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Abstract

Fekete, Jordán and Kaszanitzky [4] characterised the graphs which can be realised
as 2-dimensional, infinitesimally rigid, bar-joint frameworks in which two given vertices
are coincident. We formulate a conjecture which would extend their characterisation
to an arbitrary set T of vertices and verify our conjecture when |T | = 3.

1 Introduction

A d-dimensional (bar-and-joint) framework is a pair (G, p) where G = (V,E) is a simple
graph and p : V → Rd is a map, which we refer to as the realisation of the framework.
The length of each edge of (G, p) is given by the Euclidean distance betwean its end
points. The framework is said to be rigid if every continuous motion of the vertices which
preserves the lengths of the edges, preserves the distance between all pairs of vertices. It
is infinitesimally rigid if it satisfies the stronger property that every infinitesimal motion
of the vertices which preserves the lengths of the edges is an infinitesimal isometry of Rd.

It is not difficult to see that a 1-dimensional framework is rigid if and only if its un-
derlying graph is connected, but for d ≥ 2, the decision problem of deciding whether a
given d-dimensional framework is rigid is NP-hard by a result of Abbot [1]. This prob-
lem becomes more tractable, however, if we restrict our attention to generic frameworks
i.e. framworks (G, p) for which the set of the coordinates p(v), v ∈ V , is algebraically
independent over the rational numbers. Asimow and Roth [2] showed that the properties
of rigidty and infinitesimal rigidity are equivalent for such frameworks and depend only
on the underlying graph. This allows us to define a graph G as being rigid in Rd if some,
or equivalently every, generic realisation of G in Rd is rigid.

Graphs which are rigid in Rd have been characterised for d = 1, 2: we have already seen
that G is rigid in R if and only if G is connected and a fundamental result of Pollaczek-
Geiringer [10], subsequently rediscovered by Laman [7], characterises when G is rigid in
R2. Finding a characterisation when d ≥ 3 is the main open problem in distance geometry,
although characterisations do exist for certian families of graphs. A common technique
used to show that a family of graphs G is rigid in Rd is to reduce G to a smaller graph G′

in the family by some operation, apply induction to deduce that G′ is rigid, and then show
that the inverse operation preserves rigidity. The last step in this proof strategy frequently
uses a geometric argument based on a nongeneric realisation of G. More precisely, we
extend a generic (and hence infinitesimally rigid) realisation p′ of G′ to a realisation p of
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G by choosing special positions for the vertices of V (G) \ V (G′) which make it easy to
conclude that (G, p) is also infinitesimally rigid, then use the fact (see Section 2) that if
some realsation of (G, p) is infinitesimally rigid then every generic realsation of (G, p) is
infinitesimally rigid.

This approach has stimulated interest in such special position frameworks. Jackson
and Jordán [6] characterised when a graph G has an infinitesimally rigid realisation in
R2 in which three given vertices are collinear. Another result due to Fekete, Jordán and
Kaszanitzky [4], which is closer to our interests in this paper, characterises when a graph
G has an infinitesimally rigid realisation in R2 in which two given vertices are coincident.
We need some new notation to describe their theorem. Given a graph G = (V,E) and
T ⊆ V we use G/T to denote the graph obtained by contracting the vertices in T to a
single vertex. When T = {u, v} we often use G/uv instead of G/T . We also use G−uv to
denote the graph obtained from G by deleting the edge uv if it exists in E (and putting
G−uv = G when uv ̸∈ E). We say that a realisation p of G is T -coincident if p(x) = p(y)
for all x, y ∈ T .

Theorem 1.1. [4] Let G be a graph and u, v be distinct vertices of G. Then G has an
infinitesimally rigid, {u, v}-coincident realisation in R2 if and only if G − uv and G/uv
are both rigid in R2.

We will obtain an analogous characterisation for three coincident vertices.

Theorem 1.2. Let G = (V,E) be a graph, u, v, w be distinct vertices of G, and G′ =
G − uv − uw − vw. Then G has an infinitesimally rigid, {u, v, w}-coincident realisation
in R2 if and only if G′ and G′/S are rigid in R2 for all S ⊆ {u, v, w} with |S| ≥ 2.

We also offer a conjecture which would extend Theorems 1.1 and 1.2 to T -coincident
rigidity in R2 for arbitrary sets T , and provide an example which shows that this conjecture
does not extend to R3 even in the special case when |T | = 2.

2 Preliminaries

2.1 Rigidity matrices, infinitesimal rigidity and independent frameworks

The rigidity matrix R(G, p) of a d-dimensional framework (G, p) is the matrix of size
|E| × d|V | where, in the row corresponding to an edge uv ∈ E, the entries in the columns
corresponding to u and v are p(u)−p(v) and p(v)−p(u), respectively and all other entries
are zero. The right kernel of R(G, p) is the space of infinitesimal motions of (G, p). This
space has dimension at least

(
d+1
2

)
when |V | ≥ d since it contains the space of infinitesimal

isometries of Rd. This implies that rank R(G, p) ≤ d|V | −
(
d+1
2

)
when |V | ≥ d, and (G, p)

is infinitesimally rigid if rank R(G, p) acheives this upper bound when |V | ≥ d. For the
case when |V | < d, (G, p) is infinitesimally rigid if rank R(G, p) =

(|V |
2

)
. Since the rank

of R(G, p) is maximised whenever (G, p) is generic, the infinitesimal rigidity of a generic
framework (G, p) in Rd depends only on its underlying graph G.

A framework (G, p) is said to be independent if the rows of its rigidity matrix are
linearly independent. Maxwell [9] used the upper bound on rank R(G, p) described in the
previous paragraph to obtain the following necessary condition for independence.

If (G, p) is an independent d-dimensional framework and G′ = (V ′, E′)

is a subgraph of G with |V ′| ≥ d then |E′| ≤ d|V ′| −
(
d+1
2

)
. (1)
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2.2 Rigidity matroids

Given a framework (G, p), we can construct a matroid R(G, p) on E(G) by defining a set
F ⊆ E(G) to be independent in R(G, p) if the corresponding rows of the rigidity matrix
R(G, p) are linearly independent. The d-dimensional rigidity matroid Rd(G) of the graph
G is the matroid R(G, p) for any generic d-dimensional framework (G, p). The necessary
condition for independence in Rd(G) given by (1) is also sufficient when d = 1, 2. When
d = 1 it is equivalent to saying that G is a forest. When d = 2 it is implied by the
above mentioned characterisation of generic rigidity in R2 due to Pollaczek-Geiringer [10].
Lovász and Yemini [8] used the characterisation of independence in R2(G) to determine
its rank function. We need to introduce some new terminology to describe their result.
Given a graph G = (V,E) and E′ ⊂ E, a cover of E′ is a family X of subsets of V such
that each member of X has cardinality at least two and each edge in E′ is induced by
some member of X . The cover X is 1-thin if |Xi ∩Xj | ≤ 1 for all distinct Xi, Xj ∈ X .

Theorem 2.1. Let G = (V,E) be a graph and E′ ⊆ E. Then the rank of E′ in R2(G) is
given by r(E′) = min{

∑
X∈X (2|X| − 3) : X is a 1-thin cover of E′}.

