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Abstract 

Acute myeloid leukemia (AML) is a highly heterogeneous cancer of the hematopoietic system with no 

cure for most patients. In addition to chemotherapy, treatment options for AML include recently 

approved targeted therapies against proteins with roles in AML pathology, such as FLT3, BLC2 and 

IDH1/2.  However, due to disease complexity, these therapies produce very diverse responses, and 

survival rates are still low, which highlights that, despite considerable advances, there remains a need 

for therapies that target different aspects of disease biology, and for associated biomarkers that define 

patient populations likely to respond to each available therapy. Indeed, drugs that target different AML 

vulnerabilities currently are in advanced stages of clinical development. Here, we review proteomics 

and phosphoproteomics studies that aimed to provide insights into AML biology and clinical disease 

heterogeneity not attainable with genomic approaches. To place the discussion in context, we first 

provide an overview of genetic and clinical aspects of the disease, followed by a summary of proteins 

targeted by compounds that have been approved or are under clinical trials for AML treatment and, if 

available, the biomarkers that predict responses. We then discuss proteomics and phosphoproteomics 

studies that provided insights into AML pathogenesis, from which potential biomarkers and drug targets 

were identified, and studies that aimed to rationalize the use of synergistic drug combinations. When 

considered as a whole, the evidence summarized here suggests that proteomics and phosphoproteomics 

approaches can play a crucial role in the development and implementation of precision medicine for 

AML patients. 
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Introduction to acute myeloid leukemia 

Acute myeloid leukemia (AML) is a hematological cancer with an incidence of approximately 

18,500 and 20,000 new cases in Europe and USA, respectively, making this the most common form of 

acute leukemia (1). Contrary to other forms of leukemia, for which targeted therapies have transformed 

their prognosis (2,3), curative treatments do not exists for most AML patients, and according to the 

American Cancer Society, AML will cause 11,500 deaths in the US in 2022. The risk of suffering AML 

at some point in life is 0.5 to 1%, and although it can occur at all ages, it is more frequent in adults with 

an average age at first diagnosis of 68 years. AML risks factors include exposure to chemicals (like 

benzene and chemotherapeutic agents) or radiation, suffering from myelodysplastic syndrome or 

myeloproliferative neoplasms, having germ line mutations in genes linked to familial AML (e.g., 

CEBPA, DDX4 or RUNX1) or somatic mutations in genes linked to clonal hematopoiesis (e.g., 

DNMT3A, TET2, or ASXL1) (4,5). Patients with inherited genetic syndromes such as Fanconi’s 

anemia, Bloom syndrome, Down syndrome, and others also present an increased risk of AML (6-8).  

AML originates from the malignant transformation of myeloid precursors, leading to the 

uncontrolled production of undifferentiated, immature and non-functional blasts, causing the 

displacement of hematopoietic stem cells (HSCs) and leading to bone marrow (BM) failure. This 

process was postulated to require genomic aberrations or mutations in epigenetic modifiers and/or 

transcription factors that impair hematopoietic differentiation alongside mutations in signaling 

pathways that sustain cell survival and proliferation (9). This “two-hit” model, although now thought 

to be over-simplistic, presents clinical implications for the design of combinational therapies (10).  

Recent mutational studies show that frequent genetic alterations in AML include single gene 

mutations that affect proteins with multiple functions, together with large cytogenetic aberrations that 

involve chromosome gains, losses or rearrangements that generate fusion proteins with aberrant 

functions (Table 1). Another level of complexity in AML pathogenesis was provided by functional 

studies that showed that AML is initiated and maintained by leukemia stem cells (LSC, also known as 

leukemia initiating cells, LICs), from where the bulk of AML blast are derived (11,12). The LSCs are 

resistant to chemotherapy because they are quiescent and express anti-apoptotic molecules at high levels 

(13,14). Therefore, after the elimination of the bulk of leukemic cells by therapy, residual LSCs in BM 

have the potential to replenish the leukemic population, leading to the relapse of patients that initially 

responded to chemotherapy (15).  

AML has been historically subdivided by the French-American-British (FAB) classification 

system (Table 2), which is based on morphological and immunophenotypic features linked to the 

differentiation and maturation stage of blasts (16). More recently, the World Health Organization 

(WHO) established an AML classification that incorporated genetic abnormalities and other 

clinicopathological features. In addition, the European LeukemiaNet (ELN) integrated genetic and 
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cytogenetic alterations into a risk classification system (favorable, intermediate and adverse) that 

prognosticate overall survival and response to standard chemotherapy (17-19) (Table 2).   

Therapeutic options for AML 

Until recently, essentially all AML patients were treated with an induction therapy regime that 

aims to achieve a complete morphologic remission and the restoration of normal hematopoiesis, 

followed by consolidation therapy to minimize the probability of relapse (1). The exception are patients 

in the acute promyelocytic leukemia (APL) subgroup, whose blast cells have an immature phenotype 

and who respond differentiating agents such as all-trans retinoic acid. For induction therapy, non-APL 

fit AML patients (generally <65 years) receive several cycles of cytarabine and daunorubucin, while 

unfit patients (usually >65 years) are treated with low dose cytarabine (LDAC), DNA hypomethylating 

agents (HMAs) like azacitidine and decitabine or palliative care. Consolidation therapy for patients who 

achieve complete remission includes different dosages of cytarabine and stem cell transplantation 

depending on the fitness of the patient and the prognosis of the leukemia provided by genetic and other 

biomarkers. Although most patients initially respond to this standard chemotherapeutic regime, most of 

them eventually relapse, leading to a 5-year survival of just 20%, and highlighting the need for more 

targeted approaches to treat AML (1).  

The standard of care started to change gradually from 2017, when several targeted therapies 

were approved to treat AML subpopulations (Figure 1 and Table 3). These advances where spurred by 

the increasing understanding of AML genetic landscape as well as of its molecular biology at the 

proteomic level.  

Activating mutations of the receptor tyrosine kinase FLT3 due to internal tandem duplications 

(ITD) in the juxtamembrane domain or point mutations in the tyrosine kinase domain (TKD) occurs in 

approximately 30% of patients, making this the most common genetic alteration in AML. Wild type 

FLT3 when bound to its ligand, promotes the generation of myeloid cells from precursors. However, 

mutant FLT3 ITD and TKD constitutively activate their downstream pathways, which support 

tumorigenesis in hematopoietic precursor cells (20). Midostaurin, a multi-targeted kinase inhibitor, was 

approved by the FDA in April 2017 for adult patients with newly diagnosed FLT3-mutated AML, and 

this was followed in November 2018 by the approval of gilteritinib for the treatment of adult patients 

with relapsed/refractory (R/R) AML with FLT3 mutations (21,22). Quizartinib, another FLT3 inhibitor 

was rejected by the FDA, but was approved in 2019 by the Japan Ministry of Health for the treatment 

of R/R AML with mutated FLT3 (15).  

Other druggable recurrent genetic alterations in AML include gain of function mutations in 

isocitrate dehydrogenases (IDHs), which occur in about 20% of AML patients (23,24). IDH1 

(cytoplasmic) and IDH2 (mitochondrial) catalyze the transformation of isocitrate into α-ketoglutarate 

(αKG) and generate NADPH. However, gain of function mutated forms or IDHs use NADPH as a co-
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factor to generate the oncometabolite 2-hydroxyglutarate (2HG). Accumulation of 2HG together with 

the depletion of NADPH and αKG produce a series of metabolic and epigenetic alterations that favor 

the leukemogenic process (24). In August 2017 the IDH2 mutant inhibitor enasidenib and in July 2018 

the IDH1 mutant inhibitor ivosidenib were approved for treatment of refractory or relapsed AML 

patients with gain of function mutations in IDH2 and IDH1, respectively (25,26). 

