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Abstract

All of quantum photonics relies on being able to reliably generate quantum states
encoded in a particular degree of freedom of light. A key piece of technology is
therefore the photon source.

The choice of which degree of freedom to encode information in is an interesting one,
there is no universal best option. The historically common option of polarisation
is straightforward to manipulate and detect, but is restricted to a two dimensional
Hilbert space. More modern choices such as orbital angular momentum and path
encodings have become popular as they are high dimensional and offer greater in-
formation capacity per photon. The downside of these options is they are difficult
to integrate into existing communication networks.

Time and frequency are in a unique position of being naturally high dimensional
and compatible with single-mode fibre which makes them compatible with stan-
dard telecommunication equipment. The first half of this thesis is about gener-
ating time-frequency encoded quantum states in a scalable, lossless and arguably
simpler way than other techniques commonly used to generate time-frequency en-
coded states. This is done through the process of domain-engineering in parametric
downconversion. This thesis will walk through the basics of nonlinear optics and
particular three-wave mixing before going on to discuss the principles of domain-
engineering and how it can be used to manipulate the time-frequency structure of
photon pairs produced in parametric downconversion. The experimental charac-
terisation of a high dimensional frequency-bin entangled source is discussed along
with other potential time-frequency states which could be generated using the same
domain-engineering techniques.

The second half of the thesis is centred around building a bright and low noise
single-photon source at telecommunication wavelengths using a frequency converted
quantum dot. The performance of the source before and after conversion is compared
with the end result that the frequency conversion process does not significantly
alter the single-photon nature of the source. Using the mathematical machinery
developed to describe three-wave mixing, we show how the time-frequency properties
of quantum dots can be improved using frequency conversion.

With a bright and low noise source realised, a demonstration of quantum key dis-
tribution is carried out. The range and key rate of this demonstration compare
favourably to to other single-photon sources in the literature. Finally, theoretical
predictions of a decoy state quantum key distribution protocol using this source are
carried out which extends the range by around 100 km compared to the protocol
without decoy states.
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Chapter 1

Introduction

In the world of quantum photonics there are roughly three components: sources,

circuits and detectors. In the language of quantum information processing this

could be rephrased as a way to create, evolve (hopefully in a unitary way) and

detect quantum states. The majority of people working in quantum photonics have

their work fall into one of these three camps.

This thesis is about sources.

The thesis can be divided roughly down the middle with one half focusing on para-

metric downconversion (PDC) which has been the workhorse for quantum optics

since it was first demonstrated in parametric amplifiers in the 60s [1–3]. As PDC

creates pairs of photons, the obvious application of PDC is a source of entanglement

for your favourite quantum information protocol. The form of the entanglement

comes in many different types, corresponding to the different degrees of freedom a

photon may possess. A non-exhaustive list includes: polarisation [4], momentum

[5], transverse mode [6], orbital angular momentum [7], central frequency [8], arrival

time [9] and the list goes on. The control of photon pairs is so exquisite that en-

tanglement between more than one degree of freedom, so-called hyperentanglement,

has been demonstrated in up to three of the possible degrees of freedom listed [10].

My small contribution to the vast body of work on PDC is making photon pairs

which share entanglement in time and frequency using atypical poling structures
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Chapter 1: Introduction

inside the nonlinear crystal. This work leans heavily on the work of Francesco Graf-

fitti [11] who developed a lot of the ideas upon which the experimental work in this

thesis is built. The initial application of aperiodic poling was making a completely

uncorrelated and separable photon-pair source. The work presented in this thesis

came from the opposing point of view, instead of removing the entanglement, it

be tailored and produce specific entangled states with the same poling techniques.

Hopefully by the end of the thesis I will have convinced the reader of two things.

First, one can make some interesting quantum states with aperiodic poling and sec-

ond, these states might even be useful one day. I am confident I have achieved the

former and pessimistic about achieving the latter.

The second half focuses on quantum dot sources, the young(-ish) upstart which

has come along to steal the crown of heralded sources as the preferred choice for

photonics researchers worldwide. The improvements in quantum dots as single-

photon sources has been almost astronomical from the initial observation of non-

classical light emission in 2000 [12] towards QDs emitting something close to a single

photon around 50% of the time in 2021 [13]. While QDs have have better signal-

to-noise scaling than PDC sources they do have their drawbacks. QDs are still

effectively probabilistic sources with the collection efficiencies of current devices.

There is also the question of scalablility; making two PDC sources with identical

properties is relatively straightforward, fabricating multiple QDs to emit identical

photons is an extremely difficult task. A third problem is QDs emitting between

700 − 1000 nm, which I will refer to as near-infrared, have the best quality in

terms of efficiency and coherence of the emitted photons. This is not ideal in terms

of communication applications, ideally the photons would be around one of the

telecommunication bands.

The work in this thesis tries to address the last of these problems. This is done

using a bright near-infrared QD source coupled with efficient nonlinear frequency

conversion to shift the photon from the near-infrared to 1550 nm. For a while this

work constituted the best QD source in the telecommunication C-band before being

surpassed by other groups.
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Chapter 1: Introduction

Chapter 2 develops the mathematical machinery needed to understand the nonlin-

ear optical processes of parametric downconversion and frequency conversion. It

starts from the classical picture of these processes and then develops the quantum

mechanical picture introducing concepts such as quasi-phasematching and group-

velocity matching. The end goal of this chapter is to describe the joint spectral

amplitude, which describes the key features of both parametric downconversion and

frequency conversion.

Chapter 3 contains the work on time-frequency entangled photons. This chapter

starts with the design process for aperiodically poled nonlinear crystals and the

key steps to go from a desired entangled state to the nonlinear crystal design that

produces it. The bulk of this chapter is the design and characterisation of an eight-

bin frequency entangled state. The chapter concludes with some speculative theory

ideas which were developed in the long evenings of lockdown during spring/summer

of 2020.

Chapter 4 describes the frequency conversion work towards developing a bright

QD source suitable for fibre-optic communications. The experimental components

required to realise such a source, the QD, the pump laser to drive the frequency con-

version and the nonlinear waveguide are described in turn. The source performance

is characterised in terms of count rate, multiphoton suppression and two-photon

interference visibility.

Chapter 5 contains the experimental work towards long-range quantum key distri-

bution with the frequency converted QD source. The secure key rate is evaluated

theoretically based on the measured source parameters and compared to experimen-

tally measured count rates in an in-lab demonstration of quantum key distribution

over 170 km of fibre. A comparison to other single-photon sources in terms of key

rate and maximum achievable distance is made which is favourable for our work. The

chapter concludes by using recent theoretical results on the decoy-state quantum key

distribution scheme for arbitrary photon-number distributions to model how the QD

source would perform in a decoy-state protocol which extends the maximum range

to 250 km.

3



Chapter 2

Nonlinear Optics

A large portion of this thesis focuses on the interaction of optical modes in a nonlin-

ear medium. This section will give a mathematical description of nonlinear processes

in the classical picture and then transition to the quantum view. The machinery

developed in this chapter will hopefully build intuition for the specific three-wave

mixing interactions behind the experimental work in this thesis.

2.1 Nonlinear Polarisation

We consider the case of electric fields propagating in a dielectric medium with fre-

quencies far away from atomic resonances of the medium. We consider the electrons

in the medium using a simple Lorentz atomic model (mass and spring model) where

the force acting on a given electron is linear. This is a reasonable model as an

electron sitting close to the minimum in any potential landscape experiences an

approximately quadratic potential. As the electric field oscillates in the material it

drives oscillations of bound electrons. One can write the dipole moment per unit

volume or polarisation of the material as [14]

P = ϵ0χ
(1)E, (2.1)

4



Chapter 2: Nonlinear Optics

where P is the polarisation of the material, E is the applied electric field, χ(1) is the

linear susceptibility of the material and ϵ0 is the vacuum permittivity. Typically the

electric field is not of sufficient strength to significantly alter the harmonic potential

experienced by charges within the medium (∼ 1011V/m). This results in linear

equations of motion for the charges and therefore a linear response of the material

with the applied electric field. With the advent of the laser in 1960 by Maiman [15]

a new frontier of physics became experimentally accessible. The electric fields inside

a laser beam are strong enough to significantly alter the atomic potential felt by

trapped charges and introduce anharmonicities. Due to the anharmonic potential

the equations of motion become nonlinear. The response of the material in this

nonlinear regime can be accounted for by expanding the polarisation in a Taylor

series,

P = ϵ0
(
χ(1)E + χ(2)EE + χ(3)EEE + ...

)
:= P (1) + P (2) + P (3) + ....

(2.2)

We define the linear polarisaton as P (1) = ϵ0χ
(1)E and the nonlinear polarisation

as the remaining part PNL = P − P (1). In Eq. (2.2) the vectorial nature of the

polaristion has been ignored. Generally the polarisation field generated and electric

field which generated it do not need to be aligned in terms of polarisation, in this

case the χ(n) is a n-rank tensor to reflect the coupling between the different electric

field components. This thesis focuses on the second-order nonlinearity P (2) which is

responsible for three-wave mixing interactions. Four-wave mixing or χ(3) interactions

are also used for photon-pair production and frequency conversion [16, 17] but have

reduced efficiency compared to their three-wave mixing counterparts due to the

larger χ(2) coefficient. Four-wave mixing interactions for frequency conversion find

some application when the frequency shift involved is small [18]. Recently, broadly

tunable frequency conversion has been proposed and demonstrated with four-wave

mixing in photonic crystal fibre [19, 20].
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Chapter 2: Nonlinear Optics

2.1.1 Second order nonlinear polarisation

From this point on we will restrict the discussion of the nonlinear polarisation to

only the second-order term PNL = ϵ0χ
(2)EE. In general not all materials exhibit this

order of nonlinearity. For materials which have inversion symmetry, −P⃗ (x, y, z) =

P⃗ (−x,−y,−z), the second order nonlinearity is zero. Consider two input electric

fields with different frequencies ω1 and ω2 such that the electric field can be written

as

E (t) = E1 exp (−iω1t) + E2 exp (−iω2t) + c.c. (2.3)

Inserting this electric field into the nonlinear polarisation gives,

PNL = ϵ0χ
(2)
[
E2

1 exp (−i2ω1t) + E2
2 exp (−i2ω2t)

+ 2E1E2 exp (−i (ω1 + ω2) t) + 2E1E
∗
2 exp (−i (ω1 − ω2) t)

+2 (E1E
∗
1 + E2E

∗
2)] .

(2.4)

Equation (2.4) contains all second-order nonlinear interactions. The first two terms

represent second-harmonic generation (SHG) at 2ω1 and 2ω2 respectively. The last

term represents optical rectification. The most important term for this thesis is the

difference-frequency term, ω1−ω2. Both frequency conversion (FC) and parametric

downconversion (PDC) are the same underlying process and come from this term.

The main difference in the physics comes from the intensity of the fields at ω1, ω2

and ω3 = ω1 − ω2 before the nonlinear interaction.

dA1

dz
= κ

ω1

n1

A2A3 exp (i (k2 + k3 − k1) z) ,

dA2

dz
= κ

ω2

n2

A1A
∗
3 exp (−i (k2 + k3 − k1) z) ,

dA3

dz
= κ

ω3

n3

A1A
∗
2 exp (−i (k2 + k3 − k1) z) .

(2.5)

Eq. (2.5) are the classical amplitude equations for three fields interacting in a non-

6



Chapter 2: Nonlinear Optics

linear medium. From Eq. (2.5) two of the field amplitudes must be non-zero, for

example A1 and A2, at the start of the nonlinear crystal for an interaction to take

place and generate a new field at A3. For FC this is commonly the case where

A1 is a single photon and A2 is a strong coherent field. For PDC both A2 and

A3 are vacuum modes; a phrase sometimes heard around the coffee table is PDC

is difference-frequency generation “seeded” by vacuum. In the purely classical pic-

ture PDC cannot take place and so we must use a quantum mechanical picture of

three-wave mixing.

2.2 Quantum treatment of three-wave mixing

To start describing the three-wave mixing interaction in a quantum mechanical

framework we introduce the quantised electric field operators,

Êi (z, t) = Ê+
i (z, t) + Ê−

i (z, t)

Êi (z, t) = iA
∫

dω
(
âi (ωi) e

i(k(ωi)z−ωit) − â†i (ωi) e
−i(k(ωi)z−ωit)

) (2.6)

where â (ω)
(
â† (ω)

)
are the annihilation (creation) operators for a photon at fre-

quency ω with wave vector k (ω) and A is a factor which includes the transverse

spatial extent of the optical mode, the optical power in the mode and other constant

factors. Here we have considered a simplified paraxial description of the mode along

the beam propagation direction z.

The three-wave mixing Hamiltonian can then be written as [21]

Ĥ3WM ∝
∫

dzg (z)
(
Ê+

1 + Ê−
1

)(
Ê+

2 + Ê−
2

)(
Ê+

3 + Ê−
3

)
, (2.7)

where g (z) is the normalised nonlinearity along the crystal. From Eq. (2.7) all the

terms present in Eq. (2.4) can be recovered. Picking out the relevant term for FC

7
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and PDC the Hamiltonian becomes,

Ĥ3WM ∝
∫

dz g (z) Ê+
1 Ê

−
2 Ê

−
3 + h.c.

=

∫
dz dω1dω2dω3â1 (ω1) â

†
2 (ω2) â

†
3 (ω3)

exp (i [ω2 + ω3 − ω1] t) g (z) exp (i [k (ω3) − k (ω1) − k (ω2)] z) + h.c.,

(2.8)

where we have implicitly assumed the optical mode at frequency ω1 is the highest

frequency field. Without loss of generality we assume the ordering of frequencies

ω1 > ω2 ≥ ω3. At this point we could evaluate the evolution of the fields in the

Schrödinger picture as

|ψ (t)⟩ = T̂ exp

{
−i
ℏ

∫ t

0

dt′Ĥ3WM (t′)

}
|ψ (0)⟩ , (2.9)

where T̂ is the time-ordering operator. Unfortunately as the Hamiltonian does

not commute with itself at different times we cannot proceed easily with Eq. (2.9).

However, the impact of the time-ordering operator can be neglected for low photon

numbers in PDC (n̄≪ 1) and low efficiency in FC (η ≪ 1) [22]. For the experimental

work in this thesis this approximation is valid and we can proceed with the time

integral, ∫ ∞

−∞
dt′ exp (i [ω2 + ω3 − ω1] t

′) = δ (ω2 + ω3 − ω1) (2.10)

The limits of the time integral have been extended from [0, t] → [−∞,∞] based

on the argument that outside the crystal the fields freely evolve and so the state is

unchanged outside the region [0, t], the points in time where the fields start and end

interacting inside the crystal.

At this point we must make a choice to talk about PDC and FC separately. Due

to the small photon-photon interaction at optical frequencies in typical crystals(
χ(2) ∼ 10−12

)
one of the three modes must be a classical field containing a macro-

scopic number of photons (1015 − 1019s−1) in order for something to be observed in

the typical integration time of an experiment.

8
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The choice of which of the three fields is replaced by a classical field is one of the fun-

damental differences between PDC and FC. In PDC the classical field is the highest

frequency mode such that a high energy photon can spontaneously decay into two

lower energy photons. For FC either of the lower energy modes can become classi-

cal. In either case we make the substitution â (ω) → α (ω) with α a complex valued

function. α (ω) is often called the pump-envelope function (PEF) and describes the

spectral amplitude of the mode and has the normalisation property

∫
dω|α (ω)|2 = 1. (2.11)

Making this substitution and using the delta function to remove the frequency in-

tegral over the classical field we have the PDC and FC Hamiltonians.

ĤPDC =

∫
dω2dω3dzg (z) exp (i∆k (ω2, ω3) z)α (ω2 + ω3) â

†
2 (ω2) â

†
3 (ω3) + h.c.,

(2.12)

ĤFC =

∫
dω1dω2dzg (z) exp (i∆k (ω1, ω2) z)α (ω1 − ω2) â1 (ω1) â

†
2 (ω2) + h.c.,

(2.13)

with the shorthand ∆k = ki − kj − kk. At this point we can identify the phase-

matching function (PMF) as the spatial integral

ϕ (∆k (ωi, ωj)) =

∫
dzg (z) exp (i∆k (ωi, ωj) z) , (2.14)

The PMF describes the spectral response of the nonlinear material at frequencies

ωi, ωj, ωi±ωj with the relative sign due to the differences between labelling of modes

in FC and PDC. With the PMF and PEF we are able to now define the joint spectral

amplitude (JSA) as

f (ωi, ωj)PDC/FC = α (ωi ± ωj)ϕ (ωi, ωj) , (2.15)

9
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where the positive sign is for PDC and the negative sign for FC.

In order to gain some more understanding the PMF, PEF and JSA are discussed

in turn. The main differences between PDC and FC are highlighted for each before

showing how the JSA can be reduced to a finite number of modes using the Schmidt

decomposition. This modal description gives additional insight into experimentally

measurable quantities such as Hong-Ou-Mandel visibilities from PDC photons. From

this point we change frequency notation to refer to the downconverted photons in

PDC as signal and idler and make the change ωi, ωj → ωs, ωi. In FC we refer to

the input and output modes as the modes which are occupied by a photon at the

beginning and end of the conversion process and make the substitution ωi, ωj →

ωo, ωi when referring to FC

2.2.1 Pump-envelope function

The PEF represents the spectral amplitude of the classical field driving the three-

wave mixing process. An intuitive way to think of the PEF is to consider sending

the classical field onto a spectrometer, the intensity measured would correspond to

|α (ωs, ωi)|2 with appropriate normalisation. For ultrafast soliton mode-locked lasers

like the Ti:Sapphire laser used in this thesis, the PEF is a sech function. Frequently

in this thesis the sech pulse shape will be approximated as a Gaussian function to

simplify analytical calculations.

For PDC the classical field is the highest frequency mode and by energy conserva-

tion the two downconverted photons must sum to the pump photon’s energy. This

restricts the orientation of the PEF to run from the upper left to lower right in the

(ωs, ωi) plane. For a Gaussian PEF with a flat spectral phase, the explicit form is

given by

αPDC (ωs, ωi) = exp

(
−(ωs + ωi)

2

2σ2

)
, (2.16)

where σ is related to the spectral bandwidth of the pump pulse.

For FC the classical field is either the lowest or intermediate energy mode. This

then restricts the PEF to run from the lower left to the top right in the (ωi, ωo)

10
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Figure 2.1: Comparison of PEF for PDC (left) and FC (right). The orientation of
the PEF is fixed due to energy conservation constraints. Axes are rescaled in units
of the pump bandwidth σ. For symmetric functions the labelling of ωs, ωi and ωi, ωo

can be exchanged, this is not true for odd-functions such as a first-order Hermite-
Gauss mode which will be relevant in Section 3.3.

plane. The relative orientations for FC and PDC can be seen in Fig. 2.1. Similar to

Eq. (2.16), for a transform limited Gaussian PEF the explicit form is given by,

αFC (ωi, ωo) = exp

(
−(ωi − ωo)

2

2σ2

)
(2.17)

2.2.2 Phasematching function

The PMF describes the spectral response of the crystal in three-wave mixing, in this

section we will discuss how the dispersion properties of the crystal affect the shape

of the PMF in PDC and FC.

We have seen previously in Eq. (2.14) the PMF depends on the phase-mismatch ∆k

and the nonlinearity profile along the crystal g (z) = χ(2) (z) /χ(2). An important

point worth highlighting is the PMF can be viewed as a Fourier transform of the

nonlinearity profile g (z) with respect to the wavevector mismatch ∆k. For now we

consider the simplest case of a bulk crystal g (z) = 1 inside the crystal and zero

otherwise. From here we consider how the dispersion of the crystal affects the PMF.

We will return to other shapes of g (z) in Section 3.2.
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For a bulk crystal the spatial integral can be carried out and the PMF is given by

∫ L

0

dz exp (i∆k) = L sinc

(
∆kL

2

)
exp

(
i∆kL

2

)
. (2.18)

This the classic result of a sinc-shaped phasematching well known from nonlinear

optics [14]. Intuitively the sinc shape can be thought of as a Fourier transform of

a unit box function in the spatial domain with respect to the phase-mismatch ∆k.

The phase term, exp (i∆kL/2) results from the asymmetric choice of the crystal

position around the zero position in space. An important point to note is that the

width of the PMF in ∆k space is controlled by the crystal length L.

To understand how the PMF affects the PDC and FC process we examine the

phase-mismatch ∆k and Taylor expand around the central frequencies of each mode

∆kPDC = kp − ks − ki ≈ 0

≈ kp,0 − ks,0 − ki,0

+
∂kp
∂ωp

Ωp −
∂ks
∂ωs

Ωs −
∂ki
∂ωi

Ωi

+ O
(
∂2k

∂ω2
Ω2

)
,

(2.19)

where kj = n (ωj)ωj/c, n (ωj) is the refractive index at frequency ωj and Ωj =

(ωj − ωj,0) is the deviation from the central frequency ωj,0. The derivatives
∂kj
∂ωj

=

v−1
j are the inverse group velocities at frequency ωj. The higher-order derivatives

are relevant for larger spectral ranges where group-velocity dispersion becomes im-

portant, which is not discussed in this work [23]. For a phasematched process, the

zeroth order term kp,0 − ks,0 − ki,0 = 0, using this and some simple rearranging of

terms leads to

Ωi = −

(
v−1
p − v−1

s

v−1
p − v−1

i

)
Ωs. (2.20)

From Eq. (2.20) one can see contours with constant value have a gradient of,

m = −

(
v−1
p − v−1

s

v−1
p − v−1

i

)
. (2.21)

12



Chapter 2: Nonlinear Optics

A similar calculation can be carried out for FC which gives a similar result,

Ωo =

(
v−1
p − v−1

i

v−1
p − v−1

o

)
Ωi (2.22)

To illustrate the difference in FC and PDC, Fig. 2.2 shows the PMF for a PDC

process where the idler and pump photons have the same group velocity which

gives a vertical PMF in the ωi, ωs plane. For the same three-wave mixing process

the FC PMF can be aligned with the ωi-axis or ωo-axis depending on if the FC

considered is either difference-frequency or sum-frequency generation process. The

PMF for the sum-frequency generation process is the transpose of the PMF for the

difference-frequency generation process and vice versa.

To accurately model real crystals including these group velocity effects it is impor-

tant to understand how n (ωj) varies with ωj. This is done using Sellmeier equations,

named after Wolfgang Sellmeier who introduced the functional form of the equations

that is still commonly used today. Typically the equations are written in terms of

wavelength and are of the form,

n2 (λ) = 1 +
∑
j

Bjλ
2

λ2 − Cj

, (2.23)

where the Sellmeier coefficients Bj, Cj are empirically measured for a given crystal

over a particular frequency range. There are many different publications which

include Sellmeier coefficients for a wonderful variety of nonlinear crystals including

extra physical effects such as the temperature dependence of the refractive indices or

the inclusion and concentration of different dopants in common nonlinear materials.

For this thesis the Sellmeier equations are taken from [24] for potassium titanyl

phosphate and from [25] for lithium niobate.

2.2.3 Joint spectral amplitude

The preceding sections describing the PEF and PMF have now put us in a position

to describe the joint spectral amplitude. As we shall see the JSA is a powerful tool
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Figure 2.2: Comparison of PMF for PDC (left) and FC (right). The orientation
of the PMF is determined by the group velocities of light in the material at the
frequencies involved in the three-wave mixing process. There is an ambiguity in the
orientation of the PMF for a FC process depending on which mode is considered
the input or output. All plots show the absolute value unless otherwise stated.

for understanding PDC and FC. At this point we return to Eq. (2.12) and Eq. (2.13)

and examine each process individually.

