0 R2

)
, (2.116)

where η5 is the flat five-dimensional Minkowski metric. From the M-theory point of

view, reducing a single M5-brane on a circle produces a D4-brane in type IIA string

theory, which in turn is described by five-dimensional supersymmetric Maxwell the-

ory.15

On the one hand we can express the ωA+ and ω−A basis of six-dimensional (anti)self-

15We will explicitly perform the reduction of SH only; the matter part can be reduced as usual.
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dual three-forms with respect to η6 as

ωA+ = ΩA ∧ dx5 + ?5ΩA

ω−A = ΩA ∧ dx5 − ?5ΩA , (2.117)

where ΩA are a basis of two-forms in five dimensions and ?5 is the Hodge dual con-

structed from η5. On the other hand, a basis of self-dual three-forms with respect to g

is

ϕA = ΩA ∧ dx5 +
1

R
?5 ΩA

=
R+ 1

2R
ωA+ +

R− 1

2R
ω−A . (2.118)

Then, using the definition (2.37) and the result (2.40), one can extract that for this

case

M̃AB = −R− 1

R+ 1
δAB , (2.119)

which is indeed symmetric because the forms ωA+, ω−A defined in (2.117) satisfy the

condition (2.34). By expanding the self-dual field H in the above basis, H = HAω
A
+,

we have

H(g) = H − M̃(H)

= HAω
A
+ +

R− 1

R+ 1
HAω−A

=
2R

R+ 1
HAΩA ∧ dx5 +

2

R+ 1
?5 HAΩA . (2.120)

From Eqs. (2.118)-(2.120) it is clear that R is dimensionless. This is due to the fact

that in this theory we are dealing with the ?g-self-duality condition of H(g) which, for

the metric chosen in (2.116), reads as

H(g)ijk
=− 1

R
εijklH(g)0l5

H(g)ij5
=− R

2
εijmnH(g)0mn

.

(2.121)

Thus, to keep the dimensions of H
(g)
µνρ independent of µ, ν, ρ, we work with a convention

where R is dimensionless and x5 is compact with x5 ∼= x5 + l for some parameter l with

dimensions of length. The resulting physical size of the fifth dimension is lR.

By implementing the above in Eq. (2.103), we immediately find

H− =
2

R
Π−abΠ

−
ab + 4RΠ−a5Π−a5 + 4Π−ab∂aA

−
b + 4Π−a5(∂aA

−
5 − ∂5A

−
a ) , (2.122)

41



CHAPTER 2. GEOMETRICAL ASPECTS OF AN ABELIAN (2,0) ACTION

where a, b = 1, 2, 3, 4. If we truncate to the zero-mode sector along the circle then we

can solve the A−a constraint by writing

Π−ab = − β
4l
εabcd∂cAd , (2.123)

for some Aa with β a unitless normalisation factor that can be fixed ad libitum. The

hamiltonian density reduces to

H− =
β2

8lR
(∂aAb − ∂bAa)2 + 4RlΠ−a5Π−a5 + 4lΠ−a5∂aA

−
5 , (2.124)

while the Poisson bracket (2.96) becomes16

{Aa(~x, t),Π−b5(~y, t)} =
1

2β
δabδ4(~x− ~y) . (2.125)

Thus Aa is canonically conjugate to Π−a5 provided that we fix β = 1/2. We can use this

last expression to compute Hamilton’s equations

∂0Aa = 8RlΠ−a5 + 4l∂aA
−
5 ,

∂0Πa5 = − 1

8Rl
∂b(∂aAb − ∂bAa) , (2.126)

which then yield Maxwell’s equations for a gauge potential given by {4lA−5 , Aa}. A

standard five-dimensional Maxwell lagrangian is then obtained through an inverse Leg-

endre transform; by using (2.126), we get

L− =
(
∂0AaΠ

−
a5 −H−

) ∣∣∣
Π−a5= 1

8Rl
(∂0Aa−4l∂aA

−
5 )

=
1

32Rl

(
2
(
∂0Aa − 4l∂aA

−
5

)2
− (∂aAb − ∂bAa)2

)
, (2.127)

which scales with 1/R.

Alternatively, we can also perform the reduction within the lagrangian formalism;

this is an instructive exercise which makes even more transparent how this 1/R depen-

dence in front of the 5D theory is due to the non-standard coupling of the 6D theory

to the metric. By dimensionally reducing the action (2.21) on a circle, we get

S0 = l

∫
R1,4

[
− 1

2
d5B ∧ ?5d5B −

1

2l2
d5B5 ∧ ?5d5B5

+
2

l
H5 ∧ d5B −

2

l2
H5 ∧ ?5d5B5 −

2

l2
R− 1

R+ 1
H5 ∧ ?5H5

]
, (2.128)

16Note that upon reduction over x5 the five-dimensional delta function δ(~x−~y) changes to l−1 times
the four-dimensional delta-function δ4(~x− ~y).
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where all the fields are to be understood as zero-modes and B5, H5 stand for B5 :=

lBµ5dx
µ, H5 := l

2Hµν5dx
µ ∧ dxν . The equations of motion yield

d5F
(g) =

1

R
d5 ?5 F

(g) = 0

d5F
(s) = d5 ?5 F

(s) = 0 , (2.129)

where F (s) and F (g) are defined by

F (g) :=li5H
(g) =

2R

R+ 1
H5

F (s) :=H5 +
1

2
d5B5 −

l

2
?5 d5B . (2.130)

Thus we recover two five-dimensional free Maxwell fields.

If one computes the hamiltonian density arising from the compactified lagrangian

(2.128) one finds the same result as compactifying the six-dimensional hamiltonian we

considered above (including both Π+
ij and Π−ij sectors). Therefore F (s) is unphysical.

On the other hand, one would like to identify the physical degrees of freedom already

at the level of the compactified lagrangian. This is better done in the “dual frame”,

where the 2-form B is dualised to a vector AB. That is, in (2.128) we introduce a

Lagrange multiplier AB, which imposes the Bianchi identity on Q := d5B as follows:

S0 = l

∫
R1,4

[
− 1

2
Q ∧ ?5Q+

2

l
H5 ∧Q

− 1

2l2
d5B5 ∧ ?5d5B5 −

2

l2
H5 ∧ ?5d5B5

− 2

l2
R− 1

R+ 1
H5 ∧ ?5H5 +

1

l
Q ∧ d5A

B
]
, (2.131)

so that AB has mass dimension one. By integrating out Q we get

S0 =
1

l

∫
R1,4

[
− 1

2
d5A

B ∧ ?5d5A
B − 2H5 ∧ ?5d5A

B

− 1

2
d5B5 ∧ ?5d5B5 − 2H5 ∧ ?5d5B5

− 4R

R+ 1
H5 ∧ ?5H5

]
. (2.132)

It is then natural to also integrate out H5, the equations of motion for which impose

2R

R+ 1
H5 = −1

2
d5

(
AB +B5

)
. (2.133)
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The action then becomes

S0 =
1

Rl

1−R
4

∫
R1,4

d5A ∧ ?5d5A−
1

l

1

1−R

∫
R1,4

d5A
B ∧ ?5d5A

B , (2.134)

where the vector A is defined as

A := B5 +
1 +R

1−R
AB . (2.135)

Here we see two free Maxwell fields with opposite signs for their kinetic terms. When

we take R→ 0, A has the correct sign and its kinetic term scales with 1/R. In this limit

A = B5 +AB and (2.133) then states that d5A is nothing but F (g), i.e. d5A = −2F (g).

In summary, by performing a circle reduction we have found a five-dimensional

lagrangian that scales like 1/R rather than R; the latter scaling had been previously

noted as a challenge for the construction of an action for the M5-brane [120]. Of

course, the discussion here might be somewhat unconvincing as we have a free theory

and hence we can rescale the fields by any function of R that we like (recall that R

is dimensionless), for example by taking a different choice of β in Eqs. (2.124)-(2.125).

However the Poisson bracket we used arose from six-dimensions and its normalisation

is fixed. Furthermore the dependence on l is determined by dimensional analysis and

only the combination Rl has a physical meaning as the size of the fifth dimension. So

there is some hope that this calculation is meaningful.

A more stringent test would be to recover the same R scaling in five-dimensional

Super-Yang-Mills by considering the non-abelian action constructed in [26], so we close

this subsection by sketching some aspects of the corresponding calculation. The la-

grangian of [26] employs a covariantly-constant vector field Y µ with dimensions of

length, first introduced in [123].17 For a circle reduction it is natural to fix Y 5 = y,18

and hence independent of x5. However, in the cases where Y is not null, it is straight-

forward to see by looking at the matter terms in the action that the five-dimensional

coupling constant will be

g2 = Rl

(
|〈y, y〉|
R2l2

)
. (2.136)

Thus g2 can be thought of as proportional to Rl but with an arbitrary coefficient given

by the dimensionless combination 〈y, y〉/R2l2. Comparing with string theory requires

us to identify |〈y, y〉| = (2πRl)2.

17In that construction, Y µ takes values in a three-algebra.
18With y some element of the three-algebra.
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2.3.2 Reduction on K3

According to U-duality M-theory on K3 is dual to heterotic string theory on T3 [57,124].

In particular, an M5-brane wrapped on K3 should give the same dynamics as a heterotic

string transverse to R5 × T3. At the worldvolume level this reduction was performed

in [125]. We now investigate whether the action (2.21) is also consistent with this

expectation.

The reduction on K3 can be performed in the hamiltonian formulation. We take the

K3 to span the dimensions x1, ..., x4. Since the H+ component in (2.97) is independent

of any geometric information, it is not clear how to reduce it on K3. However this does

not pose a problem since, as we did for the circle reduction, one can simply think of H+

as a six-dimensional hamiltonian that decouples from the physical degrees of freedom,

and focus on reducing H−. To this end, we recall from (2.99) that (a, b ∈ {1, 2, 3, 4})

Π−ab =
1

2

√
gK3H

0ab
(g) =

1

4
εabcdH

(g)
5cd

Π−5a =
1

2

√
gK3H

05a
(g) =

1

4
εabcdH

(g)
bcd . (2.137)

Next, we make the following ansatz for the Kaluza–Klein reduction of the 3-form fields

H
(g)
0ab = (−PAϕA+ +QA

′
ϕA′−)ab

H
(g)
5ab = (PAϕ

A
+ +QA

′
ϕA′−)ab

H
(g)
bcd = 0 , (2.138)

where ?K3ϕ
A
+ = ϕA+ and ?K3ϕA′− = −ϕA′−, with ϕA+, ϕA′− harmonic 2-forms on K3.

In particular, here A = 1, 2, ..., 19 and A′ = 1, 2, 3. Note that for such an ansatz

the constraint ∂iΠ
−
ij = 0 is automatically satisfied (Π−5a = 0 and ∂bΠ

−
ba = 0 because

ϕA+ and ϕA′− are harmonic on K3, hence closed). Note that we have assumed that

the usual Kaluza–Klein ansatz can be applied even though, strictly speaking, H(g) is

not a differential form. In particular, we assume that the non-standard transforma-

tions arising from diffeomorphisms that we discussed in Sec. 2.2.3 can be absorbed by

suitably-modified diffeomorphism transformations of PA and QA
′
.

Using this input, one finds

H− = −
∫

K3

1

2

√
gK3H

0ab
(g) H

(g)
0ab

= −
∫

K3

1

4
εabcdH

(g)
5cdH

(g)
0ab

= κABPAPB + κA′B′Q
A′QB

′
, (2.139)
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where we defined

κAB :=

∫
K3
ϕA+ ∧ ϕB+ , κA′B′ := −

∫
K3
ϕA′− ∧ ϕB′− , (2.140)

which clearly are invertible matrices.

We also need to reduce the Poisson bracket (here ~x and ~y denote local coordinates

on K3 and σ, σ′ are coordinates in the remaining x5 direction):

−1

8
εabcdδ4(~x− ~y)

∂

∂σ
δ(σ − σ′) = {Π−ab(σ, ~x, t),Π

−
cd(σ

′, ~y, t)} (2.141)

=
1

16
εabefεcdgh{PA(σ, t)ϕA+ef (~x) +QA

′
(σ, t)ϕA′−ef (~x),

PB(σ′, t)ϕB+gh(~y) +QA
′
(σ′, t)ϕA′−gh(~y)} ,

and hence

εabcdδ4(~x− ~y)
∂

∂σ
δ(σ − σ′) = −2 det(gK3){PA(σ, t)ϕAab+ (~x)−QA′(σ, t)ϕabA′−(~x),

PB(σ′, t)ϕBcd+ (~y)−QA′(σ′, t)ϕcdA′−(~y)} .
(2.142)

Multiplying by ϕC+ab(~x)ϕD+cd(~y), ϕC+ab(~x)ϕD′−cd(~y) and ϕC′−ab(~x)ϕD′−cd(~y) and inte-

grating over K3×K3 we respectively find

{PA(σ, t), PB(σ′, t)} = −1

2
κ−1
AB

∂

∂σ
δ(σ − σ′)

{PA(σ, t), QB
′
(σ′, t)} = 0

{QA′(σ, t), QB′(σ′, t)} =
1

2
(κ−1)A

′B′ ∂

∂σ
δ(σ − σ′) . (2.143)

This returns the same hamiltonian and Poisson-bracket structure as in [47] for (anti)-

chiral bosons, albeit without having compactified the x5 direction. Moreover, Hamil-

ton’s equations give

∂PA
∂t
− ∂PA

∂σ
= 0

∂QA
′

∂t
+
∂QA

′

∂σ
= 0 , (2.144)

and we have recovered 19 chiral bosons from PA and 3 anti-chiral bosons from QA
′
.

The above must be supplemented with the six-dimensional scalar hamiltonian and
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Poisson bracket

Hscal =

√
gK3

2

(
ΠIΠI + gab∂aX

I∂bX
I + ∂5X

I∂5X
I
)

{XI(σ, ~x, t),ΠJ(σ′, ~y, t)} =
1
√
gK3

δIJδ(σ − σ′)δ4(~x− ~y) , (2.145)

derived from the scalar part of the action (2.107) (the Ricci curvature vanishes in

R1,1×K3 and this still holds if we compactify the x5 direction). Reducing Hscal merely

requires taking the scalars and their momenta to be independent of K3, and as a result

simply introduces a factor, vol(K3),

Hscal =
1

2
vol(K3)

(
ΠIΠI + ∂σX

I∂σX
I
)

{XI(σ, t),ΠJ(σ′, t)} = (vol(K3))−1δIJδ(σ − σ′) . (2.146)

If we define

P I :=

√
vol(K3)

2

(
ΠI − ∂σXI

)
, QI :=

√
vol(K3)

2

(
ΠI + ∂σX

I
)
. (2.147)

we then find

Hscal =
1

2
P IP I +

1

2
QIQI , (2.148)

and

{P I(σ, t), P J(σ′, t)} = −δIJ ∂

∂σ
δ(σ − σ′)

{P I(σ, t), QJ(σ′, t)} = 0

{QI(σ, t), QJ(σ′, t)} = δIJ
∂

∂σ
δ(σ − σ′) . (2.149)

This leads to 5 chiral bosons P I and 5 anti-chiral bosons QI . Similarly, the reduction

of the fermionic hamiltonian clearly leads to 8 chiral and 8 anti-chiral fermions in two

dimensions.

Finally, let us impose a flux-quantisation condition of the form

1

(2π)3

∫
C3

H(g) ∈ Z , (2.150)

over three-cycles C3 in the full six-dimensional theory. For the purposes of this section,

it is enough to consider three-cycles of the form C3 = S1 × C2, where S1 is the com-

pactified x5 direction with radius R = 1 (so that M̃ = 0) and C2 is a two-cycle in K3.
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The harmonic forms satisfy the quantisation condition

1

(2π)2

∫
C2

ϕA+ ∈ Z ,
1

(2π)2

∫
C2

ϕA′− ∈ Z , (2.151)

which implies a quantisation condition

1

2π

∫
S1

PA ∈ Z ,
1

2π

∫
S1

QA
′ ∈ Z . (2.152)

This in turn implies an integral constraint on the zero-modes for PA and QA
′
. Thus, if

we view PA and QA
′

as arising from chiral bosons PA = ∂σφA, QA
′

= ∂σφ
A′ , then φA

and φA
′

must be compact with period 2π.

All in all, we find 19 + 5 = 24 chiral bosons (19 of which are compact) 3 + 5 = 8

anti-chiral bosons (3 of which are compact), 8 chiral fermions and 8 anti-chiral fermions

i.e. the physical degrees of freedom of a heterotic string transverse to R5 × T3.

2.3.3 Reduction on a Riemann Surface

It has been known for some time that the dynamics of a single M5-brane on a non-

compact Riemann surface leads at low energies to the Seiberg–Witten effective action [9]

of a four-dimensional N = 2 gauge theory [126]. The idea is to wrap the M5-brane

worldvolume on a complex curve Σ, whose embedding into spacetime is specified by

some holomorphic function s(z). Such a curve is subjected to boundary conditions

whose interpretation at infinity is that of intersecting M5-branes. Reducing to type

IIA string theory leads to a picture of parallel D4-branes suspended between NS5-

branes whose dynamics is given by an N = 2 Yang-Mills gauge theory. One then finds

that s(z) depends on various moduli of the Riemann surface uα, α = 1, ..., N − 1. To

compute the four-dimensional effective action from the M5-brane one is not interested

in all of its dynamics, rather just those of its zero-modes: the moduli uα and their

superpartners.

This framework was used to reproduce the scalar sector of the resultant four-

dimensional effective action in [121], where a simple kinetic term for the single M5-brane

theory can be easily written down. To find the dynamics of the vector fields without an

action is more involved. Without scalars, and for a flat torus, the calculation appeared

in [127]. For the case of a single M5-brane on a generic Riemann surface the calculation

was done in [122] using the equations of motion. This led to interesting integrals over

non-holomorphic functions whose evaluation is nevertheless a holomorphic function of

the moduli.

But now that we have a proposed action for the self-dual tensors in six-dimensions,

this setup provides a natural and non-trivial testing ground for its interpretation as

capturing the low-energy dynamics of single M5-brane. The reduction of the action
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(2.21) over a rigid compact torus was already performed in [47] and shows the cor-

rect SL(2,Z) invariance expected from large diffeomorphisms. Here we will concern

ourselves with the case of generic, non-compact Riemann surfaces.

We therefore want to consider an M5-brane where two of its directions (x4 and x5

combined into the complex coordinate z = x4 + ix5), are embedded into spacetime by

means of the function s = X6 + iX10. Here X10 denotes the M-theory direction and

is compact. We label the remaining worldvolume coordinates by xm, m = 0, 1, 2, 3.

The embedding of the M5-brane is defined by Xm = xm, X7 = X8 = X9 = 0 and in

particular is such that s(z) is a holomorphic function [121].19 The induced metric on

the M5 is given by

g =

η4 0 0

0 0 (1 + ∂zs∂̄z̄ s̄)/2

0 (1 + ∂zs∂z̄ s̄)/2 0

 . (2.153)

Here the coordinates are 0, 1, 2, 3, z, z̄ so that

η =

η4 0 0

0 0 1/2

0 1/2 0

 . (2.154)

In the usual fashion, the zero-mode dynamics can be determined by working in

the Manton approximation [128]: the moduli—and consequently s—are promoted to

functions of the remaining four coordinates xm, m = 0, 1, 2, 3 that are slowly varying

so that [121]

∂ms =
∑
α

∂s

∂uα
∂muα . (2.155)

From this one defines the Seiberg–Witten differential λSW = s(z)dz [129] and the

holomorphic 1-forms

λα =
∂s

∂uα
dz . (2.156)

Following [9] one identifies the low-energy scalar fields as

aα =

∮
Aα

sdz , (2.157)

19At this stage we neglect terms with ∂ms 6= 0 as these will result into higher-order derivative terms
in the Seiberg–Witten effective action.
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where Aα, B
α are a basis of cycles of Σ with intersection matrix

Aα ∩Bβ = −Bβ ∩Aα = δβα . (2.158)

One also defines the dual variables aDα as

aDα =

∮
Bα

sdz . (2.159)

The periods of the holomorphic 1-forms are then∮
Aγ

λα =
∂aγ
∂uα

,

∮
Bγ

λα =
∂aDγ
∂uα

, (2.160)

while the period matrix can be expressed as

ταβ =
∂aDα
∂aβ

= τβα . (2.161)

It is useful to note that∫
Σ
λα ∧ λ̄β =

∑
γ

(∮
Aγ

λα

∮
Bγ

λ̄β −
∮
Bγ

λα

∮
Aγ

λ̄β

)

=
∑
γ

(
∂aγ
∂uα

∂āDγ
∂ūβ

−
∂aDγ
∂uα

∂āγ
∂ūβ

)

=
∑
γ

∂aγ
∂uα

∂āδ
∂ūβ

(τ̄γδ − τγδ) . (2.162)

We can also consider the holomorphic 1-forms

ϑα =
∂s

∂aα
dz =

∑
β

∂uβ
∂aα

λβ , (2.163)

which are normalised to have unit period over the A-cycles:∮
Aγ

ϑα = δγα (2.164)

and hence ∮
Bγ
ϑα = ταγ ,

∫
Σ
ϑα ∧ ϑ̄β = τ̄αβ − ταβ . (2.165)

This machinery can be applied to the scalar part of the action (2.107). One straight-
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forwardly finds [121]:

Sscal = −1

2

∫
d4xd2z∂ms∂

ms̄

= −1

2

∑
α,β

∫
d4xd2z

∂s

∂uα

∂s̄

∂ūβ
∂muα∂

mūβ

= − i
4

∑
α,β

∫
d4x∂muα∂

mūβ

∫
Σ
λα ∧ λ̄β

= − i
4

∑
α,β

∫
d4x(τ̄αβ − ταβ)∂maα∂

māβ

= −1

2

∑
α,β

∫
d4xIm (ταβ∂maα∂

māβ) , (2.166)

which is precisely the scalar part of the Seiberg–Witten effective action.

However, our main goal is to use the action (2.21) to reproduce the gauge-field part

of the four-dimensional effective action. To proceed, note that if H is of the special

form H = F ∧ dz or H = F̄ ∧ dz̄ then one finds ?ηH = H provided that ?4F = −iF .

The remaining (anti)self-dual forms with respect to η can be expressed in terms of the

basis

ω+ = h+
i

2
?4 h ∧ dz ∧ dz̄

ω− = h− i

2
?4 h ∧ dz ∧ dz̄ , (2.167)

where h = 1
3!hmnldx

m ∧ dxn ∧ dxl. Therefore in general we have

H = F ∧ dz + F̄ ∧ dz̄ + h+
i

2
?4 h ∧ dz ∧ dz̄ , (2.168)

with F = i ?4 F , for which H is real and satisfies ?ηH = H.

For completeness, let us also determine H(g). When H = F ∧dz or H = F̄ ∧dz̄ one

has that ?gH = H and thus M̃(Hmnzdx
m ∧ dxn ∧ dz) = M̃(Hmnz̄dx

m ∧ dxn ∧ dz̄) = 0,

whereas the remaining ?g-self-dual forms can be expressed in terms of the basis

ϕ = h+ i
1 + ∂zs∂z̄ s̄

2
?4 h ∧ dz ∧ dz̄

=
2 + ∂zs∂z̄ s̄

2
ω+ −

∂zs∂z̄ s̄

2
ω− , (2.169)

from which using (2.33), (2.37) and (2.40) we obtain

M̃
(
h+

i

2
(?4h) ∧ dz ∧ dz̄

)
=

∂zs∂z̄ s̄

2 + ∂zs∂z̄ s̄

(
h− i

2
(?4h) ∧ dz ∧ dz̄

)
. (2.170)
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Finally, from (2.45)

H(g) = F ∧ dz + F̄ ∧ dz̄ +
2

2 + ∂zs∂z̄ s̄
h+ i

1 + ∂zs∂z̄ s̄

2 + ∂zs∂z̄ s̄
?4 h ∧ dz ∧ dz̄ . (2.171)

To arrive at the desired four-dimensional effective action including gauge fields, one

needs to consider a suitable ansatz for H and B by truncating to the lowest Kaluza–

Klein modes; this corresponds to restricting to harmonic 1-forms on Σ.20 We pick the

following normalisation:

H =
∑
α

Fα ∧ ϑα +
∑
α

F̄α ∧ ϑ̄α , (2.172)

where Fα = i ?4 Fα, while for B we initially set

B =
∑
α

Aα ∧ ϑα +
∑
α

Āα ∧ ϑ̄α , (2.173)

where Aα = Aαmdx
m are four-dimensional 1-forms.

At this stage recall that the action (2.21) has a gauge symmetry B → B + dΛ,

where Λ is an arbitrary 1-form. This is expected to descend to a 0-form gauge sym-

metry for Aα: Aα → Aα + d4λα. However, since the ϑα are dynamical, under such a

transformation

B → B + d

(∑
α

λαϑα +
∑
α

λ̄αϑ̄α

)
−
∑
α,β

λαd4aβ ∧
∂ϑα
∂aβ

−
∑
α,β

λ̄αd4āβ ∧
∂ϑ̄α
∂āβ

.

(2.174)

To compensate for this we introduce four-dimensional Stueckelberg-like scalar fields

cα, c̄α and expand

B =
∑
α

(
Aα ∧ ϑα − cαd4aβ ∧

∂ϑα
∂aβ

)
+
∑
α

(
Āα ∧ ϑ̄α − c̄αd4āβ ∧

∂ϑ̄α
∂āβ

)
, (2.175)

so that under the combined gauge transformation Aα → Aα + d4λα, cα → cα − λα we

recover a one-form gauge transformation

B → B + d

(∑
α

λαϑα +
∑
α

λ̄αϑ̄α

)
. (2.176)

20Since Σ is non-compact the zero-form and two-form harmonic forms have divergent integrals and
hence do not lead to low-energy modes. Thus M̃ does not play a role here.
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With this in hand, we compute

dB =
∑
α

d4Aα ∧ ϑα +
∑
α

d4Āα ∧ ϑ̄α (2.177)

−
∑
α

(Aα + d4cα) ∧ d4aβ ∧
∂ϑα
∂aβ

−
∑
α,β

(Āα + d4c̄α) ∧ d4āβ ∧
∂ϑ̄α
∂āβ

?ηdB =
∑
α

i ?4 d4Aα ∧ ϑα −
∑
α

i ?4 d4Āα ∧ ϑ̄α

−
∑
α

i ?4 ((Aα + d4cα) ∧ d4aβ) ∧ ∂ϑα
∂aβ

+
∑
α,β

i ?4 ((Āα + d4c̄α) ∧ d4āβ) ∧ ∂ϑ̄α
∂āβ

,

where d4 denotes the exterior derivative along xm. To continue, observe that∫
Σ
ϑα ∧

∂ϑ̄β
∂āγ

=
∂

∂āγ

∫
Σ
ϑα ∧ ϑ̄β =

∂τ̄αβ
∂āγ∫

Σ

∂ϑα
∂aγ
∧ ϑ̄β =

∂

∂aγ

∫
Σ
ϑα ∧ ϑ̄β = −

∂ταβ
∂aγ

, (2.178)

and ∫
Σ

∂ϑα
∂aγ
∧
∂ϑ̄β
∂āδ

=
∂

∂āδ

∫
Σ

∂ϑα
∂aγ
∧ ϑ̄β = − ∂

∂āδ

(
∂ταβ
∂aγ

)
= 0 . (2.179)

Substituting (2.172) and (2.177) into (2.21) we find21

SH =

∫ (
− (τ − τ̄)αβ

(
−d4Aα ∧ i ?4 dĀβ − 2Fα ∧ d4Āβ + 2F̄α ∧ d4Aβ

)
(2.180)

+
∂ταβ
∂aγ

(−i ?4 d4Āα ∧ (Aβ + d4cβ) ∧ d4aγ + 2F̄α ∧ (Aβ + d4cβ) ∧ d4aγ)

+
∂τ̄αβ
∂āγ

(i ?4 d4Aα ∧ (Āβ + d4c̄β) ∧ d4āγ + 2Fα ∧ (Āβ + d4c̄β) ∧ d4āγ)
)

=

∫ (
(τ − τ̄)αβ

(
d4Aα ∧ i ?4 dĀβ + 2Fα ∧ d4Āβ − 2F̄α ∧ d4Aβ

)
+ (−i ?4 d4Āα ∧ (Aβ + d4cβ) ∧ d4ταβ + 2F̄α ∧ (Aβ + d4cβ) ∧ d4ταβ)

+ (i ?4 d4Aα ∧ (Āβ + d4c̄β) ∧ d4τ̄αβ + 2Fα ∧ (Āβ + d4c̄β) ∧ d4τ̄αβ)
)
.

