
Relational Knowledge and

Representation for Reinforcement

Learning

Ng Jun Hao, Alvin

Submitted for the degree of

Doctor of Philosophy

Heriot-Watt University

Department of Mathematics,

School of Mathematical and Computer Sciences.

August, 2022

The copyright in this thesis is owned by the author. Any quotation from the thesis

or use of any of the information contained in it must acknowledge this thesis as the

source of the quotation or information.

Abstract

In reinforcement learning, an agent interacts with the environment, learns from feed-

back about the quality of its actions, and improves its behaviour or policy in order

to maximise its expected utility. Learning efficiently in large scale problems is a ma-

jor challenge. State aggregation is possible in problems with a first-order structure,

allowing the agent to learn in an abstraction of the original problem which is of

considerably smaller scale. One approach is to learn the Q-values of actions which

are approximated by a relational function approximator. This is the basis for rela-

tional reinforcement learning (RRL). We abstract the state with first-order features

which consist of only variables, thereby aggregating similar states from all problems

of the same domain to abstract states. We study the limitations of RRL due to

this abstraction and introduce the concepts of consistent abstraction, subsumption

of problems, and abstract-equivalent problems. We propose three methods to over-

come the limitations, extending the types of problems our RRL method can solve.

Next, to further improve the learning efficiency, we propose to learn different types

of generalised knowledge. The policy is influenced by directed exploration based on

multiple types of intrinsic rewards and avoids previously encountered dead ends. In

addition, we incorporate model-based techniques to provide better quality estimates

of the Q-values. Transfer learning is possible by directly leveraging the generalised

knowledge to accelerate learning in a new problem. Lastly, we introduce a new class

of problems which considers dynamic objects and time-bounded goals. We discuss

the complications these bring to RRL and present some solutions. We also pro-

pose a framework for multi-agent coordination to achieve joint goals represented by

time-bounded goals by decomposing a multi-agent problem into single-agent prob-

lems. We evaluate our work empirically in six domains to demonstrate its efficacy

in solving large scale problems and transfer learning.

Acknowledgements

I want to thank my advisor, Dr. Ronald P. A. Petrick, for his mentoring and advice.

Ron has been patient and encouraging, and provides the right amount of guidance

for me to learn and think for myself. I thank my examiners, Dr. Arash Eshghi and

Dr. Siddharth Srivastava, for the insightful discussion and feedback. I am glad to

have walked through this long journey with my peers at the Edinburgh Centre for

Robotics. I thank them for their friendship, companionship, and encouragement.

Also, I am deeply indebted to Hans-Nikolai Vießmann and Helmi Fraser, without

whom I will not be able to run my experiments. Last but not least, I am grateful

to my family and loved one for their support and understanding.

Research Thesis Submission
Please note this form should be bound into the submitted thesis.

Name: JUN HAO ALVIN NG

School: SCHOOL OF ENGINEERING AND PHYSICAL SCIENCES

Version: (i.e. First,
Resubmission, Final)

FINAL Degree Sought: PhD

Declaration

In accordance with the appropriate regulations I hereby submit my thesis and I declare that:

1. The thesis embodies the results of my own work and has been composed by myself
2. Where appropriate, I have made acknowledgement of the work of others
3. The thesis is the correct version for submission and is the same version as any electronic versions submitted*.
4. My thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made available for

loan or photocopying and be available via the Institutional Repository, subject to such conditions as the Librarian
may require

5. I understand that as a student of the University I am required to abide by the Regulations of the University and to
conform to its discipline.

6. I confirm that the thesis has been verified against plagiarism via an approved plagiarism detection application e.g.
Turnitin.

ONLY for submissions including published works
Please note you are only required to complete the Inclusion of Published Works Form (page 2) if your thesis contains
published works)

7. Where the thesis contains published outputs under Regulation 6 (9.1.2) or Regulation 43 (9) these are accompanied
by a critical review which accurately describes my contribution to the research and, for multi-author outputs, a
signed declaration indicating the contribution of each author (complete)

8. Inclusion of published outputs under Regulation 6 (9.1.2) or Regulation 43 (9) shall not constitute plagiarism.

* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis is submitted.

Signature of
Candidate:

Date: 19/08/2022

Submission

Submitted By (name in capitals): JUN HAO ALVIN NG

Signature of Individual Submitting:

Date Submitted: 19/08/2022

For Completion in the Student Service Centre (SSC)

Limited Access Requested Yes No Approved Yes No

E-thesis Submitted (mandatory for final
theses)

Received in the SSC by (name in capitals): Date:

Page 1 of 2
RDC Clerk/Apr 2019

Inclusion of Published Works
Please note you are only required to complete the Inclusion of Published Works Form if your thesis contains
published works under Regulation 6 (9.1.2)

Declaration

This thesis contains one or more multi-author published works. In accordance with Regulation 6 (9.1.2) I hereby declare
that the contributions of each author to these publications is as follows:

Citation details

Author 1

Author 2

Signature:

Date:

Citation details

Author 1

Author 2

Signature:

Date:

Citation details

Author 1

Author 2

Signature:

Date:

Please included additional citations as required.

Page 2 of 2
RDC Clerk/Apr 2019

Contents

List of Tables vi

List of Figures ix

List of Algorithms xvi

Notation xxiii

1 Introduction 1

1.1 Exploiting The Structure of a Problem 3

1.2 Transferring Knowledge . 4

1.3 Other Aspects of a Problem . 5

1.4 Overview of Our Approach . 6

1.5 Objectives and Contributions . 6

1.6 Structure . 8

2 Background and Related Work 10

2.1 Problem Representations . 10

2.1.1 States and Actions . 11

2.1.2 Markov Decision Processes . 12

2.1.3 Relational Markov Decision Processes 13

2.1.4 Semi-Markov Decision Processes 15

2.1.5 Other Extensions of MDPs . 15

2.1.6 Terminal States, Goals, and Dead Ends 16

2.2 Planning Languages . 16

2.2.1 STRIPS Action Models . 17

2.2.2 Probabilistic Planning Domain Definition Language 17

i

CONTENTS

2.2.3 Relational Dynamic Influence Diagram Language 18

2.3 Generative Models . 19

2.3.1 Maximum Likelihood Model 20

2.3.2 Dynamic Bayesian Network 20

2.3.3 Model Learning . 21

2.3.4 Evaluate Correctness of Approximate Models 24

2.4 Reinforcement Learning . 26

2.4.1 Model-Free Reinforcement Learning 29

2.4.2 Model-Based Reinforcement Learning 30

2.4.3 Measuring Performance . 34

2.5 Function Approximation . 36

2.5.1 State Abstraction . 36

2.5.2 Granularity . 37

2.5.3 Linear Function Approximation 38

2.5.4 Feature Discovery . 39

2.5.5 Neural Network . 41

2.6 Relational Reinforcement Learning 42

2.6.1 Model-Free RRL . 43

2.6.2 Model-Based RRL . 46

2.6.3 Planning Methods . 47

2.7 Additional Related Work . 49

2.7.1 Temporal Considerations . 49

2.7.2 Multi-Agent Coordination . 50

2.8 Benchmark Domains . 52

2.8.1 IPPC Benchmark Domains . 52

2.8.2 Robotic Domains . 56

2.8.3 Properties of Domains . 63

2.9 Summary . 64

3 First-Order Approximation 65

3.1 Online Relational Reinforcement Learning 66

3.1.1 Online Feature Discovery . 68

3.1.2 Adaptive online feature discovery 72

ii

CONTENTS

3.1.3 Update Q-function Approximation 74

3.2 Ground Approximation . 75

3.3 Consistent Abstraction with First-Order Features 77

3.3.1 Initialising First-Order Base Features 78

3.3.2 Consistent Abstraction and Abstract-Equivalent Problems . . 82

3.3.3 Augmenting First-Order Base Features 85

3.3.4 Conjunctive First-Order Features 87

3.4 Grounding First-Order Features . 88

3.4.1 Granularity and Pitfalls of First-Order Abstraction 90

3.4.2 Contextual Knowledge . 96

3.5 Dealing with Plateaus . 102

3.5.1 Model-Based Q-value Tree Expansion 102

3.5.2 Ensemble of Approximations 106

3.6 Transfer Learning . 107

3.7 Empirical Evaluation and Discussion 109

3.7.1 Experimental Setup . 109

3.7.2 Ablation Study for Contextual Knowledge 114

3.7.3 Resolving Plateaus . 120

3.7.4 Transfer Learning . 125

3.8 Summary . 127

4 Generalised Knowledge for RRL 129

4.1 Types of Generalised Knowledge . 130

4.2 Model Predictions . 132

4.3 Model-Based Learning and Planning 134

4.3.1 Model-Based Feature Selection 134

4.3.2 UCT with Model-Free RRL . 141

4.4 Policy Control . 146

4.4.1 Learning from Dead Ends . 146

4.4.2 Intrinsic Motivation . 154

4.5 Empirical Evaluation and Discussion 163

4.5.1 Correctness of Learned Models 163

4.5.2 MBFS vs MFFS . 165

iii

CONTENTS

4.5.3 Learning from Dead Ends . 169

4.5.4 Intrinsic Motivation . 170

4.5.5 Continual Learning . 177

4.5.6 Combining Model-Based and Model-Free RL 180

4.6 Summary . 183

5 Dynamic Objects, Time, and Coordination 185

5.1 Service Robot in the Real World . 186

5.2 Dynamic Object Relational Markov Decision Process 187

5.2.1 Dynamic Objects in Service Robot 187

5.3 Temporal Considerations . 188

5.3.1 Durative Actions . 189

5.3.2 Time-Bounded Goals . 190

5.3.3 Time-Dependent DORMDP 192

5.4 Dealing with TDORMDP Problems 193

5.4.1 Dynamic Base Features . 193

5.4.2 Representing Violated TGs . 195

5.4.3 Model-Based Methods . 198

5.4.4 Learning from Hindsight . 200

5.4.5 Extensions to Online RRL . 201

5.5 Simulation-to-Simulation Transfer . 201

5.5.1 Simulated Environment in Gazebo 202

5.5.2 Differences between Simulated Environments 203

5.6 Empirical Evaluation and Discussion 204

5.6.1 Dynamic Objects and TGs . 205

5.6.2 Sim-to-Sim Transfer . 208

5.7 Multi-Agent Coordination . 210

5.7.1 Coordinated Actions . 211

5.7.2 Decomposition with Temporal Planning 214

5.7.3 Auctioning TGs . 219

5.8 Summary . 226

6 Discussion 228

iv

CONTENTS

7 Conclusions and Future Work 235

7.1 Future Work . 238

A Proofs 241

A.1 Proofs from Chapter 3 . 241

A.2 Proofs from Chapter 4 . 243

B Additional Examples 245

B.1 Examples for MBFS . 245

C Additional Empirical Results 249

C.1 Empirical Results for Chapter 3 . 249

C.1.1 Blocks World . 249

C.1.2 Comparison with Other RRL Methods 250

C.1.3 Sensitivity Analysis for Online Feature Discovery 251

C.2 Empirical Results for Chapter 4 . 254

C.2.1 Tuning the Hyperparameter ν for MBFS 254

C.2.2 Sensitivity Analysis for β . 255

C.2.3 Sensitivity Analysis for Number of Rollouts in Dyna 257

C.3 Empirical Results for Chapter 5 . 258

C.3.1 Effect of ∆T on TDORMDP Problems 258

D RDDL Domains 260

D.1 Recon . 260

D.2 Robot Fetch . 263

D.3 Robot Inspection . 265

D.4 Service Robot . 269

D.5 Blocks World . 274

Bibliography 277

v

List of Tables

3.1 Values of hyperparameters used in experiments. 112

3.2 The ranking of contextual knowledge based on the total rewards with

goal-directedness as a tiebreaker. The number indicates the rank

with 1 being the best, the symbol X (×) indicates that the first-order

approximation with contextual knowledge performs better (worse)

than the ground approximation, NA indicates that the contextual

knowledge is not applicable, and — indicates that the result is not

available due to high computational costs. Gr denotes ground context,

L denotes location context, and G denotes goal context. 118

3.3 The contextual knowledge used for each domain in all experiments

unless stated otherwise. Gr denotes ground context, G denotes goal

context, and L denotes location context. 118

3.4 Summary of the results for using different methods to resolve plateaus

in the first-order approximation. The methods are (A) using decou-

pled weights, (B) using MQTE, and (C) using an ensemble of ground

and first-order approximations. The symbols X indicates that the

method outperforms the ground approximation, × indicates that it

worsens performance (relative to not using it at all), and a number

indicates its ranking among all methods if it improves performance. . 122

vi

LIST OF TABLES

3.5 Mean and the one standard deviation of six metrics accumulated in

3000 episodes and aggregated over ten problems: “One action” is the

number of times MQTE has reduced the number of greedy actions to

one, “Lesser actions” is the number of times MQTE has reduced the

number of greedy actions but not to one, “No change” is the number

of times MQTE has not reduced the number of greedy actions, “Fail to

predict” is the number of times MQTE has not reduced the number of

greedy actions due to the inability of the generative model to predict

the outcomes, “% Effectiveness” is the percentage of times MQTE has

reduced the number of greedy actions notwithstanding the failure of

the model to predict, and “% Real Effectiveness” is the percentage of

times MQTE has reduced the number of greedy actions. The first four

metrics are mutually exclusive. 122

4.1 Average computation time and one standard deviation in seconds for

RLFIT to learn the models given training data of 10, 50, and 500 state

transitions per symbolic action. The computation time is aggregated

over ten independent runs. 164

4.2 Summary of the performance of the different types of model-free in-

trinsic rewards. The abbreviations GND denotes ground approxi-

mation, FO denotes first-order approximation, CT denotes COUNT

(Tabular), and CL denotes COUNT (LFA). X indicates that the intrin-

sic reward improves performance relative to the baseline, × indicates

that it worsens performance, and — indicates that it makes no dif-

ference. 174

vii

LIST OF TABLES

7.1 Summary of the performance of the methods introduced in this dis-

sertation. X indicates that the method improves performance relative

to the baseline (refer to description [Desc.]), × indicates that it did

not improve performance, and — indicates that it makes no differ-

ence. Empty cells indicate that the method is not applicable for the

domain. If there are two symbols in a cell, the first pertains to the

ground approximation and the second pertains to the first-order ap-

proximation. AA denotes Academic Advising, RC denotes Recon, TT

denotes Triangle Tireworld, RF denotes Robot Fetch, RI denotes

Robot Inspection, and SR denotes Service Robot. 237

viii

List of Figures

2.1 The PPDDL action model for move vehicle in Triangle Tireworld. 17

2.2 An excerpt of the domain file for Triangle Tireworld written in

RDDL.
... denotes omitted parts of the domain file. 18

2.3 A portion of the DBN for a problem of Triangle Tireworld. Green

rectangles denote actions at time step t, blue (orange) ovals denote

state predicates at time step t (t+ 1). 21

2.4 Action models for move vehicle(WP1,WP2). Numeric values in

parentheses represent the probabilities of effects. 25

2.5 The RL framework. 26

2.6 The four phases in MCTS: selection, expansion, simulation, and back-

propagation. 31

2.7 A state for the problem TT3 of the Triangle Tireworld domain. A

green circle denotes a location with a spare tire and an arrow denotes

the direction of traversal allowed. 55

2.8 An environment in Gazebo for the Service Robot domain. A TIAGo

robot fulfils a task from the person p1 who requested assistance by

bringing an item o1 to the location wp5. 60

3.1 An illustration of initialising a set of first-order base features for a

symbolic action and the grounding of first-order features. To evaluate

first-order features, they are grounded with consideration to the state

st, the objects in the action a1, and contextual knowledge. 79

ix

LIST OF FIGURES

3.2 Illustration of the relation between the ground approximation and the

first-order approximation. Three ground approximations are learned

in different problems with non-overlapping state-action spaces and

are abstracted to a first-order approximation. A state-action space is

represented by a large circle with dark shade. A state-action pair is

represented by a small circle with light shade. 80

3.3 A problem of Robot Fetch which requires the robot to start by placing

any of the objects, o1, o2, or o3, at the location wp1 instead of their

respective goal locations as none of their goal locations are empty. . . 92

3.4 A problem of Recon where there is a plateau in state s1 for a first-

order approximation. Left: the numberings represent the locations

wp1, wp2, . . ., wp9. Center: state s1. Right: state s2. 95

3.5 Ablation study involving large scale problems from six domains. The

sample complexity is indicated by the total undiscounted rewards

received in each episode. 115

3.6 Ablation study involving large scale problems from six domains. The

goal-directedness is measured by the cumulative number of goal states

reached minus the cumulative number of dead ends reached. 116

3.7 Ablation study involving large scale problems from six domains. The

computational cost is measured by the cumulative computation time

taken in seconds. 117

3.8 Performance of different methods for resolving plateaus in the first-

order approximation. The methods are (1) using decoupled weights(
Q̃fo (DW)

)
, (2) using MQTE

(
Q̃fo (MQTE)

)
, and (3) using an en-

semble of ground and first-order approximations
(
Q̃gnd + Q̃fo

)
. The

baselines are ground approximation (Q̃gnd) where plateaus are un-

likely and first-order approximation (Q̃fo) where plateaus are not re-

solved. 121

x

LIST OF FIGURES

3.9 Results for transfer learning. Q̃gnd (Q̃fo) represents the ground (first-

order) approximation, and Q̃gnd + Q̃fo represents an ensemble. The

subscripts ⊥ and > denote that Q̃fo is learned in and transferred from

a small scale problem. ⊥ denotes that Q̃fo is not updated in the large

scale problem while > denotes that Q̃fo continues to be updated in

the large scale problem. 125

4.1 A toy problem with two state predicates: X and Y. The solid and

dotted arrows denote two actions. A red arrow denotes the action is

optimal. The numerical values are the immediate rewards for execut-

ing the actions. On the left, there is no abstraction. On the right, Y

is abstracted away resulting in two abstract states. 141

4.2 The four approaches in which the Q-values from a Q-function approx-

imation, Q̃, can be combined with UCT. (A) The policy considers the

Q-values of actions at the root node which is a mix of the Q-values

estimated by UCT and by Q̃. (B) During the simulation phase, the

rollout policy is generated from Q̃. (C) During backpropagation, the

value of the last node in the rollout, which is not a terminal state, is

estimated by Q̃. (D) During backpropagation, the Q-value of the leaf

node is the mix of the return from the rollout and Q̃(sL, a) where sL

is the state in the leaf node. 142

4.3 Trajectories in episodes 1 (top row) and 2 (middle row and bottom

row) of the problem TT3 from Triangle Tireworld. si,j and ai,j

denote the state and action executed, respectively, at episode i, time

step j. Each subfigure illustrates a state that an action is executed

in. The next state is illustrated in the next subfigure. Locations are

represented by circles. A green circle indicates that the location has

a spare. A circle with a border indicates that the vehicle is at that

location. A blue border indicates that the vehicle has a spare while

a red border indicates otherwise. A dotted border indicates that the

vehicle has a flat tire while a solid border indicates otherwise. 151

xi

LIST OF FIGURES

4.4 A framework for an ensemble of Q-function approximations which

learns at different abstraction levels and from extrinsic (rext) and

intrinsic (rint) rewards. Multiple types of intrinsic rewards can be

considered and are categorised into four types, depending on how

they fit into the framework. 155

4.5 Average variational distance and one standard deviation for each of

the ten model learned by RLFIT given the training data of 10, 50, and

500 state transitions per symbolic action. The average variational

distance is aggregated over ten independent runs. 165

4.6 Comparing the number of features added to Φ between MFFS and

MBFS. The true model is used by MBFS to determine the base features. 166

4.7 Comparing the total undiscounted rewards received in each episode

between MFFS and MBFS. The true model is used by MBFS to determine

the base features. 167

4.8 Comparing the total undiscounted rewards received in each episode

between the true model (T) and the learned model (L) for MBFS. . . . 168

4.9 Performance of LDE and its variants for the problems TT6 (top) and

RI2 (bottom). For LDE-DT-FO (transfer), first-order dead end sit-

uations which are learned in the small scale problems, TT3 and RI1,

are transferred to the large scale problems, TT6 and RI2. 169

4.10 Comparing different policies when using intrinsic reward. The in-

trinsic reward used is TDE. Extrinsic and intrinsic approximations are

first-order approximations. 171

4.11 Comparing different types of intrinsic rewards. Extrinsic and intrinsic

approximations are ground approximations. COUNT (Tabular) denotes

the visit count intrinsic reward is approximated by a tabular repre-

sentation while COUNT (LFA) denotes that it is approximated by a

ground approximation. 172

xii

LIST OF FIGURES

4.12 Comparing different types of intrinsic rewards. Extrinsic and intrin-

sic approximations are first-order approximations. COUNT (Tabular)

denotes the visit count intrinsic reward is approximated by a tabular

representation while COUNT (LFA) denotes that it is approximated by

a first-order approximation. 173

4.13 Dyna uses a model to generate imagined observations which an ex-

trinsic ground (Q̃gnd) or first-order approximation (Q̃fo) learns from.

The models are either the true models (T) or learned from a set of

training data which contains either 50 (L ∼ 50) or 500 (L ∼ 500)

state transitions per symbolic action. 175

4.14 Comparing different combinations of intrinsic reward approximated

with a first-order approximation. The extrinsic approximation is also

a first-order approximation. COUNT denotes the visit count intrinsic

approximated with a tabular representation. 177

4.15 A different problem is attempted in every 300 episodes. For each

problem (except for the first), Q-functions are transferred from the

previous problem unless stated otherwise with the subscript ⊥. 178

4.16 The total undiscounted rewards received in each episode for THTS,

LQ-RRL, and combinations of model-based and model-free RL meth-

ods, RRL+Dyna and RRL+UCT. 180

4.17 The goal-directedness for THTS, LQ-RRL, and combinations of model-

based and model-free RL methods, RRL+Dyna and RRL+UCT. 181

5.1 A PDDL2.1 action model for put down in Service Robot. 189

5.2 Simulated environments in Gazebo for the Service Robot domain.

On the left is the environment for one person (SR1) and on the right

is the environment for three people (SR2 and SR3). 202

xiii

LIST OF FIGURES

5.3 Snapshots of a robot executing some actions in the Gazebo environ-

ment. The blue rays emanating from the robot is its laser scan. (1):

The robot localises. (2) and (2a): The robot finds a person using its

camera where (2a) is the camera view. (3): The robot moves towards

the person. (4): The robot talks to the person and receives some

tasks. (5) and (5a): The robot picks up an item. (6) and (6a): The

robot gives the item to the person and completes the task. 203

5.4 Results for learning from scratch and transfer learning between differ-

ent classes of problems. The source problems are randomised RMDP

problems of SR1
(
P SR1
∅
)
. The target problems are randomised TDOR-

MDP problems of SR1 (top row) and SR3 (bottom row), and can have

dynamic objects
(
PDO

)
, TGs

(
PT
)
, or both

(
PTDO

)
. 205

5.5 Performance of different methods in solving TDORMDP problems of

SR3. The first-order approximation is learned in SR1 and transferred

to SR3. If stated in the legend, either the oracle or learned model is

used. 208

5.6 Result for Sim-to-Sim transfer. 208

5.7 A multi-agent decomposition framework for multi-agent coordination

which consists of a multi-agent module (MAM) and single-agent mod-

ules (SAMs). The green arrows denote information pertaining to the

single-agent problems, the purple arrows denote feedback from the

SAMs, the red arrows denote actions executed by the SAMs, and the

blue arrows denote observations from the environment. 211

5.8 The MAM of a multi-agent decomposition framework which decom-

poses a multi-agent problem to a set of single-agent problems using

information from a temporal planner. A purple arrow denotes feed-

back from a SAM and a green arrow denotes information sent to a

SAM. 214

B.1 DBN representing the transition function for a particular problem of

Recon which is described in Example 40. 248

xiv

LIST OF FIGURES

C.1 Comparing other RRL methods with LQ-RRL on randomised problems

of Blocks World which involve ten blocks. “Ground” denotes the

ground approximation which serves as a point of reference. 250

C.2 Sensitivity analysis for the hyperparameter ξ for iFDD+. The total

undiscounted rewards received in each episode is shown. 252

C.3 Sensitivity analysis for the hyperparameter ξ for iFDD+. The total

number of features added to Φ is shown. 252

C.4 Sensitivity analysis for the hyperparameter τ for τ -iFDD+. The total

undiscounted rewards received in each episode is shown. 253

C.5 Sensitivity analysis for the hyperparameter τ for τ -iFDD+. The total

number of features added to Φ is shown. 253

C.6 The number of base features or first-order base features given by MFFS

and MBFS for different values of ν. Legend: Small (Large) stands for

a small (large) scale problem of the domain, GND stands for ground

approximation, and FO stands for first-order approximation. 255

C.7 Sensitivity analysis for the coefficient for intrinsic reward, β. The

intrinsic reward used is TDE. Both the extrinsic and intrinsic approx-

imations are first-order approximations. 256

C.8 Dyna uses the true models to generate imagined observations which

an extrinsic first-order approximation learns from. Different number

of rollouts, Nsim, are tested with a simulated horizon Hsim = 40. For

Nsim = 0, Dyna is not used. 257

C.9 Dyna uses the learned models to generate imagined observations which

an extrinsic first-order approximation learns from. The models are

learned from a set of training data which contains 500 state transi-

tions per symbolic action. Different rollouts Nsim are tested with a

simulated horizon Hsim = 40. Nsim = 0 implies that Dyna is not used. 258

C.10 Effect of ∆T on performance in randomised problems of SR3. All

problems have dynamic objects and time-bounded goals except for

those with ∆T =∞. The values of ∆T are in seconds. 259

xv

List of Algorithms

1 Online RRL with ensemble of Q-function approximations 66

2 Online feature discovery (iFDD+) . 68

3 Adaptive online feature discovery (τ -iFDD+) 72

4 Update Q-function approximation . 74

5 Initialise a set of first-order features for a symbolic action 78

6 Evaluate a set of first-order features 88

7 Apply an ordered set of substitutions 88

8 Model-Based Q-value Tree Expansion (MQTE) 110

9 Evaluate state node for MQTE . 111

10 Evaluate value of action node for MQTE 111

11 Generalised-knowledge-assisted online RRL 130

12 Model-based Feature Selection (MBFS) 134

13 Get neighbours of an action . 135

14 Get neighbours of a state predicate . 135

15 Find dead end traps . 152

16 Using Dyna to initialise a Q-function approximation 161

17 Reactive plan execution . 218

18 Multi-agent coordination for weakly coordinated actions 219

19 Sequential single-item auctions of TGs 220

xvi

Notation

A A set of discrete actions

.
A A set of durative actions

Ā A set of abstract actions

A A set of symbolic actions

.
A A set of symbolic durative actions

Agreedy A set of actions with maximal Q-values in a particular state

Aâ A set of discrete actions resulting from the grounding of the symbolic

action â

A Action abstraction function

ā Abstract action

a Action

.
a Durative action

â Symbolic action

C A set of types

C Variable or object type

CK Contextual knowledge for grounding first-order features

D Domain

D Action duration distribution

xvii

NOTATION

e Base of the natural logarithm

et(s, a) Eligibility trace for a state-action pair (s, a) at time step t

G A set of graphs constructed by MBFS

G A set of goal predicates

.
G A set of time-bounded goals

g Goal predicate

.
g Time-bounded goal

H Time horizon

HMQTE Maximum depth MQTE can expand to

Hrollout Length of a rollout during simulation phase of UCT

Hsim Simulated horizon for Dyna

M Generative model

M̃ Approximate model

MMLM Generative model which uses a maximum likelihood model

MDBN Generative model which uses parameterised Dynamic Bayesian Net-

works

Nknown Threshold for maximum likelihood model to make a prediction

Nsim Number of rollouts for Dyna

NΦ Maximum number of features which can be added per time step by

τ -iFDD+

O A set of objects each associated with a type

P A set of state predicates

P+ A set of positive literals

xviii

NOTATION

P# A set of positive and negative literals

P A set of symbolic state predicates

P̂ A set of lifted state predicates or first-order base features

PD A set of problems consisting of every problem of the domain D

P Problem

p State predicate

Q̃ Ensemble of approximations

Q̃int Ensemble of intrinsic approximations

Q̃fo First-order approximation

Q̃gnd Ground approximation

Q̃int Intrinsic approximation

Q∗ Optimal Q-function

Q̃ Q-function approximation

Q(s, a) Q-value for an action a in the state s

Q̃(s, a) Q-value for an action a in the state s estimated by an ensemble of

approximations Q̃

Q̃(s, a) Q-value for an action a in the state s estimated by a Q-function approx-

imation Q̃

Q̃UCT (s, a) Q-value for an action a in the state s estimated by UCT

R Parameterised reward function

.
R Time-dependent parameterised reward function

R Reward function

.
R Time-dependent reward function

xix

NOTATION

rint A set of intrinsic rewards

r Immediate reward

rext Extrinsic reward

rint Intrinsic reward

S A set of discrete states

S̄ A set of abstract states

.
S A set of states each augmented with the elapsed time

S State abstraction function

SW Episode to switch the Q-function approximation which a policy is gen-

erated from

s State

s̄ Abstract state

T Continuous time

Tdur Action duration

T a Start time of the time bound when a goal can be achieved

T ` End time of the time bound when a goal can be achieved

T Parameterised transition function

T Transition function

.
T Time-dependent parameterised transition function

.
T Time-dependent transition function

t Discrete time step

Vsim Total discounted return for a sampled trajectory in UCT

w A set of weights for an ensemble of approximations

xx

NOTATION

α Learning rate

β Weight of intrinsic reward

Γ State trajectory

γ Discount factor

∆T Amount of time given to achieve time-bounded goals

δ TD error

ε Probability of the ε-greedy policy selecting a random action

η Relevance of a candidate feature

η Relevances of candidate features

θ Weight of a feature

θ Weight vector

Λleaf Mixing parameter for the leaf node of the UCT search tree

Λroot Mixing parameter for the root node of the UCT search tree

λ Hyperparameter for TD(λ) methods

ν Depth of connections for MBFS

Ξ Experience buffer

Ξ Observation of the form (s, a, r, s′)

ξ A set of discovery thresholds for each action, used by iFDD+ and τ -iFDD+

ξ Discovery threshold for iFDD+ and τ -iFDD+

π Policy

π∗ Optimal policy

πsum Policy which considers the aggregation of the Q-values from each Q-

function approximation in an ensemble

xxi

NOTATION

πswitch Policy which considers the Q-values from a different Q-function approx-

imation in an ensemble depending on a condition

π(a|s) Probability of the policy π to select an action a in the state s

σ A set of substitutions

σ̄ An ordered set of substitutions

σφ A set of possible substitutions for the first-order feature φ

σ Substitution

σgoal Substitution due to goal context

σground Substitution due to ground context

σlocation Substitution due to location context

τ Maximum number of features in terms of percentage which can be added

per time step by τ -iFDD+

τtemp Temperature for the softmax policy

Φ A set of features

Φa A set of features for the action a

Φc A set of candidate features

Φactive A set of active features in Φ

Φ(s, a) Feature vector

φ Feature

φ(s, a) Value of a feature φ for the state-action pair (s, a)

χ Failure buffer

χ Dead end situation or first-order dead end situation

∅ Empty set

xxii

NOTATION

?C Free variable of type C

∞ Infinity

℘ Power set

xxiii

Chapter 1

Introduction

The ability to perceive, deliberate, and act is a form of intelligence necessary to

solve sequential decision-making problems. Some examples of such problems are:

• A person plans for a holiday and has some preferences on destinations but also

wants to keep within budget.

• In logistics applications, resources must be deployed efficiently to deliver goods

before their deadline.

• Robots must avoid hazards while optimising their actions to achieve some

tasks in the face of uncertainty.

A common theme lies across decision-making problems: an agent, be it a human,

a robot, or a computer software, interacts with its environment by executing some

actions, changing the state of the environment, and in return receives some rewards

as feedback on its actions. A state describes the situation the agent is in and contains

information required for decision making. While the ability to make sound decisions

comes naturally to humans, it has to be (artificially) replicated in machines.

Decision-theoretic planning is the computational process of reasoning and delib-

eration over what sequence of actions to execute to maximise a utility such as the

total rewards received. We are interested in decision making for problems at the

task level where actions are high-level (e.g., move to that door) rather than low-level

(e.g., actuate the left motor by 15 degrees). Domain-independent planning or auto-

mated planning [58] solves decision-making problems across a diversity of domains

and does not require any domain-specific knowledge. A planner uses a model of the

interaction between an agent and its environment to predict the consequences or

1

Chapter 1: Introduction

outcomes of executing an action. The planner searches for a plan, a sequence of ac-

tions, which yields the highest expected utility. Different planners address different

types of sequential decision-making problems. For example, temporal planners such

as [12, 28] deal with temporal constraints while probabilistic planners such as [87, 93]

deal with uncertainty in dynamics. We construct intelligent machines by incorpo-

rating planners in their software, allowing them to make decisions autonomously

based on their perceptions of the states they are in.

If the true model is not known, planners cannot be used. Reinforcement learning

(RL) [168] is an alternative approach to solve decision-making problems. RL is one

of three main areas of machine learning. The other two areas, supervised learning

and unsupervised learning, differ from RL in the types of problems they are applied

to; supervised learning deals with classification and regression while unsupervised

learning deals with pattern recognition. The objective of RL is to learn a policy

which tells the agent what to do in each state such that the expected utility is

maximised. Offline RL improves its policy given a set of observations which it

assumes is available beforehand. Thus, agents typically do not need to interact

with the environment to learn. In the absence of prior observations, offline RL

cannot be used as it does not deal with data (i.e., observations) collection. This is

in contrast with online RL: an agent acts in its environment and learns from the

resulting observations to improve its policy over time. Online RL learns by trial-and-

error, going through an iterative learning process where it incrementally improves

its policy which in turn gives more meaningful observations that allows the agent to

improve the policy further.

This dissertation introduces a new online RL algorithm which exploits the struc-

ture of a problem to solve the problem more efficiently by learning and utilising

different forms of relational knowledge. In the remainder of this chapter, we provide

an intuition for why this is possible, describe motivating examples for more complex

types of problems, and present an overview of our methods and contributions.

2

Chapter 1: Introduction

1.1 Exploiting The Structure of a Problem

A state variable describes one aspect of the state such as a fact, a property of an

object, or a relation between objects. For example, one state variable describes the

location of a robot while another describes the destination a package needs to be

delivered to. In large scale problems where there are many objects, each state is

described by a multitude of state variables. This results in an exponential growth

of the number of states which is known as the curse of dimensionality [9]. This

poses a major issue to RL. Since actions can lead to different outcomes, the agent

should attempt every action multiple times in each state in order to learn the optimal

policy. This is the exploration phase where the agent is more concerned with learning

about its environment than to maximise its utility. Intuitively, how would an agent

know how to act in a state it has never seen before? This naive approach has

several drawbacks. First, it is exceedingly rare for an agent to reach desirable states

through random exploration in large scale problems where the number of states can

be intractable. The sample complexity [81], or the amount of observations required

to achieve near-optimal behaviour, is prohibitively high in such problems. Second,

exploration can also be expensive and impractical. Consider a robot operating in

a crowded office space. Not only does each action takes minutes or even longer to

execute, it is unsafe or infeasible for the robot to explore liberally. Lastly, it is not

always possible for an agent to revisit a particular state over and over again to try

a different action.

The above naive approach considers an exact representation of the problem. That

is, each state is treated as a unique state and every observation only applies for the

state in which it was obtained. If the problem is structured such that acting similarly

in some states produces similar outcomes, then generalisation of the observations

is possible and can be useful in reducing the sample complexity. For example, a

robot picks up an apple from a table. It is now holding onto the apple and the

apple is no longer on the table. There is a ball on another table. A similar outcome

is observed when the robot picks up the ball. If we abstract away the identities

of the objects involved, that is the apple, the ball, and the tables, then the effects

of the two actions are identical: when the robot picks up an item from a table,

the item is no longer on the table and is in the robot’s gripper. Also, the states

3

Chapter 1: Introduction

in which this action can produce the observed effects are states where the robot is

by a table where an item is on. This perspective of looking at states and actions

with no regards to objects but rather variables leads to a relational representation

of the problem. For problems with a first-order or relational structure (i.e., some

actions change the relations or properties of all objects of the same type in a similar

manner), relational representations can be used instead of exact representations for

efficient learning.

A relational reinforcement learning (RRL) method [47] is an RL method which

learns in a relational representation of the problem. RRL methods reduce the sample

complexity as they learn in a smaller abstract representation of the problem rather

than an exact representation. To see why this makes learning more efficient, we

consider the same example as before. Suppose that the goal is for a robot to bring

an apple to a specific table and the robot has learned how to do so. Now, a ball

is introduced to the environment and the goal is to bring it to another table. The

robot has never attempted this before. In an exact representation, the second goal

is a new goal which the robot has to learn to achieve. In a relational representation,

both goals are the same since the identities of objects does not matter. Thus, the

robot knows how to achieve the second goal without any further learning despite

seeing a ball for the first time. This is due to the generalisation property of RRL. By

aggregating multiple different but similar scenarios as one abstract scenario, learning

is made more efficient. The agent no longer needs to revisit the same state over and

over again as there are other states similar to it. Generalised knowledge learned

from an observation in a particular state can be applied to other similar states for

more informed decision making.

1.2 Transferring Knowledge

Transfer learning [174, 176, 192] is another form of intelligence where we retrieve

relevant knowledge, possibly adapt it, and apply it to perform a new task. Instead of

learning from scratch, we are able to solve new problems by leveraging on previously

learned knowledge. RRL enables transfer learning if the representations of different

problems of the same domain are abstracted to the same relational representation.

4

Chapter 1: Introduction

From the perspective of the agent, these problems are one single problem. Now,

learning in one problem helps the agent to solve another problem quickly. This opens

up the possibility of curriculum learning [10] where the agent learns in gradually

more complex problems. To see why this can be beneficial, recall the curse of

dimensionality for large scale problems. Since online RRL incrementally builds up

the knowledge of an agent based on current knowledge, without any prior knowledge,

the agent executes some random actions until something meaningful happens. This

almost never happens in large scale problems. In curriculum learning, the agent

starts by learning in small scale problems before using the acquired knowledge to

solve large scale problems. Another way to look at curriculum learning is to train an

agent in simulated environments before deploying them in the real world. Besides

accelerated learning in the real world, this also mitigates the risk of damages due to

sub-optimal behaviours and reduces the amount of data collection required in the

real world which can be expensive.

1.3 Other Aspects of a Problem

There are many types of complexities in decision-making problems. We describe

some of them which are relevant to this dissertation.

• The state could change as a result of an external factor rather than an agent’s

action. Such exogenous events cannot be controlled by the agent. Instead,

the agent has to learn to adapt and react to them.

• There are problems where the agent could get stuck in a dead end. For

example, a mobile robot runs out of energy and can no longer operate. Deci-

sion making now needs to deal with avoiding dead ends which can have dire

consequences.

• It is plausible that some environments have many objects (e.g., a library with

books and patrons). It is unlikely that the agent has full knowledge of every

object. Also, it is often impractical to consider all of them for the purpose of

decision making. The agent is now placed in a situation where the existence

of some objects are initially unknown.

• The notion of time is inherent in some problems such as robots operating in

5

Chapter 1: Introduction

the real world. For example, a robot takes time to execute an action or a goal

needs to be achieved by a deadline. The state an agent is in has to consider

the passage of time. While an agent might be able to revert any changes

made to its environment, it cannot travel back in time.

• Some problems have tasks that cannot be achieved by one agent. Coordination

between multiple agents are required to achieve these tasks. Decision making

is complicated by the fact that agents must consider the actions of other agents

in addition to their own actions.

1.4 Overview of Our Approach

In this dissertation, we propose an online RRL method to solve decision-making

problems under uncertainty without knowledge of the true model. Our motivation

is as described in preceding sections. Our method is domain-independent, avoiding

any domain-specific or expert knowledge, and learns and utilises multiple types of

generalised knowledge which can be transferred to any problem of the same domain.

This generalised knowledge allows us to incorporate planning-type techniques into

our RRL method, provide efficient, guided exploration in place of random explo-

ration, and avoid dead ends [118, 123]. We also investigate the limitations of RRL

in solving relational problems with certain properties [120–122]. We consider trans-

fer learning between not just different problems but also different classes of problems

and simulated environments . To this end, we introduce a new class of problems

which considers additional complexities, examine the impact they have on RRL,

and propose solutions to solve such problems. Our software is released publicly at

https://github.com/njunhao/GKRRL.

1.5 Objectives and Contributions

RRL can be made more efficient by learning and utilising various types of generalised

knowledge to reason with different aspects of the decision-making problem. This also

overcomes the limitations of RRL and extends the types of problems it can solve.

The generalised knowledge can be transferred to any problem of the same domain

6

https://github.com/njunhao/GKRRL

Chapter 1: Introduction

to guide RRL and improve its performance.

We enumerate each objective of this dissertation which is accompanied by the

contributions made to achieve it:

• Many of the prior RRL work use relational decision trees to approximate

Q-functions which are ill-suited for online RL. While remedies have been pro-

posed, the inherent issue remains. We propose an online RRL method which

uses first-order features, thereby sidestepping the issue plaguing relational de-

cision trees. To the best of our knowledge, our work is the first of its kind

as similar work use supervised learning. We also incorporate several RL tech-

niques to improve the learning efficiency and stability.

• While the increased abstraction due to RRL gives generalisation, it has draw-

backs which limits the applicability of RRL. We examine the causes of the

limited representational capacity associated with RRL and its ramifications

on performance. We propose three solutions. First, first-order features are

grounded with contextual knowledge [122]. Second, an ensemble of Q-function

approximations with different abstraction levels is used for decision making

[120]. Lastly, a model-based method performs multi-steps lookahead to make

a more informed deliberation on action choices [121].

• RL and RRL methods typically take a long time to converge and achieve (near-

)optimal performance. This makes them impractical or prohibitively expensive

for some applications. We improve the learning efficiency in four ways. First,

relational models are learned. We adapt existing model-based methods to ei-

ther initialise the Q-function approximation or perform multi-steps lookahead

for better decision making. Second, agents perform guided exploration by

learning from multiple types of intrinsic rewards. Third, observed dead ends

are represented in a first-order representation which generalises to unseen sit-

uations, allowing agents to avoid similar dead ends in the future [118, 123].

Lastly, the aforementioned knowledge used by the three methods are gener-

alised which can be transferred to another problem to accelerate learning.

• Model-based RL methods have better initial performance than model-free RL

methods while the latter have better asymptotic performance. We combine

both approaches to obtain both of their strengths. While this approach is

7

Chapter 1: Introduction

not new, it has not been done before in the context of RRL. Since learning

the true models can be more difficult than solving the problem itself, the

learned models are (possibly poor) approximations of the true models. We

evaluate the efficacy of our approach using models which are learned offline

from observations.

• Prior RRL methods are tested in a few types of problems which are also rather

simple. We propose three new domains for robotic applications. Extensive em-

pirical studies are conducted on these domains in addition to three benchmark

domains.

• We want to extend RRL methods to solve more complex types of problems

which are more representative of real world applications. We introduce a new

class of problems which involves dynamic objects and time-bounded goals. We

examine its complications on RRL methods and propose solutions to solve this

class of problems.

• RL agents often perform well in the environments they are trained in but

perform poorly in a test environment due to the discrepancies between the

two environments. To instil confidence in RL methods for real world applica-

tions, it is crucial to show that they perform well in test environments as well.

For this purpose, we build a simulated environment in Gazebo [89] for one

of our robotic domains. We demonstrate transfer learning between different

simulated environments and classes of problems for our RRL method.

• Our proposed class of problems introduces time-bounded goals which can

naturally extend to address temporally-coordinated actions between multiple

agents. We propose a multi-agent decomposition framework which uses either

a temporal planner or an auction algorithm for multi-agent coordination to

achieve joint goals [24].

1.6 Structure

The remainder of this dissertation consists of six chapters. Chapter 2 contains de-

scriptions of three new domains while Chapters 3, 4, and 5 contain original research.

Parts of the work in this dissertation have been published before in [24, 117–123].

8

Chapter 1: Introduction

The six chapters are structured as follows:

• Chapter 2 (Background and Related Work): This chapter provides background

information for all chapters and reviews state-of-the-art work in related fields.

• Chapter 3 (First-Order Approximation): This chapter introduces our RRL

method and investigates the conditions necessary for generalisation. We ex-

amine the pros and cons of learning in abstract spaces and propose solutions

to mitigate the drawbacks.

• Chapter 4 (Generalised Knowledge for RRL): This chapter explores differ-

ent types of generalised knowledge and methods to learn and utilise them for

increased learning efficiency. These methods do not require any expert knowl-

edge, relying on the same feedback signal from the previous chapter to extract

additional valuable information.

• Chapter 5 (Dynamic Objects, Time, and Coordination): This chapter presents

a new class of problems which considers dynamic objects and time-bounded

goals. It builds on and extends the work from the previous chapters to solve

this new class of problems. Empirical experiments demonstrate transfer learn-

ing across different classes of problems and across different simulated environ-

ments. The chapter concludes with a framework which extends our work for

multi-agent coordination.

• Chapter 6 (Discussion): In this chapter, we reflect on our work and discuss

some lessons learned.

• Chapter 7 (Conclusions and Future Work): This chapter summarises and con-

cludes our work and suggests some possible directions for future work.

9

Chapter 2

Background and Related Work

This chapter provides some background for the subsequent chapters. First, we de-

scribe various aspects of knowledge representation: problem representations, plan-

ning languages, and generative models. A problem representation, which can be

written in a planning language, is given as an input to a planning or RL method

which then solves the problem. A model is one part of the problem representation

and is required by model-based methods. Second, we introduce RL, function ap-

proximations for RL, and RRL. RL is the field of study for solving decision-making

problems and RL methods operate over problem representations. Third, we discuss

state-of-the-art work and compare them with ours. Fourth, we describe six bench-

mark domains, three of which are newly introduced domains, that will be used in

our empirical studies. These domains and their problems are written in a planning

language. Lastly, the chapter concludes with a summary of how these topics fit in

with our work.

2.1 Problem Representations

Suppose that a vehicle needs to move from an initial location to a goal location. A

reward is given for reaching the goal location. Along the way, the vehicle might get

a flat tire and cannot move until the tire is replaced. Actions affect the state of the

environment, and consequently the actions which should be executed next. This is

a sequential decision-making problem [58] where an agent has to reason over the

outcomes due to its actions and deliberate over which action to execute in each time

10

Chapter 2: Background and Related Work

step. The above example is a problem for the Triangle Tireworld domain [103]

which shall be described formally in Section 2.8.1 after the prerequisite background

is introduced. We shall use this problem throughout the chapter as examples.

There are two fundamental problems in sequential decision making. The first is a

learning problem where the environment, or rather a model of the environment, is

initially unknown. The agent has to interact with the environment and learn from

observations in order to improve its decision making. The second is a planning

problem where a model of the environment is known. The agent computes with

this model and deliberates over the outcomes due to its actions to make a decision.

In this dissertation, we are interested in the learning problem.

In the remainder of this section, we describe various types of representations

for decision-making problems. A problem representation is given as an input to a

planning or RL method which operates over it to solve the problem.

2.1.1 States and Actions

Before looking at problem representations, we describe states and actions which are

ubiquitous in decision-making problems. A state is a conjunction of literals which

are positive or negative state predicates.

Definition 1 (State Predicates)

A state predicate p(x1, . . . , xn) consists of a predicate symbol p and possibly some

terms x1, . . . , xn. The arity of a state predicate is the number of terms it has.

Each term is associated with a type and holds an object of the same type. A state

predicate is a boolean state variable which represents a fact, a property of an object,

or a relation between two or more objects. A symbolic state predicate has variables

in its terms instead of objects. It can be ground to a state predicate by substituting

variables with objects.

Given a set of state predicates P , a state s is represented as s =
∧|P |
i=1 pi where

pi is the i-th literal.1 Assuming that all possible combinations of state predicates

or their negation are valid states, then the size of the set of states S is |S| = 2|P |.

Similar to state predicates, an action a(y1, . . . , yn) consists of a symbol a and possibly

1A symbol with boldface denotes a set and | · | denotes the cardinality of a set.

11

Chapter 2: Background and Related Work

some terms y1, . . . , yn which are objects while a symbolic action has variables as

terms.

Example 1 (State Predicates and Actions)

In Triangle Tireworld, a symbolic state predicate vehicle at(WP) represents the

fact that the vehicle is at a location WP where vehicle at is a symbol and WP is

a variable of type wp.2 The state predicate vehicle at(la1a1) is obtained by substi-

tuting WP with la1a1, an object of type wp. Suppose that in a state s0, the vehicle

is at the location la1a1. Then, s0 = vehicle at(la1a1)∧¬vehicle at(la1a2)∧

The symbolic action move vehicle(WP1,WP2) moves the vehicle from WP1 to

WP2. Likewise, WP1 and WP2 are variables of type wp. By executing the ac-

tion move vehicle(la1a1, la1a2) in s0, the vehicle moves from la1a1 to la1a2 and

the next state is s1 = ¬vehicle at(la1a1) ∧ vehicle at(la1a2) ∧

2.1.2 Markov Decision Processes

Markov decision processes (MDPs) model fully-observable environments for sequen-

tial decision making under uncertainty.

Definition 2 (Markov Decision Processes)

A finite horizon MDP is a tuple (S,A,T ,R, s0, H, γ) where S is a set of discrete

states, A is a set of discrete actions, T : S×A×S → [0, 1] is the transition function

which defines a probability distribution over possible next states after executing an

action, R : S ×A→ R is the reward function which specifies rewards for executing

actions in states, s0 is the initial state, H is the time horizon or the maximum

number of time steps, and γ ∈ (0, 1] is the discount factor.

An MDP is a propositional representation as states can be represented as vectors

of attribute-value pairs where the attribute is a state predicate and its value is binary

(i.e., true or false). A state holds all information necessary for the transition function

to determine the next state following the execution of an action in a state. This is the

Markov property and the state is a Markov state. As a consequence of the Markov

property, only the current state rather than the history of states is considered to

select an action. Many RL methods assume Markov states [168]. We discuss RL in

2Uppercase letters denote variables and lowercase letters denote objects and types.

12

Chapter 2: Background and Related Work

Section 2.4.

Our work addresses episodic learning problems. In an episode of a finite horizon

MDP, the agent interacts with the environment starting from the initial state s0 for

H time steps. We assume that the agent can start from the same initial state for

multiple consecutive episodes. For a learning problem, more than one episode is

often required to improve the decision-making capability of an agent.

Example 2 (A Learning Problem for Triangle Tireworld)

In Triangle Tireworld, the goal is to reach the goal location upon which a positive

immediate reward is given. For simplicity, we assume that the immediate reward is

zero otherwise. Following Example 1, the agent starts from the initial state s0 ∈ S

and executes an action a0 = move vehicle(la1a1, la1a2) at time step t = 0. The

agent receives an immediate reward r0 = 0 for this and is now in the next state s1 at

t = 1.3 Due to this sparse reward signal and no knowledge of the model, the agent

has no information on how to achieve the goal and resorts to executing random

actions, or random exploration, until the goal is achieved. Unless the problem is

trivially simple, it is highly unlikely to achieve the goal through random exploration

in one episode or even in many episodes.

An observation is a tuple (st, at, rt, st+1) where st is the state the agent was in

at time step t, at is the action executed at t, rt is the immediate reward received at

t, and st+1 is the next state the agent is in at t+1. In Example 2, the agent acquires

an observation (s0, move vehicle(la1a1, la1a2), 0, s1) at time step t = 0. Typically,

an agent learns from observations over time to solve a learning problem. We discuss

this in details in Section 2.4.

2.1.3 Relational Markov Decision Processes

The transition and reward functions can be represented by tables or tabular forms.

T is a |S| × |A| × |S| matrix where an element stores T (s′|s, a), the probability of

observing s′ after executing a in s. Similarly, R is a |S|×|A| matrix which stores the

reward R(s, a) for every state-action pair. This exact or flat representation makes

no assumptions about the structures of T and R. For large state-action spaces,

3We use the subscript to denote the time step associated with an entity. For example, si and
ri are the state and immediate reward at time step t = i, respectively.

13

Chapter 2: Background and Related Work

tabular forms are impractical as the number of elements scales exponentially with

the number of state predicates. That is, tabular forms incur a high space complexity.

We discuss space complexity in Section 2.4.3.

Factored MDPs [15] are one approach to represent large scale MDPs compactly if

the models (i.e., T and R) are structured. First, T is a factored transition function

if the transition of each state predicate is determined independently of each other,

conditioned on the state and action:

T (s′|s, a) =
∏
i

T (p′i|s, a), (2.1)

where T (p′i|s, a) is a discrete probability distribution for a state predicate pi and p′i

is the value of pi in s′ (i.e., at the next time step). If T (p′i|s, a) depends only on a

small number of state predicates P− ⊂ P , then T is expressed as:

T (s′|s, a) =
∏
i

T (p′i|P−, a). (2.2)

In this case, Dynamic Bayesian Network (DBN) is one type of representations for T .

DBNs shall be discussed in Section 2.3.2. Second, R is a factored reward function if

it can be decomposed as a sum of localised reward functions, each of which depends

on an action and a subset of P . A factored MDP is an MDP but with factored

transition and reward functions.

Some problems are relational in nature where actions change the relations be-

tween an arbitrary number of interacting objects. The interaction between an agent

and its environment is governed by the properties of objects and relations between

objects. Following Example 1, the symbolic action move vehicle(WP1,WP2) moves

the vehicle from WP1 to WP2. The same outcome applies regardless of what objects

the variables are substituted with—the vehicle is now at WP2 instead of WP1.4 The

repeated structure in the model can be represented compactly rather than enumer-

ated explicitly in propositional representations such as MDPs and factored MDPs.

We refer to problems with a relational structure as relational problems. A rela-

tional Markov decision process (RMDP) is a first-order representation of a factored

MDP which generalises over objects through the use of variables and represents

4For simplicity but without loss of generality, we ignore preconditions and probabilistic effects.

14

Chapter 2: Background and Related Work

relational problems. We use the formalism of RMDPs from [53, 109].

Definition 3 (Relational Markov Decision Processes)

An RMDP is a tuple (C,P ,A,O, T ,R, s0, H, γ) where C is a set of classes or types,

P is a set of symbolic state predicates, A is a set of symbolic actions, O is a set

of objects and each object is associated with a type C ∈ C, T is the parameterised

transition function, R is the parameterised reward function, s0 is the initial state,

H is the time horizon, and γ is the discount factor.

An MDP can be constructed from an RMDP where P is the grounding of P

with O, A is the grounding of A with O, and T and R are the grounding of

T and R, respectively. ℘ denotes the power set. Compact representations such

as RMDPs play a key role in solving learning problems efficiently. In Example 2,

the agent explores randomly until the goal is achieved which is highly inefficient.

In Section 2.6, we introduce RL methods which utilise compact representations to

learn more efficiently.

2.1.4 Semi-Markov Decision Processes

A semi-Markov decision process (SMDP) [139] is an extension of an MDP where

actions take some time to execute.

Definition 4 (Semi-Markov Decision Processes)

A SMDP is a tuple (S,A,T ,R,D , s0, H, γ) where the elements are the same as

those in an MDP (see Definition 2) except for the action duration distribution D :

S ×A × S → R. The stochastic action duration Tdur of an action a starting in a

state s and finishing in s′ is given by D : Tdur ∼ D(s, a, s′).

2.1.5 Other Extensions of MDPs

There are numerous extensions of MDPs proposed such as first-order MDPs [16],

dynamic object RMDPs [109], and object-oriented MDPs [38]. In Section 2.7.1, we

discuss some of them that are related to our work.

15

Chapter 2: Background and Related Work

2.1.6 Terminal States, Goals, and Dead Ends

An episode terminates when there is no remaining time horizon or when a terminal

state is reached.

Definition 5 (Terminal States, Goals, and Dead Ends)

A terminal state is an absorbing state in which executing any action will only lead

back to itself; the immediate reward for executing any action in a terminal state is

zero. A problem has at least one goal. A goal state is a terminal state where all goals

are achieved. A terminal state where at least one goal is not achieved is a dead end.

Our definition of dead ends is different from [102] which defines dead ends as states

where the goal state is unreachable. We consider only terminal states as dead ends

(i.e, at least one goal is not achieved and executing any action does not change the

state). If a goal can no longer be achieved, then the goal state is unreachable. In

[102], this is a dead end. However, since some problems have more than one goal,

there remains incentive (i.e., rewards) to attempt to achieve the remaining goals.

Thus, we do not consider states where the goal state is unreachable as dead ends.

In other words, we are interested in a different type of problems from [102] where

agents are allowed to attempt to achieve any remaining goals even when the goal

state is not reachable.

2.2 Planning Languages

Planning languages are human-interpretable languages used to write domains and

problems. A set of problems can be specified for each domain; these problems have

some common characteristics associated with the domain such as the same sets of

symbolic state predicates and actions. We refer to these problems as problems of

the domain. A domain file and a problem file are given to an algorithm which parses

them into appropriate data structures. For example, a planning language can be

used to describe an MDP or RMDP without any programming required.

16

Chapter 2: Background and Related Work

(:action move vehicle
:parameters (?from - wp ?to - wp)
:precondition (and (vehicle at ?from) (ROAD ?from ?to) (not flattire))
:effect (and (vehicle at ?to)

(not (vehicle at ?from))
(probabilistic 0.25 (not (not flattire))))

)

Figure 2.1: The PPDDL action model for move vehicle in Triangle Tireworld.

2.2.1 STRIPS Action Models

Action models based on the Stanford Research Institute Problem Solver (STRIPS)

[50] are defined by their preconditions and effects which are typically conjunctions of

literals. An action is applicable in a state if its preconditions are true in that state.

Executing an applicable action changes the state according to its effects. The effects

are specified by the add list and the delete list. Literals in the add list are made

true in the next state and those in the delete list are made false. Action models can

be translated to transition functions [195], both of them predict the next state for

executing an action in a state.

2.2.2 Probabilistic Planning Domain Definition Language

The Planning Domain Definition Language (PDDL) [111] is a language commonly

used to write STRIPS domains and problems. Probabilistic PDDL (PPDDL) is a

syntactic extension of PDDL2.1 [52] used to describe probabilistic problems [195].

PPDDL supports actions with probabilistic effects. An example of a PPDDL action

model in Triangle Tireworld [103] is shown in Figure 2.1. The symbolic action

move vehicle has three effects, two of which are certain and the other is proba-

bilistic which occurs with a probability of 0.25. Effects in PPDDL are not mutually

exclusive.

The PPDDL domain file specifies symbolic state predicates and symbolic actions.

The PPDDL problem file specifies the objects (or constants), initial state, and goal

predicates which are state predicates that must be satisfied in a state for it to

be considered a goal state. The domain and problem files share the same state

and action language and together, they specify a problem. Different problems of

17

Chapter 2: Background and Related Work

domain triangle tireworld mdp {
types { wp : object; };
pvariables {

ROAD(wp, wp) : { non-fluent, bool, default = false };
vehicle at(wp) : { state-fluent, bool, default = false };
...

};
cpfs {

vehicle at’(?l) =
if (exists {?from : wp} (move vehicle(?from, ?l) ∧ vehicle at(?from) ∧

road(?from, ?l) ∧ not flattire))
then true
else if (exists {?to : wp} (move vehicle(?l, ?to) ∧ vehicle at(?l) ∧

road(?l, ?to) ∧ not flattire))
then false
else vehicle at(?l);

...
};
action-preconditions {

forall {?from: wp, ?to: wp} [move vehicle(?from, ?to) => (vehicle at(?from) ∧
road(?from, ?to) ∧ not flattire)];

...
};
reward = if (∼ goal reward received ∧

exists {?l : wp} (vehicle at(?l) ∧ GOAL LOCATION(?l)))
then 100
else if (goal reward received) then 0
else -1;

};

Figure 2.2: An excerpt of the domain file for Triangle Tireworld written in RDDL.
... denotes omitted parts of the domain file.

a domain can be constructed by changing the problem file (e.g., a different initial

state, objects, or goals).