In PDC it is common to Taylor expand the unitary generated from the Hamiltonian

in Eq. (2.12) to include the term in which a single pair of photons are produced. This

approximation is referred to as the low-gain approximation and is a similar level to

ignoring the time-ordering operator in Eq. (2.9). At this point the two-photon or

biphoton state from PDC can be written as

|ψ⟩ = exp

(
−i
ℏ
ĤPDC

)
|0, 0⟩

|ψ⟩ ≈
(
I + g

∫ ∫
dωsdωif (ωs, ωi) a

† (ωs) b
† (ωi)

)
|0, 0⟩ ,

(2.24)

where I is the identity operator and represents the term where no downconversion

takes place. We have lumped the constant terms into a coupling factor g which

is proportional to the square root of the pump power. Looking at Eq. (2.24) the

meaning of the JSA for PDC is clear, f (ωs, ωi) is the probability amplitude density

for finding a signal photon at freqency ωs and an idler photon at frequency ωi. Note

the state in Eq. (2.24) is unnormalised.

Using a similar Taylor expansion for the unitary generated by Eq. (2.13) under
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the same low-gain approximation the output of a single-photon FC process can be

written as

|ψ⟩ = exp

(
−i
ℏ
ĤFC

)
|0, 1⟩

|ψ⟩ = exp

(
g

∫ ∫
dωodωif (ωo, ωi) a

† (ωo) b (ωi) + h.c.

)
|0, 1⟩ .

(2.25)

For FC the JSA describes the probability amplitude for converting an input photon

at frequency ωi to ωo.

It is important to note the difference in physical meaning for the JSA for the two

different processes. In PDC the JSA tells us something about a quantum state. The

JSA for FC describes how a particular input state is mapped to an output state, it

describes a unitary process.

In order to develop some intuition about PDC and FC we can apply the Schmidt de-

composition to Eq. (2.24) and Eq. (2.25). The Schmidt decomposition is a common

technique in quantum information and gives a way to describe a bipartite quantum

system in terms of an orthonormal basis for each subsystem. It has been applied to

the continuous time-frequency degree of freedom in PDC [26] and FC [21].

For both PDC and FC, using the Schmidt decomposition the JSA can be written as

f (ωi, ωj) =
∑
k

λkuk (ωi) vk (ωj) , (2.26)

where uk (ωi) and vk (ωj) form an orthonormal set of functions and λk are the

Schmidt coefficients for each pair of functions satisfying
∑

k λ
2
k = 1.

Unfortunately there are only a few examples of functions for which the Schmidt de-

composition can be calculated analytically. Typically these are products of Gaussian

or Hermite-Gauss functions. The typical approach is to represent f (ωi, ωj) numer-

ically as a matrix and use the singular value decomposition to find the Schmidt

modes and Schmidt coefficients. From the SVD we have that,

f (ωi, ωj) ≈ Fn,m = Un,kDk,kV
T
k,m, (2.27)
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where the columns (rows) of U
(
V T
)

form an orthonormal basis which can be iden-

tified as the discretised versions of uk (ωi) and vk (ωj). Dk,k is a diagonal matrix

with elements equal to the singular values of the matrix F which we identify as the

Schmidt coefficients λk. For results presented in this thesis the SVD is carried out

numerically on a grid of n ×m = 2048 × 2048 points. From here on we will treat

the Schmidt decomposition and the SVD interchangeably.

Applying the Schmidt decomposition to the biphoton state generated in PDC we

have

|ψ⟩ =
∑
k

∫ ∫
dωsdωiλkuk (ωs) vk (ωi) a

† (ωs) b
† (ωi) |0, 0⟩

=
∑
k

λkA
†
kB

†
k |0, 0⟩ ,

(2.28)

where broadband mode operators are defined such that

A†
k =

∫
dωsuk (ωs) a

† (ωs)

B†
k =

∫
dωivk (ωi) b

† (ωi) ,

(2.29)

which satisfy the commutation relation
[
Ai, A

†
j

]
= δi,j.

This gives a nice interpretation of a general PDC process as being built up from

many pairs of orthogonal two-mode squeezed vacuum states running over the index

k generating a multimode two-mode squeezed vacuum state, see Fig. 2.3.

The number of effective modes in the downconversion process can be estimated using

K = 1/
∑

k λ
4
k, commonly referred to as the Schmidt number. Consider the density

matrix for the two photon state produced by PDC,

ρPDC =
∑
k,j

λkλjA
†
kB

†
k |0, 0⟩ ⟨0, 0|AjBj. (2.30)

Typically when heralding a single photon from PDC the heralding detector does

not resolve the frequency mode and so the heralded modes must be traced out, the
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Figure 2.3: Joint spectral amplitude of a PDC process and the associated Schmidt
decomposition into orthogonal signal and idler modes. The pump inverse group
velocity is set to be the average of signal and idler inverse group velocities. This is
the case with type-2 PDC in KTP at telecom wavelengths which is used in Chapter 3.
The Schmidt number K = 1.21 and the purity of a heralded single-photon from this
biphoton state would be 82.4%. The purity is reduced from unity due to the sinc-
lobes running along the anti-diagonal which are a source of frequency anti-correlation
between signal and idler photons. After heralding this frequency anti-correlation
causes mixedness in the final single-photon state. The overall PDC state can be
thought of as a sum of pairs of two-mode squeezers with the weights given by the
Schmidt coefficients, which is shown in the lower panel.

reduced density matrix of the heralded single photon is therefore

TrB (ρPDC) = ρA =
∑
j

λ2jA
†
j |0⟩ ⟨0|Aj (2.31)

and the purity of the heralded state is then

Tr
(
ρ2A
)

=
∑
j

λ4j =
1

K
. (2.32)

From Eq. (2.32) the purity of the heralded single photon is the reciprocal of the

Schmidt number. This means that for a unit purity heralded single photon there

must be exactly one pair of modes contributing to the downconversion process and

equivalently more than one pair of modes contributing to the downconversion pro-

cess (K > 1) implies the photon pair is time-frequency entangled and therefore the

heralded state cannot be pure. Historically these spectral correlations are removed
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by using tight filters to retain only the central lobe of the JSA [27]. This comes

at the cost of brightness and heralding efficiency as any photons produced in these

spectral regions are lost. A better option is to remove the spectral correlations by

domain engineering which will be discussed in Chapter 3.

At this point it is worth highlighting a special case of Eq. (2.28) where each pair

of modes has equal probability. For d modes occurring with equally probability we

have defined a d-dimensional maximally entangled state which can be written as

|ψd⟩ =
d∑
k

1√
d
A†

kB
†
k |0⟩ |0⟩ =

∑
k

1√
d
|uk⟩ |vk⟩ , (2.33)

where we have defined the states |uk⟩ , |vk⟩ as a time-frequency mode defined by

Eq. (2.29) occupied by a single photon. We will return to this case in Chapter 3.

A similar calculation can be carried out for FC which leads to Eq. (2.25) being

written as

|ψ⟩ = exp

(
g
∑
k

λkA
†
kBk

)
|0, 1⟩ , (2.34)

which is the canonical unitary for a beam splitter transformation with beam splitter

ratios given by gλk. This gives a clean interpretation of the frequency conversion

process, an input photon in a mode defined by Bk is converted to an output photon

in a mode defined by A†
k with an efficiency given by sin2 (gλk). For this reason

frequency conversion is sometimes called a frequency beam splitter [28].

In this case the Schmidt number is related to how single-mode the frequency conver-

sion process is. For K ≈ 1 only one of the beam splitters has a non-zero conversion

to the output mode and all other modes are left unconverted. For K ≫ 1 all of

the input modes have approximately the same Schmidt coefficient and therefore the

same conversion for the same coupling strength g.

To make this point more concrete let us examine a FC process in which the output

photon and pump field have similar group velocities, this choice is motivated by the

experimental situation described in Chapter 4.
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Figure 2.4: Absolute joint spectral amplitude for a FC process with group velocity
matching between pump and output modes. The Schmidt number for this process
is K = 1.06 and is therefore close to single-mode. Similar to the PDC process the
increase in Schmidt number is due to the sinc-lobes visible on the diagonal of the
JSA plot in the upper left panel. Looking at the Schmidt coefficients, the first mode
has a coefficient approaching unity while all other modes are close to zero. This
implies that only the first pair of modes (blue) are active and a photon in any other
mode (orange and green) is left unchanged.

The FC process described in Fig. 2.4 has a broadband ultrafast pulse for the pump

mode, where the pump bandwidth, ∼ 100 GHz is much larger than the phasematch-

ing bandwidth ∼ 10 GHz. For this type of pumping the JSA is approximately

single-mode and only one pair of modes is converted. This case will be discussed in

more detail in Section 4.5. There have been some experimental demonstrations of

pulsed FC [29, 30] but the vast majority of FC experiments [31–37], including the

experimental work in this thesis, are pumped by a continuous-wave laser. A CW

laser has a linewidth on the order of 1 MHz or less which is considerably smaller

than typical phasematching bandwidths. This leaves a highly correlated JSA with

Schmidt number K ≫ 1, shown in Fig. 2.5.

While we have described both single-mode and and multimode frequency conversion

in the frequency domain an equivalent explanation exists in the time domain which

supports the conclusions drawn here. For CW pumped FC the process is invariant

with translation in time. Therefore the longitudinal shape of the input photon has
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Figure 2.5: An example of a highly multimode FC process driven by a narrowband
CW laser. For a highly correlated JSA there are a large number of modes with
approximately similar Schmidt coefficients (upper right panel). This means that
many modes have similar conversion efficiencies for the same coupling coefficient g
(upper centre). Since these modes have similar conversion efficiency any input mode
is converted to the output mode, this is the heart of the multimode interpretation
of CW FC. It is also worth noting for CW-pumped FC the input and output modes
are similar shape and bandwidth, unlike the ultrafast pulsed case.

no effect on the conversion efficiency. Similarly for an ultrafast pulse which is well

localised in time, there must be a time-gating effect as the three modes propagate

in the crystal, which can be seen in the upper right panel of Fig. 2.6 (note the

difference in time scales). This is the alternative view of the frequency selectivity

seen in Fig. 2.4.

In analogy to the JSA a joint temporal amplitude (JTA) can be defined as the

Fourier transform of the JSA

F (τi, τo) =

∫ ∫
dωidωof (ωi, ωo) exp (−iωiτi − iωoτo) . (2.35)

Here the time parameters τi, τj can be roughly interpreted as defining the arrival

time of a photon at a detector relative to a reference clock defined by the arrival

time of the pump photons [38].

The calculations presented in the previous sections could have been entirely pre-
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Figure 2.6: Top row shows single-mode JSA and corresponding JTA after taking a
Fourier transform. The bottom row shows the multimode JSA and JTA. For the
ultrafast pulsed JTA the output photons all arrive in a small window around τo = 0,
this is a result of the group-velocity matching conditions vp ≈ vo. The physical
interpretation is that the pump walks through the input photon and as it passes,
a photon at ωo is generated and co-propagates with the pump pulse through the
crystal at the same speed and the arrival time is fixed to the arrival time of the
pump. In the CW pumped multimode case the arrival time of the output photon
varies as the pump intensity is constant in time. For a truly CW excitation the
pump α (ωi − ωo) = δ (ωi − ωo) and the JTA would be completely constant for all
time. For clarity when plotting we are using long pulses in time to represent the
CW case.

sented in the time domain. The frequency domain is typically preferred as the JSA

is more easily measured than the JTA. The JTA would require arrival time infor-

mation on the order of 1 ps resolution which is beyond direct measurement using

superconducting detectors and time-tagging equipment. The JSA is easily measured

using dispersive fibre-spectrometers or reconstructed by scanning narrowband filters

across the input and output photon frequencies in FC [39].

We now return to the issue of phasematching and how this can be done for realistic

crystals at useful wavelengths where perfect phasematching may not be possible.
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Figure 2.7: Example of the phase-mismatch |∆k| = |kp − ks − ki| for a type-2
downconversion process in KTP. If we want a photon at 1550 nm for fibre based
applications then we can see that bulk phasematching only occurs with the idler
photon around 1050 nm which is not a desirable wavelength in terms of detectors
or propagation in fibre or free-space. The frequency axis is labelled in terms of
wavelength for convenience.

2.3 More on phasematching

In Section 2.2.2 we made the assumption that we had perfect phasematching ∆k = 0

in a bulk crystal with no spatial structure to the nonlinearity profile g (z) = 1 and

proceeded to explain the JSA for fictitious three-wave mixing processes choosing the

group velocities to highlight the physics involved. For real crystals this is a highly

idealised scenario. Noncritical phasematching only occurs at specific wavelengths

set by the refractive index profile for the material. This massively restricts the

wavelenghts at which PDC or FC can take place. One can tune the emission wave-

length using critical phasematching, where the angle of the three fields is changed

with respect to the crystal axes. This offers wider tunability in terms of emission

wavelengths. The downside of this is the beams experience spatial walk-off due to

the birefringence of typical χ2 crystals, this reduces the length of the interaction

region and therefore increases the power required for a given brightness in PDC or

efficiency in FC.

Fortunately these problems were solved with the idea of quasi-phasematching intro-
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Figure 2.8: Plot comparing the bulk phasematching ϕb (∆k = 0) (blue) and
ϕb (∆k = 2π) (orange). The same phase-mismatch is plotted for a periodically poled
crystal with the poling-period set for quasi-phasematching Λ = 2lc = 2π

∆k
= 1. The

quasi-phasematched PMF amplitude oscillates around a line with gradient equal to
2/π, the bulk phasematching gradient is equal to one.

duced in [40, 41]. If we consider again the classical coupled amplitude equations

for three-wave mixing Eq. (2.5), we can see the phase term exp (i∆kz) oscillates on

a period equal to Λ =
2π

∆k
. After one half-period the amplitude of the generated

fields reaches a maximum, after this point the amplitude decreases again to return

to zero, see orange curve Fig. 2.8. This half-period is commonly referred to as the

coherence length lc. The idea behind quasi-phasematching is that after one half-

period the sign of the nonlinearity coefficient g (z) is flipped from +1 → −1. At this

point when the generated fields would have previously decreased in amplitude they

begin to increase again (Fig. 2.8 green curve) but at a lower rate than a perfect bulk

phasematched process (Fig. 2.8 blue curve). This process of flipping the sign of g (z)

each coherence length is commonly done by inverting the ferroelectric domains of

the crystal using high voltage electrodes and is called periodic poling [42]. It should

be noted that this is not the only method for introducing quasi-phasematching but is

by far the most common for crystals with a χ(2) nonlinearity. Quasi-phasematching

can also be realised by modulating the width of an optical fibre or waveguide [43]

which may find application in χ(3) systems.
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Returning again to the general definition of the phasematching function, the PMF

up to a point z in the crystal can be written as

ϕ (∆k, z) =

∫ z

∞
dz′g (z′) exp (i∆kz′) . (2.36)

So for a bulk phasematched process where g (z) = 1 the phasematching function up

to a point in the crystal is given by

ϕb (∆k, z) = z exp

(
i
∆kz

2

)
sinc

(
∆kz

2

)
. (2.37)

One can see the from Eq. (2.37) that the PMF amplitude increases linearly with

crystal length for ∆k = 0 which can be seen in Fig. 2.8. It is also worth noting that

the bandwidth of the sinc function decreases as one would intuitively expect, a wider

box function (longer crystal) in real space results in a narrower Fourier transform

in ∆k space.

As we have previously stated a periodically poled crystal inverts the sign of g (z)

every coherence length. The phasematching function for such a crystal can be

written as

ϕpp (∆k) =
N∑

n=1

∫ nlc

(n−1)lc

dz (−1)n−1 exp (i∆kz)

= L exp

(
i

(
∆k − π

lc

)
L

2

)
sinc

((
∆k − π

lc

)
L

2

)
︸ ︷︷ ︸

ϕb(∆k− π
lc

)

1 − exp (i∆klc)

1 + exp (i∆klc)

∆k − π
lc

∆k︸ ︷︷ ︸
ϕadd(∆k)

(2.38)

The explicit steps for deriving Eq. (2.38) are included in Appendix A. The PMF for

a periodically-poled crystal can be seen as having two parts, the first term is the

same bulk PMF but with the peak shifted to ∆k = π
lc

. The second term is due to

the poling structure, a point worth noting is that when ∆k = π
lc

this term is equal

to i2
π

using L’Hôpital’s rule. The upshot of these two points is that by choosing the

correct poling-period we can phasematch any combination of wavelengths, with long
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interaction regions as the beams are collinear. The cost of this is that the PMF am-

plitude is reduced by a factor of 2
π

compared to bulk phasematching. Depending on

the wavelengths involved fabricating domain sizes lc = ∆k/π might not be possible,

in this case longer domains lc = m∆k/π with m = {3, 5, ...} can be used to induce

higher order quasi-phasematching. The efficiency of this type of process is reduced

by 1/m2 compared to the case where lc = ∆k/π. Higher order phasematching will

become relevant for the discussions in Section 4.5.6.

A reasonable question to ask is what happens if we change the poling structure to

no longer have the up-down-up structure shown in Fig. 2.8. The next chapter will

focus on how we can use aperiodic poling structures to make tailored shapes for the

PMF. With the symmetric group-velocity condition available in type-2 KTP one can

make sources of photons entangled in time and frequency at telecom wavelengths

that are no more complicated to use than a standard periodically poled crystal.
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Time-Frequency entangled photon

pairs

3.1 Aperiodic poling

The idea of aperiodic poling of nonlinear crystals was initially thought of in a classical

context and dates back to the late 90s for applications in ultrafast pulse compression

and shaping [44–46]. The transition to consider aperiodic poling for quantum optics

applications happened more recently [47]. In Chapter 2 we discussed how spectral

correlations reduce the purity of a heralded single photon produced using PDC. The

solution to this problem was to filter the biphoton state to eliminate the spectral

correlations at the cost of brightness and heralding efficiency.

An arguably better option is to design the phasematching of the PDC process to only

allow for downconversion in a single pair of modes. It can be shown theoretically

that the maximum purity is achieved for a product of a Gaussian PEF and Gaussian

PMF [48]. It can also be shown that for an arbitrary PEF or PMF the purity is

maximised if the other function is a Gaussian. While these results were not known at

the time it was clear the sinc-lobes produced by standard periodically poled crystals

were a limiting factor in the purity of heralded single-photon sources. The question

then becomes how should the poling structure be changed to create a Gaussian
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function in the PMF.

The first work in this direction was from Branczyk et al. who showed by interleav-

ing different periodic poling orders, an approximately Gaussian nonlinearity profile

could be constructed by superposing box functions of varying width and amplitude

corresponding to the different poling orders [47]. This then results in an approxi-

mately Gaussian PMF due to the Fourier transform relation between the nonlinearity

profile and PMF.

Since this work there has been a variety of improvements on choosing the poling

structure to closely match the desired nonlinearity profile. Previous work has kept

the poling period fixed but varying the duty-cycle, the width of an “up” domain

compared to a “down” domain [49, 50]. Machine learning techniques have also been

applied to the problem [51] as well as high-level metaheuristic optimisation schemes

[52]. Tambasco et al. [53] introduced a deterministic and computationally cheap

algorithm for creating a poling structure based on tracking the PMF amplitude along

the crystal in the z-direction. This work was then extended by Graffitti et al. [54]

to work with sub-coherence length domain which are smaller than lc = ∆k/π. The

work in this thesis is based on [54], but given the relatively long 30 mm crystals

used and the typical coherence length for the down conversion process considerered

≈ 23µm the sub-coherence aspect of the algorithm was not used. The designs

presented later in this chapter were tested with one, two and three domains per

coherence length but the increased number of domains did not impact the results.

Sub-coherence engineering is expected to be important in short crystals matched

to femtosecond pulsed lasers. For the designs presented in this thesis the work of

[53] and [54] are therefore similar with the main difference being [53] choosing the

orientation of “poling blocks” consisting of two adjacent domains and [54] choosing

the orientation of each domain individually.

The key elements of the design process are outlined here with the example of a

Gaussian PMF as the desired outcome, this is the basis of the experimental work

presented in [55, 56]. How these steps can then be applied to make time-frequency

encoded states is then presented in Section 3.3.

27



Chapter 3: Time-Frequency entangled photon pairs

3.2 Design process for aperiodic poled crystals

The initial step in designing a poling structure for a particular PMF is of course

choosing the desired PMF shape. A relatively straightforward example with practi-

cal relevance is a Gaussian PMF

ϕtarget (∆k) = exp

(
−1

2
(∆k − ∆k0)

2 σ2

)
, (3.1)

where ∆k0 is the phase mismatch for the desired signal and idler wavelengths and σ

controls the width of the Gaussian function. As discussed previously the nonlinearity

profile is related to the PMF by a Fourier transform

gtarget (z) = F [ϕtarget (∆k)] =
1√
2

∫ ∞

−∞
d∆k ϕtarget (∆k) exp (i∆k)

=
1

σ
exp (i∆k0) exp

(
− z2

2σ2

)
.

(3.2)

At this point you might protest that previously g (z) = {−1,+1} and so how could

we have a continuous function? In this sense the target nonlinearity profile is ficti-

tious but persevering on we will see that this isn’t a problem. The unintuitive next

step is to work out how the PMF amplitude varies along the propagation direction

in the crystal similar to Eq. 2.36 which depends on z and ∆k. For the Gaussian

nonlinearity profile this is calculated as

ϕtrack (z,∆k) =

∫ z

−L
2

dxgtarget (x) exp (−i∆kx)

=

√
π

2
exp

(
−1

2
(∆k − ∆k0)

2 σ2

)[
erf

(
z + i (∆k − ∆k0)σ

2

√
2σ

)
+ erf

(
−L+ 2i (∆k − ∆k0)σ

2

2
√

2σ

)]
,

(3.3)

where erf is the error function. At this point we have been working with the con-

vention of the crystal position centered at z = 0, we can change this to have the
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crystal begin at 0 and extend to L with the replacement z → z− L
2

which results in

ϕtrack (z,∆k) =

√
π

2
exp

(
−1

2
(∆k − ∆k0)

2 σ2

)
×

[
erf

(
z − L

2
+ i (∆k − ∆k0)σ

2

√
2σ

)
+ erf

(
−L

2
+ i (∆k − ∆k0)σ

2

√
2σ

)]
.

(3.4)

It is instructive to compare the PMF for the Gaussian PMF and the equivalent

equation for a bulk crystal. These are shown in 3.1(a) and 3.1(b).
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Figure 3.1: Comparison of PMF for a Gaussian crystal and a bulk phasematching
crystal. The parameters for the Gaussian PMF are chosen to match those in [56].
The contour along ϕ (z = L/2,∆k) at the end of the crystal is the PMF that appears
in the JSA in the previous chapter. The contour along ϕ (z,∆k = ∆k0) for the
Gaussian crystal and ϕ (z,∆k = 0) for the bulk crystal is equivalent to the plots in
Fig. 2.8.

Paying close attention to the amplitude along the crystal one can see the amplitude

in the Gaussian crystal is larger than the bulk phasematching crystal at the end

of the crystal. This seems strange as we know a periodically poled crystal, which

is optimum in terms of increasing the amplitude for a non-phasematched process

has a smaller gradient than bulk phasematching (see Fig. 2.8). The issue is that

the function describing the Gaussian PMF in Eq. (3.4) is unphysical, the amplitude

increases faster than the periodically poled case along the crystal. The next step

in the process is to find the maximum gradient of Eq. (3.4) and set it equal to the

periodic poling gradient of 2/π.

