SEQUENTIAL PARAMETRIZED MOTION PLANNING AND ITS COMPLEXITY, II

MICHAEL FARBER AND AMIT KUMAR PAUL

ABSTRACT. This is a continuation of our recent paper [6] in which we developed the theory of sequential parametrized motion planning. A sequential parametrized motion planning algorithm produced a motion of the system which is required to visit a prescribed sequence of states, in a certain order, at specified moments of time. In [6] we analysed the sequential parametrized topological complexity of the Fadell - Neuwirth fibration which is relevant to the problem of moving multiple robots avoiding collisions with other robots and with obstacles in the Euclidean space. In [6] we found the sequential parametrised topological complexity of the Fadell - Neuwirth bundle for the case of the Euclidean space \mathbb{R}^d of odd dimension as well as the case d=2. In the present paper we give the complete answer for an arbitrary $d\geq 2$ even. Moreover, we present an explicit motion planning algorithm for controlling multiple robots in \mathbb{R}^d having the minimal possible topological complexity; this algorithm is applicable to any number n of robots and any number $m\geq 2$ of obstacles.

1. Introduction

The topological approach to the motion planning problem of robotics [4] centres around the notion of topological complexity $\mathsf{TC}(X)$, which has several different interpretations, see Theorem 14 in [5]. In particular, $\mathsf{TC}(X)$ is the minimal degree of instability of motion planning algorithms for systems having X as their configuration space. A new "parametrized" approach to the motion planning problem was developed recently in [1], [2]. Parametrized algorithms are universal and flexible, they are able to function in a variety of situations involving variable external conditions which are viewed as parameter and are part of the input of the algorithm.

Generalizing this idea, the authors in [6] developed the theory of sequential parametrized motion planning in the spirit of Rudyak [9]; it involves an integer parameter $r \geq 2$ with the case r = 2 reducing to the model of [1]. In the sequential approach the robot requires to visit a given sequence of $r \geq 2$ states in certain order at prescribed moments of time.

To make this paper readable we add a brief definition referring the reader to [7] and [6] for motivation and further detail. For a Hurewicz fibration $p: E \to B$ with fibre X and

Date: 14 March 2023.

¹⁹⁹¹ Mathematics Subject Classification. 55M30.

Key words and phrases. Topological complexity, Parametrized topological complexity, Sequential topological complexity, Fadell - Neuwirth bundle.

Both authors were partially supported by an EPSRC grant.

an integer $r \geq 2$ we denote

$$E_B^r = \{(e_1, \dots, e_r) \in E^r; p(e_1) = \dots = p(e_r)\}$$

and $E_B^I \subset E^I$ denotes the space of all paths $\alpha: I \to E$ such that $p \circ \alpha: I \to B$ is constant. Fix r points

$$0 \le t_1 < t_2 < \dots < t_r \le 1$$

in I ("the time schedule") and consider the evaluation map

(1)
$$\Pi_r: E_B^I \to E_B^r, \quad \Pi_r(\alpha) = (\alpha(t_1), \alpha(t_2), \dots, \alpha(t_r)).$$

 Π_r is a Hurewicz fibration, see [2, Appendix], the fibre of Π_r is $(\Omega X)^{r-1}$. A section $s: E_B^r \to E^I$ of the fibration Π_r can be interpreted as a parametrized sequential motion planning algorithm, i.e. a function which assigns to every sequence of points $(e_1, e_2, \ldots, e_r) \in E_B^r$ a continuous path $\alpha: I \to E$ ("the motion of the system") satisfying $\alpha(t_i) = e_i$ for every $i = 1, 2, \ldots, r$ and such that the path $p \circ \alpha: I \to B$ is constant. The latter condition means that the system moves under constant external conditions (such as positions of the obstacles). Typically Π_r does not admit continuous sections and hence the motion planning algorithms are necessarily discontinuous. The following definition gives a measure of the complexity of sequential parametrized motion planning algorithms.

Definition 1.1. The r-th sequential parametrized topological complexity of the fibration $p: E \to B$, denoted $\mathsf{TC}_r[p: E \to B]$, is defined as the sectional category of the fibration Π_r , i.e.