It is helpful to introduce the two-form

F (s)
α := Fα +

1

2
d4Aα +

i

2
?4 d4Aα , (2.181)

21We remind the reader that due to our Kaluza–Klein ansatz M̃ does not enter this calculation.
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and combine the pieces (2.166) and (2.180) to rewrite the action as

S = Sscal + SH

=

∫ (
− 1

4
(τ − τ̄)αβd4aα ∧ i ?4 d4āβ − (τ − τ̄)αβd4Aα ∧ i ?4 d4Āβ + (τ + τ̄)αβd4Aα ∧ d4Āβ

+ 2F (s)
α ∧

(
(τ − τ̄)αβd4Āβ − d4τ̄αβ ∧ (Āβ + d4c̄β)

)
− 2F̄ (s)

α ∧
(
(τ − τ̄)αβd4Aβ + d4ταβ ∧ (Aβ + d4cβ)

))
. (2.182)

The first line agrees with the Seiberg–Witten effective action [9] but for two sets of

U(1) gauge fields, corresponding to the real and imaginary parts of Aα. However, the

F̄ (s)
α equation imposes the constraint

(τ − τ̄)αβd4Aβ + d4ταβ ∧ (Aβ + d4cβ) = i ?4

(
(τ − τ̄)αβd4Aβ + d4ταβ ∧ (Aβ + d4cβ)

)
.

(2.183)

This implies that the real and imaginary parts of Aα are related by electric-magnetic

duality, e.g. if d4ταβ = 0 then this reduces to

Im(d4Aα) = ?4Re(d4Aα) . (2.184)

More generally the constraint (2.183) is harder to disentangle. It is worth observing

that Aα + d4cα are gauge invariant 1-forms which could provide a restriction on the

types of fields that can arise.

Next, we observe that the Stueckelberg fields impose the equation of motion

d4F (s)
α ∧ d4τ̄αβ = 0 , (2.185)

which generically implies that d4F (s)
α = 0. Thus the F (s)

α decouple in the sense that

their equations of motion do not depend on the other fields.

One also finds extra contributions to the scalar and vector equations of motion

arising from F (s). Assuming d4F (s)
α = 0 we find

0 =(τ − τ̄)αβd4i ?4 d4aβ +
∂ταβ
∂aγ

d4aγ ∧ i ?4 d4aβ

+ 2
∂τ̄βγ
∂āα

(d4Aβ + i ?4 d4Aβ) ∧ (d4Āγ + i ?4 d4Āγ) + 4
∂τ̄βγ
∂āα
F̄ (s)
β ∧ (d4Aγ − i ?4 dAγ)

0 =d4 (i ?4 (τ − τ̄)αβdAβ − (τ + τ̄)αβdAβ)− 2d4ταβ ∧ F (s)
β . (2.186)

One recovers the standard Seiberg–Witten equations [9] in the special case of F (s)
α =

0. More generally, F (s)
α acts as an non-dynamical background electromagnetic field. Its
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effects can also be implemented by replacing the last two lines of (2.182) by

Lbackground = 2ταβF (s)
α ∧ d4Āβ + 2τ̄αβF̄ (s)

α ∧ d4Aβ , (2.187)

and imposing the self-duality constraint (2.183) by hand.

Lastly, let us comment on the fact that the equations of motion also admit a sector

where d4τ̄αβ = 0. On the one hand, for generic τ̄αβ the dynamical constraint on F (s)

from (2.185) freezes out the scalars, and hence also the vectors. On the other, if ταβ is

constant then we recover a free Seiberg–Witten theory for two gauge fields related by

(2.184). Mixed solutions where both dF (s)
α and d4τ̄αβ are non-zero do not seem very

likely unless ταβ has some reduced dependence on the moduli.

2.4 Conclusions

In this chapter, we studied the six-dimensional action put forward in [47]—and its (2,0)

supersymmetric completion [26]—clarifying many of its unconventional features. This

formulation aims to encode the dynamics of a chiral 2-form in 6D into a “2-form” B

and an ?η-self-dual “3-form” H. Although all of our analysis is performed for chiral

2-forms in six-dimensions, all the techniques we developed can be readily applied to

other dimensions.

We elucidated on the coupling of these fields to arbitrary geometries, and in the

course of doing so provided a construction of the interaction term M̃ that goes beyond

the perturbative approach of [47]. Moreover, we wrote down how the original fields

B,H—which are not conventional differential forms and we dubbed “pseudo-forms”—

can be combined into the unphysical H(s) and the physical H(g) fields; the H(s) is a

singlet while H(g) has (on-shell) standard transformation properties under diffeomor-

phisms. We also clarified some aspects of the hamiltonian analysis. First, we showed

that H(s) and H(g) correspond precisely to the Π± variables introduced in [47]. The

fact that Π+ describes a non-unitary decoupled sector of the theory is consistent with

the fact that H(s) is self-dual with respect to η. Indeed, H(s) inherits the non-unitarity

of B so it must completely decouple from the physics including gravity. Instead, H(g)

carries the physical degrees of freedom and is self-dual with respect to the actual phys-

ical metric. Second, we gave a formulation of the hamiltonian in terms of H(s) and

the energy-momentum tensor T 0
0 of H(g). We therefore showed that it is possible to

construct the physical hamiltonian by first using familiar geometric techniques to com-

pute T 0
0 and then re-expressing H(g) in terms of Π−; this leads to particularly simple

expressions for static backgrounds (i.e. g0i = 0).

We then dimensionally reduced the proposed (2,0) action on three backgrounds: a

circle, K3 and a Riemann surface. We performed these reductions by implementing
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the usual Kaluza–Klein ansatz, that is assuming that the only surviving modes at

low energies are the zero-modes. While this is standard for theories with physical

degrees of freedom, it is not entirely clear that there are no subtleties for the case at

hand, where we are dealing with “pseudo-forms”—one of which (B) has the wrong-sign

kinetic term. With that disclaimer, we proceeded and found results that are aligned

with expectations. For the circle reduction we arrived at a Maxwell theory that scales

like 1/R. Although in a free theory one can always rescale the fields to change the

overall coefficient, this 1/R scaling is also consistent with the Legendre transform of

the 6D hamiltonian reduced on the circle, if one works with canonically-conjugate pairs.

A logically straightforward next step in this direction would be to explicitly extend the

analysis to the nonabelian, 3-algebra version of the theory constructed in [26]. For the

reduction on the Riemann surface, we recovered the expected 4DN = 2 Seiberg–Witten

effective action for two sets of abelian gauge fields, subject to a constraint. Perhaps

surprisingly, in the special case where the period matrix of the Seiberg–Witten curve

ταβ was independent of the Riemann-surface moduli, this constraint related the gauge

fields via standard electric-magnetic duality, reminiscent of the work of [130]. Therefore

another interesting direction would be to better understand the nature of the constraint

and to what extent it encodes information about electric-magnetic duality in general.

Other directions could involve understanding how to couple HJ
(g) to a self-dual

string, or exploiting the ideas introduced here to write down a four dimensional Maxwell

theory that is manifestly invariant under both Lorentz transformations and duality

symmetry, along the lines of what happens for the PST formalism; c.f. [96]. From

a more speculative perspective, it would be very interesting if there existed a nice

geometric construction that accommodates “pseudo-forms” and explains the properties

of M̃. Moreover, the fact thatH andB mix under diffeomorphisms could be due to both

originating from the same object in a higher-dimensional theory, after compactification.

For example, the idea that the abelian 6D (2,0) theory can be formulated as a 7D

Chern–Simons theory has been put forward in [73] and further utilised in [116].

To summarise, the action discussed here is a novel, relatively simple formulation

that is consistent with the abelian, low-energy physics of a single M5-brane in M-

theory. It has several attractive features: it is Lorentz and diffeomorphism covariant

without introducing a scalar field that ultimately requires some non-vanishing preferred

direction—as e.g. is the case in the PST formalism. Although we require additional

modes with the wrong-sign kinetic terms these can be discarded—effectively set to

zero—when one examines the physical degrees of freedom.
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Chapter 3

Path Integral for Sen’s Action

Whereas, in the previous chapter, we mainly consider classical aspects of the action

proposed by Sen [46, 47] for chiral forms, we now move to test his approach down to

the quantum level. In particular, we evaluate the partition function of the compact

chiral boson on a two-dimensional torus using a path integral formulation. Crucially,

to ensure the convergence of the path integral, we use a Wick-rotation procedure ob-

tained from a complex deformation of the physical spacetime metric. This will directly

reproduce the expected result including general characteristics for the theta functions.

We also present results for the chiral 2-form potential in six dimensions which can be

readily extended to 4k + 2 dimensions.

3.1 Introduction

Given the complications of finding action principles for self-dual fields, a popular

strategy for obtaining the chiral form partition function via a path-integral compu-

tation is the so-called holomorphic factorisation: one starts with the action for the

non-chiral version of the field, evaluates the corresponding path integral in the Wick-

rotated theory, observes that the result essentially factorises and reads off the chiral

part [72,131,132]. For example, the path integral for a compact non-chiral boson on an

Euclidean two-dimensional torus with complex structure τ yields this very schematic

result

Znon−chiral(J, τ) ∼
∑
α,β

∣∣∣∣∣
θ

[
α
β

]
(J+|τ)

η(τ)

∣∣∣∣∣
2

, (3.1)
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where η is the usual Dedekind’s η-function, J± are the chiral/anti-chiral parts of the

external source J and the sum is over the characteristics α, β of the theta functions

θ

[
α
β

]
. Therefore, from (3.1) we can deduce that the partition function for a chiral

boson should read, again very schematically, as

Zchiral(J+, τ) ∼
θ

[
α
β

]
(J+|τ)

η(τ)
(3.2)

for some chosen α, β, and that the partition function for the antichiral boson is just the

complex conjugate of it. There are two important features about the partition function

(3.2) that we can immediately appreciate.

• In defining the quantum theory of a chiral boson, global aspects play an important

role, which enter the picture via the α, β characteristics. To get a feeling of which

geometric structure α, β actually parametrize, we remind the reader that when

the radius of the compact boson is fine-tuned to the so-called free fermion radius,

then the chiral boson is dual to a Weyl fermion; in this case, if one restricts α, β

to take values in {0, 1
2} then the characteristics can be identified with the spin

structure of the dual fermion (i.e. periodic or anti-periodic boundary conditions).

As α, β are real numbers, they actually parametrize an appropriate generalization

of the spin structure22 which, from an heuristic point of view, essentially captures

the fact that the winding modes of the chiral boson are not restricted to be just

integers but are instead allowed to be any real numbers.

• In general, (3.2) is not invariant under SL(2,Z) modular transformations of τ . A

failure of modular invariance implies that the chiral field in 4k + 2 dimensions is

not a genuine 4k + 2 dimensional system23. It is more appropriate to think of it

in terms of the dynamics on the boundary of a 4k + 3 dimensional theory [133].

In [73, 116, 134, 135], the latter was identified with an appropriate generalization

of Chern–Simons theory. This is the most rigorous approach to the quantization

of a chiral field, which takes into account all the subtle global aspects associated

with the quantisation of the self-dual field. For example, in [116] (see also [136]

and [137]) it was showed that one is naturally forced to introduce the α, β charac-

teristic when imposing the Gauss law constraint on Chern–Simons theory in one

dimension higher.

Since the information about the background spin structure should in principle be

22Dubbed Quadratic Refinement of the Intersection Form (QRIF for short) in [116]. With an abuse
of language, we will instead keep calling it spin structure.

23And the moniker “partition function” could be taken as an abuse of language. In the following
sections, with “partition function” we will implicitly mean the path integral evaluated on a spacetime
that is an Euclidean torus.
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encoded within the action in the form of topological terms [72,131], one could naturally

ask whether candidate actions for chiral forms in 4k + 2 dimensions can reproduce the

chiral partition function (3.2) via a path integral formulation, without resorting to the

Chern–Simons description. In this chapter we use the action of [46, 47] as a starting

point for precisely such a calculation for the chiral boson on the torus.24 An immediate

obstacle pertains to Wick rotating the action to Euclidean signature, as the standard

analytic continuation to imaginary time leads to a path integral that does not converge

because of the wrong-sign nature of one of the fields. Moreover, one may wonder how

to impose a self-duality constraint when the signature changes and the Hodge star no

longer squares to the identity. Here, however, we employ an alternative prescription for

Wick rotating via a complex deformation of the physical spacetime metric, as suggested

by Visser [28]. It is a happy coincidence that the non-standard coupling of the fields

in the Sen action to the background metric is precisely such that the resulting path

integral is convergent. Furthermore, as this alternative Wick rotation does not modify

the reference metric, the self-duality constraint is unaffected and the physical degrees

of freedom of the system are explicitly preserved.

This allows us to proceed with the evaluation of the path integral. Note that in

our calculation both the physical (H(g)) and unphysical modes (H(s)) contribute to the

partition function. In this way, through a collection of delicate but ordinary manipula-

tions, we recover the standard expression for the chiral-boson partition function in the

form of the ratio θ(T )/η(T ), where T is related to the complex structure of the torus by

an SL(2,Z) transformation. It is interesting to point out that, when the radius-squared

of the chiral boson is rational (corresponding to a rational conformal field theory), the

resulting partition function is an extended û(1) character as expected [139–141]. In our

calculation the choice of spin structure corresponds to introducing topological terms

(i.e. terms that do not affect the equations of motion) to the Sen action along with

a change in the boundary conditions for the fields. We make appropriate choices for

such terms, leading to more general theta characteristics in the θ(T )/η(T ) result, once

again as expected for the widely studied chiral boson.

The extension of these results to 4k+ 2 dimensional theories is of great interest and

we initiate this study by evaluating the path integral of the six-dimensional version of

the Sen action on the six-torus, i.e. k = 1, including an additional topological term.

One recovers once again appropriate generalisations of the two-dimensional answer,

involving higher theta functions with general characteristics. Our results here can be

readily extended to more general values of k.

The rest of this chapter, which is based on the paper [2], is organised as follows. We

24The path integral approach for the chiral forms actions mentioned in Sec. 2.1.2 can be found
in: [82,84] for the McClain-Wu-Yu action, [138] for the Floreanini-Jackiw action and [70] for the Pasti-
Sorokin-Tonin action.
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begin in the next section with a summary of the salient features of the Wick-rotation

prescription of [28]. We continue in Section 3.2 with the implementation of the Wick

rotation and evaluation of the path integral for the chiral boson on the torus. We

calculate the oscillator and winding-mode contributions to obtain the θ(T )/η(T ) re-

sult, with the more general theta characteristics following suit after adding appropriate

topological terms to the action and modifying the boundary conditions. In Section 3.3

we sketch the corresponding setup for the chiral 2-form potential in six dimensions

and calculate the oscillator and winding-mode contributions to the path integral. We

conclude with some a posteriori comments in Section 3.4.

3.1.1 Wick-Rotation via Metric Deformation

When evaluating the path integral, one usually passes to the Euclidean version of the

theory to ensure convergence. However, applying the standard Wick-rotation procedure

of analytically continuing to imaginary time leads to a non-convergent answer in Sen’s

action (2.59), because of a wrong sign for the B kinetic term along with the dB ∧ H
mixing term. A new prescription is also needed since, due to the self-duality constraint,

one would like to Wick rotate the theory without altering the degrees of freedom of the

system.

We will employ the proposal of Visser [28], where instead of analytically continuing

to imaginary time, one performs a complex deformation of the Lorentzian spacetime

metric g, and not the coordinates, via

(gε)µν := gµν + iε
VµVν
V λVλ

. (3.3)

Here, ε is the deformation parameter, V µ is an arbitrary, nowhere-vanishing timelike

vector field (which is guaranteed to exist because the spacetime has a global Lorentzian

signature) and Vµ is the associated co-vector, i.e. Vµ := gµνV
ν . For the simple case of

flat space and a constant vector Vµ = (−1, 0, . . . , 0), (3.3) results in

gε = diag(−1− iε,+1, . . . ,+1) , (3.4)

which recovers the standard Minkowski metric for ε = 0 and the Euclidean metric for

ε = 2i. In fact this case is completely equivalent to the standard Wick rotation via

analytic continuation to imaginary time; see [28]. Following this, the prescription for

analytically continuing to Euclidean signature for arbitrary metrics consists of taking

(3.3) and setting ε = 2i.25 Note that the resulting Euclidean metric is in general not

unique but depends on the choice of constant timelike vector V µ.

25One cannot make this simply a real deformation by e.g. setting iε = λ, and taking λ from 0→ −2,
as the metric would become singular at λ = −1 or ε = i. The complex deformation allows us to go
around this point in the ε-plane.
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Although this recipe was initially put forward to produce Euclidean metrics that are

compatible with the existence of a Lorentzian metric [28], it is particularly appropriate

in our case where the physical metric dependence of (2.59) comes entirely through M̃.

We stress that the reference metric η is left untouched by this Wick rotation, bringing

in two advantages. First, we can keep the original constraint H = ?ηH even in the

Wick-rotated theory, and this guarantees that the latter describes the same number

of degrees of freedom as the Lorentzian one. Second, the Wick rotation (3.3) makes

the path integral convergent. This happens because the wrong-sign term dB ∧ ?ηdB
remains a purely oscillatory contribution, and this allows us to immediately single out

a holomorphic partition function.

It is noteworthy that very recently the idea of Wick rotating a theory via complex

deformations of the spacetime metric has re-appeared in an attempt to replace the

standard axioms of QFT with the requirement that they be consistently coupled to

complex metrics [30]. Applications of this proposal to quantum gravity were considered

in [29]. In these works, a complex metric is allowed, under the condition that it leads

to a convergent path integral. As will become clear such constraints arise naturally for

our metric.

3.2 The Path Integral for the Two-dimensional Chiral Bo-

son

In this section we will write down a well defined path integral for the two-dimensional

chiral boson on T2. Our starting point is the two-dimensional version of the action

(2.55) which reads as

S =
1

2π

∫ (
1

2
dφ ∧ ?ηdφ− 2H ∧ dφ+ (H + J+) ∧ M̃(H + J+) + 2H ∧ J− − J− ∧ J+

)
.

(3.5)

We will first analytically continue it to Euclidean signature by the approach outlined

in [28] and we will then evaluate it to directly obtain the chiral boson partition function

with particular characteristics for the theta function. More general theta-characteristics

will be introduced by including boundary terms in the action, and adjusting the peri-

odicities of the scalar field.

To start we define our path integral on the torus of Figure 3.1 using coordinates

(x0, x1), subject to the identifications

x0 ∼= x0 + 2πl , x1 ∼= x1 + 2πl , (3.6)

where l is an arbitrary length scale. The metric is then dimensionless and in these
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coordinates reads

gµν =

(
−L2

0 + L2
0 tan2 α L1L0 tanα

L1L0 tanα L2
1

)
. (3.7)

Note that the choice of constant timelike vector V µ needed to implement the Wick

rotation in (3.3) is not unique. We find it natural to use the timelike vector V µ :=

(1/L0,− tanα/L1), see Figure 3.1. With this choice, the deformed metric becomes

(gε)µν =

(
−(1 + iε)L2

0 + L2
0 tan2 α L1L0 tanα

L1L0 tanα L2
1

)
, (3.8)

which leads to the usual flat metric on the flat Euclidean torus for ε = 2i. Note that

the determinant of gε is proportional to (1 + iε), so the analytic continuation must be

performed by avoiding ε = +i.26 From now on we will set ε = 2i.

We next define the 1-forms

ω+ = dx0 − dx1

ω− = dx0 + dx1 , (3.9)

satisfying

?ηω± = ±ω±
ω+ ∧ ω− = 2dx0 ∧ dx1 . (3.10)

In two dimensions, the A,B indices appearing in formula (2.40) can take only the value

1. By applying formula (2.40) one arrives at the expression:27

M̃11 =
L1
L0

+ tanα+ i
L1
L0
− tanα− i

. (3.11)

By further introducing the complex structure

τ =
L0

L1
(tanα+ i) , (3.12)

we can rewrite (3.11) more simply as

M̃11 = −τ + 1

τ − 1
=:M . (3.13)

Remarkably,M is a meromorphic function of τ , and since Im(τ) is strictly positive, so

26We also avoid ε ∈ iR<0, as we have implicitly placed the branch cut of
√
−gε = L1L0

√
1 + iε there.

27Appreciate that, in order to get a convergent path integral, here we are forced to pick the negative
branch for the square root on the complex plane (

√
−1 = −i).
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α

2πlL0

2πlL1

x0

x1

V µ

Figure 3.1: The flat torus parametrised by the coordinates x0, x1, in red. In blue, the
time-like vector that will be used to perform the Wick rotation.

is Im(M).

We can now expand

H = H+ω+

J = J+ω+ + J−ω− , (3.14)

in terms of which the action (3.5) becomes

S =
1

2π

∫
T2

d2x
(
− 1

2
(∂0φ)2+

1

2
(∂1φ)2 − 2H+(∂0φ+ ∂1φ)

+ 2M(H+ + J+)2 + 4H+J− + 2J+J−
)
. (3.15)

3.2.1 The Dirac Path Integral Prescription

Since we are dealing with a constrained system, we would now like to evaluate the

Dirac path integral for the action (3.15). Due to ?η-self-duality H0 = H+ = −H1 and

we can identify φ and H1 as field variables with canonical conjugate momenta

Πφ :=
δS

δ∂0φ
=

1

2π
(−∂0φ+ 2H1) , ΠH1 :=

δS

δ∂0H1
= 0 . (3.16)

The Hamiltonian density is thus

H =
1

2π

[
−2(πΠφ −H1)2 − 1

2
(∂1φ)2 − 2H1∂1φ− 2(J+ −H1)2M+ 4H1J

− − 2J+J−
]
,

(3.17)
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and the constraint surface is defined by28

χ1(x0, x1) := ΠH1(x0, x1)

χ2(x0, x1) :=

{
χ1(x0, x1),

∫
S1

dy1H(x0, y1)

}
x0

= − 2

π

[
πΠφ −H1 −

1

2
∂1φ+ (J+ −H1)M+ J−

]
(x0, x1) , (3.19)

which are primary and secondary constraints respectively. The constraints χ1 and χ2

form a pair of second-class constraints,29 since their Poisson bracket reads

{χ1(x0, x1), χ2(x0, y1)}x0 = − 2

π
(1 +M)δ(x1 − y1) . (3.20)

The Dirac path integral is then given by [142,143]

Z[J±,M] =

∫
[DφDΠφDH1DΠH1 ] δ

(
πΠφ −H1 −

1

2
∂1φ+ (J+ −H1)M+ J−

)
× δ

(
ΠH1

)√
det{χi, χj}x0 × ei

∫
T2 d

2x(∂0φΠφ+∂0H1ΠH1−H) .

(3.21)

Up to an overall constant factor

δ
(
πΠφ −H1 −

1

2
∂1φ+ (J+ −H1)M+ J−

)√
det{χi, χj}x0 ∝

∝ δ
(
H1 −

1

1 +M

(
πΠφ − 1

2
∂1φ+ J+M+ J−

))
, (3.22)

and the functional integration over ΠH1 and H1 can thus immediately be performed to

get

Z[J±,M] =

∫
[DφDΠφ]ei

∫
T2 d

2x[∂0φΠφ−H]

∣∣∣∣∣
H1→ 1

1+M(πΠφ− 1
2
∂1φ+J+M+J−)

. (3.23)

In this framework, the first thing to do is to exploit the translational invariance

28Given two functionals F,G of the fields φi and their conjugate momenta Πi, we denote with
{F,G}x0 their Poisson bracket at equal time, i.e.

{F,G}x0 =

∫
dx1 δF

δφi(x0, x1)

δG

δΠi(x0, x1)
− δG

δφi(x0, x1)

δF

δΠi(x0, x1)
. (3.18)

29There are no first-class constraints for this system. This fact is particular to two dimensions since.
When working in 4k + 2 dimensions with k > 0, the boson φ is replaced by a k−form in Sen’s action,
and this comes with its standard gauge redundancy. We will come back to this point in Section 3.3.
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over the space of Πφ, to factorise the path integral (3.23) into

Z[J±,M] =W[J±,M]

∫
[DΠφ]eiπ

M
M+1

∫
T2 d

2x(Πφ)2
∫

[Dφ]eiSeff[φ,J±] , (3.24)

where we have defined the overall field-independent function of the sources

W[J±,M] := e−
i
π

∫
T2 d

2x(J+J−+M−1(J−)2) , (3.25)

and

Seff[φ, J±] :=
1

2π

∫
T2

d2x
(
− 1

2
(∂0φ)2 +

1

2
(∂1φ)2 − 1

2M
(∂0φ+ ∂1φ)2

+
2

M
(∂0φ+ ∂1φ)(MJ+ + J−)

)
. (3.26)

Note that in order to arrive at (3.24), we just used the fact that η is the (reference)

Minkowski metric; no assumptions were made about the physical metric g, the data of

which is contained insideM. Note also that once we Wick rotate the physical metric as

in (3.8), both functional integrations over Πφ and φ yield convergent Gaussian integrals,

see (3.13).

To proceed with the evaluation, we expand Πφ in terms of an L2(T2) basis, i.e.

Πφ(x0, x1) =
∑

n0,n1∈Z2

Πφ
n0,n1

e−i
x0

l
n0e−i

x1

l
n1 , (3.27)

with Πφ
−n0,−n1

= (Πφ
n0,n1)∗ such that∫

[DΠφ] ∼
∏

(n0,n1)∈Z2

∫
dΠφ

n0,n1
. (3.28)

Performing a complex integral over all Πφ
n0,n1 with (n0, n1) ∈ Z2 would double count

the independent fields. Therefore we need to restrict to a domain U ⊂ Z2 that has the

property that U ∩ (−U) = ∅. Furthermore Πφ
0,0 must be treated separately as it is real

so (0, 0) /∈ U . But when combined we need U ∪ (−U)∪ (0, 0) = Z2. To this end we find

it helpful to define

U := {(n0, n1) ∈ Z2|n0 + n1 > 0} ∪ {(n0,−n0)|n0 ∈ N} . (3.29)

Pictorially we can think of this as the set of parallel diagonal lines (n0 + p,−n0) with

n0 ∈ Z for a fixed p ∈ N along with the half-line (n0,−n0) with n0 ∈ N. Then we can
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easily rewrite

∏
(n0,n1)∈Z2

∫
dΠφ

n0,n1
=

∫
R
dΠφ

0,0

∏
(n0,n1)∈U

∫
C
dΠφ

n0,n1
d(Πφ

n0,n1
)∗

=

∫
R
dΠφ

0,0

∏
(n0,n1)∈U

(
2

∫
R2

dRe[Πφ
n0,n1

]dIm[Πφ
n0,n1

]

)
, (3.30)

and hence find for the Πφ functional integral

∫
[DΠφ]eiπ

M
M+1

∫
T2 d

2x(Πφ)2

=

√
i

(2πl)2

M+ 1

M

(
2

i

(2πl)2

M+ 1

M

)|U |
, (3.31)

where |U | is the cardinality of U .