At this point we define a normalisation factor N which when multiplied into equation

Eq. (3.4) reduces the maximum gradient to 2/π
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N =
2/π

max

{
d

dz
ϕtrack (z,∆k = ∆k0)

} . (3.5)

It is worth noting this normalisation factor is not general and must be calculated on

a case-by-case basis as the functional form of the PMF is changed. The final step

is then to feed the PMF along the crystal at ∆k = ∆k0 into the tracking algorithm

which decides on a domain-by-domain basis the orientation of each domain. For the

Gaussian crystal example the final PMF used is then,

ϕtrack (z,∆k = ∆k0) = σ

√
2

π

[
erf

(
z − L

2√
2σ

)
+ erf

(
L

2
√

2σ

)]
, (3.6)

which includes the normalisation factor N = 2σ
π

. The entire design process is sum-

marised in Fig. 3.2

The details of the domain-by-domain tracking algorithm used to decide the orienta-

tion of each domain is explained in detail in [54]. This process is quite robust and

capable of designing a wide variety of different PMF shapes. There are a few points

which must be considered in order for the method outlined to accurately reproduce

the desired PMF. Changing the poling structure away from a periodically poled de-

sign will always reduce the effective length of the nonlinearity profile. This has two

effects, the phasematching bandwidth is increased due to the Fourier relationship

between ϕ (∆k) and g (z). Secondly, the smaller nonlinearity reduces the effective

brightness of the source. All other factors being equal a periodically poled crystal

will produce more photons per unit pump power than an aperiodically poled crystal.

Typically this isn’t an issue, the reduction in nonlinearity can be compensated by

using more pump power which will then give an equivalent squeezing. As we will see

in Section 3.5, quite exotic PMF shapes can be made while still having a reasonable

source brightness. If the same laser is driving a large number of sources then this

power overhead may not be available, however multiphoton experiments involving

up to six photons [57, 58], as well as the demonstration of Gaussian Boson Sampling

with a 76-photon coincidence [59] have been demonstrated using aperiodically poled
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Figure 3.2: The different steps of the design process are summarised in each panel.
The process starts in panel (a) where a target PMF is selected. This is the desired
PMF at the end of the crystal and the function that ultimately goes into the JSA.
From this PMF the nonlinearity profile shown in panel (b) is defined by a Fourier
transform relationship with the PMF. From this nonlinearity profile the PMF ampli-
tude up to an arbitrary point in the crystal is defined in panel (c). This amplitude
along the crystal is then fed into a tracking algorithm which decides the domain
orientation in order to minimise the difference between the target amplitude and
the amplitude in the crystal. This poling structure then generates the desired PMF.
It should be noted that the functions in panel (a) and (b) are really two halves of a
more complete description of the PMF which is shown in panel (e).

crystals.

3.3 Time-Frequency encodings

Having discussed how the shape of the PMF can be modified with aperiodic poling

the next question is what functions should we chose to encode qubits/qudits in the

time-frequency DoF. There are broadly three different ways to encode in time and

frequency, time-bin encoding, frequency-bin encoding and “pulse-mode” encodings.

Fig. 3.3 shows how the three encoding schemes fit together to effectively “tile” the

time-frequency space.
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Figure 3.3: Encoding schemes in the time-frequency domain. Time-bin encoded
states shown in green, encode bits in the arrival time of the photon τi. Frequency-
bin encoded states use the colour of the photons to encode information, λi. Pulse-
mode encoding uses the longitudinal modes of single photons, here represented by
Hermite-Gaussian modes, to encode information. Provided the time and frequency
scales are well separated [60] information can be encoded in a hybrid manner using
combinations of time-bins, frequency-bins and pulse modes, shown here with two
time-bins and three frequency-bins (purple rectangle).

Time-bin encoding is arguably the oldest way to encode information in the time-

frequency DoF. A time-bin qubit is defined as a photon arriving early |e⟩ = |0⟩ or

late |l⟩ = |1⟩ relative to a clock signal. Considering a simplified Gaussian profile

with two time-bins the temporal amplitude is of the form

∫
dtf (t) a† (t) |0⟩ = N

∫
dt

[
α exp

(
−(t− δ)2

2σ2

)
+ eiϕβ exp

(
−(t+ δ)2

2σ2

)]
a† (t) |0⟩ ,

(3.7)

where N is a normalisation constant, 2δ is the temporal separation between the bins

and the encoded state is determined by the amplitudes α, β and the phase ϕ. The

dimensionality of the encoding space can be increased by adding other terms with

increased time delay, nδ where n ≥ 2. For orthogonality the separation between the

time-bins should be much larger than the width of the individual bins.
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Time-bin encoded states are manipulated using unbalanced interferometers with

phase-shifters to control the relative phase ϕ and detected using standard single-

photon detectors to resolve the arrival time [9, 61]. Time-bin states are particularly

suited to quantum communication protocols due to the stability of the phase ϕ.

In order for a state of the form given by Eq. (3.7) to decohere the properties of

the communication channel, either fibre or free-space must vary on a time scale on

the order of δ which is typically nanoseconds. This means that the communication

channel is an identity channel for time-bin encoded states, a clear advantage over

polarisation encoded photons.

Time-bin encoded states can be represented in the frequency domain by taking a

Fourier transform of f (t),

∫
dωF [f (t)] a† (ω) |0⟩ = N ′

∫
dω exp

(
−ω

2σ2

2

)
× [α cos (ωδ) + β cos (ωδ − ϕ)

+ iα sin (ωδ) − iβ sin (ωδ − ϕ)] a† (ω) |0⟩ .

(3.8)

In the frequency domain a photon encoded in time bins has a sinusoidal modulation

in the amplitude. This is a hint that if we want to have time-bin encoded photons,

the PMF as represented in Fig. 2.2 should have a sinusoidal modulation. This idea is

revisited again in Section 3.7.1 taking into account real crystal parameters. Equiv-

alently a frequency-bin encoded state can be written in the same way as Eq. (3.7)

with the substitution t→ ω∫
dωf (ω) a† (ω) |0⟩

= N

∫
dω

[
α exp

(
−(ω − δ)2

2σ2

)
+ eiϕβ exp

(
−(ω + δ)2

2σ2

)]
a† (ω) |0⟩

(3.9)

and a similar equation to Eq. (3.8) exists with ω → t for the frequency-bin represen-

tation in the time domain. The development of frequency-bin photonics has been a

more recent addition to the time-frequency degree of freedom, photons are localised

in discrete regions of frequency space. An advantage of encoding in frequency-bins
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is the carrier frequency for telecom wavelength photons is around 190 THz, given a

picosecond duration photon is around 400 GHz, there is a naturally large encoding

space available. Frequency-bins are manipulated and detected using electro-optic

modulators [62] and Fourier transform pulse shapers, which can in principle be

lossless [63]. This experimental complexity in manipulating frequency-bin encoded

states comes from needing to change the frequency of a single photon including

putting a single photon in a superposition of different frequencies. The upside of

this experimental complexity is that frequency-bins are extremely robust to environ-

mental noise, propagation along an optical fibre or free space does not change the

central frequency of a single photon. Despite this experimental complexity, recent

developments in coherent control of frequency-bins has allowed for full tomography

of frequency-bin entangled photon pairs [64, 65] and generation of on-chip cluster

states [60].

A third encoding in the time-frequency DoF is the “pulse-mode” encoding. Pulse-

modes are overlapping in arrival-time and spectrum and are non-orthogonal in in-

tensity, unlike time-bin and frequency-bin states. Their orthogonality exists at the

amplitude level when considering the temporal or spectral phase. The idea of pulse-

modes started with initial studies of PDC where the Schmidt decomposition was

used to write down the effective modes of the process. For a JSA similar to Fig. 2.3

the biphoton generated is naturally encoded in pulse-modes [26] which are approx-

imately Hermite-Gauss functions. Using the Hermite-Gauss basis pulse-mode en-

coded states are written as,

|ψn⟩ =

∫
dωfn (ω) a† (ω) |0⟩ =

∫
dωHn

(ω
σ

)
exp

(
− ω2

2σ2

)
a† (ω) |0⟩ , (3.10)

where Hn (x) is the n-th order Hermite polynomial. An important point to note is

the mode defined by Eq. (3.10) has the same form in the time domain as fn (ω) is

an eigenfunction of the Fourier transform. With the introduction of the quantum

pulse gate [66], which is a mode selective FC process, similar to the single-mode pro-
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cess outlined in Fig. 2.4, it became possible to coherently manipulate and project

onto pulse-modes. Unitary transformations between different pulse-modes requires

cascaded FC steps which has so far limited their use to proof-of-principle demon-

strations of quantum information primitives [67] although this may change in the

future.

3.4 The role of group velocity

Having hinted at different PMF shapes which could be used to generate photons

encoded in time and frequency we return to the idea of group-velocity matching and

how this affects the type of state encoded, by tuning the group-velocity-matching

conditions the biphoton generated can be tuned from maximally entangled to almost

completely separable.

To illustrate this point consider a PMF which consists of two Gaussian functions

that are centred at ∆k = {−δ,+δ} respectively for some separation δ.

For the case of symmetric group-velocity matching introduced in Fig. 2.3 the pump

inverse group velocity is equal to the mean of signal and idler inverse group velocity

v−1
p =

(
v−1
s + v−1

i

)
/2. For this case the PMF is aligned perpendicularly to the PEF.

This case is illustrated in Fig. 3.4. The resulting state can be written as

|ψ⟩ =
1√
2

(|+δ⟩ |−δ⟩ + |−δ⟩ |+δ⟩) . (3.11)

This biphoton state generated with symmetric group-velocity matching is maximally

entangled in frequency-bins. It is worth noting for a state that is not separable,

the exchange symmetry between signal and idler is a sufficient but not necessary

condition for entanglement. Consider the case if the PMF was not centered at

{−δ,+δ} but {−2δ,+δ/2} for example, this state has no exchange symmetry but is

still maximally entangled.

If we now consider the case for an asymmetric group-velocity matched PDC process

where the PMF is aligned to either the signal or idler axis. As a concrete example
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Figure 3.4: A frequency-bin entangled stated for two frequency bins. The two
Gaussian PMFs are shown in the upper left corner. The JSA is shown in the upper
right, with the PEF bandwidth matched to the PMF bandwidth. The Schmidt
decomposition is shown in the lower half with the Schmidt modes consisting of well
separated Gaussian functions. The Schmidt number for this example is exactly
K = 2.

we will use the idler axis in this example. For this arrangement and the pump

bandwidth sufficiently larger than the PMF bandwidth the resulting biphoton state

is approximately separable. This is shown in Fig. 3.5.

The asymmetric group-velocity-matching condition then allows for heralded photons

in particular time-frequency shapes to be generated by shaping the PMF appropri-

ately. The symmetric-group-velocity matching condition allows a biphoton to be

generated which is maximally entangled in a particular time-frequency encoding by

shaping the PMF.

The path forward from this point is clear, pick a particular time-frequency encoding,

from this decide the appropriate shape of the PMF. From here find a particular

crystal that has the correct group-velocity-matching conditions at the wavelengths

of interest for either an entangled biphoton or for producing a shaped heralded

photon.

Luckily KTP has symmetric group-velocity-matching at telecom wavelengths for
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Figure 3.5: An almost pure single photon with two frequency bins could be generated
by heralding on the idler photon for this case. The two Gaussian PMFs are shown in
the upper left corner, aligned parallel to the idler axis. The Schmidt decomposition
is shown in the upper right with one dominant mode with λ0 ≈ 1. The dominant
pair of Schmidt modes is shown in the lower right. For this process the Schmidt
number is K = 1.04 and therefore the purity of the heralded frequency bin state is
96%. An equivalent JSA (lower left) exists with the PMF aligned to the signal axis,
in this case the shaped photon would be the idler.

type-2 phasematching. Using KTP with domain engineering has generated almost

entirely separable Gaussian biphotons mentioned previously [55, 56] and recently by

shaping the PMF to a first order Hermite-Gauss function generated a maximally

entangled singlet state in pulse-modes [68]. Extending this work we use the same

recipe to generate an eight-mode frequency-bin entangled source of photons around

1555 nm.

3.5 Experimental eight-mode frequency-bin entan-

glement

At this point it is important to highlight the motivation and possible advantages to

moving to a frequency-bin design over previous work on pulse-modes [68]. While
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pulse-modes can be encoded in a high-dimensional d > 2 space it is difficult to

produce maximally entangled state in d > 2. Naively, since shaping the PMF to a

first order Hermite-Gauss function gives a maximally-entangled state in d = 2, one

might imagine using a higher-order Hermite-Gauss mode might give a maximally

entangled state in d > 2. Unfortunately this type of state has unequal Schmidt

coefficients and is not maximally entangled [69]. Fortunately, frequency-bin and

time-bin encodings do not have such restrictions, adding an additional bin with

the same amplitude increases the dimension of the encoding space by one. For the

remainder of this section we will focus on the eight-bin crystal tested experimentally,

and return to potential time-bin encodings at the end of Section 3.7.1.

A second question one might ask is why would you use domain engineering to gener-

ate a frequency-bin entangled state? One could in principle take a pair source with

a broadband correlated JSA and use a series of filters to generate discrete frequency-

bin entanglement. This may be appealing as the bin spacing and bandwidth is set

by the choice of optical filters with GHz bandwidths with 10s of GHz spacing avail-

able with a typical Fabry-Perot filter [70]. One could also use a WDM filter which

would guarantee compatibility with existing WDM fibre networks [71]. Another

approach is to use a cavity-assisted process where the down-conversion bandwidth

spans multiple cavity resonances, this has been used to demonstrate frequency-bin

entanglement on-chip with microresonator sources [60, 64, 65]. The main drawback

of both of these approaches is the loss, either from filtering a broadband source or

resonant losses inside the cavity which will limit the brightness and heralding effi-

ciency of the source. By using domain engineering the efficiency is not limited by

these factors.

Following the steps of Section 3.2 a target PMF can be defined as

ϕ (∆k; ∆k0, δ, σ, n) =
n∑
j

exp

(
−
σ2
(
∆k − ∆k0 −

(
j + 1

2

)
δ
)2

2

)

+ exp

(
−
σ2
(
∆k − ∆k0 +

(
j + 1

2

)
δ
)2

2

)
,

(3.12)
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Figure 3.6: The absolute value of the PMF for the case of eight frequency-bins
including normalisation to respect the maximum gradient available with periodic
poling. This plot uses the parameters for the crystal design used in the rest of this
chapter.

with the bin spacing δ, the width of each Gaussian set by σ, the phase mismatch of

the central frequencies ∆k0 and the number of bins equal to 2n.

Setting n = 4 and carrying out the Fourier transform with respect to the phase

mismatch ∆k the nonlinearity profile is then

g (z; ∆k0, δ, σ) =
2

σ
exp

(
i∆k0z −

z2

2σ2

) 5∑
n=0

cos

(
(2n+ 1)

δ

2
z

)
. (3.13)

The next step is calculating how the amplitude grows along the crystal by integrating

Eq. (3.13) with respect to z. This is quite painful for the case of eight bins but is not

beyond the capabilities of Mathematica or your computer algebra system of choice.

The resulting PMF is shown in Fig. 3.6.

The number of bins n, width of the bins σ and bin spacing δ must be set such that

the nonlinearity profile approaches zero at the crystal edges. If there is a non-zero

nonlinearity profile at the crystal edge the sharp discontinuity generates lobes in the

PMF similar to the sinc-shape seen with bulk and periodically poled crystals.

The width of each bin was chosen to generate an approximately separable Gaussian
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bin with the 1.3 ps pulse-duration of the Ti:Sapphire laser available. From previous

work on pure Gaussian photons a sensible choice for the width is σ = L/4.5, where

L is the crystal length. This then sets the width of a single bin in frequency to be

approximately 300 GHz FWHM.

For the bins to be individually resolved the spacing δ must then be much larger than

σ such that the PMF is close to zero between peaks. Another factor to remember

is that the International Telecommunication Union standard wavelength-division

multiplexing grid has a 100 GHz spacing, so ideally the peaks would be integer

multiples of 100 GHz for potential integration in a fibre network. The δ parameter

was tuned to set the spacing to be 500 GHz by simulating the JSA and fitting to

the signal and idler marginal spectra.

The number of peaks was set to eight in order for the full spectrum to fit inside the

window available with the time of flight spectrometer which is around 31 nm, see

Section 3.5.1.1.

With the design parameters fixed the position of the domain walls, the point at

which the nonliearity profile changes sign, was shared with Raicol Ltd who then

manufactured the crystal. The JSA, nonlinearity profile and poling design for the

designed crystal are presented in Fig. 3.7, Fig. 3.8 and Fig. 3.9 respectively.

Figure 3.7: Simulated PMF and JSA for the crystal parameters stated and the Sech
pulse with 1.3 ps duration. The Schmidt number for this joint spectrum is K = 8.07.
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Figure 3.8: Theoretical nonlinearity profile of the 8b-KTP crystal used in this ex-
periment (navy), a periodically poled crystal is shown (orange) for comparison. The
crystal length is 30 mm which matches the crystal used. The nonlinearity of the
crystal is substantially reduced compared to periodically poled crystal which reduces
the overall brightness.

0 5 10 15 20 25 30
Crystal position z (mm)

1

0

1

Po
lin

g 
de

si
gn

Figure 3.9: The poling design for the 8b-KTP crystal. Plus one and negative one
represent the orientation or sign of the ferroelectric domains.

3.5.1 Experimental characterisation

Characterising entanglement in the time-frequency degree of freedom is arguably

more difficult than other photonic DoFs. The standard route of taking a tomo-

graphically complete set of measurements and reconstructing the density matrix of

the two-photon state is not easily done in the frequency domain as changing the fre-

quency of a photon requires electro-optics or nonlinear optical effects. Despite these

experimental hurdles there has been tremendous progress in measuring the complex

spectral amplitude of single photons and photon pairs using electro-optic shearing

[72, 73], borrowing ideas from the SPIDER technique for ultrafast pulse character-

isation [74]. Process tomography of the quantum pulse gate has been carried out

[75], this could be inverted to use the quantum pulse gate to carry out tomography

of an unknown frequency encoded state. More recently, complete frequency-bin to-

mography has been carried out using electro-optics [65]. All of these techniques have

considerable experimental overhead. We verify the eight-mode entanglement using

a comparatively simpler combination of JSI measurements using time-of-flight mea-
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surements and probe the joint spectral phase by measuring biphoton and heralded

Hong-Ou-Mandel interference. These sets of measurements are not tomographically

complete for the joint spectrum, but under reasonable assumptions of starting from a

pure biphoton state which is well established with PDC, agree well with the designed

JSA.

Throughout all of the measurements the crystal is pumped by a Ti:Sapphire laser

with a pulse duration of 1.3 ps, repitition rate of 80 MHz and a central wavelength

of 777.85 nm. The 8b-KTP crystal is temperature tuned to degeneracy at 48.5 ◦C.

The crystal is mounted in a Sagnac interferometer and pumped in one direction for

all measurements except for the polarisation entanglement measurements presented

in Section 3.5.2 where the Sagnac is pumped bidirectionally [76]. The pump is

focussed into the crystal with a 40 cm focal length lens which gives a pump beam

waist inside the crystal of ≈ 77µm. The signal and idler photons are collected

with 13 mm focal length aspheric lenses (Thorlabs) and the distance from the fibre

couplers is optimised to maximise heralding efficiency. Silicon filters (Semrock) and

long-pass interference filters (Thorlabs) at 1400 nm are used to isolate the single

photons from residual pump light.

λ

GTHW
P

HW
P

DM

8b-KTP
HWP

mirror

signal →

idler →

PBS

Ti-Sapph

Figure 3.10: An 80 MHz, 1.3 ps Ti-Sapphire laser is sent through a half wave-
plate (Crylight) (HWP) and Glan-Taylor polariser (Thorlabs) (GT) for intensity
and polarization control. The 8b-KTP is embedded in a Sagnac interferometer
which allows the generation of polarisation entanglement. Down-converted photon
pairs (signal and idler) are separated by a polarising beam splitter (PBS) (Foctek)
then coupled into single mode fibres and sent to characterisation stages.

The measured brightness of the source is 450 coincidences/mW with a Klyshko

efficiency defined as η = cc/
√
s1s2 = 48% (corrected to 60% by backing out the
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detector quantum efficiency of 80%). The difference in brightness is expected from

the reduced nonlinearity, see Fig. 3.8. In similar experimental conditions a period-

ically poled crystal has a brightness of 4900 coincidences/mW. By comparing the

nonlinearity profiles we expect a brightness of around 13% of a periodically poled

crystal. There are likely some experimental factors which further reduce the mea-

sured brightness such as chromatic aberration in the collection optics across the

30 nm bandwidth of the downconverted photons compared to narrowband spectrum

from the Gaussian crystal. These heralding efficiencies could likely be improved,

Klyshko efficiencies greater than 60% have been demonstrated in similar setups

with Gaussian crystals. When using Gaussian crystals additional 10 nm band-pass

filters are used to reject uncorrelated single photons which reduce the ratio of pho-

ton pairs detected compared to signal and idler singles rate. Using larger band-pass

filters of around 30 nm could be used to help lower the singles rate for the 8b-KTP

crystal and boost the heralding efficiency.

3.5.1.1 Joint Spectral Intensity Measurements

The JSI is measured using long single-mode fibres to map the frequency of the pho-

tons to arrival time at the detectors [77] as a time-of-flight spectrometer. Fast coin-

cidence counting logic which is commonly used for multiphoton experiments is then

used to record the arrival time of photons referenced to a clock signal derived from

the Ti:Sapphire laser. The coincidence counts are then put into a two-dimensional

histogram to reconstruct the JSI. For SMF-28 fibre shorter wavelengths travel faster

than longer wavelengths (normal dispersion). Around 1550 nm the dispersion of

SMF-28 is ≈ 20 ps/nm/km. We use two 20 km spools of fibre in the TOFS, with

the laser repetition rate of 12.5 ns we can look at photons that are ≈31 nm broad

before the longest wavelength of the preceding clock cycle overlaps with the shortest

wavelength of the current pulse. The size of this spectral window can be altered by

pulse-picking the repetition rate to give longer times between pulses or using shorter

lengths of fibre which reduces the resolution of the spectrometer. The design choices

of the crystal were chosen with this spectral window in mind.
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Figure 3.11: Signal and idler pairs from the source are sent to 20 km spools of single-
mode fibre before being detected using SNSPDs. The green shaded region represents
the source shown in Fig. 3.10. The polarisation is optimised at the detectors using
in-fibre polarisation controllers to maximise the singles rate.

The time-tags are recorded using a Hydraharp 400 time-tagger which has a binning

resolution of 1 ps. This then limits the spectral resolution to 2.5 pm. Typically this

resolution far exceeds what is needed for a JSI reconstruction, the timing-jitter of

the superconducting detectors is on the order of 50 ps. For the JSI reconstruct the

data is down-sampled into larger bins to reduce the sparsity of the data.
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Figure 3.12: Theoretical (a) and experimentally measured (b) joint spectral inten-
sity. The JSI is reconstructed through TOFS on a 500 × 500 grid with each pixel
corresponding to an arrival window of 25 ps, which corresponds to a spectral res-
olution of around 0.06 nm. The spectral range of the spectrometer is set by the
temporal separation between pulses from the pump laser corresponding to 12.5 ns,
which is wide enough to contain all eight frequency-bins. The marginal distributions
are shown on the left and top of the main JSI plot, with counts normalised to the
maximum peak height.