Although the genetic mutational landscape has revealed opportunities for therapeutic 

intervention, not all new drugs derive from such new knowledge.  A critical feature of cancer cells is 

their ability to evade pro-apoptotic signals that prevent normal cells to be transformed. BCL2, a key 

anti-apoptotic protein, has roles in leukemogenesis, and is overexpressed in leukemia stem and 

progenitor cells, as well as in AML blast when compared to normal hematopoietic cells (27,28). BCL2 

uses its BH3 domain to bind and inhibit the pro-apoptotic proteins BIM, truncated BID and BAX that 

facilitate the translocation of cytochrome C form the mitochondria to the cytoplasm, which 

consequently activates caspases that execute the apoptotic process (29). As an anti-apoptotic protein, 

BCL2 has also been shown to play a role in resistance to chemotherapy of AML (29). Venetoclax is a 

“BH3 mimetic” small-molecule inhibitor that blocks BCL2 anti-apoptotic activity (30). In November 

2018, the FDA approved the use of venetoclax in combination with HMAs or LDAC for the treatment 

of newly diagnosed AML patients aged ≥75 years or unfitted for intensive induction chemotherapy 

(31). In addition, venetoclax is currently being studied in numerous clinical trials as single-agent and in 

combination therapies (15). 

The kinase Smoothened (SMO) inhibitor glasdegib is another drug derived from an increased 

mechanistic understanding of AML biology. The Hedgehog (HH) signaling pathway is important to 

normal hematopoiesis, promotes embryogenesis, maintain adult stem cells, and regulate cell 

proliferation and differentiation (32). In the absence of HH ligands (Sonic HH, Indian HH and Desert 

HH), SMO is inhibited by the Patched transmembrane proteins (PTCH-1 and PTCH-2). The union of 

the HH ligands to the Patched proteins triggers the activation of SMO and the phosphorylation of its 

downstream targets: the transcription factors GLI1 and GLI2, that regulate the expression of proteins 

involved in cell cycle, apoptosis and differentiation (33). HH signaling is aberrantly activated in AML 

and associated with poor clinical outcomes, and SMO activity plays a critical role for disease 

progression in several AML models (34). Glasdegib was approved by the FDA in November 2018 for 

use in combination with LDAC for the treatment of newly diagnosed AML patients aged ≥75 years or 

unfitted for intensive induction chemotherapy (35). 

Another proteomic feature that has been exploited for drug development is the presence of 

cluster of differentiation (CD) proteins on the surface of blast cells. These CD markers have roles in 

cell adhesion, immune recognition and signaling, are indicative of the maturation state of the myeloid 

cell type from where AML derived and confer them with a unique immunophenotype. The CD33 

protein antigen in particular is frequently expressed on the surface of AML blasts (36). Gemtuzumab is 
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an antibody drug-conjugate (ADC) directed at CD33, where a humanized monoclonal antibody 

covalently linked to the cytotoxic drug N-acetyl gamma calicheamicin binds to the CD33 antigens. 

Binding prompts internalization and subsequent calicheamicin release to the nucleus, leading to DNA 

damage and cell death (36). In September 2017 the FDA approved gemtuzumab for the treatment of 

adults with CD33 positive AML (37). 

Candidate targets for new AML therapies 

The drugs discussed above are gradually being incorporated into treatment protocols in 

healthcare systems as monotherapies or in combination. In addition, several other proteins are currently 

being tested as targets for the treatment of AML. Below, we provide a non-exhaustive summary of those 

that are currently (end of 2022) undergoing clinical trials (Figure 1 and Table 3). 

In addition to FLT3, other RTKs that have a major impact on leukemia biology include KIT 

(also known as CD117 and SCF receptor), MERTK and AXL. KIT, a protein with  important roles in 

self-renewal and differentiation of HSCs (38), is found mutated in about 17% of AML patients, and its 

expression is increased in 60 to 80% of AML samples when compared to normal hematopoietic cells 

(39). There are no specific KIT inhibitors, but multiple clinical trials are currently evaluating broad-

spectrum RTK inhibitors that also target KIT including midostaurin (already approved for AML 

treatment), sorafenib (NCT05404516) and dasatinib (NCT02013648). Inhibitors of MERTK and AXL, 

which are also frequently overexpressed in leukemic cells, reduced the proliferation of AML cell lines 

and increase survival in animal models of AML (40). Clinical trials with the MERTK inhibitor MRX-

2843 (NCT03510104) and the AXL inhibitor bemcentinib (NCT03824080) are ongoing. In addition, 

the approved FLT3 inhibitor gilteritinib also targets AXL.  

Overactive RTKs promote cell proliferation by activating intracellular kinase-driven signaling 

cascades – including MEK/ERK, PI3K/AKT and JAK/STAT –, which in turn regulate cell cycle 

kinases.  Although inhibitors of MEK and PI3K/AKT have not progressed in the clinic, considerable 

effort is currently underway to treat cell cycle kinases downstream of these signaling pathways (41,42). 

CDK9 is a cyclin-dependent kinase that forms part of the positive transcription elongation factor b 

(TEFb). This factor phosphorylates the CTD of RNA polymerase 2 and stimulates the elongation of the 

transcription of most protein coding genes, but in particular those regulated by super enhancers like 

MYC and MCL1 (43).  In in vitro AML models, CDK9 inhibitors decreased the phosphorylation of 

RNA Pol II and the expression of MYC, MCL-1, XIAP and cyclin D1, induced apoptosis and reduced 

cell proliferation. In animal AML models, these compounds reduced tumor growth and prolonged 

survival (43). These results encouraged the initiation of clinical trials with the CDK9 inhibitors 

alvocidib (NCT03969420), dinaciclib (NCT03484520), AZD4573 (NCT03263637) and voruciclib 

(NCT03547115). Another cell cycle regulator that has been targeted in AML is CDK6, a kinase 

important for the leukemogenic processes triggered by FLT3-ITD and JAK-V617F mutations and 



6 
 

KMT2A-MLLT3 and RUNX1-ETO fusion proteins (44). Currently the CDK4/6 inhibitor palbociclib 

(NCT03844997) is in clinical trials for the treatment of AML. 

In addition to promoting uncontrolled proliferation, overactive RTKs and downstream 

signaling pathways promote survival of cancer cells by suppressing apoptosis, a process that, in normal 

cells, regulate cellular homeostasis (15). Therefore, several small molecule inhibitors of anti-apoptotic 

proteins have been tested for AML treatment. Indeed, the success of venetoclax provides proof-of-

concept for this inhibitor class. Targeting the MCL1 provides an approach for targeting apoptosis 

because this protein is an anti-apoptotic member of the BCL2 protein family that, similarly to BCL2 

(the target of venetoclax), binds and inhibits the pro-apoptotic activity of BIM, truncated BID, BAK 

and BAX (29,45). MCL1 is highly expressed in patients with untreated AML, is necessary for survival 

of AML cells and for the development and persistence of the disease (46,47). Inhibitor screens (48) 

showed that AML cells were sensitive to MCL1 inhibition leading to the initiation of several phase I 

studies for the MCL1 inhibitors AZD5991 (NCT03218683), MIK665 (NCT02979366), AMG 176 

(NCT02675452) and AMG 397 (NCT03465540) in AML. 

Targeting the DNA damage response (DDR) provides another opportunity for interfering with 

the anti-apoptotic process in AML. DDR is a complex system that maintains genomic integrity through 

regulation of DNA damage repair, cell cycle progression and apoptosis. Deregulation of the DDR 

allows cancer cells to withstand DNA damage, which would normally trigger apoptosis, but this also 

generates certain vulnerabilities that can be exploited therapeutically. One of such targets is CHK1, a 

kinase that upon activation by DNA damage blocks cell cycle progression and triggers DNA damage 

repair (15,49,50). The CHK1 inhibitor prexasertib is being tested in combination with chemotherapy in 

a clinical trial for the treatment of R/R AML (NCT02649764). Similarly, PARP1, a key mediator of 

various forms of DNA damage repair, is used by AML cells to withstand replicative stress and/or 

deficiencies on the homologous repair system, features that sensitize cells to PARR1 inhibitors (51). 