(2)
$$\mathsf{TC}_r[p:E\to B]:=\mathsf{secat}(\Pi_r).$$

In more detail, $\mathsf{TC}_r[p:E\to B]$ is the minimal integer k such that there is a open cover $\{U_0,U_1,\ldots,U_k\}$ of E_B^r with the property that each open set U_i admits a continuous section $s_i:U_i\to E_B^I$ of Π_r . The following Lemma allows using arbitrary partitions instead of open covers:

Lemma 1.2 (see Proposition 3.6 in [6]). Let $p: E \to B$ be a locally trivial fibration where E and B are metrisable separable ANRs. Then the r-th sequential parametrized topological complexity $\mathsf{TC}_r[p:E\to B]$ equals the smallest integer $k\geq 0$ such that the space E_B^r admits a partition

$$E_B^r = F_0 \sqcup F_1 \sqcup ... \sqcup F_k, \quad F_i \cap F_j = \emptyset \text{ for } i \neq j,$$

and on each set F_i there exists a continuous section $s_i: F_i \to E_R^I$ of the fibration Π_r .

The aim of this paper is to give an explicit sequential parametrized motion planning algorithm for the problem of moving $n \geq 1$ robots in the presence of $m \geq 2$ obstacles in \mathbb{R}^d where $d \geq 2$ is even. This problem can be expressed through the properties of the Fadell-Neuwirth bundle

(3)
$$p: F(\mathbb{R}^d, m+n) \to F(\mathbb{R}^d, m)$$

and its topological complexity $\mathsf{TC}_r[p:F(\mathbb{R}^d,m+n)\to F(\mathbb{R}^d,m)]$ as defined above, see (2). The notation $F(\mathbb{R}^d,m+n)$ stands for the configuration space of m+n pairwise distinct

points of \mathbb{R}^d labeled by the integers $1, 2, \dots, m+n$. The projection (3) associates with a configuration of m+n points the first m points.

The main result of this paper is the following:

Theorem 1.3. For any even $d \geq 2$ and for any integers $n \geq 1$, $m \geq 2$, $r \geq 2$, the sequential parametrized topological complexity of the Fadell-Neuwirth bundle (3) is given by

(4)
$$\mathsf{TC}_r[p:F(\mathbb{R}^d,m+n)\to F(\mathbb{R}^d,m)]=rn+m-2.$$

In the case d=2 this statement was proven in [6], Theorem 9.2. Besides, Proposition 9.1 from [6] gives in (4) the inequality \geq , which is valid for any $d \geq 2$ even. Hence to prove Theorem 1.3 it is enough to establish for $\mathsf{TC}_r[p:F(\mathbb{R}^d,m+n)\to F(\mathbb{R}^d,m)]$ the upper bound rn+m-2. This will follow once we present an explicit sequential parametrized motion planning algorithm of complexity $\leq rn+m-2$. This task will be accomplished in §3 of this paper.

In the special case of r=2 a motion planning algorithm for the Fadell - Neuwirth bundle for dimension d odd was given in [7]; it has higher by one topological complexity. We refer also to [8] where the case r=2 and m=2 (two obstacles) was considered.

2. The obstacle avoiding manoeuvre

In this section we describe an obstacle avoiding manoeuvre which will be used below as a sub-algorithm in the general algorithm. We shall consider the situation of a single robot moving avoiding collisions with $m \geq 2$ obstacles in \mathbb{R}^d where the dimension $d \geq 2$ is assumed to be even.

Let $m \geq 2$ be an integer and let R be an equivalence relation on the set $[m] = \{1, 2, \ldots, m\}$. For $i, j \in [m]$ we shall write $i \sim_R j$ to indicate that i and j are equivalent with respect to R. We shall denote by $m(R) \leq m$ the number of equivalence classes of R.