Coincident rigidity matroids

For T ⊆ V (G), we can define the T -coincident, d-dimensional rigidity matroid Rd,T (G)
of G in the same way as the d-dimensional rigidity matroid. We first choose a reference
vertex t ∈ T . We say that a realisation p of G is T -coincident if p(v) = p(t) for all v ∈ T
and is a generic T -coincident realisation if p|V (G)\(T−t) is algebraically independent over

Q. Then rank R(G, p) will be maximised over all T -coincident realisations in Rd whenever
(G, p) is a generic T -coincident realisation and hence the infinitesimal rigidity of a generic
T -coincident framework (G, p) in Rd depends only on the graph G and the set T . We
say that G is T -coincident rigid in Rd if some, or equivalently every, generic T -coincident
realisation of G in Rd is infinitesimally rigid. The d-dimensional T -coincident rigidity
matroid Rd,T (G) of the pair (G,T ) is the matroid R(G, p) for any generic d-dimensional
T -coincident framework (G, p). It is easy to see that Rd,T (G) = Rd(G) when |T | = 1 and
that R1,T (G) = R1(G−EG(T )), where EG(T ) is the set of edges of G induced by T . The
results of [4] characterise Rd,T (G) when d = |T | = 2. We will extend this characterisation
to the case when |T | = 3 and formulate a conjecture which would characterise R2,T (G)
for all T .

We will need the following observation which relates the T -coincident rigidity matroid
Rd,T (G) to the rigidity matroid Rd(G/T ). Let zT be the vertex of G/T corresponding to
T . Given a framework (G/T, pT ) in Rd, we can obtain a T -coincident realisation (G, p)
of G by putting p(x) = pT (zT ) if x ∈ T and p(x) = pT (x) if x /∈ T . Furthermore, the
map qT 7→ q given by q(x) = qT (zT ) if x ∈ T and q(x) = qT (x) if x /∈ T is an injective
linear transformation from kerR(GT , pT ) to kerR(G, p). This gives dimkerR(G, p) ≥
dimkerR(G/T, pT ) and hence

rank R(G, p) ≤ rank R(G/T, pT ) + d(|T | − 1). (2)

2.3 Graph theoretic notation and terminology

Let G = (V,E) be a graph. For X ⊆ V , let G[X] denote the subgraph induced by X.
Let EG(X) be the set and iG(X) be the number of edges of G[X]. For a family X of
subsets of V , we put EG(X ) =

⋃
X∈X EG(X) and iG(X ) = |EG(X )|. We also define

cov(X ) = {xy : {x, y} ⊆ X, for some X ∈ X} and say that X covers a set E′ ⊆ E
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if E′ ⊆ cov(X ). The degree of a vertex v in G is denoted by dG(v) and the set of all
neighbours of v in G is denoted by NG(v). We will omit the subscripts referring to G
when the graph is clear from the context.

3 A matroid construction

We use a similar strategy to [4] to characterise R2,T (G) when |T | = 3 and prove Theorem
1.2. Suppose G = (V,E) is a graph and T ⊆ V . In this section we derive necessary
conditions for independence in R2,T (G), and show that these necessary conditions for
independence define a matroid MT (G) on E(G) when |T | ≤ 3. We show in the next
section that MT is equal to R2,T (G) and then use our formula for the rank function of
MT to verify Theorem 1.2.

For a fixed nonempty set T ⊆ V , we define the T -value of an arbitrary set X ⊆ V by

valT (X) =

{
2|X| − 3 if X ̸⊆ T
0 if X ⊆ T

Note that valT (X) ≥ 0 whenever |X| ≥ 2.
We say that a non-empty family H = {H1, . . . ,Hk} of subsets of V is T -compatible if

T is a proper subset of Hi for all 1 ≤ i ≤ k, and define its T -value to be

valT (H) =
k∑

i=1

(2|Hi \ T | − 1) + 2(|T | − 1).

Note that valT (H) ≥ 0 since |Hi| > |T | ≥ 1 for all 1 ≤ i ≤ k.
The graph G is said to be T -sparse if

� iG(X) ≤ valT (X) for all X ⊆ V with |X| ≥ 2 and

� iG(H) ≤ valT (H) for all T -compatible families H.

In particular, if G is T -sparse, then iG(X) ≤ 2|X| − 3 for all X ⊆ V with |X| ≥ 2 so E is
independent in R2(G) by [10].

We motivate these definitions by showing that T -sparsity is a necessary condition for
independence in the 2-dimensional T -coincident rigidity matroid R2,T (G).

Lemma 3.1. Let G = (V,E) be a graph and let T ⊆ V with |T | ≥ 1. Suppose E is
independent in R2,T (G). Then G is T -sparse.

Proof. Let (G, p) be a generic T -coincident realisation of G in R2. Then R(G, p) has
linearly independent rows. This implies that R(G′, p|V ′) has independent rows for any
subgraph G′ = (V ′, E′) of G.

Choose X ⊆ V with |X| ≥ 2 and let J = G[X]. Then (J, p|X) is independent and (1)
gives iG(X) = |E(J)| ≤ 2|X| − 3. In addition, if X ⊆ T then iG(X) = 0, since any edge
ab ∈ E(G) would give rise to a zero row in R(J, p|X). Hence iG(X) ≤ valT (X).

Now suppose that |T | ≥ 2 and let H = {H1, . . . ,Hk} be a T -compatible family.
Consider the subgraphs of G given by Li = G[Hi], 1 ≤ i ≤ k, and L =

⋃k
i=1 Li. Let Li/T ,

respectively L/T , be obtained from Li, respectively L, by contracting T into a single
vertex zT . Let (L/T, pT ) be the realisation of L/T with pT (x) = p(x) for x ̸= zT and
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pT (zT ) = p(z) for any z ∈ T , and let pi be the restriction of pT to the vertices of Li/T .
Then every edge of L/T belongs to one of the subgraphs Li/T and we can use 1 to obtain

rank R(L/T, pT ) ≤
k∑

i=1

rank R(Li/T, pi) ≤
k∑

i=1

(2|V (Li/T )|)− 3) =
k∑

i=1

(2|Hi \ T | − 1).

We can combine this bound with (2) and the fact that (J, p|X) is independent to obtain

iG(H) = |E(J)| = rank R(J, p|X) ≤
k∑

i=1

(2|Hi \ T | − 1) + 2(|T | − 1) = valT (H).

The converse of Lemma 3.1 holds for |T | = 1, 2. When |T | = 1, G is T -sparse if and
only if iG(X) ≤ 2|X| − 3 for all X ⊆ V with |X| ≥ 2 and this condition characterises
independence in R2(G) by [10]. When |T | = 2, the condition that G is T -sparse charac-
terises independence in R2,T (G) by [4]. When |T | ≥ 3 we we need a stronger condition
which follows from the fact that an infinitesimally rigid T -coincident realisation of G is an
infinitesimally rigid S-coincident realisation of G for all S ⊆ T . Combined with Lemma
3.1, this implies that we need G to be S-sparse for all S ⊆ T with |S| ≥ 2, for E to be
independent in R2,T (G). (Note that we do not need to include the case when |S| = 1
since this follows immediately from the condition that G is T -sparse.) We will show that
this strengthened condition characterises independence in R2,T (G) when |T | = 3. We first
obtain some preliminary results on S-compatible families.

3.1 S-compatible families

Lemma 3.2. Let G = (V,E) be a graph, S ⊆ V with |S| ≥ 2 and H = {H1, . . . ,Hk} be an
S-compatible family in G. Suppose |Hi ∩Hj | ≥ |S|+1 for some pair 1 ≤ i < j ≤ k. Then
there exists an S-compatible family H with cov(H) ⊆ cov(H) and valS(H) ≤ valS(H)− 1.