To compute |U | we note that the half-line (n0,−n0), n0 ∈ N contributes
∑∞

n0=1 1 =

ζ(0) = −1/2 to |U |. On the other hand, each complete line (n0 + p,−n0) consists of

two half-lines plus a point and hence contributes 2ζ(0) + 1 = 0 to |U |. Thus we simply

find

|U | = −1/2 , (3.32)

and so ∫
[DΠφ]eiπ

M
M+1

∫
T2 d

2x(Πφ)2

∼ 1 . (3.33)

From here onwards we will use ∼ to denote equality of the partition function up to an

irrelevant—although possibly infinite—constant.

All in all, we have reduced the functional integral (3.24) to the evaluation of the

Feynman path integral for the effective action (3.26):

Z[J±,M] ∼ W[J±,M]

∫
[Dφ]eiSeff [φ,J±] . (3.34)

This result, reached using the Dirac path integral and employing the regularisation

(3.32), can in fact be reproduced by considering the Feynman path integral for the

original action. To see this we complete the square on H+ in (3.15) by introducing

Ĥ+ = H+ +

(
J+ +

1

M
J−
)
− 1

2M
(∂0φ+ ∂1φ) . (3.35)

By construction H is an arbitrary ?η-self-dual form and hence [DH+] = [DĤ+]. Thus
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the Feynman path integral for (3.15) factorises into

Z =W[J±,M]ZH(M)

∫
[Dφ]eiSeff[φ,J±] , (3.36)

where

ZH(M) =

∫
[DĤ+]e

i
π

∫
T2 d

2xM(Ĥ+)2
. (3.37)

Since the imaginary part ofM is positive, the integration over Ĥ+ converges and using

the same regularisation as for (3.33), one recovers an overall constant

ZH(M) ∼ 1 . (3.38)

Encouraged by this agreement we will directly employ the Feynman path-integral de-

scription in our upcoming discussion, Sections 3.2.4 and 3.3.

After this preliminary work, our task now is to evaluate the functional integral

(3.34). We assume that the field φ is compact with radius R, i.e.

φ ∼= φ+ 2πR , (3.39)

and it thus admits the following decomposition on the torus

φ = φw.m. + φosc . (3.40)

The φw.m. and φosc respectively encode the winding and oscillatory modes of the field:

φw.m. =
R

l
(m0x

0 +m1x
1) , m0,m1 ∈ Z (3.41)

φosc =

′∑
n0,n1∈Z2

φn0,n1e
−ix

0

l
n0e−i

x1

l
n1 , φ−n0,−n1 = (φn0,n1)∗ , (3.42)

where the prime symbol on top of the sum denotes that the choice (n0, n1) = (0, 0)

must not be taken into account.

The compact field φ can admit topologically non-trivial configurations because it

appears in the action only through its derivative: the action is still single-valued on the

torus even when φ is not. The same is not true for J which thus admits the following

expansion on the torus:

J =
∑

n0,n1∈Z2

Jn0,n1e
−ix

0

l
n0e−i

x1

l
n1 , J−n0,−n1 = (Jn0,n1)∗ . (3.43)

Since the effective action (3.26) is quadratic in φ, φw.m. and φosc decouple. In the fol-
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lowing subsections their contributions to the path integral will be determined separately.

Finally, it is interesting to note that, in the absence of sources, (3.26) closely resem-

bles the Siegel action which is written, as we saw in (2.7), in terms of a the Lagrange

multiplier λ:

SSiegel[φ] =
1

2π

∫
d2x

(
1

2
(∂0φ)2 − 1

2
(∂1φ)2 + λ (∂0φ+ ∂1φ)2

)
. (3.44)

Therefore, much of the algebraic manipulations that we will present in the remainder

of this section have already appeared before, see e.g. [76,138]. Nonetheless, we will still

display the calculations that will lead to the partition function in full detail, not only

for clarity but especially because there is one key difference between (3.26) and Siegel’s

action. Indeed, M in (3.26), unlike λ in (3.44), is a constant and not a Lagrange

multiplier and therefore the effective action (3.26) avoids the potential problems that

Siegel’s action instead suffers from, see discussion below (2.7).

3.2.2 Oscillator Modes

Evaluating the effective action (3.26) on the oscillator modes we find

Seff[φosc, J
±] = π

′∑
n0,n1

{
|φn0,n1 |2

(
n2

1 − n2
0 −

1

M
(n0 + n1)2

)
+4il(n0 + n1)φn0,n1

(
J+
−n0,−n1

+
1

M
J−−n0,−n1

)}
. (3.45)

Even though the source J explicitly enters this expression, the dependence on J will

be washed away upon integrating over each oscillator, and the contribution Zosc of

the oscillatory modes to the partition function will be independent of J . Indeed, let

φ = φ1 + iφ2 represent a generic oscillator mode appearing in (3.45) and let j denote

a contribution from the source. For a complex number G with positive imaginary part

we then have∫
C
dφdφ∗eiG|φ|

2+ijφ = 2

∫
R2

dφ1dφ2e
iG(φ2

1+φ2
2)+ij(φ1+iφ2)

= 2

∫
R
dφ1e

iG(φ1+ j
2G)

2
∫
R
dφ2e

iG(φ2+i j
2G)

2

=
2πi

G
. (3.46)

Note that the right-moving modes with n0 + n1 = 0 lead to a vanishing action: since

each of them merely contributes to the path integral as an overall infinite constant

(∼
∫
dφdφ∗ei0), we will only include the modes φn0,n1 with n0 + n1 6= 0. Furthermore,
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due to the reality condition (φn0,n1)∗ = φ−n0,−n1 , we restrict to n0 + n1 > 0 to avoid

double counting. Therefore, Zosc evaluates to

Zosc =

( ∏
n0+n1>0

∫
C
dφn0,n1d(φn0,n1)∗

)
eiSeff[φosc,0]

=
∏

n0+n1>0

2i

(n0 + n1)(n1 − n0)− 1
M
(
n0 + n1)2

, (3.47)

which by letting n := n0 + n1 and m := n1 can be tidied up to

Zosc =
∏
m
n>0

i

n(m+ Tn)
. (3.48)

Here we introduced the important parameter

T := −1

2
(1 +M−1) = − 1

1 + τ
, (3.49)

which in turn can be related to τ via an SL(2,Z) transformation. In Appendix A we

show that the infinite product appearing in (3.48) can be regularised to

∏
m
n>0

i

n(m+ Tn)
∼ 1

η(T )
, η(T ) = eπiT/12

∞∏
n=1

(1− e2πinT ) . (3.50)

Thus we arrive at

Zosc ∼
1

η(T )
. (3.51)

3.2.3 Winding Modes

Evaluating the effective action (3.26) on the winding modes returns

Seff[φw.m., J
±] = π

(
−R2m2

0 +R2m2
1 −

R2

M
(m0 +m1)2 + 2R(m0 +m1)J (0)

)
, (3.52)

where we defined a complex structure on the sources by

J = J+ +
1

M
J− , (3.53)

with normalised zero mode defined by

J (0) :=
2l

(2πl)2

∫
d2x

(
J+ +

1

M
J−
)
. (3.54)
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Following on from the oscillator discussion we find

Zw.m. =
∑
m0,m1

eiSeff[φw.m.,J±]

=
∑
m0,m1

e−iπR
2((m0+m1)(m0−m1)+(m0+m1)2M−1)+2iπR(m0+m1)J (0)

. (3.55)

By introducing n = m0 +m1 and m = m1 we recast this into

Zw.m. =
∑
m,n

e−iπR
2(n(n−2m)+n2M−1)+2iπRnJ (0)

=
∑
m,n

e2πiR2mne−iπR
2n2(1+M−1)+2iπRnJ (0)

. (3.56)

The sum over m is of the form∑
m∈Z

e2πixm =
∑
q∈Z

δ(x− q) , (3.57)

which inserted into (3.56) gives

Zw.m. =
∑
n

∑
q

δ(R2n− q)e2iπR2n2T+2iπRnJ (0)
, (3.58)

where T was defined in (3.49).

One then finds that Zw.m. = δ(0) for R2 irrational. From (3.56) it is clear that this δ(0)

divergence arises from the infinite number of degenerate contributions to the partition

function that arise from chiral modes in the sum over m at n = 0.

Instead, if R2 is rational—that is when R2 = r1/r2 for some coprime integers r1, r2—one

gets a non-vanishing contribution whenever

n = pr2 and m = pr1 , (3.59)

for any p ∈ Z. Hence for R2 = r1/r2 we have

Zw.m. = δ(0)
∑
p

e2iπr1r2p2T+2iπ
√
r1r2pJ (0) ∼ θ

[
0
0

]
(
√
r1r2J (0)|2r1r2T ) , (3.60)

where we have introduced the theta function which, for complex τ , is defined through

θ

[
α
β

]
(z|τ) :=

∑
p∈Z

eiπ(p+α)2τ+2iπ(p+α)(z+β) , Im(τ) > 0 , (3.61)

with the real parameters α, β referred to as characteristics. In writing the last step of

(3.60) we have dropped the δ(0) as an irrelevant but infinite constant, which is due
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to the degeneracy originating from shifting a given winding mode (m0,m1) by a chiral

mode, (s,−s), s ∈ Z. Indeed, despite not being linear in the winding modes, one sees

that upon shifting φw.m. → φw.m. + R
l (sx0 − sx1) the action transforms as (remember

that m1 +m0 = n = r2p)

Seff[φw.m., J
±]→ Seff[φw.m., J

±]− 2πr1ps , (3.62)

and hence eiSeff is invariant. Thus summing over all winding modes induces a divergent

contribution arising from an infinite number of states which only differ by a chiral mode

of φ but which all give the same contribution to the partition function. We accordingly

simply discard the infinite constant in Eq. (3.60).

Combining (3.60) with Zosc and the source-dependent prefactor appearing in (3.34),

we have

Z[J±, T ] ∼ W[J±, T ]ZoscZw.m.

∼ W[J±, T ]

θ

[
0
0

](√
r1r2 J (0) | 2r1r2T

)
η(T )

= e−
i
π

∫
T2 d

2x(J+J−+M−1(J−)2)

θ

[
0
0

](√
r1r2 J (0) | 2r1r2T

)
η(T )

. (3.63)

In the absence of sources, this can be interpreted as a û(1)r1r2 character, as expected

for a chiral boson on a rational square radius.30 Moreover, since (3.63) is left invariant

by r1 ↔ r2, we recognise an underlying duality acting as R ↔ 1/R. This fixes the

self-dual radius to be R2 = r1/r2 = 1 which, as r1 and r2 are coprime, means setting

r1 = r2 = 1 and we find an ŝu(2)1 character. All these results are compatible with the

formulation of the chiral boson as the edge mode of abelian Chern–Simons theory in

one dimension higher [139–141].

To summarise, when R2 is rational our computation precisely lands—up to the

SL(2, Z) twist encoded in τ → T—on the expected result for the chiral-boson par-

tition function. For R2 irrational, the theta function collapses to one, and Z is only

proportional to 1/η(T ).

30For the interested reader a useful resource is [144].
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3.2.4 General Theta-Function Characteristics

For the convenience of the presentation, first we remind the reader that under

δΛφ = Λ

δΛJ = dΛ

δΛH = −
(1 + ?η

2

)
dΛ , (3.64)

the two-dimensional action (3.5) tranforms as

S → S +
1

2π

∫
dΛ ∧ (dφ− J) . (3.65)

In what follows, we want to extend the discussion from the previous section so as to

introduce general characteristics in the final answer (3.63).

To this end we take

φw.m. =
R

l
(m0 + α0)x0 +

R

l
(m1 + α1)x1 , (3.66)

for some constants α0, α1. This will have the effect of shifting the sum over n in (3.56)

to n+ α0 + α1 and thereby introducing the α-characteristic in (3.61).

As before φ is not single-valued over the torus and now satisfies

φ(x0 + 2πl, x1) = φ(x0, x1) + 2πR(m0 + α0)

φ(x0, x1 + 2πl) = φ(x0, x1) + 2πR(m1 + α1) . (3.67)

Shifting φ by a constant is a symmetry of the action, corresponding to a constant

choice of Λ in (3.64). Thus we can view this identification as an orbifold whose action

is different over the two 1-cycles of T2. However, we do not want to allow for orbifold

actions of the form φ ∼= φ+ Λ for any constant Λ as that would completely remove all

zero modes. So we restrict to m0,m1 ∈ Z. Another way to say this is that we restrict

to orbifold actions for which

1

2π

∮
(dφ−A) ∈ R Z , (3.68)

where the integral is over any 1-cycle of the torus and

A =
R

l
α0dx

0 +
R

l
α1dx

1 , (3.69)

is a fixed closed 1-form. Note that we can also think of these boundary conditions in
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terms of Ψ = eiφ/R:

Ψ(x0 + 2πn0l, x1 + 2πln1) = e2πi(n0α0+n1α1)Ψ(x0, x1) . (3.70)

Thus if we think of Ψ as a dual fermion then A encodes the spin structure. It is

tempting to interpret A as a connection 1-form and dφ − A as a covariant derivative,

as in [73]. However, this interpretation has difficulties in higher dimensions.

Next, we attempt to repeat the winding-mode calculation with the more general

modings m0 → m0 + α0, m1 → m1 + α1. One quickly discovers that the sum (3.57)

will now involve x = R2(n + α0 + α1) and for generic α0, α1 this can never be integer

(including zero). To counter this we add the following term to the action (3.15):

SA := S − 1

2π

∫
T2

A ∧ dφ . (3.71)

This term is a total derivative and hence does not affect the equations of motion or

any of the symmetries, including infinitesimal diffeomorphisms. As discussed around

(3.38), we will bypass the Dirac path integral and work directly with the Feynman

path-integral formulation of (3.15), in terms of which one finds that the above term

carries through and appears as is in the effective action (3.26). However, it does give

the following contribution on the winding modes

SAw.m. = Sw.m. − 2πR2α0(m1 + α1) + 2πR2α1(m0 + α0)

= Sw.m. − 2πR2(α0 + α1)m1 + 2πR2α1(m0 +m1)

= Sw.m. − 2πR2(α0 + α1)m+ 2πR2α1n . (3.72)

Performing the shift n→ n+ α0 + α1, m→ m+ α1 in (3.56) and including this extra

term we find

Zw.m. =
∑
n,m

e2πiR2(m+α1)(n+α0+α1)e2iπR2(n+α0+α1)2T+2iπR(n+α0+α1)J (0)× (3.73)

× e−2πiR2(α0+α1)m+2πiR2α1n

=
∑
n,m

e2πiR2mne2iπR2(n+α0+α1)2T+2πiR(n+α0+α1)J (0)
e2πiR2α1(α0+α1)+4πiR2α1n .

(3.74)

The sum over m reproduces the same δ-function as in (3.58). Thus if R2 = r1/r2 we
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once again find n = pr2 and hence

Zw.m. ∼ e−πiαβ
∑
p

e2iπr1r2(p+α)2T+2iπ(p+α)(
√
r1r2J (0)+β)

= e−πiαβθ

[
α
β

]
(
√
r1r2J (0)|2r1r2T ) , (3.75)

where

α = (α0 + α1)/r2 , β = 2r1α1 . (3.76)

To sum up, for rational radius (R2 = r1/r2), the partition function of the chiral boson

computed via Sen action appropriately shifted as in (3.71) with A given by (3.69) and

with φ satisfying the boundary condition (3.67) reads as

Z[J±, T ] ∼ W[J±, T ]

θ

[
α
β

](√
r1r2 J (0) | 2r1r2T

)
η(T )

, (3.77)

where the α, β-characteristics, the prefactor W and the parameter T are respectively

defined in (3.76), (3.25) and (3.49).

3.2.5 Holomorphic Structure

Now that we have arrived at the partition function (3.77), we can briefly expand on how

it depends on the source J . In this way we wish to make contact with the geometric

construction of the partition function done in [73,116], which is based on the fact that

the partition function of a chiral form can be interpreted as an almost-holomorphic

section of a particular bundle over a complex torus parametrized by the zero modes of

the source J .

Let us look at the zero-mode contribution to the partition function:

Z ∼ W ′[J ]e
i
2
πJ (0)(J (0)−J̄ (0))/(T−T̄ )

θ

[
α
β

]
(
√
r1r2J (0)|2r1r2T )

η(T )
, (3.78)

whereW ′[J ] only depends on the non-zero-mode sources. This is almost a holomorphic

function of J (0) which is encoded in the statement that

D̄Z :=

(
∂

∂J̄ (0)
+
iπ

2

J (0)

T − T̄

)
Z = 0 . (3.79)
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It is also helpful to observe that theta functions satisfy, for m,n ∈ Z,

θ

[
α
β

]
(z +m+ nτ |τ) = e−in

2τ+2πi(mα−nβ)−2πinzθ

[
α
β

]
(z|τ) . (3.80)

As a result one sees that under a shift

J (0) → J (0) +
m
√
r1r2

+ 2n
√
r1r2T , (3.81)

the theta function in (3.78) changes by:

θ
[α
β

]
(
√
r1r2J (0)|2r1r2T )→ e−2r1r2Tn

2+2πi(mα−nβ)−2πi
√
r1r2J (0)nθ

[α
β

]
(
√
r1r2J (0)|2r1r2T ) .

(3.82)

This is clearly a function of T for any m,n 6= 0 (J (0) itself has T dependence) and since

T is complex this is not a pure phase. To see how the partition function transforms, we

must also calculate the change to the anomalous prefactor W. Shifting J (0) by (3.81)

is equivalent to shifting the components of J by

J+ → J+ +
1

2l

(
1

√
r1r2

m−
√
r1r2n

)
J− → J− − 1

2l

√
r1r2n ,

(3.83)

which can in turn be written as

J → J + dΛ , with Λ =
1

2l
√
r1r2

(m− 2r1r2n)x0 − 1

2l

m
√
r1r2

x1 . (3.84)

This can then be used to find the change in the anomalous term

W → e2πir1r2Tn2+2πi
√
r1r2J (0)n+ i

2π

∫
J∧dΛ+πimnW , (3.85)

such that the overall change to Z is simply

Z → eπimn+2πi(mα−nβ))e
i

2π

∫
J∧dΛZ . (3.86)

The change in the partition function is therefore a pure phase for all m,n.

Now we would like to see whether (3.86) could be deduced already at the level of

the action. We observe that Eq. (3.84) can be seen as part of the transformation (3.64).

However, in this interpretation the winding modes of φ are similarly shifted by (3.64):

m0 → m0 +
1

2r1
(m− 2r1r2n) , m1 → m1 −

1

2

m

r1
. (3.87)
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In order for this shift to make sense, i.e. for the winding modes to be mapped to

winding modes, we see that we must restrict m = 2r1m
′ with m′ ∈ Z. Thus the

transformation (3.64) can only account for some of the shift symmetry of the partition

function.

The action is not invariant under (3.64), but the change only depends on the sources

and theta-characteristics. Explicitly, we find that, when evaluated on a winding mode

φw.m. = R(mµ + αµ)xµ/l, the action shifts by31

S → S +
1

2π

∫
dΛ ∧ (dφ+A− J)

= S +
π

r2
((m− 2r1r2n)(m1 + 2α1) +m(m0 + 2α0))− 2l

√
r1r2

(r1r2nJ
(0)
+ − (m− r1r2n)J

(0)
− )

= S +
2π

r2
(m(α0 + α1)− 2r1r2nα1)− 2l

√
r1r2n(−J (0)

+ + J
(0)
− ) +

2l
√
r1r2

mJ
(0)
−

+
π

r2
m(m1 +m0)− πnm . (3.88)

To remove the dependence on the winding-mode numbers m0,m1 we see that in

addition to m = 2r1m
′, which makes the last term a multiple of 2π, we also re-

quire m′ = r2m
′′ so that the second to last term is also a multiple of 2π. Thus for

m = 2r1r2m
′′ the shift in the action, modulo 2π, is independent of the winding modes

and hence we find that

Z → e
2π
r2

(m(α0+α1)−2r1r2nα1)−2l
√
r1r2n(−J(0)

+ +J
(0)
− )+ 2l√

r1r2
mJ

(0)
− Z , (3.89)

which agrees with (3.86), as α and β are defined as in (3.76).

This is usually interpreted as saying that the partition function is a section of a line

bundle over the space parametrised by J (0) modulo the identification (3.81), that is an

auxiliary complex torus parametrised by the zero-modes of the sources, JT2 .

3.3 Chiral Two-form Potentials in Six Dimensions

The approach that we used for evaluating the chiral-boson partition function in two

dimensions can be extended to 4k+ 2-dimensions where one has self-dual 2k+ 1 forms.

Of particular interest are self-dual three-forms in six dimensions (associated with su-

perconformal field theories such as the (2,0) theory) and self-dual five-forms in ten

dimensions (which arise in type IIB string theory). Here, for concreteness, we will

detail the computation in six dimensions, i.e. k = 1. The extension to more general k

follows readily, and for k = 0 reproduces the chiral boson results.

31Note that there is an additional contribution to (3.65) arising from the A ∧ dφ term.
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3.3.1 Preliminaries

Before explicitly computing the partition function let us first make some general com-

ments. Following on from the discussion of Section 3.2.4 we consider the following

version of the action (2.55):

SC =
1

(2π)5

∫
T6

(
1

2
dB ∧ ?ηdB − 2H ∧ dB + (H + J) ∧ M̃(H + J) + 2H ∧ J − 1

2
J ∧ ?ηJ

)
− 1

(2π)5

∫
T6

C ∧ dB , (3.90)

where, in the second line, we have included a boundary term determined by a closed

three-form C, dC = 0. Once again, such a term does not contribute to the equations

of motion and preserves all the symmetries of the original theory. In particular, the

action is invariant under infinitesimal diffeomorphisms xµ → xµ + ξµ(x), provided ξµ

is single valued on T6. Analogously to what happened in the previous sections, we will

see that the role of C is to allow for more general theta-characteristics.

Next we consider the transformations (2.59). Under such a transformation we find

that SC becomes:

SC [B,H, J ]→ SC [B,H, J ] +
1

(2π)5

∫
T6

dΛ ∧ (dB + C − J) . (3.91)

These transformations play three roles. First, if Λ = dλ then we have a familiar

abelian gauge transformation B → B+ dλ and the action is invariant. These represent

redundancies and, for example, we can choose λ to set the timelike components of B to

zero. Note that in the case of a two-dimensional chiral boson there are no such gauge

symmetries.

Second, if Λ is closed (dΛ = 0) but not exact then these transformations are genuine

symmetries of the action that we can orbifold by. This allows us to introduce the

analogues of the winding modes from the chiral boson case. Here B is not single-valued

over the torus. Rather we allow for so-called large gauge transformations

B → B + Λ , dΛ = 0 , (3.92)

where Λ 6= dλ. With this in mind if we go around a loop in the xµ direction we can

take

B(xµ + 2πl) = B(xµ) + Λ(µ) , (3.93)

where Λ(µ) is a closed 2-form. Although this looks like a valid identification for any

choice of Λ(µ) one needs to be more careful: we do not want to say that any closed

77



CHAPTER 3. PATH INTEGRAL FOR SEN’S ACTION

Λ(µ) is allowed, as this condition is too strong.32 Rather, we want to impose a flux-

quantisation condition

1

(2π)3

∫
Σ3

dB ∈ R3 Z , (3.94)

for some fixed R and any three-cycle Σ3. This integral will be non-zero if B is not single

valued as in (3.93). By including C we can be a little more general. We can change the

flux-quantisation condition to

1

(2π)3

∫
Σ3

(dB − C) ∈ R3 Z . (3.95)

We can also interpret these boundary conditions as acting on the Wilson surface oper-

ators of B:

W (Σ2) = e
i
R3

1
(2π)2

∫
Σ2

B
, (3.96)

where Σ2 is a 2-cycle. By construction W (Σ2) only depends on the coordinates xµ
′

that are normal to Σ2. Our boundary condition corresponds to

W (Σ2)(xµ
′
+ 2πlnµ

′
) = e

2πi
∫
Σ3
C
W (Σ2)(xµ

′
) , (3.97)

where Σ3 is the 3-cycle obtained by transporting Σ2 around the closed loop created by

xµ
′ → xµ

′
+ 2πlnµ

′
.

The third application of the transformation (2.59) enables us to think of the source

zero-modes as coordinates on an auxiliary complex torus as in Section 3.2.5, JT6 [73].

This corresponds to considering transformations where dΛ 6= 0, so J shifts. The action

is no-longer invariant under (2.59) but if we impose another flux-quantisation condition

1

(2π)3

∫
Σ3

dΛ ∈ R−3 Z , (3.98)

then the shift in the action is

SC [B,H, J ]→ SC [B,H, J ] + ∆SC [J ] + 2πn , (3.99)

where n ∈ Z and

∆SC [J ] =
1

(2π)5

∫
T6

dΛ ∧ (2C − J) . (3.100)

Thus the path integral and partition function is invariant under such shifts, up to a

32In the case of a chiral boson such a condition would amount to saying that φ ∼= φ + 2πR for any
constant R.
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phase factor that only depends on C and J . This is often summarised by saying that

the partition function is a section of a line bundle over JT6 , which consists of sources

J modulo dΛ subject to (3.98). However, once again one must be a little more careful.

Under such a shift we have

Z[J + dΛ] =

∫
[DB′DH ′]eiSC [B′,H′,J+dΛ]

=

∫
[DB′DH ′]eiSC [B+Λ,H−(dΛ)+),J+dΛ]

=

∫
[DB′DH ′]eiSC [B,H,J ]+i∆SC [J ]

= ei∆SC [J ]

∫
[DBDH]eiSC [B,H,J ]

= ei∆SC [J ]Z[J ] , (3.101)

where in the second line we chose B′ = B + Λ, H ′ = H − (dΛ)+ and in the fourth

line we assumed [DB′DH ′] = [DBDH]. When we integrate out B and H we can only

perform shifts by Λ if the latter preserves the form of B and H that we integrated

over. Since we integrated over all H’s this is not a problem for H. However we did

not integrate over all B’s; rather we restricted to B’s that satisfy (3.95). The change

B → B′ amounts to just shifting the sum over the winding modes. Thus we can only

shift by Λ’s such that

1

(2π)3

∫
Σ3

dΛ ∈ R3Z , (3.102)

in addition to (3.98). This in turn is only possible if R6 = r1/r2 is rational, in which

case we take

1

(2π)3

∫
Σ3

dΛ ∈
√
r1r2 Z . (3.103)

3.3.2 Setup of the Calculation

Having discussed the six-dimensional action in general let us now calculate the partition

function. Here we can be more explicit with our discussion. To that end we introduce

a basis of (anti)self-dual 3-forms as in (2.32)

ωA+ = (1 + ?η)dx
0 ∧ dxi ∧ dxj

ω−A = (1− ?η)dx0 ∧ dxi ∧ dxj , (3.104)
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where i, j = 1, . . . , 5 and A = (ij) with i < j running over all 10 possibilities. Note

that these are chosen such that

ωA+ ∧ ω−B = 2δABd
6x . (3.105)

Furthermore we introduce a basis of 2-forms:

ωa2 =

{
dx0 ∧ dxi

dxi ∧ dxj
, (3.106)

where the index a runs over (0i) and (ij) (again with i < j). Thus there are 5+10 = 15

values of a. It is helpful to expand

dxµ ∧ ωa2 = Kµa
Bω

B
+ + LµaBω−B , (3.107)

for some Kµa
B and LµaB. In particular we see that

Kµa
A =

1

2(2πl)6

∫
T6

dxµ ∧ ωa2 ∧ ω−A

LµaA = − 1

2(2πl)6

∫
T6

dxµ ∧ ωa2 ∧ ωA+ . (3.108)

For future reference we observe that the non-vanishing values of Kµa
B, L

µaB are ±1
2 .