The JSI is recorded over four hours of integration with the source pumped at 100 mW

for a total number of 4.3 × 107 coincidence counts. The internal photodiode signal

from the Ti:Sapphire is used as a reference clock signal sent to the time-tagger. This

dramatically reduces the time needed for the reconstruction compared to previous
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experiments which used a second PDC source sent directly to a detector and required

three-fold coincidence counting [56, 68].

1540 1550 1560 1570
Wavelength (nm)

0

500

1000

1500

2000

N
o.

 c
ou

nt
s

s
i

Figure 3.13: The signal and idler spectra measured on a commerical InGaAs EM-
CCD spectrometer under degenerate conditions for 60 seconds of integration time.
These measurements are used to calibrate the time-to-frequency mapping of the
TOFS by overlapping the marginal spectra of signal and idler from the JSI to the
EMCCD measurements.

The average separation between peaks from these marginal measurements is mea-

sured to be 498 GHz which matches well with the designed separation of 500 GHz.

The Schmidt number estimated using the
√

JSI is K = 7.018(3). The overlap to an

eight-mode maximally entangled state by comparing Schmidt numbers to the ideal

value of λi = 1/
√

8 for the first eight modes and zero otherwise is 96.01(1)%. Errors

are quoted at three sigma estimated from 1000 rounds of Monte Carlo simulation

assuming Poissonian counting statistics. The Schmidt number and overlap from the

theoretical JSA are 8.07 and 98.5% respectively.

The difference between the theoretical and experimental Schmidt values is due to

the unequal peak heights and finite suppression between each peak, most clearly

seen in the marginals of Fig. 3.12. The finite suppression is a result of the relatively

dense packing of the frequency-bins. Reducing the number of bins, for example four

bins over the same bandwidth, would improve the extinction ratio. The unequal

peak heights are suspected to be an artifact of measuring the JSI using a dispersive

fibre spectrometer. As the joint spectrum is relatively broad, around 30 nm, each
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Figure 3.14: Comparison of the Schmidt coefficients for the theoretical JSA (a) and
for the experimentally measured

√
JSI = |JSA| (b). The ideal eight-mode entangled

state with equal Schmidt coefficients is shown in orange.

bin experiences a slightly different birefringence over the 20 km of single-mode fibre

and fibre polarisation controllers used in the reconstruction. This then gives a

small variation in the detection efficiency for each bin at the SNSPDs which are

polarisation sensitive. This could be mitigated by using spools of polarisation-

maintaining fibre for the time-of-flight measurements. Looking at the marginal

spectrum measured using a commercial InGaAs CCD which avoids this issue the

peak height is much more consistent across the entire spectrum Fig. 3.13.
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Figure 3.15: Variation in the Schmidt number and fidelity to an eight-mode entan-
gled state with the bin size. For small binning factors the sparsity of the JSI results
in an overestimation of the Schmidt number and understimation of the fidelity. For
the result presented in this chapter we use a bin size of 25 ps, increasing the binning
factor further reduces the extinction ratio between peaks in the JSI as the peaks
become less well resolved.

46



Chapter 3: Time-Frequency entangled photon pairs

3.5.1.2 Biphoton inteference

As the JSI has no joint spectral phase information this must be assessed through

other means. The signal-idler HOMI, which we term biphoton interference, can give

some insight into possible spectral phase correlations in the JSA. For frequency-

bin entangled states biphoton interference shows characteristic beating between the

different frequency components of the JSA [78]. An important point to note is

that HOMI reveals the exchange symmetry of the biphoton state under exchange

of signal and idler [79]. The essence of this is that a state with perfect symmetric

exchange symmetry will show a dip with unit visibility in HOMI, a perfectly an-

tisymmetric state will show a peak with unit visibility [68]. A corollary of this is

that a coincidence probability which exceeds 1/2 must come from a state which has

antisymmetric exchange symmetry and is therefore a witness of entanglement. It is

worth noting that the dimensionality of the entanglement cannot be probed using

biphoton HOMI [80]. With the flat spectral phase in the PMF design we expect

the biphoton state to be symmetric under exchange of signal and idler and therefore

show a high visibility dip at zero time delay.

The biphoton HOMI dip shape as a function of time delay τ can be calculated from

the JSA as

p2 (τ) =
1

2
− 1

2

∫
dωi

∫
dωsf

∗ (ωi, ωs) f (ωs, ωi) e
i(ωi−ωs)τ . (3.14)

To make the analytic calculation simpler we approximate the JSA as a product of

a Gaussian PEF

α (ωs + ωi) = e
−

(ωs + ωi)
2

2σ2 , (3.15)

and a PMF as a sum of n different Gaussians functions with spacing δ,
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ϕ (ωi, ωs) =

√
1

πσ2 (n+ 1)

×
n∑

j=0

e−
(ωi − ωs + δ (j + 1/2))2

2σ2 + e
−

(ωi − ωs − δ (j + 1/2))2

2σ2

 ,

(3.16)

where the number of bins is given by 2 (n+ 1). The width parameter of the PEF and

PMF σ is assumed to be identical which simplifies the calculation, this is justified

by the PMF design. Each bin width is set to match the parameters used for almost

completely separable PDC sources [56].

Inserting these into Eq. (3.14) and assuming the overlap between the Gaussians is

small the order of integration and summation can be swapped, the biphoton dip

shape is given by,

p2 (τ) =
1

2
− 1

2 (n+ 1)

n∑
j=0

e
−

(δ + 2jδ)2 + σ4τ 2

4σ2

1 + e

(δ + 2jδ)2

4σ2 cos

(
δτ

2
+ jδτ

) .

(3.17)

For the biphoton interference measurements the repitition rate of the Ti:Sapphire

laser is temporally multiplexed up to 160 MHz from 80 MHz using a free space delay

line [81]. For the same average power the 160 MHz pulse train reduces the higher

order emission from the PDC source while keeping the single pair emission constant.

For a repetition rate R = 80 MHz and pulse power P the pair emission goes roughly

as ppair ∝ RP and the leading higher-order emission go as phigher ∝ RP 2. The effect

of doubling the repetition rate is to send P → P/2 and R → 2R such that ppair is

constant but the higher order emission goes to phigher → 2R (P/2)2 = PR/2. As

the biphoton state is separable in all other degrees of freedom other than frequency

we can attribute the anti-bunching peaks at ±1 ps to spectral entanglement, see

Fig. 3.16.
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Figure 3.16: Biphoton HOM interference data (blue dots) with line of best fit (or-
ange) with Eq. (3.17) with n = 3. Bin width, bin separation and visibility are free
parameters. Coincidence counts are integrated over two seconds with an incident
pump power of 400 mW. Counts are recorded every 0.1 mm using a motorised trans-
lation stage. The measured visibility is 97.9(3)%. The frequency-bin separation δ
extracted from the best fit parameters is found to be 499.7(3) GHz which agrees
with the designed spacing of 500 GHz. The shaded blue region is the three sigma
confidence region assuming Poissonian counting statistics. The grey dashed line
shows the Gaussian envelope expected from a single frequency bin which bounds
the visibility of the frequency beating.

3.5.1.3 Heralded two-photon interference

From earlier discussions of the Schmidt decomposition, the purity of a heralded single

photon is related to the Schmidt number as P = 1/K, see Eq. (2.32). The single

photon purity is also equal to the visibility in a HOMI measurement. Measuring

the visibility in a heralded HOMI (signal-signal or idler-idler) experiment then gives

some information about the spectral entanglement of the source.

With one crystal, the heralded HOMI is measured by delaying a signal photon

to interfere with a signal photon produced at a later time using an unbalanced

Mach-Zehnder interferometer (MZI). The idler photons are probabilistically split on

a 50:50 beam splitter and sent to two SNSPDs to herald successive events. The

delay in the MZI is set to three clock cycles, this was chosen for experimental

convenience as fibre patch cables of ≈ 7.5m are readily available. For the heralded

HOMI measurements the pump beam was not temporally multiplexed and the base
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repetition rate of 80 MHz was used. Using similar arguments as the biphoton case

the four-fold detection in the heralded HOMI goes as P2 pair ∝ RP 2 so reducing the

pulse power but increasing the repetition rate does not increase the four-fold rate

for a fixed pump power. A secondary issue is that if the delay line does not match

exactly half the repetition rate the delay between photons generated by different

pulses varies which will degrade the HOMI visibility.

λ
s→

i→
7.5 m

Δt50:50 FBS
MZI

Figure 3.17: Heralded two-photon Hong-Ou-Mandel interferometer. The signal pho-
ton is sent through a 50:50 fibre beam splitter (FBS) which probabilistically directs
each photon into an unbalanced Mach-Zehnder interferometer (MZI). One MZI path
contains a ∼7.5 m fibre which introduces a temporal delay corresponding to three
laser clock cycles. The second MZI path contains an adjustable free-space delay,
∆t. Two signal photons passing through the MZI then interfere on a second 50:50
FBS before detection with SNSPDs. The idler mode is sent to a 50:50 FBS then
detected with SNSPDs to herald successive probabilistic emissions from the source.
Coincidence counts are recorded for successful four-fold events.

The version of the heralded HOMI using delayed pulses has some disadvantages to

the case of using two independent crystals and interfering photons generated from

the same clock pulse. With the probabilistic routing of photons on a 50/50 beam

splitter and the electronic delays programmed into the timing logic the number of

valid four-folds is 1/8 of the events where photons are generated in adjacent pulses.

This comes from two factors of 1/2 on the heralded arm, the early idler must go to

one of the detectors which has a 30 ns electronic delay and the second idler must

reach the other detector. Similarly there are two factors of 1/2 for the signal photons,

the early pulse must go down the longer path in order to temporally overlap the

photons on the beam splitter where the interference takes place. This leads to the

relatively low four-fold rate of around 0.3 Hz.1

1When someone asks “Do you think we should buy two crystals?” the answer is “Yes” and
definitely not “I’m not sure we would need a second one...”.
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The heralded HOMI dip can be calculated as

p4 (τ) =
1

2
−

1

2

∫
dωi1

∫
dωs1

∫
dωi2

∫
dωs2f

∗ (ωi1, ωs2) f
∗ (ωi2, ωs1) f (ωi1, ωs1) f (ωi2, ωs2) e

i(ωs1−ωs2)τ .

(3.18)

With the same assumptions used for the biphoton dip swapping the order of sum-

mation and integration and evaluating the integral over signal and idler frequencies

gives the coincidence probability as,

p4 (τ) =
1

2
− 1

4 (n+ 1)2

×
n∑

j=0

e
−

(δ + 2jδ)2 + σ4τ 2

4σ2

1 + e

(δ + 2jδ)2

4σ2 + 2 cos

(
1

4
(δ + 2jδ) τ

) .

(3.19)
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Figure 3.18: Heralded two photon interference data. Coincidence counts are inte-
grated over 4 hours per data point with a step size of 0.5 mm. The incident pump
power was set to 400 mW and the parameters δ and σ are set to match the bipho-
ton interference measurements. The orange line is the line of best fit, the light blue
region is the one sigma confidence interval assuming Poissonian counting statistics.
The measured visibility is 11.2(1.4)% which agrees with the expected value of 12.5%
(red dashed line, Eq. (3.19)) for an eight-mode entangled state within experimental
error.

The HOMI measured in the Fig. 3.18 shows reasonable agreement with the theo-

retical result based on Eq. (3.19). The small discrepancy between the theoretical
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visibility and the experimental data is attributed to small variations in the polar-

isation state across the full bandwidth of the signal photons induced by chromatic

dispersion in the fibre polarisation controllers.

3.5.2 Polarisation frequency-bin hyperentanglement

Having demonstrated frequency-bin entanglement through a combination of JSI and

HOMI measurements the source is pumped bidirectionally in the Sagnac interfer-

ometer to generate hyperentanglement in both frequency-bin and polarisation. Hy-

perentanglement between pulse-mode and polarisation has been demonstrated with

domain engineered crystals in a Saganc interferometer [82].

Hyperentanglement between frequency and polarisation has been used in a demon-

stration of entanglement based QKD in a WDM network [71, 83]. Typically these

sources are CW pumped, spectrally correlated type-0 sources. This frequency cor-

relation is used indirectly, the strong correlation ensures that when a user detects

a signal photon in a channel which is red detuned from half the pump frequency

the idler photon will be detected in a channel blue detuned by the same amount.

Typical sources in this type of experiment have a signal/idler bandwidth of ∼60 nm

and the photons are collected in channels which cover < 10 nm [83]. Photons emit-

ted into the remaining bandwidth are lost which reduces the overall efficiency and

brightness of the source. A frequency-bin entangled source could be used in this

type of demonstration with high efficiency and using the entire bandwidth of the

downconverted photons.

We show that the polarisation entanglement persists across all eight bins by using

TOFS after polarisation tomography, see Fig. 3.19. The TOFS measurement mimics

the action of a WDM by temporally demultiplexing the frequency components into

different arrival times compared to a typical WDM which maps frequency to spatial

mode.
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The state produced after the Sagnac interferometer can be written as,

|ψ⟩ =
4∑

i=−4
i ̸=0

1√
2

(
|H⟩ |V ⟩ − eiϕi |V ⟩ |H⟩

)
⊗ 1√

Ni

|i⟩ |−i⟩ , (3.20)

where Ni is related to the intensity of each frequency bin. The phase ϕi varies

between bins due to the chromatic dispersion of the polarisation optics inside the

Sagnac interferometer and the waveplates used in the polarisation tomography setup.

Polarisation analyser TOFS

λ
i→

s→
20 kmPF

C
QW
P
HW
P
PB
S

SNSPD

Figure 3.19: Experimental setup for polarisation-resolved TOFS. Polarisation to-
mography is carried out with a typical quarter-wave plate, half-wave plate and
polarising beam splitter. The TOFS is identical to that of Fig. 3.11.

We carry out polarisation tomography using symmetric informationally complete

(SIC) projections to limit the number of joint spectra required to 16 compared to 36

required if measuring mutually unbiased bases (MUB). The set of SIC states are the

minimum set of states required for complete tomography with each state in the set

having equal overlap with any other state in the set. For a single qubit the SIC states

can be visualised as a tetrahedron on the Bloch sphere. Each projection contains

on average 20 × 106 detection events, recorded over two hours of measurement.

The SIC states used are given by [84],

M1 =
1

2

(
I +

σx + σy + σz√
3

)
M2 =

1

2

(
I +

σx − σy − σz√
3

)
M3 =

1

2

(
I +

−σx + σy − σz√
3

)
M4 =

1

2

(
I +

−σx − σy + σz√
3

)
,

(3.21)

where I is the identity matrix and {σx, σy, σz} are the Pauli matrices. These states
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can be pictured as the vertices of a tetrahedron in the Bloch sphere. The waveplate

settings for the SIC measurements are given by,

M1 = {20.066◦, 22.5◦}

M2 = {42.566◦,−22.5◦}

M3 = {−42.566◦, 22.5◦}

M4 = {−20.066◦,−22.5◦} .

(3.22)

for the HWP and QWP respectively.

1 2 3 4 5 6 7 8
Bin number

0.75

0.80

0.85

0.90

0.95

1.00

Fi
de

lit
y

0.75

0.80

0.85

0.90

0.95

1.00

Pu
ri

ty

1539 1551 1563 1575
Signal Wavelength (nm)

1539

1551

1563

1575

Id
le

r 
W

av
el

en
gt

h 
(n

m
)

0

200

400

600

(a) (b)

Figure 3.20: (a) Experimental JSI for polarisation projection M1 on both qubits.
The signal and idler filtering applied in post-processing is shown for bins 1 (blue),
4 (red) and 7 (pink). The bin width is 1.52 ns which corresponds to 3.8 nm filter
width given the fibre dispersion of around 20 ps/(nm·km) and 20 km of fiber. (b)
Results of polarisation tomography with frequency resolved measurements. The
average purity and fidelity are 88.7(3)% and 92.6(1)% respectively. Error bars are
calculated by 1000 rounds of Monte Carlo sampling assuming Poissonian counting
statistics.

The fidelity to the singlet state is calculated by applying a correction for the phases

ϕi in post-processing. In a wavelength-division multiplexed scenario this phase can

be corrected by appropriate waveplate settings. The average purity and fidelity are

88.7(3)% and 92.6(1)% respectively with a maximum (minimum) fidelity of 97.3%

(88.7%). The drop in purities compared to other telecom wavelength Sagnac sources

[85] is attributed to the wavelength dependence of the polarisation optics inside the

Sagnac interferometer and can be improved by using an achromatic half-wave plate

inside the Sagnac. The waveplates in the tomography setup also impart different

unitaries across the full bandwidth of the downconverted photons which reduces
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the purity of the reconstructed state. This can be mitigated by reconstructing the

polarisation state of each bin individually using WDM filters [86] or again using

achromatic optics.

3.6 A hint towards frequency-bin GHZ states

Frequency-bin encoded photonics has focused primarily on entanglement of two

photons with dimension varying from d = 8 in this work up to as much as d = 648

[70] but restricted to only two photons. Even the demonstration of time-frequency

encoded cluster states has used modal entanglement of two particles [60], using

time-bins and frequency-bins as independent degrees of freedom. This reluctance

to go beyond two photons likely comes from the loss associated with manipulat-

ing frequency encoded states or typical CW excitation which makes multiphoton

experiments difficult.

Entanglement of more than two particles is a complex topic which I will not discuss

in detail here but a particularly relevant state for quantum information tasks is the

Greenberger-Horne-Zeilinger (GHZ) state [87, 88] which has the form,

|GHZ⟩ =
1√
d

d−1∑
i=0

|i⟩⊗N (3.23)

for N d-dimensional qudits.

Inspired by ideas of generating polarisation GHZ states in a post-selected fashion us-

ing a polarising beam splitter I present a scheme for generating a four-photon, three

frequency-bin GHZ state in a post-selected manner. This scheme uses a particular

type of frequency-bin entangled state which could be generated using type-2 KTP

at telecom wavelegnths with PEF shaping, the complement of PMF shaping with

domain engineering presented in this chapter. PEF shaping can be easily achieved

using Fourier transform pulse shapers on ultrafast pulses.

Consider the case of a three frequency-bin PEF pumping a PDC process in type-2

KTP at telecom wavelengths with symmetric group-velocity matching. This would
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produce the biphoton state of the form

|ψ⟩ =
1√
3

(|11⟩ + |22⟩ + |33⟩) . (3.24)

This is similar to the frequency-bin state presented in this chapter but the frequency

bins are aligned to the positive diagonal in the JSA not the anti-diagonal as with

PMF shaping. Considering the joint state of two copies of such a source we have,

|ψ⟩ =
1

3
(|11⟩ + |22⟩ + |33⟩) ⊗ (|11⟩ + |22⟩ + |33⟩)

=
1

3
(|1111⟩abcd + |1122⟩abcd + |1133⟩abcd

+ |2211⟩abcd + |2222⟩abcd + |2233⟩abcd

+ |3311⟩abcd + |3322⟩abcd + |3333⟩abcd) ,

(3.25)

where we the subscripts label the spatial mode, see Fig. 3.21. We now act on this

state with a multiport interferometer made up of 2 × 2 elements which reflect one

of the three frequencies and transmit the other two. These could be made of either

dichroic mirrors or fibre Bragg gratings with optical circulators on the input and

output depending on the spacing and bandwidth of the frequency bins.

a

a'

c

c'

b

b'

d

d'

Figure 3.21: Multiport interferometer for generating a frequency-bin GHZ state
from two frequency-bin Bell pairs. The colour coding reflects the frequency which
is reflected by the mirror, blue for |3⟩, green for |2⟩ and red for |1⟩.
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After going through the mulitport the output state can be written as,

U |ψ⟩ =
1

3
(|1111⟩a′b′c′d′ + |1122⟩a′b′d′b′ + |1133⟩a′b′b′c′

+ |2211⟩a′c′c′d′ + |2222⟩a′c′d′b′ + |2233⟩a′c′b′c′

+ |3311⟩a′d′c′d′ + |3322⟩a′d′d′c′ + |3333⟩a′d′b′c′) .

(3.26)

Post-selecting on a four-fold coincidence between modes a′, b′, c′, d′ the final state is,

|ψ⟩post =
1√
3

(|1111⟩ + |2222⟩ + |3333⟩) , (3.27)

which is a GHZ state of three frequency-bins.

For the scheme to be post-selectable the number of frequency bins d < n, where

n is the number of particles, such that one spatial mode does not take part in the

interference. It is not clear if this type of passive frequency mixing generalises to

creating GHZ states for other input Bell states such as those produced by PMF

where the frequencies are anti-correlated. Despite the restriction on the input state

this scheme demonstrates that passive optical fusion of frequency-bin Bell states

into larger entangled states is possible.

3.7 Future designs for other time-frequency en-

codings

At this point we return to the ideas presented in Section 3.3 and Fig. 3.3 to discuss

other crystal designs which include time-bin encoded states and hybrid encodings.

These crystals were not manufactured during the course of this thesis but may form

the basis for future work with domain-engineered crystals.
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3.7.1 Time-bin crystals

As hinted at previously, in order to generate time-bin entanglement the PMF should

have some sinusoidal modulation in the frequency domain Eq. (3.8). Following the

same design process a crystal which generates time-bin entanglement between signal

and idler can be constructed with a PMF of the form,

ϕ (∆k; ∆k0, τ, σ) = exp

(
−(∆k − ∆k0)

2 σ2

2

)
exp (i (∆k − ∆k0) τ)

+ exp

(
−(∆k − ∆k0)

2 σ2

2

)
exp (−i (∆k − ∆k0) τ) .

(3.28)

Eq. (3.28) is simply a Gaussian function times a cosine modulation. As the non-

linearity profile is the Fourier transform of the PMF and using the property that

a phase in one domain gives a linear shift in the Fourier domain the nonlinearity

profile is expected to be a pair of Gaussians shifted in position with respect to one

another, see Fig. 3.22 (c).

This then illustrates how the time-bin entanglement is generated inside the crystal,

as the pump beam propagates it generates photons in one of two well localised

positions in the crystal with no photons produced between these positions. This

also then is the main hurdle with using domain engineering to produce time-bin

entanglement, the separation between the time-bins is on the order of the time

it takes the pump and signal/idler to walk away from each other over the crystal

length. As an illustrative calculation let us consider an ideal case where the Gaussian

functions are infinitely narrow and at either end of the crystal such that they are

separated by the full crystal length which we will take to be 30 mm. The time

between the pump and signal/idler photon reaching the second nonlinear region

after passing through the first is given by,

Ts − Tp =
(ngs − ngp)L

c
. (3.29)

Putting in the group indices for 775 nm and 1555 nm in KTP the separation in time

is around 4.4 ps. Sadly this is an upper estimate on the available time separation
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between the bins, the nonlinear regions cannot be infinitely narrow and placed at

the crystal edges. In Fig. 3.22 the PMF, JSA and nonlinearity profile are presented

for realistic parameters which has the nonlinear regions separated by 15 mm with

therefore 2.2 ps separation. A point worth noting is that for the time bins to be

well resolved the pump must be considerably shorter than the 1.3 ps used for the

frequency-bin entangled crystal. For the simulated JSA presented in Fig. 3.22 the

pump beam has a duration of 300 fs.
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Figure 3.22: Time-bin phasematching function (a) and JSA with the corresponding
crystal nonlinearity showing two well separated Gaussian peaks (c). The pump pulse
duration is 300 fs which allows the time bins to be well resolved, the Schmidt number
for this PDC process is K = 2.02 which is indicative of a two-mode maximally
entangled state.