2.2.3 Relational Dynamic Influence Diagram Language

The Relational Dynamic Influence Diagram Language (RDDL) [149] (pronounced

“riddle”) is a planning language used in the last three International Probabilistic

Planning Competitions (IPPCs) in 2011, [148], 2014 [62], and 2018. Semantically,

RDDL describes parameterised DBNs extended with an influence diagram. The

domain file specifies object types, parameterised non-fluents, parameterised fluents,

18

Chapter 2: Background and Related Work

conditional probability functions (CPFs), and a reward function. Fluents are state

predicates with values that change with time while the values of non-fluents do not

change. We refer to non-fluents, fluents, and state predicates interchangeably unless

necessary to differentiate between them.

Definition 6 (RDDL Domain)

A RDDL domain D is the tuple (C,P ,A, T ,R) whose elements are defined in Def-

inition 3.

The problem file defines the tuple (O, s0, H) where the initial state s0 contains the

values of fluents and non-fluents. Together with D, they specify an RMDP for a

problem. Multiple problems of D can be instantiated by varying O and s0.

Figure 2.2 shows an excerpt of the RDDL domain file for Triangle Tireworld

which specifies an object type (wp), a parameterised non-fluent (ROAD(wp,wp)), a

parameterised fluent (vehicle at(wp)), the CPF for vehicle at(wp), the param-

eterised preconditions for the action move vehicle(?from, ?to), and the parame-

terised reward function R.5

RDDL vs PPDDL. RDDL is intended to model a class of problems that is

difficult to model with PPDDL [149]. The key differences between RDDL and

PPDDL are:

• RDDL models relations between fluents and can include exogenous effects

(i.e., changes to the state not due to any action) while PPDDL models actions

explicitly.

• RDDL models parallel effects while PPDDL models transitions with correlated

effects.

• RDDL rewards are additive and sum over objects while PPDDL rewards are

associated with state transitions and do not sum over objects.

2.3 Generative Models

A generative model predicts the next state and immediate reward for executing an

action in a state. It consists of the transition function T and the reward function R.

5Here, we use the RDDL syntax for fluents, non-fluents, and actions to match Figure 2.2.

19

Chapter 2: Background and Related Work

We discuss model-based RL methods in Section 2.4.2 which solve learning problems

using generative models that are approximations of the true models. Two types of

generative models relevant to our work are discussed here.

2.3.1 Maximum Likelihood Model

The maximum likelihood model is a method for estimating the true model given some

observations. We denote the maximum likelihood model byMMLM . It predicts the

probability of a state transition as:

T̃ (s′|s, a) =
N(s, a, s′)∑
s′ N(s, a, s′)

, (2.3)

where N(s, a, s′) is the number of times s′ was observed after executing the action

a in the state s. In other words, T̃ (s′|s, a) is the empirical frequency of observing

s′ after executing a in state s. Likewise, the predicted immediate reward is the

empirical mean of the immediate rewards observed for executing a in s. If a has

never been executed in s, then a prediction is not possible. For deterministic actions

(i.e., actions with only one outcome), only one observation per state-action pair is

required to predict correctly all the time. If the action is probabilistic, then more

observations are required.

2.3.2 Dynamic Bayesian Network

A factored transition function can be represented by a Dynamic Bayesian Network

(DBN) [35] which is a two-layer directed acyclic graph with nodes denoting actions

and values of state predicates over consecutive time steps t and t + 1. An example

of a DBN is illustrated in Figure 2.3. DBNs represent the conditional probability

distribution of state predicates as defined by Equation 2.2 where the transition of

a state predicate p depends on some state predicates P− and an action. Directed

edges join P− and the action at time step t to p at t+ 1.

A parameterised DBN is a DBN with nodes representing symbolic state pred-

icates and actions. It models the transitions of symbolic state predicates and can

be applied to multiple propositional groundings by substituting the variables with

objects. That is, a DBN is constructed from the grounding of a parameterised DBN.

20

Chapter 2: Background and Related Work

Figure 2.3: A portion of the DBN for a problem of Triangle Tireworld. Green
rectangles denote actions at time step t, blue (orange) ovals denote state predicates
at time step t (t+ 1).

A parameterised transition function T for an RMDP (see Definition 3) can be rep-

resented by a parameterised DBN. This representation can be written in RDDL (see

Section 2.2.3). We denote a model which uses a parameterised DBN to represent T

by MDBN .

2.3.3 Model Learning

Transition functions, or action models, are normally hand-coded by human experts

but this can be difficult in domains where there are complex dynamics. This is

known as the knowledge engineering problem [33]. We shall refer to the learning of

transition functions as model learning. We want to learn models which can be used to

predict the next states for unseen state-action pairs and for any problem of a domain.

The maximum likelihood model relies on a set of observations which consist of states

s ∈ S and actions a ∈ A. Since S and A are specific to a problem, MMLM cannot

make predictions for other problems. On the other hand, a relational model is a

model which can make predictions in any problem of the same domain. This opens

21

Chapter 2: Background and Related Work

up the possibility of learning a relational model from observations obtained in a

problem, and then use the learned model to make predictions in other problems. In

other words, the model provides valuable information on solving other problems. A

parameterised DBN is a relational model as it can be ground to a DBN with the set

of objects O in any problem in order to make predictions in that problem.

There is work which addresses the automatic inference of models from train-

ing data. They differ from one another in the assumptions made, representations

used, and the type of training data required. We review relevant model learning

algorithms and select the most suitable one for our work. Since we use RDDL to

describe problems, a suitable model learner should learn transition functions which

are represented by or can be translated to DBNs. Also, we are interested in decision

making under uncertainty. This excludes model learners which learn deterministic

action models such as [29, 194, 200] from consideration.

[126] learns propositional rules by searching for dependencies among state vari-

ables over time. They perform a best-first search over the space of possible depen-

dencies using a heuristic that guides the search towards frequently occurring pre-

conditions and frequently co-occurring pairs of preconditions and effects. However,

propositional rules are not relational models. [134] learns relational probabilistic

action models using three phases of greedy search with search operators. [134] was

extended in [135] to include deictic references (i.e., actions can change the proper-

ties of objects beside those in their terms) and concepts which provide background

information for deictic references and preconditions. [115] uses voted perceptrons to

learn action models under noise and partial observability; each classifier predicts if

a state predicate changes due to an action. One classifier is required for each term

of an action.

[163] and [39] learn the structures of DBNs representing the transition functions

of factored MDPs online. However, similar to [126], the DBNs are propositional.

[108] learns parameterised DBNs from state transitions which are first transformed to

relational representations for generalisation, and then transformed to propositional

representations. No noise or partial observability are allowed in the training data.

Inductive Logic Programming (ILP) [116] is used to generate a minimal set of rules

to explain the effects in the propositional transitions. Exogenous effects can also

22

Chapter 2: Background and Related Work

be learned and are represented by rules which do not involve any action. [142]

proposes a framework which learns a RDDL domain. ILP is used to learn rules from

observations across multiple problem instances. Rules which are too general or are

not applicable in another problem are removed.

Some work requires or utilises prior knowledge such as approximate action mod-

els [59, 75] (e.g., [59] requires action models that can have missing but not ex-

traneous state predicates in preconditions and effects), known terms in actions

[114, 194], or successful plans [188]. We avoid the need for expert knowledge or

domain-specific knowledge in our work. Minimally, we assume that the terms in

actions are known. For example, we know that the symbolic action move vehicle

in Triangle Tireworld is of the form move vehicle(WP1,WP2).

Following the above discussion, we use the model learner from Mart́ınez et al.

[108] as it meets all of our requirements. It learns a relational model with proba-

bilistic and exogenous effects which can be translated to RDDL.6 We require model

learners that can learn exogenous effects as they are present in our domains of inter-

est (see Section 2.8.2). Mart́ınez et al. [108] extend the propositional rules learner,

LFIT (learning from interpretation transition), from Ribeiro and Inoue [143]. We

denote Mart́ınez et al. [108]’s model learner by RLFIT (relational LFIT).

RLFIT. We briefly describe RLFIT and refer readers to [108] for full details. There

are two steps to RLFIT:

1. Generate candidate propositional rules with LFIT [143] to cover the training

data.

2. Select the best subset of candidates which maximises a score function with a

heuristic search.

LFIT is an ILP method which learns a set of minimal probabilistic rules that models

all effects in the training data. LFIT uses a top-down approach to generate rules

by specialisation from the most general rules. Next, the propositional rules are

translated to relational rules and a score function is used to evaluate each rule. The

6The model learner from Rao and Jiang [142] seems most suitable for our use but the code is
not publicly available.

23

Chapter 2: Background and Related Work

score function is:

Score(R,Ξ) = EΞ∈Ξ[log(Pr(Ξ|R))]− ρ Pen(R)

Conf(Ξ, ε)
, (2.4)

where R is a set of rules, Ξ is a set of observations or training data, Ξ is an

observation (s, a, r, s′), Pr(Ξ|R) is the likelihood that an observation Ξ is covered

by R, ρ > 0 is a hyperparameter, Pen(R) is the penalty term equal to the total

number of literals in the body of every rule in R, and Conf(Ξ, ε) is the confidence

obtained from the Hoeffding’s inequality—the upper bound on the probability that

an estimate has an error not more than ε is Conf(Ξ, ε) ≤ 1 − e−2ε2|Ξ|. The score

function is modified from [135] to include the confidence term so that the penalty

is increased for specific rules which cover few training data (i.e., prefer general rules

over specific rules).

Learning preconditions. By comparing s and s′ in an observation (s, a, r, s′), a

subset of the effects of a can be determined. On the other hand, learning precondi-

tions is a difficult problem which requires prohibitively large training data depending

on the number of literals in the preconditions [186]. We assume that when an in-

applicable action is executed, the state remains unchanged and feedback is given to

indicate that the execution has failed. Failed executions yield state transitions which

are uninformative as they do not reveal insights on which part of the preconditions

is missing or incorrect. If the action succeeds, the state in which it is executed in

is a superset of its preconditions. Given sufficient training data where the action

succeeds, its preconditions can be determined. Unfortunately, such training data

are hard to come by as actions fail to execute most of the time when preconditions

are unknown. Therefore, although RLFIT can learn preconditions, we assume in

our experiments that the preconditions are known while the conditional probability

functions are unknown.

2.3.4 Evaluate Correctness of Approximate Models

RLFIT and other aforementioned work in Section 2.3.3 are heuristic in nature. Thus,

the learned models are not guaranteed to be correct or complete.

24

Chapter 2: Background and Related Work

True Model
Precondition: vehicle at(WP1) ∧ ROAD(WP1,WP2) ∧ not flattire

Effect (0.75): vehicle at(WP2) ∧ ¬vehicle at(WP1)
Effect (0.25): vehicle at(WP2) ∧ ¬vehicle at(WP1) ∧ ¬not flattire

Learned Model #1
Precondition: vehicle at(WP1) ∧ ROAD(WP1,WP2) ∧ not flattire

Effect (1): vehicle at(WP2) ∧ ¬vehicle at(WP1)

Learned Model #2
Precondition: vehicle at(WP1) ∧ ROAD(WP1,WP2) ∧ not flattire

Effect (0.5): vehicle at(WP2) ∧ ¬vehicle at(WP1)
Effect (0.5): vehicle at(WP2) ∧ ¬vehicle at(WP1) ∧ ¬not flattire

Learned Model #3
Precondition: vehicle at(WP1) ∧ ROAD(WP1,WP2) ∧ not flattire

Effect (0.25): vehicle at(WP2) ∧ ¬vehicle at(WP1)
Effect (0.75): vehicle at(WP2) ∧ ¬vehicle at(WP1) ∧ ¬not flattire

Figure 2.4: Action models for move vehicle(WP1,WP2). Numeric values in paren-
theses represent the probabilities of effects.

Definition 7 (Approximate Models)

A model is incomplete if there is at least one probabilistic outcome of an action which

is not included. A model is incorrect if there is at least one outcome of an action

which is not true; this includes the probability of the outcome. An approximate model

is a model which is incomplete, incorrect, or both.

Model learners are evaluated by their computation time or complexity [126, 200],

the correctness of the learned models [108, 135], or the performance of planning with

the learned models [75, 188]. The correctness of an approximate model M̃ can be

defined as the average variational distance between M̃ and the true model M

[135]:

V D(M,M̃) =
1

|Ξ−|
∑

Ξ∈Ξ−

|M(Ξ)− M̃(Ξ)|, (2.5)

where Ξ− is a set of observations used as test data (i.e., data that is not in the

training data) andM(Ξ) is the probability of making the observation Ξ as predicted

by M.

Another alternative metric is the absolute distance between two sets of rules.

Given the true model r1 and an approximate model r2, the absolute distance is given

25

Chapter 2: Background and Related Work

Figure 2.5: The RL framework.

as:

d(r1, r2) = d−(rp1, r
p
2) + d−(rp2, r

p
1) + d−(re1, r

e
2) + d−(re2, r

e
1), (2.6)

where the superscripts p and e refer to the preconditions and effects of a rule,

respectively, and d−(rp1, r
p
2) is the number of literals that are in rp1 but not in rp2.

Absolute distance is more intuitive to understand than variational distance and

does not depend on the distribution of the true model; however, variational distance

favours similar distributions and is well-defined when the learned model predicts

the probability of an actual observation as zero [134]. In our experiments, we use

variational distance to measure the correctness of the learned models since it is also

used by Mart́ınez et al. [108] to evaluate RLFIT.

As an example to illustrate the difference between the average variational dis-

tance and absolute distance, Figure 2.4 shows the true action model and three

different learned action models for the symbolic action move vehicle(WP1,WP2)

in Triangle Tireworld. Model #1 does not have the probabilistic effect of getting

a flat tire while model #2 does. Both models have the same variational distance

of 0.25 but different absolute distances. The absolute distance is 3 for model #1

and 0 for model #2. Models #2 and #3 have the same absolute distances of 0 but

different variational distances of 0.25 and 0.5, respectively.

2.4 Reinforcement Learning

RL is the field of study for decision making in learning problems. Figure 2.5 illus-

trates the RL framework. An agent interacts with the environment by executing

actions which could change the environment. The agent observes the new state and

immediate reward which provides feedback on its action. If the agent is not able

to observe some parts of the state (i.e., the values of some state predicates cannot

26

Chapter 2: Background and Related Work

be observed), then the environment is partially observable. If there are errors in

the observations (i.e., the values of some state predicates could be wrong), then the

environment is noisy. We consider only fully observable environments with no noise.

Such environments can be modelled as MDPs.

RL methods are categorised as model-based or model-free methods. The ob-

jective of an RL method is to find a policy which maximises the sum of expected

discounted rewards or expected return.

Definition 8 (Policy)

A deterministic policy π : s 7→ a maps a state s to an action a where s ∈ S

and a ∈ A. A stochastic policy is a probability distribution over the actions A

conditioned on the state s.

The expected return for a policy π is computed using the value function [139];

V π(s) is the expected return starting from state s and then following π:

V π(s) =
∑
a∈A

π(a|s)
(
R(s, a) + γ

∑
s′∈S

T (s′|s, a)V π(s′)
)
, (2.7)

where π(a|s) is the probability π selects a in s. The value function does not tell

us which action should be selected. For this purpose, the action-value function or

Q-function is used; Qπ(s, a) is the expected return starting from state s, executing

action a, and then following π:

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

T (s′|s, a)V π(s′)

= R(s, a) + γ
∑
s′∈S

T (s′|s, a)
∑
a′∈A

π(a′|s′)Qπ(s′, a′).

(2.8)

Definition 9 (Optimal Value Function)

The optimal value function, V ∗(s), is the maximum value function over all policies:

V ∗(s) = max
π

V π(s). (2.9)

Definition 10 (Optimal Q-function)

27

Chapter 2: Background and Related Work

The optimal Q-function, Q∗(s, a), is the maximum Q-function over all policies:

Q∗(s, a) = max
π

Qπ(s, a). (2.10)

The optimal value function and Q-function are recursively related by the Bellman

optimality equations [9]:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

T (s′|s, a)V ∗(s′), (2.11)

V ∗(s) = max
a

R(s, a) + γ
∑
s′∈S

T (s′|s, a)V ∗(s′)

= max
a
Q∗(s, a).

(2.12)

A policy can be generated from a Q-function. For example, the greedy policy

selects an action with the maximal Q-value, or greedy action, with a random

selection as a tiebreaker. The optimal policy π∗ is a greedy policy generated from an

optimal Q-function (note that there could be multiple optimal policies). A problem

is solved if the optimal policy is known.

Balancing between exploration and exploitation is a perennial issue in RL. Ex-

ploration seeks meaningful observations to learn more about the environment while

exploitation seeks to maximise reward with the known information. Exploration is

often preferred initially and less so in later episodes. A greedy policy risks being too

myopic, settling too quickly for actions which seem promising initially but are in fact

sub-optimal (actions whose Q-values are not near-optimal or optimal). One policy

which avoids this issue is the ε-greedy policy which selects a random action with a

probability of ε and a greedy action otherwise. The softmax policy balances explo-

ration and exploitation by selecting an action according to an exponential softmax

distribution:

π(a|s) =
e
Q(s,a)
τtemp∑

a′∈A e
Q(s,a′)
τtemp

, (2.13)

where e ≈ 2.17828 is the base of the natural logarithm and τtemp ∈ (0, 1] is a

hyperparameter called “temperature”. When τtemp approaches zero, the softmax

policy is almost the same as the greedy policy. Conversely, when τtemp increases, the

28

Chapter 2: Background and Related Work

probability of selecting a non-greedy action increases.

2.4.1 Model-Free Reinforcement Learning

Model-free RL methods approximate the value function or Q-function directly and

is sometimes called direct methods. They do not require nor utilise any model.

Temporal-Difference (TD) Learning

Temporal-difference (TD) learning updates estimates of the Q-values or values based

on current estimates and new observations (i.e., it bootstraps). One of the most

well-known TD method is Q-learning [189]. Q-learning learns a Q-function which

converges to Q∗ regardless of the policy being followed. In other words, Q-learning

is an off-policy method which learns about the optimal policy while following an

exploratory policy.7 Given an observation (st, at, rt, st+1), Q-learning updates the

Q-function as follows:

Q(st, at)← Q(st, at) + αδt, (2.14)

δt = rt + γmax
a
Q(st+1, a)−Q(st, at), (2.15)

where α ∈ (0, 1] is the learning rate and δt is the TD error at time step t. α controls

how much the Q-value is updated based on the observation at time step t and is

typically decayed over time steps.

In stochastic environments, Q-learning has an overestimation bias as it uses the

maximum Q-value to estimate the maximum expected Q-value in Equation 2.15.

This overestimation could slow the convergence of Q-learning. Double Q-learning

[68] mitigates this issue by using two Q-functions, QB and QT , to estimate the

maximum expected Q-value. QB is updated at every time step while QT is set to

QB at the end of an episode. Double Q-learning updates QB with Equation 2.14

using the TD error:

δt = rt + γ QT
t

(
st+1, πQB(st+1)

)
−QB

t (st, at), (2.16)

where πQB is the greedy policy generated from QB.

7An on-policy method learns about the policy that is being followed.

29

Chapter 2: Background and Related Work

TD(λ)

TD(λ) [166] is a family of TD methods that combines TD learning with eligibility

traces to speed up learning from temporally delayed reward signals (i.e., rewards

which are given after a long sequence of actions). Eligibility traces address the tem-

poral credit assignment by assigning credit for an immediate reward to most fre-

quently visited states (frequency heuristic) and most recently visited states (recency

heuristic). Another perspective to look at TD(λ) methods is that they combine

Monte Carlo and TD methods, averaging over n-step returns with eligibility traces.

λ ∈ [0, 1] is a hyperparameter that denotes the use and decay of eligibility traces.

For example, TD(0) (where λ = 0) is a one-step TD method which does not use

eligibility traces. TD(λ) updates the Q-function as follows:

Q(st, at)← Q(st, at) + αδtet(st, at), (2.17)

where et(s, a) is the eligibility trace for a state-action pair (s, a) at time step t. We

use the replacing eligibility trace [159] which is updated at time step t as follows:

et(s, a) =

1 if s = st and a = at

γλet−1(s, a) otherwise

(2.18)

The eligibility trace is initialised to zero (i.e., e0(s, a) = 0). We use eligibility traces

for state-action pairs though it can also be used for states (i.e., et(s) instead of

et(s, a)). Replacing traces can only be used with binary features. Accumulating

traces [166] and dutch traces [182] are two other types of eligibility traces. A TD

method can be augmented with eligibility traces to become a TD(λ) method. For

example, Q(λ) [136, 189] is Q-learning augmented with eligibility traces by replacing

Equation 2.14 with Equation 2.17.

2.4.2 Model-Based Reinforcement Learning

Model-based RL methods, or indirect methods, require a model of the problem.

The model is typically an approximation of the true model comprising of T and

R and is learned from observations. Model-based RL methods solve the estimated

30

Chapter 2: Background and Related Work

Figure 2.6: The four phases in MCTS: selection, expansion, simulation, and back-
propagation.

MDP where T and R are learned; the estimated MDP is its internal representation

of the underlying problem. These methods rely on the simulation lemma which

establishes that if the learned model is a sufficiently accurate approximation of the

true model, then the (near-)optimal policy of the estimated MDP is provably close

to the (near-)optimal policy of the true MDP [84].

There are two main procedures which model-based RL methods perform in every

time step. First, they use the learned model to select an action. This usually

involves sampling from the model the immediate reward and next state for executing

an action (i.e., the model is generative). Second, the agent executes an action and

receives feedback from the environment. This feedback is used to update the learned

model (i.e., online model learning) and possibly the uncertainty in the model.

Monte Carlo Tree Search

Monte Carlo Tree Search or MCTS is a search algorithm which uses sampling methods

to build a search tree. It is used with either the true model (in which case it is

considered a planner) or a learned model. A local policy which covers a subset of

the state space is generated from the search tree. A node in the search tree represents

a state and an edge represents an action. The search tree is build up incrementally

and the search can be terminated at any time (i.e., MCTS is an anytime algorithm).

There are four phases in MCTS which are performed in this order: (1) selection, (2)

expansion, (3) simulation, and (4) backpropagation.

Figure 2.6 illustrates the construction of the search tree in the four phases. A

black circle represents a node which is selected by the tree policy during the

31

Chapter 2: Background and Related Work

selection phase. The arrows represent the sequence of traversal. A white circle

represents a node which has been added to the search tree but is not selected by

the tree policy. A grey circle represents a node which is added during the expansion

phase. During the simulation phase, a sequence of states are sampled; these states

(in dotted borders) will not be added to the search tree. Lastly, backpropagation

updates the statistics for the nodes visited (grey and black nodes). The arrows show

the order of update starting from the leaf (grey) node to the root node. The cycle

continues with the selection phase again until a termination condition is satisfied.

Next, we describe each phase in details.

Selection. A root node is created for the current state. Starting from the root

node, an action is selected using the tree policy. The next state is sampled using

the generative model. This phase continues at the node for the next state until the

node for the next state has not yet been added to the search tree. At the start, the

root node is a leaf node.

The tree policy selects at random an action which has not yet been selected. If

every action has been selected at least once, then the tree policy selects an action

with the maximal value. The upper confidence bounds applied to trees (UCT) al-

gorithm [88] is a variant of MCTS which uses a tree policy that selects an action at

in a state s with consideration to the upper confidence bounds (UCB1) exploration

bonus:

at = arg max
a

Q̃UCT (s, a) +

√
2 ln

∑
a′∈AN(s, a′)

N(s, a)
, (2.19)

where Q̃UCT (s, a) is the Q-value estimated by UCT and N(s, a) is the number of

times a has been selected at the node for s. The first term represents exploitation

(i.e., select the action with the maximal Q-value) and the second term represents

the exploration bonus which encourages the selection of actions with small values of

N(s, a).

Expansion. The search tree is expanded by adding a new node for the next state

from the selection phase. A directed edge joins the leaf node in the selection phase

to this new node (which is the new leaf node). This edge represents the action

selected by the tree policy.

32

Chapter 2: Background and Related Work

Simulation. If the leaf node is not a terminal state, then a trajectory is sampled

from the leaf node using a rollout policy until a terminal state is reached or the

end of the time horizon is reached. Policy rollout [13] is the process of simulating

state transitions to sample a trajectory. The rollout policy is typically a random

policy which can be computed at very low cost. The sampled states in a policy

rollout are not added to the search tree. The total discounted return for a sampled

trajectory is:

Vsim =

tend−1∑
t=tstart

γt−tstartrt, (2.20)

where tstart is the time step of the leaf node and tend is the time step of the last

simulated node. tend is the time horizon H if the policy rollout simulates to the end

of the time horizon.

Backpropagation. The nodes along the path are updated starting from the leaf

node (added in the expansion phase) to the root node:

W (s, a)← W (s, a) + ∆W (s), (2.21)

N(s, a)← N(s, a) + 1, (2.22)

Q̃UCT (s, a) =
W (s, a)

N(s, a)
, (2.23)

where W (s, a) is the cumulative value and ∆W (s) is the discounted return starting

from the node for s to the last node in the simulation phase. W (s, a) and N(s, a)

are initialised to zeros. The estimated Q-value, Q̃UCT (s, a), is the average of the

sampled returns. We define a general form for ∆W (s) which considers the discount

factor γ and non-zero action costs (i.e., negative immediate rewards for executing

actions):

∆W (s) =

r + γVsim if node is a leaf node

r + γ∆W (s′) otherwise

(2.24)

where r is the immediate reward for reaching the state s and the sampled trajectory

is s
a−→ s′

a′−→

After backpropagation, the selection phase is initiated again. The four phases

33

Chapter 2: Background and Related Work

are repeated for a number of times where each iteration represents one trial. At

the start of each trial, the tree policy is evaluated during the selection phase to

select the most promising action. At the end of the trial, the Q-values are updated

during backpropagation which improves the tree policy. Thus, MCTS interleaves

policy evaluation and policy improvement. Using the tree policy, it expands the

tree asymmetrically, focusing the search in the most promising regions of the state

space.

Given sufficient trials, UCT converges to the limit and its estimated Q-values

approach the optimal Q-values [88] but only if the generative model is the true

model. The algorithm terminates based on a timeout which is a hyperparameter

limiting the amount of time UCT runs for. A local policy is generated from the

Q-values of actions at the root node (e.g., a greedy policy selects an action with

the maximal Q-value). Alternatively, the policy can also select the action with

the most number of visits (i.e., N(s, a)) [157]. Since most promising actions are

selected during the selection phase, an action that has been selected most is the

most promising action. This action might not have the maximal Q-value if actions

are selected based on their Q-values and exploration bonuses (see Equation 2.19).

2.4.3 Measuring Performance

The objective of RL methods is to learn an optimal policy which maximises a crite-

rion. Given a sequence of rewards r0, . . . , rH−1 the agent receives in an episode with

a time horizon H, the total reward is:

V =
H−1∑
t=0

rt, (2.25)

the average reward is:

V =
1

H

H−1∑
t=0

rt, (2.26)

and the total discounted reward is:

V =
H−1∑
t=0

γtrt. (2.27)

34

Chapter 2: Background and Related Work

In this dissertation, we will consider the maximisation of the total discounted reward.

It is also important to consider the cost of learning the optimal policy. This is

measured in three aspects: (1) sample complexity, (2) time complexity, and (3)

space complexity.

Sample complexity. The sample complexity is the amount of observations

needed to achieve near-optimal or optimal performance [81]. In other words, it is

the number of time steps a policy selects a sub-optimal action. Often, an agent

needs to explore in order to learn and in doing so, it executes some sub-optimal

actions.

Definition 11 (Sample Complexity)

The sample complexity of a policy π with respect to the accuracy ε and confidence

1− δ is the minimum number of time steps K such that for all t ≥ K, Pr[V π(st) ≥

V ∗(st)− ε)] ≥ 1− δ where ε ∈ (0, 1) and δ ∈ (0, 1).

An algorithm is near-optimal if it learns a policy π which achieves an expected

return within ε of the optimal return with a probability of no less than 1− δ. The

optimal return is the expected return from following an optimal policy. For episodic

problems, since the time step resets to 0 at the start, the sample complexity is

measured by the cumulative time steps over episodes.

Time complexity. The time complexity is the amount of computational work

needed to run an algorithm. There are typically two main steps in an RL algorithm

as illustrated in Figure 2.5: selecting an action to execute and learning from the

observation. The time complexity per time step is the sum of the time complexity

for these two steps. A model-free RL method which generates a policy from the

Q-function takes O(|A|) steps to select an action. This assumes that the time

complexity of evaluating the Q-value of each action is O(1). This can be as simple

as retrieving the Q-value from a table. A model-based RL method is computationally

more expensive if it performs a search to select an action.

Space complexity. Space complexity is the memory cost of an algorithm to store

information required for its operation. For example, if the Q-function is represented

35

Chapter 2: Background and Related Work

as a table with one element for each (s, a) pair, the space complexity is O(|S||A|)

which is the number of elements in the table.

2.5 Function Approximation

A tabular representation of the Q-function is an exact representation. Each state is

considered to be unique and different from the rest. However, in environments where

there are structures (e.g., factored MDPs and RMDPs), states can be aggregated

to an abstract state for the purpose of approximating the Q-values. A tabular

representation does not offer generalisation over states since it represents states

exactly. Furthermore, a tabular representation is impractical for problems with

large state spaces. One solution is to approximate the Q-function by projecting

the state space into a lower dimensional space using a set of features. A function

approximation can be a neural network, decision tree, linear regression, Gaussian

process, etc. We focus the discussion here on linear function approximation which

is used in our work.

2.5.1 State Abstraction

A function approximation performs state abstraction when aggregating states to

abstract states. When combined with an RL algorithm, this allows generalisation

over states and even to unseen states. State abstraction also removes irrelevant

information which is not essential for knowledge transfer between problems [185]. Li,

Walsh, and Littman [100] propose a unifying framework for exact state abstraction

and show that under certain conditions, some properties of the original problem are

preserved in the abstract problem:

1. Model-irrelevance abstraction preserves the one-step model.

2. Qπ-irrelevance abstraction preserves the Q-function for all policies.

3. Q∗-irrelevance abstraction preserves the optimal Q-function.

4. a∗-irrelevance abstraction preserves the optimal action and its value.

5. π∗-irrelevance abstraction preserves the optimal action.

Abel, Hershkowitz, and Littman [1] propose approximate state abstractions which

relaxes the conditions for aggregation. Applying the right state abstraction to a

36

Chapter 2: Background and Related Work

given problem is a major challenge. Some work uses statistical learning to learn

state abstraction and they differ in the criteria for aggregating states. For example,

[26] aggregates states with the same reward and Q-values for each action whereas

[110] aggregates states with the same optimal action and similar Q-values for the

optimal action.

Analogous to state abstraction, temporally abstract actions or options are

learned to achieve subtasks independently [7, 169]. This exploits the hierarchical

nature of the problem which allows its decomposition to subtasks. Since subtasks

are simpler, option-specific state abstraction is possible. Prior work [6, 37, 78]

either operates in a propositional representation which does not allow generalisation

over different problems or requires additional learning to generalise to a different

problem.

Example 3 (Abstracting States with Features)

A feature can simply be a literal or a conjunction of literals. Let there be two fea-

tures φ1 = vehicle at(la1a1) and φ2 = ¬vehicle at(la1a1) ∧ vehicle at(la1a2).

Following Example 1, φ1 is true in s0 and false in s1 while φ2 is false in s0 and true

in s1. In essence, states are mapped to these two features, abstracting away the other

literals. Features are not restricted to literals and can be state variables, handcrafted

predicates, or functions which return real values.

2.5.2 Granularity

A set of features partitions the state space into regions such that states in a re-

gion have the same approximated Q-values. Each region is an abstract state. If

states with different optimal Q-values are mapped to the same abstract state, then

the resulting policy could be unsound. Intuitively, this is because state abstraction

removes information from the state which is crucial for making (near-)optimal de-

cisions. The granularity of a function approximation is a measure of the size of the

partitions of the state space (or the number of states mapped to an abstract state).

The granularity is coarse if each feature covers, or is true in, a large region of the

state space. The coverage of a feature is the region of the state space for which the

feature evaluates to 1 (for binary features) or non-zero (for non-binary features) [57].

Features with low coverage give fine granularity in the function approximation, and

37

Chapter 2: Background and Related Work

thus have better accuracy than features with high coverage. On the other hand,

features with high coverage offer better generalisation as learning is done over a

smaller number of abstract states.

2.5.3 Linear Function Approximation

In a linear function approximation, the Q-function is approximated by linear func-

tions of features [168]:

Q̃(s, a) = θ0 + θ1φ1(s, a) + · · ·+ θnφn(s, a) = θTΦ(s, a), (2.28)

where the set of features Φ(s, a) maps (s, a) to a vector of real numbers Rn+1 and

θ ∈ Rn+1 is the vector of weights (or weight vector). The Q-function approximation

Q̃ is typically a non-linear function of literals. The Q-values of actions are decoupled

by separating their features in Φ(s, a):

Φ(s, a1) =

1

φ1,1

φ1,2

...

φ1,n

0(N−n−1)×1

, Φ(s, a2) =

0(n+1)×1

1

φ2,1

φ2,2

...

φ2,m

0(N−n−m−2)×1

, . . . ,

where φj,i is the i-th feature for aj, n is the number of features for a1, m is the

number of features for a2, N is the cardinality of Φ(s, a), and the constant value 1

is the bias term. Φ is a concatenation of the set of features for each action a ∈ A:

Φ := [Φa1 , . . . ,Φa|A|] where Φai is the set of features for ai.
8 Φai(s, a) := 0 if a 6= ai.

The learning objective is to find the set of features and weights such that Q̃(s, a)

closely approximates Q∗(s, a). The update rule for a weight component θ ∈ θ is:

θ ← θ + αδ
φ(s, a)

||Φ(s, a)||1
, (2.29)

8By omitting the arguments, Φ denotes the set of features rather than their values.

38

Chapter 2: Background and Related Work

where φ(s, a) is the value of the feature corresponding to θ and the L1 norm is the

normalisation factor.

Linear function approximations applied to RL is well understood [190] and has

some convergence guarantees under certain conditions [13, 168, 178]. A drawback of

linear function approximations is that it is limited in representational capacity and

cannot represent every possible value function or Q-function. As we will see later

in the dissertation (Section 3.7), this drawback is not inherent in our domains of

interest.

2.5.4 Feature Discovery

Features can be binary (i.e., they map to 0 or 1) or non-binary, and can be hand-

crafted or deduced automatically. A straightforward approach is to use literals as

features since features partition states into abstract states and literals describe a

state.

Definition 12 (Base and Conjunctive Features)

A base feature is a literal and a conjunctive feature is a conjunction of base features.

A feature is either a base feature or a conjunctive feature.

Let P+ denotes the set of positive literals for every state predicate and ¬P+

denotes its negation (i.e., the set of negative literals). If Φ is the set of literals

P# = P+ ∪ ¬P+, then Q̃(s, a) is a linear function of the literals which could be

a poor approximation of Q∗(s, a). Non-linearity is introduced when conjunctive

features are added to Φ; Q̃(s, a) is now a non-linear function of the literals but

remains a linear function of the features. This results in a finer granularity of the

function approximation since a conjunctive feature has a lower coverage than a base

feature.

In many machine learning problems, automatically selecting features, or learning

features, to represent the state is a key challenge. Recent efforts in feature discovery

can be classified as model-free or model-based methods. Model-free methods [54,

55, 85, 129, 133, 191] select features based on an optimisation criterion such as the

Bellman error or the TD error. Model-based methods [66, 77, 96, 105] use a model

to prune unnecessary features. We use the model-free feature discovery algorithm

39

Chapter 2: Background and Related Work

iFDD+ [55] which shall be described in Section 3.1.1. iFDD+ requires as input an

initial set of features. We use a learned model to determine the set of literals which

are necessary as (base) features for each action as discussed in Section 4.3.1. A

comparison with model-free methods is out of the scope of our work. Instead, we

focus on comparing model-based methods with our approach.

Jong and Stone [77] extend the maximum likelihood model with averagers, a

class of function approximators, to generalise over and predict for unseen state-

action pairs. The extended model is learned online and used in value iteration to

compute an approximate value function. We approximate the Q-function with fea-

tures while they do not deal with features. Instead, they approximate the model

from which a value function is computed. Mahadevan and Maggioni [105] propose

proto-value functions as the orthonormal basis set for approximating any value func-

tion. The proto-value functions are determined from the topology of the state space

which is represented as an undirected graph. The topology can be learned online

from observed state transitions. However, learning this graph can be computation-

ally expensive and the graph does not apply for other problems of the same domain.

Our method utilises the transition function represented by parameterised DBNs (see

Section 4.3.1), and thus can be applied to any problem of the same domain with-

out needing any further learning or observations if the model is available. In [124],

the transition function is represented by logistic regression models which allows fast

online model learning in high dimensional spaces. Features with a corresponding

column of zeros in the weight matrix are deemed to be irrelevant. Similarly, Jung

and Stone [80] use Gaussian processes for approximate policy evaluation; irrelevant

features are features with an insignificantly small covariance. Our problems are writ-

ten in RDDL which uses DBNs to model transition functions. A logistic regression

model cannot fully capture the conditional dependencies in a DBN while Gaussian

process is not applicable to our work since we deal with discrete states. Our work is

most similar to [96] which extracts a minimal set of features by considering the con-

ditional independencies in DBNs representing the learned transition function. This

allows efficient learning of a policy defined over the features. A different approach

is used in [66] where the necessary features are learned online rather than offline. It

performs directed exploration to specific states in order to learn good models which

40

Chapter 2: Background and Related Work

is then used to eliminate features and compute policies. The difference between

this work and ours is that they eliminate features which can be ignored in every

state for the purpose of learning policies while we consider features for Q-function

approximation.

2.5.5 Neural Network

Neural networks, or artificial neural networks, consist of layers of nodes. Nodes, or

artificial neurons, are connected to other nodes by directed edges which are weighted.

The weights of edges are parameters of a neural network which shall be trained or

learned. The input to a node in the input layer can be features such as literals (e.g.,

the input is 1 if the literal is true). The input to a node in subsequent layers, the

hidden layers and the output layer, is the weighted sum of the outputs of nodes with

directed edges to the node. The output of a node is determined by its input and

an activation function. The activation function can be non-linear which introduces

non-linearity to the function approximation. Feature discovery using algorithms

such as iFDD+ is not required as complex features are learned during training and

are represented by the hidden layers.

Comparison with linear function approximations. While linear function ap-

proximations have a lower representational capacity than neural networks, they lead

to a lower sample complexity since there are fewer parameters (or weights) to train.

High capacity representations are better able to capture the fine granularity re-

quired to approximate the optimal value function or Q-function but have larger

time and sample complexities [147]. One advantage of neural networks is that they

do not require feature engineering. Instead, complex features are constructed in the

hidden layers. Nevertheless, linear function approximations with feature discovery

algorithms allow better control and understanding of the feature space. In our do-

mains of interest (see Section 2.8), our empirical results show that linear function

approximations are adequate in approximating the Q-functions.

A major disadvantage of neural networks is that they have poor interpretabil-

ity—the ability to provide explanations in understandable terms to a human

[40]—which makes the function approximation difficult to understand and the

41

Chapter 2: Background and Related Work

learning process a black box. In contrast, symbolic representations such as decision

trees and linear function approximations are easily interpretable [65]. One approach

to interpret neural networks is to approximate them with decision trees [65]. The

most clear and explicit explanations are logical decision rules which use knowledge

related to the learning problem (e.g., state predicates) [199]. However, while this

approach allows us to understand the learned policy, it does not shed light on the

learning process such as the failure of convergence to a (near-)optimal policy. This

aspect is crucial in our work; for example, we discuss the shortcomings of RRL in

Section 3.4.1 which benefits from the human-interpretable representation of linear

function approximations.

2.6 Relational Reinforcement Learning

The choice of a problem representation (see Section 2.1) is crucial in solving the

problem effectively. While propositional representations like MDPs are commonly

used, the size of the state space grows exponentially in the number of objects,

making many RL and planning methods intractable in large scale problems. State

abstraction techniques can be used to reduce the size of the state space but this

might not necessarily lead to generalisation over all problems of a domain. Another

approach is to use more expressive representations to represent the problem such as

an RMDP. RRL combines the expressiveness of first-order logic with RL by utilising

relational representations rather than propositional representations. Many RRL

work use ILP to learn relational concepts which are inherent in relational problems

from observations. One such concept is a relational function approximation.

Transfer learning. Solving large scale problems are challenging due to the exten-

sive amount of exploration required before reaching some meaningful states where

rewards are observed [192]. In transfer learning, the knowledge learned in a problem

(source problem) is used to accelerate the learning process in another problem

(target problem). RRL methods which learn a relational representation of the

value function or Q-function enable transfer learning between problems of an arbi-

trary number of objects by transferring the value function or Q-function without

the need of a mapping between problems [174].

42

Chapter 2: Background and Related Work

In the remainder of this section, we review existing work on RRL. We also briefly

cover planning methods for relational problems; any method which requires the true

model is considered a planning method. For an in-depth discussion of RRL work,

readers can refer to the survey papers [171, 180, 181, 190].

2.6.1 Model-Free RRL

Q-RRL [47] is the seminal RRL algorithm which uses ILP to approximate the Q-

function with relational decision trees. The decision tree partitions the state space

into regions or abstract states, each of which has a real-value representing the Q-

value. This type of state abstraction is Q∗-irrelevance [100, 185]. In essence, Q-RRL

performs state and action abstraction via a relational function approximation. An

internal node is a query which is a conjunction of symbolic literals. Variables in a

query are either substituted with objects in the terms of the action or a goal predicate

or are existentially quantified; a query is true if it has at least one grounding which

is true.

A decision tree is sensitive to the order of node splitting and is ill-suited in online

RL where later observations yield new and often more meaningful information. The

performance of RRL methods based on relational decision trees rely on the correct

split of nodes [43]. Q-RRL deals with this issue by constructing a new decision tree

after each episode from an ever increasing number of observations accumulated over

episodes. This incurs high computational and memory costs. TG [44] overcomes this

drawback by using an incremental decision tree learner in Q-RRL. Subsequent work

extend or adopt the concepts of Q-RRL or TG and typically use relational decision

trees to approximate the value function or Q-function.

RIB [43] uses instance based regression which has better learning stability than

TG. It needs to maintain the observed instances and requires the specification of

a domain-specific distance function between state-action pairs for nearest neigh-

bour prediction for Q-values. Rodrigues, Gérard, and Rouveirol [144] investigate

the impact of different TD learning methods on RIB in online RL and found that

the computation time can be reduced. Q-RRL is used with Gaussian processes for

regression in place of a relational decision tree in [45]; Gaussian processes give the

uncertainty of its estimated Q-values which can provide guided exploration. TRENDI

43

Chapter 2: Background and Related Work

[42] combines TG and RIB to obtain their respective strengths. A relational decision

tree is constructed incrementally using TG while RIB is used at each leaf node.

Some work looks at learning efficiently in problems with hierarchical structures.

[30] learns relational options using Q-RRL to classify if a ground action is an action for

the policy of a relational option. A hierarchical RRL algorithm [145] approximates

the values of states conditioned on the task and its associated subtask with first-

order rules where the task hierarchy is known.

In the face of concept drift, an unannounced change over time in a problem,

the relational decision trees are restructured with four operations added to TG [141].

This requires statistics to be stored for not just leaf nodes but for every node.

Similarly, [34] extends the UTree algorithm [110] to construct relational decision

trees and perform online tree restructuring. We address transfer learning between

different classes of problems and between different simulated environments which

draws similarities with concept drift. Cross-domain transfer [172, 173] is a more

general form of generalisation than ours (and other work mentioned here) but the

required generality of the transferred knowledge causes loss of useful information.

Empirical results in [41, 45, 47] are limited to simplified domains, failing to

demonstrate the applicability of Q-RRL and its extensions to approximate more

complex value functions [192]. Value functions approximated with relational decision

trees are piecewise constant which can be inappropriate for some relational problems

[145]. Highly relational problems require complex patterns in their value functions

and other approximators such as instance-based representations, kernels, or first-

order features are more suitable as they have a lower granularity [181]. In addition,

this work uses handcrafted features to facilitate learning. Our work does not rely

on handcrafted features.

We use first-order features, or conjunctions of symbolic literals, as features in

a linear function approximation (see Section 3.3). There are a small number of work

which use such approximators rather than a relational decision tree. Walker [184]

uses an ensemble of predictors to approximate the Q-function for each action. Each

predictor is a set of weighted randomly generated conjunctive first-order features.

Conjunctive features are randomly sampled from the feature space and added to a

predictor if it covers a significant percentage of the training data which are tuples

44

Chapter 2: Background and Related Work

(s, a,Q(s, a)). Our work learns features online where conjunctive first-order features

are added to reduce the TD errors (see Section 3.1.1). We use an ensemble of

approximations to learn at different abstraction levels and from different reward

signals (see Sections 3.5.2 and 4.4.2). Wu and Givan [192] use a beam search to learn

first-order features which correlate well to the Bellman error of value functions. The

weights of new features are approximated with a trajectory-based approximate value

iteration approach given observed state trajectories. The first-order features are real-

valued and consist of existential variables and at most one free variable per feature.

The value of a feature with one free variable is the number of groundings that satisfy

the feature normalised by the maximum value that the feature can take (e.g., the

total number of objects in the problem). This has a higher representational capacity

than binary first-order features considered in our work. Since features are binary,

we treat existential variables and free variables as the same (and are collectively

referred to as free variables in our work). In spite of this, there remains several

differences between our work and [192]. First, we address online feature discovery

and online RRL while they use supervised learning. Second, they consider problems

which are described in PPDDL and give positive rewards for reaching the goal states

and zero rewards otherwise. We use RDDL to describe our problems which have

additive rewards. Differences between PPDDL and RDDL (see Section 2.2.3) meant

that the types of problems they address are different from ours.

Some work requires extensive domain or background knowledge to define spe-

cific representations to facilitate efficient learning while we use only trivial domain

knowledge to ground the Q-function approximation (see Section 3.4). Morales [113]

defines abstract actions (r-actions) and abstract states (r-states) in a relational rep-

resentation, then uses a modified Q-learning to learn policies based on the induced

relational abstract state-action space. Some domain knowledge is required to de-

fine the r-states. In [147], the values and structure of a relational naive Bayes net

which approximates the value function are learned. A distance metric is required to

generalise over handcrafted non-binary first-order features. In [94], an agent learns

in two representations: the problem space which is Markovian and the agent space

which can be non-Markovian and consists of sensory measurements which are com-

mon in and hold the same semantics for all problems. Shaping rewards defined over

45

Chapter 2: Background and Related Work

the agent space are learned and can be applied to accelerate learning in a target

problem. However, specifying the agent space is a difficult design problem which

requires considerable domain knowledge. In a later work [95], options in the agent

space are learned and transferred. [156] is a case-based learning approach which

requires state similarity to be quantified by the Euclidean distance and states are

represented by handcoded real-valued state variables. The Q-values are the sum of

the Q-values of matching cases weighted by how similar these cases are to the state of

interest. Instead of learning a relational abstraction of the value function, [179] con-

structs a relational abstraction of the underlying RMDP with the use of background

knowledge, then solves this abstract MDP with a model-free RL method.

2.6.2 Model-Based RRL

Model-based RRL methods learn relational models and use planning techniques.

MARLIE [31] learns a relational transition and reward function online. Both func-

tions are represented by a set of relational probability trees. Expert knowledge on

the dependence of random variables on other random variables is required to avoid

learning the structure of the transition function. The learned model is used to pro-

vide better estimates of the Q-values by looking some steps ahead using a sampling

method. In [130], high-level relations are learned from real-valued, multidimensional

attributes of objects. The relations are represented by decision trees where a set of

decision trees form an action model. The high number of permutations of object

attributes can increase the sample complexity of RL algorithms. This is resolved by

pruning irrelevant permutations.

REX [99] performs guided exploration to less visited state-action pairs, extending

the work of [19, 84] to relational visit counts. REX uses the relational planner from

[98] to sample actions based on the predicted beliefs over states. The beliefs are

computed with approximate Bayesian inference using noisy indeterministic deictic

(NID) rules learned by the model learner from [135]. [106] extends REX with active

learning and model learning. When the planner fails to find a plan with an expected

value larger than the minimum expected value, demonstration from a teacher who

reveals the optimal action is requested. [106] uses the model learner from [108],

which is capable of learning exogenous effects, in place of the model learner from

46

Chapter 2: Background and Related Work

[135]. REX-D [107] extends REX with the option of requesting expert demonstrations

on unknown parts of the model so that the model learner can improve the learned

model.

It is well-known that model-based RL methods introduce an additional source

of error due to its model errors which affects its asymptomatic performance [20,

36, 51]. We adapt the approach in [157] to combine UCT with model-free RRL to

provide better quality estimates of the Q-values (see Section 4.3.2) rather than to

use planning methods to select actions directly. This reduces the dependence on

learning accurate models which can be harder than learning Q-functions. We do

not compare our work with the aforementioned model-based RRL methods as their

main contributions are relational model learning while we use an existing model

learner, RLFIT [108]. Instead, our contribution is the integration of model-based

and model-free methods to reduce the sample complexity (see Section 4.4.2) and

solve more complex classes of problems (see Section 5.4.3).

2.6.3 Planning Methods

Large scale planning problems can be solved efficiently by exploiting first-order repre-

sentations such as RMDPs [180, 187]. Symbolic dynamic programming (SDP) solves

first-order MDPs specified in situation calculus [16]. It performs goal regression to

produce a symbolic description of the value function. While the representational ca-

pacity used in SDP exceeds that in Q-RRL, this comes at the cost of computationally

expensive operations due to the exponential growth of logical formulas [171, 181].

Approximate methods [49, 150] overcome this issue by approximating the optimal

value function rather than an exact representation. Another approach to make SDP

more computationally efficient is to use model checking reduction on generalised

first-order decision diagrams [79].

In [64], MDPs are solved with linear programming to learn a generalised, class-

based value function which is a linear sum of local value functions for objects. A

decision tree is learned to classify the classes of objects such that objects of the

same class have similar value functions. A major assumption made is that the

relations between objects do not change over time. This is false in many domains,

thus limiting its applicability. [109] solves small scale MDPs with a planner and

47

Chapter 2: Background and Related Work

obtains their value functions. ILP is then used to learn a relational decision tree

which is a generalisation of the value functions. [160] maps actions in a plan to

action operators, applies the action operators to the initial abstract state to obtain a

trajectory of abstract states and action operators, and lastly converts the trajectory

to a generalised plan with non-nested loops. However, this approach is limited to

deterministic planning problems .

Most deep RL methods such as [112, 154] use convolutional neural networks

(CNNs) to achieve generalisation by quantifying state similarities with the differ-

ences in pixels. However, such a measure of state similarity is not applicable to

problems with state spaces which cannot be represented partially or entirely with

images. We are interested in problems where states are represented by state predi-

cates and this precludes many deep RL methods. Moreover, CNNs do not perform

well in relational problems as they are ill-suited to represent relations between ob-

jects [171].

Neural networks of various architectures have been used to represent policies

for relational problems. Garg, Bajpai, and Mausam [53] combine graph neural net-

works (GNNs) and deep RL to learn policies for RDDL problems. GNNs represent

relations between entities, and therefore are suitable for learning in first-order or

object-oriented environments. Architectural inductive biases are required, making

the architecture of the GNN domain-specific but this can be automatically deter-

mined from the RDDL domain file. Instead of GNNs, an attention mechanism which

has parallels with GNNs is used in [196]. The architectural inductive bias for each

domain is defined by human experts. [71] evaluates three classes of deep neural

network architectures. The training data is generated using imitation learning such

that a network learns policies which imitate the action choices of planners. ASNets

[177] is a neural network with an alternating sequence of action layers and proposi-

tion layers. The architecture is determined from the relations between actions and

propositions (or state predicates) which are provided by the PPDDL domain and

problem files. ASNets can be trained with imitation learning as well. Unlike our

work, the aforementioned work require the true model. In [82], a densely connected

neural network which functions as a generalised heuristic network is learned without

requiring the true model. However, heuristic guides search in planning and does not

48

Chapter 2: Background and Related Work

have the same role as Q-values which generate policies and have a direct impact on

performance.

In Section 2.5.5, we compared linear function approximations, which is used

in our work, with neural networks. We argued that RL methods based on neural

networks as function approximators suffer from poor interpretability of the learned

knowledge. In this dissertation, we investigate the types of generalised knowledge

which can be learned (see Chapter 4) and the interpretability of these learned knowl-

edge is crucial in discussing the soundness of our approaches. Indeed, Doshi-Velez

and Kim [40] posit that interpretability is used to establish safety, reliability, ro-

bustness, and trust in a learning agent. Furthermore, interpretability is required

in applications where errors can cause catastrophic results; interpretability makes

potential failures easier to detect and helps in finding solutions to these failures

[199].

2.7 Additional Related Work

We discussed related work in earlier parts of this chapter. Here, we discuss remaining

related work which are divided into two parts.

2.7.1 Temporal Considerations

In Chapter 5, we propose a class of problems involving time-bounded goals (TGs),

or goals which can only be achieved within a time window, and dynamic objects, or

objects which are added to or removed from O at any time step.

Boyan and Littman [17] propose the time-dependent MDP (TMDP) which con-

siders stochastic time-dependent action durations that can be relative or absolute.

Liu and Sukhatme [104] propose the time-varying MDP (TVMDP) where the tran-

sition function is time-varying. TMDP and TVMDP do not consider TGs. In this

aspect, the time-varying SMDP (TV-SMDP) proposed by Duckworth, Lacerda, and

Hawes [46] is the most similar to our work. TV-SMDP models problems with TGs

specified in co-safe linear temporal logic (csLTL). Gaussian Process regression is

used to learn the effects of latent environment variables on action durations, and

UCT is used to propagate the predicted time in order to increase the probability of

49

Chapter 2: Background and Related Work

satisfaction of csLTL within the time bound. Lacerda, Parker, and Hawes [97] con-

sider a planning problem with a hard goal and multiple soft goals. The hard goal has

a time bound which is defined in csLTL. The objective is to achieve the hard goal

and maximise the utility for achieving the soft goals. These two approaches consider

time bounds with end time only (i.e., goals with deadline) while we consider time

bounds with start and end times (see Section 5.3.2).

The aforementioned work are planning algorithms. For the learning problem,

Bradtke and Duff [18] adapt RL methods, TD(0), Q-Learning, real-time dynamic

programming (RTDP), and adaptive RTDP, for SMDPs. On the other hand, Ornik

and Topcu [127] propose a model-based RL method to solve TVMDPs. It learns a

time-varying transition probability function that is maximally likely given a history

of observations and a bound on the rate of change of the transition probabilities.

This model is used to generate a policy which maximises the expected rewards

(exploitation) and minimises the model uncertainty (exploration). Key differences

between our work and this work are that we consider dynamic objects and initially

unknown goals while they do not.

Srivastava et al. [161] propose open-universe partially observable MDPs

(OUPOMDPs) to model problems where observations yield new objects which

are analogous to dynamic objects. In an OUPOMDP, sensors and actuators are

expressed in first-order logic. Sensors are responsible for observations that can

consist of new objects while actions correspond to actuators that can act on new

objects due to observations. Our work deals with dynamic objects which can be

added to or removed from O and its impact on online RRL (see Section 5.4) while

[161] addresses problem representation for planning purposes.

2.7.2 Multi-Agent Coordination

Some problems require the coordination of multiple agents to achieve joint goals

(i.e., goals that require multiple agents to achieve). A problem which involves more

than one agent is a multi-agent problem. Our work only considers joint goals

which require the temporally-coordinated execution of actions by some agents where

each agent executes only one action. This allows us to decompose a multi-agent

problem to single-agent problems. Our approach shall be presented in Section 5.7.

50

Chapter 2: Background and Related Work

Schillinger, Bürger, and Dimarogonas [152] address the cooperation of multiple

robots to achieve a global goal by executing their options concurrently while we

are interested in multiple agents coordinating by executing their respective actions

at the same time. Their work decomposes a global goal specified in syntactically

co-safe Linear Temporal Logic (scLTL) into subgoals, then auctions options which

achieve the subgoals. [125] auctions goals with time bounds which can be overlap-

ping. Goals are known initially or at any time. Each robot maintains a simple

temporal network (STN) which keeps track of its commitments to goals.9 A bid

is computed by inserting the goal with its time bound into the STN while main-

taining temporal consistency and minimising the makespan (the time the last robot

finishes its final task). We have two different approaches to coordinate multiple

agents which we discuss in Sections 5.7.2 and 5.7.3. In our first approach, we use

a temporal planner (e.g., OPTIC [12]) to allocate TGs; depending on the choice of

a temporal planner, it is likely to use STNs to maintain temporal consistency. In

our second approach, we use an auction algorithm where UCT estimates the cost of

a bid given the current knowledge learned. [83] uses UCT to allocate goals with time

bounds, possibly overlapping, to robots. It formulates a multi-agent goal allocation

problem as a search tree. However, [83] does not consider multi-agent coordination

as each goal requires only one robot to achieve. [198] coordinates robots to avoid

conflicts and achieve synergy such that each robot can complete its individual goal.

An iterative interdependent planning procedure generates a plan for each robot with

increasing consideration to the plans of other robots over each iteration; this coordi-

nates agents throughout the entire plan. While we only consider coordination at a

time step to achieve a joint goal, [198] does not consider joint goals nor coordinated

actions.

The aforementioned work address the planning problem and require the true

model while our work learns policies for the single-agent problems without the need

of the true model. In this aspect, work which combine hierarchical decomposition,

planning, and RL [61, 70, 91, 146, 193] are more similar to our work. This work

uses planners to decompose tasks into subtasks, then uses RL to learn policies

for the subtasks. However, they address single-agent planning problems and use

9A STN is a graph which represents temporal constraints. Nodes represent events and edges
represent temporal constraints between two events.

51

Chapter 2: Background and Related Work

propositional representations for RL.

2.8 Benchmark Domains

We describe the domains and problems which are used in our empirical experiments.

All domains and problems are written in RDDL. In each case, we specify the set of

types C, the set of symbolic state predicates P , the set of symbolic actions A, the

parameterised reward function R, and the time horizon H.

2.8.1 IPPC Benchmark Domains

We consider benchmark domains used in recent IPPCs [62, 148]. These domains have

problems which are numbered from 1 to 10; a larger number denotes a problem with

a larger scale. Domain# denotes a problem numbered # for Domain.

Academic Advising

In Academic Advising [63], a student has to pass some required courses. The set

of types is C = {course}. The symbolic state predicates P are 10:

• passed(COURSE): a course COURSE is passed;

• taken(COURSE): a course COURSE has been taken before;

• PREREQ(COURSE1, COURSE2): the course COURSE1 is a prerequisite of

the course COURSE2;

• PROGRAM REQUIREMENT(COURSE): a course COURSE needs to be passed

(i.e., it is a goal).

The symbolic action takeCourse(COURSE) takes the course COURSE. The pass-

ing rate of a course depends on the number of prerequisites the student has passed:

Pass Probability =

1 if no prerequisites

Num. of prerequisites passed
Num. of prerequisites

otherwise

(2.30)

This is a minor modification of the original formulation which sets the probability to

0.8 if there is no prerequisites and has an additional term of +1 in the denominator

10Names of fluents (non-fluents) are in lowercase (uppercase) letters.

52

Chapter 2: Background and Related Work

of the fraction. Our formulation is such that the passing probability is 1 if all

prerequisites (if any) of a course is passed. The immediate reward is additive over

the following components:

• −1 for taking a course or −3 for retaking a failed course;

• −5 if any required course has not been passed;

• 5 for passing a required course.