However the non-vanishing components of KµaB ± LµaB are ±1. Furthermore we can

compute

(dxµ ∧ ωa2) ∧ ?η(dxν ∧ ωb2) = −2(Kµa
BL

νbB +Kνb
BL

µaB)d6x

=: 2κµνabd6x . (3.109)

Next, we need to construct the matrix M̃AB as in (2.40). This is rather cumbersome

for a general metric. However, we can make the following important observation. To

integrate out HA from the path integral we need to ensure that Im(M̃AB) > 0. We

now prove that this is the case if one chooses the branch
√
−1 = −i, as for the 2D

chiral boson. With this choice the Lorentzian Hodge operator ?gε=2i for the Euclidean

metric gε=2i is related to the Euclidean Hodge operator ?Egε=2i
through ?gε=2i = −i?Egε=2i

.

Recall that

〈Ω | Ω′〉 :=

∫
T6

Ω∗ ∧ ?EΩ′ , (3.110)

defines a positive-definite inner-product over the space of (possibly complex-valued)

three-forms in 6D, for any Euclidean metric. Consider now two non-vanishing three-

forms Ω = ΩAϕ
A
+ and Ω′ = Ω′Aϕ

A
+, which are both self-dual with respect to ?gε=2i .
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Then

〈Ω | Ω′〉 =

∫
T6

Ω∗ ∧ ?Egε=2i
Ω′

= i

∫
T6

Ω∗ ∧ ?gε=2iΩ
′

= i

∫
T6

Ω∗ ∧ Ω′

= i(2πl)6Ω∗AΩ′B(N ∗KT −K∗N T )AB

= −2i(2πl)6Ω∗AΩ′B(N ∗M̃TN T −N ∗M̃∗N T )AB

= −2i(2πl)6Ω′AΩ∗B(N (M̃ − M̃†)N †)AB

= −2i(2πl)6(N †Ω′∗)†(M̃ − M̃†)(N †Ω∗) , (3.111)

where we remind the reader that ϕA+ = NA
Bω

B
+ + KABω−B and KAB = −NA

CM̃CB.

Thus we find that choosing
√
−1 = −i leads to −i(M̃−M̃†)AB being positive definite.

This implies that

Re
(
iHAHBM̃AB

)
< 0 , (3.112)

for any real values of HA, which will be needed to ensure convergence of the functional

integrals appearing in the partition function.

To continue we expand the fields, sources and C as

H = HAω
A
+

B = Baω
a
2

J = J+
Aω

A
+ + J−Aω−A

C = αaµdx
µ ∧ ωa2 , (3.113)

where HA and Ba are functions and αµa constants. The action can now be written as

SC =
2

(2π)5

∫
T6

d6x
(1

2
κµνab∂µBa∂νBb − 2LµaAHA∂µBa + (HA + J+

A )(HB + J+
B )M̃AB

+ 2HAJ
−A + J+

AJ
−A − (KµaALνbA − LµaAKνbA)αaµ∂νBb

)
=

2

(2π)5

∫
T6

d6x
(1

2
Gµνab∂µBa∂νBb + 2LµaA∂µBa(J

+
A + M̃−1

ABJ
−B) + ĤAĤBM̃AB

− (KµaALνbA − LµaAKνbA)αaµ∂νBb − J+
AJ
−A − J−AJ−BM̃−1

AB

)
,

(3.114)
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where

ĤA = HA + J+
A − (LµaB∂µBa − J−B)M̃−1

AB , (3.115)

and

Gµνab = κµνab − LµaCLνbDM̃−1
CD

= −Kµa
BL

νbB −Kνb
BL

µaB − 2LµaCLνbDM̃−1
CD . (3.116)

3.3.3 Explicit Evaluation

At this stage we are ready to evaluate the path integral for (3.114). In principle, one

would have to carry this out via the Dirac path-integral procedure, as we implemented

for the chiral boson in Section 3.2.1. However, encouraged by the observation in two

dimensions that the Dirac and the Feynman path-integral prescriptions led to the same

answer (up to multiplicative constants), we will be cavalier and proceed directly with

the Feynman path integral

Z[J+
A , J

−A,M̃AB] =

∫
[DBDĤ]eiSC . (3.117)

We can perform the ĤA functional integrals since we have seen that −i(M̃−M̃†)AB

is positive definite so that they are convergent. There are ten values of A and each ĤA

has an expansion in terms of a real zero-mode and an infinite tower of complex Fourier

modes:

ĤA = h0A +
′∑
nµ

hnµAe
inµxµ/l , (3.118)

with (hA,nµ)∗ = hA,−nµ . However, these can be seen to integrate to one after zeta-

function regularisation, as we saw above in (3.33).

Thus we are left with evaluating

Z[J+
A , J

−A,M̃AB] ∼
∫

[DB]eiSeff , (3.119)

where the effective action left over as the result of the ĤA integration is given by

Seff =
2

(2π)5

∫
T6

d6x
(1

2
Gµνab∂µBa∂νBb + 2LµaA∂µBaJA − (KµaALνbA − LµaAKνbA)αµa∂νBb

− JA
(
M̃∗(M̃∗ − M̃)−1M̃

)AB
(JB − J̄B)

)
, (3.120)
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and we have introduced

JA = J+
A + M̃−1

ABJ
−B

J̄A = J+
A + J−B(M̃−1)†BA . (3.121)

This defines a complex structure on the space of the sources where we view JA and J̄A
as holomorphic and anti-holomorphic coordinates respectively.

It is clear from the simple dependence of Seff on J̄A that the partition function is

holomorphic in a twisted sense:

D̄AZ[JA, J̄B] =

(
δ

δJ̄A
− 2πil6

(
M̃∗(M̃∗ − M̃)−1M̃

)AB
JB
)
Z[JA, J̄B] = 0 ,

(3.122)

while the holomorphic derivative is

DB =
δ

δJB
+ 2πil6

(
M̃(M̃ − M̃∗)−1M̃∗

)
AB
J̄B . (3.123)

This holomorphic structure captures the simple dependence on J̄B:

Z[JA, J̄B] = e
2i

(2π)5

∫
T6 d

6x(M̃∗(M̃∗−M̃)−1M̃)
AB
JAJ̄BZh[JA] , (3.124)

where Zh[JA] can also be further factorised as

Zh[JA] =e
− 2i

(2π)5

∫
T6 d

6x(M̃∗(M̃∗−M̃)−1M̃)
AB
JAJBZ

(0)
h [JA] . (3.125)

So our final task is to compute

Z
(0)
h [JA] =

∫
[DB]eiS

(0)
eff [B,JA]

S
(0)
eff =

2

(2π)5

∫
T6

d6x
(1

2
Gµνab∂µBa∂νBb + 2LµaA∂µBaJA

− (KµaALνbA − LµaAKνbA)αµa∂νBb

)
. (3.126)

To this end we expand the fields in Fourier modes

Ba = ba + waµx
µ +

′∑
naµ

ba,naµe
inaµxµ/l naµ ∈ Z , (3.127)

with (ba,naµ)∗ = ba,−naµ . We have separated out the zero-modes as they are real. The

waµ are the analogues of winding modes and the flux-quantisation condition (3.95)
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implies that

waµ =
R3

l3
(maµ + αaµ) maµ ∈ Z . (3.128)

Since the action is quadratic the evaluation of the partition function factorises into a

contribution arising from a sum over the winding modes maµ and an integral over the

oscillator modes banµ :

Z
(0)
h [JA] = Z(0)

w.m.Z
(0)
osc . (3.129)

Let us first evaluate the action on the oscillator modes. The calculation is similar

in form to that of Section 3.2.2. The action evaluates to

S
(0)
eff = −2πl4

∑
a,nµ

(
Gµνabnµnνbanµbb,−nν − 4ilLµaAnaµbanµJ

−(nµ)
+A

)
, (3.130)

where the integral over T6 has imposed naµ = −nbµ = nµ. The integral over the banµ ’s

now produces

Zosc ∼
′∏
nµ

−il−4

det(Gµνabnµnν)

∼
′∏
nµ

1

det
(

2Kµa
BLνbBnµnν + 2LµaALνbBM̃−1

ABnµnν

)
∼

′∏
nµ

1

det(2LνbA(LµaA −Kµa
A)nµnν + 4LµaALνbBTABnµnν)

, (3.131)

where the determinant is over the a, b indices and

TAB = −1

2
(δAB + M̃−1

AB) . (3.132)

It is difficult to evaluate the expression (3.131) more precisely in general. We recall

that the non-zero values of (LµaA −Kµa
A) and 2LµaA are ±1 so the determinant is of

a matrix which is quadratic in the integers nµ and linear in TAB, much like (3.48). We

will suggestively denote it as:

Zosc :=
1

η10
6D(TAB)

. (3.133)

84



CHAPTER 3. PATH INTEGRAL FOR SEN’S ACTION

Next, we evaluate the action on the winding modes. Again it is helpful to introduce

w+
A := Kµa

Awµa

w−A := LµaAwµa . (3.134)

We can apply similar maps to αaµ and maµ. In this case we find

S
(0)
eff =

2

(2π)5

∫
T6

d6x
(
− w−Aw+

A − w
−Aw−BM̃−1

AB −
R3

l3
α+
Aw
−A +

R3

l3
α−Aw+

A + 2w−AJA
)

=
2

(2π)5

∫
T6

d6x
(
− w−Aw−BM̃−1

AB + 2w−A(JA −
1

2
(R/l)3α+

A)− (w−A − (R/l)3α−A)w+
A

)
=

2

(2π)5

∫
T6

d6x
(
− w−Aw−B(δAB + M̃−1

AB) + 2w−A
(
JA + (R/l)3(α−A − α+

A)
)

+ (w−A − (R/l)3α−A)w′A + (R/l)6α−A(α+
A − α

−A)
)
, (3.135)

where we have introduced

w′A = w−A − w+
A +

R3

l3
(α+

A − α
−A) . (3.136)

The point about w′A is that, given (3.128), then

w′A = w−A − w+
A = (R/l)3mA , (3.137)

for some mA ∈ Z. Whereas

w−A − (R/l)3α−A = (R/l)3m−A m−A ∈ Z . (3.138)

Therefore we see that the sum over mA imposes a delta-function constraint∑
mA∈Z10

e4πiR6m−AmA =
∑

pA∈Z10

δ(2R6m−A − pA) . (3.139)

For R6 irrational, the only solution is m−A = pA = 0 and hence Z
(0)
w.m. ∼ 1. However,

for R6 = r1/r2 we find m−A = r2n
A/2 and pA = r1n

A (recall m−A ∈ 1
2Z). Substituting

this back into the action gives

Z(0)
w.m. = e4πiR6α−A(α+

A−α
−A)

∑
pA

∑
m−A

δ(2R6m−A − pA)

× e−4ππR6i(m−A+α−A)(m−B+α−B)(δAB+M̃−1
AB)+8πR3i(m−A+α−A)(J (0)

A +R3(α−A−α+
A))

∼ e−πiαAβAΘ

[
αA

βA

](√
r1r2J (0)

A | 2r1r2TAB

)
, (3.140)
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where we have introduced the higher-dimensional theta function

Θ

[
αA

βA

]
(zA | τAB) :=

∑
nA∈Z10

eπi(n
A+αA)(nB+αB)τAB+2πi(nA+αA)(zA+βA) , (3.141)

the normalised source zero-mode

J (0)
A =

2l3

(2πl)6

∫
d6x

(
J+
A + M̃−1

ABJ
−B
)
, (3.142)

and the theta-characteristics

αA = 2α−A/r2

βA = 2r1(α−A − α+
A) . (3.143)

In Appendix B, we show that (3.140) factorizes into a product of standard theta func-

tions (3.61) when the spacetime metric is diagonal.

In summary, our final answer for the six-dimensional partition function is

Z ∼e−πiα
AβAe

− 2i
(2π)5

∫
T6 d

6x(M̃∗(M̃∗−M̃)−1M̃)
ABJA(JB−J̄B)

Θ

[
αA

βA

](√
r1r2J (0)

A | 2r1r2TAB

)
η10

6D(TAB)
.

(3.144)

Note that for vanishing characteristics we find a higher-dimensional analogue of T -

duality: R↔ 1/R.

It is important to make some comments about gauge symmetries. The expressions

that we have above are gauge invariant and hence the path integral has over-counted

the physical degrees of freedom. As (3.144) is already abstract enough, we did not

display the complications that arise from standard gauge-fixing procedures. Maybe the

easiest way to take care of the usual redundancy associated to B is to completely fix

it via a condition like B0i = 0 followed by other 4 constraints (such as ∂iBij = 0).

While it is straightforward to see how the B0i = 0 condition would modify (3.144), to

incorporate a constraint like ∂iBij = 0 one would need a more detailed analysis.

3.4 Conclusions

In this chapter we performed a direct calculation of the partition function associated

with the Sen action for chiral forms in 4k+2 dimensions in a path-integral formulation.
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As this action contains unphysical fields with the wrong-sign kinetic term, convergence

of the path integral was achieved through a non-standard analytic continuation to

Euclidean signature via a complex deformation of the metric and not time. This pro-

cedure had the additional benefit of leaving the self-duality condition of the self-dual

form, H = ?ηH, untouched and directly led to a holomorphic result.

To appreciate this last point, one should take a step back to understand what

happens within the holomorphic-factorisation approach to the partition function of the

chiral boson. In that framework, one starts with the Lorentzian path integral of a non-

chiral boson φ, i.e. Zn.c. ∼
∫

[Dφ] exp
(
i
∫
d2x∂µφ∂

µφ
)

and by Wick rotating as usual,

x0 → −ix0, one evaluates the path-integral of a real action∫
[Dφ] exp

(
−
∫
d2x(∂0φ)2 + (∂1φ)2

)
.

This leads to a real result of the schematic form

Zn.c. ∼ W(τ − τ̄)
∑ θ

η

θ̄

η̄
, (3.145)

where the sum is over the characteristics of the theta functions, see [132], and τ is the

complex structure of the torus. Then, one would like to conclude that the chiral-boson

partition function is indeed the holomorphic theta function, with some undetermined

characteristics (which can get fixed, case by case, according to the actual physical

system that the chiral boson is meant to describe). In so doing one also needs to ignore

the anomalous factor W.

Instead, in the approach taken here, the kinetic term of the non-chiral boson does

not get Wick rotated and one computes the path integral of a complex action, whose

convergence arises from the M̃ term in Sen lagrangian. What is more, thanks to

implementing the Wick rotation as a metric deformation and to the precise nature of

the non-standard coupling of the Sen action to the curved background, M̃ is simply

related to the torus complex structure τ and enters the computations in a manifestly

holomorphic fashion.

In this way, for the chiral boson in two dimensions, we reproduced the classic θ/η

result by a calculation of the path integral on T2. The argument of this expression

was an SL(2,Z) transformation away from the usual T2 complex structure. General

theta-function characteristics were incorporated by introducing a topological term to

the Sen action and adjusting the periodicities of the scalar on the torus. We then

proceeded to repeat the same computation for the significantly more complicated case

of the six-dimensional theory on T6, under certain assumptions about the equivalence

of the Dirac and Feynman path-integral prescriptions for the Sen action. The result,

which was a generalisation of the two-dimensional one, can be extended to higher k.
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It is worth making contact between our calculation and the canonical-quantisation

computation of the partition function of the Sen action. As we saw in section (2.2.5),

within the hamiltonian formalism one introduces a pair of non-canonically conju-

gate variables, Π±, in terms of which the Hamiltonian schematically splits into H ∼
H+ +H−. Here H+ is a negative-definite Hamiltonian which completely decouples from

the system, while H− is the physical Hamiltonian which describes the correct spectrum

of the chiral form. Therefore, within the canonical approach to quantisation, one can

simply recover the partition function of, e.g. , the compact chiral boson by computing

Tre2πiτRH− ; see [47]. Note that, due to the nature of the Legendre transform, the

decoupling of the unphysical modes is not straightforward in the Lagrangian formula-

tion of the theory. Nevertheless we found a sensible result by keeping all modes and

this is due to the non-standard Wick rotation, which preserved the wrong-sign modes

in Lorentzian signature as oscillatory contributions in the Euclidean path-integral. In

other words, the Wick rotation (3.13) left the kinetic term of φ in (3.15) unaffected and

thus it made sense to compute the path-integral of the Wick-rotated theory without

removing any contributions.

It is satisfying to see the chiral partition function emerge directly from an hon-

est functional-integral calculation. The computations performed in this chapter hence

provide nontrivial evidence that the proposal [46, 47] correctly captures the physics of

chiral forms also within the framework of the path-integral approach to quantisation.
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Chapter 4

Covariantly Constant Anomalies

Operators with integer scaling dimensions in even-dimensional conformal field theories

exhibit well-known type-B Weyl anomalies. In general, these anomalies depend non-

trivially on exactly marginal couplings. In this chapter, which is based on the work done

in [4], we study the corresponding fully covariantised anomaly functional on conformal

manifolds in several examples. We show that a natural consequence of the Wess–Zumino

consistency condition is that the anomalies are covariantly constant with respect to

the exactly marginal couplings. The argument is general and applies even when the

conformal symmetry is spontaneously broken on moduli spaces of vacua.

4.1 Introduction

Sometimes, in a Quantum Field Theory a classical symmetry turns out to be violated

by quantum effects. This usually happens because at the quantum level there are

divergences which make impossible for the theory to satisfy the Ward identities of a

symmetry. Maybe the archetype of such phenomena is the chiral anomaly of theories

with fermions in even spacetime dimensions, in which case, the anomaly results as an

incompatibility between the Ward identities of vector and axial symmetries, see [145]

for a pedagogical review. Chiral anomalies are peculiar and robust observables which

can be put to good use in the study of a plethora of phenomena. For instance, they

are 1-loop exact and they match in different phases of the theory. Moreover, they are

invariant under the renormalization group flow and therefore can be used to constrain

strongly coupled dynamics and to test weak-strong coupling dualities between different

QFTs, as done in [146].

4.1.1 Weyl Anomalies

Conformal Field Theories can admit another important class of anomalies, the so-

called Weyl (or conformal) anomalies, which signal the impossibility of formulating
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the quantum theory on a curved manifold with simultaneous diffeomorphism and Weyl

invariance. We follow the qualitative classification of Weyl-anomalies introduced in [32],

according to which a CFT in an even-dimensional spacetime can exhibit Type-A and

Type-B Weyl anomalies.

Type-A are the most famous and well-studied Weyl anomalies. They are expressed

in terms of topological invariants, which is a feature that makes them akin to chiral

anomalies. The c2D anomaly in 2D and the a4D anomaly in 4D belong to this class,

which can be isolated by studying the tracelessness condition for the energy-momentum

tensor Tµν :

〈Tµµ 〉 =

−
c2D
12 E2 in 2D

a4DE4 − c4DWµνρσW
µνρσ in 4D

, (4.1)

where En is (proportional to) the Euler density in n dimensions, which famously gives

rise to a topological quantity upon integration.

In (4.1) we introduced also the coefficient c4D which classifies as the first example of

Type-B Weyl anomaly encountered in this chapter, as the square of the Weyl tensor

Wµνρσ is not a topological density.

Like chiral anomalies, also Type-A Weyl anomalies have very peculiar properties, which

turn coefficients like a4D and c2D into robust observables, indispensable tools for the

analysis of CFTs. For instance, a4D and c2D are guaranteed to match across dif-

ferent phases of the CFT ( [147]) and across different points of the conformal man-

ifolds (as a result of the Wess-Zumino consistency condition). Moreover, they obey

the a/c−theorems of [148, 149], which essentially attribute, to these coefficients, the

interpretation of a measure of the amount of degrees of freedom present in the system.

Type-B Weyl anomalies seem to be wilder quantities as, in general, it is not possible to

obtain similar results for them. There are various counterexamples for a 4D c-theorem

based on the c4D coefficient (see [150] and references therein) and, in absence of su-

persymmetry, it is hard to figure the fate of c4D under marginal deformation or under

the spontaneous breaking of the conformal symmetry; see [151] for a review on these

topics.

4.1.2 A subclass of Type-B Weyl anomalies

In this chapter we are interested in a particular subclass of Type-B Weyl anomalies and

in probing their behavior under both exactly marginal deformations and spontaneous

symmetry breaking of the conformal symmetry.

These are the Weyl anomalies associated to operators O∆ with integer scaling dimen-

sions ∆ in a four-dimensional spacetime, which, as we will see below, can be detected

by studying the correlator 〈TµµO∆O∆〉.
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Concrete examples of such anomalies can be found in 4D N = 2 SCFTs, mean-

ing superconformal QFTs with eight Poincaré supercharges and R-symmetry group

SU(2)R × U(1)r. Four of the Poincaré supercharges are left-chiral (which we will de-

note as QIα, where α = ± are spinor indices and I = 1, 2 labels the doublet of SU(2)R)

whereas the other four are right-chiral, Q̄Iα̇. These theories have two kind of 1
2−BPS

scalar superconformal primary operators:

• Coulomb-Branch operators (CBOs), which are charged under the U(1)r sym-

metry, but are neural under the SU(2)R. They are either chiral or anti-chiral

operators, meaning that they are annihilated by either the four right-chiral su-

percharges or by the four left-chiral ones. Their scaling dimensions ∆ are related

to their U(1)r charge r by the shortening condition33 ∆ = |r|. Coulomb branch

operators are naturally endowed with a ring structure, the so-called chiral ring,

see [153] for example.

• Higgs-Branch operators (HBOs), which are charged under the SU(2)R symmetry,

but are neural under the U(1)r. They are annihilated by supercharges of both

chiralities and obey to the shortening condition ∆ = 2R, where R is the charge

under the Cartan generator of the SU(2)R. These operators parametrize the

Higgs branch (HB) of vacua of the SCFT, where U(1)R is unbroken and SU(2)R

is spontaneously broken.

Both CBOs and HBOs have their scaling dimensions tied by supersymmetry to the

charge of a subgroup of the R-symmetry. As the latter is naturally an integer, these

operators have integer scaling dimensions and therefore they lead to a large class of

Type-B Weyl anomalies.

As we will be interested in studying how these anomalies change across the conformal

manifolds, it is natural to start our investigations with CBOs. Indeed, such operators

cannot disappear from the spectrum as we explore the conformal manifold, because

they are not allowed to recombine into long multiplets ( [152]).

At the same time, we will also want to understand how the anomalies associated to

CBOs might vary in the presence of a vacuum |v〉 that spontaneously breaks conformal

invariance. The object that we need to study is 〈v|TµµO∆O∆|v〉 and, to make our

life simpler, we might want to choose a vacuum |v〉 parametrized by a vev that is

independent of the exactly marginal coupling constants, so that we do not need to

worry about how |v〉 might change as we go around the conformal manifold. Such a

choice can be made on the HB, because the connection on the bundle of Higgs-Branch

superconformal-primary is flat, [154].

All in all, the main example of anomalies that we will have in mind throughout this

chapter are the one associated with CBOs in both the conformal and the HB phase;

33Here we use the convention of [152].
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nevertheless we will soon indicate which arguments of our discussion can be generalized

beyond these specific cases.

The non-perturbative properties of type-B Weyl anomalies associated with CBOs on

the Higgs–branch vacuum moduli space of 4D N = 2 SCFTs were discussed in [34,155].

These papers presented examples, where the CBO type-B Weyl anomalies matched

across the Higgs branch, and other examples where the matching between the confor-

mally symmetric and spontaneously broken phase does not occur. A complete under-

standing of the dynamics responsible for these disparate behaviours is still missing, but

the existing results have led to a number of non-perturbative conjectures, which were

postulated in [155].

In this thesis, we elaborate further on the properties of the CBO type-B Weyl

anomalies, and point out that one of the crucial elements in the discussion of Refs

[34, 155]—the fact that these anomalies are covariantly constant on conformal mani-

folds, both in the unbroken and in the HB phase—can be understood in many cases as

a natural consequence of the Wess–Zumino consistency conditions of the corresponding

anomaly functionals. As explained in Ref. [155], the existence of covariantly constant

type-B anomalies in different phases of the theory can lead to non-trivial implications34.

The main elements of the argument are as follows. For an operator O with scaling

dimension ∆ = 2 + n (n ∈ N0), the anomaly of interest can be identified (in all phases

of the CFT) as a specific contact term in the integrated 3-point function of the trace

of the energy-momentum tensor T ≡ Tµµ,∫
d4y〈T (y)O∆(x)O∆(0)〉 ∝ 2nδ(x) . (4.2)

In the unbroken conformal phase, the Ward identities of diffeomorphism and Weyl

transformations can be used to relate the corresponding anomaly coefficient G
(CFT)
∆ , to

the 2-point function coefficient of the operator O. In momentum space, the anomaly

appears in the logarithmically divergent piece of the 2-point function

〈O∆(p)O∆(−p)〉 = (−1)n+1 π2G
(CFT)
∆

22nΓ(n+ 1)Γ(n+ D
2 )
p2n log

(
p2

µ2

)
+ ... . (4.3)

In a phase with spontaneous breaking of the conformal symmetry, the Ward identities

do not provide a similar relation between the corresponding type-B conformal anomaly

and some datum in the 2-point function of the operator O, see [34]. In that case, the

broken-phase anomaly, G
(broken)
∆ , must be extracted directly from the 3-point function

34Such as potential constraints on the holonomy of superconformal manifolds.
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(4.2). In momentum space this reads

lim
q→0
〈T (q)O∆(p1)O∆(p2)〉 = (−1)n

π2G
(broken)
∆

22nΓ(n+ 1)Γ(n+ 2)
(p2

1)n + ... . (4.4)

On the RHS of (4.3) and (4.4) a Dirac-delta imposing momentum conservation is left

implicit; in particular, the q → 0 limit in (4.4) is equivalent to taking the p2 → −p1

limit.

As an explicit example, let us consider the case of 4D N = 2 SCFTs with a non-

trivial chiral ring of CBOs OI , an anti-chiral ring of conjugate operators ŌJ , and

a non-empty conformal manifold M. The latter means that the N = 2 SCFTs of

interest possess exactly marginal operators.35 We will denote the anomaly coefficients

in the conformally symmetric or HB phase respectively as G
(CFT)

IJ̄
and G

(Higgs)

IJ̄
. Both

quantities are, in general, complicated functions of the exactly marginal couplings,

see [33,34,155].

A crucial ingredient in the discussion of [34,155] was the proposal that the anomaly

coefficients GIJ̄ are covariantly constant on the conformal manifold M in both phases

of the theory. Namely, both anomalies obey equations of the form ∇G(CFT)

IJ̄
= 0,

∇G(Higgs)

IJ̄
= 0, where ∇ is a phase-independent connection on the vector bundles of

the CBOs. It is straightforward to derive this condition in the conformally symmetric

phase as a consequence of superconformal Ward identities. However, as pointed out

in [34], a similar argument in the Higgs phase needs to take into account potential con-

tributions from the dilatino. In [34] it was conjectured that such contributions do not

affect the contact term that accounts for the anomaly, but it is not straightforward to

demonstrate this explicitly. As a result, it would be very useful to have an alternative

way to deduce that ∇G(Higgs)

IJ̄
= 0 and in this chapter we will find such an argument.