Currently, the PARP1 inhibitors talazoparib (NCT02878785) and veliparib (NCT03289910) are in 

clinical trials for the treatment of AML. A further protein involved in DDR and apoptosis that is being 

targeted in AML is MDM2, which is an ubiquitin ligase that negatively regulates the levels and activity 

of TP53, a key regulator of DNA repair, cell cycle progression and apoptosis. Impairment of TP53 plays 

a pivotal role in the process of leukemogenesis, and, although 10% of AML cases present TP53 

inactivating mutations, its impairment is more generally associated to the overexpression of MDM2 

(52). This has led to the development of MDM2 inhibitors like idasanutlin, currently in clinical trials 

for the treatment of AML (NCT04029688). 

Epigenetic regulation has also been targeted for the development of AML therapeutics because 

genes coding for epigenetic proteins are frequently mutated or otherwise deregulated in this disease. 

One of such protein is the histone deacetylases (HDACs) family of epigenetic erasers that remove 

acetylation marks from histones, leading to chromatin compaction and gene silencing. HDACs also act 
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on non-histone proteins to regulate their activities. HDAC inhibitors cause changes in the expression of 

multiple genes, including downregulation of the key oncogene MYC, and induce differentiation, cell 

cycle arrest, and apoptosis in AML cells (53). Belinostat (NCT03772925), entinostat (NCT01305499) 

and pacrinostat (NCT01912274) are currently in clinical trials for AML treatment. 

Another epigenetic protein targeted in AML is the lysine methyltransferase KMT2A, which 

methylates histone H3K4. In 10% of AML cases, KMT2A fusion proteins generated by chromosomal 

rearrangements drive the leukemogenic process. In these fusion proteins, the catalytic domain of 

KMT2A is replaced by a region of the partner protein that facilitates recruitment of the histone H3K79 

methyltransferase DOT1L to the KMT2A target genes, a process that requires the KMT2A-MENIN 

protein-protein interaction (54). Numerous small molecule inhibitors have been designed to target 

proteins necessary for the activity of KMT2A fusion proteins and currently, the KMT2A, MENIN and 

DOT1L inhibitors SNDX-5613, JNJ-75276617 and pinometostat, respectively are in clinical trials for 

the treatment of AML (NCT05326516, NCT04811560, NCT03724084). 

The bromodomain and extraterminal domain-containing (BET) protein BRD4 is yet another 

promising epigenetic target for AML treatment. BRD4 is an reader that binds to acetylated histones and 

other proteins thus recruiting the TEFb complex that, as previously discussed, stimulate the elongation 

of the transcription of genes relevant for the leukemogenic process like MYC and MCL1 (55). 

Currently, the BET inhibitors mivebresib (NCT02391480), FT-1101 (NCT02543879) and birabresib 

(NCT02303782) have entered clinical trials for the treatment of AML.  

Protein miss-localization is a frequent occurrence in cancer cells and a potential mechanism of 

ontogenesis. Indeed, several nuclear tumor suppressors cannot serve their functions in cancer cells 

because they are miss-located to the cytoplasm. TP53, BRCA1/2, NPM1, FOXO, RB1 and other tumor 

suppressors are substrates of XPO1, an export receptor responsible for the nuclear-cytoplasmic 

transport of hundreds of proteins and RNA species (56). In addition, XPO1 levels inversely correlate 

with the overall survival of AML patients (57). Encouraging preclinical studies showing that XPO1 

inhibition promoted cell cycle arrest and apoptosis in in vitro and in vivo AML models (58), accelerated 

the initiation of multiple clinical trials with the XPO1 inhibitor selinexor in AML patients 

(NCT02835222, NCT02403310 or NCT04898894). 

Like in other cancer types, targeting metabolic processes open avenues for therapeutic 

intervention in AML. The electron transport chain (ETC) powers the mitochondrial oxidative 

phosphorylation (OXPHOS), which has been proved as a main source of energy in AML LSCs and 

chemotherapy resistant cells (59). The ETC complex I inhibitor IACS-010759 is a potent anti-leukemic 

agent in in vitro and in vivo models and has entered clinical trials for the treatment of AML 

(NCT02882321) (60). Another way to target OXPHOS is with activators of the ATP-dependent 

mitochondrial caseinolytic protease P (CLPP), which regulates OXPHOS by controlling the degradation 
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of the respiratory chain components and triggering the mitochondrial unfolded protein response. 

ONC201 is an allosteric agonist that hyper activates CLPP umpiring the OXPHOS and triggering an 

atypical integrated stress response mediated by ATF4. This compound has also been effective as an 

anti-leukemic agent in in vitro and in vivo AML models and is in clinical trials for the treatment of 

AML (NCT02392572) (49). 

In addition to the targeted agents discussed above, new immunotherapy approaches have been 

developed in AML with the aim to treat the disease using ADCs or immne cells directed against surface 

markers on LSCs or bulk cell populations. As noted above, gemtuzumab, an approved ADC against 

CD33 provides proof-of-concept for this approach. The receptor of interleukin 3 CD123 and the anti-

phagocytic protein CD47 are highly expressed in LSCs (61,62). Reagents targeting CD123 in clinical 

trials for AML include MGN632 (NCT04086264), an anti-CD123 antibody linked to a genotoxic 

compound, and tagraxofusp (NCT04342962) an agent composed of human IL-3 fused to a portion of 

the diptheria toxin. In addition, the CD47 antibody magrolimab that facilitates the phagocytosis of LSC 

is also in clinical trials (NCT04435691). CAR-T cells are cytotoxic T cells with T cell receptors 

modified to target specific antigens (63). There are currently multiple clinical trials testing the treatment 

of AML with CAR-T cells design to target CD33 (NCT05445765), CD123 (NCT04318678), CLL-1 

(NCT04219163), CD7 (NCT04033302), CD28 (NCT04850560), CD38 (NCT05239689), CD19 

(NCT04257175), FLT3 (NCT03904069) and NKG2D (NCT04658004). 

The need to prioritize therapies for AML patients 

As outlined above, intense research is producing a large array of therapies that could potentially 

be used to treat AML. Oncologists are already facing the issue of having to select the drugs or drug 

combinations, out of the many available, more likely to be efficacious for a given patient, a dilemma 

that will become even more intricate as some of the new therapies discussed above reach the clinic. 

Current technologies for precision and personalized medicine are based on the analysis of genomic 

markers (64). Although these methods can enrich for potential responders, and are thus an improvement 

over therapies in unselected patient populations, results of clinical trials show that genetic screens often 

fail to accurately predict therapy outcome. For example, only ~20% of R/R AML patients positive for 

NRAS or KRAS mutations responded to the MEK inhibitor trametinib (65). Similarly, ~40% of FLT3-

mutant positive newly diagnosed AML patients failed to respond to the FLT3 inhibitor midostaurin in 

combination with chemotherapy, (66) while, conversely, 41%–56% of FLT3-WT patients responded to 

FLT3 inhibitors (65,67,68). 

Focusing only on the genomic and transcriptomic layers of cell function regulation leaves us 

blind to other important regulators of cell phenotypes and outcomes (64). It is well known that changes 

in gene expression do not always reflect changes in protein abundance (69) and protein amounts in cells 

may not predict how enzymatically active they are (70,71). Proteins are the major effectors of cell 
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functions and their regulation by allosteric and posttranslational modifications (PTMs), localization, 

interaction partners and abundance combine to regulate their enzymatic activity and proximity to their 

substrates, which together influence pathway fluxes and cell phenotypes. It is therefore critical to also 

consider proteomics, phosphoproteomics and other PTM-‘omics’ data sets to understand disease 

development and subtypes, as they can better capture the functional state and dynamic properties of a 

given cell or cell population (64). Therefore, the combination of genomics and transcriptomics with 

proteomics and phosphoproteomics could complement current approaches for disease classifications 

(including AML) by defining new pathological subtypes linked to specific therapeutic vulnerabilities. 