Consider the configurations

(5)
$$C = (o_1, o_2, \dots, o_m, z, z'),$$

where $o_i \in \mathbb{R}^d$ denote the positions of the obstacles and the points $z, z' \in \mathbb{R}^d$ denote the current and the desired positions of the robot, correspondingly. Denote by

$$b = (o_1, \ldots, o_m)$$

the configuration of the obstacles. Assuming that $o_1 \neq o_2$ we can consider the unit vector

$$e_b = ||o_2 - o_1||^{-1} \cdot (o_2 - o_1)$$

and the line $L_b \subset \mathbb{R}^d$ through the origin which is parallel to e_b . We shall denote by $q_b : \mathbb{R}^d \to L_b$ the orthogonal projection onto the line L_b , i.e. $q_b(x) = \langle x, e_b \rangle \cdot e_b$.

Given an equivalence relation R on [m] we define the space

$$\Omega_{m,R}$$

as the set of all configurations (5) satisfying the following conditions:

- (a) $o_i \neq o_j$ and $z \neq o_i \neq z'$ for all $i, j \in [m], i \neq j$;
- (b) $q_b(o_i) = q_b(o_j)$ if and only if $i \sim_R j$ where $i, j \in [m]$;
- (c) $q_b(z) \neq q_b(o_i) \neq q_b(z')$ for $i \in [m]$.

For a configuration C as in (5) we shall denote by $\epsilon(C) > 0$ the minimum of the numbers

$$|o_i - o_j|, \quad i \neq j, \quad i, j \in [m],$$

 $|q_b(z) - q_b(o_i)|, \quad |q_b(z') - q_b(o_i)|, \quad i \in [m],$
 $|q_b(o_i) - q_b(o_j)|, \quad i \not\sim_R j, \quad i, j \in [m].$

Note that $\epsilon(C)$ is a continuous function of $C \in \Omega_{m,R}$.

Our goal is to describe an explicit function associating with each configuration $C \in \Omega_{m,R}$ a continuous path $\gamma_C : I = [0,1] \to \mathbb{R}^d$ such that

(6)
$$\gamma_C(0) = z, \quad \gamma_C(1) = z', \quad \gamma_C(t) \neq o_i \quad \text{for any} \quad t \in I, \quad i \in [m].$$

Moreover, we require the function $\gamma_C(t)$ to be continuous function of two variables $(C, t) \in \Omega_{m,R} \times I$.

Clearly $\Omega_{m,R}$ is the disjoint union

$$\Omega_{m,R} = \bigsqcup_{j=0}^{m(R)} \Omega_{m,R}^j$$

where $\Omega_{m,R}^{j} \subset \Omega_{m,R}$ denotes the set of configurations (5) such that exactly j distinct projection points $q_b(o_i)$ lie between the projections $q_b(z)$ and $q_b(z')$ onto L_b .

Each of the subsets $\Omega_{m,R}^j$ is open and closed in $\Omega_{m,R}$ and hence in it enough to define $\gamma_C(t)$ for $C \in \Omega_{m,R}^j$, where $j = 0, 1, \ldots, m(R)$ and R are fixed.

For $C \in \Omega_{m,R}^0$ we can simply define the $\gamma_C(t) = (1-t)z + tz'$, where $t \in [0,1]$.

Next we consider the case when there are $j \geq 1$ projections of the obstacles $q_b(o_i)$ lying between the projections $q_b(z)$ and $q_b(z')$. For simplicity we shall assume that $q_b(z) < q_b(z')$ (recall that the line L_b is oriented by the vector e_b) and denote

$$q_b(z) < q_b(o_{i_1}) < \dots < q_b(o_{i_j}) < q_b(z').$$

Here each $i_s \in [m]$ is the smallest index in its R-equivalence class.

We introduce the points

(7)
$$o_{i_s}^{\pm} = o_{i_s} \pm \frac{1}{4} \epsilon(C) \cdot e_b \in \mathbb{R}^d, \quad s = 1, \dots, j.$$

These points are small perturbations of the positions of the obstacles in the direction parallel to the line L_b .

Recall that the dimension d of the space is even and hence there exists a continuous function associating with any unit vector $e \in \mathbb{R}^d$ a unit vector $e^{\perp} \in \mathbb{R}^d$ which is perpendicular to e. Such function $e \mapsto e^{\perp}$ is a tangent vector field of the sphere S^{d-1} .