As a bonus, the approach we will present is very general and can be applied to any CFT

with a conformal manifold that has operators with integer-valued scaling dimension; it

is not restricted to CBOs in N = 2 SCFTs or to Higgs-branch phases.

It is well known (see e.g. [156]) that conformal anomalies can be conveniently pack-

aged into a local anomaly functional that expresses the Weyl variation of the generating

functional of correlation functions W 36

δσW ∝
∫
d4x
√
γδσA . (4.5)

W is a non-local functional of the sources of the CFT, but the Weyl anomaly A is a local

term reflecting the above-mentioned fact that in correlation functions it appears as a

35These are necessarily supersymmetric descendants of scaling-dimension 2 CBOs.
36See also [157,158].
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contact term. The δσ variation in (4.5) denotes infinitesimal local Weyl transformations

with parameter δσ(x) that vanish at the boundary of spacetime [147], and γµν is the

background spacetime metric. The locality of δσ(x) guarantees, among other things,

that the Ward identities retain the same form in all phases of the theory, irrespective

of whether or not conformal symmetry is spontaneously broken (they are operatorial

relations). This fact will be crucial for our upcoming discussion of the structure of the

anomaly functional in different phases. In order to encode the CBO type-B anomalies of

interest in the anomaly functional one needs to add to the action spacetime-dependent

sources for the operators OI , ŌJ

δS =

∫
d4x
√
γ
(
λI(x)OI(x) + λ̄J(x)ŌJ(x)

)
. (4.6)

The anomaly functional must satisfy certain conditions. It must be invariant under

diffeomorphisms or any other unbroken symmetries of the theory. In addition, it must

obey the Wess–Zumino (WZ) consistency condition

δ[σ1
δσ2]W = 0 , (4.7)

which encodes the fact that the action of the Weyl group is abelian. Finally, terms in A
that are Weyl variations of a local functional express the addition of local counterterms

in W [159], which simply correspond to a change in the regularisation scheme. Such

terms are considered trivial and can be dropped from δσW . This reflects the fact that

the anomaly is a scheme-independent quantity.

As emphasised already in Ref. [160], on a conformal manifold M one should also

require that the anomaly functional is suitably invariant under coupling-constant redef-

initions. This can be achieved by utilising a connection ∇ on the bundle of operators.

For exactly marginal couplings, the WZ consistency condition on the M-covariantised

version of the anomaly implies that the connection ∇ is compatible with the Zamolod-

chikov metric, [160]. In this chapter, we examine whether this argument can be ex-

tended beyond the case of the exactly marginal operators.

Since the presence of a contact term like the one in (4.4), in any phase of the theory,

has been established independently by the analysis of Ward identities, in all phases the

anomaly functional includes a term of the form

δσW ∝
∫
d4x
√
γδσ[GIJ̄λ

I2nλ̄J + . . .] , (4.8)

where GIJ are the corresponding anomaly coefficients. This term should be covari-

antised on the corresponding vector bundle of operators over M. We perform this

covariantisation for operators of scaling dimension ∆ = 3, 4, 5 in Sec. 4.2 and show that

the WZ consistency condition (4.7) requires that the anomaly is covariantly constant.
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In the case of scaling-dimension 4 operators the arguments of Refs [157, 158, 160] are

modified to capture the properties of marginal, but not necessarily exactly marginal

operators. Our analysis is completely general and does not employ supersymmetry at

any stage. We expect that similar arguments can be applied to all higher values of

integer scaling dimension ∆, but the anomaly functional becomes significantly more

complicated with increasing ∆. Indeed, already at ∆ = 5 we present WZ-consistent

anomaly functionals, which contain hundreds of terms in the flat-space limit. We no-

tice that in both the cases of ∆ = 4, 5 anomalies, new terms in the anomaly functional

that involve the curvature of the corresponding operator bundles are crucial in order

to satisfy the WZ consistency conditions.

The case of ∆ = 2 operators is special and requires a separate discussion: the

anomaly functional is automatically WZ-consistent and (4.7) does not lead to further

restrictions. To make a non-trivial statement, we need to use theN = 2 supersymmetry

to relate the ∆ = 2 anomaly to the anomaly of the exactly marginal operators. An

argument in favour of this relation is sketched in Sec. 4.3 alongside an explicit tree-level

check for N = 2 SCQCD in the conformal and Higgs phases.

4.2 WZ Consistency Conditions in 4D CFTs

We follow closely the discussion and notation of references [161, 162]. W = logZ is

the generating functional of correlation functions. It is a functional of the spacetime-

dependent sources (couplings). In this section, we focus on four spacetime dimensions

and type-B conformal anomalies of scalar operators. Such anomalies exist when the

operators have scaling dimensions ∆ = 2 + n with n ∈ N0.

We will denote the operators of interest as OI and their corresponding sources as

λI . Note that although we ultimately have N = 2 applications in mind, we will use

a real basis of operators and will not require supersymmetry for any of the arguments

presented in this section. When the operators are exactly marginal they will be denoted

as Φi and their corresponding couplings as λi. Clearly, the index i takes values up to the

dimension of the conformal manifold M. The more general indices I label conformal

primary operators in a sub-bundle of operators of fixed integer dimension and the

corresponding conformal anomalies will be denoted GIJ . The background spacetime

metric will be denoted γµν with Greek letters reserved for the spacetime coordinate

indices. Vector bundles over the conformal manifold can be equipped with a connection.

For a discussion of this connection in the context of conformal perturbation theory

see [163,164]. For a related discussion in radial quantization see [165]. The components

of the connection on the sub-bundle of OI operators will be denoted as (Ai)
I
J , whereas

the connection on the tangent space of Φi operators as Γkij . The corresponding covariant

derivative on the conformal manifold will be denoted as ∇i.
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In this section we follow the general strategy of [157, 158, 160], where the basic

ansatz for the Weyl variation of W was covariantised not only in spacetime but also

in the tangent bundle of the conformal manifold TM. Accordingly, for the type-B

Weyl anomalies of exactly marginal operators [157, 158, 160] proposed the anomaly

functional:37

δσW ∝
∫
d4x
√
γδσ Gij

(
(�λi + Γikl∂

µλk∂µλ
l)(�λj + Γjmn∂

νλm∂νλ
n)

− 2∂µλ
i(Rµν − 1

3
γµνR)∂νλ

j

)
, (4.9)

with Rµν and R the spacetime Ricci tensor and scalar respectively. Clearly, this func-

tional is sensitive only to the symmetric part Γi(kl) of the connection. The WZ-condition

identifies it to be the Levi–Civita connection onM, and under the further assumption

that the connection is torsion-free [163] one obtains that the anomaly is covariantly

constant on M,

∇iGjk = 0 . (4.10)

This approach can be generalised to generic operators OI , where covariantisation

on the conformal manifold translates into the invariance of δσW under a change of basis

in the vector space of OIs. We discover that imposing the WZ consistency condition

will typically lead to ∇iGIJ = 0.

We emphasise that this result is independent of the phase of the theory. The

anomaly functional can be understood as the local Weyl variation of the generating

functional W with appropriate boundary conditions for the fields. The infinitesimal

local Weyl parameters, δσ(x), by definition vanish at the boundary of spacetime and

parametrise transformations that are valid both in the conformally symmetric and

broken phases [147]. Moreover, the asymptotic behaviour of δσ(x) also guarantees that

any boundary terms that involve δσ(x) (obtained after integration by parts) can be

safely ignored in the upcoming discussion.

We will now summarise the key ingredients of the calculation, before specialising

to type-B anomalies for operators with ∆ = 3, 4, 5.38 The ∆ = 2 case cannot be

constrained with a simple analysis of the Wess-Zumino consistency condition and will

be treated separately in Sec. 4.3. The expressions δσW for cases with a single source

can be found in [162] and form the starting point of our discussion. We study the WZ

consistency conditions after we covariantise the expressions in Ref. [162] with respect

37For the case of a single coupling, this expression is related to the Fradkin–Tseytlin–Paneitz–Riegert
operator [166–169]. A six-dimensional generalisation of this operator was presented in [170].

38Here the ∆ = 4 case refers exclusively to Weyl anomalies for marginal operators that are not
exactly marginal—they can be marginally relevant or irrelevant.
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to the conformal manifold. In the process we discover that a fully covariant anomaly

functional requires new terms that have not appeared previously in the literature.

4.2.1 Covariantisation on the Conformal Manifold

In what follows we will make an important distinction between the exactly marginal

couplings λi that parametrise the conformal manifold and the remaining non-exactly

marginal sources λI . Geometrically, the couplings λi are coordinates on the curved

conformal manifold, which are allowed to also depend non-trivially on the spacetime

coordinates. The couplings λI are viewed, instead, as sections of a vector bundle; they

can depend both on the spacetime and conformal manifold coordinates.

Under a change of basis on the tangent bundle of the conformal manifold, the

spacetime derivatives ∂µλ
i transform as

∂µλ
i =

∂λi

∂λ′j
′ ∂µλ

′j′ . (4.11)

On the other hand, under a change of basis on each fibre of the λI -vector bundle

λI =
∂λI

∂λ′I
′ λ
′I′ , (4.12)

where the transformation matrix ∂λI

∂λ′I
′ depends on the λi(xµ) only. As a result, we define

covariant derivatives on the conformal manifold in terms of the connection components

(Ai)
I
J as

∇iλI = ∂iλ
I + (Ai)

I
Jλ

J . (4.13)

The generalised covariant derivative is then naturally given by39

∇̂µλI := ∇µλi∇iλI +∇µλI |λi=fixed = ∂µλ
i∇iλI + ∂µλ

I |λi=fixed , (4.14)

with ∇µ the standard spacetime-covariant derivative.

Compared to the unhatted differential operators used in [162], commutators of

our hatted operators can lead to curvature terms on M. The latter can be easily

evaluated by using the definition of the generalised covariant derivative and the fact

that ∂µ(Ai)
I
J |λi=fixed = 0, i.e.

(Fµν)IJλ
J :=[∇̂µ, ∇̂ν ]λI = ∂µλ

i∂νλ
j(Fij)

I
Jλ

J , (4.15)

where (Fij)
I
J = ∂i (Aj)

I
J − ∂j (Ai)

I
J + (Ai)

I
K (Aj)

K
J − (Aj)

I
K (Ai)

K
J .

39Here we are explicitly stressing that ∇µ and ∂µ have to be understood at fixed λi, but later this
will be left implicit.
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Under the change of basis (4.11)-(4.12), the connection transforms inhomogeneously

as

(Ai)
I
J =

∂λ′i
′

∂λi
∂λ′J

′

∂λJ
∂λI

∂λ′I
′ (Ai′)

I′
J ′ −

∂λ′i
′

∂λi
∂λ′J

′

∂λJ
∂2λI

∂λ′i
′
∂λ′J

′ (4.16)

such that

∇iλI =
∂λ′i

′

∂λi
∂λI

∂λ′I
′∇i′λ′I

′
, (4.17)

which in turn implies

∇̂µλI =
∂λI

∂λ′I
′ ∇̂µλ′

I′
. (4.18)

Therefore, standard differential operators can be covariantised on M by upgrading

the usual spacetime-covariant derivative ∇µ to ∇̂µ. For example, the M−covariant

Laplacian �̂, which reads

�̂λI := ∇̂µ∇̂µλI

= ∂µλi∇i
(
∇̂µλI

)
+∇µ

∣∣∣
λifixed

∇̂µλI (4.19)

= ∂µλi
(
∂i∇̂µλI + (Ai)

I
J∇̂µλJ

)
+ ∂µ

∣∣∣
λifixed

∇̂µλI − gµνΓρνµ∇̂ρλI ,

transforms as

�̂λI =
∂λI

∂λ′I
′ 2̂λ

′I′ . (4.20)

As a result, to get anomaly functionals invariant under a change of basis in the space

of Os, one can consider the ones written in [162] and simply replace all spacetime co-

variant derivatives with their hatted versions. However, because of (4.15) this minimal

prescription is, in general, sensitive to ordering choices and does not guarantee WZ

consistency.

We conclude this section with some remarks on λi and by explicitly stressing how

our framework is compatible with the one of [157, 158, 160]. As the exactly marginal

coupling λi is not a tensor (it is a coordinate on the conformal manifold), the generating

functional cannot display an explicit λi dependence. Instead, the anomaly can depend

on it only through its infinitesimal variation, i.e.

λiµ := ∂µλ
i = ∇µλi . (4.21)

This object serves as a pullback from the conformal manifold to spacetime, as it could

have been appreciated already at the level of formula (4.14). It has good transformation
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properties (4.11) and can then be acted upon by the generalised covariant derivative:

∇̂µλiν = ∇µλiν + λjµΓijkλ
k
ν . (4.22)

Thus, within our framework, (4.9) can be more succinctly recast into the form

δσW ∝
∫
d4x
√
γδσ Gij

(
∇̂µλiµ∇̂νλjν − 2λiµ(Rµν − 1

3
γµνR)λjν

)
=

∫
d4x
√
γδσ

(
∇̂µλiµ∇̂νλνi − 2λiµ(Rµν − 1

3
γµνR)λiν

)
. (4.23)

In the second line we have implicitly used the fact that Γijk is given by the Christoffel

symbol (so that ∇̂µGjk = 0). The fact that Γijk is symmetric yields many simplifica-

tions, e.g.

∇̂[µλ
i
ν] = 0 , λi[µ∇iλ

j
ν] = 0 , (4.24)

where the first equation guarantees that the Bianchi identity ∇[i(Fjk])
I
J = 0 gets pulled-

back onto ∇̂[µ(Fνρ])
I
J = 0.

4.2.2 Weyl Transformations

In four spacetime dimensions, an infinitesimal local Weyl transformation acts on the

spacetime metric γµν as

δσγµν = 2δσ γµν . (4.25)

The Christoffel symbols, the Ricci tensor Rµν and the Ricci scalar R transform accord-

ingly

δσΓρµν = γρσ (γνσ∂µδσ + γµσ∂νδσ − γµν∂σδσ)

δσRµν = −2∇µ∇νδσ − γµν2δσ (4.26)

δσR = −2δσ R− 62δσ .

For an operator of conformal scaling dimension ∆, one has classically δσOI = −∆OIδσ.

Thus,

δσλ
I = (∆− 4)δσ λI , δσλ

i = 0 . (4.27)

Being a number, the anomaly has vanishing classical dimension, so

δσGIJ = 0 , (4.28)
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while the uniform Weyl variation of ∇iλI leads to

δσ(Ai)
I
J = 0 . (4.29)

One then finds that standard equations such as

δσ∂µλ
I = (∆− 4)∂µλ

Iδσ + (∆− 4)∂µδσ λ
I (4.30)

δσ2λ
I = (∆− 6)δσ 2λI + 2(∆− 3)∂µδσ ∂

µλI + (∆− 4)λI2δσ . (4.31)

can be straightforwardly extended to

δσ∇̂µλI = (∆− 4)∇̂µλIδσ + (∆− 4)∂µδσ λ
I (4.32)

δσ�̂λ
I = (∆− 6)δσ �̂λI + 2(∆− 3)∂µδσ ∇̂µλI + (∆− 4)λI2δσ . (4.33)

and accordingly for quantities with raised spacetime indices. These expressions will be

useful in the calculations that we will be performing below.

4.2.3 ∆ = 3 Operators

We begin the construction of fully covariant and WZ-consistent anomaly functionals

with the case of ∆ = 3. According to the discussion around Eq. (4.8), the ansatz for

this case should contain two derivatives. In order to address the Weyl-cohomological

problem, we will first characterise terms in the anomaly functional that are cohomo-

logically trivial. We start with the following expression for the generating functional of

connected correlation functions

W exact =

∫
d4x
√
γ

[
GIJ∇̂µλI∇̂µλJ +A1λ

I�̂λJGIJ +A2GIJλ
IλJR

+A3λ
I∇̂µλJ∇̂µGIJ +A4λ

IλJ�̂GIJ

]
. (4.34)

By computing its Weyl variation, and after integrating by parts, we find that the most

general exact (i.e. cohomologically trivial) anomaly functional is

δσW
exact ∝

∫
d4x
√
γδσ

[
2(−1 +A1 + 6A2)GIJ∇̂µλI∇̂µλJ

+ 2(−1 +A1 + 6A2)λI�̂λJGIJ

+ 2(−1 + 2A1 + 12A2 −A3 + 2A4)λI∇̂µλJ∇̂µGIJ

+ (A1 + 6A2 −A3 + 2A4)λIλJ�̂GIJ

]
. (4.35)
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From the above one can deduce that:

(a) An anomalous Weyl generating functional containing δσGIJλ
IλJR cannot be

cohomologically trivial.

(b) λIλJ�̂GIJ is cohomologically equivalent to λI∇̂µλJ∇̂µGIJ .

(c) λI∇̂µλJ∇̂µGIJ is cohomologically equivalent to GIJ∇̂µλI∇̂µλJ +λI�̂λJGIJ and

by going to momentum space, one sees that the latter does not contribute to the

anomaly.

Hence, modulo cohomologically trivial terms and up to integration by parts, the most

general Weyl anomalous functional is given by

δσW =

∫
d4x
√
γ δσGIJ

[
C1∇̂µλI∇̂µλJ + C2λ

I�̂λJ + C3λ
IλJR

]
(4.36)

with C1 6= C2. Imposing the WZ consistency condition leads to the following indepen-

dent solutions for the anomaly functional:

δσW
(1) =

∫
d4x
√
γ δσGIJ

[
∇̂µλI∇̂µλJ +

1

6
λIλJR

]
, (4.37)

δσW
(2) =

∫
d4x
√
γ δσGIJ

[
λI�̂λJ − 1

6
λIλJR

]
. (4.38)

For δσW
(1) one needs to impose ∇iGIJ = 0, while δσW

(2) is automatically WZ consis-

tent.40 It is interesting to observe that (4.37) and (4.38) are equivalent upon integration

by parts when ∇iGIJ = 0, leading to a self-consistent picture.

4.2.4 ∆ = 4 Operators

The classical Weyl variations (4.32) do not distinguish between the exactly-marginal

couplings λi and the marginally relevant or irrelevant λI . However, in our formalism

these two sets of couplings are treated differently—the λi are non-linear coordinates on

the conformal manifold but the λI are linear coordinates on a vector bundle. Accord-

ingly, in the conformal phase, we can interpret the anomalies Gij as a Zamolodchikov

metric on the conformal manifold, but the anomalies GIJ do not have such an inter-

pretation. This will soon translate to a different type of anomaly functional for the

anomalies GIJ , which is sensitive to the curvature of the corresponding operator bun-

dles. Examples of theories with non-exactly marginal ∆ = 4 operators, whose curvature

is non-trivial, are abundant in 4D N = 2 SCFTs, see e.g. [171].

40The WZ consistency condition imposes C3 = 1
6
(C1 − C2) so the most general anomaly functional

is given by δσW = C1δσW
(1) + C2δσW

(2) with C1 6= C2. Terms with C1 = C2 cannot capture the
anomaly, see point (c) above.
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It is sensible to start with an anomaly functional, which is similar to (4.23) for the

exactly marginal operators

δσW ∝
∫
d4x
√
γδσ GIJ

[
�̂λI�̂λJ − 2∇̂µλI(Rµν −

1

3
γµνR)∇̂νλJ

]
. (4.39)

For exactly marginal operators ∇̂[µλ
i
ν] = 0 from (4.24). Instead, for non-exactly

marginal ∆ = 4 operators [∇̂µ, ∇̂ν ]λI = (Fµν)IJλ
J . As a result, we expect that terms

containing either (Fµν)KJ or explicit (Fij)
K
J contributions will mark a distinctive differ-

ence compared to the exactly-marginal case. Indeed, when checking the WZ-consistency

condition for (4.39), one finds that

δσ[2
δσ1]

W ∝
∫
d4x
√
γδσ[1∂

νδσ2]×

× ∇̂µλI
[
−4∇̂µGIJ∇̂νλJ + 2∇̂νGIJ∇̂µλJ − 4GIKλ

J(Fµν)KJ

]
. (4.40)

The expression on the RHS does not vanish automatically even after imposing∇iGIJ =

0: extra terms need to be added to (4.39) to cancel the last term in (4.40). One can

exhaustively prove that terms constructed out of (Fµν)IJ are closed with respect to the

Weyl-cohomology and cannot achieve the desired goal. We are thus forced to use terms

where (Fij)
I
J appears explicitly and does not combine with pullbacks to give (Fµν)IJ =

(Fij)
I
Jλ

i
µλ

j
ν . We notice, using the first equation in (4.26), that δσ(∇̂ρλiν) ∼ ∂ρδσλiν , and

as a result

δσ

(
(Fij)

J
Kλ

j
ρ∇̂µλiν

)
= (Fij)

J
Kλ

j
ρδσ

(
∇̂µλiν

)
∼ (Fρν)JK∂µδσ . (4.41)

We are thus led to consider terms with the schematic structure:

GIJ(Fij)
I
Kλ

j
ρλ

K∇̂µλiν∇̂σλJ .

By taking into account all possible contractions for the spacetime indices, we arrive at

the generating functional

δσW ∝
∫
d4x
√
γδσ GIJ

[
�̂λI�̂λJ − 2∇̂µλI(Rµν −

1

3
γµνR)∇̂νλJ+

+ (Fij)
I
K(E3g

µσgνρ + E2g
µρgνσ + E1g

µνgρσ)λjρ∇̂µλiνλK∇̂σλJ
]
, (4.42)

where E1, E2, E3 are free constants. The WZ consistency condition can be satisfied

by setting ∇iGIJ = 0 and E1 + E2 + E3 = −2. The fact that only the combination

E1 + E2 + E3 = −2 survives the WZ condition suggests a relation between the three

terms in the second line of (4.42). Indeed, the terms parametrised by E2 and E3 are

identical as a consequence of the identity ∇̂[µλ
i
ν] = 0. This leaves a single combination
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in (4.42)—the difference between the terms parametrised by E1 and E2 being closed,

but not exact. The resultant anomaly functional (4.42) is the WZ-consistent functional

that captures the type-B anomalies GIJ for non-exactly-marginal ∆ = 4 operators.

We can draw two lessons from this discussion. First, we verify once again that

the condition ∇iGIJ = 0 is necessary to obtain WZ consistency. Second, and on a

more technical level, we notice that in order to cancel Fµν-terms in the WZ consistency

condition (4.40), one needs to add to the generating functional terms where Fij factors

come contracted with (differentiated) pull-backs. The specific terms added in (4.42)

contributed to the WZ condition only with Fµν combinations. It turns out that this is

a special feature of ∆ = 4 operators (for which both δσλ
I and δσ∇̂λI vanish). In the

next section, we will see that Fij-terms provide contributions to the WZ condition of

∆ = 5 anomalies that do not combine to produce Fµν . This feature will add to the

complexity of the ∆ = 5 anomaly functionals.

4.2.5 ∆ = 5 Operators

The Osborn equation for type-B anomalies of irrelevant operators in even spacetime

dimensions is subtle. Its intricacies were discussed in [162], the main lesson being that

in order to ensure the consistency of the anomalous part, one has to introduce a beta

function for the spacetime metric. We will generalise the analysis of [162] to the case of

multiple irrelevant sources λI , starting with the most general ansatz for the spacetime

Weyl variation δσγµν that is quadratic in the sources λI . One needs to first impose

that δ[σ2
δσ1]γµν = 0 and then remove the cohomologically trivial terms from δσγµν .41

The outcome of this analysis, at quadratic order in the sources, is that the variation of

the metric δσγµν is essentially the covariantised version of the one proposed by [162],

i.e.

δσγµν = 2δσ γµν+αδσGIJ

(
Rµνλ

IλJ + 2λI∇̂(µ∇̂ν)λ
J − 3γµν∇̂ρλI∇̂ρλJ + γµνλ

I�̂λJ
)

+βδσγµν

(
RλIλJ + 6λI�̂λJ − 12∇̂ρλI∇̂ρλJ

)
+O(λ4) , (4.43)

where α and β are free parameters. Here we have neglected—already at O(λ2)—terms

that vanish when ∇iGIJ = 0; one can prove that they sit in a cohomology class different

to that of the ones proportional to GIJ , hence their presence would not modify (4.43).

Moreover, such terms will not play a role in the computations that we will display

below.

As a starting point for the analysis of the ∆ = 5 anomaly functional, we consider

the covariantised version of the expression derived in [162], which to quadratic order in

41The latter are those solutions (δσγµν)trivial to δ[σ2δσ1]γµν = 0 that can be written as (δσγµν)trivial =
δσγ̂µν−2δσγ̂µν for a metric γ̂µν . Therefore the redefined metric γµν 7→ γµν−γ̂µν , continues to transform
classically.
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the irrelevant sources reads42

A = c CµνρσC
µνρσ

+
c

2
αGIJ

{
�̂λI�̂2λJ − 13

8
RRµνRµνλ

IλJ +
53

162
R3λIλJ +

4

3
RµνRλσRµλνσλ

IλJ

− 1

8
RRµνλσR

µνλσλIλJ +
43

72
RµνλσR

µναβRαβ
λσλIλJ − 35

72
R2λI�̂λJ +

25

24
RµνλσR

µνλσλI�̂λJ

− 1

36
∇µR∇µRλIλJ +

167

12
RµνRµν∇̂αλI∇̂αλJ −

101

24
R2∇̂αλI∇̂αλJ

− 79

24
RµνλσRµνλσ∇̂αλI∇̂αλJ −

1

3
R�̂∇̂µλI∇̂µλJ −

10

9
Rµν∇µ∇νRλIλJ +

7

9
RµνRλI∇̂µ∇̂νλJ

+
1

36
�RλI�̂λJ − 16

9
R�̂λI�̂λJ +∇µR∇̂µλI�̂λJ +

1

6
RλI�̂2λJ − 4Rµν∇̂µλI�̂∇νλJ

− 37

18
Rµν∇µRλI∇̂νλJ − 22RαµRνα∇̂µλI∇̂νλJ +

116

9
RµνR∇̂µλI∇̂νλJ

− 13RαβRµανβ∇̂µλI∇̂νλJ −
5

18
∇µ∇νRλI∇̂µ∇̂νλJ −

5

9
R∇̂µ∇̂νλI∇̂µ∇̂νλJ

− 5Rβγ∇γRαβλI∇̂αλJ −
8

3
RγαR

αβλI∇̂β∇̂γλJ +
10

3
Rβγ∇̂αλI∇̂γ∇̂β∇̂αλJ

+
5

6
�RµνλI∇̂µ∇̂νλJ +

22

3
Rµν∇̂µ∇̂νλI�̂λJ −

5

3
∇µRαβ∇µRαβλIλI

}
+O

(
λ4
)
, (4.44)

where c = c4D is the central charge of the system. From this expression it is apparent

that the α parameter entering (4.43) is the normalisation of 〈TOO〉 which, in the

unbroken phase, can be related to the normalization of 〈OO〉. However, there is no

information about β, since the part of δσγµν that it parametrises does not contribute

to δσ(CµνρσC
µνρσ).43 The WZ consistency condition for the anomaly (4.44) is satisfied

up to terms that vanish when ∇iGIJ = 0 and up to bundle-curvature terms (F -terms),

since in their absence our expression then reverts to the one of [162].44 Our next goal

will be to introduce new terms AF to the anomaly (4.44) that remove the F -terms in

the WZ consistency condition.