Overview of proteomics and phosphoproteomics approaches   

Proteomics and phosphoproteomics methods based on LC-MS/MS can accurately and 

simultaneously measure abundances for thousands of proteins and phosphorylation sites. Consequently, 

LC-MS/MS techniques are contributing to the identification of clinically relevant biomarkers and 

targets for disease diagnosis and prognosis in precision medicine (72-75). Quantitative proteomics and 

phosphoproteomic approaches for profiling cell lines and primary samples could be subdivided into 

label-based and label-free methods. Labelling approaches put a limit on the number of samples that can 

be assessed and makes it difficult to compare results of different experimental batches, but are reputed 

to offer greater analytical precision. Label-free and targeted proteomics methods, such as those based 

on data-independent analysis, solves many of these issues and renders them suitable for clinical assays 

(76,77). Detailed description of quantitative labelling and label-free mass spectrometry methods have 

been described elsewhere (78-83) and will not be discussed here.  

Quantitative proteomics produces large volumes of data that requires specialized computational 

methods for their biological interpretation. Multiple bioinformatics tools originally designed for the 

analysis of gene expression, such as term overrepresentation analysis and gene set enrichment analysis 

(GSEA), are also useful for obtaining pathway level information from proteins differentially expressed 

or phosphorylated between groups of interest. Term and ontology enrichment can be computed against 

different databases (e.g., gene ontology, KEGG and NCBI) utilizing algorithms frequently used in 

genomics and transcriptomics (84). In addition, specialized software has been developed for the analysis 

of phosphoproteomics data. The algorithm kinase substrate enrichment analysis (KSEA) uses 

phosphoproteomics data to estimate kinase activities based on the phosphorylation of their substrates. 

The first version of the algorithm (85) used databases based on empirically demonstrated associations 

between kinases and substrates. An improved version of the algorithm uses databases defined by a 

chemical proteomics approach that codes information on kinase–kinase interactions that can allow the 

reconstruction of kinase network topologies (71). Several other methods for the inference of kinase 

network activity from phosphoproteomics data have been developed and discussed in detail elsewhere 

(86). One of such tool, named integrative inferred kinase activity (INKA), calculates kinase activity 

form phosphoproteomics data takes by measuring phosphorylation sites on the kinase and on its 
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activation loop, in addition to experimentally established substrates (as in KSEA) and on substrates 

predicted by NetworKin (87).  

Studies that inferred kinase activity from phosphoproteomic data are starting to provide 

biological insights in the field of AML. For example, Van Alpen et al showed that INKA analysis of 16 

AML cell lines using tyrosine targeted phosphoproteomics identified hyperphosphorylated, active 

kinases as candidates for targeted therapies. Validation drug response experiments showed that, in 

addition to driver kinases corresponding with activating mutations present in these cell lines, INKA 

analysis also pinpointed driver kinases undetected by standard molecular analyses. Furthermore, INKA 

detected hyperactivation of FLT3 in two clinical AML samples with a FLT3 internal tandem duplication 

(ITD) mutation (88). Another example is the application of KSEA to primary cells from a cohort of 20 

patients (85), which identified PI3K, casein kinases, CDKs and PAKs as the most frequently activated 

kinases in AML cases compared to GMPBs from healthy donors. Furthermore, KSEA showed that 

substrates of ERK, CDC7 were more phosphorylated in primary cells resistant to a compound targeting 

the PI3K/mTOR pathway, while substrates of Abl, Lck, Src, and CDK1 were more phosphorylated in 

sensitive cells. 

Limitation of AML cell lines as clinically relevant models for proteomics and phosphoproteomics 

studies 

Cell lines have frequently been used as disease models in basic research. However, cell lines 

may not always resemble the biology of primary cells, and therefore are not useful to model all aspects 

of cancer biology. In the case of AML, although cytogenetic signatures based on gene expression have 

been found to be conserved, to some extend at least, between AML primary samples and cell lines, 

other reports highlight the limitations of cell lines as disease models (89). For example, analysis of the 

expression of 380 genes linked to multidrug resistance proteins (MDR) and up-regulated genes that 

facilitate cell survival showed that cell lines from different origins (including AML) were more similar 

between them than to the primary tumor cells that they were supposed to model (90). Regarding protein 

expression, Aasebo et al. found, in a dataset comprising five AML cell lines and twenty-seven primary 

AML samples, that about one third of the proteins quantified were differentially expressed between cell 

lines and primary cells, with proteins involved in translation overexpressed in cell lines and proteins 

associated to the mitochondria overexpressed in primary cells (91). These results imply that although 

cells lines can be used to investigate some aspects of tumor biology and for drug development, they do 

not fully recapitulate the biological complexity of AML (89). Therefore, the focus of this review is in 

studies that used primary AML cells as the focus of the analysis.  

Proteomics and phosphoproteomics studies for target identification and drug response prediction  

Access to large cohorts of primary AML clinical specimens and the availability of appropriate 

control samples still remains challenging (89). Nevertheless, multiple studies have used mass 
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spectrometry to identify proteins or phosphorylation sites differentially regulated between AML 

patients and healthy donors, to define subgroups of AML patients, to model drug responses and other 

features using machine learning (ML) algorithms and to identify determinants of responses to approved 

and experimental therapies. Differentially expressed features derived from these studies could 

potentially be used as new drug targets and/or response markers for precision medicine in AML. Here, 

we review, in a chronological order of publication, proteomics and phosphoproteomic studies of 

primary AML that aimed to identify drug targets or mechanisms of drug sensitivity.  

Casado et al profiled the basal phosphoproteomes a cohort of 20 primary AML samples linked 

to preclinical responses to kinase inhibitors (85). A pathway activity signature of phosphosites that 

decreased by the treatment of cell lines with PI3K and mTOR inhibitors was then evaluated in primary 

AML cells for its ability of predict responses to kinase inhibitors in preclinical development. Linear 

regression models were trained using signatures derived from individual phosphopeptides as well as 

KSEA estimated kinase activities and values of phosphorylation motifs enrichment. Interestingly, it was 

found that the activity of the PI3K/mTOR pathway was not the only determinant of sensitivity to 

inhibitors of this pathway, and that the activity of pathways, such as ERK1/2 and PKC, that can 

compensate for PI3K target inhibition were elevated in resistant cells. Thus, accurate predictive models 

could be constructed by combining kinase activities in the target kinase pathways relative to those that 

act in parallel to compensate for target inhibition. 

A follow up study from the same group integrated phosphoproteomics, proteomics, genomics 

and mass cytometry (immunophenotype) data with ex vivo responses to MEK, PAK, PKC/FLT3, CK2 

and MAPK P38 inhibitors (92). The study showed evidence of molecular features associated to response 

to treatment and identified kinase and differentiation determinants as markers of sensitivity to kinase 

inhibitors in primary leukemic blasts. The study, performed in primary cells form 30 AML cases, 

revealed that protein phosphorylation positively correlated with the surface expression of differentiation 

makers (CDs) associated to myeloid differentiation. AML cases were subsequently separated into more 

and less differentiated cases (CDs+ and CDs- groups, respectively) using the surface expression of 

myeloid differentiation markers. More differentiated (CDs+) cases expressed higher levels of kinases 

and signal transduction regulators and increased the activity of kinases downstream of growth factors 

such as MAPK1, MAPK3, PAK2 and PKCδ. Consistently, CDs+ cases were more sensitive to the 

MEK, PAK and FLT3/PKC inhibitors in ex-vivo assays. These results established a linked between 

differentiation, kinase activity and sensitivity to kinase inhibitors.  

In the same study, a more integrative and systematic analysis of mutational profiles and mass 

spectrometry and cytometry data showed that NRAS or BRAF mutations, high MAPK1 activity or the 

CDs+ phenotype were associated with sensitivity to trametinib, while FLT3-ITD mutations or high 

pSTAT5A phosphorylation were linked to resistance. These data suggested two distinct mechanisms of 

intrinsic resistance to MEK inhibition. In the first one, cells with low RAS/MEK/ERK pathway activity 



12 
 

were not addicted to the pro-survival actions of MEK. In the second, cells with highly active RAS/ 

MEK/ERK, as a result of RAS/RAF mutations and/or expression of myeloid differentiation markers, 

but resistant to MEKi were found to  activate FLT3/STAT5 axis, which may act in parallel to 

MEK/ERK to sustain cell survival. Interestingly, the response to midostaurin was not associated to 

FLT3 mutations; instead, the CDs+ phenotype and the phosphorylation of PKCδ, a known target of 

midostaurin, were associated to the response to this drug, suggesting that the mode of action of 

midostaurin involves inhibiting other kinases in addition to FLT3.  