For $s = 1, 2, \ldots, j$ the path

(8)
$$\alpha_s(t) = o_{i_s} - \frac{\epsilon(C)}{4} \cdot [\cos(\pi t) \cdot e_b + \sin(\pi t) \cdot e_b^{\perp}], \quad t \in [0, 1],$$

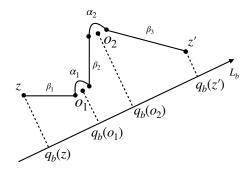


FIGURE 1. Motion of the robot from z to z' avoiding collisions with obstacles.

(semi-circle) connects the point $o_{i_s}^-$ to $o_{i_s}^+$ avoiding the obstacles. The straight line path

$$\beta_s(t) = (1-t) \cdot o_{i_{s-1}}^+ + t \cdot o_{i_s}^-, \quad s = 2, \dots, j$$

connects the point $o_{i_{s-1}}^+$ to $o_{i_s}^-$ avoiding the obstacles. We can similarly define the straight line path $\beta_1(t) = (1-t) \cdot z + t \cdot o_{i_1}^-$ and $\beta_{j+1} = (1-t) \cdot o_{i_j}^+ + t \cdot z'$. The concatenation

(9)
$$\gamma_C = \beta_1 * \alpha_1 * \beta_2 * \alpha_2 * \dots * \alpha_i * \beta_{i+1}$$

(consisting of the straight line segments and semi-circles) is the desired path. Thus we obtain a continuous function $\Omega_{m,R} \times I \to \mathbb{R}^d$, $(C,t) \mapsto \gamma_C(t)$ satisfying (6).

3. Collision-free motion planning algorithm for many robots and obstacles in \mathbb{R}^d ; the even-dimensional case

In this section we describe an explicit parametrized sequential motion planning algorithm for collision free motion of an arbitrary number n of robots in the presence of an arbitrary number of m moving obstacles in \mathbb{R}^d , where the dimension $d \geq 2$ is assumed to be even. This algorithm is optimal for $d \geq 2$ even in the sense that its topological complexity is minimal possible and coincides with the cohomological lower bound established in [6].

For the special case r=2 a motion planning algorithm of this kind was described in §6 of [7] which is applicable for any dimension $d \geq 2$, but its topological complexity is minimal only for d odd. The algorithm described in this section is only applicable for even $d \geq 2$, it has a smaller number of local rules and it is *sequential*, i.e. it is applicable for any $r \geq 2$.

We denote by $p: E \to B$ the Fadell - Neuwirth bundle

(10)
$$p: F(\mathbb{R}^d, m+n) \to F(\mathbb{R}^d, m)$$

where $F(\mathbb{R}^d, m+n)$ is the configuration space of m+n pairwise distinct points of \mathbb{R}^d . A point of $E=F(\mathbb{R}^d, m+n)$ will be denoted by the symbol $(o_1, o_2, ..., o_m, z_1, z_2, ..., z_n)$, where $o_i \in \mathbb{R}^d$ are positions of m obstacles and z_j 's are positions of n robots. The projection (10) acts as follows

$$p(o_1, o_2, ..., o_m, z_1, z_2, ..., z_n) = (o_1, o_2, ..., o_m) \in B = F(\mathbb{R}^d, m).$$

The map (10) is a locally trivial bundle, see [3].

Let us consider the fibration

(11)
$$\Pi_r: E_B^I \to E_B^r$$

built out of the Fadell - Neuwirth bundle (10). A point of the space E_B^r can be viewed as a configuration

(12)
$$C = (o_1, o_2, ..., o_m, z_1^1, z_2^1, ..., z_n^1, z_1^2, z_2^2, ..., z_n^2, ..., z_1^r, z_2^r, ..., z_n^r),$$

where $o_i, z_i^{\ell} \in \mathbb{R}^d$ are such that:

- (1) $o_i \neq o_{i'}$ for $i \neq i'$,
- (1) $o_i \neq o_i$ for $i \neq i$, (2) $o_i \neq z_j^{\ell}$ for $1 \leq i \leq m$, $1 \leq j \leq n$ and $1 \leq \ell \leq r$, (3) $z_j^{\ell} \neq z_{j'}^{\ell}$ for $j \neq j'$ and $1 \leq \ell \leq r$.
- 3.1. Partition of the space E_B^r . For a configuration $C \in E_B^r$ as in (12) let b denote the configuration $b = (o_1, o_2, ..., o_m) \in B = F(\mathbb{R}^d, m)$, and let $L_b \subset \mathbb{R}^d$ denote the line passing through the origin and the vector $o_2 - o_1 \in \mathbb{R}^d$. We shall orient the line L_b such that the vector $o_2 - o_1$ points in the positive direction. Let $e_b \in L_b$ denote the unit vector in the direction of the orientation.

It is well known that for even $d \geq 2$ the unit sphere $S^{d-1} \subset \mathbb{R}^d$ admits a continuous non-vanishing tangent vector field. Fixing such a vector field gives a continuous function $e \mapsto e^{\perp}$ which assigns to every unit vector $e \in \mathbb{R}^d$ a unit vector $e^{\perp} \in \mathbb{R}^d$ perpendicular to e. The vector e^{\perp} will help us to specify the obstacle avoiding motions.

For $x \in \mathbb{R}^d$, we denote by $q_b(x)$ the orthogonal projection of x onto L_b , i.e. $q_b(x) =$ $\langle x, e_b \rangle \cdot e_b$ where \langle , \rangle denotes the scalar product.

For a configuration (12) we denote by

$$q_b(C) = \{q_b(o_i), q_b(z_j^{\ell}) \mid 1 \le i \le m, 1 \le j \le n, 1 \le \ell \le r\}$$

the set of all projections of the obstacles and robots onto the line L_b . Note that the map q_b depends on the positions of the obstacles o_1 and o_2 of the configuration C. Clearly, $q_b(o_1) < q_b(o_2)$; thus, the cardinality of the set $q_b(C)$ satisfies the relation

$$2 \le |q_b(C)| \le rn + m.$$

For any $2 \le c \le rn + m$ we define the subset $W_c \subset E_B^r$ as follows

$$W_c = \{ C \in E_B^r \mid q_b(C) \text{ has cardinality } c \}.$$

Clearly,

(13)
$$E_B^r = W_2 \sqcup W_3 \sqcup \ldots \sqcup W_{rn+m}.$$

Below we construct a continuous section of the fibration $\Pi_r: E_B^I \to E_B^r$ over each set W_c , where c = 2, 3, ..., rn + m. The closure of W_c satisfies

$$\overline{W}_c \subset \bigcup_{c' \leq c} W_{c'}.$$

3.2. Partitioning the set W_c . Next we partition W_c as follows:

$$(14) W_c = \bigsqcup_{s+t=c} G_{s,t},$$

where $G_{s,t} \subset W_c$ is defined as the set of all configurations (12) such that the set $\{q_b(o_1), q_b(o_2), ..., q_b(o_m)\}$ has cardinality s. Clearly, s takes values 2, 3, ..., m. The index t is defined by the relation s+t=c; the value of t equals the number of distinct projection values $q_b(z_j^\ell) \in L_b$ which are not projections of the obstacles $q_b(o_i)$. The closure of $G_{s,t}$ satisfies

$$\overline{G}_{s,t} \subset \bigcup_{s' < s, \ t' < t} G_{s',t'}.$$

This implies that each set $G_{s,t}$ is open and closed as a subset of W_c , where c = s + t, and hence continuous sections over the sets $G_{s,t}$ defined below give jointly a continuous section over W_c .

3.3. Partitioning the sets $G_{s,t}$. Consider the set of m+rn formal symbols

(16)
$$S = \{o_1, \dots, o_m, z_1^1, \dots, z_n^1, \dots, z_n^r\}.$$

A configuration (12) defines a linear quasi-order on the set S, where for $s, s' \in S$ we say that $s \leq s'$ iff $q_b(s) \leq q_b(s')$. A quasi-order allows for distinct elements $s, s' \in S$ to satisfy $s \leq s'$ and $s' \leq s$. In such a case we shall say that the elements $s, s' \in S$ are equivalent with respect to this quasi-order.