Solving the problem. A student should take a course if all of its prerequisites

are passed and the course is a required course, a prerequisite of a required course, a

prerequisite of a prerequisite of a required course, and so on and so forth.11

We use Academic Advising 3 (AA3) and Academic Advising 5 (AA5) and the

size of their state-action spaces are 230 × 16 and 240 × 21, respectively. The time

horizon is 40 for AA3 and AA5. The objects in AA3 are 15 courses of which four

are required courses. The objects in AA5 are 20 courses of which eight are required

courses. There are no randomised problems for this domain.

Recon

In Recon [148], an agent moves in a grid environment where there is a base, hazard,

and objects. Tools can be damaged if the agent is at or adjacent to a hazard and

this reduces the probability of getting a good reading from the damaged tool. The

agent can repair a tool at the base. A goal is to take a good picture of an object

which is only possible if the camera tool is not damaged and water and life has been

detected on the object beforehand with the water tool and life tool, respectively.

The RDDL domain file is shown in Section D.1 of Appendix D. The set of types is

C = {agent, tool, obj, wp}. The symbolic state predicates P are:

• damaged(TOOL): the tool TOOL is damaged;

• waterChecked(OBJ): water is checked for at object OBJ ;

• waterDetected(OBJ): water is detected at object OBJ ;

• lifeChecked(OBJ): life is checked for at object OBJ ;

• lifeChecked2(OBJ): life is checked for at object OBJ (true after

11This is a high-level textual description of a policy which solves a problem. It might not be the
optimal policy which depends on various factors such as the discount factor γ and the metric that
is maximised (e.g., total undiscounted reward).

53

Chapter 2: Background and Related Work

lifeChecked(OBJ) is true);

• lifeDetected(OBJ): life is detected at object OBJ ;

• pictureTaken(OBJ): picture of object OBJ is taken;

• agentAt(AGENT,WP): the agent AGENT is at location WP ;

• ADJACENT(WP1,WP2): the location WP1 is adjacent to the location WP2;

• BASE(WP): the base is at location WP ;

• HAZARD(WP): a hazard is at location WP ;

• OBJECT AT(OBJ,WP): the object OBJ is at location WP ;

• CAMERA TOOL(TOOL): the tool TOOL is a camera tool;

• LIFE TOOL(TOOL): the tool TOOL is a life tool;

• WATER TOOL(TOOL): the tool TOOL is a water tool.

The symbolic actions A are:

• move(AGENT,WP): the agent AGENT moves to the location WP ;

• useToolOn(AGENT, TOOL,OBJ): the agent AGENT uses the tool TOOL

on the object OBJ ;

• repair(AGENT, TOOL): the agent AGENT repairs the tool TOOL.

We replaced the actions up, down, left, and right in the original formulation of the

domain with move(AGENT,WP). This gives different ground actions for moving

to each grid position. We do away with the action abstraction in the original formu-

lation where all move(AGENT,WP) actions are abstracted to only four actions as

this can complicate learning. The immediate reward is additive over the following

components:

• −1 for executing an action;

• 20 for taking a good picture of an object or −20 for taking a bad picture of

an object.

Solving the problem. The agent should avoid hazards when moving to objects.

This is sometimes not possible if objects are at or adjacent to hazards. If the agent

needs to use a tool which is damaged, the agent should return to the base to repair

it first. To take a good picture of an object, the agent should use the water tool,

followed by the life tool, and lastly, the camera tool.

We use Recon 3 (RC3) and Recon 6 (RC6) and the size of their state-action spaces

54

Chapter 2: Background and Related Work

Figure 2.7: A state for the problem TT3 of the Triangle Tireworld domain. A
green circle denotes a location with a spare tire and an arrow denotes the direction
of traversal allowed.

are 242 × 28 and 255 × 38, respectively. The time horizons are 40 for RC3 and 50

for RC6. The number of objects in RC3, with their types in parentheses, are: nine

locations (wp) for a 3 × 3 grid environment, five objects (obj), one agent (agent),

and three tools (tool). The objects in RC6 are 16 locations (wp) for a 4×4 grid envi-

ronment, six objects (obj), one agent (agent), and three tools (tool). The problems

are randomised by randomising the locations of objects
(
OBJECT AT(OBJ,WP)

)
,

hazards
(
HAZARD(WP)

)
, and base

(
BASE(WP)

)
.

Triangle Tireworld

In Triangle Tireworld [103], a vehicle moves in a unidirectional environment to

reach a goal location. The problem TT3 is illustrated in Figure 2.7. There are no

spares along the shortest path from the initial location la1a1 to the goal location

la1a5. On the other hand, there is a spare in every location along the longest path.

There is a probability of 0.5 of getting a flat tire when moving. The tire needs to be

replaced with a spare tire before the vehicle can move; if there isn’t one, a dead end is

reached. The vehicle can load a spare tire if there is one at its current location. Due

to the directed connectivity of locations, if the vehicle chooses a shorter path, the

irreversible change to the state can cause an unavoidable dead end. The immediate

reward is −1 in every time step that the goal state is not reached, 100 for reaching

the goal state, and −100 for reaching a dead end. The set of types is C = {wp}.

The symbolic state predicates P are:

55

Chapter 2: Background and Related Work

• vehicle at(WP): the vehicle is at the location WP ;

• spare in(WP): a spare tire is at the location WP ;

• not flattire: the vehicle does not have a flat tire;

• hasspare: the vehicle has a spare;

• goal reward received: the goal state is reached;

• ROAD(WP1,WP2): the vehicle is allowed to move from the location WP1 to

the location WP2;

• GOAL LOCATION(WP): the goal is for vehicle to be at the location WP .

The symbolic actions A are:

• move vehicle(WP1,WP2): the vehicle moves from the location WP1 to the

location WP2;

• loadtire(WP): the vehicle loads a tire if there is one at the location WP ;

• changetire: the tire is changed if the vehicle has a spare tire.

Solving the problem. To reach the goal location with certainty, the vehicle

should only move to a location with a spare tire and leads to at least one location

with a spare tire also (unless the location is the goal location). The vehicle should

load a spare tire when it doesn’t have one and has the opportunity to do so.

We use Triangle Tireworld 3 (TT3) and Triangle Tireworld 6 (TT6) and the

size of their state-action spaces are 233 × 242 and 259 × 814, respectively. The time

horizon is 40 for TT3 and TT6. The objects in TT3 are 15 locations (location). The

objects in TT6 are 28 locations (location). There are no randomised problems for

this domain.

2.8.2 Robotic Domains

We introduce three new robotic domains in this dissertation which shall be described

next.

Robot Fetch

Robot Fetch is a deterministic domain where a mobile robot is tasked with placing

objects at their respective goal locations. The robot can move between any two

locations directly and can only hold one item at any time. Each location can have

56

Chapter 2: Background and Related Work

at most one item. Goals could be interdependent as an item needs to be removed

from a location before another item can be placed there. The RDDL domain file is

shown in Section D.2 of Appendix D. The set of types is C = {robot, wp, obj}. The

symbolic state predicates P are:

• robot at(ROBOT,WP): the robot ROBOT is at the location WP ;

• localised(ROBOT): the robot ROBOT is localised;

• emptyhand(ROBOT): the robot ROBOT is not holding any items;

• holding(ROBOT,OBJ): the robot ROBOT is holding the item OBJ ;

• object at(OBJ,WP): the item OBJ is at the location WP ;

• OBJECT GOAL(OBJ,WP): the goal is to place the item OBJ at the location

WP .

The symbolic actions A are:

• move(ROBOT,WP): the robot ROBOT moves to the location WP ;

• localise(ROBOT): the robot ROBOT localises;

• pick up(ROBOT,OBJ,WP): the robot ROBOT picks up the item OBJ

from the location WP ;

• put down(ROBOT,OBJ,WP): the robot ROBOT puts down the item OBJ

at the location WP .

The immediate reward is additive over the following components:

• −1 for executing an action;

• 20 for placing an item at its goal location;

• −20 for picking up an item from its goal location.

Solving the problem. An object should be moved to its goal location if no other

objects are there. If this is not possible, then the robot should move any object to

an empty location. It should not move an object from its goal location.

The small and large scale problems are denoted by RF1 and RF2 and the size of

their state-action spaces are 228 × 37 and 284 × 132, respectively. The time hori-

zons are 30 for RF1 and 40 for RF2. The objects in RF1 are one robot (robot), five

locations (wp), and three items (obj). The objects in RF2 are one robot (robot),

ten locations (wp), and six items (obj). The problems are randomised by randomis-

ing the initial locations of items
(
object at(OBJ,WP)

)
and their goal locations

57

Chapter 2: Background and Related Work

(
OBJECT GOAL(OBJ,WP)

)
.

Robot Inspection

In Robot Inspection, a mobile robot needs to find objects by surveying a location

where the objects are at before it can inspect them. The goals are to transmit

information on inspected objects at the communication tower. The robot can move

between any two locations directly and there is a probability of 0.08 that it is low

on energy after moving. It needs to return to the docking station immediately to

recharge, else it is stranded and a dead end is reached. Its camera can also lose

calibration during inspection with a probability of 0.15 which reduces the success

rate of surveying to 0.2 and inspection to 0.9 (the state is unaffected if these actions

fail). The robot can calibrate its camera at the docking station which restores the

success rate back to 1. The RDDL domain file is shown in Section D.3 of Appendix D.

The set of types is C = {robot, wp, obj}. The symbolic state predicates P are:

• robot at(ROBOT,WP): the robot ROBOT is at the location WP ;

• docked(ROBOT): the robot ROBOT is docked at the docking station;

• undocked(ROBOT): the robot ROBOT is undocked;

• localised(ROBOT): the robot ROBOT is localised;

• camera calibrated(ROBOT): the camera of the robot ROBOT is cali-

brated;

• object found(OBJ): the object OBJ is found;

• object inspected(OBJ): the object OBJ is inspected;

• object info received(OBJ): information on the object OBJ has been

transmitted at the communication tower;

• has energy(ROBOT): the robot ROBOT has energy remaining;

• low energy(ROBOT): the robot ROBOT is low on energy;

• reward received(OBJ): reward for transmitting information on the object

OBJ has been received (this is to ensure a one-time reward is received for

each goal);

• DOCK AT(WP): the docking station is at the location WP ;

• OBJECT AT(OBJ,WP): the object OBJ is at the location WP ;

• COMM TOWER AT(WP): the communication tower is at the location WP .

58

Chapter 2: Background and Related Work

The symbolic actions A are:

• move(ROBOT,WP): the robot ROBOT moves to the location WP ;

• localise(ROBOT): the robot ROBOT localises;

• dock(ROBOT): the robot ROBOT docks;

• undock(ROBOT): the robot ROBOT undocks;

• survey(ROBOT,WP): the robot ROBOT surveys the location WP ;

• inspect object(ROBOT,OBJ): the robot ROBOT inspects the object

OBJ ;

• transmit info(ROBOT): the robot ROBOT transmits information about

any inspected object which has not had its information transmitted yet;

• calibrate camera(ROBOT): the robot ROBOT calibrates its camera.

The immediate reward is additive over the following components:

• −1 for executing an action;

• 20 for transmitting yet-to-received information on each inspected object at the

communication tower.

For example, if N objects are inspected before transmitting them, the immediate

reward is 20N − 1.

Solving the problem. The robot can survey all locations, which does not cause

the camera to lose calibration, before inspecting the objects since inspection has a

high probability of success even with an uncalibrated camera. Once all objects are

inspected, the robot should move to the communication tower to transmit. Alterna-

tively, the robot can survey each location, inspect the objects, then transmit at the

communication tower. If the camera loses calibration, the robot should return to

the docking station to calibrate it if the camera is still required. Also, if the robot

is low on energy, it should move to the docking station and dock immediately.

The small and large scale problems are denoted by RI1 and RI2 and the size of

their state-action spaces are 223× 27 and 229× 36, respectively. The time horizon is

40 for RI1 and RI2. The objects in RI1 are one robot (robot), five locations (wp),

and three objects (obj). The objects in RI2 are one robot (robot), ten locations

(wp), and six objects (obj). The problems are randomised by randomising the lo-

cations of objects
(
OBJECT AT(OBJ,WP)

)
, docking station

(
DOCK AT(OBJ,WP)

)
,

59

Chapter 2: Background and Related Work

Figure 2.8: An environment in Gazebo for the Service Robot domain. A TIAGo
robot fulfils a task from the person p1 who requested assistance by bringing an item
o1 to the location wp5.

and communication tower
(
COMM TOWER AT(OBJ,WP)

)
.

Service Robot

In Service Robot, a TIAGo robot has to assist some people. A person can request

assistance which is a probabilistic exogenous event. The robot does not initially

know where the people are located and has to find them. It then navigates to the

person and talks to the person. If the person has requested assistance, the robot

will receive some tasks (or goals) of two possible types: (1) bring an item to a

location, or (2) deliver an item to a person. The robot can move between any two

locations directly. Figure 2.8 illustrates a simulated environment in Gazebo [89] for

Service Robot. We describe this simulated environment in details in Section 5.5.1.

The RDDL domain file is shown in Section D.4 of Appendix D. The set of types is

C = {robot, wp, obj, person}. The symbolic state predicates P are:

• robot at(ROBOT,WP): the robot ROBOT is at the location WP ;

• localised(ROBOT): the robot ROBOT is localised;

• emptyhand(ROBOT): the robot ROBOT is not holding any item;

• holding(ROBOT,OBJ): the robot ROBOT is holding the item OBJ ;

• object at(OBJ,WP): the item OBJ is at the location WP ;

• object with(OBJ, PERSON): the item OBJ is with the person PERSON ;

• goal object at(OBJ,WP): the goal is for the item OBJ to be at the location

WP ;

• goal object with(OBJ, PERSON): the goal is for the item OBJ to be with

60

Chapter 2: Background and Related Work

the person PERSON ;

• person at(PERSON,WP): the person PERSON is at the location WP ;

• need assistance(PERSON): the person PERSON needs assistance;

• needed assistance(PERSON): the person PERSON needed assistance (a

person only needs assistance once);

• reward received(OBJ): the goal involving the item OBJ has been achieved

(each item can be involved in at most one goal).

We use non-fluents to represent locations of tables and people and the tasks (goals)

each person can give:

• PROB NEED ASSISTANCE(PERSON): the probability of the person PERSON

needing assistance;

• PERSON GOAL OBJECT AT(PERSON,OBJ,WP): the person PERSON will

instruct the robot to place the item OBJ at the location WP ;

• PERSON GOAL OBJECT WITH(PERSON1, OBJ, PERSON2): the person

PERSON1 will instruct the robot to bring the item OBJ to the person

PERSON2 where PERSON1 and PERSON2 can refer to the same person;

• PERSON IS AT(PERSON,WP): the person PERSON is at location WP

(this is different from person at(PERSON,WP) which represents the knowl-

edge of the robot);

• TABLE AT(WP): there is a table at location WP .

Except for TABLE AT(WP), these non-fluents represent facts which are not made

known to the robot while the fluents represent knowledge of the robot. For example,

the goals a person will give is defined by the non-fluents and are unknown to the

robot until it talks to the person. The symbolic actions A are:

• move(ROBOT,WP1,WP2): the robot ROBOT moves from the location WP1

to the location WP2;

• localise(ROBOT): the robot ROBOT localises;

• find person(ROBOT, PERSON): the robot ROBOT explores the room to

find the person PERSON ;

• talk to person(ROBOT, PERSON): the robot ROBOT talks to the person

PERSON ;

• pick up(ROBOT,OBJ): the robot ROBOT picks up the item OBJ ;

61

Chapter 2: Background and Related Work

• put down(ROBOT,OBJ): the robot ROBOT puts down the item OBJ ;

• take(ROBOT,OBJ, PERSON): the robot ROBOT takes the item OBJ

from the person PERSON ;

• give(ROBOT,OBJ, PERSON): the robot ROBOT gives the item OBJ to

the person PERSON ;

• noop: do nothing.

The immediate reward is additive over the following components:

• −1 for executing an action;

• 20 for completing a task or goal.

Solving the problem. If a person needs assistance, the robot should find the

person, go to the person, and talk to the person. Otherwise, the robot should do

nothing (i.e., noop) if it has no tasks to complete and is localised. If there are tasks

to be completed, the robot should pick up the associated object from its current

location and bring it to the specified location or person. If this person has not been

found, then the robot needs to find this person.

We introduce three problems, SR1, SR2, and SR3, and the size of their state-

action spaces are 259×41, 2222×156, and 2222×156, respectively. The time horizons

are 20 for SR1, 40 for SR2, and 60 for SR3. The objects in SR1 are three items

(obj), one person (person), and five locations (wp). The objects in SR2 and SR3

are six items (obj), three people (person), and ten locations (wp). Each person

who requires assistance gives two tasks to the robot after the robot talks to them.

In SR1, p1 needs assistance with a probability of 0.5. In SR2, p1, p2, and p3 need

assistance with a probability of 0.5, 0.3, and 0.0, respectively. In SR3, p1, p2, and

p3 need assistance with a probability of 0.5, 0.3, and 0.3, respectively. The scales of

SR2 and SR3 are equal but the latter has two more goals (from p3) than the former.

The problems are randomised by randomising the initial locations of items and the

types of goals:

• PERSON GOAL OBJECT AT(p1, OBJ,WP): a goal from p1 where OBJ and WP

are randomised object instances;

• PERSON GOAL OBJECT WITH(p1, OBJ, p1): a goal from p1 where OBJ is a ran-

domised object instance;

62

Chapter 2: Background and Related Work

• PERSON GOAL OBJECT AT(p2, OBJ,WP): a goal from p2 where OBJ and WP

are randomised object instances;

• PERSON GOAL OBJECT AT(p2, OBJ,WP): a goal from p2 where OBJ and WP

are randomised object instances;

• PERSON GOAL OBJECT WITH(p3, OBJ, p1): a goal from p3 where OBJ is a ran-

domised object instance;

• PERSON GOAL OBJECT WITH(p3, OBJ, p2): a goal from p3 where OBJ is a ran-

domised object instance.

The goals are randomised such that no item is involved in more than one goal. The

goals from p3 involve another person.

2.8.3 Properties of Domains

We discuss the differences between the six domains. In Triangle Tireworld,

there is only one goal. In Robot Inspection, multiple goals can be achieved at

once; the immediate reward can vary from −1 to 20N -1 where N is the number of

objects of type obj. In the remaining domains, only one goal can be achieved at

a time. In Service Robot, goals are initially unknown and there are two types of

goals (i.e., goal object at(OBJ,WP) and goal object with(OBJ, PERSON)).

Academic Advising and Robot Fetch have goals which are interdependent.

In the former, achieving some goals can increase the probability of success in

achieving other goals. In the latter, there is an order to achieve the goals due

to the constraint that each location can only hold one object. Furthermore, an

achieved goal can be unachieved by picking up an object from its goal location. In

Triangle Tireworld and Recon, actions can lead to irreversible changes to the

state. In Triangle Tireworld, the connectivity of locations are unidirectional and

spares are finite resources. In Recon, if a bad picture of an object is taken, the

goal of taking a good picture of it can never be achieved. Remaining goals can still

be achieved but the goal state cannot be reached. Lastly, there are dead ends in

Triangle Tireworld and Robot Inspection.

63

Chapter 2: Background and Related Work

2.9 Summary

Going forward, the next three chapters describe our work. We summarise how the

background introduced in this chapter fits in with our work. Chapter 3 introduces

our RRL method (Section 2.6) which learns a relational linear function approxima-

tion (Section 2.5.3) for the Q-function (Section 2.4.1), or first-order approximation,

to solve problems represented by RMDPs (Section 2.1.3). We propose a model-based

method to reduce the granularity (Section 2.5.2) of the first-order approximation; it

requires a generative model such as the maximum likelihood model (Section 2.3.1).

Chapter 4 introduces different forms of generalised knowledge. We use an ex-

isting model learner to learn generative models in the form of parameterised DBNs

(Section 2.3.2) written in RDDL (Section 2.2.3). We combine UCT (Section 2.4.2),

which uses this generative model, with the first-order approximation. We propose

a novel method to learn from observed dead ends (Section 2.1.6) in order to avoid

them in the future.

Chapter 5 introduces a new class of problems which is an extension of an RMDP

(Section 2.1.3) and a SMDP (Section 2.1.4). We extend the work from Chapters 3

and 4 to solve this more complex class of problems. In all three chapters, we analyse

the time and space complexities (Section 2.4.3) of some of our methods and evaluate

the sample complexity of our RRL method with empirical experiments for the six

domains introduced in Section 2.8.

64

Chapter 3

First-Order Approximation

In this chapter, we present our online RRL method which learns an approximation

of the Q-function with first-order features. This approximation, or first-order ap-

proximation, maps the state-action space of every problem of a domain to the same

abstract space where states are represented by first-order features. The objective is

to learn a first-order approximation which generates a policy that solves any problem

of the same domain.

This chapter is organised as follows. First, we present an overview of our online

RRL method in Section 3.1, bringing together the concepts from subsequent sections

and showing how they fit into our RRL method. We extend an online feature

discovery algorithm, iFDD+ [54], which incrementally adds conjunctive features to

reduce the approximation errors of the Q-function approximation. In Section 3.3,

we examine the generalisation property of first-order approximation. First-order

features must be grounded to generate a policy. The efficient grounding of first-

order approximation and the limitations of RRL are discussed in Section 3.4. Next,

in Section 3.5, we present two methods to overcome the limitations. A first-order

approximation allows transfer learning between problems regardless of the objects,

initial states, and goal states. We introduce three different modes of transfer learning

in Section 3.6. Lastly, the chapter concludes with empirical results for six domains

in Section 3.7. Parts of the work in this chapter have been published before in

[120–122].

65

Chapter 3: First-Order Approximation

Algorithm 1: Online RRL with ensemble of Q-function approximations

1 Function LQ-RRL(P, Q̃,w,Φc,η, CK):
Input: Problem P = (C,P ,A,O, T ,R, s0, H, γ),

Ensemble of Approximations Q̃ = {Q̃1, . . . , Q̃n},
Weights for ensemble w = {w1, . . . , wn},
Candidate features for ensemble Φc = {Φc

1, . . . ,Φ
c
n},

Relevances of candidate features for ensemble η = {η1, . . . ,ηn},
Contextual knowledge CK

2 Q̃π(s, a) :=
∑

Q̃i∈Q̃wiQ̃i(s, a) :=
∑

Q̃i∈Q̃wiθ
T
i Φi(s, a)

3 for t = 0 to H − 1 and st is not terminal state do
4 at = π(st)
5 st+1, rt ← Execute action at

6 for Q̃i ∈ Q̃ do

7
(
Q̃i, Φc

i , ηi
)
← Update Approximation

(
Q̃i, A, O, Φc

i , ηi, CK,

st, at, rt, st+1

)
8 return

(
Q̃, Φc, η

)

3.1 Online Relational Reinforcement Learning

Relational reinforcement learning (RRL) combines RL and relational learning to

learn efficiently in relational problems. Typically, the states, actions, Q-functions,

or policies are represented by first-order or relational representations which facilitate

generalisation over states, actions, and goals. Our approach to RRL is to learn a

first-order approximation of the Q-function which is a generalised Q-function.

Definition 13 (Generalised Q-function)

A Q-function is applicable in a problem P of a domain D if it maps every state

and action pair (s, a) in the state-action space SP × AP of P to a real value. A

Q-function is a generalised Q-function for D if it is applicable in every problem

P ∈ PD where PD is the set of all problems for D.

In a Q-function approximation, the state is abstracted with features. If a feature

cannot be evaluated (i.e., mapped to a real value) in at least one state for a problem

P , then the Q-function approximation is not applicable in P . A generalised Q-

function generates a generalised policy.

Definition 14 (Generalised Policy)

A generalised policy π for a domain D is a policy which maps every state s ∈ SP

66

Chapter 3: First-Order Approximation

to an action a ∈ AP for every problem P ∈ PD. A policy is generated from a Q-

function such that the action selection in a state depends on the Q-values of actions

in the state.

Our RRL method, denoted by LQ-RRL (RRL with linear function approxima-

tion for Q-function), learns a generalised Q-function. Our objective is to learn a

generalised policy which maximises the sum of expected rewards in many (or all)

problems of a domain, even in new problems different from the ones the policy is

learned in. We consider problems with discrete states and actions. LQ-RRL is out-

lined in Algorithm 1. We provide an overview here while details on the various

concepts will be deferred to later sections.

The inputs to Algorithm 1 are a problem P represented by an RMDP (the

transition function T is unknown), an ensemble of Q-function approximation(s)(
Q̃
)

with at least one Q-function approximation, sets of weights (w) and candidate

features (Φc) with their relevances (η) for each Q-function approximation in the

ensemble, and contextual knowledge (CK). Candidate features with their relevances

are for online feature discovery. We discuss ground approximation of the Q-function

in Section 3.2, first-order approximation of the Q-function in Section 3.3, ensemble of

Q-function approximations in Section 3.5.2, online feature discovery in Section 3.1.1,

and contextual knowledge in Section 3.4.2.

A Q-function approximation Q̃i ∈ Q̃ can be initialised from scratch where its set

of features Φi is a set of base features (see Definition 12), its weights θi = 0, can-

didate features Φc
i = ∅, and relevance of candidate features ηi = ∅. Otherwise, Q̃i

can be learned in and transferred from a previous problem. The set of base features

for a first-order approximation is determined with Algorithm 5 (see Section 3.3.1).

We use a linear function approximation to approximate the Q-function. The

Q-value Q̃π(s, a) estimated by an ensemble of approximations is determined from

its constituent approximations (line 2). This is given by Equations 3.8 and 3.9 in

Section 3.5.2 and Equation 4.7 in Section 4.4.2. The vector of real values, Φ(s, a),

is returned by Algorithm 6 (see Section 3.4).

Lines 3 to 7 show the planning-execution-learning cycle for H time steps. To

select an action using a policy π generated from Q̃π (line 4), the Q-value of every

action must be evaluated; Φi(st, a) must be computed for every a ∈ A and for every

67

Chapter 3: First-Order Approximation

Algorithm 2: Online feature discovery (iFDD+)

1 Function Online Feature Discovery(Φactive,A,Φ
c,η):

Input: Set of active features Φactive,
Set of actions A,
Candidate features Φc,
Relevances of candidate features η,

2 Generate a set of active candidate features Φc
active from Φactive

3 for φi ∈ Φc
active do

4 ηi ← Update relevance of φi
5 Add (update) φi to (in) Φc and ηi to (in) η
6 if ηi > ξ then
7 for a ∈ A do
8 if φi comprises of base features of a then
9 Add φi to Φa and its weight to θ

10 Remove φi from Φc and ηi from η

11 return
(
Φc, η

)

Q̃i ∈ Q̃. Thus, Algorithm 6 is called |A||Q̃| times in each time step. The action

returned by π, at, is executed in the current state st (line 5). The effects of executing

at on the environment are observed in the form of a tuple (st+1, rt) where st+1 is the

next state and rt is the immediate reward. The observation for time step t is then

Ξ = (st, at, st+1, rt). Q̃ is updated by performing a step update for each Q-function

approximation using a TD learning or TD(λ) method (line 7, see Algorithm 4). This

is discussed in details in Section 2.4.1. Each Q-function approximation is not learned

independently because the observation depends on the policy generated from Q̃π.

Algorithm 1 terminates after H time steps or if the terminal state is reached (line

3), and returns Q̃, Φc, and η (line 8). In transfer learning, these outputs are used

as inputs to another problem. We discuss transfer learning in Section 3.6.

3.1.1 Online Feature Discovery

Using a literal as a feature (such a feature is a base feature, see Definition 12) is often

inadequate in approximating the optimal Q-function. Conjunctive features, which

are conjunctions of literals, are added to Φ to reduce the approximation errors. This

is because a conjunction of literals has a lower coverage and gives a finer granularity

to a Q-function approximation; a conjunctive feature encodes information that a

base feature (i.e., a literal) cannot. For example, in Recon, a conjunctive feature

68

Chapter 3: First-Order Approximation

φ = agentAt(a1, wp1) ∧ OBJECT AT(o1, wp1) represents the relation that the agent

a1 is at the same location as the object o1. Since the agent needs to be at the same

location as an object to take a good picture of it (which is the goal in Recon), a

positive weight will be learned for φ. The generated policy will then direct the agent

to move to wp1. Adding conjunctive features to Φ also introduces nonlinearities (of

the literals) to the linear function approximation.

Since the state spaces of our domains are represented by literals, we consider

binary features (i.e., true or false). Suppose that the set of literals P# = P+∪¬P+

forms a set of base features. Then, the number of base features is 2|P | and the

number of possible features is 22|P |. Clearly, this is not tractable as the number

of features scale exponentially with the number of state predicates. Furthermore,

some conjunctive features are unnecessary for the purpose of approximating the Q-

function. Thus, there is a need to determine conjunctive features which are necessary

and add them to Φ. For this purpose, we implemented and extended the incremental

Feature Dependency Discovery (iFDD+) from Geramifard, Dann, and How [54] as

it has a low time complexity, scales well to large scale problems, and outperforms

the state-of-the-art batch expansion method from [129]. Our work, excluding our

extension for iFDD+, is not restricted to any particular feature discovery algorithm

as long as they use features which are conjunctions of literals.

iFDD+ is a model-free, online feature discovery algorithm which incrementally

adds new features to Φ when approximation errors persist in regions of the state

space. We briefly describe iFDD+ here. Readers can refer to [54, 55] for more details.

Algorithm 2 shows the steps for iFDD+. The inputs are a set of features in Φ which

are active (Φactive), the set of actions (A), a set of candidate features (Φc), and

the relevances of the candidate features (η). Φc and η are initially the empty

set. Algorithm 2 is called in line 5 of Algorithm 4 which updates the Q-function

approximation in every time step.

A candidate feature is formed by the conjunction of two features (its parent

features) in Φ. A feature is active in a state s if it is true in s and is not a parent

of any feature which is true in s. This is the sparse summary of active features

introduced by Geramifard et al. [55]. We elaborate on this in a later part of this

section. Given a set of active features, candidate features which could reduce the

69

Chapter 3: First-Order Approximation

approximation error are identified. They are the conjunction of every pair of active

features in Φ (line 2 of Algorithm 2). The relevance of every active candidate feature

is updated (line 4) as follows:

η =

∣∣ ∑t
i=0,φ(si,ai)=1 δi

∣∣√∑t
i=0,φ(si,ai)=1 1

, (3.1)

where η is the relevance of a candidate feature φ, (si, ai) is the state-action pair in

the observation at time step i, t is the current time step, and δi is the TD error at

time step i. Equation 3.1 is determined from the conditions for a guaranteed rate of

convergence in the error bound of the Q-function approximation. We refer readers

to [56] for further details.

The relevances of candidate features are tracked over time steps. Newly gener-

ated candidate features and their relevances are added to Φc and η, respectively,

while relevances of existing candidate features are updated (line 5). A candidate

feature is added to Φa, the set of features for the action a, and its weight is added

to θ (line 9) if the following two conditions are satisfied: (1) the relevance of the

candidate feature is greater than ξ (line 6), and (2) the candidate feature comprises

of parent features which are features of a (line 8). Candidate features which are

added to Φ no longer need to be tracked and are removed from Φc along with their

relevances from η (line 10). The updated Φc and η are returned (line 11).

iFDD+ greedily considers only features of the largest conjunction sets such that

all the base features which evaluate to true are included, either by itself or as part of

a conjunctive feature. Parent features are ignored because the conjunctive feature

covers both of them in the abstract state. For example, consider the following

three features: φi, φj, and φk = φi ∧ φj. If both φi and φj are true in a state

s, then φk must also be true. Due to the sparse summary, only φk is considered

active (i.e., φk(s, a) = 1). Since φi and φj are parents of φk, they are inactive (i.e.,

φi(s, a) = φj(s, a) = 0). The sparse summary reduces the time complexity as the

weights of lesser features are updated and the relevances of lesser candidate features

are updated. Furthermore, it separates the ambiguity as a conjunctive feature and

its parent features will never map to 1 for the same state. This allows the update (or

learning) of their weights to be separated. Following the same example, although φi

70

Chapter 3: First-Order Approximation

and φj are true, only φk is active and updated.

Adding features to Φ reduces the granularity of a Q-function approximation Q̃ as

they have smaller coverage than their parent features. Since Φc consists of candidate

features which are the conjunction of any two features in Φ, this in turn introduces

new candidate features to Φc. For each feature added to Φ, its weight is initialised

as the sum of the weights of its parent features and is added to θ such that Q̃(s, a)

remains unchanged [55]. This is in part due to the sparse summary. However, we

note that this is not true and Q̃(s, a) could change if a feature φ is a parent of more

than one feature added to Φ. When this happens, the weight of φ is included more

than once.

Example 4 (Change in Q-values due to Feature Discovery)

Consider an action a with three features, φ1, φ2, and φ3 with the respective weights

θ1, θ2, and θ3. In a particular state s, all three features are active and Q̃(s, a) =

θ1 + θ2 + θ3. Suppose that a conjunctive feature φ4 = φ1 ∧ φ2 is added to Φ and its

weight is θ4 = θ1 + θ2. Due to sparse summary, the active features are φ3 and φ4.

The Q-value after adding φ4 is Q̃(s, a) = θ3 + θ4 = θ3 + (θ1 + θ2) which is the same

as before. Now consider another scenario where φ4 and a second conjunctive feature

φ5 = φ1 ∧ φ3 are added. The weight of φ5 is θ5 = θ1 + θ3. The active features are

now φ4 and φ5. The Q-value is Q̃(s, a) = θ4 +θ5 = (θ1 +θ2)+(θ1 +θ3). The Q-value

has changed by a magnitude of θ1 which is the weight of φ1.

The consequence of the change in Q-function is learning instability as the TD

error could increase rather than decrease after a weight update. We remedy this by

initialising the weight of a conjunctive feature φk = φi ∧ φj as follows:

θk =
θi
Ni

+
θj
Nj

, (3.2)

where θi (θj) is the weight of φi (φj), and Ni (Nj) is the number of conjunctive

features added to Φ which include φi (φj) as a parent feature. If Ni = 1 and

Nj = 1, then the weight is initialised to the sum of the weights of its parent features

as proposed by Geramifard et al. [55].

71

Chapter 3: First-Order Approximation

Algorithm 3: Adaptive online feature discovery (τ -iFDD+)

1 Function
Adaptive Online Feature Discovery(Φc

active,A,Φ
c,η, a, ξ, NΦ):

Input: Active Candidate features Φc
active,

Set of actions A,
Candidate features Φc,
Relevances of candidate features η,
Action a,
A set of discovery thresholds for each action ξ,
Maximum number of features that can be added NΦ

2 Generate a set of active candidate features Φc
active from Φactive

3 for φi ∈ Φc
active do

4 ηi ← Update relevance of φi
5 Add (update) φi to (in) Φc and ηi to (in) η

6 Φ̄← Group Φc
active and sort with descending relevance

7 count = 0
8 for φ ∈ Φ̄ do
9 if η of φ > ξ(a) then

10 count← count+ |φ|
11 if count < NΦ then
12 for a′ ∈ A do
13 for φ ∈ φ do
14 if φ comprises of base features of a′ then
15 Add φ to Φa and its weight to θ
16 Remove φ from Φc and ηi from η

17 else
18 ξ ← η + ε
19 for a′ ∈ A do
20 if ξ(a′) < ξ then ξ(a′) = ξ

21 break

22 else
23 break

24 return
(
Φc, η

)

3.1.2 Adaptive online feature discovery

ξ is the only hyperparameter of iFDD+ and implicitly controls the rate of adding

new features to Φ. If ξ is too large, then features are added to Φ belatedly which

increases the sample complexity. If ξ is too small, many unnecessary features are

added which increases the sample and time complexities. This is because adding a

feature to Φ increases the number of possible candidate features exponentially; the

72

Chapter 3: First-Order Approximation

relevance of every candidate feature is tracked and updated which could be compu-

tationally expensive. As noted by Geramifard et al. [55], ξ is domain-dependent and

requires expert knowledge to set appropriately. This is non-trivial. For example,

the domains we consider in Section 2.8 have a variety of reward functions. Further-

more, the additive nature of the reward function in RDDL means that the range of

immediate rewards is dependent on the number of objects (e.g., Robot Inspection,

see Section 2.8.2). Hence, ξ needs to be set considering the domain and the number

of objects in the problem. This potentially involves some experiments to tune ξ.

This issue motivates our adaptive variant of iFDD+ which progressively incre-

ments ξ and places a hard constraint on the number of features which can be added

to Φ at each time step. We term our adaptive variant as τ -iFDD+ which is outlined

in Algorithm 3. We focus on the extensions made to iFDD+. The additional inputs

required are the action (a) for which the update is for, a set of discovery thresholds

for each action (ξ), and the maximum number of features which can be added per

time step (NΦ). First, the relevances of active candidate features (Φc
active) are up-

dated (lines 2 to 5). Then, features in Φc
active are grouped together if they have the

same relevance (line 6). The groups of features
(
Φ̄
)

are then sorted with descending

relevances (line 6). Each group of features φ ∈ Φ̄ is considered for addition to Φ

(lines 8 to 23). If the relevance of φ exceeds the discovery threshold of a (line 9),

then count is incremented with the number of features in φ (line 10). If count is

less than NΦ, then φ is added to Φ, and Φc and η are updated accordingly (lines

11 to 16). Otherwise, φ is not added as doing so will exceed NΦ, and the discovery

threshold for each action is set to the relevance of φ plus a small arbitrary amount ε

(lines 17 to 21). This ensures that candidate features which are not added can only

be added in subsequent time steps if their relevances increase again. Since candidate

features are ordered with descending relevances, remaining groups of features in Φ̄

have relevances below the discovery threshold and will not be added. The discovery

threshold is maintained for each action rather than a single value for all actions as

in iFDD+. It is increased whenever the number of candidate features to be added ex-

ceeds NΦ. Intuitively, this implies that more observations are required to determine

which candidate features are necessary.

The maximum number of features that can be added per time step is dependent

73

Chapter 3: First-Order Approximation

Algorithm 4: Update Q-function approximation

1 Function Update Approximation(Q̃,A,O,Φc,η, CK, st, at, rt, st+1):

Input: Q-function approximation Q̃,
Set of actions A,
Set of objects O,
Candidate features Φc,
Relevances of candidate features η,
Contextual knowledge CK,
Current state st,
Action at,
Immediate reward rt,
Next state st+1

2
(
Φ(st, at), Φactive

)
← Evaluate Features(Φ,O, CK, st, at)

3 Compute TD error δt
4 Update weight vector θ

5
(
Φc, η

)
← Online Feature Discovery

(
Φactive,A,Φ

c,η
)

6 return
(
Q̃, Φc, η

)
on the domain and problem. For example, NΦ should have a large value for problems

with a large number of state predicates. Since a state is described with literals, it

makes sense that more features are required to represent abstract states. It is desired

to have a domain-independent hyperparameter to avoid tedious tuning. Therefore,

we set NΦ = max
(
1, τ

100
maxa∈A |Φa|

)
where Φa is the set of base features for a

and τ is a hyperparameter. In other words, the maximum number of features that

can be added per time step is τ% of the maximum number of base features among

the actions. Effectively, we replace ξ with τ which is more intuitive to set as it is

independent of the reward function and explicitly limits the expansion rate of Φ. In

τ -iFDD+, ξ is set to an arbitrary small value (i.e., 0.1) and is incrementally increased

when required.

3.1.3 Update Q-function Approximation

A Q-function approximation is updated in each time step using Algorithm 4. Given

an observation Ξ = (st, at, rt, st+1), Φ is evaluated for (st, at) (line 2, this calls

Algorithm 6) by considering contextual knowledge if in use. We discuss contextual

knowledge in Section 3.4.2. Φ(st, at) is a vector of real values where the i + 1-th

element is the value of the i-th feature in Φ (the first element in Φ(st, at) is the bias

term 1). A feature has a value of 1 if it is active; otherwise, it has a value of 0. Φactive

74

Chapter 3: First-Order Approximation

is the set of active features. The TD error is computed (line 3) and the weights are

updated (line 4). We use Double Q-learning with replacing eligibility trace for each

feature (see Section 2.4.1). Newly added features have eligibility traces initialised

to 0. The TD error is computed with Equation 2.16 and the weights are updated

based on Equation 2.29. Features are incrementally added to Φ (line 5). This is

done with any feature discovery algorithm which deals with conjunctions of literals

as features such as Algorithms 2 or 3.

3.2 Ground Approximation

LQ-RRL (Algorithm 1) requires at least one linear function approximation of the Q-

function as an input. One possible Q-function approximation uses binary features

which are represented by literals (see Definition 12).

Definition 15 (Ground Approximation)

A ground approximation Q̃gnd is a linear function approximation of the Q-function

where Φ is a concatenation of the set of features Φa for each action a ∈ A and Φa

consists of literals or conjunction of literals.

We use the set of literals P# as the set of base features for every action. We term

this selection of base features as model-free feature selection (MFFS) as it does not

exploit any information from a model to prune unnecessary literals as base features.

We present a model-based feature selection in Section 4.3.1. Since literals are ground

over the set of objects O, problems with different sets of objects will have different

sets of literals.

Example 5 (Dependency of Ground Approximation on Objects)

In Recon (see Section 2.8.1), an agent moves in a grid environment, avoiding haz-

ards to take good pictures of every object of type obj using its camera tool. In a

particular problem of Recon where the grid size is N × N , there are N2 objects of

type wp. The agent can be in N2 locations which are represented by N2 ground state

predicates of agentAt(AGENT,WP). Since the ground approximation uses literals

in P# to construct features, Φ is defined over O and |Φ| scales with |O|.

Since features are literals or conjunctions of literals, a ground approximation is

75

Chapter 3: First-Order Approximation

not applicable in a problem P if a feature φ includes a literal which is not a literal

in P since φ cannot be evaluated to be true or false in the state space of P . If

O changes, then the ground approximation changes because: (1) base features are

literals which are define over O, and (2) Φ is a concatenation of features for each

ground action in A which is define over O.

Suppose that Q̃gnd is learned in a problem P with the state-action space SP×AP .

Q̃gnd is applicable in any problem with a state-action space S−×A− if S− ⊆ SP and

A− ⊆ AP . This poses three limitations of a ground approximation. First, transfer

learning from large to small scale problems is not possible. For example, the ground

approximation described in Example 5 is not applicable in another problem with

a smaller grid size. This is of a lesser concern since it is often desired to perform

transfer learning from small to large scale problems instead (see Section 3.6). Second,

non-fluents are invariants of a state. If two problems have different non-fluents, they

will have non-overlapping state spaces. This implies that a ground approximation

learned in one problem will not be applicable in another problem with different non-

fluents. Third, even if non-fluents are identical, transfer learning from small to large

scale problems will not perform well. This is because the ground approximation

does not consider the extended state-action space of the large scale problem. Given

these limitations, we propose a first-order approximation which is independent of

the objects in O and ground non-fluents.

Are negative literals necessary as features? The inclusion of negative literals

as base features might seem unnecessary due to the sparse summary of features in

iFDD+. Consider two base features, φi = pi and φj = pj (the terms of the literals

are excluded for brevity), a conjunctive feature, φk = φi ∧ φj, and three states,

s1 = pi ∧ ¬pj ∧ . . ., s2 = ¬pi ∧ pj ∧ . . ., and s3 = pi ∧ pj ∧ Due to the sparse

summary, only one of the three features is active in each of the states: φi(s1, ·) = 1,

φj(s2, ·) = 1, and φk(s3, ·) = 1. In a state s4 = ¬pi ∧ ¬pj ∧ . . ., φi, φj, and φk

maps to 0. The states s1, s2, s3, and s4 represent all possible combinations of pi

and pj. The features map each of the four states to unique vectors of real numbers

even without using the negative literals, ¬pi and ¬pj, as base features. This implies

that mapping a state to an abstract state without negative literals does not cause

76

Chapter 3: First-Order Approximation

a coarser granularity. This might seem attractive as the number of base features

is reduced by half without the negative literals which gives lower computational

and space complexities. However, in s4, since none of the features are active, their

weights are not updated. If s4 is a state of interest (e.g., a goal is achieved or

a dead end is reached), then the exclusion of negative literals could lead to poor

performance. Therefore, to be domain or problem agnostic, we include negative

literals as base features.

3.3 Consistent Abstraction with First-Order Fea-

tures

Given the limitations of the ground approximation, we propose a first-order ap-

proximation of the Q-function, denoted by Q̃fo (we omit the superscript for brevity

unless it is necessary to distinguish between Q̃fo and Q̃gnd), which is independent of

O. Since states are aggregated to approximate the optimal Q-function (similar to

other RRL methods such as Q-RRL [47]), our first-order approximation performs Q∗-

irrelevance abstraction [100, 185]. We shall prove that the first-order approximation

is a generalised Q-function under certain conditions in Section 3.3.2.

Definition 16 (First-Order Features and First-Order Approximation)

A first-order feature for an action a is a lifted literal or a conjunction of lifted

literals which contains bound and/or free variables. This is different from symbolic

literals which make no distinction between bound and free variables. A first-order

approximation is represented by a set of first-order features which is a concatenation

of the set of features Φâ for each symbolic action â ∈ A.1

Φ and θ are the concatenation of the set of features and weight vector, respec-

tively, for each symbolic action rather than ground action. Otherwise, the first-order

approximation will not be independent of O because ground actions are defined over

O. Sample complexity is potentially reduced as actions in Aâ (the set of ground

actions for the symbolic action â) share the same weight components in θ; obser-

vations for an action a ∈ Aâ are used to update the shared weights or Q-values

1̂ denotes a lifted literal, a symbolic action, or a set of lifted literals.

77

Chapter 3: First-Order Approximation

Algorithm 5: Initialise a set of first-order features for a symbolic action

11 Function Get First Order Features(P ,Aâ):
Input: Set of state predicates P ,

Set of ground actions Aâ for the symbolic action â
2 Φâ = ∅
3 for a ∈ Aâ do
4 Φa ← Feature Selection(P , a)

5 Φâ ← Φâ ∪ Lift
(
Φa, σa

)
6 return Quantified

(
Φâ

)

of every action in Aâ. The first-order approximation requires two assumptions to

perform well: (1) the problem is relational and (2) deictic objects (objects which

are not in the terms of an action) of the same type can be treated as a homogeneous

entity (i.e., a free variable).

3.3.1 Initialising First-Order Base Features

We present a method to generate first-order base features which is outlined in Al-

gorithm 5 and illustrated with an example in Figure 3.1. This work was published

in [122]. The inputs to Algorithm 5 are the set of state predicates P and the set

of ground actions for â (Aâ), and the output is a set of first-order base features

for â. For each ground action a ∈ Aâ (line 3), a set of ground features Φa is

initialised (Feature Selection in line 4). We use MFFS for Feature Selection

(i.e., Feature Selection returns the set of every state predicate and its negation).

Each feature φ ∈ Φa is lifted in accordance with the grounding of a, σa (Lift in

line 5) where objects in the terms of a are substituted with their corresponding

bound variables and objects which are not terms of a are not substituted. For

example, a ground action a(x, y) of the symbolic action a(X, Y) has a grounding

σa = {X/x, Y/y}. A feature is partially lifted if it contains deictic objects. Φâ is

the union of these partially and fully lifted features for each action a ∈ Aâ (line 5).

Remaining (deictic) objects in Φâ are substituted with free variables to yield a set

of first-order features (Quantified in line 6). Algorithm 5 is called once for each

symbolic action.

Example 6 (First-Order Base Features)

Following Example 5, the N2 ground state predicates of agentAt(AGENT,WP)

78

Chapter 3: First-Order Approximation

Figure 3.1: An illustration of initialising a set of first-order base features for a
symbolic action and the grounding of first-order features. To evaluate first-order
features, they are grounded with consideration to the state st, the objects in the
action a1, and contextual knowledge.

are mapped to only two first-order base features agentAt(AGENT,WP) and

agentAt(AGENT, ?WP) for the symbolic action move(WP) as long as N > 1.2

If N = 1 (i.e., the grid is 1 × 1), then there is only one object of type wp which

is represented by the bound variable WP and the first-order base feature is only

agentAt(AGENT,WP).

In Academic Advising, the first-order base features for takeCourse(COURSE)

are:

• PREREQ(COURSE, ?COURSE)

• PREREQ(?COURSE,COURSE)

• PROGRAM REQUIREMENT(COURSE)

• PROGRAM REQUIREMENT(?COURSE)

• passed(COURSE)

• passed(?COURSE)

• taken(COURSE)

• taken(?COURSE)

2?C denotes a free variable where C is the variable type.

79

Chapter 3: First-Order Approximation

Figure 3.2: Illustration of the relation between the ground approximation and the
first-order approximation. Three ground approximations are learned in different
problems with non-overlapping state-action spaces and are abstracted to a first-
order approximation. A state-action space is represented by a large circle with dark
shade. A state-action pair is represented by a small circle with light shade.

Example 6 illustrates that, except for trivially small scale problems, first-order base

features are independent of O and the number of first-order base features is in-

dependent of |O|. Therefore, a first-order approximation scales well to large scale

problems.

In a ground approximation, every action has the same set of base features if

MFFS is used. However, in a first-order approximation, actions could have different

first-order base features even if MFFS is used. This is because the literals are lifted

differently in accordance to the grounding of an action. Thus, only ground actions

of the same symbolic action share the same features. Having the same set of features

and sharing the same set of features are two different concepts. For example, consider

the trivial case where there are only two actions and a feature φ. If both actions

share the same feature, then Φ = [φ].3 If both actions have the same feature, then

Φ = [φ φ]

Figure 3.2 illustrates the relation between three ground approximations which

are learned in different problems and a first-order approximation. The ground ap-

proximation learned in the first problem, Q̃gnd
1 , maps a state-action pair (s11, a11) in

3For brevity, we omit the bias term here.

80

Chapter 3: First-Order Approximation

S1×A1 to a real value. However, it cannot map (s21, a21) in S2×A2 for the second

problem to a real value because s21 6∈ S1 and a21 6∈ A2. A first-order approxima-

tion Q̃fo maps the state-action spaces of the three problems to the same abstract

state-action space S̄ × Ā. Thus, it maps every state-action pair in the state-action

spaces of the three problems to real values.

Since Feature Selection (line 4 in Algorithm 5) returns the set of state pred-

icates and their negations which is also the set of base features for a ground ap-

proximation, Algorithm 5 can be seen as a mapping from a ground approximation

to a first-order approximation—the ground approximation is an abstraction of the

original RMDP and the first-order approximation is an abstraction of the ground

approximation. This implies that the first-order approximation has a coarser granu-

larity than the ground approximation which we shall discuss in Section 3.4.1. We can

represent the abstraction of a ground approximation to a first-order approximation

as follows:

Φâ =
⋃
a∈Aâ

⋃
φ∈Φa

L (φ, a), (3.3)

where Φa is the set of features in a ground approximation for the action a and L

is a function which maps a feature φ for a to a first-order feature. If Φa is the set

of base features, then Equation 3.3 returns the set of first-order base features for â.

L substitutes objects in φ which are in the terms of a with bound variables and

objects which are not in the terms of a with free variables.

Example 7 (Mapping to a First-Order Feature with L)

For a feature φ = p(x, z) and an action a = a(x, y) for the symbolic action a(X, Y),

L performs a substitution {x/X, z/ ? Z} such that L (φ, a) = p(X, ?Z) where X

(?Z) is a bound (free) variable of the same type as the object x (z).

A first-order feature φ needs to be grounded to evaluate the value of φ(s, a).

Bound variables are ground with objects in the terms of the action a while free

variables can be ground to any object of the same type. We discuss the grounding

of first-order features and its complications in Section 3.4.

Example 8 (Substituting Bound and Free Variables)

In Recon, the first-order feature φ = OBJECT AT(OBJ, ?WP) for the action a =

useToolOn(a1, w1, o1) is ground to OBJECT AT(o1, ?WP) using the grounding of a.

81

Chapter 3: First-Order Approximation

The remaining free variable, ?WP , can be substituted with any object of the type

wp. Semantically, φ evaluates to true if o1 is at any location which is always the

case. Later, in Section 3.4.1, we discuss the complication of this.

3.3.2 Consistent Abstraction and Abstract-Equivalent

Problems

We prove that the first-order approximation is a generalised Q-function under cer-

tain conditions. A first-order approximation performs state and action abstraction,

mapping the state space to an abstract state space and the action space to an

abstract action space.4

Definition 17 (Consistent Abstraction)

If an abstraction function F : XP → X̄∀P ∈ PD where XP is a set of entities

for a problem P , then F is a consistent abstraction function and X̄ is a consistent

abstraction of XP∀P ∈ PD.

A consistent abstraction maps the state (action) space of every problem of a

domain to the same abstract state (abstract action) space. A Q-function approxi-

mation which is learned over this abstract space is a generalised Q-function. A state

abstraction function is denoted by S : S → S̄ and an action abstraction function

is denoted by A : A → Ā where S̄ and Ā are abstract state and action spaces,

respectively.

Theorem 1 (Consistent Abstraction for Generalised Q-function)

A Q-function approximation Q̃ for a consistent abstract state-action space S̄ × Ā,

where Q̃(s̄, ā) 7→ R∀s̄ ∈ S̄,∀ā ∈ Ā, is a generalised Q-function.

Proof. Following Definition 17, ∀P ∈ PD,∀(s, a) ∈ (SP ,AP)
(
Q̃(s, a) =

Q̃(S (s),A (a)) = Q̃(s̄, ā)
)

where S (s) 7→ s̄, A (a) 7→ ā, s̄ ∈ S̄, and ā ∈ Ā.

Following Definition 13, Q̃ is applicable in every problem of the domain D and is a

generalised Q-function.

Definition 18 (Feature Space for First-Order Approximation)

The set of first-order base features P̂ is the concatenation of the set of first-order

4The abstract actions here are not the same as temporally abstract actions or options in [169].

82

Chapter 3: First-Order Approximation

base features for every symbolic action â ∈ A: P̂ =
[
P̂ â1 , . . . , P̂ â|A|

]
. From

time step t = 0 onward, Φ = P̂ until conjunctive features are added to Φ. The

set of possible features or feature space for a first-order approximation is ℘
(
P̂
)

=[
℘
(
P̂ â1

)
, . . . , ℘

(
P̂ â|A|

)]
.

In a first-order approximation, the abstract state space is represented by first-

order features and the abstract action space is the symbolic action space. Formally,

S : S → ℘(P̂) and A : A→ A. In other words, S̄ = ℘(P̂) and Ā = A. We prove

that under certain conditions, S̄ and Ā are consistent abstract state and action

spaces, respectively. Then, following Theorem 1, the first-order approximation is a

generalised Q-function.

Theorem 2 (Consistent Abstract Action Space)

Ā = A is a consistent abstract action space for all problems of a domain.

Proof. Following Definition 6, every problem P ∈ PD of a domain D has the same

set of symbolic actions A.

It follows from Theorem 2 that A is a consistent abstraction function. Similarly,

S is a consistent abstraction function if ℘(P̂) is a consistent abstract state space.

Before we prove this, we need to introduce the following concepts.

Definition 19 (Subsumption of Problems and Abstract-Equivalent Prob-

lems)

The relation between two problems can be described with the following two predicates:

R1(Pi, Pj)⇔ ∀C
(
|OCPj | ≥ |O

C
Pi
|
)
,

R2(Pi, Pj)⇔ ∃C
(
|OCPi | = 1 ∧ |OCPj | > 1

)
,

where Pi and Pj are problems of a domain D, C ∈ C is a type, C is the set of types

in D, and OCP ⊂ OP is the set of objects in the problem P with the type C. R1(Pi, Pj)

is true if for all types, Pj has at least as many objects of that type as Pi. R2(Pi, Pj)

is true if there is a type which Pi has only one object of and Pj has more than one

object of. If R1(Pi, Pj) ∧ R2(Pi, Pj) is true, then Pi is subsumed by Pj. Otherwise, if

R1(Pi, Pj) ∧ ¬R2(Pi, Pj) ∧ ¬R2(Pj, Pi) is true, then Pi and Pj are abstract-equivalent

83

Chapter 3: First-Order Approximation

problems. In other words, two problems are abstract-equivalent if for every type, both

problems have either one object of or more than one object of.

Example 9 (Subsumption of Problems for Service Robot)

In Service Robot (see Section 2.8.2), a mobile robot attends to people who need

assistance and completes tasks for them such as bringing items to a specific person.

The small scale problem SR1 is not abstract-equivalent with the large scale problem

SR2 because the former has only one object of type person while the latter has three

objects of type person. That is, R1(SR1, SR2)∧R2(SR1, SR2) is true and SR2 subsumes

SR1. The above also holds for SR3 since it has the same set of objects as SR2.

Thus, SR2 and SR3 are abstract-equivalent and SR3 subsumes SR1. We shall see in

Example 10 what it means for a problem to subsume another.

We use the concept of abstract-equivalent problems to specify the conditions for

consistent abstract state space performed by the first-order approximation.

Theorem 3 (Consistent Abstract State Space)

S̄ = ℘(P̂) is a consistent abstract state space for abstract-equivalent problems.

Before proving Theorem 3, we need to introduce an abstraction function P:

P(p, â) =
⋃
a∈Aâ

L (p, a), (3.4)

which maps a literal p to a set of first-order base features for a symbolic action â. In

other words, P returns the union of the lifted literals resulting from lifting p with

the grounding of each ground action of â.

Proof. See Section A.1 of Appendix A.

A key step in the proof shows that P is a consistent abstraction function for

abstract-equivalent problems. Following Theorems 2 and 3, the first-order approx-

imation performs consistent state and action abstractions for abstract-equivalent

problems. Thus, it is a generalised Q-function if only abstract-equivalent problems

are considered.

Example 10 (Inconsistent Abstraction in Service Robot)

We show that P is inconsistent in problems which are not abstract-equivalent. Fol-

84

Chapter 3: First-Order Approximation

lowing Example 9, SR1 and SR2 are not abstract-equivalent. We consider the ac-

tions â = find person(ROBOT, PERSON), a1 = find person(r1, p1), and a2 =

find person(r1, p2) (for SR2 only), and the literal p = goal object with(o1, p1).

The abstractions for SR1 are:

• L (p, a1) = goal object with(?OBJ, PERSON)

• P(p, â) = goal object with(?OBJ, PERSON)

The abstractions for SR2 are:

• L (p, a1) = goal object with(?OBJ, PERSON)

• L (p, a2) = goal object with(?OBJ, ?PERSON)

• P(p, â) = {goal object with(?OBJ, PERSON),

goal object with(?OBJ, ?PERSON)} (due to the union of features in line

5 of Algorithm 5)

Since P maps p to different sets of first-order base features in SR1 and SR2,

it is not a consistent abstraction. Observe also that the set of first-order base

features in SR2 subsumes that in SR1. Thus, SR2 subsumes SR1 from this

viewpoint (see Definition 19 and Example 9). Intuitively, the first-order feature

goal object with(?OBJ, ?PERSON) implies that there exists another person

(?PERSON) which cannot be the case if there is only one person.

3.3.3 Augmenting First-Order Base Features

The first-order approximation is a generalised Q-function only in abstract-equivalent

problems which might seem to limit its application. However, this is often not the

case in practice. Of the domains we consider, only Service Robot has problems

which are not abstract-equivalent (see Example 9). This is because we instanti-

ated a trivially small scale problem, SR1, for this domain which has only one ob-

ject of type person. Other than SR1, the other two problems (i.e., SR2 and SR3)

are abstract-equivalent. In the remaining domains, the problems considered are

abstract-equivalent though problems which are not abstract-equivalent can be in-

stantiated. For example, in Recon, a problem with only one object of type obj is

not abstract-equivalent with RC3 and RC6. However, this problem is trivially simple

with only one goal. The same reasoning applies to the other domains. Nevertheless,

we propose a solution such that transfer learning between problems which are not

85

Chapter 3: First-Order Approximation

abstract-equivalent is still possible with a first-order approximation.