In a different study, Alanazi et al identified miss-expressed or miss-localized proteins to the 

nucleus that could regulate the malignant properties of AML blasts (93). The comparison of the nuclear 

proteomes of CD34+ cord blood cells from 5 healthy donors and blasts from 15 cases with FAB-M2 

AML led to the identification of 113 proteins, 11 of which were transcription factors frequently miss-

localized in AML blasts. S100A4 was the highest differentially expressed protein in AML nuclei that 

was not previously implicated in AML. Relevantly, protein but not mRNA levels of S100A4 were over-

expressed in the nucleus of a larger cohort of 24 patients. Functional experiments showed that knock 

down of S100A4 strongly impacted the survival of AML cell lines, but not the survival of normal 

hematopoietic stem progenitor cells, suggesting that S100A4 could be a new target for AML treatment.  

In a follow up from (92), Hijazi et al analyzed drug response data by multivariate regression 

using kinase network edge activities (derived by KSEA) as input to predict response to trametinib, 

midostaurin, silmitasertib and the PAK4 inhibitor PF-3758309 (71). These models predicted drug 

response with an accuracy between 20 and 40% and highlighted that the activity of target and parallel 

pathways contribute to model performance. 

Aasebo et al profiled the proteome and phosphoproteome of AML primary blasts at the time of 

diagnosis from 41 AML patients that reached complete remission (94), from where proteins 

differentially expressed or phosphorylated were identified in patients that relapsed within five years 

relative to those who did not. Relapsed cases presented increased expression of RNA processing 

proteins and increased phosphorylation of proteins liked to CDKs and CK2, while relapse free cases 

increased the expression of V-ATPase proteins. Therefore, this study suggested markers that could help 

to predict relapse in AML.  

Assessing drug response in ex vivo models has provided highly valuable information related to 

targetable pathways in AML (95). However, ex vivo models are devoid of all signals from stromal 

components and clearly differ from human in vivo responses. Therefore, proteomics and 

phosphoproteomics studies in primary AML blast obtained at diagnosis form AML patients with known 

responses to treatment would provide extremely useful information. In line with this, Hernandez-

Valladares et al performed a proteomics analysis in non-treated samples from 28 AML cases that were 

subsequently treated with all-trans retinoic acid (ATRA) and vaporic (a HDAC inhibitor) (96), a 
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treatment used alone or in combination with low dose chemotherapy for patients unfit for standard 

chemotherapy. Non-responders overexpressed the lysosomal protein ARSA, while responders 

overexpressed proteins linked to myeloid cells, neutrophil degranulation, lysosomes, carcinogenesis 

(including ANO6, CHI3L1, CTSG, ELANE and FGR) and M phase of the cell cycle (including CENPE, 

CENPK, CDK1, NCAPG; and several histones). Interestingly, the proteins differentially expressed 

between responders and non-responders presented a low overlap between mRNA and protein levels. 

Phosphoproteomics analysis showed that responders increased the phosphorylation of the apoptosis 

liked proteins SPTAN1 and ACIN1, as well as LIMKs and CDKs substrates. In addition, proteomics 

and phosphoproteomics analysis comparing patient samples before and after three-day treatment 

releveled an altered expression and phosphorylation of proteins involved in the regulation of 

transcription/translation/RNA metabolism. 

Nguyen et al profiled the proteome of BM cells from 16 pediatric AML patients at diagnosis 

and found that 117 proteins that were differentially expressed in cases with fusion proteins involving 

components of core binding factor complex (CBF) (97). Patients with CBF rearrangements deregulate 

proteins involved in several metabolic pathways such as the TCA cycle and the ATP synthesis coupled 

to proton transport. In addition, CD34 protein expression was significantly increased in cases with CBF 

rearrangements, suggesting that CBF AMLs carry unique protein expressions that resemble CD34+ 

progenitor cells. These data also imply that cases with or without CBF rearrangements could present a 

differential response to compounds that interfere with the electron transport chain.  

Casado et al described a ML workflow aimed to predict ex-vivo patient response to trametinib, 

a specific inhibitor of MEK1 and MEK2, in primary AML using kinase activity (KSEA) as input (72). 

A model using the partial least squares algorithm (PLS) was used to rank and filter the most relevant 

kinase activities in the training set, which were subsequently used as input for a random forest regression 

model. The ML model predicted trametinib response with a root median square error (RMSE) of 0.131 

in the validation dataset.  

A proteogenomic study by Kumar-Jayavelu et al, in addition to providing insights into the 

pathogenesis of AML, also revealed altered molecular features that could influence response to therapy 

(98) and suggested that a group, termed C-Mito AML, with defined mitochondrial protein expression 

patterns, tended to respond to venetoclax and electron transport I complex inhibitors.  

In a more integrative study, Kramer et al performed proteomics and phosphoproteomics in BM 

samples from 6 healthy donors and 44 patients for which data on DNA and RNA sequencing were 

available (99). The patient cohort covered all ELN cytogenetic risk groups and frequent single gene 

mutations. Protein-mRNA level correlation analysis showed no positive correlation (spearman<0) for 

more than a thousand proteins that were mainly linked to spliceosome, oxidative phosphorylation, and 

RNA polymerase processes. On the other hand, the 1,198 proteins that showed positive correlation 
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included differentiation markers and other proteins relevant for the AML physiopathology. The authors 

demonstrated that IDH1 or IDH2 mutations caused increased protein expression of the 2-HG dependent 

histone demethylases KDM4A, KDM4B and KDM4C in cases with IDH1 or IDH2 mutations. NPM1c 

mutations relocate the NPM1 to the cytoplasm and it was shown that cases with NPM1c mutations had 

increased levels of the nuclear importins KPNA4 and KPNA1 that are able to interact with mutated but 

not with normal forms of NPM1. Of interest, proteomics data guided the identification of the markers 

CD180 and CD206 in the plasma membrane of AML blast from some patients but not in the surface of 

healthy CD34+ cells, suggesting that these markers could represent novel targets for immunotherapy. 

Clustering analysis using phosphoproteomics data also separated healthy donors from AML cases and 

segregated patients according to the presence of FLT3 mutations or PML-RARA fusions. When 

compared to healthy donors AML cases presented abnormal phosphorylation of specific residues in 

PTPN11, STAT3, AKT1, and PRKCD. In addition, FLT3-TKD mutated samples increased the 

phosphorylation of activating residues in the tyrosine kinases FGR and HCK and other signaling related 

proteins, while the PML-RARA initiated samples displayed a unique phosphorylation signature that 

included increased phosphorylation of JUN at S60 and STK26 at the activation loop. Finally, TP53-

mutant samples showed abundant phosphorylation of TP53 at S183. This study shows that the link 

between mRNA and protein abundance in AML cells is relatively limited, especially for proteins linked 

to RNA maturation and mitochondrial function, highlighting the relevance of proteomics studies.  

In agreement with this, a study by Caplan et al combining proteomics and transcriptomics in 

AML mouse models identified a set of 34 proteins upregulated in AML tumors at the protein, but not 

at the mRNA level that also showed an enrichment of mitochondrial and spliceosome proteins (100). 

Relevantly, proteins differentially expressed or phosphorylated were found associated to AML and 

specific mutations that could constitute new targets or markers for precision medicine. However, no 

link was stablished between protein expression or phosphorylation and drug response.  

In another study that used ML from mass spectrometry data to derive models of therapeutic 

response and mechanistic inference in AML cases, Gosline et al performed proteomics and 

phosphoproteomics from 38 AML cases for which genomics and transcriptomics data were available. 