Consider the set $\mathcal{O}_{s,t}^{m+rn}$ of all possible quasi-orders on the set S having in total s+t equivalence classes and such that the set $\{o_1,\ldots,o_m\}$ has s equivalence classes. For $\sigma \in \mathcal{O}_{s,t}^{m+rn}$, let $A_{s,t}^{\sigma}$ denote the set of all configurations $C \in G_{s,t}$ generating the quasi-order σ on the set S of symbols (16). Clearly, one has

(17)
$$G_{s,t} = \bigsqcup_{\sigma \in \mathcal{O}_{s,t}^{m+rn}} A_{s,t}^{\sigma}, \quad \text{where} \quad s \ge 2.$$

Each of the sets $A_{s,t}^{\sigma}$ is open and closed in $G_{s,t}$ hence a collection of continuous sections over $A_{s,t}^{\sigma}$ (with various quasi-orders σ) define together a continuous section over $G_{s,t}$.

3.4. Motion planning algorithm on $A_{s,rn}^{\sigma}$. In this subsection we describe a continuous section of the fibration (11) over $A_{s,rn}^{\sigma} \subset E_B^r$. For a configuration (12) lying in $A_{s,rn}^{\sigma}$ all projection points $q_b(z_i^{\ell}) \in L_b$ are pairwise distinct, where $i = 1, \ldots, n$ and $\ell = 1, \ldots, r$; these points are also distinct from the projections of the obstacles $q_b(o_j)$ where $j = 1, \ldots, m$. In general, $s \leq m$, and hence the equality $q_b(o_i) = q_b(o_j)$ for $i \neq j$ is not excluded; this happens iff the numbers i and j are equivalent with respect to the quasi-order σ . A section of (11) over $A_{s,rn}^{\sigma}$ is determined by n functions

(18)
$$\gamma_C^1, \, \gamma_C^2, \, \dots, \, \gamma_C^n : \, I \to \mathbb{R}^d$$

satisfying the following conditions:

(a) Each $\gamma_C^i(t)$ is continuous as a function of $(C,t) \in A_{s,rn}^{\sigma} \times I$ for $i=1,\ldots,n$;

- (b) $\gamma_C^i(t) \neq \gamma_C^j(t)$, for $i \neq j$ and $t \in I$;
- (c) $\gamma_C^i(t) \neq o_j$ for i = 1, ..., n, j = 1, ..., m and $t \in I$;
- (d) $\gamma_C^i(t_\ell) = z_i^{\ell}$ where $\ell = 1, ..., r$ and i = 1, ..., n.

In (d) the symbols $t_{\ell} \in I$ denote the fixed time moments

$$0 = t_1 < t_2 < \dots < t_r = 1$$

used in the definition of the evaluation map (11). The section s determined by the system of curves (18) is given by

$$s(C) = (o_1, \dots, o_m, \gamma_C^1, \dots, \gamma_C^n) \in E_B^I$$
.

To construct the curves (18) we shall use the obstacle avoiding manoeuvre of §2. Divide each time interval $[t_{\ell}, t_{\ell+1}]$, where $\ell = 1, \ldots, r-1$, into n subintervals

$$t_{\ell} = t_{\ell,0} < t_{\ell,1} < \dots < t_{\ell,n} = t_{\ell+1}$$

and add to properties (a) - (d) an additional requirement:

(e) the curve $\gamma_C^i(t)$ is not constant only for $t \in [t_{\ell,i-1}, t_{\ell,i}]$ where $\ell = 1, \ldots, r-1$.

Next we describe the system of curves (18) satisfying the conditions (a) - (e). On the first interval $[t_{1,0},t_{1,1}]$ we apply the algorithm of §2 to move the first robot from z_1^1 to z_1^2 viewing $o_1,\ldots,o_m,z_2^1,z_3^1,\ldots,z_n^1$ as obstacles. Note that the assumptions of §2 are satisfied since $C \in A_{s,rn}^{\sigma}$. This defines the curve $\gamma_C^1|_{[t_{1,0},t_{1,1}]}$. For $i=2,\ldots,n$ the curve $\gamma_C^i|_{[t_{1,0},t_{1,1}]}$ is the constant curve at z_i^1 .