Theorem 4 (Subsumption of First-Order Base Features)

If a problem Pi is subsumed by another problem Pj, then the set of first-order base

features for Pi is a subset of that for Pj.

Proof. See Section A.1 of Appendix A.

The subsumption of first-order base features is illustrated in Example 10. Con-

sider two problems, Psource and Ptarget, where Psource is subsumed by Ptarget (i.e.,

they are not abstract-equivalent). Since Psource is of a smaller scale than Ptarget,

transfer learning from Psource to Ptarget is of interest.

Theorem 4 implies that the feature space of Psource is a subset of the feature space

of Ptarget. Thus, Q̃source is applicable in Ptarget.
5 That is, every first-order feature

approximating Q̃source can be evaluated in Ptarget. However, this does not mean that

Q̃source can approximate the optimal Q-function for Ptarget. In fact, this is unlikely

as first-order base features present in Ptarget but not Psource are not considered by

Q̃source. We can still utilise Q̃source to solve Ptarget by augmenting the features and

weights of Q̃source. The augmented Q-function approximation Q̃target has an initial

set of features given as:

Φtarget
â = Φsource

â ∪
(
P̂
target

â − P̂
source

â

)
. (3.5)

The weights of the features are the same as that in Q̃source unless they are newly

added features (i.e, the second term in parentheses on the right hand side of Equa-

tion 3.5); their weights are initialised to zeros.

We provide an intuition for why it is beneficial to consider Q̃source to solve Ptarget.

There is at least one type for which Psource has only one object of and Ptarget has mul-

tiple objects of. In spite of this, Q̃source can serve as a good initialisation for Q̃target.

Given the additional objects in Ptarget and the augmented set of base features, the

learning objective is reduced to updating Q̃target to consider these additional objects,

base features, and possibly new conjunctive features. This is simpler than learning

from scratch. Our empirical results in Section 3.7.4 for Service Robot show that

this is indeed the case.

5The subscript source (target) denotes an entity belongs to the source (target) problem.

86

Chapter 3: First-Order Approximation

3.3.4 Conjunctive First-Order Features

In a ground approximation, a conjunctive feature is true if all of its parent features

are true. On the other hand, in a first-order approximation, a conjunctive feature

might not be true even if all of its parent features are true. This is because free

variables in the parent features might be substituted with objects different from

those used to ground the conjunctive feature.

Example 11 (False Conjunctive Features with True Parent Features)

In a particular state s for a problem of Recon, the agent a1 is at wp1 and an ob-

ject of type obj, o1, is at wp2. There are no other objects of type obj. Suppose

that there are three features for a particular action: φ1 = agentAt(AGENT, ?WP),

φ2 = ¬agentAt(AGENT, ?WP), and φ3 = OBJECT AT(OBJ, ?WP). These fea-

tures can be grounded such that they are true in s: φ1 = agentAt(a1, wp1), φ2 =

¬agentAt(a1, wp2), and φ3 = OBJECT AT(o1, wp2). Consider two conjunctive fea-

tures: φc1 = φ1 ∧ φ2 = agentAt(AGENT, ?WP)∧¬agentAt(AGENT, ?WP), and

φc2 = φ1 ∧ φ3 = agentAt(AGENT, ?WP) ∧ OBJECT AT(OBJ, ?WP). φc1 evaluates

to false in all states. φc2 evaluates to false in s since neither agentAt(a1, wp1) ∧

OBJECT AT(o1, wp1) nor agentAt(a1, wp2) ∧ OBJECT AT(o1, wp2) is true in s (i.e.,

no grounding of φc2 is true in s). Conversely, φc2 is true in other states where a1

and o1 are in the same location.

Example 11 shows two types of conjunctive features which are false despite hav-

ing parent features which are true. The first type, φc1 in the example, can be

identified easily: no conjunctive feature should consists of a literal and its negation.

This applies to a ground approximation as well. Such features will always evaluate

to false since the conjunction of a literal and its negation is false. Adding such fea-

tures to Φ does not affect the performance other than increasing the space and time

complexities. The second type, φc2 in the example, affects online feature discovery:

in each time step, the set of active candidate features Φc
active is the power set of the

active features. Since a conjunction of active first-order features is not necessarily

true, any candidate feature which is not true is removed from Φc
active.

87

Chapter 3: First-Order Approximation

Algorithm 6: Evaluate a set of first-order features

11 Function Evaluate Features(Φ,O, CK, s, a):
Input: First-order features Φ,

Set of objects O,
Contextual knowledge CK,
State s,
Action a

2 σ0 ← Get the set of possible substitutions from O for Φ
3 (σ1, . . . ,σn)← Apply contextual grounding CK
4 σ ← Apply Ordered Substitution((σ0,σ1, . . . ,σn))
5 Φ(s, a)← Ground Φ with σ and evaluate in s
6 Φactive = {φ|φ ∈ Φ ∧ φ(s, a) 6= 0}
7 return

(
Φ(s, a), Φactive

)
Algorithm 7: Apply an ordered set of substitutions

11 Function Apply Ordered Substitutions(σ̄):
Input: Ordered set of substitutions σ̄ := (σ0, . . . ,σn)

2 σ = σ0

3 for i = 1 to n do
4 for (V,Oi) ∈ σi do
5 if σ does not have a substitution for V then
6 Update σ with {V/Oi}
7 else
8 O0 ← Get objects which σ substitutes V with
9 if Oi ∩O0 6= ∅ then Update σ with {V/Oi ∩O0}

10 return σ

3.4 Grounding First-Order Features

We have now established that the first-order approximation is a generalised Q-

function in abstract-equivalent problems and described the initialisation of first-

order base features and the generation of first-order candidate features. The next

step is to compute the Q-values given by the first-order approximation and update

the first-order approximation (with Algorithm 4). This requires the evaluation of

the values of first-order features. A first-order feature φ needs to be grounded before

it can be evaluated in a state. Algorithm 6 grounds and evaluates a set of first-order

features Φ for an action a in the state s, and returns the set of active features

and Φ(s, a). Bound variables are substituted with objects in the terms of a while

free variables can be substituted with any object of the same type. Even though

88

Chapter 3: First-Order Approximation

every ground action of Aâ shares the same weights and features, they could still

have different Q-values because the bound variables are substituted with different

objects. The work described in this section was published in [122].

Definition 20 (Set of Substitutions and Ordered Substitutions)

A substitution σ for a set of free variables V = {V1, . . . , Vn} substitutes each free

variable V ∈ V with an object of the same type as V .6 A set of substitutions for V is

σ = {V1/O
C1 , . . . , Vn/O

Cn} where Ci is the type of Vi and OC ⊂ O is the set of objects

of the type C. A set of substitutions is given by an ordered set σ̄ = (σ1, . . . ,σm) as

outlined in Algorithm 7.

First, Algorithm 6 considers the grounding of a free variable with every object in

O of the same type (line 2). Next, an ordered set of substitutions is determined from

contextual knowledge (line 3). We discuss contextual knowledge in Section 3.4.2.

The ordered set of substitutions is applied using Algorithm 7 which returns a set

of substitutions (line 4). The first-order features are grounded and evaluated in the

state s (line 5). A first-order feature φ is true in a state s if there exists a grounding

of φ which is true in s. This is analogous to an existential quantification.

Algorithm 7 returns a set of substitution σ resulting from the application of an

ordered set of substitutions σ̄. σ is initialised to the first set of substitutions in σ̄

(line 2). Subsequent sets of substitutions in σ̄ are considered sequentially (lines 3

to 9). For each free variable V which a set of substitutions σi grounds (line 4), if σ

does not have a substitution for V (line 5), then the grounding of V is added to σ

(line 6). Otherwise, let O0 denotes the set of objects which σ grounds V with (line

8) and Oi be the set of objects σi grounds V with. If the intersection of these two

sets of objects is the empty set, then the grounding of V due to σi is not added to

σ; thus, the order of substitutions matters. Otherwise, the grounding is added to

σ (line 9)—objects which are not in Oi but are in O0 are not included and will not

be used to ground V .

Theorem 5 (Time Complexity of Algorithm 6)

The time complexity for Algorithm 6 is O
(∏

φ∈Φâ

∏
Vi∈V φ

|OCi |
)

where V φ is a set

of free variables in a first-order feature φ, Ci is the type of Vi, and OCi ⊂ O is a set

6Here, we omit ? from the notation of a free variable for better readability.

89

Chapter 3: First-Order Approximation

of objects of type Ci which Vi is substituted with.

Proof. The most computationally expensive procedure in Algorithm 6 is to ground

Φ (line 5). By definition, elements in Φ(s, a) have a value of 0 if they are not of the

action a. Thus, only Φâ ⊂ Φ needs to be grounded and evaluated. The number of

substitutions for a first-order feature φ and for Φâ are:

|σφ| =
∏

Vi∈V φ

|OCi |, (3.6)

|σΦâ
| =

∏
φ∈Φâ

|σφ| =
∏
φ∈Φâ

∏
Vi∈V φ

|OCi |, (3.7)

respectively, where σφ (σΦâ
) is a set of possible substitutions for φ (Φâ). φ evaluates

to true if there exists one grounding of it that evaluates to true in the state s. In the

worst case scenario, every possible substitution is computed. This happens when

none of the groundings before the last grounding evaluates to true. It follows that the

time complexity of Algorithm 6 is the upper bound on the number of substitutions

made to evaluate each feature in Φâ which is given by Equation 3.7.

Observe that the time complexity of Algorithm 6 can only be practically reduced

by reducing the cardinality of OCi . The set of objects O is inherent in a problem

while the cardinality of Φ depends on the nature of the problem and feature discov-

ery.

Example 12 (Number of Substitutions)

Consider a first-order feature φ = OBJECT AT(?OBJ, ?WP) for a particular action

in Recon. The number of substitutions for φ is |σφ| = |Oobj| × |Owp|. In RC6 which

has 16 locations (wp), six objects (obj), one agent (agent), and three tools (tool),

|σφ| = 96.

3.4.1 Granularity and Pitfalls of First-Order Abstraction

The coarser the granularity of a Q-function approximation, the more states are

partitioned into a region (or abstract state) where they are considered the same

for the purpose of approximating the Q-values. When this is not the case, the

performance deteriorates. A first-order approximation gives a coarser granularity

90

Chapter 3: First-Order Approximation

than a ground approximation since the former is an abstraction of the latter (see

Section 3.3.1 and Equation 3.3). We can look at this from another perspective.

A state is partitioned by features. Consider the approximation Q̃(s, a) where a

is a ground action of â. For the ground approximation, the maximum number of

features is |Φa| = 22|P |. For the first-order approximation, the maximum number of

features is |Φâ| = 22|P̂|. Since |P̂ | is less than |P | in most problems, the first-order

approximation uses fewer features to partition the state space.7 Therefore, the size

of the state partitions (or granularity) in a first-order approximation must be larger

than a ground approximation. Note that it is incorrect to consider |Φ| for the above

analysis because only Φa ⊂ Φ (or Φâ ⊂ Φ for the first-order approximation) is used

to partition the state space for the approximation of the Q-values of an action a

(or symbolic action â for the first-order approximation). The coarse granularity of

a first-order approximation is compounded by the use of free variables. Since a free

variable can be substituted with a set of objects, a first-order feature φ is true if

there exists a substitution which makes it true. This increases the coverage of φ;

the inability of a Q-function approximation to differentiate a large number of states

as they are mapped to the same abstract state could cause poor performance.

Definition 21 (Grounding Ambiguity)

The grounding ambiguity is an issue inherent in the first-order approximation

when a first-order feature can be ground in more than one ways which results in a

higher than desired coverage. This is crucial as the choice of a substitution to ground

a set of first-order features determines the Q-values and active features which in turn

affects weight update and online feature discovery.

The grounding ambiguity can be mitigated by reducing the set of objects which a

free variable can be substituted with (i.e.,OCi in Equation 3.6). This also reduces the

time complexity of Algorithm 6 (see Theorem 5). Next, we provide some examples

to illustrate the pitfalls of using a first-order approximation. In Sections 3.4.2 and

3.5, we propose methods to resolve these issues.

Example 13 (Interdependent Goals)

In Robot Fetch (see Section 2.8.2), a mobile robot is tasked with placing objects of

7|P̂ | = |P | if there is only one object for each type.

91

Chapter 3: First-Order Approximation

Figure 3.3: A problem of Robot Fetch which requires the robot to start by placing
any of the objects, o1, o2, or o3, at the location wp1 instead of their respective goal
locations as none of their goal locations are empty.

type obj at their respective goal locations. Goals are interdependent because at most

only one object can be at a location at any time. The first-order base features for

the action move(ROBOT,WP) include:

• OBJECT GOAL(?OBJ,WP)

• OBJECT GOAL(?OBJ, ?WP)

• object at(?OBJ, ?WP)

• object at(?OBJ,WP)

The conjunction of any of these features will consider at most one object, represented

by ?OBJ , and at most two locations, represented by WP and ?WP . There is no

bound variable OBJ because move(ROBOT,WP) does not have a term of the type

obj. Figure 3.3 illustrates a particular problem of Robot Fetch. In the initial state,

the robot has to move any of the objects, o1, o2, or o3, to wp1 rather than to its goal

location. None of the conjunctive features which can be formed by the base features

can inform a policy to “move o1 from wp2 to wp1 so that o3 can be moved from wp4

to wp2” as this involves two objects and three locations. A ground approximation

does not face this issue since it approximates the Q-values of every action and can

generate a policy which memorises the sequence of actions to reach the goal state.

However, this will not generalise to another problem which has a different set of

goals or objects.

Example 14 (Counting Features)

In Academic Advising (see Section 2.8.1), a student has to pass some re-

quired courses. These are the goals in the problem. Goals are interdepen-

dent because some courses could be prerequisites for other courses. The

92

Chapter 3: First-Order Approximation

success of passing a course depends on the number of prerequisites passed.

Suppose that a conjunctive feature φ = PREREQ(?COURSE,COURSE) ∧

passed(?COURSE) ∧ PROGRAM REQUIREMENT(COURSE) is added to Φ for the

action takeCourse(COURSE). Since ?COURSE can be ground to any object of

type course, φ evaluates to true if COURSE is a program that must be passed

and there exists another course which is a prerequisite of COURSE that has not

been passed. The value of φ(s, a) does not change even if there are more courses

which ?COURSE can be substituted with such that φ evaluates to true. This is the

drawback of using binary features in a first-order approximation. While a ground

approximation also uses binary features, it has an implicit counting—since every

ground literal of passed(COURSE) are base features, if N courses are passed,

then N number of these features evaluate to true. In contrast, only the first-order

features passed(COURSE) and/or passed(?COURSE) will evaluate to true.

Examples 13 and 14 illustrate the limitations in the representational capacity

of a first-order approximation. A first-order feature has at most two variables for

each type: a bound variable and a free variable. Thus, a first-order approximation

abstracts states such that only relations involving at most two objects of each type

are retained.

Example 15 (At Most Two Objects)

In Academic Advising, there is no first-order feature which can represent the re-

lation “a course CS11 is a prerequisite of the course CS51 which is in turn a pre-

requisite of CS53”. A ground approximation can represent this relation with the

feature φ1 = PREREQ(CS11, CS51) ∧ PREREQ(CS51, CS53). Consider a first-order

feature φ2 = PREREQ(?COURSE,COURSE) ∧ PREREQ(COURSE, ?COURSE).

For the action takeCourse(CS51), φ2 can be grounded to PREREQ(CS11, CS51) ∧

PREREQ(CS51, CS11) or PREREQ(CS53, CS51)∧PREREQ(CS51, CS53), both of which

are not equivalent to φ1.

These issues are not limited to our first-order approximation but to RRL methods

in general as relational representations do not explicitly enumerate over every object

and are independent of the number of objects in the problem. We note that RRL

methods such as those based on Q-RRL [47] are tested on a simplified Blocks World

93

Chapter 3: First-Order Approximation

domain where the goal is to stack the blocks into one column in no specific order.8

Because of the grounding ambiguity, these RRL methods cannot learn policies which

stack the blocks in a specific order. They only consider blocks in the action or goal

description while all other blocks are treated as generic blocks [43].

Furthermore, they utilise a symbolic state predicate above(BLOCK1, BLOCK2)

which is true if BLOCK1 is on top of BLOCK2 or another block, BLOCK3, where

above(BLOCK3, BLOCK2) is true (i.e., this is a recursive relation). Analogously,

we can introduce a symbolic state predicate PREREQ2(COURSE1, COURSE2) to

Academic Advising which is true if PREREQ(COURSE1, COURSE2) is true or

there exists another course, COURSE3, where PREREQ(COURSE1, COURSE3) ∧

PREREQ2(COURSE3, COURSE2) is true. This state predicate can resolve the is-

sue described in Example 15 as its recursive nature implicitly represents the rela-

tion between more than two objects (e.g., PREREQ2(CS11, CS53) is true because

PREREQ(CS11, CS51) and PREREQ(CS51, CS53) are true).

The limited representational capacity of the first-order approximation coupled

with shared weights among ground actions of a symbolic action could cause plateaus.

Definition 22 (Plateau)

Plateaus are regions of the state space where there are more than one action with

the maximal Q-value (i.e., a greedy action) but not all of these greedy actions are

optimal actions.

Two straightforward remedies to plateaus are to include non-fluents as first-order

features and to separate the weights for actions. Using non-fluents as features is not

necessary in a ground approximation since the value of a ground non-fluent does not

change. However, a lifted non-fluent is evaluated to either true or false depending

on its grounding. Non-fluents are often crucial in determining which action of Aâ

to select. The issue of plateaus persists if there are no first-order features which

represent aspects of the state crucial for determining the optimal action(s).

Example 16 (Plateau in Grid Environments)

We consider a problem in Recon where the grid is 3 × 3 and there is only one

8In Blocks World, there is a table and some blocks. Three type of goals are considered by
previous RRL work: (1) stack all blocks into one column in no particular order, (2) unstack all
blocks (i.e., all blocks are on the table), and (3) put a specific block on a specific block.

94

Chapter 3: First-Order Approximation

Figure 3.4: A problem of Recon where there is a plateau in state s1 for a first-order
approximation. Left: the numberings represent the locations wp1, wp2, . . ., wp9.
Center: state s1. Right: state s2.

object, o1. The goal is to take a good picture of o1. This is illustrated in Fig-

ure 3.4. Let s1 be the state where the agent a1 is at wp2 and needs to move to

wp3, then to wp6 where o1 is at. Q̃(s1, move(a1, wp3)) should have the maximal Q-

value; however, all ground actions of move(AGENT,WP) have the same Q-value

because first-order features can only represent situations where the agent is with the

object or adjacent to the object. The latter is represented by a conjunctive feature

φ = ADJACENT(WP, ?WP) ∧ agentAt(?WP) ∧ OBJECT AT(?OBJ,WP). Note that

non-fluents are involved. There are no first-order features which represent “o1 is X

positions away from the agent” where X > 1. For a first-order approximation, such

plateaus are common in problems with grid environments.

Next, the robot moves to wp3; this state is denoted by s2. Q̃(s2, move(a1, wp6))

should be larger than Q̃(s2, move(a1, wp2)). As mentioned above, the feature φ re-

solves the plateau between move(a1, wp2) and move(a1, wp6).

The inclusion of non-fluents does not entirely resolve the issue of plateaus. In the

above example, if o1 is more than one grid position away from the agent, there are

no features, first-order or not, which represents this relation. We propose solutions

to resolve plateaus in Section 3.5.

On another note, the first-order approximation requires all symmetric relations

to be explicitly specified in the problem. Consider a grid environment where two

locations, wp1 and wp2, are adjacent to each other. There is no directionality in

the adjacency and the agent can move between the two locations. If only the non-

fluent ADJACENT(wp1, wp2) is specified in the problem, then the first-order feature

ADJACENT(WP, ?WP) can be grounded to ADJACENT(wp2, wp1) which evaluates to

false. Therefore, the non-fluent ADJACENT(wp2, wp1) must also be specified in the

problem.

95

Chapter 3: First-Order Approximation

3.4.2 Contextual Knowledge

We propose to use contextual knowledge to mitigate the grounding ambiguity by

reducing the set of objects a free variable is substituted with. σ0 is a set of sub-

stitutions where a free variable is substituted with any object of the same type.

Algorithm 7 returns a set of substitutions for Φâ (σΦâ
) given an ordered set of

substitutions σ̄ where the first set of substitutions is σ0 and the remaining sets are

the contextual grounding or sets of substitutions due to contextual knowledge.

Without contextual knowledge, σΦâ
= σ0.

We propose three types of contextual knowledge: ground context, goal con-

text, and location context. The contextual grounding for them are automatically

generated. Goal context and location context require only some trivial domain

knowledge to identify the relevant state predicates to consider. Goal (location)

context is applicable in all problems with goals (locations) while ground context is

inherent in all problems. There remains possibilities for other types of contextual

knowledge for future work. Each type of contextual knowledge gives at least one

substitution for one or more free variables. Multiple contextual knowledge can be

combined by applying their contextual grounding in a sequential order using Al-

gorithm 7. Semantically, first-order features grounded with contextual knowledge

represent the current state (e.g., location of the agent) and objectives (e.g., achieve

a particular goal). A first-order feature φ is existentially quantified due to its free

variables; applying a contextual knowledge imposes some conditions on its existen-

tial quantification which can be regarded as a conjunction of the conditions and

φ. This is illustrated in Example 21 later in this section when we present location

context.

Ground Context

The generation of a set of first-order base features is given by Equation 3.3 where

at least one literal is mapped to a first-order base feature. Ground context grounds

a first-order feature by grounding its constituent base features back to the literals

from which it was mapped from. Unlike goal context and location context, ground

context substitutes free variables in each first-order feature independently. Ground

context is not used to ground lifted non-fluents because it will only lead to grounded

96

Chapter 3: First-Order Approximation

non-fluents which are always true.

Definition 23 (Ground Context)

Let L −1 be a function which returns the inverse of the substitution L (see Equa-

tion 3.3) performs to map a feature to a first-order feature. Ground context grounds

a first-order base feature φi with the substitution σground =
⋃
p∈P− L −1(p, a) where

P− ⊂ P# is a set of literals which L maps to φi and a union of substitutions

grounds a variable with the union of objects which each substitution grounds it with.

A conjunctive first-order feature φj is grounded by performing the above step for each

of its constituent feature with the constraint that for each grounding of φj, each free

variable (which can be in more than one constituent feature) must be substituted with

the same object. If this is not possible, then φj cannot be grounded and evaluates to

false.

Example 17 (Determine Ground Context)

We consider a trivial problem of Academic Advising where O = {CS11,

CS12, CS13, CS21, CS22, CS23}. We use MFFS for Feature Selection

in Algorithm 5 where every literal is considered for mapping to first-order

base features. For brevity, we only consider the ground positive literals of

passed(COURSE). For the action a1 = takeCourse(CS11), L maps

passed(CS12), . . ., passed(CS23) to φ = passed(?COURSE). The ground

context grounds φ with a set of substitutions σground =
⋃
O∈O−{?COURSE/O}

where O− = {CS12, CS13, CS21, CS22, CS23}. φ evaluates to true in a state if

any of the literals, passed(CS12), . . . , passed(CS23), it was mapped from is true

in the state.

Goal Context

The goals G in a problem are state predicates which represent the status of goals;

the state predicate is true if the goal is achieved. We refer to these state predicates

as goal predicates. In goal context, free variables are substituted with the objects

in goal predicates.

Definition 24 (Goal Context)

The contextual grounding due to a goal g = p(X1, . . . , Xn) is σgoal=g =

97

Chapter 3: First-Order Approximation

{?X1/x1, . . . , ?Xn/xn}. The contextual grounding due to a set of goals G is

σgoal =
⋃
g∈G σgoal=g.

G can be trivially determined from the definition of terminal states or from the

parameterised reward function described in RDDL. We assume that they are known.

Example 18 (Determine Goal Context for Recon)

In Recon, an immediate reward of 19 (−21) is received for taking a good (bad)

picture of an object. The state predicate pictureTaken(OBJ) represents the fact

that the picture of the object OBJ has been taken. A terminal state is reached if the

agent has taken pictures of all objects. The goal predicates are the ground literals

of pictureTaken(OBJ) for every object of type obj. If a goal g is to take a good

picture of an object o1, then σgoal=g = {?OBJ/o1}. Following Example 12, with goal

context, |σφ| = |Oobj| × |Owp| = 1× 16 = 16 (reduction from 96).

Example 19 (Determine Goal Context for Service Robot)

In Service Robot, the symbolic goal predicates are:

• goal object with(OBJ, PERSON)

• goal object at(OBJ,WP)

Suppose that the goals are to deliver items o1 to the location wp5 and o2 to the

person p1. The former is denoted by g1 = goal object at(o1, wp5) and the latter

by g2 = goal object with(o2, p1). The goal g1 involves the objects o1 with type

obj and wp5 with type wp, and the corresponding contextual grounding is σgoal=g1 =

{?OBJ/o1, ?WP/wp5}. Likewise, σgoal=g2 = {?OBJ/o2, ?PERSON/p1}.

Example 20 (Determine Goal Context for Academic Advising)

In Academic Advising, the non-fluent PROGRAM REQUIREMENT(COURSE) specifies

a goal to pass COURSE. Thus, PROGRAM REQUIREMENT(COURSE) is a goal pred-

icate. If a goal g is to pass a course C21, then goal context gives a substitution

σgoal=g = {?COURSE/C21}. If C21 has a prerequisite C11, represented by the

non-fluent PREREQ(C11, C21), which is not a goal, then passing C11 is a subgoal to

achieve the goal g. However, goal context does not consider subgoals.

Each goal typically involves object(s) which is of the same type as other goals

(e.g., course in Academic Advising). If every goal is considered, this might

not mitigate the grounding ambiguity. In every domain we consider except for

98

Chapter 3: First-Order Approximation

Academic Advising and Service Robot, goal context will not reduce the set of

objects to substitute a free variable with because the goals involve every object of

a particular type. For example, in Recon, the goals are to take good pictures of

every object of type obj, and in Robot Fetch, the goals are to place every object of

type obj in their respective goal locations. Therefore, we limit the goals considered

by goal context to only active goals. A goal is active if it is known and is not yet

achieved.9 We assume that achieved goals are no longer consequential for decision

making and every active goal contributes to the expected return.

Similarities with other work. The Q-values after applying goal context for a

goal represents the expected values of actions for achieving the goal. This is similar

to the goal-associated Q-functions [183] or the universal value function approxi-

mators (UVFA) [151]. A goal-associated Q-function Q̃(s, a, g) approximates the

Q-value of (s, a) in achieving a goal g while a UVFA V (s, g) is a goal-conditioned

value function that approximates the value of a state s when trying to achieve a goal

g from s. Since the number of goals often varies in problems of different scales, the

number of goal-conditioned Q-functions and the number of UVFAs are equal to the

number of goals and cannot be directly transferred to another problem. Veeriah,

Oh, and Singh [183] and Schaul et al. [151] address this issue by generalising over

goals. This requires the embedding of a goal into a real value vector. The embed-

ding is straightforward for problems where the states are represented by images such

as the Atari games [112] or real value vectors such as the angles and velocities of

robot joints [4]. However, in relational problems, such embeddings are difficult and

often require trial-and-error and extensive expert knowledge [53, 196]. Goal context

is different from the additive rewards used in [150] where each goal is assumed to

contribute uniformly and additively to the reward. In our work, a feature φ(s, a) = 1

if there exists a goal g with σgoal=g which makes φ true in the state s. If more than

one such goal exists, φ(s, a) remains at 1 and the Q-value is unaffected. Q-RRL [47]

uses the objects in a goal predicate to ground free variables which is identical to our

goal context. It considers only one goal predicate while goal context has no such

limitation.

9In Service Robot, the goals are initially unknown to the robot.

99

Chapter 3: First-Order Approximation

Location Context

For domains where agents move in an environment, P contains state predicates

which represent the location of the agent. Location context utilises these state pred-

icates to identify the current location of the agent which is then used to substitute

free variables. The intuition is that the locality of the agent is of interest, assuming

that the agent can only interact with objects in its vicinity. Location context is

particularly useful if there are many objects in O which represent locations.

Definition 25 (Location Context)

Given a symbolic state predicate p(WP) which represents the location of an agent,

location context gives a contextual grounding σlocation = {?WP/wp} if p(wp) is true

(i.e., agent is at wp).

Example 21 (Determine Location Context for Recon)

In Recon, the agent a1 uses tools on objects which are at the same location. If

the agent is at wp1
(
i.e., agentAt(a1, wp1) is true

)
, then the contextual ground-

ing due to location context is σlocation = {?WP/wp1}. The first-order feature

OBJECT AT(OBJ, ?WP) represents the location of OBJ while BASE(WP) represents

the location of the base. The first-order features OBJECT AT(OBJ, ?WP) and

BASE(?WP) are grounded to OBJECT AT(OBJ,wp1) and BASE(wp1), respectively,

using σlocation. OBJECT AT(OBJ, ?WP) queries if the agent and the object are at the

same location and BASE(?WP) queries if the agent and the base are at the same

location. It is of no interest whether the object or the base is elsewhere other than

the agent’s current location. Due to location context, these first-order features are

implicitly conjunctive (e.g., OBJECT AT(OBJ, ?WP) ∧ agentAt(AGENT, ?WP)).

Following Example 12, with location context, |σφ| = |Oobj| × |Owp| = 6 × 1 = 6

(reduction from 96).

Combination of Contextual Knowledge

Different types of contextual knowledge can be combined. If contextual grounding

from different types of contextual knowledge are in conflict, the order of applying

the contextual grounding needs to be specified. We denote a contextual knowledge

precedes another by the symbol ≺ (e.g., location ≺ goal denotes location context

100

Chapter 3: First-Order Approximation

precedes goal context). The ordered set of substitutions is then given to Algorithm 7

which resolves the conflicts and returns a set of substitutions.

Example 22 (Goal Context and Location Context for Recon)

From Example 18, the goal context gives σgoal=g = {?OBJ/o1}. From Example 21,

the location context gives σlocation = {?WP/wp}. When location context and goal

context are combined, σ = {?OBJ/o1, ?WP/wp1}. This queries if the agent is

at the same location as the goal of interest. The order does not matter as there

is no conflict between location context and goal context. Following Example 12,

|σφ| = |Oobj| × |Owp| = 1× 1 = 1 (reduction from 96). In Recon, free variables are

of three possible types: tool, obj, and wp. Goal context provides substitutions for

?OBJ and location context provides substitutions for ?WP .

Example 23 (Conflict between Goal Context and Location Context in

Robot Fetch)

The non-fluent OBJECT GOAL(OBJ,WP) specifies a goal to put OBJ at WP . Thus,

OBJECT GOAL(OBJ,WP) is a goal predicate. If a goal g is to put o1 at wp1, then goal

context gives a substitution σgoal=g = {?OBJ/o1, ?WP/wp1}. The state predicate

robot at(ROBOT,WP) is true if the robot r1 is at WP . Location context gives

a substitution σlocation = {?WP/wp2} if robot at(r1, wp2) is true. For goal ≺

location, σ̄ = (σgoal=g, σlocation) and σ = {?OBJ/o1, ?WP/wp1}. Location context

is ignored as it gives σ = {?OBJ/o1, ?WP/∅}—the intersection {wp1} ∩ {wp2} =

∅. For location ≺ goal, σ̄ = (σlocation, σgoal=g) and σ = {?OBJ/o1, ?WP/wp2};

goal context only grounds ?OBJ . In Robot Fetch, free variables are of two possible

types: obj and wp. Goal context provides substitutions for ?OBJ and ?WP , and

location context provides substitutions for ?WP .

Example 24 (Conflict between Goal Context and Location Context for

Service Robot)

In Service Robot, the state predicate robot at(ROBOT,WP) represents the

location of the robot. If robot at(r1, wp4) is true, then location context gives

σlocation = {?WP/wp4}. Following Example 19, we can apply σgoal=g2 and

σlocation together without any conflict such that σ̄ = (σlocation, σgoal=g2) and

σ = {?WP/wp4, ?OBJ/o2, ?PERSON/p1}. On the other hand, σgoal=g1 and

101

Chapter 3: First-Order Approximation

σlocation are conflicting as they ground ?WP to wp5 and to wp4, respectively—the

intersection {wp5} ∩ {wp4} = ∅. For location ≺ goal, σ̄ = (σlocation, σgoal=g1)

and σ = {?OBJ/o1, ?WP/wp4}. For goal ≺ location, σ̄ = (σgoal=g1, σlocation)

and σ = {?OBJ/o1, ?WP/wp5}; this uses only goal context. In Service Robot,

free variables are of three possible types: person, obj, and wp. Goal con-

text provides substitutions for ?OBJ , ?PERSON (only for goals of the

type object with(OBJ, PERSON)), and ?WP (only for goals of the type

goal object at(OBJ,WP)). Location context provides substitutions for ?WP .

3.5 Dealing with Plateaus

We have shown that the limited representational capacity of the first-order approx-

imation can lead to plateaus. Here, we present two methods to resolve plateaus.

3.5.1 Model-Based Q-value Tree Expansion

The first method performs a search in the state space using a generative model

to resolve plateaus. In a plateau, each greedy action leads to a possibly different

state. The values of the next states can be used as a tiebreaker instead of a random

selection; an action among the greedy actions is selected if its next state has the

maximal value among the next states of other greedy actions. However, there could

be plateaus at the next states too. To address this, we propose the Model-based

Q-value Tree Expansion (MQTE) which is outlined in Algorithm 8. This work was

published in [121]. MQTE estimates the multi-step Q-value of an action which serves

as a tiebreaker to select an action among greedy actions in plateaus. The hyperpa-

rameter HMQTE is the maximum number of time steps to look ahead. Since MQTE

determines a most promising action to take among the greedy actions, it is used

only if the policy wants to select a greedy action.

In the trivial case, there is only one greedy action. The action and its Q-value is

returned (line 3). Otherwise, MQTE performs a breadth-first tree expansion starting

from the root node which is a state node. A state node is created (line 5) with the

following inputs:

1. the state s,

102

Chapter 3: First-Order Approximation

2. the set of greedy actions in s (Agreedy),

3. the immediate reward for executing a to reach s,

4. the value of the state (V),

5. the probability of reaching s after executing a,

6. the depth of the node in the search tree (d), and

7. a boolean which is true if s is a terminal state (> denotes true and ⊥ denotes

false).

A queue is created with the root node nroot added (line 6). The state nodes in the

queue are expanded in the order of first-in-first-out (lines 7 to 34). The expansion

is terminated if the queue is empty (line 7), the depth of the search exceeds the

maximum allowable depth (line 12), expanding the nodes in the queue will exceed

the maximum number of expansions allowed (line 13), or the plateau at the root

node has been resolved (line 16). The last condition is an early termination criterion

which prevents unnecessary tree expansion. It requires a depth-first traversal of the

search tree to evaluate the multi-step Q-values of greedy actions at the root node;

this will be described later. An early termination reduces the computational cost of

MQTE as the number of nodes expanded is exponential in the depth of the search tree.

On the other hand, the computational cost of evaluating the Q-values is linear in the

number of nodes and less expensive than model prediction during node expansion.

The generative model M is used to predict the outcomes for executing each

greedy action in the state for nstate (lines 19 to 22). outcomes is a set of tuples

(s′, r, Pr) where s′ is the next state, r is the immediate reward, and Pr = T (s′|s, a).

IfM fails to predict for any action, then nstate is not expanded (line 23) because the

multi-step Q-values of every greedy action in nstate must be computed in order to

resolve the plateau at nstate. The prediction could fail if M is not the true model.

If the outcome for every greedy action can be predicted, then nstate is expanded.

An action node is created (line 25). For each outcome, a state node n′state for the

next state s′ is created (lines 28 and 31) and added to naction as a child node (line

33). If s′ is a terminal state, then expansion is no longer possible and n′state is not

added to the queue; a state node is created which has a value of 0 since there is no

future return for terminal states. Otherwise, the greedy actions for s′ is determined

from Q̃ (line 30) and n′state is added to the queue (line 32). naction is added as a

103

Chapter 3: First-Order Approximation

child node to nstate (line 34) after every outcome is added as its child node (line 33).

This expands the search tree by one depth. Each expansion is a policy rollout for

one time step. The root node is evaluated (line 35) with Algorithm 9 which returns

the set of actions with the maximal multi-step Q-value.

Algorithm 9 computes the multi-step Q-value of every greedy action in a state

by traversing the search tree which was expanded by Algorithm 8. If the state node

is a leaf node, then the value of the state is the discounted expected return (line 4).

The algorithm returns an empty set of greedy actions and the value of the state (line

5). If nstate is not a leaf node, then the multi-step Q-values of its greedy actions

are evaluated (lines 7 to 15). The value of an action is evaluated (line 10) with

Algorithm 10 which shall be described later. The set of actions with the maximal

multi-step Q-value and the discounted expected return of the state are computed

(lines 11 to 15). If this set of actions is a subset of the greedy actions in nstate, then

MQTE has mitigated the plateau in nstate.

Algorithm 10 computes the multi-step Q-value of an action which is the sum of

the expected returns for the next states resulting from the execution of the action

weighed by the probability of the transition (line 5). The expected return of the

next state is determined by Algorithm 9. Thus, Algorithms 9 and 10 perform a

depth-first traversal of the search tree generated by Algorithm 8 until a leaf (state)

node is reached. The value of a node is backpropagated to its parent: the value of

an action node is the weighted sum of the values of its children (state) nodes and

the value of a state node is the maximal value of its children (action) nodes.

Algorithm 8 returns a possibly reduced set of greedy actions and its multi-step

Q-value (line 35). There could be more than one greedy actions returned. This is

due to one or more of the following factors:

• There are multiple optimal actions (i.e., no plateau).

• M is unable to predict the next states and immediate rewards so tree expan-

sion is not possible.

• The granularity of Q̃ is too coarse to resolve plateaus even with multi-step

estimates.

• HMQTE is too small for MQTE to expand to states which are not plateaus.

The policy selects a random action among the greedy actions. The performance

104

Chapter 3: First-Order Approximation

could improve if MQTE prunes at least one non-optimal action from the set of greedy

actions.

We use the maximum likelihood model (see Section 2.3.1) forM to make a pre-

diction for (st, at) only if the number of observations for (st, at) exceeds a user-defined

threshold, Nknown > 0. In other words, known is true in line 20 of Algorithm 8 if

the number of times at is executed in st exceeds Nknown. Errors in predictions are

compounded with each successive rollout (i.e., state node expansion) if M is not

the true model. We set HMQTE with consideration to the computation time, the

prediction errors, and the requirements of the problem. Due to the early termination

criterion (line 16 in Algorithm 8), MQTE will not expand the search tree to the depth

of HMQTE if the plateau is resolved before then.

Similarities with other work. There are some similarities between MQTE and

the model-based methods UCT [88], MVE [48], and STEVE [20]. MVE is a model-based

RL method which uses a generative model to simulate the short-term horizon and

Q-learning to estimate the long-term value. STEVE extends MVE by using an ensemble

of generative models to predict the target values. MQTE acts as a tiebreaker for action

selection in plateaus while MVE estimates higher-quality target values for Q-learning.

MQTE performs a tree expansion where every greedy action is expanded while MVE

considers only one action from a policy and UCT samples the state space with the

UCB exploration bonus (see Section 2.4.2). Thus, they differ in the way the search

tree is expanded and the purpose for which the search trees are utilised. MQTE is

also less susceptible to approximation errors inM or Q̃. If non-optimal actions are

not eliminated by MQTE and are then selected by the policy, this can be regarded as

exploration instead of exploitation. Exploration is preferred anyway ifM and/or Q̃

have approximation errors in the current state or sampled next states.

Example 25 (Resolving Plateaus in Grid Environments)

Following Example 16, we can use MQTE to resolve the plateau in the state s1 which is

illustrated in Figure 3.4. In s1, the agent a1 is at wp2 and needs to move to wp3, then

to wp6 where o1 is at. Or, it can move to wp5, then to wp6. The optimal actions in

s1 are move(a1, wp3) and move(a1, wp5). However, there are three greedy actions:

Agreedy = {move(a1, wp1), move(a1, wp3), move(a1, wp5)}. MQTE performs a one step

105

Chapter 3: First-Order Approximation

rollout for each greedy action. The next states are s2, s3, and s4, where the agent is

now at wp3, wp5, and wp1, respectively. There is no plateau in s2 and s3 since o1 is

adjacent to the robot. The early termination criterion (line 16 in Algorithm 8) is not

satisfied because there are two greedy actions in s1: move(a1, wp3) and move(a1, wp5)

(i.e., move(a1, wp1) is eliminated). After an expansion to the depth of HMQTE,

Algorithm 8 returns these two actions for s1 which is a reduction from three greedy

actions. Only one depth of expansion is required to resolve the plateau in s1. If the

agent is at wp1 instead, then two depths of expansion are required. Thus, HMQTE

needs to be tuned with consideration to the nature of the problem.

3.5.2 Ensemble of Approximations

We now consider an ensemble of approximations which overcomes the limited rep-

resentational capacity of the first-order approximation by including the ground ap-

proximation. An ensemble of ground and first-order approximations learns at dif-

ferent abstraction levels and combines the respective strength of each approxima-

tion—better generalisation due to the first-order approximation and finer granularity

due to the ground approximation. This work was published in [120].

Definition 26 (Ensemble of Approximations)

In an ensemble of Q-function approximations, Q̃, the policy is generated from a

Q-function Q̃π which returns a Q-value that is determined from the Q-values given

by each approximation in the ensemble.

In online RL, the approximations in an ensemble are learned interdependently; their

features and weights are updated independently given observations which are de-

pendent on the policy generated from Q̃π. We propose two definitions of Q̃π:

Q̃π(s, a) =
1

2
Q̃gnd(s, a) +

1

2
Q̃fo(s, a), (3.8)

Q̃π(s, a) =

Q̃
fo(s, a) if episode ≤ SW

Q̃gnd(s, a) otherwise

(3.9)

where SW is a hyperparameter which sets the episode to switch the Q-function ap-

proximation which the policy is generated from. The policy generated from Equa-

106

Chapter 3: First-Order Approximation

tion 3.8 is denoted by πsum and the policy generated from Equation 3.9 is denoted

by πswitch.

Combining the Q-functions in Equation 3.8 resolves the plateaus due to a first-

order approximation. While the Q-values from Q̃fo are equal for multiple actions,

those from Q̃gnd are unlikely (because each ground action has its own weight com-

ponents unlike in Q̃fo) and serve as a tiebreaker. On the other hand, we hypothesise

that a first-order approximation will outperform a ground approximation initially

due to better generalisation but has a worse asymptotic performance due to its

coarser granularity. This motivates πswitch. A major limitation of the ensemble is

that the ground approximation cannot be transferred and has to be learned from

scratch. If a different problem is attempted in each episode, then the ensemble

cannot be used to resolve plateaus.

3.6 Transfer Learning

Since a first-order approximation generates a generalised policy for abstract-

equivalent problems, transfer learning is naturally achieved by directly transferring

Q̃fo from one problem to another of the same domain without any mapping between

problems [174]. In large scale problems, meaningful observations are rare which

makes learning difficult [192]. For example, consider a 10× 10 grid environment for

a problem in Recon. The agent will wander around the environment most of the

time, receiving an immediate reward of −1, until it stumbles on an object. Even

then, the agent might not achieve the goal of taking a good picture of this object.

This motivates transfer learning from small scale problems to large scale problems.

In an ensemble of ground and first-order approximations, we propose the follow-

ing three modes of transfer learning:

1. Transfer Q̃fo and keep it unchanged, use πswitch.

2. Transfer Q̃fo and keep it unchanged, use πsum.

3. Transfer Q̃fo and update it online, use πsum.

In (1), we transfer a learned Q̃fo and use it as an exploratory policy to acquire

meaningful observations to update Q̃gnd, then switch to using Q̃gnd to generate the

policy when Q̃gnd is sufficiently accurate. (2) is similar to (1) but Q̃fo and Q̃gnd are

107

Chapter 3: First-Order Approximation

considered by the policy in every episode. (3) differs from (1) and (2) in that Q̃fo

continues to be updated online in the current problem. In all of these modes, Q̃gnd

is learned online from scratch since transfer learning is typically not possible for a

ground approximation.

These three modes have different pros and cons as we shall see in the empirical

results discussed in Section 3.7.4. (1) could work well in domains where the first-

order approximation has a poor asymptomatic performance by switching away from

it. (2) and (3) could work well in other domains due to the combined strengths

of ground and first-order approximations. While (3) has a higher computational

cost than (2) due to the online update of two approximations, it is necessary if

the source and target problems are rather different (e.g., they are not abstract-

equivalent), necessitating the update of the transferred Q̃fo in the target problems.

We leave other possible modes of transfer learning for future work; we focus on

these three modes which provide many interesting insights on learning at different

abstraction levels (see Section 3.7.4).

A ground approximation is applicable in the source and target problems if they

have the same set of objects and non-fluents are not used as base features. Since

non-fluents are not the same in the source and target problems (else both problems

are trivially similar), the ground approximation could generate a poor policy even

if it is applicable in the target problem. This is because a ground approximation

trained in the source problem generates a policy which considers the non-fluents in

the source problem. In the target problem, where the non-fluents are different, it is

plausible that the policy is poor.

Example 26 (Non-Fluents as Base Features in a Ground Approximation)

In a particular problem Psource of Recon, there are two objects of type obj: o1 and

o2. The objects are located at wp1 and wp2 which are represented by the non-fluents

OBJECT AT(o1, wp1) and OBJECT AT(o2, wp2). Since the values of non-fluents do not

change, it is not required to add them as base features in a ground approximation.

Suppose that a Q-function approximation Q̃gnd
source is learned in Psource and the policy

guides the agent to move to the locations wp1 and wp2 to take pictures of o1 and

o2, respectively. In another problem, Ptarget, the set of objects are identical to Psource

but the locations of o1 and o2 have changed to wp3 and wp4, respectively. Since

108

Chapter 3: First-Order Approximation

non-fluents are not features, the policy generated from Q̃gnd
source guides the agent to

wp1 and wp2 instead of wp3 and wp4. Thus, transfer learning will perform poorly

here.

Suppose that non-fluents are included as base features. Then, Q̃gnd
source is not appli-

cable in Ptarget since its base features, OBJECT AT(o1, wp1) and OBJECT AT(o2, wp2),

are not in the set of state predicates for Ptarget. If we ignore this issue and simply

evaluate these two features (and any conjunctive features which include them) as

false in Ptarget, the policy generated from Q̃gnd
source will still not guide the agent to wp3

and wp4.

3.7 Empirical Evaluation and Discussion

3.7.1 Experimental Setup

We describe the experimental setup for all empirical studies in this dissertation.

The domains and problems are described in Section 2.8. Any experiments which

deviate from this setup will be mentioned when presenting the results. We evaluate

the performance by the total undiscounted reward received in each episode, the

goal-directedness, and the computation time. The goal-directedness is measured by

the cumulative number of goal states reached minus by the cumulative number of

dead ends reached. Only Triangle Tireworld and Robot Inspection have dead

ends. For the other domains, the goal-directedness is simply the cumulative number

of goal states reached. Results are averaged over ten independent runs and the

(one) standard deviations are represented by shaded areas in the figures. Due to

the stochastic nature of the problems, line plots for the total undiscounted reward

are averaged with a moving window of ten episodes to smooth the curves for better

visual clarity and statistical comparisons. θ, Φ, Φc, and η are updated across

episodes while no information is exchanged between runs.

Assumptions. We assume that preconditions are known and an inapplicable ac-

tion will never be selected for execution. This simplifies the problem and reduces

the sample complexity but does not affect the analysis as comparisons are made

across benchmarks which benefit from the same assumption.

109

Chapter 3: First-Order Approximation

Algorithm 8: Model-Based Q-value Tree Expansion (MQTE)

11 Function MQTE(M, Q̃,A, s,HMQTE, Nmax, γ):
Input: Generative model M,

Q-function approximation Q̃,
Set of actions A,
State s,
Maximum depth to expand HMQTE,
Maximum number of nodes to expand Nmax,
Discount factor γ

2 Agreedy = arg maxa∈A Q̃(s, a), V = maxa∈A Q̃(s, a)
3 if |Agreedy| = 1 then return (Agreedy, V)
4 d = 0, N = 0
5 nroot ← Create State Node(s,Agreedy, 0, V, 1, d,⊥)
6 queue = {nroot}
7 while queue 6= ∅ do
8 nstate ← Pop front of queue
9 dn ← Get search depth of nstate

10 if dn > d then
11 d = dn
12 if dn ≥ HMQTE then break
13 else if N + |queue| ≥ Nmax then break
14 else
15 (Agreedy, V)← Evaluate State Node(nroot, γ)
16 if |Agreedy| = 1 then return (Agreedy, V)

17 known = >
18 all outcomes = ∅
19 for a ∈ Get Greedy Actions(nstate) do
20 (outcomes, known)←M(s, a)
21 if ¬known then break
22 Append (a, outcomes) to all outcomes

23 if ¬ known then continue
24 for (a, outcomes) ∈ all outcomes do
25 naction ← Create Action Node(a)
26 for (s′, r, Pr) ∈ outcomes do
27 if s′ is terminal state then
28 n′state ← Create State Node(s′,∅, r, 0, P r, dn + 1,>)

29 else

30 Agreedy = arg maxa∈A Q̃(s′, a), V = maxa∈A Q̃(s′, a)
31 n′state ← Create State Node(s′,Agreedy, r, V, Pr, dn + 1,⊥)
32 Append n′state to queue

33 Add n′state as child to naction

34 Add naction as child to nstate

35 return Evaluate State Node(nroot, γ)

110

Chapter 3: First-Order Approximation

Algorithm 9: Evaluate state node for MQTE

11 Function Evaluate State Node(nstate, γ):
Input: State node nstate, Discount factor γ

2 d← Get Depth(nstate)
3 if nstate is terminal node or Get Children(nstate) = ∅ then
4 V ← γd.Get Reward(nstate) + γd+1.Get Value(nstate)
5 return (∅, V)

6 else
7 Vmax = − inf
8 Agreedy = ∅
9 for nchild ∈ Get Children(nstate) do

10 V ← Evaluate Action Node(nchild, γ)
11 if V > Vmax then
12 Agreedy = {Get Action(nchild)}
13 Vmax = V

14 else if V = Vmax then
15 Append action in nchild to Agreedy

16 return (Agreedy, γ
d.Get Reward(nstate) + γd+1Vmax)

Algorithm 10: Evaluate value of action node for MQTE

11 Function Evaluate Action Node(naction, γ):
Input: Action node naction, Discount factor γ

2 V = 0
3 for nchild ∈ Get Children(naction) do
4 (Agreedy, Vchild)← Evaluate State Node(nchild, γ)
5 V ← V + Get Transition Probability(nchild).Vchild

6 return V

111

C
h
a
p
ter

3
:
F
irst-O

rd
er

A
p
p
ro
xim

a
tio

n

Hyperparameter Value Description

α 0.3 Learning rate, linearly decayed over episodes to 0.05
ε 1 (0.2 for transfer learning) For ε-greedy policy, exponentially decayed over episodes to 0
γ 0.9 Discount factor
λ 0.7 Decay rate of eligibility traces
τ 5 For τ -iFDD+
ξ 0.01 (τ -iFDD+) or 3 (iFDD+) Discovery threshold
Nknown 3 Threshold for maximum likelihood model to make a prediction
Nmax 200 Maximum number of nodes that can be expanded in MQTE

HMQTE 3 Maximum look-ahead horizon for MQTE
H 20 to 60 Time horizon, depends on the problem (see Section 2.8)
Random seed 1 to 10 Results are aggregated over ten problems which use a different random seed each

Table 3.1: Values of hyperparameters used in experiments.

112

Chapter 3: First-Order Approximation

Hyperparameters. We use the ε-greedy policy. The values of the hyperparam-

eters are shown in Table 3.1. The values of ε, α, γ, and λ are typical for online

RL.

Transfer learning setup. The source problems are small scale problems, AA3,

RC3, TT3, RF1, RI1, and SR1, and the target problems are large scale problems,

AA5, RC6, TT6, RF2, RI2, SR2, and SR3. The knowledge is learned from scratch in

a source problem and then transferred to a target problem. Each independent run

involves a pair of source and target problems and each run uses a different ran-

domised problem except for Academic Advising and Triangle Tireworld which

do not have randomised problems. The transferred knowledge continues to be up-

dated (learned) in the target problems unless specified otherwise. An example of a

transferred knowledge is the first-order approximation. Other types of knowledge

shall be introduced in Chapter 4. The hyperparameters and the number of episodes

are the same in both source and target problems except that exploration is reduced

in the latter with ε = 0.2. Crucially, for transfer of first-order approximations, the

contextual knowledge must be the same in the source and target problems. The con-

textual knowledge used for each domain is listed in Table 3.3. This is determined

with an ablation study which is discussed in Section 3.7.2.

Simulated environment and hardware. We use RDDLSim [149] to simulate

the environment. RDDLSim receives the action executed by the agent, and returns

the next state and immediate reward based on the preconditions, CPFs, and reward

function defined in the RDDL domain. Experiments are conducted on a machine

with an 8 core Intel Xeon E5-2660 v3 2.60 GHz processor and 32 gigabytes of

memory. Each experiment uses only one core and at most 8 gigabytes of memory.

Abstract-equivalent problems. Except for SR1, all problems considered are

abstract-equivalent as we do not consider trivially small scale problems (e.g., only

one object of a type). The only type which has one object is agent in Recon and

robot in Robot Inspection and Robot Fetch. Problems which have more than one

object of these types will not be abstract-equivalent but such problems are multi-

agent problems. Transfer learning from SR1 to SR2 or SR3 requires the augmentation

113

Chapter 3: First-Order Approximation

of first-order base features which is described in Section 3.3.3.

Benchmarks with other work. The survey papers [174] and [176] for transfer

learning in RL did not compare different work but evaluated each work on its own

merit. This is due to the difficulty in comparing different work [174] as each work:

• utilises different assumptions (e.g., allowed dissimilarity in tasks),

• transfers different forms of knowledge (e.g., policies [172], models, options

[30, 95], Q-functions [64, 141, 156]),

• addresses different classes of problems (e.g., discrete domains, continuous do-

mains, relational domains), and

• allows different learners (e.g., TD learning, linear programming, policy search).

We discussed and compared existing model-free RRL methods with LQ-RRL in Sec-

tion 2.6.1. It is difficult to use them as benchmarks because they use:

• different problem representations (Prolog [30, 42–45, 47], etc. [94, 95, 113]),

• supervised learning instead of RL [184, 192],

• continuous state variables [192], and

• background knowledge (expert guidance [41], handcrafted features [47, 156],

distance metric [147], task hierarchy [145], etc. [94, 113, 179]).

Q-RRL and its various extensions solve problems described in Prolog. We note that

much of this work is tested on the Blocks World domain (and almost never on any

other domains) which is described in Prolog. Nevertheless, we evaluated LQ-RRL

against two RRL methods, TG [44] and RIB [45], on Blocks World. This is discussed

in Section C.1.2.

3.7.2 Ablation Study for Contextual Knowledge

Due to a multitude of hyperparameters, we first perform an ablation study to in-

vestigate the efficacy of free variables, contextual knowledge (see Section 3.4.2),

and first-order approximation. We use these results to determine the most suit-

able combination of contextual knowledge for each domain which will then be used

in subsequent experiments. The baseline in our ablation study is the ground ap-

proximation. We use τ -iFDD+ where τ = 5. The choice of τ is determined after a

sensitivity analysis. This will be elaborated on at the end of this section.

114

Chapter 3: First-Order Approximation

Figure 3.5: Ablation study involving large scale problems from six domains. The
sample complexity is indicated by the total undiscounted rewards received in each
episode.

Figures 3.5, 3.6, and 3.7 show the results for the ablation study. Table 3.2

summarises the results, showing the ranking of each contextual knowledge and their

combinations. Table 3.3 shows the most suitable contextual knowledge for each

domain, taking into account its computation time.

We compare the following approaches to deal with free variables:

• Features with free variables are not added to Φ (denoted by Q̃fo (¬?)).

• No contextual knowledge is used (Q̃fo (∅)).

• A free variable is always substituted with the same object which is selected

arbitrary (Q̃fo (⊥)).

• Use contextual knowledge.

Utility of free variables. We examine the performance of first-order approxima-

tion where only features which do not contain free variables are used. This is denoted

by Q̃fo (¬?). It has the worst performance in all problems except TT6 though it still

performs worse than the first-order approximation with ground context. Therefore,

free variables are important in order to approximate the optimal Q-function. The

grounding of first-order features with free variables is the most expensive computa-

tion associated with a first-order approximation. However, Figure 3.7 shows that

115

Chapter 3: First-Order Approximation

Figure 3.6: Ablation study involving large scale problems from six domains. The
goal-directedness is measured by the cumulative number of goal states reached minus
the cumulative number of dead ends reached.

the computation time of Q̃fo (¬?) is relatively high in AA5, RC6, RF2, and RI2. This

is because in most of the episodes, the goal state is not reached (see Figure 3.6);

there is no further computation for an episode after the goal state is reached.

Utility of contextual knowledge. We have established that free variables are

necessary. Next, we examine the utility of contextual knowledge for grounding

first-order features with free variables. We introduced three types of contextual

knowledge in Section 3.4.2: ground context (Gr), location context (L), and goal

context (G). We tested these types of contextual knowledge and their various com-

binations. Their performance in terms of the total undiscounted rewards (see Fig-

ure 3.5) are largely similar in RC6, TT6, and SR3 though their performance in terms

of goal-directedness differ. If different types or combinations of contextual knowl-

edge give similar performance, then perhaps contextual knowledge is not useful.

We investigate this with two treatments for free variables: (1) each free variable is

grounded to the same arbitrary object (Q̃fo (⊥)) and (2) no contextual knowledge is

used (Q̃fo (∅)). Q̃fo (⊥) fares slightly better than Q̃fo (¬?) but otherwise performs

poorly in all problems. On the other hand, Q̃fo (∅) performs comparably with the

best contextual knowledge in AA5, RF2, and SR3. However, the computation time

116

Chapter 3: First-Order Approximation

Figure 3.7: Ablation study involving large scale problems from six domains. The
computational cost is measured by the cumulative computation time taken in sec-
onds.

of Q̃fo (∅) is prohibitively large. In Recon, only results where location context is

used are available. Due to the grid environment in Recon, there is a large number

of locations (e.g., 25 locations in RC6). The computation time of Algorithm 6 to

substitute the free variable ?WP without location context is prohibitively high.

In general, a first-order approximation has the lowest sample complexity and

computation time when ground context, goal context, and location context (if ap-

plicable) are used together (Q̃fo (Gr ≺ G ≺ L)). Ground context precedes the other

two contextual knowledge as it is applicable in all problems. Also, the number of

objects it substitutes a free variable with is typically larger than the other two con-

textual knowledge; location context substitutes with one object and goal context

substitutes with a number of objects equal to the number of active goals. In an or-

dered set of substitutions, a substitution is not applied if it results in an empty set

for the grounding of a free variable (see line 9 in Algorithm 7). Thus, it is preferable

for ground context to be considered first as it substitutes free variables with a larger

set of objects.

We now compare the performance of different contextual knowledge. In AA5 and

TT6, ground context performs best but has the highest computation time. Inter-

117

Chapter 3: First-Order Approximation

Domain Gr L G Gr ≺ G Gr ≺ G ≺ L

Academic Advising ×, 1 NA ×, 3 ×, 1 NA
Recon — X, 1 — — X, 2
Triangle Tireworld ×, 1 ×, 2 ×, 3 ×, 3 NA
Robot Fetch ×, 1 ×, 4 ×, 3 ×, 2 NA
Robot Inspection X, 4 X, 5 X, 1 X, 1 X, 3
Service Robot X, 2 X, 1 X, 2 X, 2 X, 2

Table 3.2: The ranking of contextual knowledge based on the total rewards with
goal-directedness as a tiebreaker. The number indicates the rank with 1 being the
best, the symbol X (×) indicates that the first-order approximation with contextual
knowledge performs better (worse) than the ground approximation, NA indicates
that the contextual knowledge is not applicable, and — indicates that the result is
not available due to high computational costs. Gr denotes ground context, L denotes
location context, and G denotes goal context.