Identified signatures from different omic layers were evaluated for their ability to model ex vivo 

responses to 26 drugs (101). Genetic mutations were found to be relatively robust in modelling 

responses to targeted therapy (e.g. trametinib and quizartinib for NRAS and FLT3 activating mutations) 

but models based on protein features showed greater performance when assessed across all drugs. The 

proteins and phosphopeptides more relevant for quizartinib and trametinib predictive models clustered 

AML cell lines based on response to these drugs. In addition, these features were integrated to identify 

putative underlying molecular pathways and provide a biological interpretation of the signatures. The 

phosphatase SHP-1 (also known as INPP5D) was part of the signature used by LASSO and logistic 

regression models, and patients sensitive to quizartinib downregulated this phosphatase, a known 
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regulator of signaling downstream of FLT3 (102). An integration algorithm added the expression of 

SCM-1, a protein expressed in AML blasts, and the phosphorylation of SMC3, that synergize with 

FLT3 in AML, to the SHP-1 network. Patients highly resistant to trametinib expressed proteins 

associated to mRNA processing and catabolism. Network integration using mRNA and protein 

expression data highlighted BID, CASP1, GZMB and other proteins linked to apoptosis, thus suggesting 

that expression of apoptosis-related proteins and transcripts could predispose patients to trametinib 

sensitivity. 

In another recent study, Casado et al, in collaboration with Jude Fitzgibbon (UK) and Caroline 

Heckman (Finland) groups, profiled 74 AML patients with poor risk karyotype using genomics, 

transcriptomics, proteomics and phosphoproteomics platforms, as well as ex vivo responses to 550 drugs 

(103). Integration of the data identified a phosphoproteomics signature that defined two biologically 

distinct groups of KMT2A rearranged leukemia, which were termed MLLGA and MLLGB. Increased 

DOT1L phosphorylation and HOXA gene expression indicated that MLLGA cases have higher activity 

of DOT1L and TEFb at KMT2A target genes when compared to MLLGB and no KMT2A 

rearrangement group. MLLGA cases also increased the activity of CDK1 and the phosphorylation of 

proteins involved in RNA metabolism, replication and DNA damage when compared to MLLGB and 

no KMT2A. Compared to other groups, MLLGA was particularly sensitive to 15 compounds including 

genotoxic drugs and inhibitors of mitotic kinases and inosine-5-monosphosphate dehydrogenase 

(IMPDH). Further experiments suggested that the ability of IMPDH inhibitors to interfere with the 

nucleolar biology is, at least partially, responsible for the higher efficiency of these compounds in 

MLLGA. This study identifies a signature that classifies AML patients with KMT2A rearrangements 

into two biologically and functionally different groups  provided a rationale for the potential testing of 

IMPDH inhibitors and potentially mitotic and genotoxic compounds in KMT2A patients positive for 

the MLLGA signature. 

In summary, multiple strategies using phosphoproteomics and proteomics data have been 

implemented to identify potential new targets and response markers in AML (Figure 2). The wealth of 

data that is now generated using proteomic approaches require data science strategies to mine such rich 

datasets for biological and clinical insights.  A frequently used strategy consists of classifying AML 

cases into groups using previously known labels (e.g., responder vs non-responder groups to a given 

drug) for the identification of proteins differentially phosphorylated or expressed between groups using 

classical statistics (Figure 2). Differentially expressed or modified features may reveal candidate drug 

response markers and drug targets specific for each patient population. Groups have been defined based 

on patients vs healthy donors (85), relapsed vs no relapsed patients (94), patients with presence vs no 

presence of chromosome rearrangements (97) or mutations (99) or responders vs non-responders to a 

treatment (96).  
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Another option is to define new labels using proteomics, phosphoproteomics or other omics 

data as input for unsupervised ML algorithms like hierarchical clustering or PCA to generate new labels, 

which may be used to classify cases and identify potential response markers and drug targets as 

described above (Figure 2). This strategy has been used to define the CDs groups and C-Mito cluster 

(92,98). The rationalization of response markers and drug targets can also be used to refine the definition 

of the labels used to classify the patients (92,93). Other approaches used supervised ML to generate 

regression or classification models that model and predict drug response or other relevant features 

(71,104). While these models may in the future be useful to clinicians when deciding on therapeutic 

options, it is clear that these will not be used in isolation and will instead complement the information 

derived from the assessment of classical clinicopathological and genomics features, which together may 

provide more accurate drug response predictions. A limitation of this approach is that it produces black 

box models from which is it difficult to derive mechanistic insight, although considerable work to solve 

this issue is being carried out (105). In some instances (e.g., when explainability is an essential 

requirement, or when sample numbers are limited), it may be preferable to use ML methods based on 

linear regression or random forest (106), which although simpler and less powerful than deep learning 

(105), allow inferring feature importance with relative ease (106).   

Rationalization of drug synergy in AML cells using proteomics and phosphoproteomics 

Tumors depend on a limited number of molecular mechanisms for their survival and 

proliferation. Therefore, drug combination therapies that simultaneously target several of these crucial 

mechanisms would produce a synergistic effect that is greater than the sum of the effect of the single 

treatments. Although attractive, precision medicine for cancer treatment using combinations of drugs 

with a synergistic effect proves to be highly challenging (107). Proteomics and phosphoproteomics 

approaches may contribute to the rationalization of drug combinations, and below we summarize 

illustrative studies to that aim to do so in AML.  

Cucchi et al used an ex vivo drug response analysis in 19 AML cases to identify sensitive and 

resistant patients to the FLT3 inhibitors gilteritinib and midostaurin (67). FLT3-ITD mutated samples 

were more responsive towards gilteritinib and midostaurin, compared with FLT3 wild type (Wt) cases, 

but the presence of FLT3-ITD mutations could not fully explain these responses. To address this, 

phosphoproteomics was used to investigate associations between response and phosphorylation. 

Gilteritinib-resistant samples increased the phosphorylation and activity of MAPK1/MAPK3, EGFR1 

and KIT. While no difference in responses were found between FLT3 mutant and WT cases, a small 

fraction of peptides differentially phosphorylated between sensitive and resistant cases to gilteritinib 

and midostauring were also differentially phosphorylated between ITD and Wt FLT3 cases, suggesting 

that most of the differences in phosphorylation between resistant and sensitive cells come from parallel 

pathways to FLT3 signaling that support survival in the absence of FLT3 activity. Consequently, their 

targeting could sensitize cells to FLT3 inhibition, an hypothesis that was confirmed with the 
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combination of gilteritinib or midostaurin with the MEK inhibitor trametinib, which showed synergy, 

although this was only observed in a NRAS mutated sample. This is in line with studies reporting 

resistance to midostaurin in NRAS mutated cases (92).  

Murray et al profiled the phosphoproteome of primary AML blasts from seven patients with 

Wt or mutant FLT3 (108). A set of 143 peptides were found to be highly phosphorylated in FLT3 

mutant patients, and these presented an enrichment of proteins linked to the Non Homologous End 

Joining (NHEJ) DNA repair pathway, while the 90 peptides down phosphorylated in FLT3 mutant cases 

showed an enrichment of proteins associated to the Base Excision Repair (BER) pathway. Mutant cases 

increased the auto-phosphorylation DNA protein kinase (PRKDC) at S2612 and the phosphorylation of 

other key proteins in the NHEJ pathway like XRCC4, XRCC5 and 53BP1. PRKDC phosphorylation at 

S2612 was sensitive to FLT3 inhibitors. Furthermore, the PRKDC inhibitor M3814, when combined 

with the FLT3 inhibitor sorafenib, showed a synergistic effect in reducing the survival of primary blast 

with mutated FLT3 but not of blast with Wt FLT3. Finally, a xerograph mice model of the FLT3-ITD 

mutant AML cell line MV4-11 survived longer when treated with the combination of M3814 and 

sorafenib than when subjected to single agent therapy. In summary, phosphoproteome profiling showed 

that primary AML blast with mutated FLT3 over-activated the PRKDC pathway, and this rationalized 

a synergistic FLT3 and PRKDC inhibitor combination in FLT3 mutant positive AML cells. 