Proof. We may assume that i = k − 1 and j = k. Let H = {H1, . . . ,Hk−2, Hk−1} where
Hk−1 = Hk−1 ∪Hk. Then we have cov(H) ⊆ cov(H) and

valS(H) =

k∑
l=1

(2|Hl \ S| − 1) + 2(|S| − 1)

=

k−2∑
l=1

(2|Hl \ S| − 1) + 2(|S| − 1) + (2|Hk−1 \ S| − 1) + (2|Hk \ S| − 1)

=

k−2∑
l=1

(2|Hl \ S| − 1) + 2(|S| − 1) + (2|(Hk−1 ∪Hk) \ S| − 1)

+ (2|(Hk−1 ∩Hk) \ S| − 1)

≥ valS(H) + 1.

Given an S-sparse graph G = (V,E) with S ⊆ V , we define a set H ⊆ V (G) with
|H| ≥ 2 to be S-tight if iG(H) = valS(H). Similarly, an S-compatible family H is said to
be S-tight if iG(H) = valS(H).
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Lemma 3.3. Let G = (V,E) be a graph, S ⊆ V with |S| ≥ 2 and H = {H1, . . . ,Hk} be
an S-compatible family such that Hi ∩Hj = S for all 1 ≤ i < j ≤ k. Suppose Y ⊆ V with
|Y ∩S| ≤ 1 and |Y ∩Hi| ≥ 2 for some 1 ≤ i ≤ k. Then there exists an S-compatible family
H with cov(H)∪ cov(Y ) ⊆ cov(H) for which valS(H) ≤ valS(H) + valS(Y ). Furthermore,
if G is S-sparse and H and Y are both S-tight, then H is also S-tight.

Proof. By reordering the elements of H if necessary, we may assume that |Y ∩ Hi| ≤ 1
for all 1 ≤ i ≤ j − 1 and |Y ∩ Hi| ≥ 2 for all j ≤ i ≤ k, for some 1 ≤ j ≤ k. Let
X = Y ∪

⋃k
i=j Hi and H = {H1, . . . ,Hj−1, X}. Then we have cov(H)∪ cov(Y ) ⊆ cov(H),

and

valS(H) + valS(Y ) =
k∑

i=1

(2|Hi \ S| − 1) + 2(|S| − 1) + (2|Y | − 3)

=

j−1∑
i=1

(2|Hi \ S| − 1) + 2(|S| − 1) +
k∑

i=j

(2|Hi \ S| − 1) + (2|Y | − 3)

=

j−1∑
i=1

(2|Hi \ S| − 1) + 2(|S| − 1) + (2|X \ S| − 1)

+ 2|Y ∩ S| − (k − j) + 2
k∑

i=j

|Y ∩ (Hi \ S)| − 3

=

j−1∑
i=1

(2|Hi \ S| − 1) + (2|X \ S| − 1) + 2(|S| − 1)

+ 2|Y ∩ S| − (k − j) + 2
k∑

i=j

|Y ∩Hi| − 2
k∑

i=j

|Y ∩ S| − 3

=

j−1∑
i=1

(2|Hi \ S| − 1) + (2|X \ S| − 1) + 2(|S| − 1)

− (k − j) + 2

k∑
i=j

|Y ∩ (Hi)| − 2|Y ∩ S|(k − j)− 3

≥
j−1∑
i=1

(2|Hi \ S| − 1) + (2|X \ S| − 1) + 2(|S| − 1) + 2
k∑

i=j

|Y ∩Hi| − 3(k − j + 1)

=

j−1∑
i=1

(2|Hi \ S| − 1) + (2|X \ S| − 1) + 2(|S| − 1) +
k∑

i=j

(2|Y ∩Hi| − 3)

= valS(H) +
k∑

i=j

valS(Y ∩Hi)

where for the inequality step we use |Y ∩ S| ≤ 1. Since valS(Y ∩Hi) ≥ 0 for all j ≤ i ≤ k
this gives valS(H) + valS(Y ) ≥ valS(H).

Now suppose that G is S-sparse, and H and Y are S-tight. Then we have

i(H) +
k∑

i=j

i(Y ∩Hi) ≥ i(H) + i(Y ) = valS(H) + valS(Y )
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≥ valS(H) +
k∑

i=j

valS(Y ∩Hi) ≥ i(H) +
k∑

i=j

i(Y ∩Hi),

where the first inequality follows since the edges spanned by H or Y are spanned by H
and if some edge is spanned by both H and Y , then it is spanned by Y ∩Hi for some i.
The first equality holds because H and Y are S-tight, and the second inequality holds by
our calculations above. The last inequality holds because G is S-sparse. Hence equality
must hold everywhere, which implies that H is also S-tight.

Lemma 3.4. Let G = (V,E) be a graph, S ⊆ V with |S| ≥ 2 and H = {H1, . . . ,Hk} be an
S-compatible family such that Hi∩Hj = S for all 1 ≤ i < j ≤ k. Suppose that Y ⊆ V with
Y ∩S = ∅, |Y ∩Hi| ≤ 1 for all 1 ≤ i ≤ k and |Y ∩Ha| = |Y ∩Hb| = 1 for some (a, b) with
1 ≤ a < b ≤ k. Then there is an S-compatible family H with cov(H) ∪ cov(Y ) ⊆ cov(H)
for which valS(H) = valS(H) + valS(Y ). Furthermore, if G is S-sparse and H and Y are
both S-tight, then H is also S-tight.

Proof. We may assume that a = k − 1 and b = k. Let H = {H1, . . . ,Hk−2, Hk−1} where
Hk−1 = Hk−1 ∪Hk ∪ Y . Then cov(H) ∪ cov(Y ) ⊆ cov(H) and we have

valS(H) + valS(Y ) =
k∑

i=1

(2|Hi \ S| − 1) + 2(|S| − 1) + (2|Y | − 3)

=

k−2∑
i=1

(2|Hi \ S| − 1) + 2(|S| − 1) + (2|Hk−1 \ S| − 1) + (2|Hk \ S| − 1) + (2|Y | − 3)

=

k−2∑
i=1

(2|Hi \ S| − 1) + 2(|S| − 1) + (2(|Hk−1 \ S|+ |Hk \ S|+ |Y |)− 1)− 4

=
k−2∑
i=1

(2|Hi \ S| − 1) + (2|(Hk−1 ∪Hk ∪ Y ) \ S| − 1) + 2(|S| − 1)

+ 2|Y ∩ (Hk−1 \ S)|+ 2|Y ∩ (Hk \ S)| − 4

= valS(H).

Now suppose that G is S-sparse and H and Y are S-tight. Then we have

i(H) + i(Y ) = valS(H) + valS(Y ) = valS(H) ≥ i(H) ≥ i(H) + i(Y )

where the last inequality follows since |Y ∩Hi| ≤ 1 for all 1 ≤ i ≤ k. Hence equality must
hold everywhere which implies that H is also S-tight.

Lemma 3.5. Let G = (V,E) be an S-sparse graph for some S ⊆ V with |S| ≥ 2. Suppose
X,Y ⊆ V are S-tight sets in G with |X ∩ Y | ≥ 2 and X,Y ̸⊆ S. Then X ∩ Y ̸⊆ S, and
X ∪ Y and X ∩ Y are both S-tight.