Domain Contextual Knowledge

Academic Advising G

Recon Gr ≺ G ≺ L

Triangle Tireworld G

Robot Fetch Gr ≺ G

Robot Inspection Gr ≺ G ≺ L

Service Robot Gr ≺ G ≺ L

Table 3.3: The contextual knowledge used for each domain in all experiments unless
stated otherwise. Gr denotes ground context, G denotes goal context, and L denotes
location context.

esting, ground context has a comparable computation time as Q̃fo (∅) yet gives a

significant improvement in performance. The same performance but with a lower

computation time is achieved in AA5 by combining ground context with goal context

(Gr ≺ G). In Triangle Tireworld an immediate reward of −100 is received when a

dead end is reached. This causes large fluctuations in Figure 3.5 making it difficult

to ascertain the best contextual knowledge. Nevertheless, it can be observed in Fig-

ure 3.6 that location context performs slightly worse than ground context but has a

lower computation time (the plot for L is obscured by G and Gr ≺ G in Figure 3.7).

Goal context and location context are in conflict in Triangle Tireworld and cannot

be used together as they substitute the same free variable ?WP and no other free

variables. They are also in conflict in Service Robot but can be used together (see

118

Chapter 3: First-Order Approximation

Example 24). We tested Gr ≺ G ≺ L and Gr ≺ L ≺ G and found the former to have

a slightly better performance. We omit the results for the latter for better clarity

in the figures. In other domains where location context and goal context are not in

conflict, Gr ≺ G ≺ L and Gr ≺ L ≺ G are equivalent.

Comparing ground and first-order approximations. First-order approxi-

mation significantly outperforms ground approximation in RI2 and SR3. Although

the first-order approximation only achieves marginally higher rewards than

ground approximation in RC6, it clearly outperforms ground approximation in

goal-directedness. In RF2, the ground approximation outperforms first-order

approximation in rewards received but is worse in goal-directedness. This indicates

that with a first-order approximation, more goal states are reached but with a

longer sequence of actions (executing an action gives an immediate reward of

−1). In AA5, the ground approximation significantly outperforms the first-order

approximation. The results for AA5 and RF2 demonstrate the pitfalls of using a

first-order approximation. First-order approximation assumes independent goals

and goal context considers only active goals. Both assumptions are violated in

Academic Advising and Robot Fetch. These are discussed in Examples 13 and 14.

Plateaus are another cause of performance deterioration in a first-order approx-

imation. Academic Advising, Robot Fetch, Recon, and Triangle Tireworld have

plateaus. Plateaus in Academic Advising and Robot Fetch are due to the limited

representative capacity of the first-order approximation as described in Example 15.

Plateaus in Recon is discussed in Example 16. In Triangle Tireworld, if the vehicle

moves along a shorter path, there are locations farther down the path where there

are no spare tires and dead ends are unavoidable. The shorter a path is, the higher

the probability of reaching a dead end which gives an immediate reward of −100.

Similar to the scenario described in Example 15, there is no first-order feature which

represents the availability of spare tires in locations other than the vehicle’s current

location and adjacent locations. Thus, the shorter path and the longer path are

equally attractive (i.e., a plateau) and the generated policy cannot avoid dead ends

farther down the path. We present results for resolving plateaus in Section 3.7.3

and a method to deal with dead ends in Section 4.4.1.

119

Chapter 3: First-Order Approximation

In the remainder of our experiments, the first-order approximation uses the most

suitable contextual knowledge in terms of sample complexity and computation time

for each domain. This is listed in Table 3.3.

Sensitivity analysis. A sensitivity analysis for the hyperparameters ξ and τ is

discussed in Section C.1.3. We concluded that it is difficult to determine the optimal

value of ξ for iFDD+ due to its sensitivity. Conversely, it is relatively trivial to set

the value of τ for τ -iFDD+ as it does not impact performance as much. Thus, we use

τ -iFDD+ with τ = 5 in subsequent experiments as it performs well in all problems

and does not add too much features.

3.7.3 Resolving Plateaus

We investigate three methods to resolve plateaus due to a first-order approximation:

(1) separate or decoupled weights for each action (denoted by DW), (2) MQTE (see

Section 3.5.1), and (3) an ensemble of ground and first-order approximations (see

Section 3.5.2). For DW, weights of first-order features are not shared among ground

actions of the same symbolic action, Aâ. This does not allow transfer learning as

ground actions are defined over the set of objects (see Section 3.2). However, since

plateaus in a first-order approximation are directly caused by the shared weights

between actions in Aâ, having separate weights is a straightforward and simple

solution. For MQTE, we set HMQTE = 3 and use the maximum likelihood model which

is learned online from scratch. For the ensemble, we use ground approximation and

first-order approximation.

As discussed in Sections 3.4.1 and 3.7.2, there are plateaus in Recon,

Academic Advising, Triangle Tireworld, and Robot Fetch. Therefore, we focus

our analysis on these four domains. The results are shown in Figure 3.8. The

baselines are the ground approximation (Q̃gnd) and the first-order approximation

without using any of the three methods to resolve plateaus (Q̃fo). A summary of

the results is outlined in Table 3.4 while statistics for the usage of MQTE are shown

in Table 3.5.

In AA5, MQTE performs marginally better than the baseline Q̃fo; we shall see why

this is so later. DW performs better than MQTE. The best performance is the ensemble

120

Chapter 3: First-Order Approximation

Figure 3.8: Performance of different methods for resolving plateaus in the first-
order approximation. The methods are (1) using decoupled weights

(
Q̃fo (DW)

)
,

(2) using MQTE
(
Q̃fo (MQTE)

)
, and (3) using an ensemble of ground and first-

order approximations
(
Q̃gnd+Q̃fo

)
. The baselines are ground approximation (Q̃gnd)

where plateaus are unlikely and first-order approximation (Q̃fo) where plateaus are
not resolved.

121

C
h
a
p
ter

3
:
F
irst-O

rd
er

A
p
p
ro
xim

a
tio

n

Domain Decoupled Weights (DW) MQTE Ensemble

Academic Advising 2 3 1
Recon × X, 2 X, 1
Triangle Tireworld 2 3 X, 1
Robot Fetch × X, 2 X, 1

Table 3.4: Summary of the results for using different methods to resolve plateaus in the first-order approximation. The methods are (A)
using decoupled weights, (B) using MQTE, and (C) using an ensemble of ground and first-order approximations. The symbols X indicates
that the method outperforms the ground approximation, × indicates that it worsens performance (relative to not using it at all), and a
number indicates its ranking among all methods if it improves performance.

Problem One action Lesser actions No change Fail to predict % Effectiveness % Real Effectiveness

AA5 3396.3± 1266.2 75.6± 96.6 971.5± 569.1 22936.8± 4277.9 77.2± 11.9 13.1± 5.5
RC6 4057.8± 2016.5 1267.4± 1178.6 3689.7± 2010.4 9004.5± 2111.4 60.4± 17.3 30.1± 10.3
TT6 3715.3± 121.4 0.0± 0.0 3.4± 2.2 915.9± 47.6 99.9± 0.01 80.2± 0.9
RF2 4746.7± 3426.4 1283.0± 1497.4 10475.1± 3535.8 4120.4± 858.9 36.8± 20.1 29.6± 16.2

Table 3.5: Mean and the one standard deviation of six metrics accumulated in 3000 episodes and aggregated over ten problems: “One
action” is the number of times MQTE has reduced the number of greedy actions to one, “Lesser actions” is the number of times MQTE

has reduced the number of greedy actions but not to one, “No change” is the number of times MQTE has not reduced the number of
greedy actions, “Fail to predict” is the number of times MQTE has not reduced the number of greedy actions due to the inability of the
generative model to predict the outcomes, “% Effectiveness” is the percentage of times MQTE has reduced the number of greedy actions
notwithstanding the failure of the model to predict, and “% Real Effectiveness” is the percentage of times MQTE has reduced the number
of greedy actions. The first four metrics are mutually exclusive.

122

Chapter 3: First-Order Approximation

which fares slightly worse than the baseline Q̃gnd. Therefore, the inclusion of Q̃fo

in the ensemble deteriorates performance. However, Q̃fo is a generalised Q-function

which allows transfer learning while Q̃gnd does not. The computation time of the

three methods to mitigate plateaus is comparable with the baseline Q̃fo.

In RC6, MQTE and the ensemble outperform the baselines. The ensemble has the

best performance suggesting that the combination of ground and first-order approx-

imations achieves their respective strengths of generalisation and fine granularity.

The computation time of the ensemble is also lower than MQTE and DW. MQTE has

the highest cost because plateaus are prevalent in grid environments. Thus, MQTE

expands the search tree to a depth of HMQTE = 3 in most of the states visited. It

is worth noting that the baselines and DW perform poorly in terms of the number of

goal states reached. The results for RF2 are similar to those for RC6. A key differ-

ence is that the computation time for MQTE is comparable with the baselines because

there is no grid environment in Robot Fetch and MQTE does not need to expand the

search tree to many depths. Instead, the computation time of the ensemble is the

highest in RF2 as two approximations are learned.

In TT6, the three methods perform comparably with the baseline Q̃gnd and have

similar computation time. They also outperform the baseline Q̃fo. This shows that

the three methods are able to effectively resolve the plateaus. While the first-order

approximation now performs comparably with a ground approximation, the former

is more attractive as it enables transfer learning.

Table 3.4 summarises the discussion above. Clearly, the ensemble is the best

method to resolve plateaus while MQTE is promising in Recon and Robot Fetch. The

use of decoupled weights has mixed results. For transfer learning, the maximum

likelihood model used here for MQTE, the ground approximation in the ensemble,

and the first-order approximation with decoupled weights cannot be transferred. In

Section 2.3.3, we discussed relational models which make predictions in all problems

of a domain in contrast to the maximum likelihood model. This makes MQTE a more

attractive solution to plateaus than the ensemble.

123

Chapter 3: First-Order Approximation

Statistics for MQTE

Table 3.5 shows the statistics for the usage of MQTE which provide further insights

to its performance. In our experiments, we assume that a state is a plateau if there

is more than one greedy actions though this might not be the case if these actions

are optimal (see Definition 22). If the states are not plateaus, then MQTE will not

be able to reduce the number of greedy actions. In other words, the values for “No

change” in Table 3.5 could be overestimated and the results here represent a lower

bound on the performance. MQTE has successfully reduced the number of greedy

actions in 13.1%, 30.1%, 80.2%, and 29.6% of the plateaus encountered in AA5, RC6,

TT6, and RF2, respectively. We denote this metric by “% real effectiveness”. If

we discount the number of times MQTE has failed to reduce the number of greedy

actions due to the failure of the generative model in making a prediction, then the

effectiveness increases to 77.2%, 60.4%, 99.9%, and 36.8%, respectively. We denote

this metric by “% effectiveness”. The effectiveness is a significant increase over the

real effectiveness which implies that MQTE is heavily reliant on the generative model

which is expected of a model-based method. If the model is available beforehand

instead of learning it online, then we can expect the effectiveness to be a more

accurate indicator of the expected performance of MQTE.

In AA5, the real effectiveness is only 13.1% and this results in a marginal improve-

ment in the sample complexity due to MQTE as shown in Figure 3.8. In comparison,

the effectiveness is 77.2%. The reason for the high failure of model prediction is be-

cause there are 21 ground actions of takeCourse(COURSE) in AA5 and they have

no preconditions. This means that the maximum likelihood model needs more obser-

vations to make a prediction (recall that a state-action pair needs to be observed at

least Nknown = 3 times before a prediction can be made for it). In RF2, the real effec-

tiveness is rather low at 29.6% but the reduction in sample complexity due to MQTE

is significant. MQTE has the highest effectiveness and real effectiveness in TT6. This

is because the number of applicable actions in the states of TT6 is small relative to

the other problems. Furthermore, the transition function for Triangle Tireworld

is simpler; actions lead to a small number of states (usually one or two). This is

reflected by the high real effectiveness of 80.2%.

In RC6, the number of times MQTE has reduced the number of greedy actions but

124

Chapter 3: First-Order Approximation

Figure 3.9: Results for transfer learning. Q̃gnd (Q̃fo) represents the ground (first-

order) approximation, and Q̃gnd + Q̃fo represents an ensemble. The subscripts ⊥
and > denote that Q̃fo is learned in and transferred from a small scale problem. ⊥
denotes that Q̃fo is not updated in the large scale problem while > denotes that
Q̃fo continues to be updated in the large scale problem.

not to one is relatively large (i.e., the column denoted by “Lesser actions”). This is

typical of problems with grid environments as there can be more than one optimal

path to reach a goal. In states where the goal is too far from the agent (i.e., the

number of grid positions is larger than HMQTE), MQTE will not be able to resolve

the plateau. The sequence of achieving the goals could be consequential. Suppose

that two active goals are located at more than HMQTE grid positions apart. When

the agent moves to one of them and achieves the goal, it is now too far from the

last active goal for MQTE to resolve the plateau. Had there been a third active goal

in between the two goals, then MQTE can resolve the plateau and direct the agent to

move towards the third goal.

3.7.4 Transfer Learning

We evaluate the generalisation property of the first-order approximation across prob-

lems of different scales. Figure 3.9 shows the results. The baselines are the ground

approximation (Q̃gnd), first-order approximation without transfer learning (Q̃fo),

and an ensemble of ground and first-order approximations (Q̃gnd + Q̃fo) without

125

Chapter 3: First-Order Approximation

transfer learning.

We compared four modes of transfer learning. First, Q̃fo
> denotes the transferred

first-order approximation continues to be updated online in the large scale problem.

The next three modes use an ensemble where the first-order approximation is trans-

ferred from a small scale problem and the ground approximation is learned online

from scratch. They are described in Section 3.6. Second, Q̃gnd+Q̃fo
⊥ (πswitch) denotes

an ensemble is used with the policy πswitch and the first-order approximation is kept

unchanged in the large scale problem. The policy πswitch is an ε-greedy policy gen-

erated from the first-order approximation from episodes 1 to 750 (i.e., SW = 750),

then generated from the ground approximation thereafter. We set SW = 750 arbi-

trary and did not tune it. The third mode is similar to the second mode but uses the

policy πsum which is an ε-greedy policy generated from the weighted sum of the Q-

values from the ensemble. This is denoted by Q̃gnd+Q̃fo
⊥ (πsum). The fourth mode is

similar to the third mode but the transferred first-order approximation continues to

be updated online in the large scale problem. This is denoted by Q̃gnd + Q̃fo
> (πsum).

In all problems, transfer learning provides a jump start in the initial perfor-

mance. Q̃fo
> outperforms Q̃fo in all problems and Q̃gnd in RC6, RI2, and SR3. In

the remaining problems, AA5, TT6, and RF2, Q̃fo
> has poorer asymptotic performance

than Q̃gnd but this is not due to transfer learning. As discussed in Section 3.7.2, the

ground approximation outperforms the first-order approximation in these domains.

Q̃gnd+Q̃fo
⊥ (πswitch) mitigates this issue by considering the first-order approximation

for the first 750 episodes only. Thus, Q̃gnd + Q̃fo
⊥ (πswitch) achieves a jump start in

performance and comparable asymptotic performance to the baselines in AA5, TT6,

and RF2. This demonstrates that even in domains where a first-order approximation

does not perform well, it can provide guided exploration initially until the approx-

imation errors of ground approximation, which is learned from scratch, is reduced.

In AA5, RC6, RI2, and SR3, the total undiscounted reward received decreased rapidly

at episode 751 which suggests that SW should be increased. Conversely, in RF2, the

performance increases drastically at episode 751 which suggests that SW should be

decreased.

Q̃gnd + Q̃fo
⊥ (πsum) uses πsum which avoided the sharp decrease in the total

undiscounted reward received. It has the best performance in AA5, RC6, and TT6.

126

Chapter 3: First-Order Approximation

Q̃gnd + Q̃fo
⊥ (πswitch) outperforms Q̃gnd + Q̃fo

⊥ (πsum) asymptotically in the other

three problems. This is because the first-order approximation needs to be up-

dated in the large scale problems else it deteriorates the asymptotic performance.

Q̃gnd + Q̃fo
⊥ (πswitch) has a better asymptotic performance as it switches away from

the first-order approximation. This is further demonstrated by the significant im-

provement in performance of Q̃gnd + Q̃fo
> (πsum) over Q̃gnd + Q̃fo

⊥ (πsum) in RF2, RI2,

and SR3. Q̃gnd + Q̃fo
> (πsum) also has the best performance in all problems except

SR3 but is the most computationally expensive among the four modes of transfer

learning as it updates two approximations online.

It is imperative that the first-order approximation continues to be updated in the

target problem if the source problem and target problem are not abstract-equivalent.

The first-order approximation transferred from SR1 is augmented with features as

described in Section 3.3.3. These additional base features have initial weights of

zeros and can form new candidate features. Further learning is required in SR3 to

update their weights and add any required candidate features to Φ. Another reason

for the poor performance of Q̃gnd + Q̃fo
⊥ (πsum) in RI2 and SR3 is because of the

poor performance of the ground approximation in these domains. This is evident in

Figures 3.5 and 3.9; in Figure 3.9, Q̃fo
> marginally outperforms Q̃gnd + Q̃fo

> (πsum)

in SR3.

3.8 Summary

In this chapter, we presented our online RRL method, LQ-RRL, which learns a first-

order approximation of the Q-function. In the first-order approximation, the state

space is abstracted with lifted literals instead of literals. We showed that the ab-

stract state-action space which the first-order approximation is defined over is a

consistent abstract space for abstract-equivalent problems. This is important as it

allows generalisation of learned knowledge over problems regardless of their objects,

initial states, and goals, and enables transfer learning by directly transferring the

first-order approximation.

The Q-function approximation is updated online in two steps: (1) Double Q-

learning is used to update the weights and (2) an online feature discovery algorithm,

127

Chapter 3: First-Order Approximation

iFDD+, is used to incrementally add conjunctive features. We extended iFDD+ by

replacing a problem-specific hyperparameter with a domain-independent one making

it easy to tune without expert knowledge or additional training data.

Free variables in first-order features are crucial in giving a finer granularity in the

Q-function approximation but caused ambiguity in how they should be ground. We

ground them by considering three types of contextual knowledge which are general

in nature and can be applied in most problems. We analysed the properties of a

first-order approximation and the limitations in its representational capacity. In

addition to contextual knowledge, we proposed two methods to resolve them: MQTE

and an ensemble of ground and first-order approximations.

We evaluated LQ-RRL empirically and showed that it reduces sample complex-

ity and keeps the computation time tractable. An ablation study is conducted

to determine the best contextual knowledge for each domain. The study showed

that contextual knowledge reduces the granularity of first-order approximation and

plays a significant role in improving the performance of LQ-RRL. The first-order ap-

proximation is able to achieve generalisation across problems of different scales and

transfer learning is possible even between non-abstract-equivalent problems. The

pitfalls of using a first-order approximation are also resolved; the first-order ap-

proximation performs comparably with the ground approximation or better even in

domains where the assumptions of the first-order approximation are violated.

128

Chapter 4

Generalised Knowledge for RRL

In Chapter 3, we presented LQ-RRL, an online RRL method which learns a first-

order approximation of the Q-function. LQ-RRL uses mostly model-free techniques

except for MQTE and learns from only the extrinsic reward signal. The first-order

approximation is a form of generalised knowledge that can be used to solve other

problems of the same domain. In this chapter, we present methods to learn gener-

alised knowledge from information other than the extrinsic reward signal and utilise

them to reduce the sample complexity.

This chapter is organised as follows. First, we present the types of generalised

knowledge considered and an overview of the extensions to LQ-RRL in Section 4.1.

In subsequent sections, we elaborate on the extensions. In Section 4.2, we dis-

cuss model learning with an existing model learner. The learned models are used

by model-based methods to prune unnecessary features (Section 4.3.1) and pro-

vide better quality estimates of the Q-values (Section 4.3.2). For the latter, we

examine various approaches to combine model-based and model-free RL methods

to obtain their combined strengths: lower sample complexity and good asymptotic

performance. Dead ends in some domains pose a major challenge to learning and

planning. When dead ends are reached, a model-free RL method typically treats

the observation as any other observations while a model-based RL method relies on

the learned model to predict dead ends. In Section 4.4.1, we introduce a learning

algorithm to learn effectively from observed dead ends and avoid them in subsequent

episodes. This knowledge is generalised as a first-order representation, thereby al-

lowing transfer learning. Another form of knowledge which can guide the policy is

129

Chapter 4: Generalised Knowledge for RRL

Algorithm 11: Generalised-knowledge-assisted online RRL

1 Function GK-RRL(P,M,Ξ,χ, Q̃,w,Φc,η):
Input: Problem P = (C,P ,A,O, T ,R, s0, H, γ),

Generative model M,
Experience buffer Ξ,
Failure buffer χ,
Ensemble of Approximations Q̃ = {Q̃1, . . . , Q̃n},
Weights for ensemble w = {w1, . . . , wn},
Candidate features for ensemble Φc = {Φc

1, . . . ,Φ
c
n},

Relevances of candidate features for ensemble η = {η1, . . . ,ηn}
2 Q̃(s, a) :=

∑
Q̃i∈Q̃wiQ̃i(s, a) :=

∑
Q̃i∈Q̃wiθ

T
i Φi(s, a)

3 for Q̃i ∈ Q̃ do

4
(
Q̃i,Φ

c
i ,ηi

)
← Dyna(P,M, Q̃i,Φ

c
i ,ηi, CK,Hsim, Nsim)

5 for t = 0 to H − 1 and st is not terminal state do

6 Q̃UCT ← UCT(M, Q̃,χ, st)

7 Q̃π ← ΛrootQ̃+ (1− Λroot)Q̃
UCT

8 at = π(st) where π is generated from Q̃π and χ
9 st+1, rt ← Execute action at

10 Add (st, at, rt, st+1) to Γ and Ξ

11 rint ← Compute Intrinsic Rewards
(
Ξ, Q̃

)
12 for Q̃i ∈ Q̃ do

13 r ← Select Reward({rt, rint}) for Q̃i

14
(
Q̃i, Φc

i , ηi
)
← Update Approximation

(
Q̃i, A, O, Φc

i , ηi, CK,

st, at, r, st+1

)
15 M← Learn Model(Ξ)

16 if st is a dead end then
17 χ← LDE DT(Γ,A,M,χ)

18 return
(
M, Ξ, χ, Q̃, Φc, η

)

intrinsic motivation. In Section 4.4.2, we propose a unifying framework to learn at

different abstraction levels and from multiple reward signals consisting of the ex-

trinsic reward and different types of intrinsic rewards. Lastly, we evaluate our work

empirically in Section 4.5. Parts of the work in this chapter have been published

before in [117–119, 123].

4.1 Types of Generalised Knowledge

It is well known in the literature that model-based RL methods have a lower sam-

ple complexity but poorer asymptotic performance than model-free RL methods

130

Chapter 4: Generalised Knowledge for RRL

[20, 36, 51]. Model-based RL methods consider and utilise more information from

observations (e.g., state transitions) than model-free RL methods which increases

its learning efficiency. Often, the true model is not available. Instead, a model can

be learned using supervised learning methods. If the model is able to make predic-

tions in any problem of a domain (i.e., a relational model), then model-based RL

methods can rapidly adapt to new problems. The downside is that model errors are

an additional source of approximation error which can limit the asymptotic perfor-

mance of model-based RL methods. This is especially true in our work since we do

not perform online model learning. By combining model-based and model-free RL

methods, we can improve both the initial and asymptomatic performance.

In addition to model-based methods, there are other means to improve the sample

efficiency of RL methods such as more purposeful exploration [128] or to learn from

failures. We extend LQ-RRL (Algorithm 1) to improve its sample efficiency. This

is outlined in Algorithm 11; the text in blue are extensions or modifications to

Algorithm 1. We refer to Algorithm 11 as GK-RRL or generalised-knowledge-assisted

RRL. We provide an overview of the extensions introduced in GK-RRL while details

shall be presented in the remainder of this chapter.

The additional inputs to GK-RRL are the generative model (M), experience buffer

(Ξ), and failure buffer (χ). Due to a multitude of hyperparameters, we omit them

from the inputs. Ξ is a set of observations accumulated over episodes in a problem

P . χ is a set of state-action pairs which are observed to lead to dead ends.

The Dyna [167] family of algorithms uses a generative model to generate imag-

ined observations which a Q-function approximation learns from. We can use Dyna

to train one or more of the Q-function approximations in the ensemble (lines 3 to

4). We discuss our implementation of Dyna in Section 4.4.2 which is outlined in Al-

gorithm 16. Given a generative model, planning methods such as the UCT algorithm

[88] can be used to estimate the Q-values (line 6). The Q-values from the ensemble

and UCT are combined in a mixing equation (line 7). We discuss the combination

of UCT and model-free RRL in Section 4.3.2. The behaviour policy π considers the

mixed Q-values and the failure buffer χ to select an action (line 8). Actions which

form a state-action pair with the state st that are in χ will not be selected by the

behaviour policy. This is because the action has been observed to lead to a dead

131

Chapter 4: Generalised Knowledge for RRL

end after executing it in st. We discuss learning from dead ends in Section 4.4.1.

The tree and rollout policies in UCT can also utilise χ to select actions (line 6).

Observations are recorded in Γ, the trajectory observed in an episode, and the

experience buffer Ξ (line 10).1 A set of intrinsic rewards (rint) are computed using

statistics from Ξ and/or information from Q̃ (line 11). The intrinsic rewards provide

directed exploration as opposed to undirected exploration which can be inefficient.

We discuss intrinsic rewards in Section 4.4.2. Q-function approximations in Q̃ are

either approximations for the extrinsic reward rt or an intrinsic reward rint ∈ rint.

Each Q-function approximation is updated with its corresponding reward signal

(lines 13 to 14) using Algorithm 4.

In addition to learning the ensemble of Q-function approximations, two other

types of knowledge can also be learned concurrently. The first is the generative

model (line 15). We discuss model learning in Section 4.2. The second is learning

from dead ends. If the episode terminates with a dead end (see Definition 5),

Algorithm 15 can be used to learn from dead ends effectively (lines 16 to 17). We

discuss learning from dead ends in Section 4.4.1. GK-RRL additionally returns M,

Ξ, χ, and the approximations for the intrinsic rewards (line 18). A new model

can be learned offline from Ξ as the training data while the other outputs can be

transferred to another problem of the same domain for transfer learning (Ξ can only

be transferred to the same problem as it is not a generalised knowledge). That is,

transfer learning is not limited to only the transfer of first-order approximations but

also other types of generalised knowledge.

4.2 Model Predictions

Model-based methods, presented in subsequent sections, require generative models.

A generative model predicts the next state and immediate reward for executing an

action in a state. We assume that the reward function is known and the transi-

tion function is not known. This assumption does not make the learning problem

much easier as the transition function is often much harder to learn [3, 190]. We

1A trajectory is the tuple (s0, a0, r0, s1, a1, r1, s2, . . . , sH−1, aH−1, rH−1, sH). For com-
putation purposes, we represent the trajectory as an ordered set of observations
{(s0, a0, r0, s1), (s1, a1, r1, s2), . . . , (sH−1, aH−1, rH−1, sH)}.

132

Chapter 4: Generalised Knowledge for RRL

described two types of generative models in Section 2.3: the maximum likelihood

model (MMLM) and the parameterised DBN (MDBN). In addition, we reviewed

existing model learners in Section 2.3.3 and concluded that RLFIT [108] is the most

suitable for our work.

Learning DBNs can be computationally expensive to perform online in every

time step (line 15 in Algorithm 11). Furthermore, we observed that the learned

models typically do not change significantly given an additional small number of

observations (see Section 4.5.1). Therefore, we use RLFIT to learn MDBN offline

from observations obtained in the source problems. MDBN is then transferred to

target problems to accelerate learning.

We combine MMLM , which is learned online from scratch, and MDBN to make

predictions. If the number of times (s, a) has been observed in Ξ exceeds a user-

defined threshold Nknown (this was first introduced in Section 3.5.1), then MMLM

is used to make predictions since its predicted next states are always valid states.

Otherwise, MDBN is used. In some domains, there are transitions of some state

predicates which cannot be predicted. These state predicates are removed from the

next state before adding the observation to Ξ. This is to prevent MMLM from

predicting the transitions of these state predicates.

Example 27 (Oracle Model and Unpredictable Transitions)

In Service Robot, the locations of people and the goals given by people are

not known a priori. Suppose that in a particular state s, the robot r1 executes

find person(r1, p1) and found p1 at wp4. The state predicate person at(p1, wp4)

transitions from false to true. If this observation is added to Ξ, then in the

next episode (locations of people and the goals remain unchanged), MMLM

predicts that executing find person(r1, p1) in s will result in the transition of

person at(p1, wp4) from false to true. MMLM is akin to an oracle model: it

knows p1 is at wp4 and what goals a person will give. To prevent a learned model

from behaving like an oracle model, we remove predictions for the transitions of

state predicates which should be unpredictable.

Why learn? Probabilistic planning considers the uncertainties in actions and the

environment to find an optimal plan to reach the goal state. A planner requires

133

Chapter 4: Generalised Knowledge for RRL

Algorithm 12: Model-based Feature Selection (MBFS)

11 Function MBFS(P, ν):
Input: Problem P = (C,P ,A,O, T ,R, s0, H, γ),

Depth of connections ν
2 Construct graphs G and sets of nodes N from P
3 for G : G do
4 for n : N do
5 if n and G have the same action then
6 Add n as parent nodes to G

7 Φ = ∅
8 for a : A do
9 Φa ← Get Neighbour of Action(G, a, ν)

10 Φa ← Φa ∪ ¬Φa

11 Concatenate Φa to Φ

12 return Φ

as input a generative model. If a model is known, then this raises the question of

the need for RL when probabilistic planners such as [86, 87, 93] can often achieve

superior performance without the need to learn. However, the soundness and op-

timality of a plan depends on the correctness of the model. Our empirical results

in Section 4.5.6 show that the performance of probabilistic planners is poor when

the models are approximate. In Sections 4.3.2 and 4.4.2, we present methods which

utilise the learned approximate models to reduce the sample complexity of model-

free RL methods.

4.3 Model-Based Learning and Planning

4.3.1 Model-Based Feature Selection

The value function or Q-function is approximated by projecting the state space into

a lower dimensional space using a set of features. Sample complexity increases when

unnecessary features are selected. We reproduce Equation 2.29 for the step update

of a weight component θ here for ease of reference:

θ ← θ + αδ
φf (s, a)

||Φ(s, a)||1
.

If there is a large number of features in Φ, then θ receives a smaller step update

134

Chapter 4: Generalised Knowledge for RRL

Algorithm 13: Get neighbours of an action

11 Function Get Neighbour of Action(G, a, ν):
Input: Set of graphs G,

Action a,
Depth of connections ν

2 if ν < 0 then return ∅
3 pCP ← Get Co Parents(G, a)
4 if ν = 0 then return pCP

5 pC ← Get Children(G, a)
6 pNB = pCP ∪ pC
7 if ν = 1 then return pNB

8 for p : pC do
9 pNB = pNB∪ Get Neighbour of State Predicate(G, p, ν − 1)

10 return pNB

Algorithm 14: Get neighbours of a state predicate

11 Function Get Neighbour of State Predicate(G, p, ν):
Input: Set of graphs G,

State predicate p,
Depth of connections ν

2 if ν ≤ 0 then return ∅
3 pC ← Get Children(G, p)
4 pNB = pC

5 if ν = 1 then return pNB

6 for p′ : pC do
7 pNB ← pNB∪ Get Neighbour of State Predicate(G, p′, ν − 1)

8 aCP ← Get Co Parents(G, p)
9 for a : aCP do

10 pNB ← pNB∪ Get Neighbour of Action(G, a, ν − 1)

11 return pNB

due to normalisation. Hence, having too many unnecessary features can slow down

learning. Intuitively, if there are many features, then it takes more observations

to determine the importance (i.e., weight) of every feature. Conversely, omitting

necessary features results in poor performance as information about the state which

are important to approximate the Q-values are lost.

Example 28 (Necessary and Unnecessary Features)

In Robot Inspection, a one-time immediate reward of 19 is given for trans-

mitting information about an inspected object OBJ . Suppose that the robot

r1 executes transmit info(r1) in the state s1 = object inspected(o1) ∧

135

Chapter 4: Generalised Knowledge for RRL

¬object info received(o1) ∧ . . . and receives an immediate reward of

19 for transmitting information about the object o1. The next state is

s1 = object inspected(o1)∧object info received(o1)∧. . .. If the robot executes

transmit info(r1) again, it receives an immediate reward of −1 (i.e., the cost of

executing an action). Therefore, the value of object info received(o1) can cause

a drastic difference in the immediate reward. Thus, object info received(o1) is

a necessary feature for approximating the Q-values of transmit info(r1). Because

Equation 2.29 distributes the step update equally among weight components of active

features, it takes several observations to learn that object info received(o1) has

a larger influence on the Q-values of transmit info(r1) than other features.

Similarly, in Recon, the agent receives a reward of 19 (−21) for taking a good

(bad) picture of an object o1. A good picture is taken if life has been detected on

the object which is represented by the state predicate lifeDetected(o1). The state

predicate pictureTaken(o1) represents the fact that a picture of o1 has been taken

(a picture of each object can only be taken once). Since goals are independent, the Q-

values of taking a picture of o1 by executing the action useToolOn(a1, p1, o1) does not

depend on the state of other objects. Thus, the state predicates lifeDetected(OBJ)

and pictureTaken(OBJ) for objects other than o1 are unnecessary to approximate

the Q-values of useToolOn(a1, p1, o1).

In Section 3.2, we introduced MFFS for Feature Selection (line 4 in Algo-

rithm 5) which returns the set of literals P# = P+ ∪ ¬P+ as a set of base features

for a ground approximation. For a first-order approximation, an additional step is

performed to map P# to first-order base features. We now propose a model-based

feature selection or MBFS: Feature Selection returns a set of literals P− ⊂ P# af-

ter considering the structure of the transition function. This work was published in

[119]. MBFS is motivated by the observation that the approximation of the Q-values

of an action might not need to consider every literal because:

1. The transition of a state predicate depends on only a subset of P in domains

with factored transition functions.

2. The effects of an action typically change the values of only a small number of

state predicates.

MBFS considers the structure of a DBN which represents the transition function

136

Chapter 4: Generalised Knowledge for RRL

to determine the base features for each action. This is outlined in Algorithm 12.

The inputs are the problem P and the hyperparameter ν which is an integer and de-

termines the extent to which literals are included as base features. A RDDL domain

file defines the preconditions of actions, conditional probability functions (CPFs),

and a reward function; all of them are in parameterised forms. For a problem P , the

parameterised forms are ground over the set of objects O to propositional forms.

We use the propositional forms to construct a set of directed graphs (G) and sets

of nodes (N) automatically (line 2).

A node in a directed graph G ∈ G or in a set of nodes n ∈N is either a literal or

an action. Each graph has only one child node which is a literal and the remaining

nodes are parents to the child node with directed edges from the parents to the

child. Graphs are constructed from the CPFs while sets of nodes are constructed

from the preconditions and reward function. A graph G will have at most one node

which is an action. Likewise, each set of nodes will have at most one action.

Conditional probability function (CPF). A CPF defines a conditional prob-

ability distribution for a state predicate p. The distribution can be piecewise with a

set of mutually exclusive conditions for the transition of p. That is, an action causes

the transition of p if the condition is satisfied. For each condition, a directed graph

G is constructed: the child node in G is p and the parent nodes are the literals and

action in the condition of the transition.

Preconditions. The preconditions of an action involve some literals which de-

scribe the conditions required for an action to be applicable in a state. The action

and literals associated with the preconditions are grouped as a set of nodes n.

Reward function. The reward function in RDDL is arithmetic and additive. For

each arithmetic equation in the summation, the action and literals involved are

grouped as a set of nodes n.

A set of nodes n ∈ N is added as parent nodes to a directed graph G ∈ G if

n and G share the same action (lines 3 to 6 in Algorithm 12). Semantically, the

preconditions of an action describe the condition under which the action affects a

state and should be considered as a part of the conditional probability distribution.

137

Chapter 4: Generalised Knowledge for RRL

On the other hand, the reward function describes the conditions under which ex-

ecuting an action produces a reward. Since the Q-value is the expected return of

executing an action, information from the reward function should be represented in

the graphs.

After the graphs G are constructed, a set of base features for each action is

determined by traversing G (line 9). Algorithms 13 and 14 traverse the action node

and state node of a graph, respectively. The subroutines used in the two algorithms

are defined as follows:

• Get Co Parents(G, a) = {p|∃G ∈ G, ∃p′ ∈ P (Arc(G, a, p′) ∧ Arc(G, p, p′))}

• Get Children(G, a) = {p|∃G ∈ GArc(G, a, p)}

• Get Co Parents(G, p) = {a|∃G ∈ G, ∃p′ ∈ P (Arc(G, p, p′) ∧ Arc(G, a, p′))}

• Get Children(G, p) = {p′|∃G ∈ GArc(G, p, p′)}

The relation Arc(G, p′, p) is true if and only if there is a directed arc from p′ (can

be either an action or a literal) to p (a literal) in G.

Algorithm 13 returns the neighbours of an action a which are literals. ν deter-

mines the extent to which literals are considered as neighbours of a; the larger ν

is, the more neighbours a has. If ν < 0, then there are no neighbours (line 2). If

ν = 0, then the neighbours are the co-parents of a (lines 3 and 4). If ν = 1, then

the children of a are neighbours also (lines 5 and 6). For larger values of ν, the

neighbours of the children of a are neighbours also (lines 8 and 9).

Algorithm 14 returns the neighbours of a literal p which are literals. If ν ≤ 0,

then there are no neighbours (line 2). If ν = 1, then the children of p are the

neighbours (lines 3 to 5). For larger values of ν, the neighbours of the children

of p (lines 6 to 7) and the co-parents of p are the neighbours of p also. Thus,

Algorithms 13 and 14 are called recursively with ν decremented by a value of 1 each

time. For a particular value of ν, the set of literals returned by the algorithms is a

subset of the set of literals returned for a larger value of ν.

Q-values represent the expected return of executing an action which consists of

the reward and the discounted future reward. Following this observation, a necessary

feature is one that helps to predict the reward or the next state [132]. Therefore,

children of actions are selected as base features as they represent parts of the state

space where actions can affect directly or indirectly in the future. ν represents the

138

Chapter 4: Generalised Knowledge for RRL

number of steps in the future to consider. Co-parents, on the other hand, represent

the conditions under which actions affect states. Hence, they are included as base

features as well. We do not consider parents or ancestors of actions as they represent

the past. Examples for MBFS can be found in Section B.1. Existing work related to

MBFS was discussed in Section 2.5.4.

Effect of Approximate Model

MBFS needs the information on the connectivity of state predicates and actions in

a DBN rather than the nature of the transition (i.e., probability of transition and

change in values of state predicates). Thus, MBFS is less susceptible to errors in

approximate models. In the case where the model is initially unknown and is learned

online, MFFS is used to initialise the base features. When the model is learned, the

Q-function approximation is re-learned from scratch by using MBFS to initialise the

set of base features, then replaying observations in the experience buffer Ξ [101]—an

observation is replayed as if it has been observed again, the weight vector is updated

and conjunctive features are added. Since eligibility traces are used, observations

are replayed in the chronological order that they are acquired instead of a random

order.

Effect on Online Feature Discovery

In online feature discovery, conjunctive features are added to the set of features for

an action a if their relevances exceed the discovery threshold ξ. These features are

also added to the sets of features of other actions (see lines 7 to 10 in Algorithm 2 and

lines 12 to 16 in Algorithm 3) if the candidate feature comprises of base features of

the action. This condition is always true for a ground approximation which uses MFFS

to initialise the base features since every action has the same set of base features (i.e.,

P#). In a first-order approximation, even with MFFS, the first-order base features

can be different as they are lifted according to the terms of an action. With MBFS,

the base features for each action are likely to be different in both ground and first-

order approximations. The condition for adding conjunctive features ensures that

base features which are eliminated by MBFS will not be added to the set of features

as a constituent of a conjunctive feature.

139

Chapter 4: Generalised Knowledge for RRL

Effect on Ground Context

We introduced ground context in Section 3.4.2. From Definition 23, ground context

substitutes free variables by performing the inverse of the mapping from literals to

first-order features. With MFFS, every literal is mapped to first-order features. MBFS

changes the mapping; thus, it influences ground context. In fact, MBFS eliminates

irrelevant objects from consideration by ground context.

Example 29 (Ground Context and MBFS)

For a particular problem P of Recon and ν = 2, MBFS (Algorithm 12) returns

four base features for a = useToolOn(a1, p1, o1): agentAt(a1, wp2), damaged(p1),

lifeDetected(o1), and pictureTaken(o1) (see Examples 40 and 41 in Section B.1

for details). We omit their negation for brevity. They are mapped to the first-order

base features agentAt(AGENT, ?WP), damaged(TOOL), lifeDetected(OBJ),

and pictureTaken(OBJ). The only first-order base feature with free vari-

ables is agentAt(AGENT, ?WP) which is mapped from agentAt(a1, wp2):

L
(
agentAt(a1, wp2)

)
= agentAt(AGENT, ?WP)

)
(see Equation 3.3). From

Definition 23, P− = {agentAt(a1, wp2)} and L −1 = {AGENT/a1, ?WP/wp2}.

It follows that the ground context is σground = {?WP/wp2} (the bound variable

AGENT is not substituted with contextual knowledge). If MFFS is used instead

of MBFS, then P− = {agentAt(a1, wp1), agentAt(a1, wp2), . . .} is the set of every

ground predicate of agentAt(AGENT,WP) and σground =
⋃
O∈Owp{?WP/O}

where Owp = {wp1, wp2, . . .} is a set of objects of type wp. This illustrates that

MBFS combines with ground context to eliminate irrelevant objects from grounding

free variables.

Soundness of Abstraction

As observed by McCallum [110], the state abstraction sufficient to represent the

optimal policy is not necessarily sufficient to learn the optimal policy. We reproduced

the toy problem (see Figure 4.1) and explanation from [76] for ease of reference. In

the toy problem, there are four possible states and in each state, there are two

possible actions. In the states s1 = ¬X ∧ ¬Y and s2 = ¬X ∧ Y, the optimal action is

the solid arrow which gives a reward of 0. In the states s3 = X ∧ ¬Y and s4 = X ∧ Y,

140

Chapter 4: Generalised Knowledge for RRL

Figure 4.1: A toy problem with two state predicates: X and Y. The solid and dotted
arrows denote two actions. A red arrow denotes the action is optimal. The numerical
values are the immediate rewards for executing the actions. On the left, there is no
abstraction. On the right, Y is abstracted away resulting in two abstract states.

the optimal action is the dotted arrow which gives a reward of 1 and 3, respectively.

Thus, the optimal policy is to select the solid arrow when X is false and the dotted

arrow when X is true. Y is irrelevant to represent the optimal policy. If Y is abstracted

away, the four states are now represented by two abstract states: s1 7→ s̄1, s2 7→ s̄1,

s3 7→ s̄2, s4 7→ s̄2. With the abstraction, the optimal action in s1 and s2 is the dotted

arrow instead of the solid arrow since both actions transition from s̄1 to s̄2. This

illustrates the perils of abstracting away state predicates. While a state predicate

is unnecessary to represent the optimal policy, it might be required to learn the

optimal policy. It is difficult to identify such state predicates.

Instead of abstracting away literals entirely, Jong and Stone [76] abstract away

literals in options. Since options are partial policies for a subset of the state space,

literals which are irrelevant for one option can still remain relevant for another.

Similarly, MBFS determines unnecessary base features for each action; a literal re-

moved from the set of base features for an action can still be a base feature for

other actions. Nevertheless, MBFS could still eliminate literals which are required to

learn the Q-values of actions, resulting in a poor performance. We investigate this

in Section 4.5.2 where the empirical results for MBFS are presented.

4.3.2 UCT with Model-Free RRL

UCT, described in Section 2.4.2, is a sampling-based method and its optimality de-

pends on the number of trials which can be prohibitively large. Furthermore, since

we use learned models which can be approximate, this can worsen the quality of

the estimated Q-values leading to poor performance. While UCT does not require

141

Chapter 4: Generalised Knowledge for RRL

Figure 4.2: The four approaches in which the Q-values from a Q-function approx-
imation, Q̃, can be combined with UCT. (A) The policy considers the Q-values of

actions at the root node which is a mix of the Q-values estimated by UCT and by Q̃.
(B) During the simulation phase, the rollout policy is generated from Q̃. (C) During
backpropagation, the value of the last node in the rollout, which is not a terminal
state, is estimated by Q̃. (D) During backpropagation, the Q-value of the leaf node

is the mix of the return from the rollout and Q̃(sL, a) where sL is the state in the
leaf node.

any domain-specific heuristic, it is straightforward to implement heuristic for the

search. For example, Keller and Eyerich [86] initialise the Q-values based on a

single-outcome determinisation of the MDP which considers only the most probable

outcome of executing an action. This heuristic depends on the model and suffers

from the aforementioned issue if the model is approximate. Instead, our implemen-

tation of UCT combines it with model-free RRL methods, utilising the Q-function

approximation Q̃ learned by model-free RRL methods which can be considered as

a domain-independent heuristic.

Figure 4.2 illustrates the four approaches, labelled (A) to (D), in which UCT can

be combined with Q̃. The four approaches can be used individually or together.

(D) is proposed by Silver et al. [157] while (A) and (C) are similar concepts to (D).

Although these four approaches are not novel, our contribution here is to combine

them with model-free RRL methods and empirically evaluate them. Approximate

models and unpredictable state transitions (see Example 27) degrade the perfor-

mance of model-based methods while model-free RRL methods are unaffected since

they do not rely on model predictions.

142

Chapter 4: Generalised Knowledge for RRL

(A) Mixing the Q-values at the root node. The Q-values of actions in the

root node is a mixed of the estimates from UCT and Q̃:

Q̃π(s, a) = ΛrootQ̃(s, a) + (1− Λroot)Q̃
UCT (s, a), (4.1)

where Λroot ∈ [0, 1] is a mixing parameter and Q̃UCT (s, a) is the Q-value estimated

by UCT. The policy is generated from Q̃π instead of Q̃UCT or Q̃.

(B) Informed policy rollout. If the rollout policy is a random policy, this

could yield an uninformative total discounted return for the rollout Vsim (see Equa-

tion 2.20), especially in large scale problems where it is rare to reach meaningful

states through random exploration. If no meaningful states are reached during the

simulation phase, then Vsim is simply the discounted sum of the cost of executing

actions. Because of this, a large number of trials is required for UCT to converge.

This issue can be resolved by using a policy generated from Q̃ as the rollout policy

instead. While this is computationally more expensive than a random policy due to

the need to evaluate the features, a rollout is more likely to visit meaningful states

and this reduces the need for many trials.

(C) Limited horizon for policy rollout. In the simulation phase, the rollout

can be terminated after some steps rather than at terminal states. The total dis-

counted return for the rollout is:

Vsim =

Hrollout−1∑
t=0

γtrt + γHrollout max
a∈A

Q̃(s, a), (4.2)

where Hrollout is the length of the rollout and s is the last state of the rollout. This

equation replaces Equation 2.20. However, if the remaining time horizon is less

than Hrollout, then Equation 2.20 is used instead. Limiting the length of the rollout

can improve the quality of the Q-value estimates from UCT by allowing more trials

before timeout. This is especially so if the rollout policy is expensive to compute.

For example, a policy generated from a first-order approximation is much more

expensive to compute than a random policy. Furthermore, decisions made further

into the future will have lesser impact on the estimated value of an action than

143

Chapter 4: Generalised Knowledge for RRL

immediate decisions as the uncertainty in the next states (i.e., a sampled state

might not be the observed state) grows with the number of simulated steps [86].

Furthermore, due to model errors, the sampled next state might not even be a valid

state. Again, this error is compounded with each simulated step.

(D) Mixing the Q-values at the leaf node. [157] sets the value of a leaf node

to the weighted sum of the return from the simulation phase and the Q-value given

by Q̃. Following this, the discounted return for the state sL in the leaf node is

computed as follows:

∆W (sL) = ΛleafQ̃(sL, a) + (1− Λleaf)(r + γVsim), (4.3)

where Λleaf ∈ [0, 1] is a mixing parameter and a is the action selected in sL during the

expansion phase. This replaces the case for a leaf node in Equation 2.24 and affects

backpropagation. Since Equation 4.3 changes the values used in backpropagation,

it affects the tree policy. This can have a significant impact on how the search tree

is expanded.

Dead Ends and Action Costs

If the rollout reaches a dead end before the time horizon H, then Equation 2.20

underestimates the total discounted return for the rollout if no immediate reward

(or penalty) is given for reaching a dead end and there are action costs.

Example 30 (Dead End in Rollout)

In Robot Inspection, the action cost is −1 and no penalty is given for reaching

a dead end. In other words, the immediate reward for reaching a dead end is only

the action cost. Consider two rollouts starting from the initial state at tstart = 0.

The first rollout terminates at a dead end at tend = 1. For simplicity, let γ = 1.

Equation 2.20 gives Vsim = −1. The second rollout terminates at the end of the

time horizon (tend = H = 30). In this rollout, a goal is achieved and an immediate

reward of 19 is given. Equation 2.20 gives Vsim = −10. Clearly, the total return

from the second rollout should be larger than the first rollout.

The above example shows that even after reaching a dead end, the action costs

144

Chapter 4: Generalised Knowledge for RRL

thereafter till the end of the time horizon should be considered. We modify Equa-

tion 2.20 as follows:

Vsim =

tend−1∑
t=tstart

γt−tstartrt +
H−1∑
t=tend

γt−tstartrcost, (4.4)

where rcost ≤ 0 is the action cost (assumed to be a constant for all actions). Following

Example 30, Equation 4.4 gives Vsim = −30 for the first rollout. Equation 4.2 is

modified in the same manner.

Search Tree Reuse

UCT can be computationally expensive as it requires many trials to converge. We

can reduce the time complexity by reusing the search tree. At time step t, UCT

expands a search tree with the state st as the root node. An action is executed in

the environment (not simulated) which leads to the next state st+1. If st+1 is one

of the child nodes of the root node, then the search tree can be reuse by setting the

root node to this child node at time step t+ 1.

If st+1 is not one of the child nodes of the root node, then a new search tree

has to be built. This happens when the model is approximate or there are state

transitions which cannot be predicted. For example, in Service Robot, the goals

which a person could give cannot be predicted. Thus, when the robot talks to a

person who needs assistance, the next state will not be in the search tree. A new

search tree should be build as some goals are now made known to the robot.

If information which UCT depends on to expand the search tree has been up-

dated, then the search tree should be updated accordingly or discarded and build

from scratch. For example, if the model is updated, then the search tree could

be invalidated as previously sampled states might turn out to be invalid states or

outcomes of probabilistic actions are not previously sampled.2 We do not perform

online model learning in our experiments but instead augment the model prediction

from MDBN with the prediction from MMLM . Furthermore, it is unlikely that an

observation will significantly change the models. Thus, we can reuse the search tree

from the previous step.

2The search tree is invalidated if its Q-value estimates would have been significantly different
had a new search tree been built.

145

Chapter 4: Generalised Knowledge for RRL

If we combine Q̃ with UCT, when Q̃ is updated, the search tree could be inval-

idated. Following the same argument as above, we assume that the change made

to Q̃ in each time step is not significantly large to the point that the search tree

is invalidated. Thus, it is more beneficial to reuse the search tree and update the

Q-values with the updated Q̃ than to build a search tree from scratch as the com-

putation time is limited by the timeout. For the aforementioned reasons, we only

reuse the search tree from the previous step but not from the previous episode.

Lastly, γ has to be equal to 1 in UCT if we want to reuse the search tree. This is

because the immediate rewards are discounted starting from the current state (see

Equation 2.20). In the next state, since the time step has incremented by one, the

Q-value estimates are no longer correct. Since all our domains have action costs,

considering the undiscounted return is innocuous. γ remains unchanged elsewhere.

4.4 Policy Control

In this section, we discuss methods which influence the policy by considering auxil-

iary feedback signal to reduce the sample complexity and improve the performance.

4.4.1 Learning from Dead Ends

Dead ends are detrimental to learning as no further observations can be obtained

in the episode and could pose potential damages to the agent or its environment.

Dead ends are also an area of concern in planning to produce plans or policies which

avoid dead ends with certainty [102], to analyse goal reachability, and to determine

if problems are solvable [162]. Offline planners consider dead ends in order to guide

search with the use of heuristics [32, 165] or by pruning the search space [22, 92].

This work uses the transition function to predict dead ends during search while our

work does not require the transition function.3 Instead, we present a novel family

of algorithms to learn and avoid the situations leading to dead ends. Our work has

been published in [117, 118, 123].

Online RL can be inefficient as it takes several observations of encountering a

dead end to learn a policy which avoids the dead end. This is mainly due to two

3We assume that the preconditions of actions are known though this is not a hard requirement.

146

Chapter 4: Generalised Knowledge for RRL

reasons: (1) the weights are updated incrementally with a learning rate α that is

typically small for learning stability, and (2) features are added incrementally. We

assume that a goal-directed policy exists such that dead ends can be avoided with

certainty. This is true in Triangle Tireworld and Robot Inspection, the two

domains we considered which have dead ends.

Definition 27 (Dead End Situation)

A dead end situation χ describes a situation where executing an action a in a state

s has a non-zero probability of reaching a dead end. χ is either (s, a) or (s̄, ā) where

s̄ is the abstract state of s and ā is the symbolic action of a.

A naive method to learn from dead ends is to record every dead end situation in

a failure buffer χ. Given an observation (s, a, r, s′) where s′ is a dead end, χ = (s, a)

is added to χ. A policy generated from a Q-function is augmented with an auxiliary

rule: do not select an action a in a state s if (s, a) is in χ.

Example 31 (Dead End Situation)

In Triangle Tireworld, a dead end is reached if the vehicle has a flat tire

(¬not flattire), it does not have a spare (¬hasspare), and its current location

WP does not have a spare (¬spare in(WP)). One possible dead end situation is

χ = (s, a) where:

s =
∧(

GOAL LOCATION(la1a5), ROAD(la1a1, la1a2), . . . ,¬goal reward received,

¬hasspare,¬spare in(la1a1),¬spare in(la1a2), . . . ,

vehicle at(la1a1),¬vehicle at(la1a2), . . . , not flattire
)
,

and a = move vehicle(la1a1, la1a2). That is, the vehicle moves to la1a2 and has

a flat tire.

There are two issues with this naive method: (1) lack of generalisation because

only previously observed dead ends can be avoided, and (2) high computational

and space complexities in problems where there are many dead ends. The space

complexity for storing χ is O(|χ|). The time complexity for checking if a state-

action pair is in χ is O(|χ|); this cost is incurred in every time step. It is desired

147

Chapter 4: Generalised Knowledge for RRL

to have a generalised and compact representation such that |χ| is reduced and an

observed dead end situation can be generalised to unobserved dead end situations.

Recording a state-action pair (s, a) as χ could be an over-specialised description

of a dead end situation as some literals in s might be inconsequential. This is

especially so for problems with factored transition functions where the transition

of a state predicate depends on a subset of P . In Example 31, the ground literals

of spare in(WP) for locations other than the vehicle’s current location (la1a1) or

the location it is moving to (la1a2) are inconsequential. Suppose that there are two

dead end situations in χ: χi = (si, a) and χj = (sj, a) where si = p1 ∧ . . . pm−1 ∧ pm
and sj = p1∧ . . . pm−1∧¬pm. The difference between si and sj is the value of pm. si

and sj can be abstracted to the same abstract state, s̄ = p1∧. . . pm−1, by eliminating

pm. χi and χj are replaced with χk = (s̄, a) in χ. The condition for a state-action

pair (st, at) to be in χ is now as follows:

∃(s̄, a) ∈ χ(a = at ∧ s̄ ⊆ st). (4.5)

Instead of an exact match for states, an abstract state matches a state if the abstract

state is a subset of the state. χk covers or subsumes χi and χj since s̄ ⊂ si and

s̄ ⊂ sj. That is, χk is a generalisation of χi and χj.

Definition 28 (Coverage of Dead End Situation and Subsumption)

A dead end situation χ = (s̄, ā) covers any state-action pair (st, at) if ā = at∧ s̄ ⊆ st

is true (see Equation 4.5). The set of state-action pairs covered by χ is denoted by

coverage(χ). A dead end situation χi subsumes another dead end situation χj if

coverage(χj) ⊂ coverage(χi) is true; then χi is said to be more general than χj. In

other words, the generality of a dead end situation is measured by the cardinality of

its coverage.

The subsumption is only applicable when the states of two dead end situations

differ by one literal. It can be done recursively (e.g., χk can be subsumed by another

dead end situation). A literal which is eliminated due to subsumption is inconse-

quential in representing a dead end situation. Dead end situations which are sub-

sumed by a (more general) dead end situation are removed from χ. We refer to the

aforementioned naive method with subsumption as LDE. It is domain-independent

148

Chapter 4: Generalised Knowledge for RRL

and does not require expert knowledge.

Subsumption reduces the cardinality of χ which in turn reduces the space com-

plexity. Since subsumption is only possible between dead end situations involving

the same action, the computational complexity of checking for possible subsumption

is O
((|χ|

2

))
. However, subsumption is only attempted when a dead end situation is

added to χ. In practice, for every ten dead end situations which involves an action

is added to χ, we check for subsumption of its dead end situations. Subsumption

does not generalise to unobserved dead end situations as a more general dead end

situation can only be determined when all of its subsumed dead end situations are

observed.

First-Order Dead End Situations

To achieve generalisation to unobserved dead end situations, we map a state-action

pair (s, a) to a first-order representation (s̄, â) where s is a conjunction of literals

P s, â is the symbolic action of a, and s̄ is a conjunction of lifted literals given by:

s̄ =
∧
p∈P s

L (p, a). (4.6)

Recall from Equation 3.3 that L is a function which lifts a literal p by substituting

objects in its terms with bound (free) variables if they are (are not) terms of a. If

(s, a) leads to a dead end, then the first-order dead end situation χ = (s̄, â) is added

to χ. LDE-FO denotes this extension to LDE. A state-action pair (st, at) is in χ if its

first-order representation (s̄t, ât) is in χ. Equation 4.5 is applied here where actions

are replaced with their symbolic actions. LDE-FO assumes that there is a next state

st+1, among the outcomes of at, which is a dead end. The soundness of LDE-FO shall

be proved later. Intuitively, since it deals with first-order representations, LDE-FO

can only be used in relational problems.

Although LDE-FO is computationally more expensive than LDE due to the addi-

tional step of converting a state-action pair to a first-order representation, it offers

two benefits. First, a first-order dead end situation generalises to unobserved dead

end situations. Second, first-order dead end situations generalise over problems

in the same way that first-order approximation does; χ can be transferred to any

149

Chapter 4: Generalised Knowledge for RRL

problem of the same domain. LDE-FO makes the same assumptions as a first-order

approximation (see Section 3.3). Grounding of first-order dead end situations is not

required as LDE-FO finds matching state-action pairs using Equation 4.5 rather than

evaluating the values of first-order features.