This may seem quite bleak, the time-bin separation is certainly experimentally chal-

lenging to deal with and outside the reach of standard SNSPDs which have 10s of

ps jitter. The separation could be resolved using upconversion detection with ul-

trafast pulses [89]. Recently a lab demonstration of QKD using ultrafast time-bins

with temporal separation of 4.5 ps was demonstrated using cross-Kerr nonlinearities

to convert the time-bin qubits to polarisation qubits which were then analysed by

standard polarisation tomography. As improvements to crystal fabrication increases

and it becomes feasible to grow larger crystal with uniform poling quality the time-
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bin separation can be increased which will also relax the demanding experimental

requirements. A future application of ultrafast time-bin qubits might be in QKD

over free-space links with the advantage that the source could be clocked at 10s of

GHz.

3.7.2 Hybrid encodings

We have shown experimentally how frequency-bins can be generated with domain en-

gineering in this thesis and hinted at how time-bins could be realised in Section 3.7.1.

With pulse-mode encoded crystals demonstrated experimentally in previous work

[68], all of the methods of encoding in time and frequency have been covered. One

possible future area of investigation could be using more than one encoding method

in a single crystal in a hybrid-encoding scheme, such as the purple region in Fig. 3.3.

Time-bins and frequency-bins have already been used together to form cluster states

on chip [60]. So far the possibility of using pulse-modes with another type of encod-

ing has not been explored. For instance consider a PMF combining a combination

of pulse-modes and frequency-bins, see Fig. 3.23.

(a) (b)

Figure 3.23: PMF (a) for the case of two frequency-bins with each frequency-bin
consisting of two pulse-modes and the resulting JSA (b). The Schmidt number is
K = 4.03, there are some unsuppressed sinc lobes between the two bins which could
likely be improved by refining the crystal parameters.

The state produced by the PDC process shown in Fig. 3.23 can be written as

|ψ⟩ =
1

2
(|ω1⟩ |ω2⟩ + |ω2⟩ |ω1⟩) ⊗ (|HG0⟩ |HG1⟩ − |HG1⟩ |HG0⟩) , (3.30)
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which is a hyperentangled state of frequency-bins and pulse-modes where the states

|HG0⟩ , |HG1⟩ are the zero and first-order Hermite-Gauss modes. Considering pro-

jecting out one of the frequency-bins, say the signal photon at 1554 nm and the

idler at 1545 nm, the remaining lobe is left in an entangled state in pulse-modes.

An interesting open question is if pulse-modes can be coherently manipulated with-

out disturbing entanglement in the other encodings in a similar manner to time-bin

and frequency-bin hyperentangled states. Current methods of coherently operat-

ing on pulse-modes use the quantum pulse gate which would not preserve time or

frequency-bin entanglement.
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Quantum dot frequency conversion

At this point we shift our focus away from tailored PDC sources and turn our

attention to frequency conversion and specifically DFG. In this chapter we show

results on frequency converting light from a quantum dot single-photon source to

the telecom C-band. Many quantum emitters have desirable properties that make

them arguably better candidates for single-photon sources than pair sources based

on nonlinear processes. There is no inherent trade-off between the brightness of

the source and the signal-to-noise ratio. For a PDC source as the probability of

producing a single pair of photons increases the signal-to-noise ratio decreases due

to higher order pair emission. With a single-emitter this is no such issue, increasing

the brightness is just a matter of engineering the photonic structure the emitter lives

in, and in principle this does not have to increase the background noise.

The main drawback of nearly all single-photon emitters is their emission wavelength,

typically this is in the visible or near-infrared range. While these wavelengths might

find use in QKD over free-space channels [90], they are incompatible with standard

optical fibre which has the lowest loss around 1550 nm. For the remainder of this

chapter we will restrict the discussion of single-emitters to quantum dots.

There are two possible solutions for this problem, the first is to change the ma-

terials and design of the QD to move the emission wavelength longer towards the

telecom windows. There has been dramatic progress in this direction with excellent
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demonstrations of high purity single-photon emission, demonstrated by second-order

coherences on the order of g(2) = 5 × 10−3 [91]. Despite this progress, the perfor-

mance of these sources still lags behind their counterparts in the NIR in terms of

two-photon interference visibility and count rate. At the moment I think it is un-

clear if this is a fundamental issue or if it is simply a matter of time before the

fabrication and control of these devices improves. 1

The second option is to take the already excellent QD at NIR wavelengths and

use frequency conversion to get to 1550 nm. This can in principle be noiseless

and have high efficiency. The drawback is the additional experimental complexity

in running a frequency conversion setup with an additional laser system in your

single-photon source. FC based on three-wave mixing has been demonstrated with

NIR quantum dots to the telecom bands has been demonstrated with MHz detected

rates at 1550 nm with low multiphoton emission [92, 93]. It has also been used to

demonstrate remote two-photon interference between distinct QDs which does not

degrade the visibility of the sources before conversion [33, 94].

This chapter highlights the experimental steps required to carry out this frequency

conversion process. Specifically the QD source, the driving laser and the lithium

niobate waveguide used for DFG will be discussed in turn before the performance

of the frequency converted single-photon source is discussed.

4.1 Quantum dot

The quantum dot source consists of a self-assembled InGaAs/GaAs QD coupled to

an oxide-apertured micropillar cavity with a Q factor of 104. The QDs are embedded

in a p-i-n diode structure [95, 96] which enables charge control and tuning of the QD

emission to the cavity mode via the Stark effect. The sample is kept at a temperature

of 4 K in a closed-cycle helium flow cryostat. A dark-field confocal microscope is

used to excite and collect the scattered photons from the QD before filtering in a

cross-polarisation scheme with a ∼ 107 extinction ratio to suppress the excitation

1You will get a different answer depending on who you ask this question to, often the answer is
related to what they are currently working on so who knows what their real opinions are.
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Figure 4.1: Photo-luminescence emission profile of the QD under 820 nm excitation
shows cavity modes up to the 5th order. The QD is resonantly coupled to the first
cavity mode. Inset shows the detected count rate as a function of the excitation
power when the excitation laser is resonant to the 1st (resonant, blue) or 3rd (non-
resonant, green) cavity mode.

laser. Credit is given to N. Stoltz, P. Petroff and D. Bouwmeester for QD design

and fabrication, and to Z. X. Koong for operating the QD during the course of the

measurements presented in this thesis. More details on the device fabrication and

design can be found in [97].

The QD was initially characterised by measuring the emission spectrum using a Sili-

con EMCCD spectrometer under CW excitation at 820 nm. This emission spectrum

shows five cavity modes and emission from the QD which was electrically tuned onto

resonance with the first cavity mode.

From this point forward we use the term resonant excitation to refer to excitation

resonant with the first cavity mode (navy in Fig. 4.1) and quasi-resonant excitation

to refer to excitation tuned to the third cavity mode (green in Fig. 4.1). The inset

of Fig. 4.1 shows the count rate as a function of excitation power under resonant

excitation showing Rabi oscillations (navy) and the quasi-resonant (green) which

requires higher excitation power.

Throughout this chapter we use the neutral exciton X0 resonant with the first
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cavity. Pulsed resonant excitation is carried out with a 80.3 MHz pulse train from

a 140 fs Ti:Sapphire laser which is filtered down to 10 ps duration using a 4f pulse

shaper. Under pulsed quasi-resonant excitation the Purcell enhancement is found

to be ≈ 4 by measuring the lifetime as a function of QD detuning to the first

cavity mode and comparing the lifetime at zero detuning to the asymptotic value at

large detuning. At zero detuning lifetime is measured to be T1 = 0.2622 ns. The T2

coherence time of the emission, measured using standard Fourier spectroscopy under

π-pulse resonant excitation, shows T2 = 0.348 (2) ns, corresponding to a linewidth of

915 (5) MHz. This value is ≈ 1.5 times larger than the transform-limited linewidth

(1/T1 = 607 MHz). This limits the HOMI with large time separations between

the photons being interfered to T2/2T1 = 66%. The central emission wavelength

of the QD is 942.33 nm. The second-order correlation of the source and HOMI

visibilities are left to be presented in Section 4.4 alongside the same measurements

after frequency conversion.

4.2 Mid-infrared laser

In order to convert the photons at 942 nm to a target wavelength of 1550 nm a light

source at the difference frequency λ = (1/λin − 1/λout)
−1 is required. For our QD

source we need a light source at ∼ 2400 nm for conversion to the C-band. There are

different possible routes to realise this light source. There are a few requirements

which any potential light source should satisfy, it should have sufficient output power

to not be a limiting factor in the conversion efficiency process, it should be coherent

such that it does not degrade the HOMI visibility of the input photons and it should

also not introduce additional noise photons that are overlapped in spectrum or time

with the converted photons. These requirements narrow the options down to either

a laser or OPO/OPA system.

We will highlight some attractive properties of the OPO/OPA option in Section 4.5

which could be realised using the Ti:Sapphire used to drive the QD and a high

power source at 1550 nm which could be realised with an erbium-doped fibre ampli-
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fier. This would be the complementary DFG process to the one used to frequency

convert the single photons. This then causes some experimental problems in that

this bright source of 1550 nm light must be fully extinguished before the single-

photon conversion step but there are some advantages which are worth exploring.

The alternative option is to find a laser gain medium which works for 2400 nm.

Chromium doped into a zinc-selenide host is an attractive option. Cr:ZnSe has a

vibronically broadened gain spectrum and has been shown to emit from 1900 −

3300 nm. This has been used to demonstrate tunable CW operation and also pulsed

operation with pulse durations down to 43 fs. 2 In this work we operate in a tunable

CW mode.

The Cr:ZnSe crystal is pumped by a thulium-doped fibre laser which is capable of

producing 20 W CW at 1900 nm.3 The 1900 nm light is focussed into the Cr:ZnSe

crystal with a 100 mm focal length CaF2 lens. The cavity consists of a dichroic

input coupler (50 mm radius of curvature (ROC), transmissive at 1900 nm reflective

at 2400 nm), a gold mirror (50 mm ROC), two plane silver mirrors and the Cr:ZnSe

crystal. The crystal which was not anti-reflection coated is placed at Brewster’s angle

(∼ 70◦) to minimise losses due to reflection. The output coupler has a transmission

of 60% at 2401 nm, allowing a good trade-off between the cavity enhancement and

available output power. The input and output couplers are both custom mirrors

from Layertec, all other components are off-the-shelf components. The Cr:ZnSe

crystal was mounted on a water-cooled copper plate to control the temperature of

the crystal and avoid thermal lensing effects which reduce output power and can

cause optical damage [98].

Initially, a silicon prism was used as a dispersive element inside the cavity to control

the emission wavelength. For the lasing wavelength of 2400 nm silicon has good

transmission properties which allowed for high output powers approaching 3 W.

Unfortunately the silicon prism had quite poor wavelength selectivity. The output

2In this sense Cr:ZnSe is similar to a Ti:Sapphire laser with wavelengths in the mid-infrared.
3Cr:ZnSe can be pumped with 1550 nm light from an EDFA which is preferable to the thulium

fibre laser due to reduced absorption in air which can cause instabilities in the laser emission. We
only learned this after speaking to people who build these lasers for a living.
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Figure 4.2: Experimental layout of the seed laser used to produce the 2400 nm
light. Yellow lines indicate the beam path of the 1900 nm thulium fibre laser, pink
represents the 2400 nm light. The first-order diffracted beam from the diffraction
grating is sent towards the output coupler. Any noise photons and excess pump
light at 1900 nm is removed using long-pass filters at 2000 nm (LP2000).

spectrum was broadband with discrete peaks which fluctuated in relative intensity

and position. Fig. 4.3 shows a typical set of spectra measured using an optical

spectrum analyser with sensitivity between 1 − 5µm with a spectral resolution of

2 GHz. A fluctuating pump spectrum will mean that shot-by-shot each photon will

have a different spectral shape after the DFG step and which would result in a

spectrally mixed state. On top of this the mode hopping meant the output power

of the laser was fluctuating over time such that optimising the other factors which

affect the conversion efficiency such as waveguide coupling and mode overlap would

prove difficult.

The spectral stability of the laser needed to be improved in order to proceed. The

intuition was that the prism did not have enough dispersion to create a narrow

enough gain bandwidth. Having a narrower gain bandwidth would mean fewer

cavity modes inside the gain bandwidth and perhaps a more stable spectrum. A

diffraction grating with 450 lines/mm was inserted in place of the silicon prism with

the first order diffracted beam aligned to the output coupler. This dramatically
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Figure 4.3: The measured spectrum using an OSA of the 2400 nm seed laser over two
hours of measurement using a silicon prism as the dispersive element. Frequency
converting single photons using this laser would result in a broadband spectrally
mixed state.

improved the spectral stability of the laser. The spectrum consists of one narrow

Lorentzian peak with a FWHM of around 4 GHz, see Fig. 4.4. The price of this

additional spectral stability is the higher round-trip loss from the diffraction grating

compared to the silicon prism, this results in a lower slope efficiency of 5% compared

to 13% for the silicon prism where the slope efficiency is the ratio of the optical power

in at 1900 nm to the output power at 2400 nm.

With the FWHM of 4 GHz the laser emits over multiple longitudinal modes (las-

ing over multiple FSR). The FSR of the cavity is measured using a second-order

correlation measurement, g(2), of frequency converted laser light using SNSPDs.

Consider the superposition of two different waves with slightly different frequencies

from different cavity lines,

E (ω) = A exp (iωt) + A exp (i (ω + δ) t) (4.1)

The intensity of this field I ∝ |E|2 will vary with the beat frequency δ. This can

be seen in the g(2) measurement which is approximately equal to one as expected
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Figure 4.4: The measured spectrum with a grating as the dispersive element inside
the cavity over approximately two hours of measurement. The spectral fluctuations
are massively reduced compared to the silicon prism arrangement shown in Fig. 4.3.
(b) contains the same data as (a).

for a coherent state but shows small oscillations. Taking a Fourier transform of this

trace shows a peak with a fundamental frequency of 177 MHz with other peaks at

integer multiples of this frequency due to beating between cavity modes seperated

by more than one FSR. This agrees well with the expected FSR of the cavity based

on the cavity length of around 0.8 m. Given the 4 GHz bandwidth we estimate

around 22 longitudinal modes are contributing to the laser output. An uncoated

silicon etalon was purchased and inserted into the cavity in an effort to select a

single mode for lasing, unfortunately due to the large reflection losses lasing was

not possible. The affect of these different longitudinal modes on the coherence of

the frequency-converted single photons is discussed in Section 4.4. Future work on

this laser should focus on reducing the number of modes in the emission spectrum

through tighter dispersion control and making the cavity more compact to increase

the FSR. Active locking of the emission wavelength will also improve the quality of

the converted single photons.
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Figure 4.5: (a) Measured second order correlation of laser light after frequency
conversion. The oscillations in the measureed g(2) are attributed to intensity fluc-
tuations from mode beating between different cavity modes. (b) Shows the Fourier
transform of the g(2) timetrace, the initial peak is at 177 MHz with further peaks at
integer multiples corresponding to beating between non-adjacent cavity modes.

4.2.1 Experimental tips for aligning a cavity

In this section I quickly highlight some points which may be of use to future students

working on this system based on the numerous times I have had to realign this cavity.

Typically, the cavity requires alignment once per day to ensure consistent central

wavelength between measurements.

Alignment laser

Use a visible wavelength laser and a flip mirror to at least approximately position

all of the optical components. A HeNe laser is almost always an excellent choice

for this. Using the pump laser at 1900 nm is a bad option to try and position the

components, it isn’t easy to see with a fluorescent detector card and the minimum

emission is around 100 mW.

Use a camera

When the cavity is roughly aligned a camera to view the different cavity round trips

is critical to getting the laser working in an approximately Gaussian fundamental

mode. It is possible to align the cavity and have lasing with just a power meter

to feedback on the mirror positions, but lasing can occur in higher order transverse

modes which couple poorly into the LN waveguide.
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Getting the grating into the cavity

The trick to getting the cavity aligned with the grating in the correct position is

to use a pair of output couplers. Initially the cavity should be aligned with no

grating in place. The first output coupler should be positioned between the Cr:ZnSe

crystal and the position of the grating in Fig. 4.2. The laser will then output light at

whatever wavelength the round trip loss is lowest. At this point the laser light should

be sent to the diffraction grating outside the cavity. The first order diffracted beam

should then be sent to the second output coupler and the reflected beam should be

aligned back onto the incoming beam. At this point the first output coupler can be

removed. Some small adjustment of the grating angle and second output coupler

should then recover lasing operation. At this point the grating can be adjusted to

centre the emission at the desired wavelength.

4.3 Lithium niobate waveguide

The DFG process occurs in a 48 mm LN waveguide fabricated by NTT Electronics.

The chip consists of 12 ridge waveguides with poling periods ranging from 26 −

26.25µm. The chip was initially designed for conversion between 939 nm light to

1550 nm with a seed beam of 2380 nm in a type-0 process, e → e + e. The crystal

is triple anti-reflection coated for these wavelengths. It was found that temperature

tuning the crystal 30 degrees hotter than the quoted phasematching temperature

was enough to phasematch the dot wavelength of 942 nm converted to 1550 nm.

The dimensions of the waveguides are designed to be approximately single mode at

1550 nm with dimensions of 13µm × 13.4µm.

The coupling into the waveguide was optimised for the seed beam first. As wave-

length decreases the waveguide becomes more multimode, so the seed beam is the

hardest to couple in and the quantum dot light at 942 nm is the easiest. A NIR-

coated aspheric lens with 11 mm focal length is used to couple light into the waveg-

uide. This coating reduces the loss for the single photons but imparts significant loss

of around 40% on the 2400 nm beam. To compensate for the chromatic aberration

71



Chapter 4: Quantum dot frequency conversion

(c)

(a)(a)

0.15 mm
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Figure 4.6: Far field images of the waveguide chip taken with a CMOS camera used
when coupling into the waveguides. Image (a) shows two ridge waveguides marked
with red, the chip is illuminated with a 942 nm laser which is poorly coupled into the
guides and shows scattering through the entire chip. (b) As the coupling improves
into the waveguide, the substrate and second waveguide becomes less visible. (c)
With the light correctly coupled only one bright spot is visible.

of the coupling lens an additional 100 mm focal length lens is inserted in the QD

beam path. This choice of lens was found empirically by testing various focal lengths

and optimising over the conversion efficiency. The 1550 nm light at the output of

the waveguide is collimated with a second aspheric lens, focal length 11 mm, coated

for low loss at 1550 nm. Waveplates are used to rotate the polarisation of the QD

and seed light to align with the extraordinary axis of the crystal which is vertically

oriented with respect to the optical table.

The coupling efficiency for the QD beam including coupling into, propagation and

outcoupling losses is found to be 83% found by comparing the power before and

immediately after the waveguide. The efficiency for the seed beam was found to be

32%.
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Figure 4.7: Difference-frequency generation schematic. Blue lines indicate the op-
tical path of the QD photons. Pink lines represent the path of the 2400 nm seed
light. Green lines represent the path of the 1550 nm light. The polarisation of both
beams is aligned to the extraordinary axis of the ppLN crystal with a quarter-wave
plate (QWP) and half-wave plate (HWP). A 100 mm focal length lens is used in the
QD beam path to mode match the seed beam at the waveguide facet. The green
lines represent the converted 1550 nm light after the frequency conversion. The con-
verted light is sent through two short pass filters at 2050 nm (SP 2050), a 1400 nm
long pass filter (LP 1400) and a bandpass filter at 1550 nm (BP 1550) before being
collected in a single mode fibre for detection.

The filtering stage consists of two shortpass filters at 2050 nm (>OD 4), which

are used to remove seed light impinging on the collection fibre; a longpass filter

at 1400 nm (>OD 5) to remove weakly phase-matched second-harmonic generation

from the seed beam and unconverted quantum dot light; and finally, a 2.8 nm FWHM

bandpass filter (>OD 4) to isolate the converted single photons. The converted

1550 nm light is collected into a single mode fibre with 86% coupling efficiency and

sent to SNSPDs with a nominal quantum efficiency greater than 80%.

4.4 Conversion results

The DFG conversion efficiency is characterised by sending CW coherent light from

a Topica DL Pro CW laser into the QFC setup. From the discussion in the first

chapter on multimode FC (see Fig. 2.5) the conversion efficiency does not depend

on the temporal mode shape of the input light for FC pumped by a CW seed.

This allows characterisation with a CW laser despite the single photons’ decaying

exponential wavepacket. Under the approximation that the seed beam is unamplified

and considerably higher intensity than all other modes, the conversion efficiency
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measured with a low power (500 µW) CW coherent field is equivalent to the single-

photon conversion efficiency. The efficiency is defined as the ratio of photon number

and therefore can be related to the optical power measured as,

η =
nout

nin

=
Pout

Pin

λout
λin

(4.2)

using the fact that the energy of a beam containing n photons is E = nhc
λ

.

The conversion efficiency can be written in terms of experimentally useful quantities

as

η = ηmax sin2
(√

ηnorP L
)
, (4.3)

where ηmax is the maximum possible conversion efficiency, ηnor is the normalised

conversion efficiency of the process, P is the input power, and L is the waveguide

length. The fit gives a normalised conversion efficiency (to waveguide length in

the limit of small pump powers [99]) of ηnor = 44 (1) % /
(
W cm2

)
. The maximum

external conversion efficiency i.e. the ratio of photons collected into single-mode fibre

after the conversion stage to the number of NIR photons impinging on the waveguide

is ηmax = 38 %, leading to a maximum internal conversion efficiency of 56.7 (4) %

when taking losses into account. This ηmax is higher than previously reported values

for NIR QD frequency conversion to 1550 nm with similar waveguides [33].

Noise photons are measured by recording the count rate as a function of power with

the SNSPD with the QD beam path blocked. This count rate was found to increase

linearly with a gradient of 12 Hz/mW. As the noise count rate increased linearly

with pump power it is believed the noise is due to anti-Stokes Raman scattering

from the seed beam. Another possible contribution to the noise photons which is

linear with pump power is leakage of the pump beam through all of the filters and

collected in the final fibre. We rule this contribution out by removing one of the

LP2050 filters, see Fig. 4.7, the noise rate did not change for this scenario which

would be expected if the seed beam was making it through the filtering stage. For all

conversion efficiencies of interest the SNR is greater than 250 indicating the noise
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Figure 4.8: Conversion efficiency of the difference-frequency generation process as a
function of seed power coupled into the waveguide. The power in the waveguide is
determined by measuring the pump power after the waveguide and factoring out the
loss through the aspheric collimation lens anti-reflection coated for 1550 nm. The
transmission through this lens is measured to be 64 % at the pump wavelength. The
data is fitted with Eq. (4.3). Inset shows the signal to noise ratio for off-resonant
excitation with a measured noise count rate of 12 (1) Hz/mW. Frequency conversion
with similar ppLN devices where anti-Stokes scattering is expected to dominate
have demonstrated a noise flux rate per unit filter bandwidth of 5.8 Hz/mW/nm
[35], comparable to our noise flux rate of 5.3(4) Hz/mW/nm.

contribution from the DFG process itself has minimal affect on the multiphoton

component of the telecom signal.