Proof. First note that, since G is S-sparse, we have

2|X| − 3 + 2|Y | − 3 = valS(X) + valS(Y ) = i(X) + i(Y )

≤ i(X ∩ Y ) + i(X ∪ Y )

≤ valS(X ∩ Y ) + valS(X ∪ Y )

= valS(X ∩ Y ) + 2|X ∪ Y | − 3.
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This implies that valS(X ∩ Y ) ≥ 1 and hence X ∩ Y ̸⊆ S. This gives valS(X ∩ Y ) =
2|X∩Y |−3 and hence equality must hold throughout the above sequence of (in)equalities.
In particular, valS(X ∪ Y ) = i(X ∪ Y ) and valS(X ∩ Y ) = i(X ∩ Y ), so X ∪ Y and X ∩ Y
are S-tight.

Given a graph G = (V,E) and T ⊆ V with |T | ≥ 1, we say that G is strongly T -sparse
if G is S-sparse for all ∅ ≠ S ⊆ T .

Lemma 3.6. Suppose Hi is an Si-compatible family in a graph G = (V,E) for i =
1, 2 and S1 ∩ S2 ̸= ∅. Then there exists an (S1 ∪ S2)-compatible family H in G with
cov(H1) ∪ cov(H2) ⊆ cov(H). Furthermore, if G is strongly (S1 ∪ S2)-sparse and Hi is
Si-tight for 1 ≤ i ≤ 2, then H is (S1 ∪ S2)-tight.

Proof. Let H1 = {H1,1, . . . ,H1,k} and H2 = {H2,1, . . . ,H2,l}. Let G = (V, E) be the
bipartite graph on V = H1 ∪H2, with vertex bipartition (H1,H2), and edge set

E := {H1,iH2,j : |(H1,i \ S1) ∩ (H2,j \ S2)| ≥ 1, 1 ≤ i ≤ k, 1 ≤ j ≤ l}.

Let Gi = (Vi,Fi), 1 ≤ i ≤ r, be the connected components of G and put Vi =
⋃

H∈Vi
H for

1 ≤ i ≤ r. Let

Hunion = {Vi ∪ S1 ∪ S2 : 1 ≤ i ≤ r} and Hint = {H1,i ∩H2,j : H1,iH2,j ∈ E}.

Then Hint is (S1 ∩ S2)-compatible, Hunion is (S1 ∪ S2)-compatible and we have cov(H1) ∪
cov(H2) ⊆ cov(Hunion). So Hunion satisfies the first part of the lemma.

Now suppose that G is strongly (S1 ∪ S2)-sparse and Hi is Si-tight for 1 ≤ i ≤ 2. We
will complete the proof by showing that Hunion is (S1 ∪ S2)-tight. Every edge in E which
is covered by either H1 or H2 is covered by Hunion and every edge covered by both H1

and H2 is covered by Hint. This implies that i(H1) + i(H2) ≤ i(Hunion) + i(Hint). Since
|V| = k + l and r is the number of connected components of G,

r + |E| ≥ k + l. (3)

We also have

r∑
i=1

(|Vi ∪ S1 ∪ S2| − |S1 ∪ S2|) +
∑

H1,iH2,j∈E
(|H1,i ∩H2,j | − |S1 ∩ S2|)

=

k∑
i=1

(|H1,i| − |S1|) +
l∑

i=j

(|H2,j | − |S2|)

(4)

as a vertex x /∈ S1 ∪ S2 contributes the same amount (one or two) to both sides of (4),
and a vertex x ∈ S1 ∪ S2 contributes zero to both sides of (4).
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Since Hint is (S1 ∩ S2)-compatible and Hunion is (S1 ∪ S2)-compatible, we have

k∑
i=1

(2|H1,i \ S1| − 1) + 2(|S1| − 1) +
l∑

j=1

(2|H2,j \ S2| − 1) + 2(|S2| − 1)

= valS1(H1) + valS2(H2)

= i(H1) + i(H2)

≤ i(Hunion) + i(Hint)

≤ valS1∪S2(Hunion) + valS1∩S2(Hint)

=
r∑

i=1

(2|(Vi ∪ S1 ∪ S2) \ (S1 ∪ S2)| − 1) + 2(|S1 ∪ S2| − 1)

+
∑

H1,iH2,j∈E
(2|(H1,i ∩H2,j) \ (S1 ∩ S2)| − 1) + 2(|S1 ∩ S2| − 1)

=
r∑

i=1

2(|Vi ∪ S1 ∪ S2| − |S1 ∪ S2|) + 2(|S1 ∪ S2| − 1)− r

+
∑

H1,iH2,j∈E
2(|H1,i ∩H2,j | − |S1 ∩ S2|) + 2(|S1 ∩ S2| − 1)− |E|

≤
k∑

i=1

2(|H1,i| − |S1|) +
l∑

j=1

2(|H2,i| − |S2|)

+ 2(|S1 ∪ S2| − 1) + 2(|S1 ∩ S2| − 1)− k − l

=
k∑

i=1

2(|H1,i| − |S1|) +
l∑

j=1

2(|H2,j | − |S2|) + 2|S1|+ 2|S2| − 2− 2− k − l

=
k∑

i=1

(2|H1,i \ S1| − 1) + 2(|S1| − 1) +
l∑

j=1

2|H2,j \ S2| − 1 + 2(|S2| − 1),

where the third inequality follows from (3) and (4), and the second last equality follows
from the formula |S1∪S2|+|S1∩S2| = |S1|+|S2|. Therefore equality must hold throughout.
This implies that Hunion is (S1 ∩ S2)-tight (and also that Hint is (S1 ∩ S2)-tight).

3.2 The matroid MT (G)

Given a graph G = (V,E) and a set T ⊆ V , we will show that the family IT = {I ⊆ E :
G′ = (V, I) is strongly T -sparse} is the family of independent sets of a matroid MT (G)
on E when 1 ≤ |T | ≤ 3.

We need the following concept. For S ⊆ V with |S| ≥ 2, an augmented S-compatible
family is a collection L = {H, X1, . . . , Xk} where H is a (possibly empty) S-compatible
family of subsets of V and X1, . . . , Xk are subsets of V of size at least two. We say that
L covers an edge e ∈ E if e is induced by either a set H ∈ H or by one of the sets Xi for
some 1 ≤ i ≤ k and let iG(L) be the number of edges of G which are covered by L. The
family L is 1-thin if:

(T.1) |Xi ∩Xj | ≤ 1 for all pairs 1 ≤ i < j ≤ k;

(T.2) Hi ∩Hj = S for all distinct Hi, Hj ∈ H;
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(T.3) |Xi ∩
⋃

H∈HH| ≤ 1 for all 1 ≤ i ≤ k.

We define the S-value of L to be

valS(L) =

{
valS(H) +

∑k
i=1(2|Xi| − 3), if H ̸= ∅∑k

i=1(2|Xi| − 3), if H = ∅ .

Note that,
if G is S-sparse and L is 1-thin, then iG(L) ≤ valS(L). (5)

Recall that a family I of subsets of a finite set E is the family of independent sets in
a matroid on E if it satisfies the following three axioms:

(I.1) ∅ ∈ I;

(I.2) if I ∈ I and I ′ ⊆ I, then I ′ ∈ I;

(I.3) for all E′ ⊆ E, every maximal element of {I ∈ I : I ⊆ E′} has the same cardinality.

We will use these axioms to verify that IT is the independent set system of a matroid
and determine its rank function.