Example 32 (First-Order Dead End Situation)

Following Example 31, the first-order dead end situation χ = (s̄, â) where:

s̄ =
∧(

GOAL LOCATION(?WP), ROAD(WP1,WP2), ROAD(WP1, ?WP),

ROAD(?WP,WP2), ROAD(?WP, ?WP), ROAD(WP2, ?WP),

¬goal reward received,¬hasspare,¬spare in(WP1),

¬spare in(?WP), spare in(?WP),¬spare in(WP2),

vehicle at(WP1),¬vehicle at(?WP),

¬vehicle at(WP2), not flattire
)
,

and â = move vehicle(WP1,WP2). The coverage of χ is measured by the num-

ber of states which map to abstract states that are subsets of s̄. For ease of il-

lustration, we eliminate the following lifted literals from s̄ since they are present

in most of the states: GOAL LOCATION(?WP) (unless the action is to move to the

goal location), ROAD(?WP,WP2), ROAD(?WP, ?WP), ROAD(WP2, ?WP) (most lo-

cations lead to two other locations), ¬goal reward received (only false in the

goal state), spare in(?WP), ¬spare in(?WP) (there will always be some loca-

tions with spares and without spares), ¬vehicle at(?WP) (there will always be

some locations where the vehicle is not at), ROAD(WP1,WP2), vehicle at(WP1),

¬vehicle at(WP2), not flattire (these will always be true if the preconditions of

move vehicle(WP1,WP2) are satisfied). The simplified form of s̄ is:

∧(
¬hasspare,¬spare in(WP1),¬spare in(WP2)

)
.

This covers state-action pairs where the vehicle has no spare, its current location

WP1 has no spare (which is inconsequential), and it moves to a location WP2 that

150

Chapter 4: Generalised Knowledge for RRL

Figure 4.3: Trajectories in episodes 1 (top row) and 2 (middle row and bottom row)
of the problem TT3 from Triangle Tireworld. si,j and ai,j denote the state and
action executed, respectively, at episode i, time step j. Each subfigure illustrates
a state that an action is executed in. The next state is illustrated in the next
subfigure. Locations are represented by circles. A green circle indicates that the
location has a spare. A circle with a border indicates that the vehicle is at that
location. A blue border indicates that the vehicle has a spare while a red border
indicates otherwise. A dotted border indicates that the vehicle has a flat tire while
a solid border indicates otherwise.

has no spare. This demonstrates the generality of first-order dead end situations.

The elimination of the lifted literals above is not done in practice by LDE-FO since

it requires expert knowledge. However, the first-order representations of most states

contain these lifted literals, and thus this elimination does not significantly increase

the coverage of χ.

Dead End Traps

There might be states where a dead end could be reached eventually regardless of

which action is executed. These states are dead end traps.

151

Chapter 4: Generalised Knowledge for RRL

Algorithm 15: Find dead end traps

11 Function LDE DT(Γ, A, M, χ):
Input: Trajectory Γ,

Set of actions A,
Model M,
Failure buffer χ

2 while Γ is not empty do
3 (s, a, r, s′)← Pop from back of Γ
4 Aapplicable ← Get Applicable Actions(s,A,M,χ)
5 if |Aapplicable| > 1 then
6 Add (s, a) to χ
7 break

8 return χ

Definition 29 (Dead End Trap)

A dead end trap is a state where there is a non-zero probability of reaching a dead

end trap or a dead end eventually regardless of which action is executed.

Definition 29 includes actions which do not change the state (e.g., inapplicable

actions) since they lead back to the same state which is a dead end trap. Our dead

end traps are semantically similar to traps in traditional planning. For example,

Lipovetzky, Muise, and Geffner [102] define traps as conditional invariant formulas:

if the formula is satisfied in a state s, it is satisfied in all states reachable from s.

Then, a dead end trap is a trap which is mutually exclusive with the goal.

LDE and LDE-FO avoid dead ends by influencing the policy to avoid actions which

could lead to dead ends. However, this does not prevent dead ends in the presence

of dead end traps. Suppose that a state s is a dead end trap. Given sufficient

observations, the state-action pairs (s, a),∀a ∈ A will be added to χ and no action

remains for selection. We extend LDE and LDE-FO to avoid dead end traps, they are

denoted by LDE-DT and LDE-DT-FO, respectively. LDE-DT is outlined in Algorithm 15

which looks back at previous time steps to determine the situation which led to a

dead end trap. Algorithm 15 is used only when a dead end is reached (line 17 in

Algorithm 11). The inputs are a trajectory Γ which is a sequence of observations

(s, a, r, s′) from the initial state to the dead end, the set of actions A, a model M

which specifies the preconditions of A, and the failure buffer χ. The observations

in Γ are checked sequentially, starting from the most recent one (lines 2 to 7). For

152

Chapter 4: Generalised Knowledge for RRL

each observation (s, a, r, s′), the set of applicable actions in s is determined (line

4). The model M returns a set of actions with preconditions that are satisfied in

s. If this model is not known, then every action is considered. Actions which form

a state-action pair with s that is in χ are also deemed to be inapplicable. If there

is more than one applicable action (line 5), s might not be a dead end trap, and

thus LDE-DT stops looking backwards and adds (s, a) (or (s̄, â) for LDE-DT-FO) to χ

(line 6). Otherwise, s is a dead end trap and the preceding observation is considered

next. This continues until the condition in line 5 is satisfied; situations which lead

to dead end traps are added to χ. If the condition is not satisfied, then the problem

has an unavoidable dead end and χ will not be updated. None of our domains have

unavoidable dead ends.

Example 33 (Looking Back in the Face of Dead End Traps)

We consider two particular episodes for the problem TT3 which are illustrated in

Figure 4.3. A dead end is reached in both episodes. In the first episode, which is

illustrated in Figure 4.3 (top), the vehicle moves from la1a1 to la1a2 at time step

t = 0. At t = 1, the vehicle moves to la1a3. It has a flat tire at t = 2. Since

the vehicle did not have a spare and there are no spares at la1a3, a dead end is

reached at t = 2. The state-action pair (s1,1, move vehicle(la1a2, la1a3)) is added

to χ where s1,1 denotes the state at episode 1, time step 1.

In the next episode, which is illustrated in Figure 4.3 (middle and bottom),

the vehicle moves from la1a1 to la1a2 at t = 0. At t = 1, the policy consid-

ers the dead end situation encountered in the first episode and will not select

move vehicle(la1a2, la1a3). The only applicable action is to move to la1a2. At

t = 1, the vehicle moves to la1a2. It then has a flat tire at t = 2. A spare is loaded

at t = 2 and the tire is changed at t = 3. At t = 4, the vehicle moves to la1a3.

It has a flat tire at t = 5 and a dead end (s2,5) is reached. The state-action pair

(s2,4, move vehicle(la2a2, la1a3)) can be added to χ but since there is only one

applicable action, s2,4 is a dead end trap.

To avoid s2,4, an alternative action has to be selected at t = 3. At t = 3,

the vehicle has a flat tire and the only applicable action is changetire.

Thus, s2,3 is also a dead end trap. LDE-DT continues to look backwards

at the previous time steps. Similarly, s2,2 (only loadtire(la2a2) is ap-

153

Chapter 4: Generalised Knowledge for RRL

plicable) and s2,1 (only move vehicle(la1a2, la2a2) is applicable because

move vehicle(la1a2, la1a3) is ruled out by χ) are dead end traps. Lastly, at

t = 0, there are two applicable actions. The dead end trap s2,1 can be avoided

by executing the other action, move vehicle(la1a1, la2a1). The state-action

pair (s2,1, move vehicle(la1a1, la1a2)) is added to χ. In contrast, LDE will add

(s2,4, move vehicle(la2a2, la1a3)) to χ. This will not prevent a dead end since

there are no other applicable actions in s2,4.

Soundness and Completeness of LDE

We have proposed a novel family of algorithms, LDE, LDE-DT, LDE-FO, and

LDE-DT-FO, to learn from dead ends. Here, we examine their theoretical properties.

LDE and its variants are sound if they do not erroneously determine that executing

an action could lead to a dead end. For LDE-DT and LDE-DT-FO, this extends to

dead end traps.

Theorem 6 (Soundness of LDE and its Variants)

LDE, LDE-DT, LDE-FO, and LDE-DT-FO are sound.

Proof. See Section A.2 of Appendix A.

Next, LDE and its variants are complete if every dead end situation is in χ. The

completeness does not ensure that dead ends are avoided since LDE and LDE-FO do

not prevent dead end traps. LDE and LDE-DT are complete if every dead end situation

has been observed at least once.

4.4.2 Intrinsic Motivation

In RL, the agent receives a reward for executing an action. The objective is to

maximise the total undiscounted reward received in an episode. This reward is

considered as extrinsic as it is defined to guide the agent to achieve the goal(s). In

challenging problems, the extrinsic reward is typically sparse; a meaningful reward

is observed only after a long sequence of specific actions are executed. Undirected

exploration performs poorly as it is rare to receive meaningful rewards. For example,

in Recon, the agent receives an extrinsic reward of −1 for each action executed, and

19 (−21) for taking a good (bad) picture of an object. Taking a good picture requires

154

Chapter 4: Generalised Knowledge for RRL

Figure 4.4: A framework for an ensemble of Q-function approximations which learns
at different abstraction levels and from extrinsic (rext) and intrinsic (rint) rewards.
Multiple types of intrinsic rewards can be considered and are categorised into four
types, depending on how they fit into the framework.

a specific sequence of actions to be executed. Thus, the agent usually observes an

extrinsic reward of −1 which is not informative for improving the policy. A solution

is to use intrinsic motivation to provide guided or directed exploration with dense

intrinsic rewards [128, 153, 158]. Directed exploration considers knowledge about the

learning process (e.g., the learning progress or uncertainty) in contrast to undirected

exploration. Other solutions for effective exploration include demonstrations from

a teacher [11, 107].

The reward which an agent receives can be defined as r = rext + βrint [21, 170]

where rext (rint) is the extrinsic (intrinsic) reward and β is a coefficient represent-

ing the weight of the intrinsic reward. β can also be seen as the amount of ex-

ploration where a larger β results in more exploration. Since the preference for

exploration reduces over time, the intrinsic reward typically changes over time and

is non-stationary.

A function approximation can be trained with r as a reward signal such that

it approximates the expected return for extrinsic and intrinsic rewards. This has

two complications. First, non-stationary intrinsic rewards cause learning instability

which can prevent convergence of the function approximation. Second, exploration

cannot be reduced easily. For example, a greedy policy selects an action with the

maximal Q-value but the Q-value is an estimate of the expected return for the

extrinsic and intrinsic rewards. Thus, exploitation (i.e., to maximise extrinsic re-

ward) and exploration cannot be separated. A solution to these two complications

155

Chapter 4: Generalised Knowledge for RRL

is to learn separate function approximations on the extrinsic and intrinsic rewards

[21, 170], hereafter denoted by extrinsic approximation and intrinsic approx-

imation, respectively. The intrinsic approximation is learned in the same way as

the extrinsic approximation—Double Q-learning with replacing eligibility traces and

online feature discovery.

Unifying Framework for Learning from Multiple Reward Signals

We presented an ensemble of approximations in Section 3.5.2 to learn at different

abstraction levels (e.g, ground and first-order approximations). The ensemble can

also be used to learn from multiple reward feedback such as extrinsic reward and

different types of intrinsic rewards. Here, we extend on the concept of ensembles and

propose a framework which unifies learning at different abstraction levels and from

different feedback signals. The framework is illustrated in Figure 4.4. The experience

buffer Ξ stores observations and keeps track of the statistics required to compute

the intrinsic rewards. At each time step there is only one extrinsic reward (rext) for

executing an action while there can be several intrinsic rewards (rint) of different

types. We categorise the different types of intrinsic rewards depending on how they

are computed or used with the other types of intrinsic rewards into four types:

Type 0, Type 1, Type 2, and Type 3. Type 0 intrinsic rewards are provided as prior

knowledge, Type 1 intrinsic rewards are derived from extrinsic approximation(s),

and Type 2 and Type 3 intrinsic rewards are computed with statistics from the

experience buffer. Unlike the other three types, Type 3 is represented in tabular

form rather than a ground or first-order approximation.

Another reason for learning separate extrinsic and intrinsic approximations is

because Type 1 intrinsic rewards are derived from the extrinsic approximations.

The ensemble of extrinsic approximations, or extrinsic ensemble Q̃, is discussed

in Section 3.5.2. The intrinsic ensemble Q̃int is the concatenation of two intrinsic

ensembles, Q̃int,0 and Q̃int,1. Each intrinsic approximation in the intrinsic ensemble

is either a ground approximation
(
Q̃gnd
int

)
or a first-order approximation

(
Q̃fo
int

)
. A

policy π considers the Q-values:

Q̃π(s, a) = Q̃(s, a) + β
(
Q̃int(s, a) + rint(s, a)

)
, (4.7)

156

Chapter 4: Generalised Knowledge for RRL

where Q̃(s, a) and Q̃int(s, a) are the aggregation of the Q-values from each approx-

imation in their respective ensembles (see Definition 26), and rint(s, a) is a Type 3

intrinsic reward. The amount of exploration can be controlled explicitly by varying

β (e.g., reduce β to reduce exploration). There are three choices for the aggregation

of an ensemble: (1) average, (2) sum, or (3) maximum. For the extrinsic ensemble,

Q̃(s, a) is the average of the Q-values for each approximation in the ensemble as

defined in Equation 3.8.

Variations in the framework is possible. For example, a Type 0 intrinsic reward

can be used to initialise an extrinsic approximation instead of an intrinsic approx-

imation Q̃int,0. Also, an intrinsic approximation can be used to approximate the

aggregation of multiple intrinsic rewards (e.g., the mean of rint) rather than using

one intrinsic approximation for each intrinsic reward rint ∈ rint. These two vari-

ations are used in our experiments. Szita and Lőrincz [170] unify an optimistic

initialisation of the Q-function with a model-based RL algorithm from [19]. This is

not quite the same as our framework which is more general in the types of intrinsic

rewards considered and focuses on the computational aspect of aggregating different

types of intrinsic rewards.

There are many different types of intrinsic rewards introduced in prior work

[5]. In the following sections, we describe a few of them and introduce some new

types of intrinsic rewards. We also look at how these intrinsic rewards fit into our

framework. The motivation is not to introduce new types of intrinsic rewards which

outperform existing ones but to investigate the utility of our framework for learning

from multiple reward signals and at different abstraction levels. In particular, we are

interested in whether first-order approximations are appropriate for approximating

intrinsic rewards, which could be non-stationary, to provide guided exploration.

Model-Free Intrinsic Rewards

Model-free intrinsic rewards do not require a model for computation. We discuss

four types of model-free intrinsic rewards, one of which is novel.

State novelty (COUNT). Curiosity-based intrinsic motivation uses counts to mea-

sure state novelty and encourages the agent to visit states which are rarely visited

157

Chapter 4: Generalised Knowledge for RRL

or have never been visited. There are many variants of count-based methods for

measuring state novelty [19, 84] or uncertainties in empirical transition and reward

functions [164]. One major drawback of count-based methods is that states are

rarely visited more than once in large scale problems; this can be addressed with

relational visit counts [99] or pseudo-counts [8].

For discrete state and action spaces, a count-based intrinsic reward can be defined

as rint(s) = 1
N(s)

, where N(s) is the number of times that the state s has been visited.

We use a state-action novelty rint(s, a) = 1
N(s,a)

instead where N(s, a) is the number

of times a has been executed in s. We denote this kind of intrinsic reward by

COUNT. If it is computed on the fly with statistics from the experience buffer, COUNT

is Type 3. Otherwise, it is Type 2 if approximated by a function approximation.

Consider a simple example where a function approximation is used with Q-learning

to approximate COUNT. Assume that all Q-values are zeros unless specified. In a

particular time step, Q̃int(s, a) = α for N(s, a) = 1. In a subsequent time step when

s is visited again, N(s, a) = 2 and Q̃int(s, a) = α(1.5−α). If α < 0.5, then Q̃int(s, a)

increases when N(s, a) increases which runs contrary to the concept of state novelty.

This phenomenon is due to the highly non-stationary nature of COUNT which makes

it difficult to track and approximate. This is exacerbated when α, which diminishes

the step update of weights, is too small. Having a large enough α resolves the issue.

For example, if α = 1, then Q̃int(s, a) = 1 when N(s, a) = 1 and Q̃int(s, a) = 0.5

when N(s, a) = 2. However, a large α can cause learning instability.

TD error (TDE). TD errors of an extrinsic approximation are measures of the

learning progress and can be used as intrinsic rewards: at a time step t, rint,t = |δt|

where δt is the TD error for the extrinsic approximation. We denote this kind of

intrinsic reward by TDE. In our framework, this is a Type 1 intrinsic reward because

it is derived from an extrinsic approximation. This kind of intrinsic reward is not

new and has been used in [170]. The difference with our work is that TDE is based

on the first-order approximation and is by itself approximated by another first-order

approximation.

Don’t do what doesn’t matters (DoWhaM). In some domains, actions do not

affect or change the state unless executed in specific states. For example, executing

158

Chapter 4: Generalised Knowledge for RRL

an inapplicable action typically does not change the state. Some actions are rarely

useful, affecting only a small number of states. We use DoWhaM [155], a kind of

intrinsic reward which encourages the execution of rarely useful actions in states

which they affect. DoWhaM is a curiosity-based method which prefers states with

potentially novel observations over state novelty. It is a Type 2 intrinsic reward

because it is computed with statistics from the experience buffer. The exploration

bonus for an action a is given as:

B(a) =
κ1−

Neff (a)

N(a) − 1

κ− 1
, (4.8)

where κ is a hyperparameter, Neff (a) is the number of times a is executed and

has changed the state, and N(a) is the number of times a has been executed. A

small κ gives a uniform bonus on all actions while a large value rewards rarely

effective actions. We set κ = 40 as per [155]. Neff (a) and N(a) are computed with

observations in the experience buffer; their counts are accumulated over episodes.

The intrinsic reward for an observation (s, a, rext, s
′) is defined as [155]:

rint(s, a, s
′) =

B(a)√
N(s′)

if s 6= s′

0 otherwise

(4.9)

where N(s′) is the number of times the state s′ has been observed in the episode.

[155] trains a neural network to approximate the intrinsic rewards while we use

either the ground or first-order approximation.

Trajectory to goal (T2G). In some domains, there are common sequences of spe-

cific actions to achieve goals. This is the motivation for options [169]. We introduce

a new kind of intrinsic reward, T2G, which gives intrinsic rewards for state-action

pairs that are in a trajectory that leads from the initial state to a state where at

least one goal is achieved. T2G is a Type 2 intrinsic reward since it uses observations

in the experience buffer to compute the intrinsic reward for a state-action pair. T2G

is potentially more stationary than TDE and COUNT because the trajectory changes

less often. A trajectory is post-processed by removing subsequences where the state

of the first observation in the subsequence and the next state of the last observation

159

Chapter 4: Generalised Knowledge for RRL

in the subsequence are identical. This includes observations (i.e., subsequences of

length one) where the state did not change.

To maintain tractability, we limit the number of trajectories for each goal, con-

sidering only the three shortest trajectories. The intrinsic reward assigned to a

state-action pair is:

rint(s, a) =
∑

∀Γ∈ΓT2G,(st,at,rt,st+1)∈Γ

i · 1(s = st ∧ a = at)

|Γ|
(4.10)

where i is the i-th observation in the trajectory Γ, |Γ| is the length of Γ (i.e., the

number of observations), ΓT2G is a set of post-processed trajectories which lead to

states where at least one goal is achieved, and 1 is the indicator function which

equates to 1 if the enclosed condition is true.

Equation 4.10 assigns higher intrinsic rewards to state-action pairs if (1) they are

closer to states where goals are achieved, and (2) they are in multiple trajectories.

Intuitively, (1) guides the agent towards the goal rather than away from it, and (2)

increases the incentive for visiting state-action pairs which are frequently observed

to lead to goals.

Model-Based Intrinsic Rewards

In contrast to model-free intrinsic rewards, model-based intrinsic rewards use a

model to determine the intrinsic reward. They can be based on the surprise of

observing a state after executing an action (e.g., [2]) or on the variance between

predictions from an ensemble of models (e.g., [69]). These kinds of intrinsic rewards

are suitable if a model-based method is used with online model learning; observations

which can lead to a reduction in prediction error can improve the performance of

model-based methods. Since we do not perform online model learning, we do not

consider them.

Instead, we use the generative model to generate imagined observations which a

Q-function approximation learns from. This follows the Dyna family of methods first

introduced by Sutton [167]. Instead of sampling observations from the experience

buffer at every time step, we use Dyna to generate a set of imagined observations

at the start (lines 3 and 4 in Algorithm 11). This can be seen as an initialisation

160

Chapter 4: Generalised Knowledge for RRL

Algorithm 16: Using Dyna to initialise a Q-function approximation

1 Function Dyna(P,M, Q̃,Φc,η, CK,Hsim, Nsim):
Input: Problem P = (C,P ,A,O, T ,R, s0, H, γ),

Generative model M,
Q-function approximation Q̃,
Candidate features Φc,
Relevances of candidate features η,
Contextual knowledge CK,
Simulated horizon Hsim,
Number of rollouts Nsim

2 for 1 to Nsim do
3 for t = 0 to Hsim − 1 and st is not terminal state do
4 at = π(st)
5 st+1, rt ← Simulate(M, st, at)

6
(
Q̃, Φc, η

)
← Update Approximation

(
Q̃, A, O, Φc, η, CK, st,

at, rt, st+1

)
7 return

(
Q̃, Φc, η

)

of the Q-function approximation which in turn provides some information for the

policy; an action which has a high initial Q-value is a promising action as predicted

by the model. This kind of intrinsic reward is denoted by Dyna and is Type 0 as it

is provided as prior knowledge.

Algorithm 16 outlines the procedure to initialise a Q-function approximation

using Dyna. The inputs are a problem (P), a generative model (M), a Q-function

approximation (Q̃), candidate features (Φc) with their relevances (η), contextual

knowledge (CK), the simulated horizon (Hsim), and the number of rollouts (Nsim).

Each rollout starts from the initial state s0 and is simulated for Hsim steps (lines

3 to 6). A policy selects an action at (line 4). M predicts the next state and

immediate reward (line 5) for executing at in the state st. Algorithm 4 updates Q̃

based on the imagined observation (line 6). The time complexity of Algorithm 16

is O(NsimHsim). Though it can be computationally expensive, Algorithm 16 can be

run offline to initialise Q̃.

Q̃ can be either the intrinsic or extrinsic approximation. If it is the intrinsic

approximation, it will not be updated online since Algorithm 16 only runs at the

start. If Q̃ is the extrinsic approximation, it continues to be updated online based

on real observations. In either case, Dyna provides directed exploration to regions

161

Chapter 4: Generalised Knowledge for RRL

of the state space which the model predicts is of high value. Since we do not learn

the model online, we utilise the generative model right from the start rather than in

every step. The latter is preferred if the learned model has significant model errors

as the rollout begins at the current state instead of the initial state and Hsim is

typically restricted to a small value to avoid compounding the prediction error.

Comparison with UCT. A key difference between Dyna and UCT is that the former

updates the Q-function approximation with imagined observations while the latter

only influences the policy and does not affect the Q-function approximation. Thus,

if the model is poor, Dyna can increase the approximation errors in the Q-function

approximation and worsen performance. This can be mitigated by using Dyna to

learn a separate intrinsic approximation; if the performance degrades significantly,

it can be recovered by disregarding this intrinsic approximation when generating the

policy.

Greedy-ε-Greedy Policy

There are several undirected policies which are commonly used in RL such as the

greedy, ε-greedy, and softmax policies (see Section 2.4). Using undirected policies

to select actions based on the Q-function given by Equation 4.7 has several potential

drawbacks:

• Greedy policy can get stuck in a local minima if the intrinsic rewards are not

sufficiently dense as exploration can be limited to a small region of the state

space where intrinsic rewards are never observed.

• Softmax policy is sensitive to the magnitude of the Q-values which can be

difficult to tune robustly across different domains. This is compounded when

different types of intrinsic rewards are used.

• ε-greedy policy selects a random action with a probability ε regardless of

the intrinsic rewards, in effect performing undirected exploration rather than

directed exploration.

Following these observations, we propose the greedy-ε-greedy policy which combines

the greedy and ε-greedy policies. The greedy-ε-greedy policy uses one of two modes

to select actions:

162

Chapter 4: Generalised Knowledge for RRL

1. Use a greedy policy to select an action a with the maximal Q̃π(s, a) as given

by Equation 4.7 if (A) β
(
Q̃int(s, a) + rint(s, a)

)
6= 0, and (B) this mode has

not selected a before in the state s for the current episode.

2. Otherwise, use ε-greedy to select an action.

The first mode selects an action with the maximal Q̃π(s, a) if the two conditions

are satisfied. Condition (A) ensures that the action is greedy because of an intrinsic

value. Otherwise, the greedy-ε-greedy policy might face the same issue as the greedy

policy. Condition (B) prevents repetitive selection of the same action in a state which

produces no change to the state. For example, consider the TDE intrinsic reward.

The agent achieves a goal and observes (s, a, rext, s
′) where rext > 0. For simplicity,

assume that the TD error is rext and rint = |rext|. Q̃ and Q̃int are updated. Since

actions typically change the values of a small number of state predicates, we can

expect the active features in s and s′ to have significant overlaps. Then, Q̃(s′, a) > 0

and Q̃int(s
′, a) > 0. Without condition (B), the greedy-ε-greedy policy will select a

again in s′ and receive an observation (s′, a, s′′, 0). Suppose that a does not affect

s′ and s′′ = s′. The policy will then repeatedly select a until Q̃(s′, a) and Q̃int(s
′, a)

decrease sufficiently.

The greedy-ε-greedy policy draws similarities with on-policy mixing in [67] which

selects an action greedily with a probability of 0.5 and performs directed exploration

otherwise. The purpose of on-policy mixing is to train the Q-function approximation

with both on-policy and off-policy data which is different from our motivation.

4.5 Empirical Evaluation and Discussion

The experimental setup is as described in Section 3.7.1. The domains and problems

are described in Section 2.8.

4.5.1 Correctness of Learned Models

We use RLFIT to learn the CPFs for Recon, Robot Fetch, Robot Inspection, and

Service Robot. Academic Advising is excluded because the transition function for

passed(COURSE) depends on arithmetic (see Equation 2.30) which RLIFT cannot

learn. Triangle Tireworld is excluded as its transition function is rather simple

163

Chapter 4: Generalised Knowledge for RRL

Number of Training Data per Symbolic Action
Domain 10 50 500

Recon 682.8± 461.9 5443.5± 3077.0 47623.4± 25635.2
Robot Fetch 216.7± 19.2 289.3± 38.5 447.5± 143.4
Robot Inspection 200.5± 31.2 450.8± 230.2 8856.7± 6616.1
Service Robot 258.2± 26.3 323.7± 27.9 462.7± 45.4

Table 4.1: Average computation time and one standard deviation in seconds for
RLFIT to learn the models given training data of 10, 50, and 500 state transitions
per symbolic action. The computation time is aggregated over ten independent runs.

with only three symbolic actions and can be easily learned; we are interested in

dealing with approximate models.

Training set. We ran ten independent experimental runs for the small scale

problems of Recon (RC3), Robot Fetch (RF1), Robot Inspection (RI1), and

Service Robot (SR1), using the hyperparameters in Table 3.1 for 500 episodes.

We randomly sampled 10 state transitions per symbolic action from a set of state

transitions observed in each problem. This gives ten sets of training data, one

from each run. We repeated this for 50 and 500 state transitions. In total, there

are 30 sets of training data per domain and a model is learned from each set of

training data. As RLFIT cannot handle states which are conjunctions of more than

20 literals due to intractability, we are restricted to collect the training data from

small scale problems.

Table 4.1 shows the computation time for learning the models. The computation

time depends on the number of symbolic actions (|A|), the number of training data,

and the number of literals in a state (|P |). The computation time is relatively short

for Robot Fetch and Service Robot but increases exponentially with the number

of training data for Recon and Robot Inspection.

Figure 4.5 shows the average variational distance for each learned model. Recon

has the lowest average variational distance among the four domains while the other

domains have average variational distances of less than 0.5. In general, the average

variational distances are comparable between the models learned from different sets

of training data and different sizes of training data. It is plausible that RLFIT cannot

learn the true model even with a large number of training data as the average

164

Chapter 4: Generalised Knowledge for RRL

Figure 4.5: Average variational distance and one standard deviation for each of
the ten model learned by RLFIT given the training data of 10, 50, and 500 state
transitions per symbolic action. The average variational distance is aggregated over
ten independent runs.

variational distance did not decrease when the number of training data increases.

Therefore, we opt to learn the models offline from training data obtained in the small

scale problems, then use the learned models to solve the large scale problems. For

the remaining experiments, we use the models learned from 500 randomly sampled

state transitions per symbolic action unless stated otherwise.

4.5.2 MBFS vs MFFS

We evaluate the performance of MBFS (see Section 4.3.1) by comparing it with MFFS.

Since MBFS eliminates unnecessary base features, one of the evaluation metric is the

cardinality of Φ. Following the empirical results in Section C.1.3, we use τ = 5 for

τ -iFDD+ to limit the maximum number of candidate features which can be added

to Φ at each time step. However, τ represents a percentage rather than an absolute

number. That is, for the same value of τ , the maximum number of features which

can be added at each time step, NΦ, can vary for MBFS and MFFS (recall that NΦ =

max
(
1, τ

100
maxa∈A |Φa|

)
where Φa is the set of base features for a). For a fair

comparison, NΦ should be the same in both MBFS and MFFS. Thus, the experiments

for MBFS use the same value of NΦ as MFFS for τ = 5.

165

Chapter 4: Generalised Knowledge for RRL

Figure 4.6: Comparing the number of features added to Φ between MFFS and MBFS.
The true model is used by MBFS to determine the base features.

True model. First, we assume that the true model is known for the sole purpose

of using MBFS to determine the set of base features. Figure 4.6 shows the number of

features in Φ. MFFS generally has more features than MBFS. Increasing ν from 2 to 3

results in more features. This is expected as the number of features is dependent on

the number of base features from which candidate features are generated and added

to Φ.

Figure 4.7 shows the total rewards received in each episode. In general, the

performance are comparable with MFFS which indicate that MBFS did not exclude

necessary features and can achieve comparable performance with a smaller set of

features. MBFS performs poorly in the following cases:

• ground approximation with ν = 2 and ν = 3 for AA5,

• ground approximation with ν = 2 for RF2, and

• first-order approximation with ν = 2 for RF2, RI1, and SR1.

The reason for the poor performance of MBFS in AA5 is because there is a

sequence to achieve goals. Thus, there is a strong dependency between the

first and last goals to be achieved. In Academic Advising, this is repre-

sented by the non-fluent PREREQ(COURSE1, COURSE2). In AA5, for the

goal PROGRAM REQUIREMENT(CS53), the non-fluents PREREQ(CS12, CS24),

166

Chapter 4: Generalised Knowledge for RRL

Figure 4.7: Comparing the total undiscounted rewards received in each episode
between MFFS and MBFS. The true model is used by MBFS to determine the base
features.

PREREQ(CS24, CS34), and PREREQ(CS34, CS53) specify that CS12 should be

passed first, followed by CS34, and lastly CS53. Therefore, ν should be large

enough to include the ground literals of PREREQ(COURSE1, COURSE2) as base

features. In contrast, since MFFS uses every literal as base features, the ground

approximation can easily memorise the sequence of courses to pass. When MBFS

excludes some literals as base features, this is no longer possible. The reason for

the poor performance of ground approximation with ν = 2 for RF2 is the same as

AA5. In Robot Fetch, goals are interdependent because of the constraint that no

two objects can be at the same location.

The poor performance of the first-order approximation with ν = 2 for RF2, RI2,

SR1 is due to the increased abstraction in a first-order approximation. Since MBFS

eliminates literals from the feature space, state abstraction is increased as states are

now represented by fewer features. With the additional abstraction due to the first-

order approximation, this can deteriorate performance. Figure 4.7 shows that this

can be resolved by increasing ν to 3. We discuss the tuning of ν in Section C.2.1.

Learned model. Next, we evaluate the performance of MBFS when the learned

model is used instead. If the model is poor and fails to represent some relations

167

Chapter 4: Generalised Knowledge for RRL

Figure 4.8: Comparing the total undiscounted rewards received in each episode
between the true model (T) and the learned model (L) for MBFS.

between state predicates or between state predicates and actions, then MBFS could

eliminate necessary base features. This incurs the same consequence as using too

small values for ν. The results are shown in Figure 4.8. We compare the performance

between the true and learned models for the same type of Q-function approximation

(i.e., ground approximation or first-order approximation) and for the same value of ν.

Results show that in general, using a learned model does not worsen the performance

relative to using the true model. In fact, the performance with the learned model

is better than the true model in RF2, RI2, and SR1 for ν = 2. Some of the learned

CPFs in these domains contain extraneous literals in their conditions governing the

transition of state predicates. This can result in additional base features than with

the true model. This counteracts the effects due to a too small value of ν. While

this result is positive, it is not necessarily reproducible given a different domain or

learned model. Nevertheless, the results for the learned models are encouraging as

they are at least comparable with the true model which demonstrates that MBFS is

less sensitive to model errors as it only requires the relations between state predicates

and actions rather than the nature of the relations (e.g., transition probability).

168

Chapter 4: Generalised Knowledge for RRL

Figure 4.9: Performance of LDE and its variants for the problems TT6 (top) and RI2

(bottom). For LDE-DT-FO (transfer), first-order dead end situations which are
learned in the small scale problems, TT3 and RI1, are transferred to the large scale
problems, TT6 and RI2.

4.5.3 Learning from Dead Ends

We evaluate the performance of LDE and its variants. We consider the domains

Triangle Tireworld and Robot Inspection which are the only two domains with

dead ends. Figure 4.9 shows the results. Since there is no penalty for reaching a dead

end in Robot Inspection, an immediate reward of −1 is given for the remaining

time steps if a dead end is reached. This is only for the analysis of the results. For

LDE-DT-FO, we consider the case where first-order dead end situations are learned in

the small scale problems, TT3 and RI1, and transferred to the large scale problems,

TT6 and RI2. This is denoted by LDE-DT-FO (transfer) in the figure. Dead end

situations can still be added if dead ends are encountered in the large scale problems.

The first-order approximation is not transferred and is learned from scratch.

The performance is measured by the total rewards received and the number of

dead ends reached. In both problems, the performance improved when learning

from dead ends. In TT6, LDE-DT and LDE-FO outperform LDE. The former is due

to the prevalence of dead end traps in Triangle Tireworld and the latter is due

to the generalisation property of LDE-FO. The combination of the two, LDE-DT-FO,

gives the best performance, requiring only a few episodes to learn the optimal policy.

169

Chapter 4: Generalised Knowledge for RRL

When first-order dead end situations are transferred, the optimal policy is obtained

almost immediately.

Robot Inspection does not have dead end traps. As such, learning from dead

end traps does not improve the performance. Similar to TT6, learning first-order

dead end situations improves performance. Although the transfer of dead end situ-

ations does not lead to an increase in rewards, it reduced the number of dead ends

reached. Unlike Triangle Tireworld which gives an immediate reward of −100

for reaching a dead end, Robot Inspection does not give a penalty for reaching

a dead end (other than terminating the episode which prevents further accumula-

tion of rewards). Thus, the difference in rewards between the variants of LDE for

Robot Inspection is of a lesser magnitude than Triangle Tireworld.

The computation time for LDE and its variants are dependent on the cardinality

of the failure buffer χ. With a first-order representation, the cardinality of χ is

reduced which decreases the computation time. This is observed in Figure 4.9. The

computation time of LDE-DT is higher than LDE due to the additional cost of checking

for dead end traps. In RI2, the computation time for LDE and LDE-DT is prohibitively

long. This is because there are many dead end situations in Robot Inspection;

a dead end is reached if the robot is low on energy and does not move to the

base immediately. This increases the cardinality of χ and, subsequently, the time

complexity of searching through χ for a matching state-action pair. This highlights

the scalability of first-order dead end situations.

4.5.4 Intrinsic Motivation

The sensitivity analysis for β is discussed in Section C.2.2. Following the results of

the sensitivity analysis, we use β = 0.1 for subsequent experiments.

Comparing Policies

We evaluate the performance of our greedy-ε-greedy policy against the ε-greedy,

greedy, and softmax policies. For both greedy-ε-greedy and ε-greedy, ε is initialised

to 1 and decayed exponentially to 0 over the episodes. τtemp (see Equation 2.13)

is initialised and decayed in the exact same manner. We also tested ε-greedy with

lesser exploration by initialising ε to 0.5. The baseline is the ε-greedy policy with

170

Chapter 4: Generalised Knowledge for RRL

Figure 4.10: Comparing different policies when using intrinsic reward. The intrinsic
reward used is TDE. Extrinsic and intrinsic approximations are first-order approxi-
mations.

no intrinsic rewards.

The results are shown in Figure 4.10. The intrinsic reward used is TDE. Both in-

trinsic and extrinsic approximations are first-order approximations. greedy-ε-greedy

outperforms all policies in all problems except TT6 where it is tied with the greedy

policy. The greedy policy has the worst performance with non-optimal asymptotic

performance in all problems except TT6. This is because it is myopic in nature

and does not sufficiently explore the state space even with intrinsic rewards. The

ε-greedy policy performs no better than the baseline as it ignores the intrinsic re-

ward most of the time. By initialising ε to 0.5 instead of 1, the performance of the

ε-greedy policy improves in all problems. The softmax policy tends to flavour ex-

ploration more, then switches to exploitation belatedly which sees a sharp increase

in the rewards at the end. Similar to the ε-greedy policy, this can be resolved by

reducing the initial value of τtemp. Nonetheless, greedy-ε-greedy policy clearly out-

performs the other policies without the need to tune ε. In subsequent experiments

which involve intrinsic rewards, we use the greedy-ε-greedy policy.

171

Chapter 4: Generalised Knowledge for RRL

Figure 4.11: Comparing different types of intrinsic rewards. Extrinsic and intrinsic
approximations are ground approximations. COUNT (Tabular) denotes the visit count
intrinsic reward is approximated by a tabular representation while COUNT (LFA)
denotes that it is approximated by a ground approximation.

Comparing Model-Free Intrinsic Rewards

We evaluate the performance of the different kinds of model-free intrinsic rewards

introduced in Section 4.4.2. Two sets of experiments are conducted. In the first set

of experiments, all extrinsic and intrinsic approximations are ground approximations

and the baseline is the extrinsic approximation without using any intrinsic reward.

The second set is similar to the first set but all approximations are first-order ap-

proximations. We tested two types of representations for COUNT: tabular (denoted

by Tabular) and linear function approximation (denoted by LFA).

First, we discuss the results for the ground approximation which are shown in

Figure 4.11. COUNT (LFA) performs poorly and is outperformed by COUNT (Tabular)

in all domains except TT6. This shows that the highly non-stationary nature of

COUNT is not suited to be approximated by a linear function approximation (and

possibly other types of function approximation). COUNT (LFA) performs well in TT6

due to the nature of the greedy nature of the greedy-ε-greedy policy rather than

the intrinsic rewards. As shown in Figure 4.10, the greedy policy performs well in

TT6.

172

Chapter 4: Generalised Knowledge for RRL

Figure 4.12: Comparing different types of intrinsic rewards. Extrinsic and in-
trinsic approximations are first-order approximations. COUNT (Tabular) denotes
the visit count intrinsic reward is approximated by a tabular representation while
COUNT (LFA) denotes that it is approximated by a first-order approximation.

DoWhaM performs well in most domains, especially in AA5 and RI2, but per-

forms poorly in TT6. DoWhaM gives an intrinsic motivation to explore actions which

rarely cause a change to the state and is well-suited in domains where many actions

cause no change to the states (e.g., Academic Advising and Robot Inspection)

and ill-suited in domains where every action causes some change to the states (e.g.,

Triangle Tireworld). DoWhaM gives no intrinsic reward in such cases as the explo-

ration bonus is zero (see Equation 4.8).

TDE performs poorly in AA5 and RI2 though the initial performance is better

than the baseline. This suggests that the extrinsic approximation is not able to

converge, causing continual exploration towards states where the TD errors are

significant. That is, the policy selects actions to minimise the approximation errors

rather than to maximise the expected extrinsic returns. On the other hand, TDE

performs well in the other four domains. As expected, since TDE is derived from

the extrinsic approximation, its efficacy varies greatly across different domains and

lacks robustness.

Since trajectories leading to goals typically change less frequently than the ap-

proximation errors in an extrinsic approximation or state novelty count, T2G is more

173

Chapter 4: Generalised Knowledge for RRL

Domain CT CL TDE DoWhaM T2G
GND FO GND FO GND FO GND FO GND FO

Academic Advising — X × X × X X X — —
Recon X X × × X X X X X X
Triangle Tireworld X X X X X X — — X X
Robot Fetch X X × X X X X X X X
Robot Inspection X X × × × X X X X X
Service Robot X X × × X X X X X X

Table 4.2: Summary of the performance of the different types of model-free intrinsic
rewards. The abbreviations GND denotes ground approximation, FO denotes first-
order approximation, CT denotes COUNT (Tabular), and CL denotes COUNT (LFA). X
indicates that the intrinsic reward improves performance relative to the baseline, ×
indicates that it worsens performance, and — indicates that it makes no difference.

stationary than TDE and COUNT. Therefore, T2G performs robustly across all domains.

Though it is not the best performing intrinsic reward in some domains (e.g., RI2),

it outperforms the baseline in all domains except AA5. The reason T2G is ineffective

in AA5 is because T2G only considers at most three shortest trajectories to each goal.

This makes T2G more stationary—if an optimal trajectory is found, then no other

trajectories can be shorter. However, in Academic Advising, the prerequisites of a

course must be passed to increase the passing probability. The shortest trajectories

observed in Academic Advising are likely to have skipped the prerequisites. Since

T2G does not consider the probability of a trajectory leading to a goal, it rewards

actions for taking required courses without passing their prerequisites.

Next, we discuss the results for the first-order approximation which are shown

in Figure 4.12. COUNT (LFA) performs well in AA5, TT6, and RF2. This fares better

than the ground approximation which only performs well in TT6. This is possi-

bly due to the generalisation property of the first-order approximation which deals

better with non-stationary rewards. Each step update affects all ground actions

of the same symbolic action which can be considered as multiple updates in each

time step. Since updates are more frequent, the first-order approximation adapts

better to non-stationary rewards. TDE, DoWhaM, and T2G perform well in all prob-

lems, outperforming the baseline in most cases. As was observed for the ground

approximation, DoWhaM has no effect in TT6 and T2G has no effect in AA5 for the

same reasons.

We summarise the above discussion in Table 4.2. In most cases, the different

174

Chapter 4: Generalised Knowledge for RRL

Figure 4.13: Dyna uses a model to generate imagined observations which an extrinsic
ground (Q̃gnd) or first-order approximation (Q̃fo) learns from. The models are either
the true models (T) or learned from a set of training data which contains either 50
(L ∼ 50) or 500 (L ∼ 500) state transitions per symbolic action.

kinds of intrinsic rewards have comparable performance. In other cases, one kind of

intrinsic reward works better or worse than the others.

Effect of Approximate Models on Dyna

The sensitivity analysis for the number of rollouts (Nsim) used in Dyna is discussed

in Section C.2.3. We use Nsim = 1000 and Hsim = 40 in all experiments unless

stated otherwise. We examine the effect of approximate models on the performance

of Dyna. Two sets of ten learned models are used; one set is learned from training

data which consists of 50 state transitions per symbolic action and the other set

from 500 state transitions per symbolic action. We denote the learned models by

L ∼ 50 for the former and L ∼ 500 for the latter. Dyna uses a different learned

model in each run. Here, we do not compare the performance between a ground

approximation or a first-order approximation as this was discussed in Section 3.7.2.

Figure 4.13 shows the results for Dyna with the true and learned models. We

expect the true model to have the best performance followed by L ∼ 500. In

general, this is true for all domains. We focus our discussion on cases where this

is not true. For the first-order approximation, L ∼ 50 has the best performance

175

Chapter 4: Generalised Knowledge for RRL

in RF2. Due to plateaus, the performance have fluctuations and large variances.

Given this, it is conceivable that L ∼ 50 can outperform the true model. Next,

in SR1, the first-order approximation with the true model performs slightly worse

than the rest. The learned models predict the transitions of the state predicate

person at(PERSON,WP) albeit wrongly. For example, one particular model pre-

dicts that if the robot finds a person p1, then person at(p1,WP) is true for all ob-

jects of WP where there is no table. The true model does not predict the transition

of person at(PERSON,WP) since the location of a person cannot be predicted.

Even with the wrong predictions, the learned model can generate imagined observa-

tions where the person’s location is (wrongly) known, learning in more (imagined)

states than the true model can generated.

We observed that learned models with similar average variational distances can

give significantly different performance. For example, in RI2, L ∼ 500 outperforms

L ∼ 50 even though they have very similar average variational distances (see Fig-

ure 4.5). As discussed in Section 2.3.4, the average variational distance is not a

complete representation of the correctness of learned models. Therefore, it might

not be a good predictor for the performance of planning or learning methods which

rely on the learned models.

Combinations of Intrinsic Rewards

We tested some combinations of model-based and model-free intrinsic rewards on

four domains. The aggregation is the average of the Q-values from the approxi-

mations in the ensemble. We tested other aggregations, maximum and sum, and

found that this makes little difference to the results. We combined the best per-

forming model-free intrinsic rewards (see Table 4.2), COUNT, TDE, and DoWhaM, with

Dyna which uses the learned model. All function approximations are first-order ap-

proximations. Figure 4.14 shows the results. The results for intrinsic rewards by

themselves (i.e., no combination) are included as baselines. DoWhaM is omitted for

better clarity as its performance is comparable with TDE (see Figure 4.12).

We tested three combinations of intrinsic rewards: (1) TDE+Dyna, (2)

TDE+COUNT+Dyna, and (3) TDE+DoWhaM+Dyna. Combinations of intrinsic rewards

have the best performance in all problems except SR1: (1) and (3) perform best in

176

Chapter 4: Generalised Knowledge for RRL

Figure 4.14: Comparing different combinations of intrinsic reward approximated
with a first-order approximation. The extrinsic approximation is also a first-order
approximation. COUNT denotes the visit count intrinsic approximated with a tabular
representation.

RC6, (1) in RF2, and (2) and (3) in RI2. There is no combination which perform

best in all problems. As TDE is derived from the extrinsic approximation which is

initialised by Dyna, Dyna influences TDE. If the model is approximate and generates

poor imagined observations, this can impact Dyna and also TDE if used with Dyna.

In RI1, this is compensated by including COUNT in TDE+COUNT+Dyna or DoWhaM in

TDE+DoWhaM+Dyna. In SR1, none of the combinations can improve the performance

of Dyna. This suggests that unpredictable transitions is a limiting factor in using

Dyna. Nevertheless, the asymptomatic performance is only slightly worse than the

performance of the model-free intrinsic rewards.

4.5.5 Continual Learning

It is impractical to learn in the same problem for many episodes. Typically, the

environment or the initial state changes. We evaluate the performance of ground

approximation, first-order approximation, and intrinsic rewards in solving problems

given fewer episodes than in previous experiments.

177

Chapter 4: Generalised Knowledge for RRL

Figure 4.15: A different problem is attempted in every 300 episodes. For each
problem (except for the first), Q-functions are transferred from the previous problem
unless stated otherwise with the subscript ⊥.

Experimental setup. In each run (out of ten independent runs), ten different

problems of the same scale (i.e., the set of objects are the same) are attempted

sequentially over 3000 episodes. In every 300 episodes, a different problem is at-

tempted.4 This is not simply learning policies to reach different goal states from

any state as each problem has different non-fluents, and thus a different and non-

overlapping state space. Academic Advising and Triangle Tireworld do not have

randomised problems and are omitted. For transfer learning, Q-function approxi-

mations are transferred from the previous problem (if any) of the same run. Hyper-

parameters which are decayed over episodes (i.e., ε and α) are decayed over 3000

episodes rather than 300 episodes. For intrinsic reward, we use a first-order ap-

proximation Q̃fo
int to approximate TDE which is the absolute TD error of the extrinsic

first-order approximation Q̃fo. The extrinsic and intrinsic first-order approximations

use the same hyperparameters.

A ground approximation is applicable in problems of the same scale if and only if

the set of objects are the same and non-fluents are excluded as features. Non-fluents

4We use the RDDL parser from Keller and Eyerich [86] to parse the RDDL domain and problem
files. Due to the long computation time of parsing the files and initialising the data structures, it
is infeasible to attempt a new problem in every episode for 3000 episodes.

178

Chapter 4: Generalised Knowledge for RRL

can be excluded since ground non-fluents always evaluate to true in a problem.

However, this is not the case if the source and target problems have different non-

fluents. Nevertheless, we investigate if transfer learning with ground approximation

is beneficial for problems of the same scale. Figure 4.15 shows the results. The

performance of Q̃gnd (with transfer) and Q̃gnd
⊥ (without transfer) are the worst in all

problems. In RF2, it is better to learn Q̃gnd from scratch than to transfer Q̃gnd from

the previous problem. Conversely, in the other problems, transferring Q̃gnd performs

better than learning Q̃gnd from scratch.

As shown in Section 3.7.4, the ensemble of ground and first-order approximations(
Q̃gnd+ Q̃fo

)
allows transfer learning from small scale to large scale problems. Here,

the ensemble is trained in only 300 episodes and has not achieved optimal perfor-

mance before it is transferred to the next problem. In spite of this, the ensemble is

able to improve its asymptotic performance over ten different problems. However,

using only the first-order approximation
(
Q̃fo
)

gives a better performance than the

ensemble in RC6 and RI2. This implies that including the ground approximation

actually worsens performance. This is because the ground approximation has to be

learned from scratch. With only 300 episodes, the ground approximation remains

a poor approximation. This is evident with the poor performance of the ground

approximation in RC6 and RI2. On the other hand, the ground approximation per-

forms relatively better in RF2 and SR1, and thus an ensemble gives comparable or

better performance than the first-order approximation.

Next, we consider an ensemble of extrinsic and intrinsic first-order approxima-

tions. The intrinsic approximation is either learned from scratch
(
Q̃fo + Q̃fo

int,⊥
)

or transferred from the previous problem
(
Q̃fo + Q̃fo

int

)
. In RC6, the performance

between the two are comparable while in the other three domains, transferring the

intrinsic approximation allows continual directed exploration across different prob-

lems which lead to improved performance. We observed that in RC6 and RF2, there

are some randomised problems where Q̃fo+Q̃fo
int,⊥ performs better and vice versa for

some other randomised problems. If the intrinsic approximation is not transferred,

then exploration is reduced. Exploitation is preferred over exploration in problems

which are similar to previous problems; in such problems, Q̃fo + Q̃fo
int,⊥ outperforms

Q̃fo + Q̃fo
int.

179

Chapter 4: Generalised Knowledge for RRL

Figure 4.16: The total undiscounted rewards received in each episode for THTS,
LQ-RRL, and combinations of model-based and model-free RL methods, RRL+Dyna

and RRL+UCT.

Lastly, we consider an ensemble of first-order approximation, ground approxi-

mation, and intrinsic first-order approximation
(
Q̃gnd + Q̃fo + Q̃fo

int

)
. As mentioned

previously, the inclusion of a ground approximation worsens performance in RC6 and

RI2. With the inclusion of Q̃fo
int, Q̃

gnd + Q̃fo + Q̃fo
int outperforms Q̃gnd + Q̃fo in these

two problems. Interesting, the converse is true in RF2 and SR1; Q̃gnd + Q̃fo + Q̃fo
int

initially outperforms Q̃gnd+ Q̃fo but performs worse in later episodes. This suggests

that (directed) exploration is less preferred in later episodes. A possible solution is

to decay β, the coefficient for intrinsic rewards, over episodes.

4.5.6 Combining Model-Based and Model-Free RL

We evaluate the performance of combinations of model-free and model-based RL

methods. We consider the following two approaches: (1) transfer a first-order ap-

proximation, then train it with imagined observations using Dyna as outlined in

Algorithm 16, and (2) transfer a first-order approximation, then combine it with

UCT as described in Section 4.3.2. (1) and (2) are variants of GK-RRL (Algorithm 11)

and use learned models. We denote (1) by RRL+Dyna and (2) by RRL+UCT. We com-

pare their performance with baselines which are either model-based or model-free

RL methods. For the model-based RL method, we use the trial-based heuristic tree

180

Chapter 4: Generalised Knowledge for RRL

Figure 4.17: The goal-directedness for THTS, LQ-RRL, and combinations of model-
based and model-free RL methods, RRL+Dyna and RRL+UCT.

search (THTS) [87] which is the state-of-the-art planner for finite horizon MDPs.5 The

model-free RL method is LQ-RRL (Algorithm 1). The lower baselines are THTS with

learned models and LQ-RRL. The upper baseline is THTS with the oracle model (the

oracle model and the true model is the same for all domains except Service Robot).

We investigate if combinations of model-free and model-based RL methods can out-

perform the lower baselines.

Experimental setup. The first-order approximations are learned from scratch in

3000 episodes of the small scale problems (i.e., the source problems) using LQ-RRL

and transferred to the large scale problems (i.e., the target problems). The target

problems are limited to 500 episodes due to the high computational cost of UCT.

Because of plateaus in Recon and Robot Fetch, the ensemble of ground and first-

order approximations is used in the target problems. LDE-DT-FO is used in all

runs of RI2 except those involving THTS. The first-order dead end situations are

learned in RI1 and transferred to RI2. The hyperparameters for Dyna are Nsim =

500 and Hsim = 40. The hyperparameters for UCT are Λroot = Λleaf = 0.5. For

RC6, RI2, and RF2, the rollout policy is a greedy policy generated from the first-

5We use the version of THTS that was used in the IPPC 2014—partial Bellman updates are used
for backpropagation and iterative deepening search is used to initialise the Q-values of nodes. We
refer readers to [86, 87] for details.

181

Chapter 4: Generalised Knowledge for RRL

order approximation. We limit the length of the rollout (Hrollout) to 5 as it is

computationally expensive to ground the first-order approximation (see Theorem 5)

in order to generate the greedy policy. For SR3, the rollout policy is a random policy

with Hrollout = H = 60 (i.e., rollout till the end of the time horizon). Due to its large

number of first-order base features, making it expensive to ground the first-order

approximation, we find that this improves the performance by allowing for more

trials before timeout.

Termination condition for UCT. The termination condition for UCT is 10 seconds

for timeout and the number of trials must be at least thrice the number of applicable

actions at the root node.6

Figures 4.16 and 4.17 show the results. In all domains, the performance of

THTS when the oracle model is available is the best (except in SR3) but is the

worst when only the learned models are available. This is expected. One possible

reason that the performance is not the best in SR3 even with the oracle model is

the large state-action space in SR3. Next, we compare RRL+Dyna, RRL+UCT, and

LQ-RRL. In all domains, RRL+UCT outperforms RRL+Dyna while RRL+Dyna performs

marginally worse than LQ-RRL. This is because Dyna trains the transferred first-

order approximation and increases its approximation errors due to model errors.

In Section 4.5.4, Dyna initialised the Q-function approximation and this gives a

jump start in the performance. The errors introduced by Dyna are reduced when

the Q-function approximation is updated. Thus, if the model is approximate, then

Dyna should only be used to initialise a Q-function approximation. Even though

UCT uses the same approximate models as Dyna, it did not worsen the performance

because UCT does not directly affect the Q-function approximation as discussed in

Section 4.4.2.

In RF2, RRL+UCT significantly outperforms LQ-RRL which demonstrates the

advantage of utilising an approximate model to reduce sample complexity. In the

remaining domains, RRL+UCT marginally outperforms LQ-RRL. This is because

Robot Fetch is a deterministic domain and it is relatively easy to learn its model.

6The timeout for THTS is one second which might give an advantage to UCT. However, the
purpose of implementing our UCT is to combine with the first-order approximation rather than
to outperform THTS which has incorporated caching and other efficient data structures for fast
computations.

182

Chapter 4: Generalised Knowledge for RRL

In the other domains, the errors in the learned models restrict the improvement in

performance due to UCT. In RI2, RRL+UCT outperforms LQ-RRL in terms of the total

rewards received. This is because model-based RL methods such as UCT can exploit

the learned dead end situations (the models learned by RLFIT cannot predict dead

ends accurately) more than model-free RL methods which look at only one step

ahead. This demonstrates the utility of combining a relational model and first-order

dead end situations, two types of generalised knowledge. It is also worth noting

that in SR3, both LQ-RRL and RRL+UCT marginally outperform the upper baseline,

THTS with the oracle model.

4.6 Summary

In this chapter, we presented GK-RRL which is an extension to LQ-RRL. GK-RRL utilises

the following additional generalised knowledge: relational models, first-order approx-

imations of intrinsic rewards, and first-order dead end situations. This generalised

knowledge can be learned from observations and transferred to target problems to

accelerate learning. GK-RRL incorporates UCT to provide better quality estimates

for the Q-values. If the true model is not available or known, then model learning

algorithms can be used to learn an approximate model. Due to model errors, this

diminishes the efficacy of model-based RL methods. To mitigate this, we examined

various approaches to combine a Q-function approximation with UCT. Empirical

results showed that the combination of UCT and model-free RRL can improve per-

formance but this is limited by the correctness of the learned model. We used RLFIT

from [106] to learn models for four domains. While it is promising that the models

can be learned from very few training data, results suggest that given additional

training data, RLFIT is unable to improve on the correctness.

The learned model can be utilised in other ways. First, MBFS considers the struc-

tures of graphs representing transition functions to prune unnecessary base features.

Empirical results showed that MBFS is able to achieve comparable performance with

MFFS but with fewer features. We demonstrated that MBFS is less sensitive to the

errors in approximate models as it only requires information on the connectivity

of the graphs rather than the exact nature of the transition function. Next, Dyna

183

Chapter 4: Generalised Knowledge for RRL

is used to initialise the Q-function approximations which can give a jump start in

performance. This can be considered as a type of model-based intrinsic reward.

Four kinds of model-free intrinsic rewards are also introduced, one of which is novel.

We proposed a unifying framework which uses an ensemble of Q-function approx-

imations to learn at different abstraction levels and from multiple reward signals

consisting of the extrinsic reward and different types of intrinsic rewards. Empirical

results showed that this approach of learning can improve performance.

Lastly, we introduced a novel family of algorithms to learn dead end situations or

state-action pairs which were previously observed to lead to dead ends. A first-order

variant of the algorithm allows transfer learning while another variant learns from

dead end traps which improves the efficacy. Empirical results showed that learning

from dead ends is effective for avoiding dead ends.

184

Chapter 5

Dynamic Objects, Time, and

Coordination

In Chapters 3 and 4, we considered problems which ignore the complexities present

in real world applications. Experiments were conducted in RDDLSim [149] which

is a simplistic simulator that ignores physical elements in the real world. For ex-

ample, robots operating in the real world have to deal with uncertainty in sensor

measurements, physical constraints, and temporal considerations among others. In

this chapter, we begin with a motivating problem for Service Robot in Section 5.1

which considers dynamic objects, action durations, and time bounds for goals. In

Sections 5.2 and 5.3, we describe the formalism for representing these added com-

plexities in a new class of problems. Next, we discuss the impact they have on

the methods presented in the previous chapters and propose extensions for GK-RRL

to solve this class of problems in Section 5.4. We explore the possibility of us-

ing this class of problems to address multi-agent coordination. In Section 5.7, we

present a framework to decompose a multi-agent coordination problem into single-

agent problems. Taking a step towards real world applications, we discuss transfer

learning between not just different classes of problems but also different simulated

environments in Section 5.5. The purpose is to train and test RL agents in differ-

ent environments. We built a simulated environment in Gazebo [89] which is more

representative of the real world than RDDLSim’s simulated environment. In Sec-

tion 5.6, we discuss empirical experiments conducted in RDDLSim’s and Gazebo’s

simulated environments. The objective is to evaluate the robustness of our methods

185

Chapter 5: Dynamic Objects, Time, and Coordination

when transferring from simulation to the real world. We take a step towards this ob-

jective by demonstrating transfer learning from RDDLSim’s to Gazebo’s simulated

environments. While real world experiments are lacking, the differences between

the two simulated environments and the different classes of problems are significant.