On the next interval $[t_{1,1}, t_{1,2}]$ we apply the algorithm of §2 to move the second robot from z_2^1 to z_2^2 viewing $o_1, \ldots, o_m, z_1^2, z_3^1, \ldots, z_n^1$ as obstacles. This defines the curve $\gamma_C^2|_{[t_{1,1},t_{1,2}]}$. For i=1 the curve $\gamma_C^i|_{[t_{1,1},t_{1,2}]}$ is the constant curve at z_1^2 while for $i=3,\ldots,n$ the curve $\gamma_C^i|_{[t_{1,1},t_{1,2}]}$ is the constant curve at z_1^i .

Continuing in this fashion we construct the curves $\gamma_C^i|_{[t_{\ell,j-1},t_{\ell,j}]}$ inductively using the algorithm of §2 as follows. On the time interval $[t_{\ell,j-1},t_{\ell,j}]$ the robot j moves from the position z_j^ℓ to $z_j^{\ell+1}$ and this motion is specified by the algorithm of §2 in which we consider the points $o_1,\ldots,o_m,z_1^{\ell+1},\ldots,z_{j-1}^{\ell+1},z_{j+1}^{\ell},\ldots,z_n^{\ell}$ as obstacles. This defines the curve $\gamma_C^i|_{[t_{\ell,j-1},t_{\ell,j}]}$. Besides, for i < j the curve $\gamma_C^i|_{[t_{\ell,j-1},t_{\ell,j}]}$ is constant at $z_i^{\ell+1}$ while for i > j the curve $\gamma_C^i|_{[t_{\ell,j-1},t_{\ell,j}]}$ is constant at z_i^{ℓ} .

3.5. Desingularization: motion planning algorithms on the sets $A_{s,t}^{\sigma}$ with t < rn. For a configuration $C \in A_{s,t}^{\sigma}$ define the number $\delta(C) > 0$ as the minimum of the numbers

$$|q_b(z_i^{\ell}) - q_b(z_k^{\ell'})|$$
, where $q_b(z_i^{\ell}) \neq q_b(z_k^{\ell'})$,

$$|q_b(z_i^{\ell}) - q_b(o_j)|$$
, where $q_b(z_i^{\ell}) \neq q_b(o_j)$,

where $i, k \in \{1, \ldots, n\}, \ell, \ell' \in \{1, \ldots, r\}$ and $j \in \{1, \ldots, m\}$. Note that $\delta(C)$ is a continuous function of $C \in A_{s,t}^{\sigma}$. Next we define a homotopy $H : A_{s,t}^{\sigma} \times I \to E_B^r$ as follows. For $C \in A_{s,t}^{\sigma}$ we set

$$H(C,\nu) = (o_1,\ldots,o_m,\mu_1^1(\nu),\ldots,\mu_n^1(\nu),\ldots,\mu_1^r(\nu),\ldots,\mu_n^r(\nu)) \in E_B^r$$

where

$$\mu_i^{\ell}(\nu) = z_i^{\ell} + \frac{((\ell-1)n+i) \cdot \nu \cdot \delta(C)}{rn} \cdot e_b, \quad \nu \in [0,1].$$

Note that for $\nu > 0$ the configuration $H(C, \nu)$ lies in $A_{s,rn}^{\tau}$. Here τ is the following quasiordering on the set (16):

- (a) if for two symbols s, s' of (16) one has $s \leq_{\sigma} s'$ then $s \leq_{\tau} s'$;
- (b) if two distinct symbols z_i^ℓ and $z_{i'}^{\ell'}$ of (16) are equivalent with respect to σ then $z_i^{\ell} <_{\tau} z_{i'}^{\ell'}$ assuming that $(\ell-1)n+i<(\ell'-1)n+i'$. (c) if two symbols o_j and z_i^{ℓ} of (16) are equivalent with respect to the quasi-order σ
- then $o_i <_{\tau} z_i^{\ell}$.