Theorem 3.7. Let G = (V,E) be a graph, T ⊆ V with 1 ≤ |T | ≤ 3, and ET be the set of
edges of G induced by T . Then

IT = {I ⊆ E : G′ = (V, I) is strongly T -sparse} (6)

is the family of independent sets in a matroid MT (G) on E. In addition, the rank of any
E′ ⊆ E in MT (G) is given by r(E′) = min{valS(L)} where the minimum is taken over
all S ⊆ T with |S| ≥ 2 and all 1-thin, augmented S-compatible families L which cover
E′ \ ET .

Proof. We show that IT satisfies the independence axioms (I.1), (I.2) and (I.3). Since
(I.1) and (I.2) follow immediately from the definition of IT , we only need to verify that
(I.3) holds. Choose E′ ⊆ E. We first show that

Claim 3.8. Let F be a maximal element of {I ∈ IT : I ⊆ E′}. Then |F | = valS(L) for
some S ⊆ T with |S| ≥ 2 and some 1-thin, augmented S-compatible family L which covers
E′ \ ET .

Proof of Claim. Let J = (V, F ) denote the subgraph of G induced by F . Consider the
following two cases.

Case 1: J has no tight S-compatible family for all S ⊆ T with |S| ≥ 2. Let
X1, X2, . . . , Xk be the maximal T -tight sets in J and put L1 = {∅, X1, X2, . . . , Xk}. Then
L1 is an augmented T -compatible family. Since X = {x, y} is a T -tight set in J for all
edges xy ∈ F , L1 covers F . In addition, Lemma 3.5 and the maximality of the sets
X1, X2, . . . , Xk imply that L1 is 1-thin. Since each Xi is T -tight in J this gives,

|F | =
k∑

i=1

|EJ(Xi)| =
k∑

i=1

(2|Xi| − 3) = valT (L1).

We claim that L1 covers every edge of E′ \ ET . To see this consider an edge ab ∈
E′ \ (F ∪ ET ). Since F is a maximal subset of E′ in IT we have F + ab /∈ IT . Our
assumption that there is no S-tight, S-compatible family in J , now implies that there is
a T -tight set X in J with a, b ∈ X. Hence X ⊆ Xi for some 1 ≤ i ≤ k. This implies that
L1 covers ab. Hence L1 covers every edge of E′ \ ET and the claim holds in this case.
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Case 2: J has an S-tight, S-compatible family H for some S ⊆ T with |S| ≥ 2.
We may assume by Lemma 3.6 that, for every S′-tight, S′-compatible family H′ in J with
S′ ⊆ T and |S′| ≥ 2, we have S′ ⊆ S and cov(H′) ⊆ cov(H). Let X1, X2, . . . , Xk be the
maximal S-tight sets of J ′ = (V, F \EJ(H)) and put L2 = {H, X1, X2, . . . , Xk}. Then L2

is an augmented S-compatible family which covers F and we have

iJ ′(Xi) = 2|Xi| − 3 for all 1 ≤ i ≤ k. (7)

We next show that L2 is 1-thin. Lemma 3.5 and the maximality of the setsX1, X2, . . . , Xk

imply that |Xi ∩Xj | ≤ 1 for all 1 ≤ i < j ≤ k, so (T.1) holds. Lemma 3.2 and the fact
that H is S-tight imply that Hi ∩ Hj = S for all distinct Hi, Hj ∈ H (otherwise we
could construct an S-compatible family H in J with valS(H) < valS(H) = iJ(H) ≤ iJ(H)
and this would contradict the hypothesis that F ∈ IT ). Hence (T.2) holds. Choose
a set Xi. We show that (T.3) holds for Xi. If |Xi ∩ S| ≥ 2 then H′ = {Xi} would
be an (S ∩ Xi)-tight, (S ∩ Xi)-compatible family and the maximality of H would give
EJ(Xi) ⊆ cov(H′) ⊆ cov(H). This would imply that EJ ′(Xi) = ∅ and contradict (7).
Hence |Xi ∩ S| ≤ 1.

Suppose |Xi ∩ Hj | ≥ 2 for some Hj ∈ H. Then Lemma 3.3 gives us an S-tight, S-
compatible family H with cov(H) ∪ cov(Xi) ⊆ cov(H). The maximality of cov(H) now
implies that cov(Xi) ⊆ cov(H) and contradicts (7). Hence |Xi ∩Hj | ≤ 1 for all Hj ∈ H.

If |Xi∩S| = 1 then the facts that |Xi∩Hj | ≤ 1 and S ⊂ Hj for all Hj ∈ H would imply
that (T.3) holds for Xi. So we may assume that Xi ∩ S = ∅. We can now use Lemma
3.3 and a similar argument to the previous paragraph to deduce that |Xi ∩Hj | = 1 for at
most one Hj ∈ H, so (T.3) holds for Xi. Hence L2 is 1-thin and we have

|F | =
∑
Hi∈H

|EJ(Hi)|+
k∑

j=1

|EJ(Xj)|

=
∑
Hi∈H

(2|Hi \ S| − 1) + 2(|S| − 1) +
k∑

j=1

(2|Xj | − 3) = valS(L2).

We complete the proof of the claim by showing that L2 is a cover of E′ \ET . Choose
ab = e ∈ E′ \ (F ∪ ET ). By the maximality of F we have F + e /∈ IT . Thus J has either
an S′-tight set X with a, b ∈ X or an S′-tight S′-compatible family H with a, b ∈ Yi ∈ H
for some S′ ⊆ T with |S′| ≥ 2. In the latter case, the maximality of cov(H) implies that
cov(H) ⊆ cov(H) and hence e is covered by L2. Hence we may assume that a, b ∈ X for
some X ⊆ V with iJ(X) = 2|X| − 3. If |X ∩

⋃
Hj∈HHj | ≥ 2, then we can use a similar

argument to that used to show that Xi satisfies (T.3) to deduce that cov(X) ⊆ cov(H)
which implies that L2 covers e. Hence we may assume that that |X ∩

⋃
Hj∈HHj | ≤ 1.

Then E(X) ⊆ E(J ′) and hence X ⊆ Xi for some 1 ≤ i ≤ k. Hence e is covered by K2.

We saw in (5) that, ifG is S-sparse and L is a 1-thin, augmented S-compatible family in
G, then iG(L) ≤ valS(L). Together with Claim 3.8, this implies that |F | = min{valS(L)}
where the minimum is taken over all S ⊆ T with |S| ≥ 2 and all 1-thin, augmented
S-compatible families L which cover E′ \ ET . Since min{valS(L)} is independent of the
choice of F , all maximal elements of {I ∈ IT : I ⊆ E′} have the same cardinality. Hence
(I.3) holds for IT and MT (G) is a matroid. The assertion that r(E′) = min{valS(L)}
follows immediately since r(E′) is equal to the cardinality of any maximal element of
{I ∈ IT : I ⊆ E′}.

The special cases of Theorem 3.7 when |T | = 1, 2 are given in [8] and [4], respectively.
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4 Coincident rigidity

Throughout this section we will only be concerned with 2-dimensional frameworks so
will suppress reference to the ambient space R2. Let G = (V,E) be a graph, T ⊆ V
with |T | = 3. If G has an independent, T -coincident realisation (G, p) then (G, p) is an
independent, S-coincident realisation for all S ⊆ T with |S| = 2. We can combine this
observation with Lemma 3.1 to deduce that every independent set in the T -coincident
rigidity matroid RT (G) is independent in the matroid MT (G) given by Theorem 3.7.
Hence, to show that RT (G) = MT (G), it only remains to show that every independent
set in MT (G) is independent in RT (G). We will do this by induction on |V |: we suppose
that E is independent in MT (G) and perform a graph theoretic reduction operation to
create a smaller graph G′ = (V ′, E′) such that E′ is independent in MT (G

′); we apply
induction to deduce that E′ is independent in RT (G

′) then use the fact that the inverse
of the reduction operation preserves independence in the T -coincident rigidity matroid to
deduce that E is independent in RT (G). The last step in this argument uses the following
extension operations and geometric lemmas.