Parts of the work in this chapter have been published before in [24, 122].

5.1 Service Robot in the Real World

We described Service Robot in Section 2.8.2. Here, we consider three added layers

of complexity which are typical of a robot operating in the real world. Firstly, a

robot might not be fully aware of its environment; the existence of some objects

are initially not known to the robot and are discovered later. Secondly, objects

are deliberately ignored as they seem inconsequential but are later considered when

they turned out to be important. For example, suppose that there are 100 people of

whom only a few require assistance. It is impractical to consider every person but

without knowing whom will require assistance, the robot considers a person only

when the person needs assistance. The first and second points can be treated in the

same manner. We formally describe what this entails in Section 5.2.

Lastly, executing an action takes time, the duration of which can be stochastic.

If the transitions of states are time-dependent, then the duration it takes to execute

an action has to be considered in synthesizing a plan or policy. For example, the

tasks given by people need to be achieved within a limited time bound as a person

does not wait indefinitely for the robot to fetch an object. We discuss temporal

constructs in Section 5.3. Another reason to consider the transition of time is to

coordinate the actions of the robot and another agent (either another robot or a

person) at a specified time instance. We explore this possibility in Section 5.7.

While there are many types of complexities inherent in the real world which we

did not address here, such as noisy sensors and partial observability, the ones we

considered pose interesting challenges which have not been studied in the context

of RRL.

186

Chapter 5: Dynamic Objects, Time, and Coordination

5.2 Dynamic Object Relational Markov Decision

Process

An RMDP consists of a set of objects O which remains unchanged in every time

step. We consider dynamic objects which can be added to or removed from O.

Definition 30 (Dynamic Object)

A dynamic object is an object which is added to or removed from the set of objects

O at any time step.

Dynamic objects are an artefact of the unknown or ignored objects in the environ-

ment or can also be due to the creation of new objects in an environment capable

of doing so (e.g., an assembly plant). An MDP or RMDP cannot model problems

with dynamic objects since O changes dynamically which in turn changes the set of

state predicates P , the set of ground actions A, and the state space S. We adapt

the dynamic object RMDP (DORMDP) proposed by Mausam and Weld [109] to

model problems with dynamic objects.

Definition 31 (Dynamic Object RMDP)

A DORMDP is a tuple (C,P ,A,O, T ,R, s0, H, γ) where the elements are the same

as those in an RMDP (see Definition 3) except that objects can be added to or

removed from O due to the effects of actions or exogenous events. Since P and A

are defined over O and S is defined over P , they are updated when O changes.

The number of objects in O is unbounded due to dynamic objects. Thus, the

cardinality of P , A, and S are also unbounded. When a dynamic object is added,

state predicates which represent its properties or its relations with other objects

are added to P . As a result, the state changes when dynamic objects are added.

Actions which involve this dynamic object are also added to A.

5.2.1 Dynamic Objects in Service Robot

In Service Robot, the following objects are initially not made known to the robot:

1. all objects of type person, and

2. objects of type wp if PERSON IS AT(PERSON,WP) is true.

An object PERSON of type person is known if PERSON needs assistance

187

Chapter 5: Dynamic Objects, Time, and Coordination

(need assistance(PERSON)) or the robot receives a task to deliver an item

to PERSON (goal object with(OBJ, PERSON)). When objects of type

person are known, they are added to O. Also, state predicates and actions

with at least one of these objects in its terms are added to P and A, re-

spectively. The objects PERSON of type person and WP of type wp are

known if person at(PERSON,WP) is true after the robot executes the action

find person(ROBOT, PERSON). person at(PERSON,WP) represents the

knowledge of the robot and is different from PERSON IS AT(PERSON,WP) which

represents the fact that PERSON is at WP . When objects of type WP are known,

they are added to O, and the ground state predicates of robot at(ROBOT,WP)

and ground actions of move(ROBOT,WP1,WP2) associated with these objects are

added to P and A, respectively.

Considering more dynamic objects might seem to make the problem harder to

solve but this is not always the case. The fewer objects there are in O, the fewer

actions there are to select from becauseA is defined overO. Suppose that all objects

are unknown except for the robot (r1) and its initial location. In an initial state s0

where the robot is at wp1 (robot at(r1, wp1)), we have O = {r1, wp1} and A =

{localise(r1)}. In the next time step, the exogenous event need assistance(p1)

occurred. p1 is added to O and find person(r1, p1) is added to A. There are now

two actions to select from. The robot executes find person(r1, p1) and finds p1

at wp4; wp4 is added to O and move(r1, wp1, wp4) is added to A. Now, there are

three actions to select from. The small cardinality of A makes the problem trivially

simple.

5.3 Temporal Considerations

In this section, we present temporal considerations for problems which are typical

of acting in the real world where actions are executed over time and it is preferable

to achieve goals as quickly as possible.

188

Chapter 5: Dynamic Objects, Time, and Coordination

(:durative-action put down
:parameters (?r - robot ?o - obj ?loc - wp)
:duration (= ?duration 60)
:condition (and (over all (robot at ?r ?loc))

(at start (holding ?r ?o)))
:effect (and (at end (not (holding ?r ?o)))

(at end (object at ?o ?loc)))
)

Figure 5.1: A PDDL2.1 action model for put down in Service Robot.

5.3.1 Durative Actions

In the previous chapters, actions are assumed to be instantaneous; states change

instantaneously upon execution according to the effects of actions (if any). For

problems where the notion of time does not matter, this assumption is valid. If

this is not the case, then the duration which an action executes for needs to be

considered. PDDL2.1 [52] is a formal planning language extended from PDDL [111]

(see Section 2.2.2) to include durative actions—actions with temporally annotated

conditions (in place of preconditions) and effects. An example of a PDDL2.1 action

model is shown in Figure 5.1. An annotated condition specifies if the condition must

hold at the start of the execution, the end of the execution, or over the duration

of the execution. The annotated effects specify if the effects take place at the start

or the end of the execution. On the other hand, for instantaneous actions, their

preconditions must hold at the start of the execution and their effects take place at

the end of the execution.

We use RDDL [149] to model domains and problems. Since RDDL does not sup-

port temporal constructs, we consider a simpler form of durative actions which does

not have temporally annotated conditions and effects but only a duration for execu-

tion; preconditions and effects function in the same way as those of instantaneous

actions. Hereafter, we refer to the durative actions from PDDL2.1 as PDDL2.1 ac-

tions and our form of durative actions as durative actions. Unlike PDDL2.1 actions,

durative actions can have probabilistic effects.

Definition 32 (Durative Actions)

A durative action is an action which takes an amount of time to complete execution,

starting in a state and finishing in another state (which could be the same state

189

Chapter 5: Dynamic Objects, Time, and Coordination

as before). The action duration Tdur is the amount of time it takes. Tdur can be

deterministic or stochastic and drawn from a distribution which could be unknown.

The action’s preconditions must be satisfied at the start of its execution while its

effects take place at the end of its execution.

One of the uses for temporally annotated conditions and effects is to model

problems where actions can execute concurrently such as multi-agent problems as it

is important to consider actions which can interfere with each other (e.g., a robot is

opening a door while another robot is trying to closing it). While our work does not

consider temporally annotated conditions like temporal planners such as [12, 28] do,

we address probabilistic problems which PDDL2.1 cannot represent. A SMDP (see

Section 2.1.4) can be used to model problems with durative actions.

5.3.2 Time-Bounded Goals

Goals can have urgency where it is desired to achieve the goals as quickly as possible.

For example, a person is unlikely to wait indefinitely for a robot to deliver an item.

A time-bounded goal (TG) is a goal which must be achieved within a time bound

or time window.

Definition 33 (TGs and Actions)

A TG is a tuple
.
g = (g, a, T `, T a) where g is a goal predicate, a is an action, T `

and T a are the start and end times, respectively, of the time bound [T `, T a], and

T ` ≤ T a.1
.
g is achieved if g is made true within the time bound due to the execution

of a which must begin at T `. The action is an optional argument without which there

is no constraint on the action or the start time of its execution to achieve the TG.

.
g is violated and can no longer be achieved if it is not achieved by T a.

In the previous chapters, we dealt with goals with no time bounds nor specific

actions to achieve them. Such a goal can be expressed as a TG:
.
g = (g,∅, 0,∞).

For simplicity, we refer to such goals and TGs collectively as TGs for the remainder

of this chapter. TGs that include actions address situations where a specific action

is required, possibly because of the nature (or hazards) of the environment or for the

1The accent
.
x denotes a time-dependent entity, T denotes the continuous time, and t denotes

the discrete time step.

190

Chapter 5: Dynamic Objects, Time, and Coordination

coordination with other agent(s). We discuss the coordination of multiple agents in

Section 5.7.

TGs in Service Robot

In Service Robot, two TGs are given when the robot talks to a person who needs

assistance:
.
gi = (gi,∅, T `i , T ai) and

.
gj = (gj,∅, T `j , T aj). An implicit order to achieve

these two TGs is imposed by defining the time bounds for the two TGs as:

T `i = T `j = T, (5.1)

T ai = T `i + ∆T, (5.2)

T aj = T `j + 2∆T, (5.3)

where ∆T is a real value which represents the amount of time given to achieve TGs

and T represents the elapsed time when the robot is given the TGs (i.e., after talking

to the person). No actions are involved in the TGs. The optimal behaviour is to

achieve
.
gi first as it has ∆T remaining time to achieve it while

.
gj has 2∆T remaining

time. The order to achieve the TGs,
.
gi ≺

.
gj, is implicit because there is no state

predicate which represents this relation. The order is not a hard constraint if ∆T

is large enough such that
.
gi can be achieved after

.
gj. Another possible implicit

order is
.
gj ≺

.
gi if the values of the time bounds are defined as T ai = T `i + 2∆T

and T aj = T `j + ∆T . To prevent a learning algorithm from memorising the order

of TGs to achieve, the implicit order is randomised between the two possibilities in

each episode. ∆T must be set appropriately such that it is not trivially large (e.g.,

∆T ≈ ∞) or unreasonably small (e.g., ∆T = 1 second). Since TGs are active only

upon talking to a person who needs assistance, an optimal behaviour is to attend

to a person who needs assistance after all active TGs are achieved since there is no

penalty for keeping a person waiting (other than the action cost of −1).

Example 34 (Act First, Talk Later)

Suppose that the robot talks to a person and receives two TGs:
.
g1 = (g1,∅, T, T+∆T)

and
.
g2 = (g2,∅, T, T +2∆T) at the elapsed time T . On average, the robot has ∆T of

time to achieve each TG. Subsequently, the robot talks to another person and receives

191

Chapter 5: Dynamic Objects, Time, and Coordination

two more TGs:
.
g3 = (g3,∅, T +ε, T +ε+∆T) and

.
g4 = (g4,∅, T +ε, T +ε+2∆T) at

the elapsed time T+ε. On average, the robot has approximately ∆T
4

of time to achieve

each TG, half of what it had before talking to the second person (for simplicity, we

assume that ε is negligible here).

5.3.3 Time-Dependent DORMDP

We propose the time-dependent dynamic object RMDP (TDORMDP) to model

problems which have a relational structure, dynamic objects, durative actions, and

TGs. A TDORMDP combines a DORMDP with a SMDP (see Section 2.1.4).

Definition 34 (Time-Dependent Dynamic Object RMDP)

A TDORMDP is a tuple (C,P ,
.
A,O,

.
G,

.
T ,

.
R,D , .s0, H, γ) where the elements are

the same as those in an DORMDP (see Definition 31) except that
.
A is a set of

symbolic durative actions,
.
G is a set of TGs,

.
T is the time-dependent parameterised

transition function,
.
R is the time-dependent parameterised reward function, D :

S × A × S → R is the action duration distribution, and
.
s0 is the initial state

augmented with the initial elapsed time T0.

The set of durative actions,
.
A, is defined over

.
A and O. The time-dependent

transition function
.

T :
.
S ×

.
A×

.
G →

.
S is the result of the grounding of

.
T .

.
S is a

set of states S augmented with the elapsed time. The transition of state predicates

depends on the state, the elapsed time, action durations, and TGs. Similarly, the

time-dependent reward function
.

R :
.
S ×

.
A×

.
G → R is the result of the grounding

of
.
R and defines the immediate reward after executing a durative action in a state

augmented with the elapsed time.

The elapsed time at the initial state, T0, is typically initialised to 0. The elapsed

time at time step t, Tt, is incremented by the action duration Tdur at time step t:

Tt = Tt−1 + Tdur. D is a strictly positive and continuous distribution for action

durations and is defined over ground actions and ground states. We do not assume

that D has a first-order structure unlike the transition function and reward function

as this is often violated. For example, the action duration for moving between

locations depends on the length of the path and does not follow a first-order relation.
.
G can be the empty set initially and TGs can be added to

.
G at any time step. The

192

Chapter 5: Dynamic Objects, Time, and Coordination

achievement or violation of TGs at a time step t depends on the state
.
st, the durative

action
.
at executed at t, and the elapsed time Tt+1. Any change to the state, O, and

.
G takes into effect after the execution of an action and not before or during. That

is, the changes occur at discrete time steps t rather than continuous time T .

5.4 Dealing with TDORMDP Problems

In Section 4.1, we presented GK-RRL (Algorithm 11). In this section, we discuss the

impact of dynamic objects and TGs on GK-RRL and propose extensions to address

some of them. We refer to the extension of GK-RRL to solve a TDORMDP prob-

lem as GK-RRL+. The input problem to GK-RRL+ is a TDORMDP rather than an

RMDP. Dynamic objects affect the ground approximation (see Section 3.2), contex-

tual grounding (see Section 3.4.2), MBFS (see Section 4.3.1), and model-based meth-

ods, MQTE (see Section 3.5), Dyna (see Section 4.4.2), and UCT (see Section 4.3.2).

On the other hand, TGs affect contextual grounding and all of the aforementioned

model-based methods. Existing work related to TDORMDPs was discussed in Sec-

tion 2.7.1.

5.4.1 Dynamic Base Features

A ground approximation uses literals as base features. Since new state predicates

are added to P , their literals have to be added as base features to Φ which in turn

generates new candidate features. Likewise, if objects are removed from O, then

state predicates and features which involve these objects are removed from P and

Φ, respectively. This dynamically changing set of base features, or dynamic base

features, seems analogous to online feature discovery but with some differences. In

online feature discovery, conjunctive features are added to reduce the approximation

errors and granularity of the function approximation. Here, base features are added

because the state representation has changed. A Q-function maps state-action pairs

to Q-values. If the representation of the state changes with time, then this map-

ping changes and the optimal Q-function is non-stationary. Thus, dynamic objects

induce non-stationary in the optimal Q-function which could increase the sample

complexity.

193

Chapter 5: Dynamic Objects, Time, and Coordination

Since a first-order approximation is an abstraction of the ground approximation

(see Section 3.3.1), the set of first-order base features P̂ could also be affected when

O changes. However, it is to a lesser extent than the ground approximation as the

mapping of literals to base features is one-to-one while the mapping of literals to

first-order base features is typically many-to-one.

We can initialise P̂ such that it does not change regardless of the change in O.

Suppose that O changes at time step t, an MDP is constructed from a DORMDP

or TDORMDP (in the same way an MDP is constructed from an RMDP) and

represents a new problem. If this problem subsumes the previous problem at time

step t − 1, then new first-order base features are added to P̂ . Otherwise, if the

two problems are abstract-equivalent, then P̂ remains unchanged. We presented

the subsumption of problems and abstract-equivalent problems in Section 3.3.2. A

problem subsumes another problem if it has multiple objects of a type while the

subsumed problem has only one object of the same type. If we initialise P̂ by

assuming that there are at least two objects of every type, then the addition of

dynamic objects will not change P̂ . If an object is removed, we do not need to

remove any base features from P̂ as the grounding of first-order features considers

the updated O. Thus, a first-order approximation is a more suitable for solving

DORMDP and TDORMDP problems.

Effect on Grounding First-Order Approximation

Following the above solution, dynamic objects will not affect P̂ . However, dynamic

objects still affect the first-order approximation. When they are added to O, they

are considered by contextual knowledge. Conversely, if objects are removed from

O, then they will no longer be considered for grounding free variables. In other

words, dynamic objects affect the grounding of first-order features. While this seems

innocuous since the optimal Q-values might change depending on what objects there

are, it can worsen performance if this is not the case. We illustrate this with an

example.

Example 35 (Effect of Dynamic Objects on Evaluation of Features)

In Service Robot, the first-order base features for the symbolic action

â = find person(ROBOT, PERSON) include:

194

Chapter 5: Dynamic Objects, Time, and Coordination

• φ1 = need assistance(PERSON)

• φ2 = ¬need assistance(PERSON)

• φ3 = need assistance(?PERSON)

• φ4 = ¬need assistance(?PERSON)

When there is only one object of type PERSON , φ3 and φ4 will not evaluate to true

as there is no other object to substitute ?PERSON with. Suppose that there are

two people, p1 and p2, and only p1 needs assistance. If p1 and p2 are in O, then

φ1 and φ4 are true for the action find person(r1, p1). If only p1 is in O (i.e., p2

has not been added), then only φ1 is true. The existence of p2 in O could affect the

Q-values of find person(r1, p1) though it shouldn’t.

Example 35 illustrates the dependence of the grounding of first-order features on

the class of the problem. That is, the grounding can be different in RMDPs where

there are no dynamic objects and in DORMDPs or TDORMDPs where there are

dynamic objects. This affects transfer learning between different classes of problems

which we shall investigate empirically in Section 5.6.

Effect on MBFS

MBFS determines the set of base features from the connectivity of graphs constructed

from the CPFs of every state predicate in P . When state predicates are added to P

due to the addition of dynamic objects to O, MBFS constructs graphs for these new

state predicates and there could be additional base features. If the base features

have changed, one option is to retrain the Q-function approximation from scratch

by replaying observations from the experience buffer.

5.4.2 Representing Violated TGs

Goal context is determined from TGs as before. However, if a TG is violated, it

is no longer an active goal and will not be considered by goal context. This could

affect the grounding of first-order features and change the Q-values. Ideally, this

changes the policy such that other active TGs are pursued. However, if the first-

order features do not contain free variables which are grounded by goal context,

then its grounding is unaffected by the violated TG.

195

Chapter 5: Dynamic Objects, Time, and Coordination

Example 36 (Violated TG and Goal Context)

Goal context gives σgoal=g = {?OBJ/o1, . . . , ?PERSON/p1} for a TG with the goal

predicate g = goal object at(o1, p1). If the TG is violated in a state
.
si, then

goal context will not consider g and the free variables ?OBJ and ?PERSON might

not be substituted with o1 and p1, respectively. This affects the Q-values of actions

if the grounding of their first-order features change as a result. Otherwise, their

Q-values can remain unaffected. Consider another state,
.
sj, which is identical to

.
si except for the elapsed time. In

.
sj, the TG is not yet violated. The Q-values

Q̃(si, give(r1, o1, p1)) and Q̃(sj, give(r1, o1, p1)) can be the same because σgoal=g is

not used to substitute ?OBJ and ?PERSON for give(r1, o1, p1) in all states. This

is because o1 and p1 are objects in the terms of give(r1, o1, p1); the bound variables

OBJ and PERSON rather than the free variables are substituted with o1 and p1,

respectively.

The reason why the Q-values could remain unchanged is because from the per-

spective of the Q-function approximation, the state has not changed. The Q-function

approximation considers the state represented by features or first-order features. If

there are no literals which represent the fact that a TG is violated, then only the

change in contextual grounding due to a violated TG can affect the Q-values. If the

Q-values of some actions remain unchanged, the policy might attempt to achieve a

violated TG. In Example 36, the policy might select give(r1, o1, p1) in
.
si to achieve

goal object at(o1, p1) even though the TG is violated. The state transition is un-

affected in this case; o1 is now with p1 but the immediate reward is −1 (i.e., the

action cost). A ground approximation also suffers from the same issue and perhaps

even more so since it does not depend on contextual grounding.

We discuss four possible solutions. The first solution is to use the elapsed time

as a base feature. Since time is a continuous real value, the set of features is now

a hybrid of binary and real-value features. This causes some complications. iFDD+

is a feature discovery algorithm for binary features. We reproduce Equation 3.1 for

the relevance of a candidate feature here for ease of reference:

η =

∣∣ ∑t
i=0,φ(si,ai)=1 δi

∣∣√∑t
i=0,φ(si,ai)=1 1

.

196

Chapter 5: Dynamic Objects, Time, and Coordination

The relevance of a candidate feature is the normalised, cumulative absolute of TD

errors observed when the candidate feature is true. We modify the equation to

consider real-valued features:

η =

∣∣ ∑t
i=0 φ(si, ai)δi

∣∣√∑t
i=0 φ(si, ai)

. (5.4)

Equation 5.4 is equivalent to Equation 3.1 for binary features. For real-valued

features, we weight the TD error by the value of the feature which has to be nor-

malised such that φ(s, a) ∈ [0, 1]. The maximum duration of time has to be known

for normalisation. If this value is large, then the base feature for the elapsed time is

insignificantly small initially. Another possibility which averts this issue is to use the

normalised remaining time before a TG is violated: Ta−T
∆T

. Pardo et al. [131] show

that by conditioning the value function on the remaining time, the policies learned

consider the remaining time. However, they consider discrete time steps while we

deal with continuous time which is a considerably harder problem.

In either case, using the elapsed time or remaining time as a feature is not

suitable in a first-order approximation which abstracts actions to symbolic actions.

This is because while symbolic actions have similar effects (assuming the problems

are relational), they might not have similar action durations. For example, consider

the symbolic action move(ROBOT,WP1,WP2) which has a duration dependent on

the length of the path from WP1 to WP2. The action duration affects the transition

of elapsed time and the value of the feature for time. If the action durations cannot

be generalised for symbolic actions, it is not possible to use time as a first-order

feature.

The second solution is to introduce a symbolic state predicate which repre-

sents the fact that a TG is violated. For example, the symbolic state predicate

violated(OBJ) can be added to Service Robot to represent the fact that the TG

involving OBJ is violated. From Definition 3, problems of a domain have the same

set of symbolic state predicates P . Therefore, this solution creates a new variant

domain of Service Robot. Transfer learning between domains, or inter-domain

transfer, is not straightforward and typically requires mappings between state pred-

icates and actions of both domains [172]. Furthermore, increasing the cardinality of

197

Chapter 5: Dynamic Objects, Time, and Coordination

P leads to an increase in the size of the state space. We use an intermediary solu-

tion which utilises reward received(OBJ) ∈ P to represent a TG that is achieved

or will have been achieved had it not been violated. This is not quite the same

as violated(OBJ) but has an advantage of not changing P and the transition

function remains time-invariant. The reward function is time-dependent as positive

rewards are not given for achieving violated TGs. We discuss the significance of

time-invariant transition functions in Section 5.4.3.

The third solution is to consider goal conditioned Q-functions or value func-

tions. We discussed them in Section 3.4.2 and concluded that they are not suitable

for relational problems. The last solution is to use a model-based method which

performs policy rollouts to estimate Q-values. This not only considers whether TGs

are violated in the current state but also in subsequent states and can provide better

estimates of the Q-values. Thus, we chose this solution which shall be described in

the next section.

5.4.3 Model-Based Methods

We presented the model-based methods MQTE in Section 3.5, Dyna in Section 4.4.2,

and UCT in Section 4.3.2. These methods use a generative model to predict the next

state and immediate reward. To solve TDORMDPs, the generative model must

predict the next state with its elapsed time.

Our variant of Dyna generates imagined observations at the start rather than at

every time step (see Algorithm 16), and thus there are no imagined observations

which consist of dynamic objects since they are not in O initially. Since Dyna

simulates rollouts only in the initial state space (before dynamic objects are added),

the Q-function approximation can generate a policy which is poor in regions of

the state space where dynamic objects are added (or the expanded state space).

However, we posit that this might not be the case as first-order approximations are

less unaffected by dynamic objects and its generalisation property extends learning

in the initial state space to the expanded state space.

198

Chapter 5: Dynamic Objects, Time, and Coordination

Predicting and Propagating the Transition of Elapsed Time

The elapsed time in a state is the elapsed time in the previous state plus the action

duration in the previous step. The elapsed time is propagated during policy rollout

in MQTE, Dyna, and UCT in order to reason about the remaining time to achieve TGs

or to determine if TGs are active or violated. We assume that action durations

are not known and have to be learned. In Service Robot, the action durations

are stochastic. We assume that the action duration distribution D is normally

distributed. Given a set of observations, the generative model predicts an action

duration as the observed mean plus two standard deviations which gives a 95%

confidence. In our application (see Example 5.3.2), it is preferred to overestimate

the duration as TGs are violated only when the elapsed time has exceeded the end

time of its time bound (T a).

Search Tree Reuse in UCT

The search tree built in the previous time step by UCT can be reused if the current

state (or observed state in the current time step) matches the state of a child node

of the root node. This was discussed in Section 4.3.2. If dynamic objects are added

to O, then the state changes since P changes and the search tree cannot be reused.

Intuitively, the search tree should be build from scratch when new information about

the state is known.

Since a state is augmented with the elapsed time, it is almost never the case that

the predicated elapsed time is equal to the observed elapsed time because they are

continuous values. Therefore, the condition to reuse the search tree is relaxed. If

the predicted elapsed time is not more than the observed elapsed time and there

are no TGs added to
.
G in the previous time step, then the search tree is reused. If

the first condition is not satisfied, then the search tree was built on the premise of

an underestimation of the elapsed time; TGs which were achieved in the search tree

might actually be violated. Thus, the Q-values of actions estimated by UCT are no

longer accurate. If the second condition is violated, the search tree has to be build

from scratch to consider the new TGs.

199

Chapter 5: Dynamic Objects, Time, and Coordination

Time-Invariant Transition of State Predicates

We use a variant of TDORMDP where the transitions of state predicates in
.
S do

not depend on time. While UCT can deal with time-dependent transition functions if

the generative model can predict the time-dependent transitions of state predicates,

the model learner RLFIT [108] only considers discrete states, and thus cannot learn

time-dependent transition functions.

5.4.4 Learning from Hindsight

If the Q-function approximation considers state representations which do not contain

information on whether TGs are violated, as discussed in Section 5.4.2, then TD

learning can update the Q-function approximation wrongly. Suppose that there is

one TG
.
g = (g,

.
a, T `, T a). In a state

.
si where the elapsed time Ti < T a, the action

.
a is executed which achieves the goal predicate g. Since this is achieved before T a,

.
g

is achieved and an immediate reward r > 0 is given. Now, in another state
.
sj which

is identical to
.
si except that the elapsed time Tj > T a,

.
a is executed which achieves

g but
.
g is already violated. The immediate reward is 0. In these two scenarios, the

states
.
si and

.
sj map to the same state s in the Q-function approximation. Given

that Q̃(s,
.
a) is initialised to zero, TD learning updates and increases Q̃(s,

.
a) in the

first scenario since r > 0. This encourages the policy to select
.
a in both

.
si and

.
sj.

Suppose that the second scenario is encountered in many episodes thereafter and

Q̃(s,
.
a) ∼ 0. This discourages the policy from selecting

.
a in

.
si and

.
sj even though

executing
.
a in

.
si achieves

.
g.

To resolve this, the observation in the second scenario is imagined to have

achieved
.
g; TD learning updates Q̃(s,

.
a) with the immediate reward r instead of

0. This imagined observation is only used in TD learning and does not affect the

evaluation metric (e.g., the total return). The imagination of achieving a violated

TG is rather similar to the key concept in hindsight experience replay (HER) [4].

HER replays trajectories from the experience buffer, imagining that each trajectory

achieves an arbitrary goal which is the last state in the trajectory. While HER is

motivated by sample efficiency in problems with sparse rewards, the purpose of our

approach is to prevent unsound updates in TD learning which can worsen perfor-

mance.

200

Chapter 5: Dynamic Objects, Time, and Coordination

5.4.5 Extensions to Online RRL

We summarise GK-RRL+ which is the extension to GK-RRL (Algorithm 11). The

modifications made, where line numbers refer to Algorithm 11, are as follows:

• Base features of Q-function approximations are initialised to account for dy-

namic objects (line 1) as discussed in Section 5.4.1. This includes both MFFS

and MBFS.

• First-order features are grounded with O which changes due to dynamic ob-

jects. This affects the computation of Q-values (line 2) and step update of a

Q-function approximation (line 14).

• Model-based methods MQTE (line 8), Dyna (lines 3 to 4), and UCT (line 6)

compute the transition of elapsed time as discussed in Section 5.4.3.

• The step update of a Q-function approximation (line 14) considers learning

from hindsight as discussed in Section 5.4.4.

5.5 Simulation-to-Simulation Transfer

In simulation-to-real-world (Sim-to-Real) transfer, knowledge that is learned in a

simulated environment is transferred to the real world to accelerate learning and

improve performance in the real world. This utilises the abundance of simulations

to reduce the number of real world experiments which are often more expensive. An

important challenge in Sim-to-Real transfer is to overcome the gap between simula-

tion and the real world which can cause policies learned in simulated environments

to perform poorly in the real world.

Since we are not able to perform experiments in the real world due to limita-

tions in resources, we perform simulation-to-simulation (Sim-to-Sim) transfer in-

stead where knowledge is transferred from RDDLSim’s to Gazebo’s simulated envi-

ronments. Notwithstanding the lesser challenge in Sim-to-Sim transfer, both Sim-

to-Sim and Sim-to-Real transfer deal with the same challenge to knowledge transfer:

discrepancies in the learning and test environments. Sim-to-Sim transfer can be re-

garded as a preliminary step towards Sim-to-Real transfer [60]. In the remainder of

this section, we describe Gazebo’s simulated environment and its differences with

RDDLSim’s simulated environment. Our work on Sim-to-Sim transfer was published

201

Chapter 5: Dynamic Objects, Time, and Coordination

Figure 5.2: Simulated environments in Gazebo for the Service Robot domain. On
the left is the environment for one person (SR1) and on the right is the environment
for three people (SR2 and SR3).

in [122].

5.5.1 Simulated Environment in Gazebo

In the previous chapters, we used RDDLSim [149] to simulate the environment.

RDDLSim returns the next state and immediate reward based on the preconditions,

CPFs, and reward function defined in the RDDL domain file. This simulated en-

vironment is computationally fast but lacks realism for robotic applications in the

real world. A more realistic simulated environment can be build with Gazebo [89],

a 3D simulator which utilises a physics engine. We built two 3D environments for

Service Robot in Gazebo which are shown in Figure 5.2. Figure 5.3 shows snap-

shots of a particular experimental run where the robot achieves a goal. We use the

Robot Operating System (ROS) [140], a set of software libraries and tools, to build

the interface for the TIAGo robot. This interface includes software which perform

sensor measurements (for localisation, navigation, and detecting people), motion

planning (for navigation), manipulation planning (for grasping), etc. The ROSPlan

framework [23, 25] is used to embed task planning into ROS. We implemented ROS

packages to perform the following tasks:

• execute high-level actions (i.e., actions in A);

• monitor the localisation accuracy of the robot;

• interface with GK-RRL+.

Our ROS packages are integrated with ROSPlan. We use existing ROS packages to

execute some motor control actions such as navigation and grasping. The items are

202

Chapter 5: Dynamic Objects, Time, and Coordination

Figure 5.3: Snapshots of a robot executing some actions in the Gazebo environment.
The blue rays emanating from the robot is its laser scan. (1): The robot localises.
(2) and (2a): The robot finds a person using its camera where (2a) is the camera
view. (3): The robot moves towards the person. (4): The robot talks to the person
and receives some tasks. (5) and (5a): The robot picks up an item. (6) and (6a):
The robot gives the item to the person and completes the task.

cubes with ArUco markers to make it easier for the robot to detect and grasp.2

5.5.2 Differences between Simulated Environments

There are some differences between RDDLSim’s and Gazebo’s simulated environ-

ments for Service Robot. Firstly, in RDDLSim, the robot loses localisation when

moving with a probability of 0.1; in Gazebo, it is deemed to have lost localisation

when the covariance of the pose estimation from adaptive Monte Carlo localisa-

tion exceeds user-defined thresholds (3 metres for position and 10 degrees for ori-

entation). Secondly, in RDDLSim, the robot always succeeds in finding a person

(find person(ROBOT, PERSON)) and ends up in the same location as the per-

son. In Gazebo, the robot follows an exploration path to find a person. It might

find the intended person and/or other people it encounters along the way. Also, it

might not be in the same location as the person since it could detect people from

a distance with its camera. The action terminates when the robot reaches the end

2ArUco markers are binary square fiducial markers which provide points of references for com-
puter vision algorithms to estimate the pose of objects.

203

Chapter 5: Dynamic Objects, Time, and Coordination

of the exploration path or the intended person is found. Lastly, in RDDLSim, pick-

ing up and putting down an item always succeed while these actions might fail in

Gazebo (the state remains unchanged when they fail).

Dynamic objects in Service Robot are defined in Section 5.2.1. In Gazebo,

since a robot can find other people besides the intended person, dynamic objects of

type PERSON can be added to O (state predicates and actions are added to P

and A accordingly) when the robot executes find person(ROBOT, PERSON).

For example, p2 can be added to O when find person(r1, p1) is executed. In

RDDLSim, this will not happen since the robot will only find the intended person

and no one else.

Our work (e.g., GK-RRL+) learns and plans at the task level rather than at the

motor control level (e.g., making decisions on what actuation commands to give).

At the task level, states are sufficiently represented by literals. On the other hand,

sensory measurements (e.g., visual information from a robot’s camera) often need

to be included as part of the state for motion control problems. Although Gazebo’s

simulated environment is significantly richer than RDDLSim’s, for the purpose of

decision making at the task level, this discrepancy does not directly affect Sim-to-

Sim transfer. Research on Sim-to-Real transfer for motion control problems are

concerned with discrepancies in physical quantities (e.g., friction, rigidity, mass)

[27], visual information (e.g., lights, shadows, and textures) [74], and dynamics [73].

Our work is not concerned with and does not deal with these low-level discrepancies.

5.6 Empirical Evaluation and Discussion

We use two simulated environments for experiments: RDDLSim and Gazebo. Since

RDDLSim does not consider time, we augment the observation from RDDLSim with

the action duration which is the mean of the observed action durations in Gazebo

injected with normally distributed noise (standard deviation is 20% of the mean).

Psource → Ptarget denotes that a first-order approximation learned in the source

problem, Psource, is transferred to the target problem, Ptarget. The experimental

setup is as described in Section 3.7.1. An episode can also be terminated if all TGs

are either achieved or violated. If it terminates with at least one violated TG, then

204

Chapter 5: Dynamic Objects, Time, and Coordination

Figure 5.4: Results for learning from scratch and transfer learning between different
classes of problems. The source problems are randomised RMDP problems of SR1(
P SR1
∅
)
. The target problems are randomised TDORMDP problems of SR1 (top

row) and SR3 (bottom row), and can have dynamic objects
(
PDO

)
, TGs

(
PT
)
, or

both
(
PTDO

)
.

an immediate reward of −1 is given for the remaining time steps. This is only for

the presentation of results.

The effect of ∆T on the performance when solving TDORMDP problems is

examined and discussed in Section C.3.1. Following this, we use ∆T = 300 seconds

for all subsequent experiments.

5.6.1 Dynamic Objects and TGs

We evaluate GK-RRL+ on problems with dynamic objects (denoted by PDO), prob-

lems with TGs (PT), and problems with dynamic objects and TGs (PTDO). As

a baseline, problems without dynamic objects and TGs (P∅) are also considered.

P∅ is represented by RMDPs while the rest are represented by TDORMDPs. We

also investigate transfer learning from RMDPs to TDORMDPs where the source

problems are P SR1
∅ and the target problems are SR1 and SR3.3

3For a problem P , the subscript denotes if the problem has dynamic objects and/or TGs and
the superscript denotes the problem instance.

205

Chapter 5: Dynamic Objects, Time, and Coordination

Learning from scratch. First, we analyse the performance of learning first-order

approximations from scratch. Figure 5.4 shows the results. For SR1, the performance

in P∅ and PTDO are comparable with the former having a slightly better performance

in terms of rewards and goal states reached. For SR3, the asymptotic performance

in P∅ is significantly better. This indicates that the presence of either dynamic

objects, TGs, or both, can worsen the performance of first-order approximation.

The elapsed time in P∅ is longer than that in PTDO. While a shorter elapsed time

typically indicates a more optimal policy, this is not the case when TGs are involved.

When TGs are violated and there remains no other TGs to be achieved, the episode

terminates resulting in a shorter elapsed time.

Transfer learning with model-free methods. Next, we analyse the perfor-

mance of transfer learning. We limit the discussion here to model-free methods and

defer model-based methods to a later part of the section. Figure 5.4 shows the re-

sults. There are three classes of target problems: PDO, PT , and PTDO. This is to

determine the individual impact of dynamic objects and TGs on the performance.

For transfer learning from SR1 to SR1, the source and target problems are different

randomised problems. The result for P SR1
∅ → P SR3

∅ was presented in Section 3.7.4

and is included here for ease of reference.

For SR1, the performance in the three classes of target problems are comparable.

Transfer learning gives a jump start in performance, demonstrating that even if the

first-order approximations are learned in P∅, they can still be utilised to reduce sam-

ple complexity in target problems involving dynamic objects and TGs. This holds

true even for the large scale problem, SR3. Comparing the three types of problems

for SR3, it is evident that TGs deteriorate the performance of first-order approxima-

tion; the performance in P SR1
∅ → P SR3

∅ and P SR1
∅ → P SR3

DO are comparable while the

performance in P SR1
∅ → P SR3

T and P SR1
∅ → P SR3

TDO are comparable. We discussed the

impact of dynamic objects on transfer learning between RMDP and TDORMDP in

Section 5.4.1. Here, this is not evident. This is because the discrepancy between

SR1 and SR3, both of them are not abstract-equivalent problems, is greater than

that due to dynamic objects. When the first-order approximation is updated in

the target problem (i.e., SR3), it adapts to the target problem and dynamic objects

206

Chapter 5: Dynamic Objects, Time, and Coordination

concurrently. In the next section, empirical results show that dynamic objects do

affect transfer learning.

The first-order approximation is less affected by TGs in SR1 than SR3 because

there are only two TGs in SR1. This gives two possible implicit orders of TGs which

are randomised in each episode (see Section 5.3.2). The probability for a policy to

choose the right order to achieve the TGs is 0.5. In SR3, there are six TGs which

gives 720 possible implicit orders of TGs. It is much less likely for a policy to

choose the right order to achieve the TGs by chance. If the policy learns that the

robot should only talk to a person after active TGs are achieved, then there will be

at most two active TGs at any time step (see Example 34). Since the first-order

approximation is learned in P SR1
∅ where there is only one person and goals have

no time bounds, this behaviour was never learned. This behaviour was also not

learned in P SR3
TDO (i.e., learning from scratch) because there are no state predicates

which represent the implicit order. Therefore, the Q-function approximation cannot

generate a policy which achieves TGs in the implicit order.

In Robot Fetch, the symbolic state predicates object at(OBJ,WP)

and OBJECT GOAL(OBJ,WP) imply an order to achieve goals. Similarly, in

Academic Advising, the symbolic state predicate PREREQ(COURSE1, COURSE2)

implies an order to achieve goals. We discussed the shortcoming of first-order

approximation in dealing with interdependent goals in Section 3.4.1. Thus, the

first-order approximation cannot deal with TGs which are interdependent due to

the implicit order. While the ground approximation with its finer granularity can

solve Robot Fetch and Academic Advising, as shown in Section 3.7.2, it does so by

memorising the sequence of actions to reach the goal state (see Example 13). This

will not work for the implicit order of TGs which is randomised in each episode.

Furthermore, results in Section 3.7.2 show that the ground approximation performs

poorly and does not scale well in Service Robot.

Transfer learning with model-free and model-based methods. We evaluate

different methods for solving TDORMDP problems of SR3. Figure 5.5 shows the

results. Unless stated otherwise, the experimental setup and hyperparameters are

described in Section 4.5.6. The hyperparameters for UCT are Λroot = Λleaf = 0.5

207

Chapter 5: Dynamic Objects, Time, and Coordination

Figure 5.5: Performance of different methods in solving TDORMDP problems of
SR3. The first-order approximation is learned in SR1 and transferred to SR3. If
stated in the legend, either the oracle or learned model is used.

Figure 5.6: Result for Sim-to-Sim transfer.

and Hrollout = 5. The benchmarks are LQ-RRL and THTS [87]. GK-RRL+ uses the

transferred first-order approximation and either the oracle model or learned model,

LQ-RRL uses only the transferred first-order approximation, and THTS uses only the

oracle model. The performance of THTS represents the best achievable performance

by a state-of-the-art model-based method which does not consider the transition of

time. It performs the worst as it attempts to achieve violated TGs, failing to reach

the goal state most of the time. LQ-RRL performs initially worse than THTS but

improves asymptotically. GK-RRL+ with the oracle model has the best performance

followed by GK-RRL+ with the learned model. Their performance are significantly

better than LQ-RRL and THTS. This demonstrates that the combination of model-

based and model-free methods can solve TDORMDPs effectively.

5.6.2 Sim-to-Sim Transfer

In Sim-to-Sim transfer, knowledge learned in source problems, simulated in RDDL-

Sim’s environment, are leveraged to solve target problems, simulated in Gazebo’s

208

Chapter 5: Dynamic Objects, Time, and Coordination

environment. The source and target problems are different randomised problems of

SR3 (20 problems in total). For brevity, Psource → Ptarget denotes P SR3
source → P SR3

target

here.

Zero-shot transfer. The source problems do not have dynamic objects and TGs

while there are four different classes of target problems: P∅, PDO, PT , and PTDO. For

each run out of ten independent runs, a first-order approximation is learned from

scratch in 1000 episodes of the source problem where ten different problems are

attempted sequentially; a new problem is attempted in every 100 episodes. In other

words, each first-order approximation is learned over ten different problems rather

than one problem. This tends to improve its generalisation such that it can generate

policies which perform well in more problems. This approach draws similarities to

[64, 109, 185] which generate training examples from multiple problems to learn

generalised abstractions and shares the same motivation as domain randomisation

[72, 175]. Each first-order approximation, paired with a different learned model (used

by UCT), generates a greedy policy to solve ten target problems over ten episodes; a

new problem is attempted in each episode. In essence, this is zero-shot transfer since

a target problem is attempted in only one episode and with no prior observations

of the target problem. The source and target problems are different randomised

problems. UCT is used when TGs are involved (i.e., P∅ → PT and P∅ → PTDO).

Experimental setup. The hardware for running the experiments are different

from previous experiments. We use a virtual machine with two Intel Core™ i7-930

2.80 GHz processors and 8 gigabytes of memory. The hyperparameters for UCT are

Λroot = Λleaf = 0.5 and Hrollout = 5. The timeout for UCT is 30 seconds, an increase

from 10 seconds for the experiments in Sections 4.5.6 and 5.6.1 because the hardware

is now of considerably lower processing power.

Figure 5.6 shows the results for the four classes of target problems.4 Firstly,

P∅ → P∅ performs well with near-optimal or optimal performance, solving every

problem. This demonstrates zero-shot transfer between different simulated envi-

ronments. Secondly, P∅ → PDO performs poorer than P∅ → P∅. We also tried

PDO → PDO (results are not shown) and the performance is only marginally bet-

4Results are not averaged with a moving window.

209

Chapter 5: Dynamic Objects, Time, and Coordination

ter. This is in contrast with the results in Section 5.6.1 which show that dynamic

objects do not affect transfer learning. The reason is because the conditions under

which dynamic objects of type person are added to O are different in RDDLSim

and Gazebo as discussed in Section 5.5.2. Thus, the combination of different simu-

lated environments and classes of problems causes significant domain shift (i.e., the

characteristics between the source and target problems are different) which affected

zero-shot transfer.

Thirdly, the performance for P∅ → PT in terms of total rewards is poorer than

P∅ → P∅ but better than P∅ → PDO. The latter suggests that the domain shift

due to TGs is less than that due to dynamic objects. The performance is sub-

optimal because learned approximate models are used by UCT to deal with TGs.

Both P∅ → PT and P∅ → PDO reached a comparable number of goal states, solving

five out of ten problems on average. Lastly, we consider target problems with TGs

and dynamic objects. Clearly, this class of problems pose the largest domain shift

among the four classes we considered. As expected, P∅ → PTDO has the worst

performance and only a small number of goal states were reached.

The results for zero-shot transfer do not indicate the sample complexity of

GK-RRL+ since no learning takes place in the target problems. Nevertheless, in spite

of a domain shift, GK-RRL+ achieves a jump start in performance for all four classes

of target problems. This is evident by comparing with the results for learning from

scratch as shown in Figure 5.4 where the total rewards received initially is −60 for

SR3 (i.e., an immediate reward of −1 is received in every time step).

5.7 Multi-Agent Coordination

So far, we have considered single-agent problems. In this section, we discuss how our

work can be extended to address the coordination of multiple agents. First, we define

coordinated actions. Next, we propose a framework which decomposes a multi-

agent problem to single-agent problems, interleaving multi-agent coordination and

single-agent decision making, learning, and acting. Each agent has a single-agent

module (SAM) which is a collection of algorithms (e.g., GK-RRL+) and hardware

(if any) responsible for decision making, learning, and acting. We refer to the

210

Chapter 5: Dynamic Objects, Time, and Coordination

Figure 5.7: A multi-agent decomposition framework for multi-agent coordination
which consists of a multi-agent module (MAM) and single-agent modules (SAMs).
The green arrows denote information pertaining to the single-agent problems, the
purple arrows denote feedback from the SAMs, the red arrows denote actions exe-
cuted by the SAMs, and the blue arrows denote observations from the environment.

algorithm(s) responsible for multi-agent coordination to achieve goals and joint goals

as the multi-agent module (MAM). Our multi-agent decomposition framework is

illustrated in Figure 5.7. In later parts of this section, we present two variants of

this framework. They differ primarily in their MAMs and the information exchanged

between the MAM and the SAMs. Existing work related to multi-agent coordination

was discussed in Section 2.7.2.

5.7.1 Coordinated Actions

Coordinated actions are actions which agents execute to produce an intended effect

or to achieve a joint goal (i.e., a goal that is common among the agents). To

coordinate, the joint goal is decomposed to a set of TGs, one for each agent involved.

The TG is the tuple (g, a, T `, T a) where a is the durative or instantaneous action

the agent needs to execute and g is the goal predicate which is part of the effects

of a. The start time T ` of the TGs are equal if the coordination needs to start at

the same time. Similarly, the end time T a of the TGs are equal if the coordinated

actions need to complete execution at the same time. We identify two types of

coordinated actions.

Definition 35 (Weakly Coordinated Actions)

Weakly coordinated actions are coordinated actions with no temporally annotated

conditions and effects. Each agent involved has one coordinated action to execute.

211

Chapter 5: Dynamic Objects, Time, and Coordination

Example 37 (Weakly Coordinated Actions to Achieve a Joint Goal)

We consider a multi-agent variant of Service Robot. Suppose that two items, o1

and o2, are to be brought to a person p1 at the same time by the time T +∆T . Since

a robot can only hold at most one item, this requires two robots to achieve the task

or joint goal. The joint goal is allocated to two robots, r1 and r2. It is decomposed

to two TGs:
.
g1 = (object with(o1, p1), give(r1, o1, p1), T ′, T + ∆T) and

.
g2 =

(object with(o2, p1), give(r2, o2, p1), T ′, T + ∆T) where
.
g1 shall be achieved by r1

and
.
g2 by r2, and T ′ is the elapsed time when both robots concurrently start to

execute their respective actions.

Weakly coordinated actions, such as those described in Example 37, are coordi-

nated actions which require only one TG for each agent involved. The coordination

between agents is represented by the time bounds of the TGs. An immediate re-

ward is given only when every agent achieves its respective TG within the time

bound. Each agent learns and plans to achieve its TG assuming that the other

agents will do their part. Based on this assumption, the agent’s internal model

(i.e., transition and reward functions) is independent of other agents and we can

decompose the multi-agent problem to single-agent problems which are represented

by TDORMDPs. An agent’s internal model differs from the environment where

state transitions and rewards depend on other agents.

Definition 36 (Strongly Coordinated Actions)

Strongly coordinated actions are different from weakly coordinated actions in either

one or both of the following aspects:

• Coordinated actions have temporally annotated conditions and effects; either

the conditions, effects, or both, depend on other coordinated actions.

• Agents have a sequence of coordinated actions to execute.

Example 38 (Strongly Coordinated Actions to Achieve a Joint Goal)

A task is to bring a large item o1 to a person p1. Since a robot cannot move a

large item alone, the task is a joint goal which requires two robots. Suppose that the

robot r1 is at wp1, the robot r2 is at wp2, p1 is at wp4, and o1 is at wp3. The

sequence of actions which r1 has to execute are move(r1, wp1, wp3), pick up(r1, o1),

move(r1, wp3, wp4), and give(r1, o1, p1). The sequence of actions which r2 has

212

Chapter 5: Dynamic Objects, Time, and Coordination

to execute are move(r2, wp2, wp3), pick up(r2, o1), move(r1, wp3, wp4), and

give(r2, o1, p1).

The sequence of coordinated actions is (1) pick up(r1, o1) and pick up(r2, o1),

(2) move(r1, wp3, wp4) and move(r2, wp3, wp4), and (3) give(r1, o1, p1) and

give(r2, o1, p1). A TG is constructed for each coordinated action and for each

agent. Thus, the joint goal is decomposed to six TGs, three for each robot.

(3) is represented as two TGs similar to the TGs in Example 37. (1) and (2)

are represented in the same manner where the goal predicates are the effects of

the actions. For (1), the TGs are (holding(r1, o1), pick up(r1, o1), T1, T2) and

(holding(r2, o1), pick up(r2, o1), T1, T2) where T1 is the elapsed time which both

robots start to execute the actions and T2 − T1 is the duration allowed for the

actions. A preceding TG must be achieved before the next TG can be attempted. If

a preceding TG is violated, then the remaining TGs are violated as well.

The coordinated actions are strongly coordinated actions because each robot is

required to execute a sequence of three coordinated actions. The coordinated ac-

tions have temporally annotated effects which are dependent on the other robot—both

robots need to pick up and hold o1 together; if one robot fails, then the other robot

fails as well.

Learning to solve joint goals which require strongly coordinated actions present

challenges that are beyond the scope of our work. In Example 38, the transitions of

goal predicates holding(r1, o1) and holding(r2, o1) depend on both robots. Thus,

the transition function is defined over the joint state-action space of the two robots.

This problem cannot be represented by a TDORMDP which only models single-

agent problems. In short, we only consider an extension of our work to address

weakly coordinated actions which allow the decomposition of a multi-agent problem

into multiple single-agent problems.

The full treatment of multi-agent problems is better addressed by work in multi-

agent reinforcement learning (MARL) [197]. MARL algorithms suffer from poor

scalability and have a high sample complexity as they learn in the joint state and

action spaces which have sizes that scale exponentially with the number of agents.

The joint state space considers the properties of every agent and its relation with the

environment and objects in the environment. Each of the K agents has a state space

213

Chapter 5: Dynamic Objects, Time, and Coordination

Figure 5.8: The MAM of a multi-agent decomposition framework which decomposes
a multi-agent problem to a set of single-agent problems using information from a
temporal planner. A purple arrow denotes feedback from a SAM and a green arrow
denotes information sent to a SAM.

Si and an action space Ai where the subscript i denotes the i-th agent. The joint

state space is
∏K

i=1 Si and the joint action space is
∏K

i=1 Ai. Our work avoids the

combinatorial exploration of the state-action space by considering the multi-agent

problem as a set of single-agent problems. The limitation is that it only addresses

weakly coordinated actions.

5.7.2 Decomposition with Temporal Planning

The first variant of our multi-agent decomposition framework uses a temporal plan-

ner such as [12, 28] to allocate TGs to agents (or SAMs). The MAM is illustrated in

Figure 5.8. It uses a temporal planner to produce a temporal plan involving multiple

agents to achieve goals and joint goals. Each action in a temporal plan is associated

with a start time and an end time and concurrent actions are possible. Thus, a tem-

poral planner can be used for multi-agent coordination. However, temporal planners

do not typically consider uncertainty and probabilistic effects. To resolve this, our

framework integrates temporal planning (in the MAM) and RL (in the SAMs). Both

of them operate at different levels of abstraction for the problem. This decoupled

approach allows us to use the most appropriate method to solve different aspects of

the problem: temporal planning for coordination among multiple agents and RL for

decision making under uncertainty. This work was published in [24]. In the paper,

simulated experiments demonstrated the efficacy of this framework in coordinating

some heterogeneous robots for the autonomous maintenance of an offshore energy

214

Chapter 5: Dynamic Objects, Time, and Coordination

platform. Here, we present the main concepts and refer readers to the paper for

details.

The framework performs four main steps:

1. It receives a multi-agent problem and uses a temporal planner to produce a

temporal plan.

2. The multi-agent problem and temporal plan are mapped to single-agent prob-

lems and plans.

3. Each single-agent problem is solved independently.

4. The multi-agent problem is updated following feedback from SAMs. Go to

Step 1.

Step 4 is only required if some TGs remain active after every SAM has stopped

running. A SAM stops running if it has no active TGs (either achieved or violated),

it has reached the end of the time horizon, or the elapsed time has exceeded the

duration of the temporal plan. The multi-agent problem is expressed in PDDL2.1

and specifies the initial states for all agents and a set of goals and joint goals with

no time bound. Next, we describe the four steps in details.

Step 1: Temporal planning. A temporal planner solves the multi-agent problem

and produces a temporal plan such that the temporally annotated conditions of

actions are satisfied over the duration they are executed and all goals and joint

goals are achieved (if possible). The temporal planner requires the true model of

the multi-agent problem which is written in PDDL2.1. We assume that the true

model is known. Actions in the temporal plan which involve multiple agents are

coordinated actions.

Step 2: Mapping to single-agent problems. As PDDL2.1 cannot describe

probabilistic problems, the single-agent problem is modelled as a TDORMDP. The

multi-agent problem and temporal plan are mapped to single-agent problems and

plans. The transition functions for the single-agent problems are unknown. This

step consists of three substeps which are illustrated in Figure 5.8.

Step 2a: Goals extraction. The temporal planner reasons with the temporal

constraints of PDDL2.1 actions and produces a temporal plan to achieve goals and

215

Chapter 5: Dynamic Objects, Time, and Coordination

joint goals. A goal requires one agent while a joint goal requires the coordination of

multiple agents. The goals and joint goals with their respective actions are mapped

to TGs which are allocated to the associated agents.

Step 2b: Plan mapping. The temporal plan is decomposed to a set of single-

agent plans such that an agent’s plan consists of PDDL2.1 actions associated with

the agent. Each PDDL2.1 action in the single-agent plan is then replaced with a

sequence of durative actions (the durative actions are in
.
A of a TDORMDP).

Step 2c: State mapping. The initial state for each agent is determined from

the initial state of the multi-agent problem. This involves the mapping of literals

between the two problems. The state space of a single-agent problem is reduced by

including only relevant objects in O. An object is relevant to an agent if it is

associated with a literal that describes the agent’s initial state, is associated with a

goal predicate that is allocated to the agent, or is in the term of an action in the

agent’s single-agent plan. This reduces the state space but assumes that irrelevant

objects are not required to achieve the agent’s TGs.5

Step 3: Solve single-agent problem. The initial state, set of TGs, and set of

objects form a TDORMDP where
.
T and D are unknown; an approximate model of

.
T is available. An agent’s SAM then executes its plan (from Step 2b) or a policy to

achieve its allocated TGs. This is outlined in Algorithm 17 which shall be described

later.

Step 4: Update multi-agent problem and replan. When a SAM terminates,

it sends its current state and the set of active TGs and violated TGs to the MAM.

The multi-agent problem is updated and a new temporal plan is produced. The

cycle repeats by going back to Step 1. This continues until all goals are achieved.

Note that the goals and joint goals considered here do not have time bounds; the

5This assumption is violated in certain situations. For example, an agent needs to enter a
room to achieve a goal. Only one door is considered relevant. If this door is locked, the agent
cannot achieve its goals as its policy will not consider another door. We can reduce the strictness of
relevant objects by considering objects which are related to relevant objects (through some literals)
as relevant objects as well.

216

Chapter 5: Dynamic Objects, Time, and Coordination

time bounds are added by the MAM to coordinate agents. Thus, violated TGs can

still be attempted by changing the time bounds when MAM replans.

Assumptions. We assume the following information are known: the mapping

from PDDL2.1 actions to durative actions, the mapping from multi-agent joint

state to single-agent states, and the multi-agent true model (i.e., PDDL2.1 do-

main). The temporal planner requires the true model to produce a temporal plan.

While this is a significant assumption, in our work [24], the PDDL2.1 actions are

abstract, deterministic actions which are easier to model than durative actions with

probabilistic outcomes. Similar assumptions are also made in related work such as

[61, 70, 91, 193].

Reactive Plan Execution

The SAM uses Algorithm 17 to solve its single-agent problem. The inputs are

similar to GK-RRL (Algorithm 11) with some exceptions; the problem P is now a

TDORMDP instead of an RMDP and a single-agent plan (Plan) and the maximum

allowable elapsed time (Tmax) are additional inputs. Tmax is the duration of the

temporal plan from which Plan is mapped from. For brevity, we consider only a

Q-function approximation rather than an ensemble though it is straightforward to

extend the algorithm to learn an ensemble.

Algorithm 17 combines plan execution, learning, and plan adaptation. The Q-

function approximation (Q̃) can be transferred from a previous problem or initialised

with Dyna (line 2). Dyna is outlined in Algorithm 16. The agent follows the plan Plan

which specifies the action to select at each time step t (line 6). If an unexpected

outcome occurs which renders the action in Plan to be inapplicable (line 7), the

agent follows a policy π generated from Q̃ (line 9). The plan will no longer be

followed. The advantage of following a policy rather than a plan is the reduced

computation time which makes it attractive for reactive plan adaptation in the face

of uncertainty. When unexpected states are reached, a planner needs to replan.

This can happen frequently if there are many agents and the environment is highly

stochastic. Since the temporal planner coordinates multiple agents, a new temporal

plan can affect the plans of multiple agents. For example, a robot moves to a location

217

Chapter 5: Dynamic Objects, Time, and Coordination

Algorithm 17: Reactive plan execution

1 Function

Reactive Plan Execution(P,M, Q̃,Φc,η, CK,Hsim, Nsim, P lan, Tmax):

Input: Problem P = (C,P ,
.
A,O,

.
G,

.
T ,

.
R,D , .s0, H, γ),

Generative model M,
Q-function approximation Q̃,
Candidate features Φc,
Relevances of candidate features η,
Contextual knowledge CK,
Simulated horizon Hsim,
Number of rollouts Nsim,
Plan Plan,
Maximum allowable elapsed time Tmax

2
(
Q̃,Φc,η

)
← Dyna(P,M, Q̃,Φc,η, CK,Hsim, Nsim)

3 T = 0, Follow = >
4 for t = 0 to H − 1 and

.
st is not terminal state and T < Tmax do

5 if Follow then
6

.
at ← Follow Plan(Plan)

7 if
.
at is not applicable in

.
st then

8 Follow = ⊥

9 if Follow = ⊥ then
.
at ← π(

.
st)

10
.
st+1, rt, Tdur ← Execute action

.
at

11 T ← T + Tdur

12
(
Q̃, Φc, η

)
← Update Approximation

(
Q̃, A, O, Φc, η, CK,

.
st,

.
at,

rt,
.
st+1

)
13 M← Learn Model(M,

.
st,

.
at, rt,

.
st+1, Tdur)

14 return
(
Q̃, Φc, η,M,

.
st
)

only to be instructed to move elsewhere, thereby achieving no meaningful progress

in the entire process. Thus, replanning should be limited. Instead, the policy is

used as a reactive plan adaptation to avoid affecting other agents.