Zhu et al carried out a phosphoproteome profiling of primary cells at diagnosis from 8 AML 

patients that did (remission) or did not (refractory) respond to standard chemotherapy. This study 

showed that refractory patients increased the phosphorylation of proteins linked to ATM, FLT3 and 

MAPK/ERK signaling (109). Kinase activity inference using NetworKIN showed that refractory 

samples had an increase in the phosphorylation of putative substrates of CK2 and CDKs. Consistent 

with these observations, the CK2 inhibitor silmitasertib increased cell death induced by cytarabine in 

primary AML cases from refractory cases. The CK2 substrate HMGA1 was highly phosphorylated in 

refractory cases; removal of this protein in AML cell lines reduced their proliferation, and conversely, 

transduction of a phosphomimetic mutant for HMGA1 at CK2 sites increased the colony formation of 

a MA9/ITD murine model of AML. HMGA1 and the transcription factor SP1 regulate the expression 

of BRIC5, relevant anti-apoptotic protein in AML. A functional study showed that only 

phosphosphorylable forms of HMGA1 at CK2 sites bind SP1 at the BRIRC5 promoter. This work 

revealed a potential mechanism by which HMGA1 phosphorylation at CK2 sites promotes intrinsic 

resistance cytarabine-based chemotherapy and how CK2 inhibitors could sensitize chemo-resistant 

cells. 

In another elegant study, Emdal et al performed a phosphoproteomic analysis of 20 primary 

AML samples sensitive or resistant to ex vivo treatment with selinexor for 6h (110). In patient samples 

and cell lines sensitive to the drug, selinexor increased the phosphorylation of TP53 at S15, a marker 

of its transcriptional activity. However, in patients resistant to selinexor treatment, the drug increased 
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the phosphorylation of FOXO3A at S253, an AKT site that sequesters FOXO3A in the cytoplasm and 

inhibit its pro-apoptotic transcriptional activity. In AML cell lines with Wt TP53 and sensitive to 

selinexor, nutlin-3 (an MDM2 inhibitor that increase TP53 transcriptional activity) and selinexor 

treatment produced a synergistic effect in which nutlin-3 decreased the degradation of TP53, a key 

protein for the cell death induced by selinexor. In addition, in AML cell lines resistant to selinexor, the 

combination of the AKT inhibitor MK-220 with selinexor showed a synergistic effect together with an 

increase in the nuclear localization of FOXO3A where it executes it pro apoptotic transcriptional 

activity.  

Inspired by previous studies showing that differentiation is closely linked to kinase signaling 

and response to kinase inhibitors (92), Pedicona et al tested the idea that inducing differentiation in 

AML would reshape kinase networks into topologies that confer sensitivity to kinase targeted drugs 

(111).  Phosphoproteomics and proteomics showed that inhibitors of the lysine-specific demethylase 1 

(LSD1) rewired kinase signaling in AML cells in a way that increased the activity of the kinase MEK 

and broadly suppressed the activity of other kinases and feedback loops. Consequently, AML cell lines 

and about half of the 17 primary AML samples tested were primed for sensitivity to the MEK inhibitor 

trametinib. Phosphoproteomics analysis showed that cases that responded to sequential treatment with 

LSD1 inhibitors and trametinib presented KRAS mutations and high MEK activity, whereas those with 

NRAS mutations and high mTOR activity were poor responders. This study revealed the MEK pathway 

as a mechanism of resistance to LSD1 inhibitors in AML, and more importantly, it provided a rationale 

to modulate kinase network circuitry to potentially overcome therapeutic resistance to kinase inhibitors. 

This approach targets both epigenetics and signaling processes, which are key for the “two hit” theory 

of leukemogenesis (10). 

Another study used proteomics and phosphoproteomics to identify and rationalize the 

synergistic effect between FLT3 and autophagy inhibitors in AML cells positive for FLT3 ITD 

mutations. Koschade et al used quantification of translation changes by proteomics to reveal global 

attenuation of translation, but an increase in the transcription and synthesis of proteins involved in 

autophagy, upon FLT3 inhibition (112). Phosphoproteomics analysis showed an increase in the 

phosphorylation of proteins related to autophagy and mTOR signaling after pharmacological inhibition 

of FLT3. Functional studies demonstrated that FLT3 inhibitors induced autophagy in cell lines with 

FLT3-ITD mutations, but not in cells with wild type FLT3 though a pathway that involves inhibition 

of mTOR and activation of ULK1. Autophagy is a cytoprotective mechanism that increases survival. 

Genetic or chemical inhibition of the autophagy induced by FLT3 inhibitors in cell lines with FLT3-

ITD increased the sensitivity of these cells to FLT3 inhibitors. Consistently, the combination of FLT3 

inhibitors and autophagy inhibitors synergistically reduced the viability of FLT3-ITD primary blast 

form AML patients ex vivo and reduced the tumor burthen in FLT3-ITD cell line and PDX models.  

Conclusions and outlook 
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Proteomics and phosphoproteomics provide biological information that cannot always be 

extracted from genomics and transcriptomics data. Protein expression rarely overlap with mRNA 

expression, especially for mitochondrial proteins, an organelle targeted by new AML treatments. 

Similarly, protein expression may not correlate with their extent of activation. Protein phosphorylation 

is closer to protein function and can be used to infer the activities of kinases, which are enzymes that 

participate in the regulation of essentially all biological processes in normal and cancer cells (113). 

Therefore, proteomics and phosphoproteomics approaches – alone or integrated with genomics and 

transcriptomics – provide new mechanistic insights into disease pathogenesis from which to identify 

drug targets and biomarkers of response, to be used as input of predictive ML models, and to rationalize 

drug combinations that synergistically induce AML cell death. Application of these concepts more 

broadly will advance precision medicine and may also be used for analyzing and interpreting single cell 

proteomics data, now that instruments with the required sensitivity are becoming available (114), thus 

contributing to the deconvolution of the intra-tumor complexity that characterizes AML. Proteomics 

and phosphoproteomics approaches are therefore likely to play a pivotal role in the design and 

implementation of precision medicine in AML in the near future. 
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Figure 1. Compounds approved or under clinical trials for the treatment of AML and their 

intended targets.  Names in green denote drugs that have been approved by the FDA for the treatment 

of AML, while those in magenta are compounds currently under clinical trials. Proteins that, when 

mutated or with a fusion partner produce 2HG or interact with DOT1L, are shown in red fonts.  
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Figure 2. Data science strategies for the identification of new drug targets and response markers 

for the treatment of AML using proteomics or phosphoproteomics data. Individuals are classified 

based on known labels (e.g., resistant or sensitive to a given treatment). Differences in protein 

phosphorylation and expression between groups are determined using classical statistics and utilized to 

rationalize mechanisms, from which potential drug targets and response markers may be identified. 