Our first two lemmas concern the so called 0- and 1-extension operations. We refer the
reader to [12] for their proofs. The 0-extension operation on a graph G = (V,E) constructs
a new graph by adding a new vertex w and two new edges from w to V . The 1-extension
operation constructs a new graph from G by deleting an edge uv and then adding a new
vertex w and three new edges wu,wv,wx for some x ∈ V \ {u, v}.

Lemma 4.1. Suppose that G is a graph and that G′ is obtained from G by a 0-extension
operation which adds a new vertex w and new edges wu,wv. Suppose further that (G′, p) is
a realisation of G′ and that u, v, w are not colinear in (G, p). Then (G′, p) is independent
if and only if (G, p|V (G)) is independent.

Lemma 4.2. Suppose that (G, p) is an independent framework and that G′ is obtained
from G by a 1-extension operation which adds a new vertex w. Suppose further that
neighbours of w in G′ are not colinear in (G, p). Then (G′, p′) is independent for some p′

with p′(x) = p(x) for all x ∈ V (G).

Our third extension result is a geometric version of a generic vertex splitting lemma of
Whiteley which is stated without proof in [12]. Given a graph G = (V,E) and v ∈ V with
neighbour set NG(v), the vertex splitting operation chooses pairwise disjoint sets U1, U2, U3

with U1 ∪ U2 ∪ U3 = NG(v) and |U2| = 2, deletes all edges from v to U3, and then adds a
new vertex v′ and |U3|+ 2 new edges from v′ to each vertex in U2 ∪ U3.

Lemma 4.3. Suppose that (G, p) is an independent framework and that G′ is obtained
from G by a vertex splitting operation which splits a vertex z ∈ V (G) into two vertices
z, z′. Suppose further that the common neighbours z1, z2 of z and z′ in G′ are not colinear
with z in (G, p). Put p′(z) = p′(z′) = p(z) and p′(x) = p(x) for all x ∈ V (G) − z. Then
(G′, p′) is independent.

Proof. Let NG′(z) = {z1, z2, . . . , zk} and NG′(z′) = {z1, z2, zk+1, zk+2, . . . , zm}. Then the
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rigidity matrix R(G′, p′) has the following form.

z z′ z1 z2



zz1 p(z)− p(z1) (0, 0) p(z1)− p(z) (0, 0) · · ·
zz2 p(z)− p(z2) (0, 0) (0, 0) p(z2)− p(z) · · ·
z′z1 (0, 0) p(z)− p(z1) p(z1)− p(z) (0, 0) · · ·
z′z2 (0, 0) p(z)− p(z2) (0, 0) p(z2)− p(z) · · ·
zz3 p(z)− p(z3) (0, 0) (0, 0) · · ·
...

...
...

...
...

...
zzk p(z)− p(zk) (0, 0) (0, 0) (0, 0) · · ·

z′zk+1 (0, 0) p(z)− p(zk) (0, 0) (0, 0) · · ·
...

...
...

...
...

...
z′zm (0, 0) p(z)− p(zm) (0, 0) (0, 0) · · ·

0 0 R(G− z, p)

LetM be the matrix obtained from R(G′, p′) as follows: subtract row 3 from row 1 and row

4 from row 2, then add column 1 to column 2. Then M =

 p(z)− p(z1) 0
p(z)− p(z2) 0

∗ R(G, p)

. The

hypotheses that (G, p) is independent and p(z), p(z1), p(z2) are not colinear now implies
that M has independent rows. Hence (G′, p′) is independent.

Our fourth extension lemma gives sufficient conditions for the operation of replacing
a rigid subgraph of a graph by a larger rigid subgraph to preserve rigidity.

Lemma 4.4. Let G = (V,E) be a graph, Y ⊆ V such that G[Y ] is rigid and {Y1, Y2, . . . , Ym}
be a partition of Y with m ≥ 3. Let G′ = (V ′, E′) be obtained from G by contracting each
set Yi to a single vertex yi for all 1 ≤ i ≤ m and then adding an edge yiyj for all non-
adjacent pairs yi, yj, 1 ≤ i < j ≤ m. Put Y ′ = {y1, y2, . . . , ym}. Suppose that (G′, p′)
is an infintesimally rigid realisation of G′. Then (G, p) is infinitesimally rigid for some
p : V → R2 with p|V \Y = p′|V ′\Y ′.

Proof. Let G∗ be obtained from G by adding all edges between the vertices of Y . Since
G[Y ] is rigid, it will suffice to show that (G∗, p) is infinitesimally rigid for some p : V → R2

with p|V \Y = p′|V ′\Y ′ . Let p(v) = p′(v) for each v ∈ V \ Y and p(v) = p′(yi) for each
v ∈ Yi, 1 ≤ i ≤ m. Then (G∗[Y ], p|Y ) is infinitesimally rigid. In addition, each infinitesimal
motion of (G∗, p) which fixes Y induces an infinitesimal motion of (G′, p′) which fixes Y ′.
Since (G′, p′) is infintesimally rigid, every such motion fixes V ′ \ Y ′. Hence (G∗, p) is
infinitesimally rigid.

Our final lemma complements Lemmas 4.1 and 4.2 by showing that the inverse of the
0- and 1-extension operations preserves the property of being strongly T -sparse.

Lemma 4.5. Let G = (V,E) be a graph and T ⊆ V with 1 ≤ |T | ≤ 3. Suppose that G is
strongly T -sparse and z ∈ V \ T has at most one neighbour in T .
(a) If d(z) = 2 then G− z is strongly T -sparse.
(b) If d(z) = 3 then G− z + xy is strongly T -sparse for some non-adjacent x, y ∈ NG(z).

Proof. Statement (a) follows immediately from the fact if H is a subgraph of a strongly
T -sparse graph and T ⊆ V (H) then H is strongly T -sparse.
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To verify (b) we let F = {ab : a, b ∈ N(z)}, G1 = G − z + F and G2 = G + F . Let
r(H) denote the rank of the edge set of an arbitrary subgraph H ⊆ G2 in the matroid
MT (G2) given by Theorem 3.7. Suppose, for a contradiction that (b) is false. Then
r(G1) = r(G− z). Since G is strongly T -sparse, E is independent in MT (G2) and hence
r(G1) = r(G− z) = r(G)− 3. Choose a base B1 of MT (G1) that contains F and extend
it to a base B2 of MT (G2). Since the edges of G2[N(G(z) ∪ {z}] ∼= K4 is a circuit of
MT (G2), we have r(G2) = |B2| ≤ |B1|+ 2 = r(G1) + 2. Hence r(G) ≤ r(G2) ≤ r(G)− 1,
a contradiction.

Theorem 4.6. Let G = (V,E) be a graph and T ⊆ V with 1 ≤ |T | ≤ 3. Then E is
independent in RT (G) if and only if G is strongly T -sparse.