For the purposes of this chapter, it will be enough to determine the new terms that

are needed to make A + AF WZ consistent to leading order around flat spacetime,

γµν ' δµν + . . .. We will therefore ignore in A, AF terms quadratic (or higher) in

the spacetime curvature, like the Weyl-tensor squared. However, terms linear in the

spacetime curvature must be taken into account, as the flat spacetime limit of δσRµνρσ

does not vanish, c.f. (4.26). Accordingly, we will work with the classical Weyl variation

of the spacetime metric and up to quadratic order in the λs. In summary, we want to

identify the terms AFflat that can remove all F -terms from the flat-spacetime limit of

42We thank M. Broccoli for pointing out a missing factor of 1
2

between the CµνρσC
µνρσ and λ2 terms

in [162]. This factor can also be confirmed by an independent holographic computation [172].
43Note that when computing δσ(CµνρσC

µνρσ), all the ∇µ operators hitting δσγµν can be promoted

to their hatted versions, i.e. ∇µδσγνρ = ∇̂µδσγνρ.
44By F -terms we denote contributions that vanish when Fij = 0, but do not vanish when ∇iGIJ = 0.
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the WZ condition for Aflat, which reads

Aflat ∝GIJ
[
�̂λI�̂2λJ − 1

3
R�̂∇̂µλI∇̂µλJ +

1

36
�RλI�̂λJ − 16

9
R�̂λI�̂λJ

+∇µR∇̂µλI�̂λJ +
1

6
RλI�̂2λJ − 4Rµν∇̂µλI�̂∇̂νλJ −

5

18
∇µ∇νRλI∇̂µ∇̂νλJ

− 5

9
R∇̂µ∇̂νλI∇̂µ∇̂νλJ +

10

3
Rβγ∇̂αλI∇̂γ∇̂β∇̂αλJ +

5

6
�RµνλI∇̂µ∇̂νλJ

+
22

3
Rµν∇̂µ∇̂νλI�̂λJ

]
. (4.45)

The F -terms that enter the flat spacetime limit of the WZ consistency condition

for Aflat are45

∫
d4x
√
γδσ[1∇µδσ2]GIJ×[
− 8F JνρLF

νρI
K λK∇̂µλL −

40

3
F ρIµKF

J
νρLλ

K∇̂νλJ − 20

3
λK�̂λL∇̂F ρIµK

+
4

3
∇̂νλL∇̂νλJ∇̂F ρIµL +

40

3
λK∇̂ν∇̂µλJ∇̂F ρIνK +

20

3
F νIµKλ

KλL∇̂ρF ρJνL

+ 8λK∇̂νλJ�̂F IµνK − 28F IµνK∇̂λK�̂λJ +
4

3
F IµνKλ

K�̂∇̂νλJ

+ 16∇̂λJ∇̂ρF IµνL∇̂ρλL −
32

3
F IνρK∇̂νλK∇̂ρ∇̂µλJ −

8

3
F IµρK∇̂νλK∇̂ρ∇̂νλJ

]
.(4.46)

One arrives at this expression by making use of the Bianchi identity for Fµν , and

rearranging the order of the ∇̂-operators into terms of the type ∇̂(n+2)GIJ .46

To cancel the terms in (4.46), we start with the most general linear ansatz that is

quadratic in the sources λ, that vanishes when Fij = 0, and that is at most linear in the

spacetime curvature. Moreover, since (4.46) involves only Fµν = λiµλ
j
νFij , each Fij must

come contracted with corresponding factors of λiµ. Without any additional algebraic

simplifications, nor through identifying redundancies due to Weyl-cohomologically triv-

ial terms, we have determined using the xAct Mathematica package [173–178] that such

an ansatz comprises ∼ 1500 terms. These contribute to the WZ consistency condition

with two classes of terms: those that can be rewritten solely in terms of the combina-

tion Fµν = λiµλ
j
νFij and those where the curvature components Fij of the λ−bundle

necessarily appear explicitly. We require that the former cancel out the terms in (4.46)

and the latter cancel out by themselves. This yields a solution that fixes some of the

coefficients of the linear ansatz and leaves the remaining undetermined. By setting

the undetermined coefficients to zero the resulting expression has the following 126

45To simplify our expressions, we will denote FPµνQ := (Fµν)PQ, FµνPQ := (Fµν)PQ and FµPνQ :=

(F µ
ν )PQ. Analogous definitions will apply to Fij .
46For example, one can rewrite expressions of the type GK(I∇̂(n)(Fµν)KJ) solely in terms of

GKI∇̂(m)(Fµν)KJ with m ≤ n− 2, and terms that vanish when ∇iGIJ = 0. In particular, for n = 0 we
have that Fµν(IJ) = 0 when ∇iGIJ = 0, with FµνIJ := GKI(Fµν)KJ .
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terms:47

AFflat = GIJ

[
− 19

6
F IνρLF

νρJ
K λK�̂λL +

359

144
F IijKRλ

iµλJλK∇̂µ∇̂νλjν −
23

3
F νρIK λK∇ρRµν∇̂µλJ

− 35

9
F νIµKλ

J∇ρRρν∇̂µλK +
49

6
F IνρLF

νρJ
K ∇̂µλL∇̂µλK +

151

24
λiµλJλK∇̂µ∇̂ν∇̂ρλjρ∇̂νF IijK

− 1

3
F IijKRλ

iµλK∇̂µλJ∇̂νλjν + F IijKRλ
iµλJ∇̂µλK∇̂νλjν −

359

144
F IijKRλ

iµλJλK�̂λjµ

+
89

24
λK∇̂µλJ∇̂ν�̂F νIµK +

95

12
λJ∇̂µλK∇̂ν�̂F νIµK +

215

8
λiµλJλK∇̂µ∇̂ρF IijK∇̂ν∇̂ρλjν

+
255

4
F IijKλ

JλK∇̂ν∇̂µ∇̂ρλjρ∇̂νλiµ +
395

6
λJλK∇̂µF IijK∇̂ν∇̂ρλjρ∇̂νλiµ

+
2519

96
F IijKλ

K∇̂µλJ∇̂ν∇̂ρλjρ∇̂νλiµ +
2509

96
F IijKλ

J∇̂µλK∇̂ν∇̂ρλjρ∇̂νλiµ

− 1139

24
F IijKλ

JλK∇̂ν�̂λjµ∇̂νλiµ +
2

3
F IijKλ

iµλJλK∇ρRρν∇̂νλjµ +
35

8
F IijKλ

iµλK∇̂µ�̂λjν∇̂νλJ

+
475

8
λiµλK∇̂µ∇̂ρλjρ∇̂νF IijK∇̂νλJ +

2519

96
F IijKλ

iµλK∇̂ν∇̂µ∇̂ρλjρ∇̂νλJ

− 105

8
λiµλK∇̂µF IijK∇̂ν∇̂ρλjρ∇̂νλJ −

2039

96
F IijKλ

iµλK∇̂ν�̂λjµ∇̂νλJ

+
55

12
F IijKλ

iµλJ∇̂µ�̂λjν∇̂νλK +
2509

96
F IijKλ

iµλJ∇̂ν∇̂µ∇̂ρλjρ∇̂νλK

+
9

4
λiµλJ∇̂µF IijK∇̂ν∇̂ρλjρ∇̂νλK −

2029

96
F IijKλ

iµλJ∇̂ν�̂λjµ∇̂νλK + 11F ρJµLF
I
νρK∇̂µλK∇̂νλL

− F ρJµKF
I
νρL∇̂µλK∇̂νλL +

473

8
λiµλJλK∇̂νF IijK∇̂ν∇̂µ∇̂ρλjρ −

2

3
F IνρK∇̂µ∇̂ρλK∇̂ν∇̂µλJ

+
40

3
F ρJµKF

I
νρLλ

K∇̂ν∇̂µλL +
241

24
λJλL∇̂µλiµ∇̂νF IijK∇̂ν∇̂ρλjρ −

89

2
λiµλJλK∇̂νF IijK∇̂ν�̂λjµ

+
623

24
λJλK∇̂ν∇̂ρλjµ∇̂νλiµ∇̂ρF IijK +

73

8
λiµλK∇̂µ∇̂ρλjν∇̂νλJ∇̂ρF IijK

+
175

12
λiµλK∇̂ν∇̂ρλjµ∇̂νλJ∇̂ρF IijK +

22

3
λiµλJ∇̂µ∇̂ρλjν∇̂νλK∇̂ρF IijK

+
14

3
RνρλK∇̂µλJ∇̂ρF IµνK +

83

24
Rνµλ

KλK∇̂µλJ∇̂ρF ρIνK + 2F IijKλ
iµλK∇̂µ�̂λJ∇̂ρλjρ

+ 2F IijKλ
iµ∇̂µλK�̂λJ∇̂ρλjρ −

85

6
λK∇̂µλJ∇̂νF IijK∇̂νλiµ∇̂ρλjρ

+ 2λJ∇̂µλK∇̂νF IijK∇̂νλiµ∇̂ρλjρ +
77

24
F IijKRµνλ

iµλK∇̂νλJ∇̂ρλjρ

+ 26λiµλK∇̂ν∇̂µF IijK∇̂νλJ∇̂ρλjρ − 4F IijKRµνλ
iµλJ∇̂νλK∇̂ρλjρ

− 8F IijKλ
iµ∇̂µ∇̂νλJ∇̂νλK∇̂ρλjρ −

247

12
λiµλJ∇̂ν∇̂µF IijK∇̂νλK∇̂ρλjρ

− 295

12
λiµλJλK∇̂ν∇̂ρλjν∇̂ρ∇̂µF IijK +

215

24
λiµλJλK∇̂νλjν∇̂ρ∇̂µ∇̂ρF IijK

+
523

24
λiµλJλK∇̂νF IijK∇̂ρ∇̂µ∇̂ρλjν +

151

24
F IijKλ

iµλJλK∇̂ρ∇̂µ∇̂ρ∇̂νλjν

+
215

24
λiµλJλK∇̂µ∇̂ρλjν∇̂ρ∇̂νF IijK −

337

24
λiµλJλK∇̂νλjµ∇̂ρ∇̂ν∇̂ρF IijK

(4.47)

47Our Mathematica notebook with the full solution can be made available upon request.
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− 11

2
λiµλJλK∇̂µF IijK∇̂ρ∇̂ν∇̂ρλjν −

151

24
F IijKλ

JλK∇̂µλiµ∇̂ρ∇̂ν∇̂ρλjν

− 35

8
F IijKλ

iµλK∇̂µλJ∇̂ρ∇̂ν∇̂ρλjν −
55

12
F IijKλ

iµλJ∇̂µλK∇̂ρ∇̂ν∇̂ρλjν

+
215

24
λJλK∇̂ρ∇̂ν∇̂ρ∇̂µFµνIK − 151

24
F IijKλ

iµλJλK∇̂ρ∇̂ν∇̂ρ∇̂νλjµ

− 215

24
λiµλJλK∇̂νF IijK∇̂ρ∇̂ν∇̂ρλjµ +

215

8
λiµλJλK∇̂µ∇̂νλjν�̂F IijK

− 47

2
λiµλK∇̂µλJ∇̂νλjν�̂F IijK +

121

12
λiµλJ∇̂µλK∇̂νλjν�̂F IijK

− 215

8
λiµλJλK�̂λjµ�̂F

I
ijK +

1157

48
λiµλK∇̂νλJ∇̂νλjµ�̂F IijK

− 455

48
λiµλJ∇̂νλK∇̂νλjµ�̂F IijK +

35

8
F IijKλ

K∇̂µλJ∇̂νλiν�̂λjµ

+
55

12
F IijKλ

J∇̂µλK∇̂νλiν�̂λjµ −
3073

48
λiµλK∇̂νF IijK∇̂νλJ�̂λjµ

+
431

16
λiµλJ∇̂νF IijK∇̂νλK�̂λjµ +

215

8
F IijKλ

JλK∇̂µ∇̂νλiµ�̂λjν

− 123

2
λJλK∇̂µF IijK∇̂νλiµ�̂λjν −

3299

96
F IijKλ

K∇̂µλJ∇̂νλiµ�̂λjν

− 3349

96
F IijKλ

J∇̂µλK∇̂νλiµ�̂λjν +
163

12
λiµλK∇̂µF IijK∇̂νλJ�̂λjν

+
161

12
λiµλJ∇̂µF IijK∇̂νλK�̂λjν −

229

6
F IijKλ

JλK∇̂ν∇̂µλiµ�̂λjν

− 10

3
λJλK∇̂µλiµ∇̂νF IijK�̂λjν −

161

24
λiµλK∇̂µλJ∇̂νF IijK�̂λjν

− 59

12
λiµλJ∇̂µλK∇̂νF IijK�̂λjν +

65

24
λiµλJλK∇̂νλjν�̂∇̂µF IijK

+
307

12
F IijKλ

iµλJλK�̂∇̂µ∇̂νλjν +
239

12
λiµλJλK∇̂νλjµ�̂∇̂νF IijK

− 151

24
F IijKλ

JλK∇̂νλiµ�̂∇̂νλjµ +
57

8
λiµλJλK∇̂µF IijK�̂∇̂νλjν

+
151

24
F IijKλ

JλK∇̂µλiµ�̂∇̂νλjν +
215

12
λJλK�̂∇̂ν∇̂µFµνIK

− 247

12
F IijKλ

iµλJλK�̂�̂λjµ −
22

3
λiµλJλK∇̂νF IijK�̂∇̂νλjµ

+ 6F IµνK∇̂µλK�̂∇̂νλJ +
35

4
F IijKλ

K∇̂µλJ∇̂ρ∇̂νλjµ∇̂ρλiν

+
55

6
F IijKλ

J∇̂µλK∇̂ρ∇̂νλjµ∇̂ρλiν +
215

24
λJλK∇̂ν∇̂ρF IijK∇̂νλiµ∇̂ρλjµ

+
19

24
F IijKRνρλ

iµλK∇̂νλJ∇̂ρλjµ −
215

24
λiµλK∇̂ν∇̂ρF IijK∇̂νλJ∇̂ρλjµ

+
449

12
λiµλJ∇̂ν∇̂ρF IijK∇̂νλK∇̂ρλjµ −

471

8
λJλK∇̂νλiµ∇̂ρ∇̂νF IijK∇̂ρλjµ

− 875

48
λK∇̂µλJ∇̂νλiµ∇̂ρF IijK∇̂ρλjν −

809

48
λJ∇̂µλK∇̂νλiµ∇̂ρF IijK∇̂ρλjν

− 2F IijKRνρλ
iµλK∇̂µλJ∇̂ρλjν +

215

24
λiµλJλK∇̂µ∇̂ρ∇̂νF IijK∇̂ρλjν

+ 2F IijKRµρλ
iµλK∇̂νλJ∇̂ρλjν +

391

48
λiµλK∇̂µ∇̂ρF IijK∇̂νλJ∇̂ρλjν (4.48)
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+
137

16
λiµλI∇̂µ∇̂ρF JijK∇̂νλK∇̂ρλjν +

655

48
λK∇̂µλJ∇̂νλiµ∇̂ρF IijK∇̂ρλjν

− 65

48
λJ∇̂µλK∇̂νλiµ∇̂ρF IijK∇̂ρλjν −

397

48
λiµλK∇̂νλJ∇̂ρ∇̂µF IijK∇̂ρλjν

− 377

48
λiµλJ∇̂νλK∇̂ρ∇̂µF IijK∇̂ρλjν +

153

16
λiµλJλK∇̂ρ∇̂µ∇̂νF IijK∇̂ρλjν

− 17

3
λJλK∇̂µλiµ∇̂ρ∇̂νF IijK∇̂ρλjν −

29

24
λiµλK∇̂µλJ∇̂ρ∇̂νF IijK∇̂ρλjν

− 29

24
λiµλJ∇̂µλK∇̂ρ∇̂νF IijK∇̂ρλjν −

311

16
λiµλJλK∇̂ρ∇̂ν∇̂µF IijK∇̂ρλjν

− 215

24
λJλK∇̂νλiµ∇̂ρF IijK∇̂ρ∇̂νλjµ +

31

8
λiµλJλK∇̂µ∇̂ρF IijK∇̂ρ∇̂νλjν

+
83

12
λiµλJλK∇̂ρ∇̂µF IijK∇̂ρ∇̂νλjν − 2F IµρK∇̂µλK∇̂ρ�̂λJ

+
151

24
F IijKλ

JλK∇̂ν∇̂ρλjµ∇̂ρ∇̂νλiµ −
215

24
λiµλJλK∇̂ν∇̂ρF IijK∇̂ρ∇̂νλjµ

+
497

24
λiµλJλK∇̂ρ∇̂νF IijK∇̂ρ∇̂νλjµ + 12F IνρK∇̂µλK∇̂ρ∇̂ν∇̂µλJ

− 71

16
Rµσνρλ

K∇̂µλJ∇̂σF νρIK − 41

8
F IijKRµρσνλ

iµλK∇̂νλJ∇̂σλjρ

− 22

3
F IijKRµρνσλ

iµλJ∇̂νλK∇̂σλjρ
]
. (4.49)

In particular, one can prove using Mathematica that it is impossible to cancel out the

contributions in (4.46) using new terms that contain exclusively the combination Fµν .

The flat-spacetime limit is sufficient for the purposes of this chapter. Nevertheless,

it is interesting to ask how (4.49) would be modified in the case of arbitrary spacetime

curvature. In such a case, one should also add to the ansatz terms that are at least

quadratic in the Riemann tensor and linear in the vector-bundle curvature. Dimensional

analysis suggests that the only possibility is of the type GRPF
R
µν QRabcdRefghλ

PλQ,

however by taking into account all possible spacetime contractions all such terms vanish.

Consequently, our original ansatz should be sufficient towards determining the anomaly

functional for any curved (spacetime and vector-bundle) background. This is a well-

defined but computationally challenging problem, to which we hope to return in the

future.

4.2.6 ∆ = 2 Operators

We have left the case of ∆ = 2 operators for last as the associated anomalous functional

is trivial. Indeed the anomaly is encoded in

δσW ∝
∫
d4x
√
γ δσ GIJλ

IλJ , (4.50)
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which automatically satisfies the WZ consistency condition. Moreover, the above does

not involve the connection (Ai)
I
J and, therefore, one cannot infer anything about ∇iGIJ

from this expression. In the next section, we will analyze the case of ∆ = 2 type-B

conformal anomalies in the context of 4D N = 2 SCFTs, where supersymmetry will

allow us to say more.

4.3 ∆ = 2 CBOs in 4D N = 2 SCFTs

In this section we will focus on CBOsOI (and their complex conjugates ŌI) with scaling

dimension ∆ = 2 in 4D N = 2 SCFTs. We will argue using Poincaré supersymmetry

that the ∆ = 2 type-B Weyl anomalies are the same as the type-B Weyl anomalies of the

exactly marginal ∆ = 4 operators. This is obvious in the conformally symmetric phase

(see e.g. [34]), but requires a less straightforward argument in phases with spontaneously

broken conformal symmetry. We will outline the argument in Sec 4.3.1 and provide

tree-level supporting evidence for its validity in Sec 4.3.2. Once the relation with the

exactly marginal Weyl anomalies is established, the result ∇G = 0 for ∆ = 2 anomalies

follows from Eq. (4.10).

4.3.1 Anomalies Related by Poincaré Supersymmetry

The exactly marginal operators of the N = 2 SCFT are of the form

Φi ∝ Q4 · OIδIi , Φ̄i ∝ Q̄4 · ŌIδIi , (4.51)

where Q4· stands for four nested commutators, where the I and α indices of the super-

charges QIα are properly contracted, see Sec. 5.1 of [34] for more details.

In the conformal phase it is straightforward to relate the anomaly of the ∆ = 2 op-

erators OI to the anomaly of the exactly marginal operators Φi by looking at the

corresponding 2-point functions (4.3). The Ward identity for Poincaré supercharges

n∑
k=1

〈ϕ1 (x1) . . . Q · ϕk (xk) . . . ϕn (xn)〉 = 0 , (4.52)

can be used to move the supercharges around so as to arrive at [164]

22
x2

〈
OI(x1)ŌJ(x2)

〉
∝
〈
Φi(x1)Φ̄j(x2)

〉
δiIδ

j
J , (4.53)

where the constant of proportionality depends on conventions and will be fixed mo-

mentarily.

In a general phase, the type-B anomaly of interest is captured by a particular
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contact term in the 3-point function (4.4)

〈T (x)OI(x1)ŌJ(x2)〉 , (4.54)

where T ≡ Tµµ is the trace of the energy-momentum tensor. The energy-momentum

tensor of the N = 2 SCFT belongs to a superconformal multiplet with a scalar super-

conformal primary T that obeys the shortening conditions (QI)2 · T = 0, (Q̄I)
2 · T = 0

(for I = 1, 2 the SU(2)R R-symmetry index), and is of the form (suppressing spacetime

indices, spinor indices and sigma-matrices on the RHS)

Tµν = Q1 ·Q2 · Q̄1 · Q̄2 · T + c1Q
1 · Q̄1 · ∂T + c2Q

2 · Q̄2 · ∂T + c3∂
2T . (4.55)

In phases with spontaneously broken conformal symmetry it is less straightforward

to relate (4.54) to 〈T (x)Φi(x1)Φ̄j(x2)〉 by applying Ward identities. In vacua, where

Poincaré supersymmetry is unbroken, as e.g. on the Coulomb or Higgs branch of N = 2

SCFTs, one can still use the integrated form of the Ward identities (4.52), but their

application on 3-point functions of the form (4.54) is complicated. However, since we

only care about a contact term in the limit of vanishing momentum for the energy-

momentum tensor, it may be natural to anticipate that terms in Tµν with explicit

spacetime derivatives (like the c1, c2, c3 terms in (4.55)) will not contribute to the

anomaly. Assuming such terms can be dropped, in the 3-point function

〈T (x)(Q4 · OI)(x1)(Q̄4 · ŌJ)(x2)〉 (4.56)

with two exactly marginal operators, only

〈(Q1 ·Q2 · Q̄1 · Q̄2 · T )(x)(Q4 · OI)(x1)(Q̄4 · ŌJ)(x2)〉 (4.57)

contributes to the type-B anomaly. Then, as one implements the supersymmetric Ward

identity (4.52) and starts moving the supercharges Q around from the x1-insertion in

(4.56), there are terms where the Qs land on the x2 insertion and terms where the Qs

land on the x-insertion. Up to x-derivatives the latter terms vanish. Assuming once

again that we can ignore the x-derivatives, we drop all terms where some Qs were moved

on the x-insertion of the energy-momentum tensor. This suggests that we can recast

the anomalous term of (4.56) as the anomalous term of (4.54), up to a proportionality

constant that coincides with the one in the unbroken phase (4.53), i.e.

22
x2

〈
T (x)OI(x1)ŌJ(x2)

〉
∝
〈
T (x)Φi(x1)Φ̄j(x2)

〉
δiIδ

j
J . (4.58)

To summarise, under the assumption that we can drop terms with x-derivatives,

Poincaré supersymmetry guarantees that the anomalies of Φi ∝ Q4 · OIδIi and OI are
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proportional to each other in all phases through a constant of proportionality which is

independent of the exactly marginal couplings. Consequently, since Gij is covariantly

constant in both the unbroken and broken phases, the same must be true for the GIJ

anomaly of the ∆ = 2 operators. Notice that the holomorphic part of the tangent

bundle (which houses the holomorphic part of the exactly marginal deformations) is

a product L4 ⊗ V2 of four copies of the bundle of the left-moving supercharges L and

the bundle of ∆ = 2 chiral primary operators V2.48 Accordingly, the connection on the

tangent bundle is a direct sum of the connection on L4 and V2, [164,171,179]. However,

on the anomalies Gij and GIJ only the part of the connection on V2 contributes.

4.3.2 Perturbative Checks

As further evidence for the validity of the relation (4.58) in phases with spontaneously

broken conformal symmetry, we present an explicit test at leading order in perturbation

theory on the Higgs branch of the 4D N = 2 superconformal QCD (SCQCD) theory.

We compute at tree-level the anomalies for ∆ = 2 CBOs in the CFT and Higgs-branch

phases (G
(CFT)
2 , G

(Higgs)
2 ) and relate them to the anomalies of exactly marginal operators

(G
(CFT)
4 , G

(Higgs)
4 ) via the series of equalities

G
(Higgs)
2 = G

(CFT)
2 =

1

192
G

(CFT)
4 = G

(CFT)
2 . (4.59)

The relation G
(Higgs)
2 = G

(CFT)
2 is a special case of (4.58).

In 4D SCQCD there is a single ∆ = 2 CBO O and a single exactly marginal operator

Φ. In terms of the elementary fields that appear in the SCQCD Lagrangian (see e.g. [34]

for a more detailed discussion on notation and conventions)

O = Trϕ2 ,

Φ = 2 Tr[∂µϕ∂
µϕ̄+ iλσµ∂µλ̄+

1

4
FµνF

µν +O(g)] . (4.60)

These operators are related by supersymmetry as in (4.51). In our conventions, the

normalisation of the superalgebra is

{QIα, Q̄J α̇} = 2δIJPαα̇ , (4.61)

with α, α̇ the 4D Lorentz spinor indices. We will perform a perturbative computation

in SCQCD with arbitrary color group GC .

The broken-phase computations that we will present are performed in the Higgs-

48Analogous statements apply obviously to anti-holomorphic exactly marginal deformations, right-
moving supercharges and ∆ = 2 anti-chiral superconformal primaries.
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branch vacuum that was analysed in [34], where

〈QaIi〉 = vδI1δ
a
i (4.62)

with v ∈ R. For v 6= 0 the dilatation symmetry is spontaneously broken and a real mass-

less dilaton σ appears in the spectrum. This couples linearly to the energy-momentum

tensor of the unbroken phase. By expanding the Lagrangian of N = 2 SCQCD around

the vacuum (4.62), one can determine how the dilaton interacts with the elementary

fields of the theory. In the following, we will be primarily interested in its couplings

with the Aµ and ϕ fields, which acquire a mass m = gv; these are

σ

ϕA

ϕ̄B

= −ig
2v

k
δAB

σ

AAµ

AµB

= −ig
2v

2k
δAB . (4.63)

All computations will be performed directly in Euclidean space and the integrals will

be evaluated using dimensional regularisation with (µ has the dimensions of a mass

and ε > 0) ∫
ddl

(2π)d
7→ µ2ε

∫
d2(2−ε)l

(2π)2(2−ε) . (4.64)

∆ = 2 Anomaly in Conformal Phase

The tree level 2-point function of O in the CFT phase is obtained via simple Wick

contraction of the scalar fields ϕ (which can be carried out in two ways) [34]

〈O(p)Ō(−p)〉 =
p p

Tr[ϕ2] Tr[ϕ̄2]

`

`− p

= 2 C × I1(p) . (4.65)

Here C is the color factor

C = Tr[TATB] Tr[TATB] (4.66)

with A,B = 1, . . . , rank(Gc), while the integral I1(p) is the kinematic factor

I1(p) =

∫
dd`

(2π)d
1

`2
1

(`− p)2
=

1

(4π)2

[
1

ε
− γ + 3− log

(
p2

1

4πµ2

)]
. (4.67)

According to (4.3), one then reads off

G
(CFT)
2 = 2

C
(2π)4

. (4.68)
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∆ = 4 Anomaly in Conformal Phase

At tree level, the 2-point function of the exactly marginal operators receives only two

contributions:

〈Φ(p)Φ̄(−p)〉 = 4×
p p

Tr[∂µϕ∂
µϕ̄] Tr[∂νϕ∂

νϕ̄]

`

`− p

+ 4×
p p

Tr[∂[µAν]∂
[µAν]] Tr[∂[ρAσ]∂

[ρAσ]]

`

`− p

(4.69)

The two individual diagrams

p p

Tr[∂µϕ∂
µϕ̄] Tr[∂νϕ∂

νϕ̄]

`

`− p

= C × I2(p) (4.70)

p p

Tr[∂[µAν]∂
[µAν]] Tr[∂[ρAσ]∂

[ρAσ]]

`

`− p

= 2 C × I3(p) (4.71)

are equally contributing Feynman processes, since the kinematic integrals I2(p), I3(p)

are given by

I2(p) =

∫
dd`

(2π)d
1

`2
1

(`− p)2
× [`µ`

ν(`− p)µ(`− p)ν ] =
p4

4
I1(p) (4.72)

I3(p) =

∫
dd`

(2π)d
1

l2
1

(`− p)2
× `[µ`[ρδ

σ]
ν] × [(`− p)[µ(`− p)[ρδ

ν]
σ]] =

p4

8
I1(p) . (4.73)

Applying (4.3) one extracts

G
(CFT)
4 = 192G

(CFT)
2 . (4.74)

The factor 192 is part of our conventions. This relation is an explicit tree-level check

of the well-known general result (4.53) [164].