We now compare the characteristics of the converted telecom photons to the QD

NIR photons. For non-resonant characterisation, the QD photons are spectrally fil-

tered with a grating filter with a 30 GHz FWHM to suppress the excitation laser.

We detect a count rate of 1.85(5) MHz at an excitation power of 6.8µW. The

grating filter was removed when characterising the converted photons as low-loss

bandpass filters were used at 1550 nm. For resonant driving, we detect a count rate

of 1.46(4) MHz. This value is slightly lower than for off-resonant excitation due to

the presence of spectral fluctuations [100]. After QFC, the detected count rate at

1550 nm, for the off-resonant and on-resonant case is 856(18) kHz and 456(14) kHz,

respectively. Comparing the NIR and telecom counts under resonant excitation gives

an end-to-end conversion efficiency of ≈ 35 %, after accounting for the difference in

the detection efficiency of both NIR (∼ 90%) and telecom C-band (∼ 80%) detec-
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Figure 4.9: Characterisation of the single-photon properties before (upper row) and
after (lower row) QFC. (a) Time-resolved emission spectra under pulsed resonant
excitation reveals an exponential decay which gives the emitter’s lifetime T1 and
a fast oscillation indicating the quantum beating between the fine-structure peaks
of the neutral exciton emission, ∆fss = 4.807 (3) GHz. (b, c) Second-order inten-
sity correlation histogram g(2), of the emitted photons under off-resonant (b) and
resonant (c) excitation. The lack of coincidences in the central peak indicates the
low probability of multi-photon emission. (d) Two-photon interference of consecu-

tively scattered photons delayed by 12.5 ns, prepared in cross (g
(2
⊥ ) and parallel (g

(2
∥ )

polarisations, under resonant π-pulse excitation. The extracted photon indistin-
guishability, given by the ratio of zero-delay-coincidences from both configurations,
along with the extracted values (T1 and g(2)(0)) from the fits (solid lines) are sum-
marised in Table 4.1.

tors. This agrees well with the measured loss budget through the optical components

including the conversion efficiency. The difference in efficiency for off-resonant exci-

tation is accounted for by the loss of the grating filter.

Fig. 4.9 shows the comparison between the performance of the QD signal before

and after QFC. The lifetime measured under resonant excitation in Fig. 4.9(a)

remains unchanged within experimental error after conversion. The oscillation

in the time-resolved emission, indicative of the quantum beating of the X0 fine-

structure splitting, shows a frequency of 4.807 (3) GHz extracted from a fit of,

exp (−t/τ) (1 + A sin (∆FSSt)) to the data [101]. The equivalent oscillation after

the QFC process is unchanged (4.803 (1) GHz), indicating that the CW-seeded fre-

quency conversion preserves the temporal mode of the input photons as we would

expect from the discussion of multimode FC.

Next, we measure the second-order intensity correlation g(2) for the converted and
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942 nm 1550 nm
Lifetime T1 (ns) 0.2622 (2) 0.2621 (2)

Resonant count rate (kHz) 1,460 (40) 456 (14)
Off-resonant count rate (kHz) 1,850 (50) 856 (18)

Off-resonant g(2)(0) 0.045 (0) 0.051 (1)
Resonant g(2)(0) 0.040 (0) 0.043 (1)
Resonant VHOM 0.88 (1) 0.60 (1)

Resonant Ms 0.95 (1) 0.67 (2)

Table 4.1: Summary of the lifetime, count rate, g(2)(0) and indistinguishability
VHOM for converted and unconverted photons. Values are obtained from measure-
ment results, illustrated in Fig. 4.9. The corrected photon indistinguishability MS

is estimated based on the measured g(2)(0) and uncorrected VHOM[108]. The error,
given by the standard deviation from the fit, is included in brackets.

unconverted photons. For a perfect single-photon source g(2)(0) = 0, indicating

the absence of multi-photon emissions. Under off-resonant driving, Fig. 4.9(b),

we observe a slight increase from g(2)(0) = 0.045 (0) to g(2)(0) = 0.051 (1) before

and after the QFC process, respectively. We observe similar values under resonant

driving, Fig. 4.9(c), demonstrating near-ideal single-photon emission with g(2)(0) =

0.040 (0) and g(2)(0) = 0.043 (1) before and after the QFC process, respectively.

The slight increase in the normalized coincidences in the uncorrelated side peaks in

the HBT histogram is due to blinking of the emitters, a common effect resulting

from QD coupling to the solid-state charge environment [102]. The imperfection

in g(2)(0) can be due to imperfect suppression of the cavity emission due to cavity

feeding [103–105], slight imperfection in the wave-plate retarders used in our confocal

microscope, and presence of multi-photon capture processes [106, 107]. Nevertheless,

with a modest increase in g(2)(0) after the QFC process, we have demonstrated near

background-free single-photon frequency conversion from NIR to the telecom C-

band, with the photon-number purity predominantly limited by the quantum dot.

To demonstrate that our QFC setup preserves photon coherence, we perform HOMI

between photons emitted from two consecutive excitation pulses. We use an un-

balanced Mach-Zehnder interferometer with a free-space delay of 12.5 ns to match

photons temporally on a 50/50 beam splitter, the setup is similar to Fig. 3.17 with-

out the heralding detectors and the fibre-delay replaced with a free-space delay line.

The polarisation of the photons is controlled by a linear plate polariser and HWP
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to set the orthogonal and parallel polarisation states. We measure the coincidence

counts for parallel and perpendicular polarised photons and evaluate the visibil-

ity as VHOM = 1 − g
(2)
∥ /g

(2)
⊥ . For a pair of indistinguishable photons, VHOM = 1.

For resonant excitation we achieve an interference visibility of VHOM = 0.88 (1)

before QFC. As the delay is increased we expect the visibility to tend towards

VHOM → T2/2T1 ≈ 0.66 at longer delays, inferred from the coherence time, T2 mea-

sured using a Michelson interferometer [109, 110]. We calculate the single photon

indistinguishability Ms as Ms = VHOM+g(2)(0)

1−g(2)(0)
[108]. This gives an upper bound to the

HOM visibility taking the finite g(2) (0) into account. Before conversion, Ms is equal

to 0.95 (1). After conversion we find the raw visibility and corrected indistinguisha-

bility to be 0.60 (1) and 0.67 (2) respectively. The raw and corrected visibilities are

calculated by summing the raw counts in the central peaks in Fig. 4.9 (d).

The reduced HOMI is attributed to the spectral instability in the seed beam. At

this point it is unclear if it is due to fluctuating power in each of the cavity modes

in time or if the position of the cavity modes in frequency space is changing due to

fluctuations of the cavity length. Regardless it is expected that locking the emission

wavelength of the cavity to a fixed reference and having a single longitudinal mode

laser would improve the indistinguishability of the converted photons to match the

levels before conversion. This has recently been demonstrated with a quantum dot

using a frequency conversion setup almost identical to the one used in this work

except for a commercial single-mode Cr:ZnSe laser [93].

At this point it is worth quickly comparing this work to quantum dots emitting

natively at telecom wavelengths. Lower multiphoton noise has been demonstrated

g(2) (0) ∼ 4 × 10−4 alongside count rates on the order of 200 kHz [111], however

two-photon interference visibilities lag behind the value demonstrated in this work

or other frequency-converted sources [93, 94].
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4.5 From CW to pulsed conversion

Having explored the multimode CW version of FC experimentally and shown that

the mode profile is left almost unchanged before and after conversion, the lifetime

measurements in Fig. 4.9 are an example of this, we switch now to the pulsed version

and show theoretically that it can be used to improve the spectro-temporal purity of

photons emitted from a noisy single emitter. This work takes inspiration from the

quantum pulse gate [66] and quantum pulse shaper [112]. Simply put, a single-mode

frequency conversion process can reject photons which do not overlap spectrally and

temporally with the mode defined by the Schmidt decomposition of the conversion

process, Fig. 2.4. Luckily with type-0 conversion from around 940 nm to 1550 nm

the group velocity of the 2400 nm pump and 1550 nm single photon have similar

group velocities which means a single-mode FC process similar to one outlined in

Fig. 2.4 is possible. A single-mode FC process can be seen as a filter at the amplitude

level, not at the intensity level which can be done with spectral or temporal filtering

alone. Couple this to the conversion process where the photons are converted to a

telecom wavelength this technique might find application in connecting independent

single-photon emitters in a future quantum network where each of the emitters has

an independent dephasing environment. Recently it has been shown that quantum

memories can also have a similar spectral purifying operation but without frequency

conversion over a large enough spectral range to reach telecom wavelengths [113].

We use a simplified model of the emission from a quantum dot, considering the

photons as transform-limited and then introducing time and frequency jitter and

show that both effects can be removed after frequency conversion. A full treatment

would include the dynamics of the QD levels coupled to a phononic bath under

different excitation schemes. The FC modelling should also include the effects of

modal dispersion in the waveguide and time-ordering effects. We opt for a simpler

analysis here which demonstrates the principles involved in the clearest way possible,

a more rigorous approach will be the content of future work.
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4.5.1 Density matrix for single photons from a quantum dot

Pure single photons from a quantum dot have a transform-limited decaying expo-

nential waveform,

|ψ⟩ = N
∫

dtΘ (t) exp (−γt) a† (t) |0⟩ , (4.4)

where Θ (t) is the Heaviside step function, γ defines the decay rate of the quantum

dot and N is a normalisation factor.

In the Fourier domain this can be expressed as

|ψ⟩ =

∫
dωg (ω, µ, γ, t) a† (ω) |0⟩ (4.5)

g (ω, µ, γ, t) =

√
γ

π

1

γ − i (ω − µ)
exp (−iωt) , (4.6)

where g (ω, µ, γ, t) is the frequency domain representation of the single-photon wavepacket

and we have explicitly included the central frequency µ and the linear spectral phase

due to propagation for a time t from emission. The reason for explicitly including

this time will become clear when considering the effects of emission time jitter.

The density matrix for this pure state is then given by

ρ =

∫
dω1

∫
dω2f (ω1, ω2, µ, γ, t) a

† (ω1) |0⟩ ⟨0| a (ω2) , (4.7)

where

f (ω1, ω2, µ, γ, t) = g (ω1, µ, γ, t) g
∗ (ω2, µ, γ, t) (4.8)

.

4.5.2 Frequency jitter

We want to include the effects of frequency jitter on the quantum dot emission due

to charge noise in the environment of the quantum dot. We can take consider the

spectral diffusion to be normally distributed in around the central frequency µ with
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a deviation δ. The resulting state is

ρ(δµ) =

∫
d∆

∫
dω1

∫
dω2

G (∆, δ) f (ω1, ω2, µ+ ∆, γ, t) a† (ω1) |0⟩ ⟨0| a (ω2) ,

with the weight function

G (∆, δ) =
1

δ
√

2π
exp

(
−∆2

2δ2

)
. (4.9)

Carrying out the integration over the frequency jitter ∆ the resulting density matrix

can be written as

ρ(δµ) =

∫
dω1

∫
dω2

h (ω1, ω2, µ, γ, t, δ) a
† (ω1) |0⟩ ⟨0| a (ω2) ,

(4.10)

with the density matrix elements given by,

h (ω1, ω2, µ, γ, t, δ) =

exp

(
−(−µ+ iγ + ω1)

2 + (µ+ iγ − ω2)
2 + 2itδ2 (ω1 − ω2)

2δ2

)
×

γ

[
exp

(
(µ+ iγ − ω2)

2

2δ2

)(
i+ erfi

(
µ− iγ − ω1√

2δ

))
−

exp

(
(−µ+ iγ + ω1)

2

2δ2

)(
−i+ erfi

(
µ+ iγ − ω2√

2δ

))]
×

1(√
2πδ (2iγ + ω1 − ω2)

)

(4.11)

Where erfi (z) = −i erf (iz) and erf is the error function.

Note that in the limit of no spectral jitter we recover the pure state density matrix

elements

lim
δ→0

h (ω1, ω2, µ, γ, t, δ) =
γ exp (−it (ω1 − ω2))

π (µ− iγ − ω1) (µ+ iγ − ω2)
= f (ω1, ω2, µ, γ, t) . (4.12)
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For ρδµ to be a valid density matrix the weight function must satisfy

ρ = ρ† →h (ω, ω′, µ, γ, t) = h∗ (ω′, ω, µ, γ, t)

Tr (ρ) = 1 →
∫

dωh (ω, ω, µ, γ, t) = 1.
(4.13)

The purity can be calculated as,

Tr
(
ρ2(δµ)

)
=

∫
dω

∫
dω′h (ω, ω′, µ, γ, t)h (ω′, ω, µ, γ, t) . (4.14)

4.5.3 Emission time jitter

For timing jitter we replicate the same treatment as spectral jitter but now we

introduce a variation in the time since emission t.

ρ(δt) =

∫
d∆

∫
dω1

∫
dω2

G (∆, δ) f (ω1, ω2, µ, γ, t+ ∆) a† (ω1) |0⟩ ⟨0| a (ω2) .

In an analogous way the explicit integral over the emission time can be carried out

which gives

ρ(δt) =

∫
dω1

∫
dω2

p (ω1, ω2, µ, γ, t, δ) a
† (ω1) |0⟩ ⟨0| a (ω2) ,

with density matrix elements are given by,

p (ω1, ω2, µ, γ, t, δ) =
γ exp

[
−1

2

(
i2t (ω1 − ω2) + δ2 (ω1 − ω2)

2)]
π (µ− iγ − ω1) (µ+ iγ − ω2)

. (4.15)

In the limit of no time jitter we recover the same density matrix as in the case of

no spectral jitter as expected
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Figure 4.10: Plots of the absolute value of the different density matrices for (a) time
jitter with purity 0.3 (b) frequency jitter with purity 0.75 and the pure state which
was the starting point for the noisy cases. Notice that both noise cases make the
matrices more diagonal as expected for a mixed state.

4.5.4 Calculating the output state

The output state of the frequency conversion process can be calculated by taking a

Taylor expansion of Eq. (2.25),

|ψ⟩ =

(
I +

∫ ∫
dωodωif (ωo, ωi) a

† (ωo) b (ωi) + ...

)
|0, 1⟩ . (4.16)

Taking the first order term in the expansion the output can be written as,

|ψ⟩ =

∫ ∫ ∫
dωodωidωjf (ωo, ωi) g (ωj) a

† (ωo) b (ωi) b
† (ωj) |0, 0⟩ , (4.17)

where the spectral shape of the input single photon g (ωj) is included. A little bit

of work with the commutation relations and dropping the input state which is now

vacuum, the output state can be written as

|ψ⟩ =

∫ ∫
dωodωif (ωo, ωi) g (ωi) a

† (ωo) |0⟩ . (4.18)
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This then allows us to make the identification that an input photon at frequency ωi

is mapped to output frequency ωo with the coupling given by f (ωo, ωi). This can

be extended to the case of a density matrix with elements p (ω1, ω2)

ρ =

∫ ∫ ∫ ∫
dω1dω2dω3dω4f (ω3, ω1) p (ω1, ω2) f

∗ (ω2, ω4) a
† (ω3) |0⟩ ⟨0| a (ω4) .

(4.19)

The mapping from input state to output state is not solved analytically so Eq. (4.19)

is replaced with the discretised version to be calculated numerically,

ρi,l = fi,jpj,kf
∗
k,l. (4.20)

We are now in position to consider different frequency conversion processes and how

they affect the purity of the output state.

4.5.5 Numerical results on pulsed frequency conversion

The first step is finding the JSA for the pulsed FC process with the three wave-

lengths we are considering. We choose a pump duration of around 1 ps with a

Gaussian spectrum and a crystal length of 48 mm to match the waveguide used in

the experimental work in this section.

We follow Eq. (4.20) to calculate the output state and plot the purities as a function

of the input state purity for different frequency and time jitter strengths. We vary the

pump duration to show that as the pump duration increases, the process becomes

more multimode and the purity of the output state is lower for the same noise

strength. We set the bandwidth of the QD single photon γ to be 1 GHz which is

similar to the linewidth of the QD used experimentally in this work.

The mapping from input frequency to output frequency is shown in Fig. 4.11 (b),

but how the frequency conversion process can erase time jitter from the QD is less

obvious. For the JSA to be aligned almost vertically in Fig. 4.11 the pump and

telecom photon have almost the same group velocity. This is then how the time-

jitter is removed, the pump pulse at 2400 nm walks through the QD photon and the
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Figure 4.11: (a) PMF and (b) JSA for the LN used for the FC experiment in this
thesis pumped with a 1 ps Gaussian pulse at 2400 nm. The axes are plotted in
terms of wavelength for clarity. The Schmidt number K = 1.039 which indicates an
almost single-mode process. The Schmidt number is increased from one due to the
sinc lobes present on the positive diagonal. The intuition behind the FC process
improving the spectral purity is that variation in the input frequency along the x-
axis is mapped to the same output frequency on the y-axis axis.

arrival time of the converted light is locked to the arrival time of the pump pulse

due to the matched group velocities, see Fig. 2.6.

This also highlights the potential drawback of pulsed frequency conversion, the

lifetime of the QD is on the order of 1 ns i.e. the pump pulse cannot walk through

the entire QD photon while it is inside the crystal. Another way to see this is the

ideal mode to perfectly match the frequency conversion process is defined by the

PMF bandwidth in Fig. 4.11, which is on the order of 100 GHz.

This bandwidth mismatch can be reduced by considering non-standard arrange-

ments of the wavevectors in the FC process. The idea of counter-propagating signal

and idler photons in PDC has been theoretically studied [114–116] and experimen-

tally demonstrated [117, 118]. A similar idea has recently been discussed theoret-

ically for FC [119]. We show that by considering this type of arrangement for FC

the noise mitigating properties of the FC are greatly improved compared to the

traditional arrangement of wavevectors.

4.5.6 Reverse wave frequency conversion

Consider again the Taylor expansion of the phase-mismatch introduced in Eq. (2.19)

in terms of the input and output frequencies with the group velocities vj and the
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Figure 4.12: Numerical results on the purity of the frequency-converted photons as
a function of the frequency jitter (a) and (b), and time jitter (c) and (d). The plots
show the initial state purity on the x-axis and either the output state purity or the
ratio of purity out/purity in on the y-axis. The pulse duration is varied from 1 ps
up to 100 ps. In the limit of CW pumping the ratio of input and output purity is 1
as the state is left unchanged.

differences from the central frequencies Ωj. We had from equation Eq. (2.22) for a

typical arrangement of the three fields ki → kp + ko,

Ωo

Ωi

=

(
v−1
p − v−1

i

v−1
p − v−1

o

)
, (4.21)

which sets the gradient of contours in the JSA. If we consider the case where we

reverse the direction of the input field, −ki → kp + ko, this changes the gradient to

Ωo

Ωi

=

(
v−1
p +v−1

i

v−1
p − v−1

o

)
. (4.22)

The change in sign results in the large difference in the bandwidth in the PMF

seen in Fig. 4.13. Physically what this describes is the case where the input photon

travels in one direction and the pump and output photon travel in the opposing

direction. We term this reverse-wave FC. This is subtly different from the case of
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Figure 4.13: (a) PMF and (b) JSA for the reverse wave FC with a 10 mm crystal
pumped with a 1 ps Gaussian pulse at 2400 nm. The axes are plotted in terms
of wavelength for clarity. The plots use the same scale as the standard wavevector
arrangement for comparison.

counter-propagating signal and idler which has been demonstrated experimentally.

That scenario is the equivalent of the pump and output counter-propagating in the

labelling used here for FC. To describe the interaction proposed here in the language

of PDC it is equivalent to the signal and idler co-propagating but in the opposite

direction to the pump pulse.

The main drawback of this technique is the large phase mismatch which must be

compensated by the poling period of the crystal. Consider typically the phase-

mismatch for the standard arrangement is given by ∆k = ki − kp − ko = 2π/Λ,

this is now modified such that all terms are the same sign ∆k = −ki − kp − ko =

2π/Λ. For the wavelengths considered in this example with type-0 LN the required

poling is 220 nm. While this sounds technically challenging it is within a factor

of two of state-of-the-art demonstrations with KTP and LN. With this in mind

the phasematching constraints could be satisfied with a higher-order phasematching

at the cost of reduced efficiency, for quasi-phasematched process of order m the

efficiency scales as 1/m2. As an example, fifth-order quasi-phasematching would

require poling periods of around 1.1 µm which is commerically available in KTP

and LN.

The reverse-wave case has higher purities for all values of noise. The FC process

can use longer pulse durations which may be experimentally easier to realise and

still remove spectral and temporal jitter. For pump durations of 100 ps the output

87



Chapter 4: Quantum dot frequency conversion

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Initial purity

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

E
nd

 p
ur

ity

Frequency Jitter

1.0 ps
25.0 ps
50.0 ps
75.0 ps
100.0 ps

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Initial Purity

1.0

1.5

2.0

2.5

3.0

3.5

Pu
ri

ty
 R

at
io

Purity Ratio
1.0 ps
25.0 ps
50.0 ps
75.0 ps
100.0 ps

0.5 0.6 0.7 0.8 0.9 1.0
Initial Purity

0.96

0.97

0.98

0.99

1.00

E
nd

 P
ur

ity

Time Jitter

1.0 ps
25.0 ps
50.0 ps
75.0 ps
100.0 ps

0.5 0.6 0.7 0.8 0.9 1.0
Initial Purity

1.0

1.2

1.4

1.6

1.8

2.0

Pu
ri

ty
 R

at
io

Purity Ratio
1.0 ps
25.0 ps
50.0 ps
75.0 ps
100.0 ps

(a)

(c) (d)

(b)

Figure 4.14: Numerical results on the purity of the frequency-converted photons
as a function of the frequency jitter (a) and (b), and time jitter (c) and (d) for
the reverse wave FC process proposed. As with Fig. 4.12 the plots show the initial
state purity on the x-axis and either the output state purity or the ratio of purity
out/purity in on the y-axis. The pulse duration is varied from 1 ps up to 100 ps. In
the limit of CW pumping the ratio of input and output purity is 1 as the state is
left unchanged.

purity is above 90% for all values of noise considered.

A second potential application is the idea of spectral compression with this reverse

wave FC process. Instead of considering the downconversion of a NIR photon to

telecom wavelength, consider the upconversion procsess. The broadband 1550 nm

photon is spectrally compressed when upconverted to 942 nm. Broadly speaking

quantum memories operate at shorter wavelengths than 1550 nm and have linewidths

much narrower than the ≈ 100 GHz of photons from typical PDC sources. This then

motivates upconversion with spectral compression as potentially enabling integration

with quantum memories. Comparing the bandwidth of the first pair of Schmidt

modes the bandwidth ratio is 130:1. The 1 ps duration 1550 nm photon can be

upconverted to 942 nm with a bandwidth compression down to 3.4 GHz. For the

standard arrangement the compression is 6.58 and the NIR bandwidth is 68 GHz.
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Pulse compression using a standard group-velocity matched FC process has been

demonstrated [120] with PDC photons upconverted from 1545 nm to 550 nm with

a compression of 7.5. Compression by a factor of 40 has been demonstrated in

sum-frequency generation by chirping the single photon input at 800 nm and pulse

pump at 800 nm with equal magnitude but opposing signs [121]. The reverse wave

conversion process compares favourably in terms of the compression available and is

also completely passive without requiring the input photon to be chirped. The price

you pay for this passive compression is the technical challenge of poling a crystal

with a period less than 1µm.