Denoting $z_i^{\ell}(1) = z_i^{\ell}$ we have the configuration

$$C' = (o_1, \dots, o_m, z'_{1}^{1}, \dots, z'_{n}^{1}, \dots, z'_{1}^{r}, \dots, z'_{n}^{r}) \in A_{s,rn}^{\tau}$$

to which we may apply the algorithm of section 3.4. The path $\mu_i^{\ell}(\nu)$ connects the points z_i^ℓ and $z_i'^\ell$. We obtain a path connecting z_i^ℓ to $z_i^{\ell+1}$ as a concatenation of μ_i^ℓ with the path $\gamma_{C'}$ from $z_i'^\ell$ to $z_i'^{\ell+1}$ given the algorithm of §3.4 followed by the inverse of the path $\mu_i^{\ell+1}$,

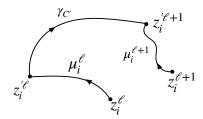


FIGURE 2. Motion of the robot from z_i^{ℓ} to $z_i^{\ell+1}$.

4. Proof of Theorem 1.3

As we mentioned above, the inequality $\mathsf{TC}_r[p:F(\mathbb{R}^d,m+n)\to F(\mathbb{R}^d,m)]\geq rn+m-2$ is given by Proposition 9.1 from [6]. To obtain the opposite inequality we shall use Lemma 1.2 applied to the partition (13). The construction of §3 defines a continuous section of the bundle (11) over each of the sets W_c , where $c=2,3,\ldots,rn+m$. Indeed, we described in §3 a continuous section over each of the sets $A_{s,t}^{\sigma}$. The sets $A_{s,t}^{\sigma}$ are open and closed in $G_{s,t}$, see (17), and the sets $G_{s,t}$ are open and closed in W_c , where c=s+t, see (14). Thus, the continuous sections over the sets $A_{s,t}^{\sigma}$ with s+t=c jointly define a continuous section over the set W_c . This completes the proof.

References

- [1] D.C. Cohen, M. Farber and S. Weinberger, "Topology of parametrized motion planning algorithms," J. Appl. Algebra Geometry 5, (2021), no. 2, pp. 229 - 249.
- [2] D.C. Cohen, M. Farber and S. Weinberger, "Parametrized topological complexity of collision-free motion planning in the plane," Annals of Mathematics and Artificial Intelligence, 90(2022), 999-1015.
- [3] E. Fadell and L. Neuwirth, Configuration spaces. Math. Scand. 10 (1962), pp. 111 118.
- [4] M. Farber, "Topological complexity of motion planning," Discrete Comput. Geom. 29 (2003), no. 2, pp. 211 - 221.
- [5] M. Farber, Topology of robot motion planning. Morse theoretic methods in nonlinear analysis and in symplectic topology, 185–230, NATO Sci. Ser. II Math. Phys. Chem., 217, Springer, Dordrecht, 2006.
- [6] M. Farber and A.K. Paul, Sequential parametrized motion planning and its complexity. Topology Appl. 321 (2022), Paper No. 108256, 23 pp.
- [7] M. Farber and S. Weinberger, "Parametrized motion planning and topological complexity," In: Algorithmic Foundations of Robotics XV, Steven M LaValle et al editors, Springer 2023, pp 1-17.
- [8] C. A. Zapata and J. González, Parametrised collision-free optimal motion planning algorithms in Euclidean spaces, arXiv:2103.14074
- [9] Y. B. Rudyak, "On higher analogs of topological complexity," Topology Appl. 157 (2010), no. 5, pp. 916 - 920.

SCHOOL OF MATHEMATICAL SCIENCES, QUEEN MARY UNIVERSITY OF LONDON, E1 4NS LONDON, UK. Email address: m.farber@qmul.ac.uk

SCHOOL OF MATHEMATICAL SCIENCES, QUEEN MARY UNIVERSITY OF LONDON, E1 4NS LONDON, UK. *Email address*: amit.paul@qmul.ac.uk/amitkrpaul23@gmail.com