Unsupervised ML methods, like hierarchical clustering or PCA, may use proteomics, 

phosphoproteomics or other omics data to define new labels and patient groups. Differences between 

such groups may again reveal potential treatments for these patient subpopulations, and response 

markers may in turn be used to refine labels further. Supervised ML is used to generate regression or 

classification models of drug responses from proteomics and phosphoproteomics data (or values derived 

thereof). Features (proteins, phosphopeptides, etc.) that define the models may be give insights into 

drug response mechanism.    
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Table 1. Frequent genetic alterations in AML 

 

Cytogenetic alterations 

Balanced Unbalanced 

KMT2A rearranged  Complex Karyotype 

DEK-NUP  -5/del(5q) 

RUNX1-RUNX1T1 -7/del(7q) 

PML-RARA -17/del(17p) 

CBFB-MYH11 +8/8q 

MECOM rearranged   

Single gene mutations 

Signaling and kinase pathway FLT3, KRAS, NRAS, KIT, PTPN11, NF1, JAK2, CBL 

DNA Methylation DNMT3A, IDH1, IDH2, TET2,  

Chromatin-Remodeling ASXL1, EZH2, KMT2A, BCOR, BCORL1 

Transcription factor CEBPA, RUNX1, GATA2, SETBP1 

Tumor suppressor TP53, WT1, PH6 

spliceosome–complex SRSF2, U2AF1, SF3B1,  ZRSR2 

Cohesin RAD21, STAG1, STAG2, SMC1A, SMC3 

Nucleophosmin NPM1 
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Table 2. Classification of AML cases based on FAB, WHO and ENL 

FAB Classification 

FAB-M0  Minimally differentiated AML 

FAB-M1  AML without maturation 

FAB-M2  AML with maturation 

FAB-M3  Acute promyelocytic leukaemia  

FAB-M4  Acute myelomonocytic leukaemia 

FAB-M4Eo  Acute myelomonocytic leukaemia with eosinophils 

FAB-M5a  Acute monoblastic leukaemia 

FAB-M5b Acute monocytic leukaemia  

FAB-M6 Acute erytroleukemia 

FAB-M7 Acute megakaryoblastic leukaemia 

WHO Classification 

1-AML with recurrent genetic 

abnormalities 
3-Therapy-related myeloid neoplasms 

RUNX1-RUNX1T1 fusion 4-AML, not otherwise specified (NOS) 

CBFB-MYH11 fusion AML with minimal differentiation 

PML-RARA fusion AML without maturation 

KMT2A-MLLT3 fusion AML with maturation 

DEK-NUP214 fusion Acute myelomonocytic leukemia 

GATA2(promotor)-MECOM(coding) 

fusion   
Acute monoblastic and monocytic leukemia 

RBM15-MKL1 fusion Pure erythroid leukemia 

BCR-ABL1 fusion (Provisional) Acute megakaryoblastic leukemia 

Mutated NPM1 Acute basophilic leukemia 

Biallelic mutation of CEBPA Acute panmyelosis with myelofibrosis 

Mutated RUNX1 (Provisional) 5-Myeloid sarcoma 

2- AML with myelodysplasia (MSD) 
6- Myeloid proliferations associated with Down 

syndrome (DS) 

Phenotipic changes associated to MSD Transient abnormal myelopoiesis associated with DS 

Cytogenetic alterations associated to 

MSD 
Myeloid leukemia associated with DS 

Unbalanced: -7/del(7q), del(5q)/t(5q), 7-Blastic plasmacytoid dendritic cell neoplasm 

i(17q)/t(17p), -13/del(13q), del(11q), Acute leukaemias of ambiguous lineage 

del(12p)/t(12p) and idic(X)(q13) Acute undifferentiated leukaemia 
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Balanced: t(11;16)(q23.3;p13.3), 
Mixed phenotype acute leukaemia with; BCR-ABL1 

fusion 

t(3;21)(q26.2;q22.1), 

t(1;3)(p36.3;q21.2),  

Mixed phenotype acute leukaemia with rearranged 

KMT2A 

t(2;11)(p21;q23.3), t(5;12)(q32;p13.2) Mixed phenotype acute leukaemia, B/myeloid, NOS 

 Mixed phenotype acute leukaemia, T/myeloid, NOS 

ELN Classification  

Favourable t(8;21)(q22;q22.1); RUNX1-RUNX1T1 

 inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 

 Mutated NPM1 without FLT3-ITD or with FLT3-ITD low  

 Biallelic mutated CEBPA 

Intermediate Mutated NPM1 and FLT3-ITD high 

 

Wild-type NPM1 without FLT3-ITD or with FLT3-ITD low (and no adverse-risk 

genetic lesions) 

 t(9;11)(p21.3;q23.3); MLLT3-KMT2A 

 Cytogenetic abnormalities not classified as favourable or adverse 

Adverse t(6;9)(p23;q34.1); DEK-NUP214 

 t(v;11q23.3); KMT2A rearranged 

 t(9;22)(q34.1;q11.2); BCR-ABL1 

 inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1) 

 t (3q26.2;v); MECOM (EVI1)-rearranged 

 –5 or del(5q); −7; −17/abn(17p) 

 Complex karyotype, monosomal karyotype 

 Wild-type NPM1 and FLT3-ITD high  

 Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1 or ZRSR2 

 Mutated TP53 
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Table 3. Compounds approved or under clinical trials for the treatment of AML and their 

intended targets 

 

Target Compound Compound Class Clinical Trial 

Topoisomerase II 

complex 
Daunorubicin DNA intercalator Approved 

DNA polymerase 

complex 
Cytarabine Antimetabolite Approved 

DNMTs 
Azacitidine Pyrimidine nucleoside analogue Approved 

Decitabine Pyrimidine nucleoside analogue Approved 

FLT3 
Midostaurin Small molecule inhibitor Approved 

Gilteritinib Small molecule inhibitor Approved 

BCL2 Venetoclax Small molecule inhibitor Approved 

Mutated IDH1 Ibosidenib Small molecule inhibitor Approved 

Mutated IDH2 Enasidenib Small molecule inhibitor Approved 

SMO Glasdegib Small molecule inhibitor Approved 

CD33 Gemtuzumab Conjugated antibody Approved 

KIT 
Sorafenib Small molecule inhibitor NCT05404516 

Dasatinib Small molecule inhibitor NCT02013648 

MERTK MRX-2843 Small molecule inhibitor NCT03510104 

AXL Bemcentinib Small molecule inhibitor NCT03824080 

XPO1 Selinexor Small molecule inhibitor 

NCT02835222, 

NCT02403310, 

NCT04898894 

MCL1 

AZD5991 Small molecule inhibitor NCT03218683 

MIK665 Small molecule inhibitor NCT02979366 

AMG 176 Small molecule inhibitor NCT02675452 

AMG 397 Small molecule inhibitor NCT03465540 

CDK9 

Alvocidib Small molecule inhibitor NCT03969420 

Dinaciclib Small molecule inhibitor NCT03484520 

AZD4573 Small molecule inhibitor NCT03263637 

Voruciclib Small molecule inhibitor NCT03547115 

BRD4 

Mivebresib Small molecule inhibitor NCT02391480 

FT-1101 Small molecule inhibitor NCT02543879 

Birabresib Small molecule inhibitor NCT02303782 

ETC complex I IACS-010759 Small molecule inhibitor NCT02882321 
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CLPP ONC201 Allosteric agonist NCT02392572 

CHK1 Prexasertib Small molecule inhibitor NCT02649764 

PARP1 
Talazoparib  Small molecule inhibitor NCT02878785 

Veliparib Small molecule inhibitor NCT03289910 

MDM2 Idasanutlin Small molecule inhibitor NCT04029688 

HDAC 

Belinostat  Small molecule inhibitor NCT03772925 

Entinostat Small molecule inhibitor NCT01305499 

Pacrinostat Small molecule inhibitor NCT01912274 

CDK6 Palbociclib Small molecule inhibitor NCT03844997 

KMT2A SNDX-5613 Small molecule inhibitor NCT05326516 

MENIN JNJ-75276617 Small molecule inhibitor NCT04811560 

DOT1L Pinometostat Small molecule inhibitor NCT03724084 

CD123 
MGN632  Conjugated antibody NCT04086264 

Tagraxofusp Conjugated interleukin NCT04342962 

CD47 Magrolimab Naked antibody NCT04435691 

CD33 Anti-CD33-CART CAR-T Cell NCT05445765 

CD123 Anti-CD123-CART CAR-T Cell NCT04318678 

CLL-1 Anti-CLL-1-CART CAR-T Cell NCT04219163 

CD7 Anti-CD7-CART CAR-T Cell NCT04033302 

CD28 Anti-CD28-CART CAR-T Cell NCT04850560 

CD38 Anti-CD38-CART CAR-T Cell NCT05239689 

CD19 Anti-CD19-CART CAR-T Cell NCT04257175 

FLT3 Anti-FLT3-CART CAR-T Cell NCT03904069 

NKG2D Anti-NKG2D CAR-T Cell NCT04658004 

 