Proof. If E is independent in RT (G) then G is strongly T -sparse by Lemma 3.1. Hence we
need only verify the reverse implication. Suppose for a contradiction that this is false and
that (G,T ) has been chosen to be a counterexample such that: |V | as small as possible;
subject to this condition, |E| as large as possible; subject to these two conditions, the
number of vertices of degree at most three in G is as large as possible. It is easy to check
that E is independent in RT (G) when |V | ≤ |T |+1 so we may assume that |V | ≥ |T |+2.
Let K be a complete graph with vertex set V . If E is not a base of MT (K) then we could
add an edge of K to E to obtain a counterexample with more edges than G. Hence E
is a base of MT (K). This implies that |E| = 2|V | − 3. (We have |E| ≤ 2|V | − 3 since
G is strongly T -sparse. On the other hand, |E| ≥ 2|V | − 3 since independence in RT (K)
implies independence in MT (K) and we can construct an independent set of size 2|V | − 3
in RT (K) by starting with an edge joining two vertices of V \ T and then recursively
applying Lemma 4.1.)

Claim 4.7. G has minimum degree three.

Proof of Claim. Since |E| = 2|V | − 3, G has minimum degree at most three. Suppose, for
a contradiction, that G has a vertex z with d(z) ≤ 2.

We first consider the case when z ̸∈ T . If |NG(z) ∩ T | ≤ 1 then we can apply Lemma
4.5(a) to deduce that G− z is strongly T -sparse, use the minimality of V to deduce that
every generic T -coincident framework (G − z, p) is independent, and then apply Lemma
4.1 to obtain an independent T -coincident realsation of G. This would imply that E is
independent in RT (G) and contradict the choice of G. Hence d(z) = 2 and NG(z) ⊆ T .
Let H = {T ∪ {z}, V − z}. Then H is a T -compatible family with valT (H) = 2|V | − 4.
This contradicts the fact that G is strongly T -sparse since iG(H) = |E| = 2|V | − 3.

Now suppose that z ∈ T . Then NG(z) ∩ T = ∅ since G is strongly T -sparse. Let
T ′ = T − z if |T | ≥ 2 and otherwise put T ′ = {z′} where z′ is an arbitrary vertex in V − z.
Then G − z is strongly T ′-sparse as it is a subgraph of G. The choice of G now implies
that every generic T ′-coincident framework (G− z, p) is independent. We can now apply
Lemma 4.1 to obtain an independent T -coincident realsation of G. This implies that E is
independent in RT (G) and contradicts the choice of G.

Let W be the set of all vertices of G having at least two neighbours in T and put
X = T ∪W .

Claim 4.8. Every vertex of degree three in G belongs to X.

Proof of Claim. Suppose for a contradiction that there exists a vertex z ∈ V \X of degree
three in G. Then we can apply Lemma 4.5(b) to deduce that G − z + xy is strongly T -
sparse for some non-adjacent x, y ∈ NG(z), use the minimality of V to deduce that every
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generic T -coincident framework (G−z+xy, p) is independent, and then apply Lemma 4.2
to obtain an independent T -coincident realsation of G. This implies that E is independent
in RT (G) and contradicts the choice of G.

Let H0 = {T ∪{w} : w ∈ W}. Then H0 is a T -compatible family and |W |+2|T |−2 =
valT (H0) ≥ iG(H0) ≥ 2|W | since G is T -sparse. Since |E| = 2|V | − 3, Claims 4.7 and
4.8 imply that |X| = |T |+ |W | ≥ 6. These two inequalities, combined with the fact that
|T | ≤ 3, give

|T | = 3, 3 ≤ |W | ≤ 4 and 2|W | ≤ iG(H0) ≤ |W |+ 2|T | − 2 = |W |+ 4. (8)

Since each vertex in W has at least two neighbours in T , (8) and the hypothesis that G is
strongly T -sparse imply that we can label the vertices in T as u, v, w in such a way that:

G[X] contains one of the graphs shown in Figure 1 as a spanning subgraph. (9)

u v w u v w u v w u v w

Figure 1: Possible spanning subgraphs of G[X] with T = {u, v, w}.

We next use Lemma 4.3 to show that the first possibility in Figure 1 must occur.

Claim 4.9. G[X] does not contain any of the three graphs on the right of Figure 1 as a
spanning subgraph.

Proof of Claim. Suppose, for a contradiction, that the claim is false. Then there exists a
4-cycle C in G[X] with v, w ∈ V (C) and E(C) ⊆ E(T,W ).

Consider the graph G′ = G/vw. Let z be the vertex of G′ coresponding to {v, w}
and put T ′ = {u, z}. If G′ is strongly T ′-sparse then the choice of G implies that every
generic T ′-coincident framework (G′, p) is independent. We could now apply Lemma 4.3
at z to obtain an independent T -coincident realisation of G and contradict the choice of
G. Hence G′ is not strongly T ′-sparse. Since |T ′| = 2, G′ is not T ′-sparse and hence there
exists either a set Z ⊆ V (G′) such that iG′(Z) > 2|Z| − 3 or a T ′-compatible family H in
G′ such that iG′(H) > valT ′(H).

Suppose the first alternative holds. We may assume that Z has been chosen to be as
small as possible. The minimality of Z implies that each vertex in Z has degree at least
three in G′[Z], and the fact that G is strongly T -sparse tells us that z ∈ Z. If u ∈ Z then
H = {Z} would be a T ′-compatible family with iG′(H) > valT ′(H). We will consider this
possibility when we investigate the second alternative that G′ has a T ′-compatible family
H with iG′(H) > valT ′(H), so we now assume that u ̸∈ Z. This and the fact that G[X] has
one of the three graphs to the right of Figure 1 as a spanning subgraph imply that every
vertex ofW∩Z will have lower degree in G′[Z] than in G. Since G′[Z] has minimum degree
at least three and W has at most one vertex with degree geater than three in G by (8),
we have |W ∩ Z| ≤ 1. We can now obtain a contradiction by examining the three choices
for the spanning subgraphs of G[X] given in Figure 1. If G[X] contains the second graph
in the figure as a spanning subgraph, we would have dG′(z) = dG(v) + dG(w) − 2 = 4
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and the fact that |W ∩ Z| ≤ 1 now gives dG′[Z](z) ≤ 2. On the other hand, if G[X]
contains the third or fourth graph in the figure as a spanning subgraph, we would have
dG′(z) = dG(v) + dG(w)− 2 ≤ 5 and the fact that |W ∩ Z| ≤ 1 again gives dG′[Z](z) ≤ 2.
Both possibilities contradict the fact that G′[Z] has minimum degree at least three.

Hence there exists a T ′-compatible family H in G′ such that iG′(H) > valT ′(H). We
may assume that H has been chosen such that iG′(H) is minimal. Let C = vawbv. Since
at most one vertex in X has degree greater than three, we may also assume that b has
degree three in G. Then dG′(b) = 2 and T ′ ̸⊆ NG′(b). We may now use the minimality of
iG′(H) to deduce that b ̸∈ H for all H ∈ H. Consider the two T -compatible families in G
given by

H1 :={H − z + v + w : H ∈ H} ∪ {{a, u, v, w}, {b, u, v, w}}

and

H2 :={H − z + v + w : H ∈ H} ∪ {{b, u, v, w}}.

If a ̸∈ H for all H ∈ H we have

valT (H1) = valT ′(H) + 4 < iG′(H) + 4 = iG(H1)

and, if a ∈ H for some H ∈ H, then

valT (H2) = valT ′(H) + 3 < iG′(H) + 3 = iG(H2).