∆ = 2 Anomaly in Higgs Phase

Following [34], we compute in the Higgs phase the 3-point function of O, Ō with the

trace of the energy-momentum tensor T = Tµ µ. At tree level, this 3-point function
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receives a contribution due to the dilaton field σ

〈T (q)O(p1)Ō(p2)〉 =
T

q

σ

q

`

−q + `

p1

p2

Tr[ϕϕ]

Tr[ϕ̄ϕ̄]

`+ p1 = 4 C × I4(q, p1, p2) . (4.75)

The combinatorial factor originates from the four possible Wick contractions between

the ϕϕ̄ coming out of the dilaton vertex and the two operators Tr[ϕϕ], Tr[ϕ̄ϕ̄]. The

kinematic integral I4(q, p1, p2) is given by

I4(q, p1, p2) = v2g2

∫
dd`

(2π)d
1

`2 +m2

1

(p1 + `)2 +m2

1

(`− q)2 +m2

q→0−→ 1

2

1

(4π)2
, (4.76)

where the mass in the broken phase is proportional to the Higgs vev v, m2 = g2v2.

From (4.4) one can read off the anomaly in the Higgs phase, as already discussed in [34],

which is

G
(Higgs)
2 = G

(CFT)
2 . (4.77)

∆ = 4 Anomaly in Higgs Phase

As in the conformal phase, in the Higgs phase the tree-level anomaly also arises from

two equally contributing Feynman processes, with a ϕ and Aµ field running respectively

inside the loops,

〈T (q)Φ(p1)Φ̄(p2)〉 = 4×
T

q

σ

q

`

−q + `

p1

p2

Tr[∂µϕ∂
µϕ̄]

Tr[∂µϕ∂
µϕ̄]

`+ p1 + 4×
T

q

σ

q

`

−q + `

p1

p2

Tr[∂[µAν]∂
[µAν]]

Tr[∂[ρAσ]∂
[ρAσ]]

`+ p1

(4.78)
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The two Feynman diagrams above evaluate to

T

q

σ

q

`

−q + `

p1

p2

Tr[∂µϕ∂
µϕ̄]

Tr[∂µϕ∂
µϕ̄]

`+ p1 = 2 C × I5(q, p1, p2) ,

(4.79)

T

q

σ

q

`

−q + `

p1

p2

Tr[∂[µAν]∂
[µAν]]

Tr[∂[ρAσ]∂
[ρAσ]]

`+ p1 = 8 C × I6(q, p1, p2) ,

(4.80)

with the kinematical integrals I5(q, p1, p2) and I6(q, p1, p2) given by

I5(q, p1, p2) = v2g2

∫
dd`

(2π)d
`µ

`2 +m2

(p1 + `)µ(p1 + `)ν

(p1 + `)2 +m2

(`− q)ν
(`− q)2 +m2

q→0−→ 1

(4π)2

(
1

8
p4

1 + ...

)
, (4.81)

I6(q, p1, p2) =
1

2
g2v2

∫
dd`

(2π)d
`[µδν]α

`2 +m2

(p1 + `)[µδ
ν]
[σ(p1 + `)ρ]

(p1 + `)2 +m2

(`− q)[ρδσ]α

(`− q)2 +m2

q→0−→ 1

(4π)2

(
1

32
p4

1 + ...

)
. (4.82)

Therefore, according to (4.4), the anomaly for the marginal operators in the Higgs

phase is given by

G
(Higgs)
4 = G

(CFT)
4 . (4.83)

Eqs. (4.77), (4.74), (4.83) establish the announced sequence of relations in (4.59).
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4.4 Conclusions

In this chapter we investigated the properties of type-B Weyl anomalies of integer-

dimension operators on conformal manifolds. We presented evidence that such anoma-

lies are covariantly constant on conformal manifolds in general phases of the theory,

where conformal symmetry may be spontaneously broken. By explicitly constructing

the corresponding anomaly functionals for operators of dimension ∆ = 3, 4, 5, and

without relying on supersymmetry, we showed that ∇G = 0 is a condition that guaran-

tees WZ consistency. The anomaly functional for ∆ = 2 operators was automatically

WZ consistent, but we presented an independent argument in N = 2 SCFTs using

Poincaré supersymmetry that also implies ∇G = 0. This argument was explicitly

checked to leading order in perturbation theory. It would be useful to examine if there

is a more general, supersymmetry-independent argument, that proves ∇G = 0 for

∆ = 2 anomalies.

One of the interesting features of the WZ-consistency analysis is that it implies

∇G = 0 in all phases of the theory, even when conformal symmetry is spontaneously

broken. The implications of ∇G = 0 in different phases are non-trivial as explained

in [155] and reviewed in [151]. We expect the WZ-consistency argument to hold for

arbitrary-dimension integer operators, as a consequence of using integration by parts,

but, as we showed, the cases of increasing scaling dimension involve increasingly compli-

cated anomaly functionals where the curvature of the bundle of the integer-dimension

operators plays a crucial role.

It is important to investigate further the stability of our WZ consistent anomaly

functionals under possible deformations, e.g. under turning on nontrivial beta functions

for sources/couplings. For instance, one such deformation can arise by having nontriv-

ial beta functions for the exactly marginal couplings.49 New terms would then enter

the computation of the WZ consistency condition through the anomaly functional for

exactly marginal operators, (4.9). The simple option of having the standard beta func-

tion δσλ
i ∝ ciJKλ

JλK , where ciJK is directly related to the 3-point function coefficient

of 〈OiOJOK〉, is not realised in our case, because the operators we consider have (by

construction) fixed integer scaling dimensions along the conformal manifold and there-

fore vanishing coefficients ciJK = 0. However, we cannot rule out the existence of more

general beta functions for marginal couplings that may receive contributions from the

curvature on the vector bundle of operators.

49Using dimensional analysis, one can determine that potential beta functions for the sources λI do
not affect our construction of anomaly polynomials for ∆ = 2, 3, 4, 5 to quadratic order in the λI .
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Chapter 5

Macdonald Indices for 4D N=3

SCFTs

In this chapter, which is based on the work done in [3], we brute-force evaluate the

vacuum character for N = 2 vertex operator algebras labelled by crystallographic com-

plex reflection groups G(k, 1, 1) = Zk, k = 3, 4, 6, and G(3, 1, 2). For Z3,4 and G(3, 1, 2)

these vacuum characters have been conjectured (see [43]) to respectively reproduce the

Macdonald limit of the superconformal index for rank one and rank two S-fold N = 3

theories in four dimensions. For the Z3 case, and in the limit where the Macdonald

index reduces to the Schur index, we find agreement with predictions from the litera-

ture [45].

5.1 Introduction

Before presenting our results, we will first briefly introduce 4D N = 3 theories and the

main features of the Schur-chiral 4D/2D correspondence which constitute the theoret-

ical foundations underlying our brute-force computations.

5.1.1 4D N = 3 theories and CCRGs

In recent years there has been intense activity pertaining to the study of supercon-

formal theories (SCFTs) that do not admit a Lagrangian description. Theories with

N ≥ 2 superconformal symmetry are ideal for such explorations. Despite the lack

of perturbative control, one can still extract nontrivial data by exploiting the large

amount of symmetry, e.g. by employing the power of dualities [19, 180], implementing

the bootstrap programme [181,182], or evaluating superconformal indices [38].

In this chapter we will apply some of the technology developed to study N = 2 SCFTs

to N = 3 SCFTs. These theories are necessarily non-Lagrangian, as representation
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theory alone (see [183] for example) is enough to prove that any lagrangian theory

possessing N = 3 supersymmetry actually enjoys N = 4 supersymmetry. Also, any

“pure” N = 3 SCFTs—N = 3 theories which do not automatically enhance to N = 4—

cannot have exactly marginal deformations preserving N = 3 supersymmetry and they

are necessarily isolated SCFTs.

Pure N = 3 SCFTs were envisioned in [183,184] and their existence was actually proven

only recently, through the Sk-fold constructions of [44], dated 2015, which was immedi-

ately generalized in [185] to accommodate different variants of S-folds, distinguished by

an analog of discrete torsion. Schematically, Sk-folds can be thought of as generaliza-

tions of the F-theory lift of the more familiar type-IIB orientifold planes which includes

a Zk projection on both the R-symmetry directions as well as the SL(2,Z) S-duality

group of type IIB (the torus of F-theory). The theories engineered in [44] admit an

F-theory dual on an AdS5× (S5×T2)/Zk background and they are supposed to flow to

well-known N = 6 ABJM theories upon reduction on a circle. The gravity description

was used in [186,187] to evaluate the superconformal index in the large-rank limit.

Representation theory of N = 3 superconformal algebra [183,188,189] guarantees that

the central charges a, c of these theories must be equal a = c and that N = 3 SCFTs

cannot have any flavour symmetries, except for its R-symmetry. These features are

shared also by all N = 4 theories, while they are not satisfied by generic N = 2 the-

ories. Thus, in a sense, N = 3 SCFTs appear to be more similar to N = 4 theories

than to N = 2 theories and one could think of cooking up N = 3 SCFTs via “minor”

modifications of N = 4 SCFTs. Gauging a discrete symmetry is the perfect candidate

for such a strategy, as it does not introduce any additional interaction and it rather

acts simply as a superselection rule on the operator spectrum of the mother theory,

without changing its local dynamics (hence it does not modify the values of the central

charges either), see [190] and references therein.

Indeed, soon after [44], candidates for additional rank-one and rank-two N = 3 ex-

amples were presented in [191, 192], via gaugings of N = 4 theories by a discrete sub-

group of the SU(4)R R-symmetry and SL(2,Z) electromagnetic duality groups. The

“Coulomb” limit of the superconformal index [41] and the Higgs-branch Hilbert series

for these models were evaluated in [193,194].

Finally, in [195] a third way to produce four-dimensional N = 3 theories was put

forward. Their construction exploits the features of M-theory on non-geometric back-

grounds to first engineer (2,0) SCFTs of the exceptional type and to then quotient the

latter along with a torus compactification. This strategy has been recently analyzed

and further generalized in [196].

In this chapter we will examine some of the S-fold theories of [44, 185]. These are

the worldvolume theories of stacks of n D3-branes probing the Sk-fold and, as such,
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their moduli spaces are given by (see [185])

(C3)n/Γn,k , (5.1)

where Γn,k is a particular crystallographic-complex-reflection-group (CCRG), deter-

mined by the values of k and n.

For CCRGs, we use the G(K,P,N)-notation of [43], a standard one in the mathematics

literature [197], where K,P,N are natural non-zero numbers and P is a divisor of K.

The CCRG G(K,P,N) is a discrete group generated by the permutations SN of the

coordinates {z1, ..., zN} of CN and the following transformations

(z1, z2, ..., zN ) 7→ (e2πa1i/Kz1, e
2πa2i/Kz2..., e

2πaN i/KzN ) (5.2)

for all possible integers {a1, a2, ..., aN} satisfying
∑N

i=1 ai = 0 mod P . The CCRG

G(K,P,N) can be realized as a discrete subgroup of U(N), G(K,P,N) ⊂ U(N), and

it consists of KN

P ×N ! elements (see last Appendix in [192]). The number N is called

rank of the CCRG.

In the presence of an Sk-fold (which exists only for k = 1, 2, 3, 4, 6), the low-energy

theory on n D3-branes is characterized by N = 3, 4 supersymmetry50 and a moduli

space given by (C3)n/G(k, p, n), where p|k labels some possible variants of the Sk-fold

that differ from each other because of some discrete fluxes ( [185]) that can be turned

on in the background51.

When G(k, p, n) coincides with a Weyl group52, the corresponding S-fold construction

gives a N = 4 theory with gauge algebra being the one associated to that Weyl group

(more details about the enhancement to N = 4 can be found in [185] and [199]). For

example, G(1, 1, n) is isomorphic to Sn which is the Weyl group of the An−1 Lie algebra:

when k = 1 the S-fold is trivial, we get a stack of n D3-branes on a flat background and

the low energy theory is simply an N = 4 SU(n) gauge theory. Similarly, G(2, 1, n) is,

depending on the value of n, isomorphic either to the Weyl group of Bn or Cn type Lie

algebras, whereas G(2, 2, n) is the Weyl group of Dn Lie algebras: for k = 2 the S-fold

indeed reduces to an orientifold which is well-known to lead to a N = 4 theory.

We want to study pure N = 3 theories and therefore we will consider CCRGs G(k, p, n)

with k = 3, 4, 6. In particular, we want to focus only on the so-called “genuine” 53 N = 3

SCFTs, which are the N = 3 theories that cannot be obtained also by discrete gauging

50In [198] the S-fold construction was adapted to build four-dimensional N = 2 theories.
51Appreciate that the variant with no fluxes (which is the one with p = k) always exists, while there

might be some restrictions on the possible variants with p < k. For example, the analysis of [185] ruled
out the possibility of an S-fold leading to a 4D N = 3 with CCRG G(6, 1, 1) = Z6.

52Weyl groups of familiar Lie algebras can be defined to be those particular CCRGs that are at the
same time also Coxeter groups (also known as real reflection groups), [43].

53So dubbed in [200].
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of another N = 3 or N = 4 theory; for this reason we restrict our attention to CCRGs

G(k, p, n) with p = 1, see [185]. All in all, we will mainly be concerned with theories

for which the Γn,k appearing in (5.1) is the CCRG

Γn,k = G(k, 1, n) k = 3, 4, 6 , (5.3)

and which acts on the {z1, z2, ..., zn} coordinates of (C3)n as just explained, with the

only difference that now each zi is a triplet of complex numbers. To these genuine

theories one can apply the Shapere-Tachikawa method for computing central charges

[201] and get ( [185]):

a4D = c4D =
kn2 + (k − 1)n

4
. (5.4)

The size of G(k, p, n) growths extremely fast as n increases and the computations that

we will be performing turn out to be out of reach already for rank 3. So we will consider

some of the simplest of these models, characterized by n being just 1 or 2; these are

G(k, 1, 1) = Zk k = 3, 4 (5.5)

G(3, 1, 2) . (5.6)

We conclude by stressing that different N = 3 theories can share the same moduli

space and we therefore cannot uniquely label them via the CCRGs associateed to their

moduli space. For example, there are two rank-1 (pure) N = 3 theories that have

C3/Z3 as their moduli spaces: the genuine N = 3 theory obtained by the Sk=3-fold

with n = p = 1 and the N = 3 theory constructed via discretely gauging the Z3 0-form

symmetry that the usual N = 4 multiplet with gauge group U(1) exhibits when the

gauge coupling is fine tuned to a particular value. Even if they share the same moduli

space, they can be distinguished by the values of the central charges; the first theory

has a = c = 5/4 (just apply (5.4)), whereas the second one, being just the discretely

gauged version of a U(1) N = 4 multiplet, is characterized by a = c = 1/4.

Nonetheless, we will often use the CCRG G(k, p, n) to denote the particular N = 3

theory having C3/G(k, p, n) as moduli space and that was constructed via the S-folding

procedure. In our cases this should be unambiguous, as we are implicitly interested

only in the genuine ones.

In the coming sections, we will discuss an algorithm (discovered in [43]) that to

each CCRG G(k, p, n) uniquely associates an observable which allegedly agrees with

the Mac-Donald limit of the superconformal index of the four-dimensional N = 3, 4

theories having moduli space (C3)n/G(k, p, n) and a particular value of the anomalies

a = c. This conjecture is supposed to work only when the latter is known to actually
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exist (via the S-fold construction, for example). To date, in fact, all the methods

used to build four-dimensional N = 3, 4 theories yield theories with moduli space

(C3)n/G(k, p, n) for some G(k, p, n) and many CCRGs still lack of an interpretation in

terms of a four-dimensional theory. For instance, this is the case for G(6, 1, 1) = Z6,

which we will study anyway just because it will be a natural model to consider after

studying Z3 and Z4.

As the work of [43] exploits the Schur-chiral 4D-2D correspondence, we briefly review

the latter in the next section.

5.1.2 The Schur-chiral 4D-2D correspondence

As N = 3 theories are automatically N = 2, a concrete computational handle can

be established through the Schur-chiral 4D-2D correspondence of [42], which states

that a certain protected (BPS) subsector of any N = 2 4D theory is isomorphic to a

two-dimensional chiral algebra.

VOAs. Two-dimensional chiral algebras are the holomorphic/left-moving part of a

two-dimensional CFT – a meromorphic CFT, which are more commonly referred to as

Vertex Operator Algebra (VOA) in the mathematical literature. Through this map it

is possible to use the incredible power of meromorphic conformal field theories in two

dimensions (where the conformal algebra is enhanced to an infinite dimensional algebra)

to learn about the physics of a 4D SCFT. Thanks to meromorphicity, one can compute

correlation functions just by knowing its singularities, which in turn are governed by

the singular terms appearing in the possible OPE limits between the operators inside

the correlation function54.

OPEs between normal-ordered products of operators can be obtained from the OPEs

of the operators making up the normal-ordered product via Wick contractions [144].

Therefore, the singular OPEs between strong generators of the chiral algebra — which

are those operators that cannot be written as normal-ordered products, with or without

derivatives, of other operators — is all we need to know. When the list of strong

generators is finite, we say that the chiral algebras is strongly finitely generated, or

that it is a W-algebra [203]. The algebras that we will deal in this chapter are of

this kind55: once the finite set of the strong generators and (just) the singular OPEs

between the latter are known, the chiral algebra is determined and we can study any

of its n-point function.

Appreciate that the VOAs employed by the chiral-Schur correspondence is always non-

unitary, as its central charge c2D is related to the central charge c4D of the four-

dimensional theory via c2D = −12c4D < 0. This is not a problem, as the chiral algebra

54We refer to [144,202] for a pedagogical introduction to the world of Conformal Field Theories.
55This is true for all the known examples, in fact.
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should be thought of as an auxiliary tool that allows us to explore the physics of the

four-dimensional theory, which is unitary.

Schur operators. The particular protected subsector of the spectrum that enters

the four-dimensional side of the correspondence consists of (and solely of) the so-called

“Schur” operators [41], which are all those operators that satisfy these constraints

j1 + j2 = E − 2R (5.7)

j1 − j2 = −r . (5.8)

Here, we used the same notations of [42] to denote the charges under the Cartan gen-

erators of the bosonic subalgebra of the N = 2 superconformal algebra SU(2, 2|2) in

4D: E is the conformal dimension, R, r are the charges under the SU(2)R × U(1)r R-

symmetry group and j1, j2 are the spin representations of the Lorentz group. We label

Schur operators in terms of (E,R, r) and we implicitly consider the remaining Cartan

charges (j1, j2) to be fixed by (5.8).

Schur operators always belong to shortened representations of the N = 2 superconfor-

mal algebra56 and, within these, Schur operators are always the highest weights of a

Lorentz and a SU(2)R representations.

The operators satisfying (5.8) are called Schur operators because they are precisely the

ones that contribute to the Schur limit of the Superconformal Index associated to a

four-dimensional N = 2 SCFT T , defined through

ITSchur(q, zi) := Tr(−1)F qE−R
L∏
i=1

zmii , (5.9)

where F is the fermion number (which in four-dimension is given by F = j1− j2), q, zi

are referred to as fugacities [41] and the trace is over the Hilbert space of the radially

quantized theory. Here we assumed that T admits a flavor symmetry with L Cartan

generators, so we introduced a fugacity zi and a charge mi for each of them.

We can consider a refinement of the Schur Index with an additional fugacity t that

enables us to distinguish some Schur operators from each other, which - we stress it

- always transform non trivially under SU(2)R. This is achieved by the MacDonald

Index

ITMacDonald(q, t, zi) := Tr(−1)F qE−2R−rtR+r
L∏
i=1

zmii , (5.10)

56In the notations of [152], the superconformal multiplets that contain Schur operators are B̂R,
DR(0,j2), D̄R(0,j2) and ĈR(j1,j2). All of these multiplets possess exactly one Schur operator.
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which can be realized as a particular limit of the full superconformal index to which,

once again, only Schur operators are allowed to contribute [41].

The correspondence. Let’s call χ the map that implements the Schur-chiral 4D-

2D corresponce, i.e. that non-trivial map that associates to each Schur operator O(0)

inserted at the origin of the four-dimensional spacetime a chiral operator φ(z) living in

a two-dimensional plane which passes through the origin (this is called the chiral plane).

In the following, we will not need the rigorous recipe for χ; so we give a description of

χ in simple words and we instead refer the reader to the original work [42] and to the

pedagogical introduction [204] for more details.

In short, to build φ(z), one can first take O(0) and transport it to the position (z, z̄)

of the chiral plane via a translation that involves a particular SU(2)R twist as well;

in this way one obtains a field φ(z, z̄) whose dependence on z̄ can then be eliminated

upon passing to the cohomology of a suitably chosen supercharge.

Given this construction, it is intuitively clear that to the states of the chiral algebra χ[T ]

produced by χ one can associate the quantum numbers related to the global symmetry

charges of the 4D theory and so one can consider the graded vacuum character V of

the VOA, which is

Vχ[T ](q, zi) = Tr(−1)F qh
L∏
i=1

zmii , (5.11)

where h is the (holomorphic) conformal dimension h in 2D. By having a closer look at

the construction of χ one can prove that (5.11) precisely agrees with the Schur index

(5.9), [42].

A necessary condition for (5.11) to truly correspond to the Schur index is that (5.11)

must be independent of any exactly marginal deformations of the four-dimensional

SCFT. This is guaranteed by the rigid structure of the chiral algebra. Indeed, by using

a non-renormalization theorem proven in [205], it is possible to show that χ[T ] is left

untouched by any such modifications of T .

As it does not depend on marginal deformations57, χ[T ] can be easily determined when

T admits a weakly coupled limit: in principle, one just needs to follow the prescription

outlined above in the free limit of the four-dimensional theory. Instead, for isolated

non-Lagrangian SCFTs, identifying the chiral algebra might be a hard task, as often

one does not even know the spectrum of such theories in much detail.

For non-Lagrangian theories all hope is not lost as, remarkably, the Schur sector enjoys

some universal properties which essentially fix a (minimal) set of the chiral algebra

strong generators and their OPEs.

57N = 2 supersymmetry guarantees that any marginal deformation is exactly marginal in 4D, [188].
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• For instance, any local SCFT possesses the energy momentum tensor, which sits

in the Ĉ0,(0,0) multiplet of the 4D N = 2 superconformal algebra. This multiplet

contains also the supersymmetry and the R-symmetry currents. The heighest

weight state of the SU(2)R current is the Schur operator which is contained in

Ĉ0,(0,0) and this is the operator that χ maps to the chiral algebra stress tensor

T (z), [42].

• A strong generator is obtained when T has continuous flavor symmetries. The

associated Noether current belongs to the B̂1 multiplet whose superprimary is

a Schur operator. Being in the same multiplet of the flavor current, this Schur

operator MA (known as moment map) carries an index A that transforms in the

adjoint representation of the flavor symmetry GF and so we expect to find dimGF

JA(z) := χ[MA] currents in the chiral algebra. A closer look shows that these

currents enlarge the Virasoro algebra generated by T (z) (and with central charge

c2D = −12c4D) to an Affine Kac-Moody algebra, with level κ2D = −1
2κ4D, where

κ4D is the central charge associated with the four dimensional flavor symmetry.

• If the four-dimensional N = 2 theory T actually enjoys N = 3 or N = 4 su-

persymmetry, some of the extra supercharges survive in the chiral algebra χ[T ],

which enhances respectively to a N = 2 or to a small N = 4 super Virasoro alge-

bra, see [42]. This is very helpful, as it means that strong generators are grouped

together into supersymmetric multiplets of the two-dimensional N = 2 or small

N = 4 algebras.

Then, depending on the information that is available (which typically is retrieved by

analyzing the superconformal index or some IR properties of the theory, such as its

moduli space) one usually is able to make a more or less educated guess for possible

additional generators that should appear in the chiral algebra; in a second step, one

writes down the most general ansatz for the singular OPEs between these additional

operators which are then fixed by imposing associativity of the OPEs and closure of

the algebra. It is in this spirit that one is led to put forward a reasonable proposal for

the chiral algebra associated to non-Lagrangian theories.

We conclude this section by stressing that it is completely legitimate to introduce

in (5.11) the additional grading by r+R as done in (5.10), simply because each state of

the chiral algebra descends from a Schur operator. But as we explained above, the con-

struction of χ employs a SU(2)R twist and this implies that, depending on the location

z on the chiral plane, the operator φ(z) = χ[O(0)] is not built solely in terms of O(0)

but generally also of all its SU(2)R descendants. This fact has two consequences. First

of all it makes very hard to recover, from the chiral algebra perspective, the information

about the quantum number R of the Schur operator and therefore there is no natural
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way, from the two-dimensional perspective, to enhance (5.11) to an observable that can

agree with the MacDonald index defined in (5.10). Second, the R charge cannot survive

in the chiral algebra as a true (i.e. conserved) quantum number but, if present at all,

as a filtration; this means that the two dimensional analogue of R must be a number

R such that: 1) the R number gets summed when fields get multiplied 2) terms with

different values of R can be summed and the R of their linear superposition is equal to

the maximum value of the R of the addends 3) the OPE between two operators with

numbers R1 and R2 gives operators with R ≤ R1 +R2.

5.2 MacDonald Indices for 4D N = 3 theories

VOAs for N = 3 theories were initially constructed in [200,206] and were then system-

atically studied in the work of [43].

In that reference, to each complex reflection group G an associated W-algebra (WG)

was put forward. These WG algebras are extensions of the N = 2 super Virasoro al-

gebra obtained by introducing additional generators which are in correspondence with

the invariants of G. It was conjectured that when G = G(k, p, n) is a non-Coxeter crys-

tallographic complex reflection group, the associated WG encodes the Schur subsector

of the known N = 3 S-fold theories with moduli space given by (5.1).