Note the bandwidth of the telecom photon could be larger and still be converted

down to 3.4 GHz using a shorter pulse at 2400 nm, this would extend the JSA along

the y-axis in Fig. 4.13, but the final bandwidth is still set by the PMF bandwidth

of 3.4 GHz.

To compress a pulse below 1 GHz the length of the crystal must be increased (10 mm

considered for these simulations) or using a cavity assisted process where the cavity

mirrors are AR-coated at 1550 nm and 2400 nm but highly reflective at 940 nm.

Similar compression results can be achieved for other technologically relevant wave-

lengths, converting a 1550 nm photon to 780 nm to interface with a rubidium quan-

tum memory the compressed bandwidth is again 3.4 GHz which is too broad to

directly interface with the memory but might reduce the number of photons lost to

tight spectral filtering.

While optimum compression is achieved when the output and pump group velocities

are matched which can be seen by looking at the denominator of Eq. (4.22), some

spectral compression can be achieved when this is not the case. Consider 422 nm, the

wavelength of the strontium ions recently used to demonstrate device-independent

quantum key distribution [122]. The spectral compression is 25:1, which may still be

useful for interfacing different quantum systems with different photon bandwidths.

Having discussed how pulsed FC can be used to improve the coherence of single

photons emitted by a QD we return back to the experimentally demonstrated work
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presented at the beginning of this chapter. We have realised a bright source of

single photons at 1550 nm with relatively low multiphoton noise, the clear next step

is to send the photons over some fibre and attempt to carry out a quantum key

distribution protocol. This will be the focus of the next chapter.
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Quantum key distribution with a

frequency-converted quantum dot

Quantum communication is among the most mature quantum technologies with

some practical demonstrations outside the laboratory setting. This is in part due to

the relatively simplicity of the physical requirements compared to tasks like compu-

tation. Quantum communication is uniquely suited to photonics, as the only flying

qubit photons are the sole option for encoding information. Of the various quantum

communication tasks quantum key distribution is arguably the most well studied and

well demonstrated experimentally. There are even commercially available systems

for the paranoid 1. Plainly put QKD allows two users, Alice and Bob in the common

setting, to generate a shared cryptographic key which is not known to a third party

Eve. QKD in the ideal setting, ignoring issues with experimental implementation,

is information-theoretically secure. This is in contrast to classical cryptographic

methods such as Rivest–Shamir–Adleman (RSA) which are typically based on the

“hardness” of a particular mathematical problem. With the belief that one day we

will have large-scale fault tolerant quantum computers and with algorithms such as

Shor’s algorithm for prime factorisation [123] these classical cryptographic methods

are susceptible to attack from an adversary armed with a quantum computer.

Broadly speaking QKD protocols can be divided into two groups, entanglement-

1https://www.idquantique.com/
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based or prepare-and-measure schemes. The security of both types is backed by

fundamental properties of quantum mechanics, the monogamy of entanglement for

entanglement-based schemes, the property that a maximally entangled state of

n−particles cannot be an entangled state of n+1 particles. For prepare-and-measure

schemes the critical property is the incompatiblility of mutually unbiased bases; for

a state prepared in the eigenbasis of one observable, measurement outcomes in a

complementary observable are random.

There is a complete zoo of QKD protocols. The earliest proposed protocols rely

on trust in the experimental apparatus such as the sources or detectors. More so-

phisticated protocols relax some of these requirements such as measurement-device-

independent QKD [124] which introduces a third party Charlie who operates the

measurement apparatus, and allows the trust in the measurement apparatus to be

removed. This can be extended to fully device-independent QKD [125] where Alice

and Bob trust none of the experimental apparatus to operate faithfully, including

the photon sources in their own labs. Typically, the cost of removing trust in some

part of the QKD apparatus is a smaller secret key rate and reduced tolerance to

loss.

In this chapter we will focus on the original QKD BB84 protocol [126], where Al-

ice prepares states in two MUBs which are then sent to Bob over a channel who

randomly measures in the same pair of bases. This protocol has the simplest ex-

perimental requirements: Alice maintains a single-photon source and a method to

encode in a particular photonic DoF with Bob owning the receiver which consists

of four detectors, one for each of the states in the pair of MUBs.

As the QD source demonstrated in Chapter 4 is converted to 1550 nm this opens up

fibre optic cable as a viable channel between Alice and Bob. Optical fibre is the ideal

channel for metropolitan or inter-city scale distances, allowing connections between

points without line-of-sight connections unlike free-space links. For connections on

the order of hundreds of kilometres the losses in fibre are manageable (< 40dB for

200 km). Beyond 1000 km satellite-based QKD may become preferred for point-to-

point QKD where the losses are not due to propagation but are geometric losses due
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to finite apertures of the collection optics.

5.1 Brief overview of the BB84 protocol

In the following section I will briefly outline the BB84 protocol for polarisation

encoding in the ideal experimental setting,

• Alice and Bob initially authenticate their identities over a classical channel

with some pre-shared random bits.

• Alice encodes single photons randomly in one of the two bases, we will use

the linear (Pauli Z) and diagonal (Pauli X) bases for concreteness. One of the

bases is used for key generation and the other is used for parameter estimation

in the post-processing step. We will follow the convention that the Z basis is

used for key generation and X is used for parameter estimation.

• Bob randomly measures in one of the two bases.

• Alice and Bob announce publicly their respective basis choice and discard all

rounds where they measure in a different basis. This is referred to as key

sifting.

• Of these rounds where Alice and Bob measure in the same basis (Z for ex-

ample), a subset is used to detect the presence of an eavesdropper typically

referred to as Eve. If Eve tries to measure the photon in the opposing basis

to the one Alice encoded in (X in this case), Bob will detect errors in his

measurement outcomes.

• If the error rate is above a particular threshold the protocol is aborted.

• If error rate is acceptable Alice and Bob perform error correction to remove

potential errors in the key and privacy amplification to increase the secrecy of

the key. Both of these steps reduce the overall length of the key generated.

• They now share a private and secure key which can be used to encode a

message between both parties.
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5.2 Key rate for a noisy single-photon source

This ideal scenario requires an ideal single-photon source, which emits exactly one

photon with 100% efficiency every round. This is currently far from reality with

current single-photon sources which are lossy and have multiphoton noise which can

be exploited by Eve in the photon-number splitting attack. In this attack Eve splits

the incoming pulse and stores one part in a quantum memory and sends the other

part on to Bob. When Alice and Bob announce their random basis selection for

each round Eve measures in the correct basis and therefore has perfect knowledge

of the key. This potential security loophole can be mitigated by the decoy-state

method which will be discussed in more detail in Section 5.5. If the decoy-state

method is not used the multiphoton terms must be incorporated directly into the

security analysis. This analysis for realistic devices was carried out by Gottesmann,

Lo, Lutkenhaus and Preskill [127]. The secret key rate in the asymptotic regime,

assuming an infinite number of rounds, can be written as

S = psiftpclick

[
A
(

1 −H
(ep
A

))
− f (eb)H (eb)

]
, (5.1)

where S is the probability that a given round contributes a bit to the final key,

H (e) = −e log2 (e) + (1 − e) log2 (1 − e) is the binary Shannon entropy. pclick is the

probability that Bob’s detectors click in a given round which can be approximated as

pclick ≈ n̄T+d, where n̄ is the mean photon number injected into the communication

channel, T is the channel transmission and d is the probability a detector fires due to

a dark count. psift is the probability that Bob measures in the key generation basis,

in the asymptotic limit Alice sends key generation encoded photons with probability

approaching one. The key rate per second is then determined by multiplying the

probability a given round contributes a bit (bit per pulse) by the repetition rate of

the source.

A = (pclick − pm) /pclick is the fraction of signals due to single-photon pulses with

pm the probability that Alice sends a pulse which contains more than one photon.

H (ep/A) is the fraction which must be discarded for privacy amplification, with ep
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the phase error or error in the basis used for parameter estimation. An important

point is that the factor A decreases with increasing loss as pclick decreases propor-

tional to the channel loss but pm is constant. For a particular loss, pclick ≈ pm, the

probability on a given round that Bob’s detectors fire is about the same probability

that Alice emitted a multiphoton pulse. At this point one must make the pessimistic

assumption that all of Bob’s clicks are due to multiphoton pulses from Alice. Eve

can have perfect knowledge of these bits using the photon-number splitting attack

and so the protocol must end. This is why the factor A appears in the denominator

of the privacy amplification fraction.

The factor f (eb)H (eb) is the fraction of rounds which must be discarded in order

to error correct the raw string of bits, eb is the error rate in the key generation

basis and f (e) > 1 is the error correction efficiency. Ideally, f (e) = 1, which is

the information-theoretic optimum for correcting a bit string (the Shannon limit),

However, in practice f (e) = 1, even for the best error correcting algorithms. Hence,

the number of bits that need to be discarded following the error correction process

is always higher than just the number of erroneous bits. For this thesis the error

correction efficiency is interpolated between the values presented in [128].

It is worth highlighting the impact of multiphoton noise on the key rate with a

noisy single-photon source. The important factor to consider is the single-photon

fraction A. Not only is the source term in Eq. (5.1) pclick scaled by the single-photon

fraction, the amount of key removed for privacy amplification scales strongly as the

single-photon fraction decreases.

The central issue then is estimating the multiphoton probability pm for real exper-

imental sources. Luckily, the second order correlation g(2) can be used to provide

an upper bound to pm which is experimentally accessible and robust to detector

inefficiency and loss [129]. Using the approach of [130] the multiphoton emission
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Figure 5.1: Comparison of the secure key rate for different photon sources with all
parameters left identical except for the g(2) which varies from g(2) = 1 for a weak
coherent source to g(2) = 0 for an ideal single-photon source. The brightness of the
source n̄ = 0.01 and error rates are fixed between each curve. The repetition rate is
set to 160 MHz and the fibre loss is set to 0.19 dB/km to match the experimental
parameters from Section 5.3.

probability can be upper-bounded by the g(2) in the following way,

g(2) =
⟨n̂ (n̂− 1)⟩

n̄2

=

∑∞
i=2 i (i− 1) pi

n̄2
≥
∑∞

i=2 2pi

n̄2
,

(5.2)

where we have used the fact that i (i− 1) ≥ 2 for i ≥ 2. The vacuum and single-

photon terms are removed from the summation by the i and (i− 1) factors respec-

tively. From this then one can write,

g(2) ≥ 2pm

n̄2

pm ≤ g(2)n̄2

2
,

(5.3)

where the definition
∑∞

i=2 pi := pm has been made. The curves in Fig. 5.1 show the

same source for different values of g(2). At short distances the key rates are all similar

regardless of the multiphoton emission probability but the maximum tolerable loss

is restricted to less than 20 dB for a weak coherent pulse where g(2) = 1 compared

to over 40 dB for an ideal single photon source with g(2) = 0.
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It is worth noting that counter-intuitively, Alice can extend the maximum tolerable

loss by adding additional attenuation to the source before injecting pulses into the

communication channel. Adding an additional attenuation factor η before sending

photons to Bob changes the click probability and the multiphoton fraction in the

folliowing way,

pclick = n̄T + d→ n̄ηT + d

pm =
g(2)n̄2

2
→ g(2)n̄2η2

2
.

(5.4)

The click probability decreases linearly as Alice adds loss to her source but the

multiphoton probability decreases quadratically. In the scenario where the key rate is

limited by A→ 0 the maximum tolerable loss can be extended by adding additional

loss before the communication channel. While increasing the maximum distance,

adding additional loss reduces the key rate at short distances. The ideal solution

is for Alice to optimise the attenuation added to her source for the loss of the

communication channel value.

At this point it is worth making a detour to consider why we should bother with

noisy single-photon sources for QKD applications. The decoy state method works

well, it is experimentally simple compared to most single-photon sources and has

been shown to work for over 400 km in optical fibre [131]. This is a valid question

and one the author of this thesis has argued on both sides of throughout the course of

this work. If a quantum network infrastructure containing quantum repeaters exists

in the future, the memories in these repeaters are designed to operate with true

single photons. If we are going to incorporate these types of sources in a network in

the future we should also consider their applications in QKD as a corollary. Another

more aspirational reason is that if ideal single photons are going to be developed for

other applications such as optical quantum computing, then these sources could also

be leveraged for QKD. In the limit of an ideal single-photon source n̄ = 1 and g(2) = 0

such a source can be competitive and exceed the rates and distances available with
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decoy states which reduces the bandwidth of the channel by interleaving decoy states

with real signal states. From a security point of view the additional complexity

of the decoy-state method which may introduce additional side-channels due to

experimental implementations deviating from the ideal theoretical performance. We

will return to this point in Section 5.5.

At this point we dive into the experimental work towards a demonstration of QKD

with our frequency-converted QD source. This work is not a true faithful implemen-

tation of the BB84 protocol as it is missing some key steps. The state Alice encodes

is not changed on a round-by-round basis. Slow motorised waveplates are used to

change the state which are not compatible with the 160 MHz repetition rate of the

source. A fast electro-optic modulator can be used to change the polarisation state

on a shot-by-shot basis. A GHz rate electro-optic modulator (iXblue PSW-LN-10)

was purchased for this experiment but unfortunately it was unusable due to the

spectral fluctuations in the seed laser used in the FC process increasing the polari-

sation encoding error. More details on this can be found in Appendix B. The fibres

used in the demonstration which connect the source and receiver are also in the lab.

This is a controlled environment which is quite different to deployed optical fibre in

a real communication network which might require active polarisation stabilisation

over the course of key distribution. Despite this the expected performance in a de-

ployed setting can be predicted from this type of “in-lab” demonstration which is

common with noisy single-photon sources [90, 91, 132–135] . An extensive review of

this type of “in-lab” demonstration of QKD with QDs can be found in [136].

5.3 Experimental Results

The experimental setup for the QKD demonstration consists of three distinct parts:

Alice’s source, the communication channel which in this case is optical fibre and

Bob’s polarisation receiver module. The source is similar to the frequency con-

verted source setup in Fig. 4.7 with one change being the repetition rate has been

temporally multiplexed up to 160 MHz in a similar fashion to the 8b-KTP source

98



Chapter 5: Quantum key distribution with a frequency-converted quantum dot

Polarisation
Controller

Receiver

QFC

SP 2050 BP 1550

LP 1400

Seed laser

Cryostat

QWP

HWP

Lens Oven

ppLN

Ti:Sapphire

80 MHz

160 MHz

HWP

SNSPD

Figure 5.2: Experimental layout of the QD source (blue shaded region), the quan-
tum frequency conversion setup (pink shaded region) and passive BB84 receiver
(green shaded region). The 80 MHz pulse train from the Ti:Sapphire laser is tem-
porally multiplexed up to 160 MHz using a free-space delay-line matched to half
the pulse separation of 12 ns. The frequency-conversion setup is identical to the
description in the previous chapter. The combination of the QD source and the
frequency-conversion setup constitute Alice’s source in the classic BB84 scenario.
The transmission channel consists of spools of fibre of various length which are con-
nected using physical contact fibre connectors to make up the distances measured in
Fig. 5.5. Bob’s receiver passively chooses between X and Z basis measurements using
a 50/50 fibre beam splitter. This sets the sifting fraction to psift = 1/2. Projections
are made using polarising beam splitter cubes and in-fibre polarisation controllers
to align the measurement basis.

in Section 3.5. This improves the overall key rate by a factor of two but does not

improve the probability of each pulse producing a secure bit as error rates and the

single-photon fraction are evaluated on a per-pulse basis. The g(2) = 0.036 of the

source was also improved compared to the measured values for off-resonant excita-

tion after conversion presented in Section 4.4. This was due to optimisation of the

excitation frequency and improved suppression of reflected laser light from the third

cavity mode of the QD.

The encoded state is controlled by a single motorised HWP placed before the col-

lection fibre in Alice’s source to encode {H, V,D,A} polarisation states and sent

down the fibre channel. Bob’s receiver is aligned to these four states at the start
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of the integration time using in-fibre polarisation controllers. Counts are monitored

for each state for 30 mins. The long fibres which act as a communication channel

are housed in an insulating box to minimise fluctuations in the polarisation state

over the course of the measurement. These fluctuations are stable over at least the

30 min integration time, an example time trace of the encoded error is shown in

Fig. 5.3.

For each fibre distance 30 minutes is long enough to accumulate at least 5 × 106

counts which is sufficient to accurately estimate the errors and click probabilities

and then estimate what the key rate would be. This number of raw bits would not

be enough to generate a secure key in the finite key regime which is discussed in

Section 5.4.

(a) (b)

Figure 5.3: Time trace of the recorded counts over 30 minutes of measurement with
the encoding error. Subfigure (a) shows the timetrace of the counts arriving on each
of the four detectors in Bob’s receiver over 30 mins of integration. The error rate
shown in (b) which is the ratio of the orange to blue line is essentially constant over
the 30 mins integration time. This data set is from a measurement at 150 km which
is the largest distance which had a positive key rate. The green and red curves
correspond to projections on the complementary basis to the encoded basis.

After frequency conversion and filtering the detected count rate at 0 km is 1.6 MHz,

which gives a mean photon number of n̄ = 0.0142 backing out the known receiver

transmission (87%) and the estimated quantum efficiency of the detectors (≈ 75%).

The breakdown of how these values are reached is summarised in Table 5.1. This

mean photon number at the end of Alice’s setup is the critical value for the security

analysis as it determines the multiphoton probability along with the g(2) at the
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initial point where Eve can in principle perform a photon-number splitting attack.

Projection Coupling % Relative Efficiency % DCR Hz Total Efficiency %
V 94.2 93.4 13 87.98
H 88.4 95.2 13 84.16
D 90.3 98.3 10 88.76
A 87.6 100 10 87.6

Table 5.1: Summary of the losses and efficiencies for Bob’s receiver. The coupling
losses are characterised with a 1550 nm diode laser and a power meter. The relative
efficiency of the four detectors are measured using a PDC source sending the idler
photon to a 5th detector and sending the signal photon to each of the detectors in
turn and measuring the heralding efficiency. The detectors were chosen for having
the lowest dark-count rate of the detectors available. The total efficiency is the
product of the coupling and relative efficiencies. There is an unknown factor of the
absolute efficiency of the detectors. This is estimated to be around 75% based on
the manufacturer’s characterisation.

The error due to polarisation leakage and polarisation controller misalignment is

found to be ep = 0.3% by fitting the measured error rate with

eb/p =
pd/2 + epn̄T

pd + n̄T
, (5.5)

where T is the transmission of the channel and pd is the dark count probability.

The dark-count probability is set as pd = 1.47 × 10−7. This is the product of the

average time-gate used in the experiment of 3.1 ns and the average dark count rate

of 11.5 Hz.

At this point it is worth comparing this demonstration with similar works with

other types of single photon-emitter based on QDs, molecules and defects in two-

dimensional materials. This comparison is made in Table 5.2. Due to the high

intrinsic brightness of the QD, the efficiency of the frequency conversion and collec-

tion, and the low multiphoton noise, the key rate at short distance is significantly

higher and the maximum tolerable loss is around 5 dB higher than previous work,

see Table 5.2. As this source is at 1550 nm the physical distance over which a key

can be generated is significantly further than the sources operating in the O-band

around 1300 nm or in the NIR around 800 nm. It should be said that there are other

sources which could be frequency converted [13] or have been used with frequency

conversion [93, 94], that would outperform the current work but these have so far
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Figure 5.4: Typical data set for encoding H over 80 km of fibre and the effect of
time gating on the number of bits generated per pulse. (a) The counts on each
detector are histogrammed over a 30 minute integration time relative to a clock
signal derived from the Ti:Sapphire laser at 80 MHz which results in two pulses
per clock cycle. The counts are time gated with respect to the clock signal and the
width and position i.e. the offset relative to the peak of each histogram, is varied to
optimise the total key rate (b). The maximum probability of generating a bit per
pulse is then used as the value shown in Fig. 5.5. The data shown in this plot is for
preparing and sending horizontally polarised photons and sent over 80 km of fibre.

not been used in a QKD demonstration.

Reference AKR at 0 km (kbps) Maximum loss (dB)
This work 689 33.3

This work with active encoding∗ 298 34.4
QD [91] 4 23
QD [132] 2 23

Molecule [135] 500 22
2D Material [137] 0.24 21
2D Material [138] 150 23

[134] 25 28

Table 5.2: Comparison of other QKD demonstrations based on single-photon emit-
ters. ∗Prediction based on 3 dB loss and 2% polarisation encoding error typical with
fibre-based electro-optic modulators. Reference [91, 137] includes active switching
of the encoded state, all other demonstrations use static encoding in a similar spirit
to this work.

Comparing the asymptotic key rate is the cleanest way to compare the performance

of different sources as the key rate has relatively few free parameters. Arguably a

more relevant metric is the key rate in the finite regime where the number of key

exchange rounds is no longer considered infinite. This is the realistic scenario if a

QKD system was used in practice. The experimental parameters used to evaluate

the key rate must be estimated from a finite sample size of the data and are therefore

not known perfectly. This must be taken into account to guarantee the information
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Figure 5.5: The theoretical asymptotic key rate based on the measured experimental
parameters alongside the experimentally measured counts. (a) Comparison of the
measured key rate in the asymptotic regime (blue dots) from processing the experi-
mentally measured count rates and the theoretical key rate based on the experimen-
tal parameters (solid orange line) with and without without additional attenuation.
The green line shows the maximum key rate optimising Alice’s pre-attenuation which
adds an additional 2.6 dB of tolerable loss. The theoretical prediction comes from
Eq. (5.1). (b) The variation of the additional pre-attenuation, plotted as trans-
mission) Alice adds to her source before injecting into the fibre with distance. No
pre-attenuation is needed until the “shoulder” of the key rate plot where the key
starts to drop off sharply.

theoretic security of the key produced. The next section will focus on estimating

the finite key rate for the measured experimental parameters.

5.4 Finite key rate

The key rate presented in the previous section assumed an infinite number of rounds

between Alice and Bob a highly idealised scenario. In a realistic setting Alice and

Bob can only exchange a finite number of rounds, at this point the fraction of

signals which contain a single photon and the error rates must be estimated from the

observed counts taking into account statistical fluctuations which assume the most

pessimistic case. The finite key rate for a noisy single-photon source is developed

following the approach of [139]. This is the common reference used within the

community of people working on single-photon emitters although is perhaps dated

compared to more modern security analysis which has been developed for decoy-

states 2.

2An updated finite key analysis using more modern approaches is being developed with collab-
orators at the time of writing this thesis.
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There are essentially two different ways of presenting the finite key rate in the finite

key regime. One approach is to fix the block size, i.e. the number of raw bits

generated, and consider how the key rate changes as a function of block size. This

essentially lets the integration time vary when presenting the key rate as a function

of distance. The time required to generate a fixed number of bits is different at 0 dB

loss compared to 30 dB where a large fraction of the signals are lost in transit. This

approach is more common with theoretical work on finite key rates in QKD.

The second approach is to fix the integration time, with this approach the block

size decreases with distance as fewer signals make it to the receiver in the fixed

integration window. This is the approach which is used in the rest of this chapter

as it is more intuitive from an experimentalist point of view. It is also arguably a

more practical approach for future quantum networks where multiple users may only

have a finite amount of integration time to generate a key with a shared quantum

resource.