Both alternatives contradict the the fact that G is T -sparse.

Our next result extends the previous claim by showing, in particular, that G[X] is
equal to the first graph of Figure 1. Let Y = V \X.

Claim 4.10. G[X] is a cycle of length six, |EG(X,Y )| = 6, iG(Y ) = 2|Y | − 3 and G[Y ]
is rigid.

Proof of Claim. Let G1 be the first graph of Figure 1. Then G1 is a spanning subgraph of
G[X] by (9) and Claim 4.9. If there exists an edge in EG(T,W ) \E(G1) then G[X] would
contain the second graph in Figure 1 as a spanning subgraph, contradicting Claim 4.9.
Thus EG(T,W ) ⊆ E(G1). Claims 4.7, the definition of W and the fact that EG(T,W ) ⊆
E(G1) imply that each vertex in T is adjacent to a distinct vertex in Y and hence |Y | ≥
3. Since G is T -sparse, we have iG(Y ) ≤ 2|Y | − 3. Let α be the number of edges in
G[X]− E(G1). Then the fact that each vertex of X has degree three in G gives

2|V (G)| − 3 = |E(G)| = iG(X) + |EG(X,Y )|+ iG(Y ) ≤ (6 + α) + (6− 2α) + 2|Y | − 3

= 2|V (G)| − 3− α.

Hence α = 0 and equality holds throughout. This gives G[X] = G1, |EG(X,Y )| = 6 and
iG(Y ) = 2|Y | − 3. Since G[Y ] is S-sparse for any S ⊂ Y with |S| = 1, the minimality of
G implies that G[Y ] is rigid.

We can now complete the proof of the theorem. We first consider the case when
|Y | = 3. The seven possibilities for G when |Y | = 3 are shown in Figure 2. We can verify
that the realisation p : V → R2 shown for the first graph gives an infinitesimally rigid,
T -coincident realisation for all seven graphs by calculating the rank of the corresponding
rigidity matrices. Hence the theorem holds when |Y | = 3 so we must have |Y | ≥ 4.
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Figure 2: The possible graphs with G[X] ∼= C6 and |Y | = 3. The vertices in Y are drawn
inside the outer six-cycle which corresponds to G[X].

Let y1, y2, y3 be the vertices in Y which are adjacent to T and let {Y1, Y2, Y3} be a
partition of Y such that yi ∈ Yi for all 1 ≤ i ≤ 3. Let G′ = (V ′, E′) be obtained from
G by contracting each set Yi to a single vertex yi for all 1 ≤ i ≤ 3 and then adding an
edge yiyj for all non-adjacent pairs yi, yj with 1 ≤ i < j ≤ 3. Put Y ′ = {y1, y2, y3}.
Then G′ is one of the graphs in Figure 2 so has an infinitesimally rigid T -coincident
realisation (G′, p′) by the previous paragraph. Then (G, p) is infinitesimally rigid for some
p : V → R2 with p|V \Y = p′|V ′\Y ′ by Lemma 4.4. This implies that (G, p) is independent
since |E| = 2|V | − 3. This contradicts the choice of G and completes the proof of the
theorem.

4.1 Proof of Theorem 1.2

Let G = (V,E), T = {u, v, w} and ET be the set of all edges of G[T ].
Necessity follows since, if G has an an infinitesimally rigid T -coincident realisation

(G, p), then (G′, p) is infinitesimally rigid and (2) implies that (G′/S, pS) is infinitesimally
rigid for all S ⊆ T with |S| ≥ 2.

For sufficiency, we assume that G′ and G′/S are rigid for all S ⊆ T with |S| ≥ 2 and
prove that G is T -coincident rigid. Suppose, for a contradiction, that this is not the case.
Then Theorems 3.7 and 4.6, imply that, for some S ⊆ T with |S| ≥ 2, there exists a 1-thin,
augmented S-compatible family L = {H, X1, X2, . . . , Xm} in G which covers E −ET and
has valS(L) ≤ 2|V | − 4. If H = ∅ then we would have

∑m
i=1(2|Xi − 3) ≤ 2|V | − 4 and

Theorem 2.1 would imply that G′ is not rigid. Hence H ̸= ∅.
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Consider the graph G′/S obtained from G′ by contracting the vertices in S into a
new vertex z. Then L′ = {H ′

1, . . . ,H
′
k, X1, . . . , Xm} is a 1-thin cover of G/S, where

H ′
i = (Hi \ S) ∪ {z} for each Hi ∈ H. Then we have

k∑
i=1

(2|H ′
i| − 3) +

m∑
i=1

(2|Xi| − 3) =

k∑
i=1

(2|Hi \ S| − 1) +

m∑
i=1

(2|Xi| − 3)

= valS(L)− 2(|S| − 1)

≤ 2|V | − 4− 2(|S| − 1)

= 2(|V | − (|S| − 1))− 4.

This contradicts the assumption that G′/S is rigid by Theorem 2.1.

The graph in Figure 3 shows that we cannot replace the hypothesis of Theorem 1.2
that G′/S is rigid for all S ⊆ T with |S| ≥ 2 by the weaker hypothesis that G′/T is rigid.

u v

w

zuv

w

zuvw

Figure 3: The graph on the left is G, T = {u, v, w} and G′ = G. The graph in the middle
is G/uv and the graph on the right is G/T . Both G and G/T are rigid, but G/uv is not.
Hence G is not T -coincident rigid by Theorem 1.2.

5 Closing Remarks

5.1 Extension to |T | ≥ 3

We believe that Theorem 4.6 can be extended to sets T of arbitrary size.

Conjecture 5.1. Let G = (V,E) be a graph and T be a non-empty subset of V . Then E
is independent in RT (G) if and only if G is strongly T -sparse.

The following result from the PhD thesis of the first author [5] gives some evidence in
support of this conjecture.

Theorem 5.2. Let G = (V,E) be a graph, T be a non-empty subset of V and

I = {I ⊆ E : G′ = (V, I) is strongly T -sparse}.

Then I is the family of independent sets in a matroid on E.

5.2 Extension to d ≥ 3

It is natural to ask whether Theorems 1.1 and 1.2 can be extended to Rd for d ≥ 3. We will
use the following result on flexible realisations of complete bipartite graphs which follows
easily from a result of Bolker and Roth [3, Theorem 10]. It is stated explicitly in a paper
of Whiteley as an immediate corollary of [11, Theorem 1]. Whiteley makes the simplifying
assumption at the beginning of [11] that all frameworks (G, p) have p(u) ̸= p(v) whenever
uv ∈ E(G) but this assumption is not used in his proof of [11, Theorem 1].
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Lemma 5.3. Let (Km,n, p) be a realisation of the complete bipartite graph Km,n with
all its vertices on a quadric surface in Rd for some m,n, d ≥ 2. Then (Km,n, p) is not
infinitesimally rigid in Rd.

Consider a generic {u, v}-coincident framework (K5,5, p) in R3 where u, v are vertices
on different sides of the bipartition of K5,5. Then Lemma 5.3, combined with the fact
that any set of nine points lie on a quadric surface in R3, imply that (K5,5, p) is not
infinitesimally rigid. On the other hand, K5,5−uv and K5,5/uv are both rigid in R3 since
both K5,5−uv and the spanning subgraph of K5,5/uv obtained by deleting any three edges
incident to the vertex of degree eight can be constructed from K4 by the 3-dimensional
versions of the 0- and 1-extension operations defined at the beginning of Section 4, see
[12] for more details.
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