By generalizing the approach of [207], [43] also gave a prescription for an elegant free-

field realisation of the VOA associated to G, according to which WG is that particular

subalgebra of rank(G) copies of the βγbc ghost system that is identified with the kernel

of a screening operator, SG =
∫
JG, acting on the βγbc systems in a certain way58. Re-

markably, in these free-field realizations, null states built out of strong generators are

identically zero. Moreover, thanks to the free-field realization ofWG, one can naturally

introduce an R-filtration of the chiral algebraWG and thus recover the Macdonald limit

of the superconformal index for N = 3 S-fold theories from the R-filtered version of

the graded vacuum character (5.11), which (for L = 1) reads as

χWG
(q, ξ, z) := Tr(−1)F qhξR+rzm , (5.12)

where r,m are the quantum numbers associated with the gl(1) outer automorphism and

gl(1) subalgebra of the 2D N = 2 SCA respectively. In the free-field realisation the βγbc

fields carry the quantum numbers presented in Tab. 5.1. Eq. (5.12) was conjectured

to correspond to the Macdonald limit of the 4D superconformal index of a theory for

which WG is the associated VOA, WG = χ[T ]; as we have seen above, for L = 1 this

58The action of SG is defined as SG · X = {JGX}1, where {JGX}1 denotes the coefficient of the
order-one pole in the holomorphic OPE of the screening current JG with some operator X.
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h m r R

β`
1
2p`

1
2p` 0 1

2p`

b`
1
2 (p` + 1) 1

2 (p` − 1) +1
2

1
2p`

c` −1
2 (p` − 1) −1

2 (p` − 1) −1
2 1− 1

2p`

γ` 1− 1
2p` −1

2p` 0 1− 1
2p`

∂ 1 0 0 0

Table 5.1: Quantum numbers for the β`γ`b`c` ghost systems used in VOA free-field
realisations. The ` = 1, . . . , rank(G) labels the ghost-system species and p` are the degrees
of the fundamental invariants of G. These are given for Zk by p1 = k and for G(3, 1, 2)
by (p1, p2) = (3, 6).

reads as

ITMacdonald(q, t, z) := Tr(−1)F qE−2R−rtR+rzm . (5.13)

Note that while from the point of view of this 4D N = 2 Macdonald index m is a

quantum number for a global U(1)F , in the full N = 3 description it is part of the

U(3) ⊃ SU(2)R × U(1)r × U(1)F R-symmetry group. We should emphasise that in

order to connect with (5.12) one needs to redefine t→ ξq so that

ITMacdonald(q, ξ, z) = Tr(−1)F qE−RξR+rzm . (5.14)

Albeit concrete, implementing the findings of [43] in practice quickly becomes com-

putationally intensive. It is difficult to write down the explicit free-field realisation

of the relevant VOAs in all but the simplest of cases, and also to evaluate the corre-

sponding vacuum characters in a fugacity expansion for increasing conformal weights.

The goal of this chapter is to show how far one can get by implementing a brute-force

approach using mathematical software, for the VOAs labelled by the complex reflection

groups G(k, 1, 1) = Zk, k = 3, 4, 6 (Z3,4 label rank-one S-fold models) and G(3, 1, 2)

(labels a rank-two S-fold model).

Towards that end, we reconstruct the free-field realisations of [43] for the theories

of interest. We then provide algorithms for automating the process of finding null

states and for evaluating the VOA vacuum characters. Our code, appended to [3],

can in principle be executed to obtain the corresponding Macdonald index at arbitrary

orders in a fugacity expansion. Note however that the vacuum character computation

time increases exponentially as a function of the conformal weight. Our code is also

customisable—and we have clearly signposted how to do so—for the reader interested

in extending it to the evaluation of vacuum characters for VOAs labelled by other
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complex reflection groups, once the complete free-field realisation of the VOA has been

found.

Our results, all of which have been collected in the ancillary Mathematica notebook

in [3] for quick reference, can be used to check the conjecture of [43] against independent

calculations of the Macdonald index of 4D N = 3 S-fold theories and vice versa. For

example, a proposal for the Schur limit of the superconformal index for the rank-one

Z3 S-fold theory was put forward in [45]. In that limit, their and our findings are in

complete agreement.

5.3 Implementation and Results

We now describe the strategy behind our code, while detailed results for each case are

presented in subsequent subsections. We are interested in the evaluation of the vacuum

character for VOAs labelled by crystallographic, non-Coxeter complex reflection groups

Z3,4,6 and G(3, 1, 2), and interpreting them as Macdonald indices for 4D N = 3 S-fold

theories. To do so one needs to consider (5.12) and trace over all the states created by

acting only with normal-ordered products and derivatives of the strong generators of

the VOA on the sl(2)-invariant vacuum, up to a given conformal weight, while removing

the contributions from null states.

The identification of null states is usually laborious and this is where the free-

field realisation becomes helpful. The construction algorithm of [43] starts with a

simple free-field prescription for the generators of the 2D N = 2 SCA and the chiral

strong generators of the WG-algebra. One then introduces an ansatz for the remaining

bosonic strong generators constructed out of all possible super-Virasoro primary, free-

field combinations with the requisite quantum numbers and undetermined coefficients,

and fixes the latter by closing the VOA under the OPE.

We have diverged slightly from this recipe in the following way. For the VOAs χ[T ]

that have appeared thus far in the literature, the OPE coefficients can be completely

fixed by writing down the most general expressions for the expected set of generators

and then imposing associativity [200]. The W-algebra presentations of the WG VOAs

of interest to us were already given in [43] and inserting the free-field ansatze into the

existing OPEs straightforwardly fixes the undetermined coefficients for all remaining

strong generators (using the OPEdefs [208] and/or SOPEN2defs [209] Mathematica

packages); we will expand upon this point on a case-by-case basis when discussing our

results.

Equipped with this information we proceed to our main algorithm. In summary,

all null states at a given conformal weight can be identified by looking for all possible

combinations of states with the same quantum numbers that are identically zero upon

using the free-field realisation. This last step requires manipulating normal-ordered
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products of βγbc ghosts, making heavy use of the OPEdefs [208] and ope.math [210]

Mathematica packages. The null states that we find contain all those predicted in [43].

It is then straightforward to write down the vacuum character for given values of

quantum numbers. Note that by unrefining in theR fugacity (e.g. if one were interested

in the Schur index) the algorithm becomes faster; we have a dedicated section in our

code for this special case.

In addition to the above method, we have cross-checked our refined Z3,4 results

using a second algorithm that makes no connection to the W-algebra presentation.

This procedure constructs the VOA spectrum using all states in rank(G) copies of the

βγbc ghost system that lie in the kernel of a screening operator, SG. For G = Zk this is

given by [43]

JG = b e(k
−1−1)(χ+φ) , (5.15)

where χ, φ are chiral bosons

β = eχ+φ, γ = ∂χ e−χ−φ , (5.16)

and all expressions should be considered as normal-ordered. Such an approach is con-

ceptually more straightforward—construct all states using free fields and then keep

those in the kernel of SG—but is computationally more expensive as can be seen from

Fig 5.1. E.g. at h = 9/2 one already needs to check 941 and 881 terms for Z3 and Z4

respectively.

5.3.1 Results: G = Z3

This is a rank-one VOA with central charge c = −15. Its W-algebra presentation

involves the following strong generators: T , J , G and G̃ from the 2D N = 2 SCA, as

well as the chiral and anti-chiral generators W3, W3 and their superpartners GW3 and

G̃W3
. Here GW3 := {GW3}1 and so on. For the explicit free-field realisation in terms of

a single βγbc ghost system one starts with a prescription for the N = 2 SCA generators

as well as for W3, GW3 . The ansatz for W3 contains 8 undetermined coefficients. We

always count these before imposing the super-Virasoro primary constraint. Through

the OPEs from theW-algebra presentation one can use it to also determine the free-field

realisation of G̃W3
. We have calculated the fully-refined vacuum character (5.12) up to

O(q8) with the accompanying “null states.nb” and have cross-checked this result using

the screening-operator approach in “screening.nb” up to O(q4). The full expression can

be found in “vacuum characters summary.nb”.

This VOA is expected to encode the Schur sector of a rank one, 4D S-fold N = 3

SCFT, with a Coulomb-branch operator of dimension ∆ = 3 and trace-anomaly coef-
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ficient c4D = 5
4 . Through (5.14) the Macdonald index of this S-fold theory—including

the global U(1)F fugacity—can be identified with the refined vacuum character. Below

we only present the simpler, Schur limit of these expressions for brevity, where ξ → 1,

z → 1. Then:

IZ3
Schur = 1 + q + q2 + 2q3 − 2q7/2 + 3q4 − 2q9/2 + 4q5 − 4q11/2

+ 6q6 − 6q13/2 + 8q7 − 8q15/2 + 11q8 +O(q17/2). (5.17)

It is interesting to observe that the Schur index for this theory matches the expansion of

the following closed-form expression up to O(q10), although we currently have neither

a derivation for it nor a justification for why it should hold to all orders:

1

3

∑
ε∈Z3

ε
√
q

P.E.

[
1

2
iN=4(q)

(
ε+

1

ε

)]
. (5.18)

Here P.E.[f(z)] := exp
[∑+∞

n=1
1
nf(zn)

]
is the plethystic exponential, while iN=4(q) =

2q
1
2 (1−q

1
2 )

1−q coincides with the single-letter Schur index of N = 4 super-Yang–Mills.

In [45], an independent argument for determining the Schur index of the G = Z3

S-fold theory was presented. This entailed starting from an N = 1 4D UV Lagrangian

theory, and flowing to an interacting N = 1 SCFT in the IR, which can also be

reached from the Z3 S-fold theory via an N = 1 preserving marginal deformation.

Upon relabelling q → p2, our result (5.17) agrees with that of [45]—listed to O(q7)—

providing a strong consistency check of both calculations.

5.3.2 Results: G = Z4

This is a rank-one VOA with central charge c = −21. Its W-algebra presentation

involves the following strong generators: T , J , G and G̃ from the 2DN = 2 SCA, as well

as the chiral and anti-chiral generators W4, W4 and their superpartners GW4 and G̃W4
.

For the explicit free-field realisation in terms of a single βγbc ghost system one starts

with a prescription for the N = 2 SCA generators as well as for W4, GW4 . The ansatz

for W4 contains 19 undetermined coefficients. Through the OPEs in the W-algebra

presentation one can use it to also determine the free-field realisation of G̃W4
. We have

calculated the fully-refined vacuum character (5.12) up to O(q8) with the accompanying

“null states.nb” and exhibited it in “vacuum characters summary.nb”. We have also

cross-checked this result using the screening-operator approach in “screening.nb” up to

O(q4).

This VOA is expected to encode the Schur sector of a rank one 4D S-fold N =

3 SCFT, with a Coulomb-branch operator of dimension ∆ = 4 and trace-anomaly

coefficient c4D = 7
4 . Through (5.14) the Macdonald index of this S-fold theory can be
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identified with the vacuum character. The Schur limit of these expressions yields:

IZ4
Schur = 1 + q − 2q3/2 + 5q2 − 6q5/2 + 10q3 − 16q7/2 + 27q4

− 38q9/2 + 56q5 − 86q11/2 + 129q6 − 178q13/2

+ 251q7 − 362q15/2 + 511q8 +O(q17/2) . (5.19)

In this case the W-algebra construction is such that the bosonic states always appear

with integer while the fermionic ones with half-integer conformal weights. Therefore

there are no cancellations between bosonic and fermionic states at each level and the

chiral algebra partition function reproduces the partition function of Schur operators

in the corresponding 4D N = 3 theory.

5.3.3 Results: G = Z6

This is a rank-one VOA with central charge c = −33. Its W-algebra presentation

involves the following strong generators: T , J , G and G̃ from the N = 2 SCA, as well as

the chiral and anti-chiral generatorsW6,W6 and their superpartners GW6 and G̃W6
. For

the explicit free-field realisation in terms of a single βγbc ghost system one starts with

a prescription for the 2D N = 2 SCA generators as well as for W6, GW6 . The ansatz

for W6 contains 87 undetermined coefficients. Through the OPEs in the W-algebra

presentation one can use it to also determine the free-field realisation of G̃W6
. We have

calculated the fully-refined vacuum character (5.12) up to O(q8) with the accompanying

“nullstates.nb”. The full result can be found in “vacuum characters summary.nb”. In

the limit ξ → 1, z → 1 this reads:

χWZ6
= 1 + q − 2q3/2 + 3q2 − 4q5/2 + 8q3 − 12q7/2 + 19q4

− 26q9/2 + 38q5 − 58q11/2 + 85q6 − 116q13/2

+ 165q7 − 236q15/2 + 326q8 +O(q17/2) . (5.20)

No known S-fold theory is associated with this VOA [185].

5.3.4 Results: G = G(3, 1, 2)

This is our only rank 2 example, with central charge c = −48. Its W-algebra presenta-

tion involves the following strong generators: T , J , G and G̃ from the 2D N = 2 SCA,

the chiral and anti-chiral generators W3, W6, W3, W6, plus their superpartners GW3 ,

GW6 and G̃W3
, G̃W6

, as well as U—which is self conjugate—and its superpartners GU ,

G̃U and GG̃U . One also needs non-chiral O, O and their superpartners GO, G̃O, GO, G̃O,

GG̃O , GG̃O .

The free-field realisation requires two ghost systems, β`γ`b`c` with ` = 1, 2. One

130



CHAPTER 5. MACDONALD INDICES FOR 4D N=3 SCFTS

starts with a prescription for the 2D N = 2 SCA generators as well as forW3,W6, GW3

and GW6 . The ansatz for W3 contains 84 undetermined coefficients. It turns out that

through the OPEs in theW-algebra presentation, one can fix the coefficients ofW3 and

by doing so also determine the free-field realisation of all remaining generators. We have

calculated the fully-refined vacuum character (5.12) up to O(q9/2) with the accompany-

ing “null states.nb”. The full result can be found in “vacuum characters summary.nb”.

This VOA is expected to encode the Schur sector of a rank-two 4D S-fold N =

3 SCFT, with Coulomb-branch operators of dimension ∆ = 3, 6 and trace anomaly

coefficient c4D = 4. Through (5.14) the Macdonald index of this S-fold theory can be

identified with the vacuum character. If for simplicity one considers the limit z → 1:

IG(3,1,2)
Macdonald = 1 + qξ + q3/2

(
−
√
ξ + ξ3/2

)
+ q2

(
ξ + ξ2

)
+ q5/2

(
−
√
ξ − ξ3/2 + 2ξ5/2

)
+ q3

(
ξ − ξ2 + 2ξ3

)
+ q7/2

(
−
√
ξ − 2ξ3/2 + 2ξ5/2 + ξ7/2

)
+ q4

(
2ξ − ξ3 + 3ξ4

)
+ q9/2

(
−
√
ξ − 3ξ3/2 + ξ5/2 + ξ7/2 + 2ξ9/2

)
+O(q5) . (5.21)
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5.4 Conclusions

In this chapter we have calculated vacuum characters of rank-one and rank-two VOAs

labelled by non-Coxeter, crystallographic complex reflection groups. This involved a

brute-force implementation of the algorithms presented in [43] and leads to the Mac-

donald index of certain 4DN = 3 S-fold SCFTs. Our results were given as an expansion

in the fugacity that keeps track of the conformal weight, and were truncated to orders

that require short computation times when using a desktop computer; they can be

pushed to arbitrary higher orders by allocating appropriate resources. As they stand,

they can already be used as new data for N = 3 SCFTs. E.g. the G = Z3 result agrees

in the Schur limit with [45].

Our code is customisable. We have clearly signposted where changes would need to

be made to return vacuum characters of VOAs labelled by different complex reflection

groups, for which the free-field realisation is known. In particular, it would be very

interesting to extend this approach to the N = 3 S-fold SCFT of rank two associated

with G(4, 1, 2) and the rank-three example G(3, 3, 3); a proposal for the Schur index of

the latter was also given in [45]. Unfortunately, finding the free-field realisation for both

these VOAs—already needed before identifying the null states—is a challenging task:

the simplest anti-chiral strong generator ansatze involve 425 and 2265 undetermined

coefficients respectively. It would perhaps be more promising to use the screening-

operator approach, upon determining SG. Although our screening-operator code is

currently more expensive to run, it could benefit from optimisations that parallelise the

computations, hence making it significantly faster on multi-core clusters. It will also be

interesting to check these results by directly studying the BPS-states of N = 3 theories.

One way to do so would be to study three-string junctions in S-fold backgrounds as

in [199].

Finally, it could be relevant to understand whether formula (5.18) actually captures

the Schur index of the genuine N = 3 Z3 S-fold theory at any orders in q. The fact that

IZ4
Schur and IZ6

Schur do not seem to admit analogous compact formulae could be a hint

that something interesting might affect the Z3 S-fold theory. What is curious about

formula (5.18) is its similarity with the structure of the Schur index of the N = 3

theory obtained by discretely gauging the Z3 0-form symmetry that the usual N = 4

multiplet with gauge group U(1) exhibits when the gauge coupling is fine tuned to a

particular value. In fact, the Schur index of the latter reads as [193]:

1

3

∑
ε∈Z3

P.E.

[
1

2
iN=4(q)

(
ε+

1

ε

)]
. (5.22)
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Figure 5.1: Computation times for carrying out the calculation of the vacuum character
for VOAs at different conformal weights. Several different VOAs are shown on the graph
for comparison, along with the Z3 theory computed using the kernel of the screening
operator. We used a desktop PC with an Intel Core i7-6700K CPU clocked at 4GHz,
and 32GB RAM.
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Chapter 6

Final Comments

In the first part of this thesis (Chapters (2) and (3)) we have reviewed the problem of

writing a Lagrangian formulation for self-dual forms and computing its path-integral.

Although this is an old topic that has at least 30 years of academic papers weighing

on its shoulders, we hope we have managed to contribute with some new insights

to the story, by closely studying the recent proposal of Sen. In a few words, the

novelties of his approach lie in achieving manifest Lorentz invariance by deploying an

auxiliary field that dynamically decouples from the physics of the chiral form. This

mechanism has the advantage of avoiding any non-standard gauge redundancy, which

were instead typical in the old literature, and which might lead to complications during

the quantization procedure. On the other hand, maybe because of the conservation of

difficulties principle which is always lurking around in physics, in Sen’s Lagrangian one

has to give up standard diffeomorphism invariance. Nevertheless, we stress that this is a

feature that, in a sense, has to naturally arise from a proper formulation of a chiral form

H(g) = ?gH(g). Indeed, the latter implies δξH(g) = ?gδξH(g) as well and, in general, the

maximum we can require is that δξH(g) agrees with the ordinary Lie derivative only

once on-shell. In other words, in a Lagrangian formulation where the chirality condition

holds even off-shell, it is just physiological that the coupling to a curved background

metric has to be realized in an unconventional fashion. This information is succinctly

encoded in theM term in Sen’s action, that we tested first from a classical perspective

in Chapter (2) by considering compactifications of the abelian (2,0) Lagrangian down

to lower dimensional theories and then from a quantum perspective in Chapter (3) by

computing its path integral. The results we found yielded sensible results which are in

agreement with expectations.

In the second half of the thesis we made contact with some of the current topics of

modern research in SCFTs, where a lot of efforts have been made to understand non-

perturbative effects and to study theories which do not necessarily admit a Lagrangian

formulation. Two tools that are commonly used in this context are the Superconformal
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Index and Anomalies. In Chapter (4) we moved some of the first steps towards a

more systematic study of those Type-B Weyl anomalies associated to Coulomb-Branch

operators in N = 2 SCFTs in 4D. We gave strong indications that these anomalies

are covariantly constant across the conformal manifold, even when the theory is in

the Higgs Branch phase, where conformal symmetry is spontaneously broken. This

implies that when the CBO Type-B anomalies in the conformal and Higgs phases

match at a particular point on the conformal manifold, then they do so also across

at least a neighborhood of the latter and, therefore, the matching of the CBO Type-

B anomalies in the conformal and Higgs phases can be first examined by a tree-level

calculation and then maybe used to constrain some non-perturbative dynamics. In

Chapter (5) we instead computed, for the first time in the literature, the Macdonald

limit of the superconformal index of some 4D N = 3 SCFTs. As they stand, these

indices can already be used as new data for N = 3 SCFTs, which are relatively new

non-Lagrangian SCFTs that only recently showed up in town and about which still a

lot has to be discovered.
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Appendix A

Zeta-regularised product

In this appendix we will detail some aspects of the regularisation that we used in

Section 3.2.2. In what follows T = −1
2(1 + 1

M) = T1 + iT2, with T1, T2 ∈ R and T2 > 0

as long as τ2 > 0, see (3.13).

The infinite product

P =
∏
n>0
m∈Z

1

n(m+ nT )
, (A.1)

can be regularised in the following standard fashion. First we will consider the auxiliary

sum59

G(s, T ) :=
∞∑
n=1

∑
m

1

ns(m+ nT )s
, (A.2)

which is naturally defined for Re(s) > 1. Then, by freely commuting the infinite sums

with each other, and with the integrals that appear, we will analytically continue the

latter to Re(s) ≥ 0. Finally, we will define (A.1) by

P := exp

[
d

ds

∣∣∣∣∣
s=0

G(s, T )

]
. (A.3)

It is easy to see that

G(s, T1 + 1, T2) = G(s, T1, T2) , (A.4)

so we can employ its discrete Fourier transformation F (s, p, T2) defined by

F (s, p, T2) :=

∫ 1

0
dχe2πiχpG(s, χ, T2) , (A.5)

59From now on,
∑
m will be a shorthand for

∑
m∈Z.
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to recast G(s, T1, T2) as

G(s, T1, T2) =
∑
p

e−2πipT1F (s, p, T2)

=
∑
p

e−2πipT1

∫ 1

0
dχ

∞∑
n=1

∑
m

1

ns(m+ nχ+ inT2)s
e2πipχ . (A.6)

Let k ∈ Z and r ∈ {0, . . . , n− 1} so that we can write m = kn+ r. Then the last line

becomes

G(s, T1, T2) =
∑
p

∞∑
n=1

n−1∑
r=0

∑
k

∫ 1

0
dχe2πip(χ−T1) 1

ns
1

(r + n(χ+ k) + inT2)s

=
∑
p

∞∑
n=1

n−1∑
r=0

∑
k

∫ k+1

k
dye2πip(y−T1) 1

ns
1

(r + ny + inT2)s

=
∑
p

∞∑
n=1

n−1∑
r=0

∫ +∞

−∞
dχe2πip(χ− r

n
−T1) 1

[n2(χ+ iT2)]s

=
∑
k

∞∑
n=1

∫ +∞

−∞
dχe2πikn(χ−T1)n

1

[n2(χ+ iT2)]s
, (A.7)

where we performed the change of coordinates y := χ+ k and χ := y + r
n respectively

in the second and third line, whereas in the last step we used

n−1∑
r=0

e−2πi p
n
r =

n if p = kn k ∈ Z

0 otherwise
. (A.8)

Since T2 > 0 we can now implement the following integral representation of z−s

1

zs
=

1

is
1

Γ(s)

∫ ∞
0

dt ts−1eizt for Im(z) > 0 , (A.9)

and, by switching to the y := n2t variable, (A.7) becomes

G(s, T1, T2) =
1

is
1

Γ(s)

∑
k

∞∑
n=1

n

∫ +∞

−∞
dχe2πikn(χ−T1)

∫ ∞
0

dtts−1ein
2(χ+iT2)t

=
1

is
1

Γ(s)

∑
k

∞∑
n=1

1

n2s−1

∫ ∞
0

dyys−1e−2πiknT1−T2y

∫ +∞

−∞
dχeiχ(2πkn+y)

=
2π

is
1

Γ(s)

∑
k=0

∞∑
n=1

1

n2s−1

∫ ∞
0

dyys−1e−2πiknT1−T2yδ(2πkn+ y)

= G0(s, T1, T2) +
1

is
1

Γ(s)

∞∑
k=1

∞∑
n=1

(
2πk

n

)s e2πiknT

k
. (A.10)
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Here we have split the k = 0 contribution G0(s, T1, T2), which requires additional

regularisation, from the k > 0 terms which are instead convergent for Re(s) ≥ 0.

To compute G0(s, T1, T2) we first observe that it is formally given by

G0(s, T1, T2) =
2π

is
1

Γ(s)

∞∑
n=1

1

n2s−1

∫ ∞
0

dyys−1e−2πiknT1−T2yδ(y)

=
1

2

1

is
1

Γ(s)

∞∑
n=1

(
2πk

n

)s e2πiknT

k

∣∣∣∣
k=0

, (A.11)

where the extra factor of 1/2 arises since

∫ b

a
dxδ(x− c)f(x) =


f(c) if c ∈ (a, b)

1
2f(c) if c ∈ {a, b}

0 otherwise

. (A.12)

To regularise this we deform k → k + ε so that

G0(s, T1, T2) =
1

2

1

is
1

Γ(s)

∞∑
n=1

(
2πε

n

)s e2πiεnT

ε
(A.13)

and therefore, for small s,

G0(s, T2, T2) =
1

2Γ(s)

∞∑
n=1

(
2πε

in

)s e2πiεnT

ε

=
s

2

∞∑
n=1

e2πiεnT

ε
+O(s2)

=
s

2ε
ζ(0) + πisTζ(−1) +O(s2, ε) , (A.14)

where ζ(s) =
∑∞

n=1 n
−s is the Riemann zeta function, for which ζ(0) = −1

2 and ζ(−1) =

− 1
12 . Since the divergent part of (A.14) does not depend on T , we regularise the k = 0

contribution in (A.10) by neglecting the 1
ε divergence. In this case, when s→ 0+, the

expression (A.10) looks like60

G(s, T1, T2) = sπiTζ(−1) + s

∞∑
k=1

∞∑
n=1

(
2πk

n

)s e2πiknT

k
+O(s2)

= sπiTζ(−1)− s
∞∑
n=1

log
(
1− e2πiTn

)
+O(s2) , (A.15)

60We remind the reader that Γ(s) = 1
s
− γ +O(s) where γ is the Euler–Mascheroni constant.
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where we identified
∑∞

k=1
qk

k = − log(1− q). Recalling that ζ(−1) = −1/12 we find

P =
∞∏
n=1

∏
m

1

n(m+ nT )
= e−i

π
12
T
∞∏
n=1

1

1− e2πiTn
=

1

η(T )
. (A.16)

Finally, to make contact with the path-integral computations performed in Section 3.2.2

(see (3.48)) we note that in our regularisation the product (let a be a complex number)

Pa =
∏
n6=0
m

a

n(m+ nT )
, (A.17)

becomes

Pa = exp

[
d

ds

∣∣∣∣∣
s=0

(asG(s, T ))

]
= aG(0,T ) 1

η(T )
, (A.18)

and by using (A.15) we find that G(0, T ) = 0.
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Appendix B

Factorization of

Higher-dimensional theta

function

Let’s consider the case where the physical metric is (in Lorentzian signature)

gµν = diag
(
−L2

0, L
2
1, . . . , L

2
5

)
. (B.1)

To construct M̃AB we see that a basis of self-dual 3-forms with respect to ?g are given

by

ϕA+ = (1 + ?g)dx
0 ∧ dxi ∧ dxj

=
ωA+ + ωA−

2
+ V L−2

i L−2
j L−2

0

ωA+ − ωA−
2

=
1 + V/L2

iL
2
jL

2
0

2
ωA+ +

1− V/L2
iL

2
jL

2
0

2
ωA− , (B.2)

where V = L0L1 . . . L5. From here we can read off

M̃AB = −1− V/AAL2
0

1 + V/AAL2
0

δAB , (B.3)

where AA = LiLj . Finally we want to Wick rotate in the same way as in Section 3.2,

which effectively amounts to sending

L0 → −iL0 . (B.4)
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FUNCTION

Thus we find

M̃AB = −1− iV/AAL2
0

1 + iV/AAL2
0

δAB

= −τA + 1

τA − 1
δAB , (B.5)

where τA = iL0AA/V . For such metrics M̃AB becomes diagonal and each component

has the form that we saw for the chiral boson but with a purely imaginary complex

structure τA. Note that in this case

TAB = −1

2

(
δAB + M̃−1

AB

)
= − 1

1 + τA
δAB . (B.6)

As a result, (3.140) factorises into a product of more familiar functions from the two-

dimensional chiral boson discussion:

Z(0)
w.m. =

10∏
A=1

θ

[
αA

βA

](√
r1r2J (0)

A | −2r1r2/(1 + τA)
)

(B.7)

Lastly, we note that −1/(1 + τA) is simply an S and T modular transformation away

from τA.
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