The probability a given pulse generates a bit in the finite key regime is given by,

S =
pclick

2

n

m+ n

[
Ã

(
1 −H

(
ẽ

Ã

))
− f (e)H (e)

−7

√
log2

(
2
ϵ̄

)
n

− 2

n
log2

(
1

ϵPA

)
− 1

n
log2

(
2

ϵEC

) . (5.6)

Eq. (5.6) is quite involved so a little bit of time will be spent unpacking what is

meant by each of the terms. In the finite key regime a total number of N bits

are generated where a fraction of bits n is used for key generation and m is used

for parameter estimation. The prefactor n/(n + m) then is the fraction of signals

Alice sends in the key generation basis compared to the parameter estimation basis.

This is missing in the asymptotic regime where the fraction approaches one. The

sifting fraction is set to 1/2 to match the asymptotic data presented previously. In

a real implementation this parameter should be optimised over for a given distance

and integration time taking into account the expected error rates. The final three
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terms are purely due to finite size effects: ϵ̄, ϵPA, ϵEC can be roughly interpreted

as the failure probabilities for entropy smoothing, privacy amplification and error

correction respectively. In the modelling presented here these are all set to 10−10.

The error rate and single-photon fraction must be estimated from the raw detected

events which is denoted with a tilde.

The finite size correction is of the form [139],

ξ (N, εPE) =

2 log2

(
1

εPE

)
+ 2 log2 (N + 1)

N

1/2

, (5.7)

with εPE the failure probability for parameter estimation. With this, the new finite

key version of the error and single photon fraction are,

Ã =
pclick − pm − ξ(N)

pclick
= A− ξ(N)

pclick

ẽ = e+ ξ (m) .

(5.8)

These estimates come from the fact that the error rate must be estimated from m

rounds and the single photon fraction must be estimated from the total number of

observed clicks N. 3

The fraction of the key which must be removed for privacy amplification

(
1 −H

(
ẽ

Ã

))
is hit by two finite corrections as both the error rate and the single photon fraction

are estimated quantities.

The finite key rate is presented in Fig. 5.6 for illustrative integration times, the

key generation fraction Alice sends is numerically optimised for each distance and

integration time.

The general picture for Fig. 5.6 is quite bleak. Even with an entire year of integra-

tion time the maximum tolerable loss is considerably smaller than the asymptotic

distance. Over shorter distance reasonably key rates are achievable. For practical

acquisition times of one hour a key rate of 31 kbps can be generated over 50 km of

3This second point has been repeatedly overlooked by the QD community when calculating the
finite key rate [90, 132, 133], even when citing and using the same formalism as [139].
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Figure 5.6: The finite key rate, key generation fraction and number of raw bits
generated for a variety of integration times. (a) Comparison of the finite key rate.
The optimised key generation fraction is shown in (b) which is above 90% for all
distances. The data is cut off before the fraction of signals in the key generation
basis approaches zero as the key rate approaches zero. (c) Shows the number of raw
bits generated for each distance and time to allow comparison with fixed block size
work.

fibre.

From the analysis presented to this point it is quite clear that multiphoton noise is a

fatal problem for QDs when it comes to practical QKD implementation, the photon-

number splitting attack is a potent tool that Eve can use to gain information on the

secret key. The decoy state method was developed as an effective counter to this

attack and this is where we head in the next session.

5.5 Extending the range with decoy states

Up to this point the decoy-state method and using a single-photon source have been

presented as separate approaches to QKD. In the limit of a noiseless single-photon

source the decoy-state method is redundant, but with multiphoton noise the decoy-

state method can be used in tandem with a single-photon source. This idea has been
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suggested in the literature [140], the analysis here was developed independently of

this work and goes much deeper into the implementation of the decoy-state protocol

than the existing literature.

The decoy-state method was introduced in [141] with a heuristic argument and put

on more sure footing in [142] which also contains an excellent comparison to the

GLLP (named after Gottesman, Lo, Lutkenhaus and Preskill)which is the security

analysis used previously for a noisy single-photons source. Some of the nomenclature

and a brief sketch of how the decoy-state method works will be presented here with

the application of the decoy-state method to a noisy single-photon source later in

this chapter.

In the decoy-state method Alice randomly replaces some of the signal states with

so-called decoy states with different mean photon number to the signal state. At

the end of the protocol when Alice and Bob reveal their respective basis choice in

the basis reconciliation step Alice also reveals which type of pulse she sent, either a

signal or decoy. As these pulses have different intensities they should have different

probabilities of generating a click at Bob’s detectors. By monitoring these click

probabilities for each pulse type Alice and Bob can detect if Eve is implementing a

photon-number splitting attack on the channel.

Let us define the yield Yi|µ, which is the probability a pulse containing i photons

reaches the end of the communication channel and sets off Bob’s detector given that

Alice chose the pulse distribution µ (which labels the signal or decoy).

The gain of this signal is defined as

Qµ =
∑
i

pi|µYi|µ, (5.9)

where pi|µ is the probability that pulse distribution µ contains i photons. This is

the sum of all the photon-number probabilities for a given distribution weighted by

the probability that a particular photon number survives the channel and sets off

Bob’s detector.
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The error rate is then defined as

Eµ =
∑
i

pi|µYi|µei, (5.10)

where ei is the error rate for i photons.

The essence of the decoy-state method can be summed up with the following equa-

tions,

Yi|µ = Yi|ν

ei|µ = ei|ν .

(5.11)

These equations state that the probability a pulse makes it to the end of the chan-

nel and the error rate depends only on the photon number i and not the pulse

distribution that the pulse is selected from. From Eve’s point of view she detects a

multiphoton pulse in the channel but has no idea which distribution it comes from.

Since Alice and Bob can know the gains Qµ and error rates Eµ experimentally they

can use an infinite number of decoys to solve for Y1 and e1 from Eq. (5.9) and

Eq. (5.10) respectively. Y1 and e1 are then the quantities required to predict the

secret key rate. In practice, a finite number of decoys can be used to provide an

upper bound to e1 and a lower bound to Y1. Typically, either two decoys (signal

+ weak decoy + vacuum) [143] or one decoy (signal + weak decoy) [131] are used

experimentally.

The single-photon fraction and error rate are typically derived for coherent state

sources which follow a Poissonian photon-number distribution [144]. This type of

photon source is characterised by a single number which describes the mean photon

number and photon-number variance. Recently this has been extended to sources

with arbitrary photon-number distributions which is the approach followed here

[145]. The upshot of this work is that for all other parameters being equal the

photon source which is mostly sharply peaked with the smallest variance has a

higher key rate and largest maximum tolerable loss.

108



Chapter 5: Quantum key distribution with a frequency-converted quantum dot

From [145] the key rate in the asymptotic regime is,

S =
1

2

(∑
k

pkP0|kY0 +
∑
k

pkP1|kY
L
1

(
1 − h(eU1

)
−
∑
k

pkQkf (Ek)h (Ek)

)
. (5.12)

The form of Eq. (5.12) is similar to Eq. (5.1), the key point is that
∑

k pkP1|kY
L
1 and

eU1 are much tighter to the true single-photon rate and error than the pessimistic

counterparts pclickA and e/A. The source term
∑

k pkP1|kY
L
1 should be read as the

probability of Alice choosing a pulse distribution pk, the probability of a pulse from

that distribution having a single photon P1|k and the lower bound on the single

photon yield Y L
1 summed over the different pulse distributions.

The explicit forms of Y L
1 and eU1 can be found in [145] and are not reproduced here

as they do not add any additional insight. One point that is worth covering is that

for the security analysis to be valid the different pulse distributions must satisfy

P1|ν

P1|µ
> max

i≥2

Pi|ν

Pi|µ
, (5.13)

where Pi|µ(ν) is the photon number probability for the signal (decoy) distribution

µ (ν). Additionally, for the one decoy method the distributions must satisfy,

P0|ν

P0|µ
>
P1|ν

P1|µ
. (5.14)

A straightforward way to satisfy these constraints is to take the photon number

distribution for the signal state and attenuate the signal to derive the weak decoy

or vacuum pulse. This can be done on a shot-by-shot basis with an electro-optic

intensity modulator and is a common technique with decoy-state implementations

based on coherent states [146].

With an input state containing i photons and an intensity modulator with trans-

mission T the probability of having j photons at the output is

Pj =
∑
i

i!

j! (i− j)!
PiT

j (1 − T )i−j . (5.15)
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The transmission is then a free parameter which can be optimised over to maximise

the secret key rate.

At this point it should be noted that this is not the only method to vary the pho-

ton number distribution of a single emitter. Under resonant driving the effective

two-level system undergoes Rabi oscillations, for different pulse energies {π, 2π, 3π}

the ratio of vacuum, single-photon and two-photon probabilities change. Previous

characterisation of the quantum dot photon number distributions [147] under these

excitation energies shows that the 2π and 3π pulses are compatible with the one-

decoy protocol inequalities, see Eq. (5.13) and Eq. (5.14). Generating decoys by

changing the excitation energy has the advantage that the single-photon signal does

not have to travel through an intensity modulator which would typically have 3 dB

loss. Part of future work will involve characterising the photon number distributions

after the frequency conversion process and testing if Eq. (5.13) and Eq. (5.14) are

still satisfied.

A noisy single-photon source has no closed form for the photon number distribution

but the distribution can be reconstructed under some simplifying assumptions. First

we assume a strict ordering in photon number probabilities p1 > p2 > p3 > ... which

is valid for a large variety of experimental conditions where the probability of the

emitter being re-excited is small compared to the single photon emission rate.

Given this, the second and third order correlations are equal to g(2) = 2P2/P
2
1 and

the g(3) = 6p3/p
3
1 [129]. As the source is characterised by click detectors with no

photon-number resolving capabilities we also have pclick = 1 − p0 = p1 + p2 + p3 if

we truncate the photon-number space to no more than three photons.

The g(3) (τ1, τ2) was reconstructed using a polarising beam splitter splitting the

counts in a 2:1 ratio with a 50/50 beam splitter placed in the brighter arm to

create a 1:1:1 splitting ratio across three detectors. The reconstructed value is

g(3) (0, 0) = 0.0018(9), the relatively large error is due to only four three-fold coin-

cidences observed in the central peak at zero delay between all three detectors. As

with the g(2) measurements the time window is set to include the full width between
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the pulses ±3 ns.
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Figure 5.7: Two-dimensional plot of g(3) (τ1, τ2) at different coincidence windows.
Black squares represent the region shown in subsequent plot. The red square in
(c) contains the four three-fold coincidences which contribute to the g(3) (0, 0) peak.
The peaks are normalised to peaks between 9 µs to 10 µs to avoid blinking of the
emitter. The peaks used also avoid the diagonal zero line when the time between
detectors two and three firing is zero.

The single-photon probability can be found by solving the cubic equation,

g(3)

6
p31 +

g(2)

2
p21 + p1 − pclick = 0. (5.16)

Using the value for p1 the photon number distribution up to three photons can

be found. Using the values pclick = 0.0142, g(2) = 0.036, g(3) = 0.0018, the photon
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Chapter 5: Quantum key distribution with a frequency-converted quantum dot

number probabilities are,

p0 = 0.986

p1 = 1.42 × 10−2

p2 = 3.62 × 10−6

p3 = 8.58 × 10−10.

(5.17)

It is worth comparing the performance of a single-photon source to the more com-

mon coherent-state decoy methods. The two-decoy method is known to be optimal

in the asymptotic regime [144] so we will use this to compare the two cases. Al-

ice sends signal states in the key-generation basis with almost unit probability in

the asymptotic regime. The loss added to derive the decoy states are equal (90%

transmission), the single-photon source having the g(2) and g(3) set to the experi-

mentally measured values and all other experimental values are equal. For the case

of relatively dim sources n̄ = 0.01 the single-photon source and coherent state per-

form almost identically in terms of key rate and maximum tolerable loss. Looking

at Fig. 5.8(b) this is not surprising, the photon-number distributions are almost

identical with 98.6% overlap in the dim case.

Motivated by the recent demonstration of a QD source with 50% extraction efficiency

[13] it is also worth comparing a brighter single-photon source to a coherent state of

equivalent brightness. In this scenario the long multiphoton tail of the coherent state

shown in Fig. 5.8 limits the key rate due to the worse bound on the single-photon

yield compared to the single-photon source. This illustrates that as the performance

of single-photon sources improves it may become beneficial to transition to using

single emitters instead of coherent sources in point-to-point QKD systems.

The performance of the frequency converted QD source is now estimated in a hypo-

thetical decoy-state protocol using the experimental parameters measured. In order

to give a realistic estimate the intensity modulator which would be used to generate

the decoys states is assumed to have 3 dB insertion loss which is typical of integrated

lithium niobate modulators. The mean photon number is therefore half the value
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Figure 5.8: Asymptotic key rate for the two decoy protocol for weak coherent sources
and a noisy single photon source for different mean photon numbers. (a) Comparison
of the asymptotic key rate for the case of a single-photon source and weak coherent
state with mean photon number 0.01 and 0.5. For the dim sources the key rate
is almost identical which is expected from the similar photon number distributions
shown in (b). As the brightness is increased the multiphoton component of the
single-photon source increases less rapidly than the coherent state which gives an
improvement in key rate and maximum tolerable loss.

used for the GLLP analysis in Section 5.3. The finite key rate formulas are found in

[145] and are not reproduced here for brevity. We compare the one-decoy protocol

and the two-decoy protocol for the same integration times used in Fig. 5.6. In the

numerical simulation the key generation fraction from Alice, the signal-decoy ratio

in the one-decoy protocol and the signal-decoy-vacuum ratio in the two-decoy proto-

col are optimised at each distance and integration time. Additionally, the intensity

of the weak decoy for both protocols is numerically optimised.
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Figure 5.9: Comparison of the 1-decoy and 2-decoy states in the finite-key case
for different integration times. There are relatively small differences between both
protocols at all distances. Given the experimental simplicity of producing only one
decoy it is expected that it may be the preferable protocol in practice. Figure (b)
is a zoomed version of the data shown in figure (a).
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The decoy-state method shows obvious improvements over the pessimistic GLLP

security analysis. For 100 seconds a secure key can be generated at 150 km compared

to around 30 km without decoy-states. It is worth noting that for some combinations

of integration time and distance the decoy-state method has a lower secret key rate

than the case without decoys. This is attributed to the extra 3 dB attenuation from

the intensity modulator which would be required to generate the decoys.
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Figure 5.10: Comparison of finite-key rate for the one-decoy state method (dashed
line) and the finite-key rate without decoy states (solid lines) for realistic integration
times. The decoy state method greatly improves the maximum tolerable loss in all
cases but for short distances and long integration times the additional loss due to the
required intensity modulator reduces the key rate below the level without decoys.

With the analysis presented here the case for using the decoy-state method with a

single-photon source purely for the purpose of QKD is perhaps hard to make. Using a

laser diode is experimentally simpler, cheaper and does not require cryogenics, which

are typically needed for the best single-photon sources available currently. What we

can say is that the ultimate QKD performance is achieved for a true single-photon

source with unit efficiency and zero multiphoton noise as imagined in the original

BB84 protocol. As the performance of single-photon sources trends towards this

ultimate goal, there may come a point in the future where decoy-state QKD with

such a source might outperform an equivalent protocol with coherent states. At this

point a true comparison can be made to see if the difference in performance is worth

the additional experimental overhead in the implementation.
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Conclusion

With that we have come to the end of the thesis. To the reader hopefully this

has been an interesting journey through time and frequency in quantum photonics.

Maybe I have even convinced you that time and frequency are an interesting DoF

to start using more seriously in quantum information protocols, then again maybe

not...

In this thesis the problem of generating frequency-entangled states in a low-loss

way has been discussed and demonstrated. The main hurdle for using frequency-

bin entanglement in practical applications continues to be efficient manipulation of

these states. The electro-optic modulators used to manipulate frequency-bin states

typically come with 3 dB loss for each device due to spatial-mode matching. As

with most problems in quantum photonics the perceived solution is integration.

Thin-film lithium niobate seems to be a promising platform, in which separable pho-

ton pairs have been generated with type-2 phasematching [148]. The group velocity

matching conditions are compatible with generating frequency-bin entanglement us-

ing the domain-engineering techniques demonstrated in this thesis. Control of the

time-frequency structure of non-classical light sources has also been demonstrated

in thin-film LN including spectral shearing and bandwidth compression [149]. The

bandwidth of these devices is larger than typical bulk electro-optics with Vπ on the

order of 2.5 V compared to around 7 V for commercial devices. Integrating super-
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conducting detectors onto the same chip along with appropriate filtering would be a

promising platform for frequency-bin qudit generation, manipulation and detection

in one system. In terms of communication applications these devices would need to

have efficient coupling on and off chip and into single-mode fibre. This problem is

on-going due to the dimensions of thin-film LN waveguides being a few hundred nm

compared to 10 µm for standard single-mode fibre. Despite these technical hurdles,

this direction of research may ultimately prove fruitful.

The second photon source developed in this thesis, the frequency-converted quantum

dot, has some promise in terms of communication applications. Using this source

in a decoy state protocol will dramatically extend the point-to-point distance over

which QKD has been carried out using QDs. Using the brightest QDs available

it may start to become competitive with weak coherent sources. Two-photon in-

terference visibilities between distinct QDs has been a limiting factor in scaling up

to networking protocols that might involve more than one source. There has been

improvement in this direction [150] with visibilities above 90% between different

emitters. If these sources can be integrated with photonic structures to enhance

collection and count rate then perhaps QDs can be used in long-range multiphoton

QKD protocols such as MDI-QKD which require more than one source.

Recently proposed QKD protocols have shown that there is a sliding scale between

MDI-QKD which requires two sources and a two-photon interference event to twin-

field QKD [151, 152] which only requires a single-photon detection at the central

node at the cost of phase-locking both communication channels. The family of proto-

cols between these two extremes are based on asynchronous two-photon interference

[153, 154] and relax the phase locking requirements of twin-field QKD and can sur-

pass the repeaterless key rate [155]. Frequency converted QD sources may well be

an ideal candidate for these protocols, as they can theoretically achieve higher two-

photon interference visibilities than two weak coherent sources which are limited to

50% and therefore have lower error rates and the issue of driving two single-emitters

in a phase-locked way is side-stepped. Using reverse-wave frequency conversion

would result in near unit spectral purity of the converted photons. The spectral

116



Chapter 6: Conclusion

reshaping and purification that naturally occurs in reverse-wave FC would allow for

multiple different quantum emitters to be integrated into the same network. This

may relax the source requirements required to realise a practical quantum internet

for communication and entanglement distribution.
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Appendix A

Derivation of PMF for a

periodically-poled crystal

Here the steps for the derivation of the quasi-phasematched PMF Eq. (2.38) in

Chapter 2 are laid out explicitly,

ϕpp (∆k) =
N∑

n=1

∫ nlc

(n−1)lc

dz (−1)n−1 ei∆kz

= i
N∑

n=1

(−1)n︸ ︷︷ ︸
einπ

ei∆knlc
1 − e−i∆klc

∆k
.

(A.1)

Using the fact that −1 = eiπ and evaluating the summation as
∑N

n=1 e
inπei∆knlc =

ei∆klc(eiN(∆klc+π)−1)
1+ei∆klc we can write,

ϕpp (∆k) = i
ei∆klc

(
eiN(∆klc+π) − 1

)
1 + ei∆klc

1 − e−i∆klc

∆k

= i
(
ei(∆k− π

lc
)Nlc − 1

) 1

∆k

ei∆klc − 1

ei∆klc + 1
,

(A.2)

in the second line the factors
ei∆klc(1−e−i∆klc)

1+ei∆klc are gathered together.

Finally with some creative factors of 1 = Nlc
Nlc

=
∆k− π

lc

∆k− π
lc

and using
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1 − eix = eix/2
(
eix/2 − e−ix/2

)
we can write,

ϕpp (∆k) = iNlce
i(∆k− π

lc
)Nlc

2

× ei(∆k− π
lc

)Nlc
2 − e−i(∆k− π

lc
)Nlc

2

2
(

∆k − π
lc

)
Nlc
2

×
∆k − π

lc

∆k

ei∆klc − 1

ei∆klc + 1

= Lei(∆k− π
lc

)L
2 sinc

((
∆k − π

lc

)
L

2

)
×

∆k − π
lc

∆k

1 − ei∆klc

1 + ei∆klc

= ϕb

(
∆k − π

lc

)
× ϕadd (∆k) .

(A.3)

In the final passage we have used the fact that the product of the domain length

times the number of domains gives the length of the crystal Nlc = L in the first line

along with the identity i sinc (x) =
exp (ix) − exp (−ix)

2x
in the second line.
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Electro-optic modulator

characterisation

The high speed electro-optic modulator (EOM) consists of a lithium niobate waveg-

uide which is end coupled with two polarisation maintaining fibres. The input fibre

is glued such that the slow axis of the fibre is at 45◦ with respect to the crystal

axis. When the input polarisation is correctly aligned to the slow-axis of the fibre,

one component of the polarisation vector is aligned to the electro-optically active

axis of the crystal and experiences a refractive index which depends on the voltage

across the device. The orthogonal component of the polarisation vector accumulates

a fixed phase. By sweeping the voltage sent to the device one can then dial up any

polarisation vector on the {D,R,A, L} great circle of the Bloch sphere. The device

specifications state around 2 dB insertion loss and 20 dB polarisation extinction

ratio.

The device was tested using frequency converted laser light which passed through

the same optical setup used to convert the single photons from the QD source, see

Fig. 4.7. The output polarisation output state was analysed using the BB84 receiver,

see Fig. 5.2.

It was quickly noted that the polarisation state varied dramatically and erratically

when using 1550 nm light from the frequency conversion setup. The EOM was held
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Figure B.1: Typical time traces for the polarisation encoding error for a distributed
feedback laser diode at 1550 nm held at fixed temperature sent through the EOM
in (a). The encoding error for the same diode with the temperature varied which
sweeps the diode wavelength is shown in (b). The wavelength is swept through
around 1.5 nm before the diode settles at a new temperature. A similar time trace
for the frequency converted laser light from the experimental setup used to convert
the QD single photons is shown in (c).

at a fixed DC voltage and the output state was aligned such that the majority of

the detected counts were transmitted through one of the polarising beam splitters

in the receiver. The polarisation encoding error can then be calculated as

e =
NR

NT +NR

, (B.1)

where NR and NT are the number of counts on the reflected and transmitted ports

respectively. A typical time trace of the error for three minutes is shown in Fig. B.1

(c) for the frequency converted light. The encoding error was also tested sending

a 1550 nm diode laser through the EOM to try and understand the reason for the

erratic behaviour when using frequency converted light.

With the diode temperature fixed the error linearly increases with time which is

attributed to temperature drifts in the fibres leading to and from the EOM itself.
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The sinusoidal-like curves in Fig. B.1(b) are due to the projection onto the {H,V }

axis defined by the polarising beam splitter from the polarisation state processing

around the Bloch sphere as the input wavelength varies. In Fig. B.1(c) the sharp

jumps in the error are due to mode hopping seen in the spectrum of the seed laser

used for conversion, Fig. 4.4. This spectral instability then gives large encoding

errors on Alice’s source end. A more faithful version of the BB84 protocol was

attempted where a pre-programmed sequence of states was encoded on a shot-by-

shot basis. Unfortunately, the measured error rate was above the threshold of ≈ 11%

required to generate a key in the asymptotic limit. Future work on this experiment

should focus on locking the laser to an external cavity resonance or replacing the

laser system with a commercial option. At this point a true shot-by-shot encoded

implementation of BB84 should be possible.
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