The action is executed (line 10) and the resulting observation is used to update

the elapsed time (line 11), Q̃ (line 12, see Algorithm 4), and M (line 13). The

algorithm terminates (i.e., the SAM stops running) if there are no active TGs (either

achieved or violated), it has reached the end of the time horizon, or the elapsed time

has exceeded Tmax (line 4). The last condition is necessary to avoid prolonged idling.

For example, a robot is stuck and takes longer than expected to reach its destination.

The execution of this action counts as one discrete time step but significant time

has elapsed. Since the MAM replans only after all SAMs stop running, SAMs idle

218

Chapter 5: Dynamic Objects, Time, and Coordination

Algorithm 18: Multi-agent coordination for weakly coordinated actions

1 Function Multi Agent Coordination(SAM):
Input: A set of SAMs, SAM

2
.
GMAM = ∅

3 while at least one SAM ∈ SAM is running do
4 Run SAM concurrently
5 if a new joint goal

.
gjoint is received by a SAM then

6 (
.
g1, . . . ,

.
gN)← Decompose Joint Goal(

.
gjoint)

7 Add (
.
g1, . . . ,

.
gN) to

.
GMAM

8 Remove violated/achieved sets of TGs from
.
GMAM

9
.
GMAM ← Time Bounded Goals Auction(SAM ,

.
GMAM)

until the last SAM stopped running. Algorithm 17 returns the current state of the

agent which is feed back to the MAM (line 14).

5.7.3 Auctioning TGs

There are some shortcomings of the framework presented in the previous section.

It requires substantial expert knowledge to map between multi-agent problem and

single-agent problems. Furthermore, the integration of the MAM and SAMs is not

tightly coupled; TGs are only allocated at the start of an episode which ignores the

possibility that TGs could be active at any time step. Therefore, we present a second

variant of our multi-agent decomposition framework to address these shortcomings.

One advantage of the first variant is that it solves a multi-agent problem written

in PDDL2.1. This is a more general class of multi-agent problems than the one

considered here which uses durative actions instead of PDDL2.1 actions. We present

the concepts of the second variant, leaving empirical evaluations for future work.

In the second variant, Algorithm 18 is the MAM that coordinates the SAMs.

The input is a set of SAMs (SAM), one for each agent.
.
GMAM is a set of TGs for

the multi-agent problem (line 2). Algorithm 18 runs until all SAMs stopped running

(line 3). Each SAM runs GK-RRL+ and stops running when GK-RRL+ terminates. All

SAMs can run concurrently (line 4). At any time, a SAM can receive a joint goal

(line 5) which is decomposed to a set of TGs, one for each agent required to achieve

the joint goal (line 6). All TGs in this set differ only in their goal predicates and do

not involve any action yet. This set of TGs is added to
.
GMAM (line 7). SAMs can

219

Chapter 5: Dynamic Objects, Time, and Coordination

Algorithm 19: Sequential single-item auctions of TGs

1 Function Time Bounded Goals Auction(SAM ,
.
GMAM):

Input: A set of SAMs, SAM ,
Sets of TGs,

.
GMAM

2 while
.
GMAM 6= ∅ do

3 Best = ∅
4 Tmin = −∞
5 for (

.
g1, . . . ,

.
gN) ∈

.
GMAM do

6 Bids← Auction(SAM , (
.
g1, . . . ,

.
gN))

7 for C ∈ Combination(Bids) do
8 Tstart ← Get largest start time from bids in C
9 Tdur ← Get largest action duration from bids in C

10 if Tstart ≥ T ` and (Tstart + Tdur) ≤ T a and
(Tstart + Tdur) < Tmin then

11 Best = (C, Tstart, Tdur)
12 Tmin = Tstart + Tdur

13 if Best = ∅ then
14 break

15 else
16 (C, Tstart, Tdur)← Best
17 for Bid ∈ C do
18 (SAM,

.
g, a, ·, ·)← Bid

19 Update
.
g: Set action to a, T ` = Tstart, T

a = Tstart + Tdur

20 Add
.
g to SAM ’s

.
G

21 Update SAM ’s simulated state

22 Remove (
.
g1, . . . ,

.
gN) from

.
GMAM

23 return
.
GMAM

also receive TGs which are not joint goals. For simplicity, we use joint goals to refer

to goals and joint goals in the remainder of this section. If any joint goal is violated

or achieved, its set of TGs is removed from
.
GMAM (line 8). An auction algorithm

allocates
.
GMAM to the SAMs (line 9). While the auction algorithm is running, the

SAMs can continue as per normal (e.g., the agents continue executing their actions).

As defined in Definition 34,
.
G in a TDORMDP can change dynamically. Therefore,

the methods presented in Section 5.4 are still applicable here.

The key component in Algorithm 18 is the auction algorithm which is outlined

in Algorithm 19. It performs a sequential single-item auction which combines the

advantages of single-round combinatorial auction and parallel single-item auctions

[90], balancing between the intractable computational costs to compute bids in the

220

Chapter 5: Dynamic Objects, Time, and Coordination

former and the poor optimality of allocations in the latter. The inputs to Algo-

rithm 19 are a set of SAMs (SAM), one for each agent, and sets of TGs (
.
GMAM),

one set for each joint goal. Each set of TGs in
.
GMAM is auctioned sequentially

(lines 2 to 22). SAMs bid for the TGs (line 6). A bid Bid ∈ Bids is a tuple

(SAM,
.
g, a, Tstart, Tdur) where SAM is the SAM which places the bid,

.
g is the TG

it bids for, Tstart is the elapsed time when the agent shall execute the action a to

achieve
.
g, and Tdur is the action duration. A SAM can place at most one bid for

each TG. To achieve a TG, the conditions Tstart ≥ T ` and Tstart + Tdur ≤ T a must

be satisfied. If this is not possible, then the SAM does not bid. We discuss the

computation of a bid later. Bids are sets of bids {bid1, . . . , bidN} where bidi is a

set of bids for
.
gi. If one of the TGs has no bids (i.e., bidi is the empty set), then

the joint goal cannot be allocated; this is because either the TG cannot be achieved

or the SAMs have not yet learned how to achieve the TG. Otherwise, all possible

combinations of bids are considered (lines 7 to 12).

A combination of bids (C) consists of bids from N SAMs such that each SAM

bids for exactly one TG in (
.
g1, . . . ,

.
gN) and each TG has no more than one bid.

The set of possible combinations of bids is given by the Cartesian product bid1 ×

. . . × bidN minus combinations with more than one bid from the same SAM (line

7). The start time for the coordination must be the largest of the start time from

each bid (line 8). Similarly, the duration of the coordination must be the largest of

the duration from each bid (line 9). The best combination is the combination which

achieves the joint goal within its time bound and at the earliest time (lines 10 to

12).

If a best combination of bids is not found (line 13), then no joint goals can be

achieved by the SAMs and the auction terminates (line 14). Otherwise (lines 15 to

22), the SAMs involved in the best combination of bids are allocated the TG it bids

for (line 20). The TG is updated to take into consideration the action the SAM will

execute and the time bound for coordination with the other agents (line 19). The

current states of the SAMs are updated to simulated states which are the states

the agents are predicted to be in after achieving their allocated TGs (line 21). This

will affect their bids for the next TGs. In other words, an agent takes into account

the TGs it has committed to when bidding for new TGs. The set of TGs which

221

Chapter 5: Dynamic Objects, Time, and Coordination

are allocated are removed from
.
GMAM (line 22). Those which are not allocated are

retained for future rounds of auctions (line 23). Perhaps by then, a SAM has learned

how to achieve the TG?

We now discuss in detail how a SAM determines its bid for a TG,
.
g. The SAM

finds a plan to achieve
.
g using GK-RRL+. The input TDORMDP problem P is

augmented by adding
.
g to its set of TGs,

.
G. GK-RRL+ uses the generative model to

perform policy rollouts to find at least one trajectory which achieves
.
g. UCT is used

for this purpose. A SAM does not bid if none of its sampled trajectories achieve

.
g. Otherwise, it bids using information from the trajectory that achieves

.
g at the

earliest time. The last action a executed in this trajectory achieves
.
g since a rollout

terminates when
.
g is achieved. The SAM submits a bid (SAM,

.
g, a, Tstart, Tdur)

where Tstart is the elapsed time when the action starts to execute and Tdur is the

action duration. Each trial start from the current state of the SAM or from its

simulated state if the SAM has previously committed to one or more TGs. That is,

a SAM places priority on the TGs it has committed to and bids for the next TG

under the premise that it will have achieve, or attempt to achieve, these TGs. Since

GK-RRL+ learns from observations, the quality of the bids (e.g., a shorter time to

achieve a TG) can improve over time.

Assumptions. We make the following assumptions in Algorithms 18 and 19:

1. The decomposition of a joint goal to a set of TGs is known.

2. TGs are not for strongly coordinated actions.

3. All TGs are equally important with the same immediate reward which is given

to every robot which achieves it.

4. The end time of a new joint goal is later than the end time of existing joint

goals.

If the set of joint goals is known beforehand and is finite, then the first assump-

tion requires trivial expert knowledge. The necessity of the second assumption was

discussed in Section 5.7.1. The third assumption allows us to sort the TGs with

ascending end time of their time bounds (line 2 in Algorithm 19). If some joint

goals have higher rewards than others, then it can be more optimal to sort them

with descending rewards, descending number of agents required, or a weighted sum

222

Chapter 5: Dynamic Objects, Time, and Coordination

of these factors. The fourth assumption is necessary because SAMs place bids based

on rollouts from their simulated states. If new joint goals have end times earlier

than previous joint goals, it is possible that no SAMs can bid for the TGs of new

joint goals as they are violated in the SAMs’ simulated states. One solution is to

auction and reallocate previously allocated TGs.

Example 39 (Multi-Agent Coordination in Service Robot)

In a multi-agent variant of Service Robot, a robot r1 talks to a person p1 and

receives a task at the elapsed time of 100 to bring the items o1 and o2 to p1 at

the same time by the elapsed time of 400. Since this task requires two robots, it

is a joint goal
.
gjoint = (object with(o1, p1) ∧ object with(o2, p1),∅, 100, 400).

.
gjoint is decomposed to two TGs:

.
g1 = (object with(o1, p1),∅, 100, 400) and

.
g2 =

(object with(o2, p1),∅, 100, 400) (line 6 in Algorithm 18).
.
g1 and

.
g2 have the same

time bounds as
.
gjoint and do not yet involve any actions. The actions will be de-

termined later. Given
.
GMAM = {(.g1,

.
g2)}, Algorithm 19 allocates

.
g1 and

.
g2 to two

SAMs which can coordinate to achieve the joint goal (line 9 in Algorithm 18). The

auction algorithm (Algorithm 19) considers the following bids from three robots, r1,

r2, and r3:

• Bid1 = (SAMr1,
.
g1, give(r1, o1, p1), 200, 50)

• Bid2 = (SAMr1,
.
g2, give(r1, o2, p1), 300, 50)

• Bid3 = (SAMr2,
.
g1, give(r2, o1, p1), 250, 50)

• Bid4 = (SAMr3,
.
g2, give(r3, o2, p1), 300, 100)

The combinations of bids are C1 = {Bid1, Bid4}, C2 = {Bid2, Bid3}, and C3 =

{Bid3, Bid4}. The largest start time and action duration for the combinations (lines

8 and 9 in Algorithm 19) are:

• C1: Tstart = 300, Tdur = 100

• C2: Tstart = 300, Tdur = 50

• C3: Tstart = 300, Tdur = 100

C2 is the best bid as r1 and r2 can achieve the joint goal by the earliest time of

Tstart + Tdur = 350. The TGs are updated based on C2:

• .
g1 = (object with(o1, p1), give(r2, o1, p1), 300, 350)

• .
g2 = (object with(o2, p1), give(r1, o2, p1), 300, 350)

.
g1 is allocated to SAMr2 and

.
g2 to SAMr1 (line 18 in Algorithm 19). The time bound

223

Chapter 5: Dynamic Objects, Time, and Coordination

is reduced to a smaller range from [100, 400] to [300, 350]. The former represents

the inherent time bound of the joint goal while the latter represents the time bound

determined to coordinate actions to achieve the joint goal.

Further considerations. We discuss some technicalities with Algorithms 18 and

19:

1. What if SAMs are learning from scratch?

2. What if a SAM learns to achieve a TG that failed to be allocated previously?

3. What if an agent is executing an action when the auction is called?

4. What if the agents are heterogeneous?

(1) If SAMs are learning from scratch, the agents do not initially know how to

achieve any TG and the SAMs will not bid. Although the agent explores and learns

from observations, without any TGs, there is no reward feedback from which the

agent learns. This cycle continues until the agent receives a TG which is not a

joint goal. This learning process is inefficient as potential learning opportunities are

missed. Instead of deferring a joint goal to future rounds of auctions, TGs which

have no bids are randomly allocated to SAMs (with the constraint that each SAM

can have at most one TG of a joint goal allocated to it). Through exploration, a

SAM might achieve the TG. This is highly unlikely since TGs have time bounds.

Thus, hindsight learning (see Section 5.4.4) ensures that the agent learns even when

the TG is violated.

(2) When a SAM learns to achieve a TG, it is possible that previously unallocated

joint goals can now be allocated. The condition to call for auctioning (line 5 in

Algorithm 18) can be modified to be called periodically at the expense of higher

computational costs.

(3) Since agents execute actions asynchronously, it is possible that an auction is

called while an agent is executing an action. If the agent has committed to a TG,

its SAM computes bids based on its simulated state. Otherwise, it computes bids

based on the predicted state at the end of the execution.

(4) Agents can be heterogeneous; they can have different sets of actions. For

example, a robot which does not have a manipulator arm will not be capable of

picking up or putting down items. Our framework handles heterogeneous agents in

224

Chapter 5: Dynamic Objects, Time, and Coordination

the same manner as homogeneous agents. Following the same example, if an agent

cannot pick up or put down items, then its SAM will not bid for TGs which require

such actions. This is because none of its sampled trajectories during policy rollout

can achieve the TGs.

Theorem 7 (Time complexity of Algorithm 19)

The time complexity of Algorithm 19 is O
(
|
.
GMAM |2K2NtrialHrollout

)
where K is the

number of agents.

Proof. In each iteration, Algorithm 19 either allocates a joint goal in
.
GMAM to SAMs

or terminates. The number of remaining joint goals decreases by one at the end of

an iteration. A joint goal can be decomposed to at most K TGs since there are

only K agents. For each joint goal, there are two steps involved: (1) the bid from

each SAM, and (2) the determination of the best combination of bids (lines 5 to 12

in Algorithm 19). First, the cost of a SAM computing a bid is NtrialHrollout which

is the time complexity for simulating Ntrial trials (i.e., UCT terminates after Ntrial

trials) up to a length of Hrollout. If every SAM bids for each TG, then there are K2

bids and the time complexity is O(K2NtrialHrollout). Second, the best combination

of bids is determined. The combinations of bids are the Cartesian product of the sets

of bids minus combinations where more than one bid comes from the same SAM.

The number of valid combinations is K(K − 1). Since the number of joint goals

decrease by one in each iteration, we have O
(
(K2NtrialHrollout+K(K−1))(|

.
GMAM |+

(|
.
GMAM | − 1) + . . .+ 1)

)
= O

(
|
.
GMAM |2K2NtrialHrollout

)
.

The time complexity of Algorithm 19 scales exponentially with the number of agents

which is expected due to the combinatorial explosion when more agents are involved.

Theorem 8 (Completeness of Algorithm 19)

If every joint goal, each decomposed to a set of TGs in
.
GMAM , can be allocated to

the agents, Algorithm 19 is not guaranteed to find this allocation and can fail to

allocate one or more joint goals. In other words, Algorithm 19 is incomplete.

Proof. Algorithm 19 is incomplete because it uses sequential single-item auctions

and allocates one joint goal at a time to the agent which can achieve it at the

earliest time. To prove that it is incomplete, we show an example where it fails to

225

Chapter 5: Dynamic Objects, Time, and Coordination

allocate every joint goal when it is possible. Suppose that there are two joint goals,

.
gjoint1 and

.
gjoint2, and four agents, a1, a2, a3, and a4. a1 and a2 can coordinate to

achieve either
.
gjoint1 or

.
gjoint2 but not both, and a3 and a4 can coordinate to achieve

.
gjoint1. Thus,

.
gjoint1 should be allocated to a3 and a4 and

.
gjoint2 to a1 and a2.

If the combination of bids from a1 and a2 for
.
gjoint1 has the earliest end time

than the other combinations of bids, Algorithm 19 allocates
.
gjoint1 to a1 and a2. In

the next round of auction, Algorithm 19 auctions
.
gjoint2 but receives no bids because

a1 and a2 have been allocated
.
gjoint1 and can no longer achieve

.
gjoint2 while a3 and

a4 cannot achieve
.
gjoint2. Therefore,

.
gjoint2 is not allocated. This example shows

that Algorithm 19 is incomplete.

Theorem 8 is corroborated by [90, 125] which state that sequential single-item auc-

tions do not guarantee optimality and are incomplete.

5.8 Summary

In this chapter, we considered some aspects of a problem which are inherent in the

real world. First, not all objects in the environment are known to the agent. Or,

the agent might want to ignore objects until they are relevant to solve the task

at hand if there are many objects. We use DORMDP [109] to model problems

with dynamic objects. Second, the real world is temporospatial. We proposed

TDORMDP, an extension of DORMDP to include temporal constructs. Actions are

durative, states are augmented with the elapsed time, and the transition function

and reward function can be time-dependent. Furthermore, goals can have time

bounds within which they are to be achieved.

The two classes of problems, DORMDP and TDORMDP, are richer and more

complex than RMDPs. This has certain implications for GK-RRL. Potential solutions

were deliberated and implemented—GK-RRL+ is an extension of GK-RRL to solve

DORMDP and TODRMDP classes of problems.

TGs provide a natural extension of GK-RRL+ to solve multi-agent coordination

where the TGs are coordinated actions which must be executed at a specified time

instance to achieve a joint goal. We presented a multi-agent decomposition frame-

work which decomposes a multi-agent problem into single-agent problems. While

226

Chapter 5: Dynamic Objects, Time, and Coordination

this is much more tractable than learning and planning in the joint multi-agent state-

action space, our framework is limited to weakly coordinated actions. We proposed

two variants of this framework. The first variant uses a temporal planner to plan

for and coordinate multiple agents. The second variant uses an auction algorithm.

Both methods have their pros and cons; the choice of which variant to use depends

on the nature of the multi-agent problem and what prior information is available.

In our experiments, we investigated transfer learning between different classes

of problems and simulated environments. In previous chapters, experiments use a

simplistic simulated environment. Here, we built and use a simulated environment in

Gazebo which is significantly more realistic and complex. Empirical results showed

that GK-RRL+ is able to adapt to and generalise over different classes of problems.

We also investigated the possibility of Sim-to-Sim and zero-shot transfer where the

source problems use RDDLSim’s simulated environment and the target problems

use Gazebo’s simulated environment. Empirical results showed that GK-RRL+ is

able to achieve better performance than learning from scratch. However, we note

that although the two simulated environments are drastically different, from the

perspective of GK-RRL+ which learns and makes decisions at the task level, some of

the discrepancies are not relevant for decision making.

227

Chapter 6

Discussion

In this chapter, we discuss the broader impact of our work, some reflections on the

decisions we made, things we have tried and did not work, and some views on the

future of RRL.

Past and present research trends. The first RRL method is proposed by

Džeroski, De Raedt, and Driessens [47] which proved to be highly influential as much

work on RRL was published in the following years such as [30, 44, 99, 141, 184, 192],

to name a few. In more recent years, research interest is growing in the field of deep

RL where the majority of the work rely on the generalisation of convolutional neural

networks. However, this form of generalisation does not consider relations between

objects; thus, it does not address relational problems. Recent work has proposed

promising solutions which combine the strengths of deep RL and relational learning

[53, 177, 196]. Due to its high representational capacity, deep neural networks can

approximate highly complex value functions while the generalisation due to rela-

tional learning reduces the high sample complexity typically associated with deep

neural networks. However, this work requires the true model to induce domain-

specific architectural bias in the neural networks.

Our research direction. In this dissertation, we have been interested in the

learning problem, where the true model is not known, rather than the planning

problem. This dissertation looks back at the more traditional RRL approaches in-

stead of deep RL, and explores the potentials of RRL that remain unanswered. We

combined some existing methods (e.g., Double Q-learning [68] and online feature

228

Chapter 6: Discussion

discovery [54]) with RRL that has never been attempted before. We also investi-

gated the limitations of RRL methods. The significance of our finding shows that

there are types of relational problems which RRL cannot solve. We proposed two

solutions, and further augment our RRL method, LQ-RRL, by learning generalised

knowledge, or knowledge that can be transferred to any problem of the same do-

main. This extended variant is denoted by GK-RRL. In essence, our work moves

beyond the usual objective of RRL methods, which is approximating the value func-

tion or Q-function relationally, and entails learning non-stationary intrinsic rewards

and dead end situations. In addition, we considered both model-free and model-

based approaches and investigated empirically if models learned from observations

can be useful despite model errors. The common theme behind our work is to ex-

plore the types of generalised knowledge which can be learned and how they can

be exploited to reduce the sample complexity. This is an important step towards

real world applications of RRL methods where dynamically changing environments

and expensive data collection necessitate efficient learning and generalisation to new

situations.

Domains and problems. A common benchmark in RRL is the Blocks World

domain which we find to be trivially simple: actions are deterministic, there is

a clear relational structure, and only one goal is considered. More challenging

benchmark domains for RRL are required to test the limitations of RRL methods.

The different inputs required by different RRL methods compound the difficulty

in making any comparison. We evaluated LQ-RRL against two other RRL meth-

ods on Blocks World; however, due to its simplicity, many of our methods are not

required nor used. In view of this, we used three benchmark domains from the

field of automated planning and introduced three new domains in this dissertation.

Robot Fetch was designed to demonstrate that RRL methods cannot deal with inter-

dependent goals. Robot Inspection was designed to have many dead ends (unlike

Triangle Tireworld) and to allow multiple goals to be achieved at the same time.

We tried to assign negative rewards for reaching dead ends. However, this leads to

poor performance in our experiments if the agent never achieves a goal; the resulting

policy will avoid moving and simply choose to dock and undock till the end of the

229

Chapter 6: Discussion

time horizon. Thus, formulating the reward function is a critical design choice. We

designed Service Robot with the intention of demonstrating it in Gazebo’s sim-

ulated environment. We introduced dynamic objects and TGs which we felt are

interesting to consider in real world applications and have not been explored before

in the context of RRL.

One type of problems which our RRL method (and possibly RRL in general)

faced difficulty in solving is problems which require agents to move in a grid en-

vironment to more than one specific location to achieve a goal. One example is

Robot Inspection with a grid environment instead of allowing the robot to move

directly between any two locations. This difficulty is due to plateaus. While we have

demonstrated that plateaus can be overcome with MQTE or an ensemble of ground and

first-order approximations, both methods have their shortcomings. MQTE requires a

model while the ground approximation in the ensemble cannot be generalised or

transferred. Hierarchical RRL is one direction to look at to solve such problems and

is complementary to our work. Nevertheless, in the context of robotic applications,

navigation between two locations is determined by a motion planner; depending on

the choice of a motion planner, it will discretise the environment to grids. Thus, de-

cision making at the high-level typically do not need to consider grid environments.

Because of this, in our three new domains, robots can move directly between any

two locations.

Understanding the learning process. In our empirical results, we discovered

the limitations of RRL in some types of relational problems. This is by no means

a trivial process. We pinpointed specific states or stages of learning, examined the

Q-values, grounding of first-order features, active and inactive features, and the

actions executed. In particular, we ask ourselves the following questions. What

are the necessary features? Are the necessary features not learned due to missing

base features, inadequate observations, or poorly tuned hyperparameters? Can the

problem be solved by RRL methods? Obtaining answers to these questions is not

straightforward because a myriad of closely related factors are involved, especially

in online RRL, making it difficult to distinguish which are the contributing factors

and which are the consequences. To ease the analysis and facilitate algorithmic

230

Chapter 6: Discussion

design choices (e.g., to use an ensemble of approximations, MQTE, combinations of

contextual knowledge, etc.), we can turn to the field of explainable reinforcement

learning (XRL) [138] to aid us by answering questions such as:

1. Why did the policy select this action?

2. Why is there a plateau here?

3. Why is this feature active?

4. Why is this feature necessary or unnecessary to learn or represent the policy?

5. Why are the policies generated from different approximations suggesting dif-

ferent actions in this state?

XRL can aid in the formulation of domains and problems such as the introduction

of symbolic state predicates which might be superfluous for representing states but

are necessary for RRL to approximate the value function or Q-function relationally.

This is required due to the limited representational capacity of RRL—only a limited

number of objects are considered to compute the Q-values. For example, in our work,

first-order features represent relations involving at most two objects of the same type

using bound and free variables. In Academic Advising, this limited representational

capacity can be overcome by introducing a symbolic state predicate which represents

the recursive relation of the prerequisites of courses.

Identifying the shortcoming of RRL. The idea for contextual knowledge

comes about when we encountered long computation times to run the experiments

due to the large number of groundings for free variables, particularly in Recon which

has many locations. We noticed that the existential grounding of free variables is

usually uninformative as the resulting ground features are often true. For example,

in Recon, “is there a location where there is an object?” is always true. With

location context, this query changes to “is there a location adjacent to my destina-

tion where there is an object?” which is significantly more informative. Similarly,

we observed that the policy often selects sequences of actions which attempts to

achieve a goal which has already been achieved. Thus, we introduced goal context

to remove such objects (or goals) from contextual grounding, noting the limitations

in goal-conditioned Q-functions for symbolic problems. Contextual grounding has

a significant impact on online RRL. It affects the Q-values, policy, observations

231

Chapter 6: Discussion

acquired, and online feature discovery. While we do not have theoretical proofs or

properties for contextual knowledge applied to RRL, our empirical results for six

domains showed that it can reduce sample complexity and computational cost.

The choice of contextual knowledge or the order in which combinations of con-

textual knowledge are applied might require domain knowledge or an ablation study.

Fortunately, the order only matters when there is a conflict between two types of

contextual knowledge. For transfer learning, the contextual knowledge must be the

same in the source and target problems. Intuitively, since the first-order approx-

imation is an abstraction of the state which now involves contextual knowledge,

a different contextual knowledge gives a different state abstraction. Since the Q-

function is learned in a different abstract state space, transfer learning will fail.

It will be interesting to study the impact of state abstraction due to contextual

knowledge in a theoretically grounded premise.

Behind the scenes of hyperparameter tuning. There is a multitude of hyper-

paramters in our work as is often the case with RL. Considering all combinations of

hyperparameters is prohibitive. Thus, we used common values for hyperparameters

of lower concern or interest (e.g., α and ε) and performed sensitivity analysis to

tune some hyperparameters. This was not done for the time horizon, the number

of episodes, and the hyperparameters for UCT. We shall briefly discuss them here.

For each problem, the time horizon is set such that an (near-)optimal policy can be

learned within 3000 episodes (or 500 episodes where UCT is used). Next, since some

hyperparameters (e.g., α and ε) are decayed over episodes, the number of episodes

can be considered as a hyperparameter. Thus, for simplicity, we used the same num-

ber of episodes for the small and large scale problems. Lastly, we implemented four

ways in which a Q-function can be combined with UCT. Some of these significantly

increase the computation time due to the computationally expensive operation of

grounding first-order features. Since UCT is an anytime algorithm which terminates

after timeout, a balance has to be made between more informative rollouts and more

trials. We varied the length of the rollout (Hrollout), the rollout policy (ε-greedy,

greedy, random, and a mixture of them), and the mixing parameters (Λleaf , Λroot,

and even adaptive variants), noting the impact they had on the number of trials UCT

232

Chapter 6: Discussion

performed. We used the best combinations of hyperparameters from this tuning.

What did not work. We have tried many things which did not work. We dis-

cuss three of them here. First, we had hoped for synergy between MBFS and ground

context where MBFS eliminates base features which in turn reduces the number of

substitutions due to ground context. This combination induces a model-based con-

textual knowledge which is rather different from goal context and location context.

Although we have seen that the combination of the two does indeed produces ground

context as expected in Academic Advising, the performance did not improve. We

later learned that the state abstraction which can represent a policy is not nec-

essarily sufficient to learn the policy. We hope that this approach can be further

developed under the framework of options which might resolve this issue.

Second, we implemented a counting operator for free variables: a first-order fea-

ture takes the value of the number of its groundings which is true. The resulting

approximator has a higher representational capacity than one which uses binary

features and can consider more than two objects of the same type. Unfortunately,

our results showed that this does not give a significantly better performance than

binary features. If the domain does not require them, it can increase the sample

complexity as the first-order approximation now considers the number of objects for

free variables as opposed to binary values. This also affects transfer learning when

transferring between problems with different number of objects. Furthermore, since

features are non-binary, this affects eligibility traces (replacing eligibility traces is

only applicable for binary features), feature discovery (iFDD+ only works for binary

features), and TD learning. All of these complications are compounded when first-

order features have multiple free variables. In [192], the number of free variables

per first-order feature is limited to one. Further investigation is warranted to under-

stand the impact of the counting operator in online RRL ([192] performs supervised

learning).

Third, we implemented a method which selects a subset of the groundings of the

first-order features such that a metric is maximised. This replaces the existential

query of free variables and can be used with or without contextual grounding. We

tried three metrics: Q-value, number of active features, and number of active com-

233

Chapter 6: Discussion

plex features. Empirical results showed that the performance is not robust across

the six domains considered, and the best overall performance is obtained when no

metric is maximised. However, we believe that reducing the number of groundings is

crucial in reducing the granularity of the first-order approximation or any relational

value function or Q-function approximation (e.g., relational decision trees). While

this approach did not performed well, we hope it inspires other possible methods or

maximisation metrics to reduce the granularity of relational function approximations

where required.

View on different approximators. First-order approximation and relational

decision trees have their respective pros and cons in approximating the Q-function

relationally. While we have argued that decision trees are ill-suited to the incre-

mental nature of online RL, decision trees could be ideal function approximators for

some domains. Driessens and Džeroski [42] combine TG and RIB by using RIB in the

leaf nodes of TG. Following the same concept, we can combine first-order approxi-

mation and relational decision trees as one approximator to obtain their respective

strengths. Alternatively, we can use an ensemble of different function approximators.

Vision of our work. Our vision of RRL is to enable lifelong learning for robots

where they learn continuously over long horizons to achieve multiple types of goals.

Perhaps robots have to learn skills or options and build upon them to perform even

more complex skills to achieve increasing complicated tasks. Perhaps multiple het-

erogeneous robots have to coordinate to achieve a joint task. In lifelong learning,

different problems are attempted sequentially; this can be seen as a long-horizon

or infinite horizon problem segmented into a sequence of smaller problems. We ob-

tained promising results for Sim-to-Sim and zero-shot transfer with GK-RRL+, taking

the first step towards lifelong learning. Potentially, RRL agents can be trained

in simulated environments, thereby avoiding expensive data collection in the real

world. On this note, we would have liked to test our work in the real world and

demonstrate Sim-to-Real transfer. Unfortunately, in current times of a pandemic,

this is not possible.

234

Chapter 7

Conclusions and Future Work

This dissertation makes several contributions which are theoretical, algorithmic, and

empirical. We summarise them here.

In Chapter 2, we introduced three new domains for robotic applications following

observations that prior RRL methods are tested in only a few types of domains

which are rather simple. Our domains provide different types of challenges for RRL:

interdependent goals, dead ends, and unpredictable state transitions.

In Chapter 3, we presented LQ-RRL, an online RRL method which learns a first-

order approximation of the Q-function. We introduced the concepts of consistent

abstraction, subsumption of problems, and abstract-equivalent problems. We proved

that the first-order approximation performs consistent abstraction of the state-action

space for abstract-equivalent problems. This allows transfer learning by directly

transferring the first-order approximation. For non-abstract-equivalent problems,

the set of features is augmented such that transfer learning is still possible if the

target problem subsumes the source problem. We identified the limitations of RRL

due to the relational abstraction of the state-action space and proposed three so-

lutions: contextual knowledge, MQTE, and an ensemble of ground and first-order

approximations. This extends the application of LQ-RRL to domains which RRL

methods perform poorly in.

In Chapter 4, we presented GK-RRL which is an extension of LQ-RRL to utilise

and learn different types of generalised knowledge. This generalised knowledge can

be transferred to accelerate learning in another problem. First, a relational model

can be learned from state transitions by any existing, appropriate model learner.

235

Chapter 7: Conclusions and Future Work

The model is used by UCT to provide better quality estimates for the Q-values. To

compensate for model errors, we mix the Q-values estimated by UCT and Q-function

approximations. Also, MBFS determines unnecessary base features from the structure

of the (learned) transition function. Second, LDE learns from dead ends and influ-

ences the policy to avoid previously encountered dead ends. The efficacy of LDE is

improved by generalising observations with a first-order representation and detect-

ing dead end traps. Third, GK-RRL uses an ensemble of Q-function approximations

to learn from extrinsic and multiple intrinsic rewards.

In Chapter 5, we introduced a new class of problems, TDORMDP, which models

continuous time, action durations, TGs, and dynamic objects, to address some com-

plexities inherent in real world applications. To solve TDORMDP problems, GK-RRL

is extended to GK-RRL+ which handles dynamic objects, TGs, and the prediction of

the transition of time. We can also use TGs to model weakly-coordinated actions

between multiple agents; then, solving TDORMDP problems is akin to coordinating

multiple agents to achieve a joint goal. To this end, we proposed two variants of

a multi-agent decomposition framework which decomposes a multi-agent problem

into single-agent problems.

The performance of our methods is demonstrated empirically in six domains. Ta-

ble 7.1 summarises empirical results from Chapters 3 and 4. Evidently, our methods

outperform the baseline most of the time. This is a significant progress from many

prior RRL approaches which are typically tested on a small number of simplistic

domains. We compared LQ-RRL against two prior RRL methods; empirical results

showed that LQ-RRL performs comparably with RIB (which uses domain-specific

knowledge) and outperforms TG. Three types of generalised knowledge, relational

models, first-order intrinsic approximations, and first-order dead end situations, are

utilised by GK-RRL to reduce the sample complexity when learning from scratch or

in transfer learning. In particular, we have demonstrated the efficacy of combining

different types of generalised knowledge. Lastly, we tested GK-RRL+ on Sim-to-Sim

and zero-shot transfer where the source and target problems are different classes

of problems and use different simulated environments. Results are promising and

demonstrated that GK-RRL+ accelerates learning in the target problems despite sig-

nificant domain shift.

236

Chapter 7: Conclusions and Future Work

Domain
Method Desc. AA RC TT RF RI SR

τ -iFDD+ 1 XX —X — — —X — — —X
Contextual knowledge 2 X X X X X X
Ensemble 3 X X X X
MQTE 4 X X X X
MBFS 5 ×X XX XX XX XX XX
LDE 6 X X
Greedy-ε-greedy policy 7 X X — X X X
Intrinsic rewards 8 XX XX XX XX XX XX
Transfer Q̃fo 9 X X X X
Q̃gnd + transfer Q̃fo 10 X X × ×
Transfer Q̃fo and Q̃foint

11 X X — X
Q̃gnd + transfer Q̃fo and Q̃foint

12 X × X ×
RRL + Dyna 13 × × × ×
RRL + UCT 14 X X X ×

Table 7.1: Summary of the performance of the methods introduced in this disser-
tation. X indicates that the method improves performance relative to the baseline
(refer to description [Desc.]), × indicates that it did not improve performance, and
— indicates that it makes no difference. Empty cells indicate that the method
is not applicable for the domain. If there are two symbols in a cell, the first
pertains to the ground approximation and the second pertains to the first-order
approximation. AA denotes Academic Advising, RC denotes Recon, TT denotes
Triangle Tireworld, RF denotes Robot Fetch, RI denotes Robot Inspection, and
SR denotes Service Robot.

1X denotes τ -iFDD+ is more robust than iFDD+. See Section C.1.3 for results.
2X denotes the best contextual knowledge outperforms first-order approximation without con-

textual knowledge. See Section 3.7.2 for results and Table 3.2 for a summary of results.
3X denotes it outperforms the baseline which doesn’t use any method to resolve plateaus. See

Section 3.7.3 for results and Table 3.4 for a summary of results.
4X denotes it outperforms the baseline which doesn’t use any method to resolve plateaus. See

Section 3.7.3 for results and Table 3.4 for a summary of results.
5X denotes it performs at least comparably with MFFS but with fewer features. See Section 4.5.2

for results.
6X denotes LDE and all of its variants improve performance. See Section 4.5.3 for results.
7X denotes it has the best performance. See Section 4.5.4 for results.
8X denotes at least one type of intrinsic rewards we considered improves performance. See

Section 4.5.4 for results and Table 4.2 for a summary of results.
9X denotes it can solve the problem. See Section 4.5.5 for results.

10X denotes it outperforms Q̃fo which is transferred. See Section 4.5.5 for results.
11X denotes it outperforms Q̃fo which is transferred. See Section 4.5.5 for results.
12X denotes it outperforms an ensemble of Q̃gnd and Q̃fo where Q̃fo is transferred. See Sec-

tion 4.5.5 for results.
13X denotes it outperforms the lower baseline, LQ-RRL. See Section 4.5.6 for results.
14X denotes it outperforms the lower baseline, LQ-RRL. See Section 4.5.6 for results.

237

Chapter 7: Conclusions and Future Work

7.1 Future Work

There are a number of open questions which we have not addressed in this disser-

tation. We discuss some of them here which future research can explore.

The grounding of first-order features is crucial for the performance of a first-order

approximation. There remains possibilities for other types of contextual knowledge.

For example, subgoals or landmarks [137] can be identified and used in the same

manner as goal context. This could perform well in domains with subgoals such as

Academic Advising. In domains where goals are interdependent or where there is

an optimal sequence to achieve the goals (e.g, spatially-distributed goals in a grid

environment), an order to achieve the goals can be learned. Instead of considering

all active goals, goal context considers only one active goal at a time following

this order. Lastly, domain-specific contextual knowledge can be defined with some

background knowledge.

Richer forms of first-order features can be considered for RRL. Counting fea-

tures (count the number of groundings which satisfy the feature in a state) has been

used in [192] but for supervised learning. Other forms of features include ternary

features and continuous features. A ternary feature has three possible values: true,

false, or unknown. A ternary first-order feature evaluates to unknown if it has no

grounding. One cause is when dynamic objects are not yet added to the set of ob-

jects. Continuous features are necessary to represent the elapsed time or real-valued

sensor measurements. While these types of features are not new areas of research,

under the context of online RRL, there remains unanswered questions to address

their impact on generalisation. Also, what are the additional classes of problems

that RRL methods can solve given this increased representational capacity?

In domains where RRL methods do not perform well, an ensemble of ground and

first-order approximations is one possible solution. Instead of the average aggrega-

tion, the weights for each Q-function approximation in the ensemble can be learned

and adapted such that the weight for an approximation which does not perform

well is reduced. Alternatively, the policy is automatically generated from different

approximations at different phases, perhaps taking into consideration their learning

progress. For example, a first-order approximation might be preferred initially due

to its generalisation while a ground approximation is preferred later due to its finer

238

Chapter 7: Conclusions and Future Work

granularity in approximating the Q-function.

Options could extend our work to address more complex domains where problems

have hierarchies of subproblems. While relational options have been introduced in

[30, 95], they are based on relational representations different from our first-order

features. Since options function as partial policies for regions of a state space [169],

this provides opportunities for varying levels of abstraction across options. MBFS can

be used to determine and eliminate unnecessary base features for not just actions

but also options. This could increase the efficiency of option learning. Another

possibility is to introduce options to our framework for multi-agent coordination: a

TG is associated with an option instead of an action. However, only the time bound

of the option will be coordinated rather than the time bound of every action in the

option.

The rather high computational cost of grounding a first-order approximation

diminishes the efficacy of using the policy generated from it as the rollout policy in

UCT. One solution is to map a first-order approximation to a ground approximation

by enumerating all possible groundings of the first-order approximation. If the

preciseness of Q-values is not important (because small changes to the Q-values

might not induce any change to the policy), this can be done only at the start of

each episode rather than in every time step.

Learning relational models which are close to the true models remain a chal-

lenge. Though model learning is beyond the scope of our work, the quality of the

learned models has a direct impact on the performance of any model-based methods

including ours. To mitigate the issue of poor approximate models, we augment the

model prediction with the prediction from the maximum likelihood model. This is

of a limited impact as the maximum likelihood model does not make predictions

beyond what has been observed. A similar direction to take is to learn an ensemble

of relational models and use the most common prediction. This was done in [69];

however, the models are not relational.

We identified three areas which warrant further empirical studies. First, our

empirical results for combinations of intrinsic rewards do not show any dominant

combination but it is possible that there are other domains which benefit from such

combinations where different types of intrinsic rewards, not restricted to those pre-

239

Chapter 7: Conclusions and Future Work

sented in this dissertation, interact to provide effective, guided exploration over the

entire state space. For example, a particular problem can have states in which a

state novelty type of intrinsic reward works well and other states in which a salient

type of intrinsic reward works better. Second, we did not evaluate the empirical

sample complexity of GK-RRL+ for Sim-to-Sim transfer due to resource limitations;

running experiments in Gazebo is computationally expensive. The amount of ob-

servations required for GK-RRL+ to adapt to new simulated environments provides

insights on its potential performance in Sim-to-Real transfer. Lastly, demonstrating

Sim-to-Real transfer is the next step forward following Sim-to-Sim transfer. Our

Service Robot domain can be used for this purpose. It is straightforward to install

ROS and the required ROS packages (including our ROS packages for the high-level

actions in Service Robot) on a TIAGo robot.

RRL has been shown to enable efficient learning in relational problems. We

investigated the limitations of RRL, explored several ways to incorporate it with

existing and novel techniques, and discussed new classes of problems which it can

perform well in. Moving forward, our hope is that this dissertation spurs interest in

the field of RRL where many possibilities remain.

240

Appendix A

Proofs

A.1 Proofs from Chapter 3

Theorem 3 (Consistent Abstract State Space)

S̄ = ℘(P̂) is a consistent abstract state space for abstract-equivalent problems.

Proof. Since a state is a conjunction of |P | literals in P#, ℘(P̂) is a consistent

abstraction of S if P̂ is a consistent abstraction of P#. From Equations 3.3 and

3.4, we have:

P̂ â =
⋃
a∈Aâ

⋃
p∈P#

L (p, a)

=
⋃
p∈P#

⋃
a∈Aâ

L (p, a)

=
⋃
p∈P#

P(p, â).

There are 2n possible first-order base features that P can map a literal p =

p(o1, . . . , on) to because each object is either lifted to a bound variable or to a

free variable. Without loss of generality, consider the object o1 which has a type C.

There are three mutually exclusive scenarios which determine whether o1 is lifted

to a bound variable or a free variable. (1) If â does not have a term with the type

C, then o1 will not be in the terms of any actions in Aâ and o1 will be lifted to a

free variable. (2) If â has a term with the type C and there is only one object of

241

Appendix A: Proofs

type C in O, then o1 is lifted to a bound variable. (3) If â has a term with the type

C and there are at least two object of type C in O, o1 is lifted to bound and free

variables (i.e., P(p, â) = {p(C, . . .), p(?C, . . .), . . .}) because there exists an action

in Aâ where o1 is in its terms (o1 is lifted to a bound variable) and another action

where it is not (o1 is lifted to a free variable).

P is a consistent abstraction function for p if P maps p to the same set of

first-order base features for every problem P ∈ PD. In other words, the same

scenario applies for each object in p regardless of the problem. If this condition is

violated, then P cannot be a consistent abstraction function as different scenarios

are applied in different problems and p will be mapped to different sets of first-order

base features. If the condition is satisfied for every literal and symbolic action in

PD, then P̂ is a consistent abstraction of P#.

It is straightforward to see that the condition is satisfied in PD for scenario (1)

since the scenario depends on A which is the same in PD. Scenarios (2) and (3)

depend on the set of objects in the problem. For both scenarios, the condition is

only satisfied in abstract-equivalent problems. Thus, P is a consistent abstraction

function for abstract-equivalent problems only. It follows that ℘(P̂) is a consistent

abstract state space for abstract-equivalent problems.

Theorem 4 (Subsumption of First-Order Base Features)

If a problem Pi is subsumed by another problem Pj, then the set of first-order base

features for Pi is a subset of that for Pj.

Proof. If Pi is subsumed by Pj, then from Definition 19, R1(Pi, Pj) ∧ R2(Pi, Pj) is

true. Let C be the type that satisfies R2(Pi, Pj): there is one object of type C in Pi

and multiple objects of type C in Pj. Symbolic actions either have term(s) of the

type C or do not have term(s) of the type C. We denote the former by â1 and the

latter by â2. First, we consider Pi. Every literal with an object of the type C in its

term must have the same object since there is no other objects of the type C. For

these literals, P(·, â1) substitutes the object with a bound variable and P(·, â2)

with a free variable. We consider Pj now. For every literal which has an object of

the type C in its term, P(·, â1) substitutes the object with a bound variable and a

free variable (i.e, one-to-many mapping) and P(·, â2) substitutes the object with a

free variable. Since R1(Pi, Pj) is also true, the set of first-order base features for â1

242

Appendix A: Proofs

in Pj is a superset of that in Pi. It follows that the set of first-order base features

for Pi is a subset of that for Pj.

A.2 Proofs from Chapter 4

Theorem 6 (Soundness of LDE and its Variants)

LDE, LDE-DT, LDE-FO, and LDE-DT-FO are sound.

Proof. It is straightforward to see that LDE is sound as it only adds observed dead

end situations to χ. Subsumption finds a more general dead end situation among

observed ones but does not generalise to unseen state-action pairs. Therefore, a

state-action pair (s, a) is in χ if and only if there is an observation (st, at, rt, st+1)

where s = st, a = at, and st+1 is a dead end. The same reasoning applies for dead

end traps; thus, LDE-DT is also sound.

Next, we prove that LDE-FO is sound. It uses first-order abstraction to gener-

alise to unobserved state-action pairs. LDE-FO is sound if this generalisation does

not cause it to erroneously determine state-action pairs lead to dead ends. Let

(st, at, rt, st+1) be an observation where st+1 is a dead end and (s̄t, ât, rt, s̄t+1) be its

first-order representation. Any state-action pair which maps to (s̄t, ât) must lead to

a next state, with non-zero probability, that maps to s̄t+1. Formally, ∀s ∈ S, a ∈ A,

if s 7→ s̄t and a 7→ ât, then ∃s′T (s′|s, a) > 0 such that s′ 7→ s̄t+1. This is true for

relational problems since T (s̄t+1|s̄t, ât) = T (st+1|st, at) > 0. We shall prove this

next.

In relational problems, transition functions are parameterised and factored.

First, we describe what a parameterised transition function entails. The param-

eterised transition of a symbolic state predicate p̂ is denoted by T (p̂|P̂ , â) where

P̂ is the set of lifted state predicates. The transition of a state predicate p is the

grounding of T (p̂|P̂ , â) which gives T (p|P−, a) where P− ⊂ P . Each lifted state

predicate in P̂ is grounded by substituting variables with objects in p and a if they

are of the same type. Remaining variables are substituted with objects in O (this

is a one-to-many substitution and the variables are analogous to existential or free

variables).

Next, we describe what a parameterised and factored transition function entails.

243

Appendix A: Proofs

A factored transition function is given by Equation 2.2. If it is also parameterised,

then the transition of a state s is given as:

T (s′|s, a) =
∏
i

T (p′i|P−, a)

=
∏
i

T (p̂′i|P̂
−
, â), (A.1)

where p′i is the value of pi in s′, p̂i is the symbolic state predicate of pi, â is the

symbolic action of a, and P̂
−
⊂ P̂ results from the lifting of P−. Concretely, we

lift each state predicate in P− as follows:

P̂
−

=
⋃
p∈P−

L (p, a). (A.2)

Since all state predicates in P− are in s, it follows that all lifted state predicates in

P̂
−

are in s̄ where s 7→ s̄ using Equation 4.6. Following Equation A.1, we have:

T (s′|s, a) =
∏
i

T (p̂′i|P̂
−
, â)

= T (s̄′|s̄, â) (A.3)

This assumes that deictic objects of the same type can be treated as a homogeneous

entity in the parameterised and factored transition function. This completes the

proof that LDE-FO is sound in relational problems. Again, the same reasoning applies

for dead end traps; thus, LDE-DT-FO is sound.

244

Appendix B

Additional Examples

B.1 Examples for MBFS

Example 40 (Constructing graphs and nodes for Recon)

We consider a particular problem for Recon where there is the following objects with

their types in parentheses: a1 (agent), w1, l1, p1 (tool), o1, o2 (obj), wp1, wp2,

wp3, and wp4 (wp). The objects o1 and o2 are at wp2 and wp4, respectively. The

DBN is shown in Figure B.1 where actions and state predicates involving o2 are

omitted for brevity. The parameterised reward function written in RDDL is:

reward =

[sum_{?OBJ : obj} (20 * [~pictureTaken(?OBJ) ^ lifeDetected(?OBJ) ^

exists_{?AGENT: agent, ?TOOL: tool}

[useToolOn(?AGENT, ?TOOL, ?OBJ) ^ CAMERA_TOOL(?TOOL) ^

~damaged(?TOOL)]])

] +

[sum_{?OBJ : obj} -(20 * [~lifeDetected(?OBJ) ^

exists_{?AGENT: agent, ?TOOL: tool}

[useToolOn(?AGENT, ?TOOL, ?OBJ) ^ CAMERA_TOOL(?TOOL)]])

];

The reward function is parameterised with variables and is additive with the summa-

tion operator sum {. . .} which sums every grounding of the logical formula enclosed

by the square brackets. A true (false) formula has a value of 1 (0). Variables are pre-

fixed with “?” and negative literals are prefixed with “˜”. The parameterised reward

function is grounded with objects such that the conditions in the arithmetic evaluates

245

Appendix B: Additional Examples

to true. A graph is constructed from each grounding of an arithmetic. Consider the

following arithmetic:

20 * [~pictureTaken(?OBJ) ^ lifeDetected(?OBJ) ^

exists_{?AGENT: agent, ?TOOL: tool}

[useToolOn(?AGENT, ?TOOL, ?OBJ) ^ CAMERA_TOOL(?TOOL) ^

~damaged(?TOOL)]])

which is ground to
∧

(¬pictureTaken(o1), lifeDetected(o1), ¬damaged(p1),

CAMERA TOOL(p1), useToolOn(a1, p1, o1)) with the substitution {AGENT/a1,

TOOL/p1, OBJ/o1}. The literals pictureTaken(o1), lifeDetected(o1),

damaged(p1), and CAMERA TOOL(p1) and the action useToolOn(a1, p1, o1) are

grouped as a set of nodes, n1. The arithmetic can be grounded to other forms (e.g.,

substitute OBJ with o2).

The parameterised precondition for useToolOn(AGENT, TOOL,OBJ) written

in RDDL is:

forall_{?AGENT: agent, ?TOOL: tool, ?OBJ: obj}

[useToolOn(?AGENT, ?TOOL, ?OBJ) =>

(exists_{?WP : pos} [(agentAt(?AGENT, ?WP) ^ OBJECT_AT(?OBJ, ?WP))])];

which states that the agent AGENT and the object OBJ must be at the same lo-

cation for useToolOn(AGENT, TOOL,OBJ) to be applicable. The ground pre-

condition for useToolOn(a1, p1, o1) is agentAt(a1, wp2)∧OBJECT AT(o1, wp2) (WP

is substituted with wp2 because o1 is at wp2). The literals agentAt(a1, wp2) and

OBJECT AT(o1, wp2) and the action useToolOn(a1, p1, o1) are grouped as a set of

nodes, n2.

The parameterised CPF for pictureTaken(OBJ) is written in RDDL as:

pictureTaken’(?OBJ) =

if (pictureTaken(?OBJ))

then true

else

(exists_{?AGENT: agent, ?TOOL: tool}

[CAMERA_TOOL(?TOOL) ^ useToolOn(?AGENT, ?TOOL, ?OBJ)

^ ~damaged(?TOOL)]);

246

Appendix B: Additional Examples

where pictureTaken′(?OBJ) is the value of pictureTaken(OBJ) at the next

time step. The CPF for pictureTaken(o1) is the ground form of the param-

eterised CPF with the substitution {AGENT/a1, TOOL/p1, OBJ/o1}. The

literals pictureTaken(o1), CAMERA TOOL(p1), and damaged(p1) and the action

useToolOn(a1, p1, o1) are the parent nodes of the child node pictureTaken(o1)

in the graph G. Note that pictureTaken(o1) is a parent of itself; this is rather

common because the value of a state predicate often depends on its value at the

previous time step. Since the action in G is the same as the action in n1 and n2,

they are added to G as parent nodes to pictureTaken(o1).

Example 41 (Base Features for Recon Using MBFS)

Using the graph G constructed in Example 40, Algorithm 13 returns 8 literals for

ν = 2: agentAt(a1, wp2), damaged(p1), lifeDetected(o1), pictureTaken(o1),

and their negation. They are the base features for useToolOn(a1, p1, o1). The

agent receives a positive reward if it takes a good picture of o1 by executing

useToolOn(a1, p1, o1). The states for which this can happen are when the

agent is at the same location as o1 (agentAt(a1, wp2)), life is detected on o1

(lifeDetected(o1)), the agent has not taken a picture of o1 (¬pictureTaken(o1)),

and the camera tool is not damaged (¬damaged(p1)). Clearly, MBFS provides the

necessary literals for approximating the Q-values of useToolOn(a1, p1, o1).

For ν = 3, Algorithm 13 returns the following literals: agentAt(a1, wp1),

agentAt(a1, wp4), agentAt(a1, wp2), agentAt(a1, wp7), lifeChecked2(o1),

lifeChecked2(o2), lifeDetected(o1), lifeDetected(o2), pictureTaken(o1),

pictureTaken(o2), waterChecked(o1), waterChecked(o2), waterDetected(o1),

waterDetected(o2), damaged(l1), damaged(p1), damaged(w1), and their negation.

Among them, there are some literals such as lifeDetected(o2) which are unnec-

essary base features for useToolOn(a1, p1, o1). There are some literals which might

seem necessary for approximating the Q-values but are unnecessary. Consider the

literal waterDetected(o1). Life can only be detected on an object after water has

been detected—if lifeDetected(o1) is true, then waterDetected(o1) must be true.

Therefore, we need only consider lifeDetected(o1) for useToolOn(a1, p1, o1).

247

Appendix B: Additional Examples

Figure B.1: DBN representing the transition function for a particular problem of
Recon which is described in Example 40.

248

Appendix C

Additional Empirical Results

C.1 Empirical Results for Chapter 3

C.1.1 Blocks World

We describe our version of the Blocks World domain which is written in RDDL.

In Blocks World, blocks are either on the table or stacked on another block. The

RDDL domain file is shown in Section D.5 of Appendix D. The set of types is

C = {block}. The symbolic state predicates P are:

• GOAL(BLOCK1, BLOCK2): the goal is to stack the block BLOCK1 on

BLOCK2,

• clear(BLOCK): there is no other block on the block BLOCK,

• on table(BLOCK): the block BLOCK is on the table, and

• on(BLOCK1, BLOCK2): the block BLOCK1 is stacked directly on the block

BLOCK2.

The symbolic actions A are:

• stack(BLOCK1, BLOCK2): unstack the block BLOCK1 from another block

or pick it from the table and stack it on the block BLOCK2, and

• unstack(BLOCK1, BLOCK2): unstack the block BLOCK1 from BLOCK2

and put it on the table.

All actions are deterministic. There are three types of goals:

1. Stack : stack all blocks in one column.

2. Unstack : put all blocks on the table.

249

Appendix C: Additional Empirical Results

Figure C.1: Comparing other RRL methods with LQ-RRL on randomised problems
of Blocks World which involve ten blocks. “Ground” denotes the ground approxi-
mation which serves as a point of reference.

3. On: stack a specific block on top of another specific block.

A problem can have either one of the three goals. The immediate reward is 0 in

every time step that the goal state is not reached and 1 for reaching the goal state.

We consider randomised problems with ten blocks. The size of the state-action space

is 2120× 201 and the time horizon is 30. The problems are randomised in the initial

states, and for On, the blocks involved in the goal.

C.1.2 Comparison with Other RRL Methods

We compared our RRL method, LQ-RRL (see Algorithm 1), with state-of-the-art

RRL methods TG [44] and RIB [45]. This work, hereafter denoted by SOTA meth-

ods, is tested extensively on Blocks World which is written in Prolog. The SOTA

methods and the domain and problems for Blocks World are obtained from the

publicly available ACE (A Combined Engine) data mining system [14]. We model

Blocks World in RDDL as described in the previous section, replicating as close as

possible to the Prolog version. The SOTA methods are tested on the Prolog version

while LQ-RRL is tested on the RDDL version. For details on the Prolog version, we

refer readers to [42]. One major difference is that we use lesser symbolic state pred-

250

Appendix C: Additional Empirical Results

icates and no handcrafted features. The SOTA methods consider a state variable

to represent the number of blocks on a block and a state predicate to represent the

relation that if a block is above another block (this is different from directly on the

block).

Experimental setup. The hyperparameters for the SOTA methods use the de-

fault values in ACE [14] except that the time horizon is changed to 30. The hyper-

parameters for LQ-RRL are listed in Section 3.7.1. LQ-RRL uses model-free feature

selection and ground context. For the goal On, the data points for RIB are at an

interval of 100 episodes rather than 1 episode due to its high computational cost.

For this reason, the cumulative number of goal states reached cannot be computed

and is omitted in Figure C.1. The results are the aggregation of ten independent

runs where each run uses a different randomised problem.

Figure C.1 shows the results. We exclude results for the goal Unstack since

all methods cannot solve it in 10000 episodes. We focus on comparing the first-

order approximation with the SOTA methods. For the goal On, TG performs best.

The number of goal states reached, from highest to lowest, is 857.8 ± 46.6 for TG,

820.0±107.7 for RIB (based on the percentages from ten data points), 780.3±118.9

for LQ-RRL, and 652.9 ± 93.0 for “Ground”. For the goal Stack, RIB performs best

followed by LQ-RRL while TG has the worst performance.

To conclude, RIB has the best overall performance followed by LQ-RRL. However,

LQ-RRL did not utilise background knowledge unlike RIB’s domain-specific distance

metric. Furthermore, LQ-RRL has been empirically demonstrated on other domains.

The SOTA methods cannot solve problems with multiple goals with additive rewards

or multiple types of goals (e.g., Service Robot has two types of goals) since they use

only one goal predicate at the root node of the relational decision tree to substitute

variables.

C.1.3 Sensitivity Analysis for Online Feature Discovery

We perform the sensitivity analysis on the hyperparameters ξ for iFDD+ and τ for

τ -iFDD+. Both algorithms are discussed in Section 3.1.1. ξ is the discovery threshold

for adding candidate features to Φ and τ controls the maximum number of features

251

Appendix C: Additional Empirical Results

Figure C.2: Sensitivity analysis for the hyperparameter ξ for iFDD+. The total
undiscounted rewards received in each episode is shown.

Figure C.3: Sensitivity analysis for the hyperparameter ξ for iFDD+. The total
number of features added to Φ is shown.

which can be added in each time step. Figures C.2 and C.3 show the results for

ξ. The values 1, 3, and 10 are used. If ξ is too small, many candidate features are

added which can be intractable. This is the case for ξ = 1 which is tractable only for

RI2. Results are omitted for the other problems due to intractability—the number

of features added are of the order of 106. In addition, ξ = 3 is also intractable for

AA5 if ground approximation is used. Since first-order features do not scale with the

252

Appendix C: Additional Empirical Results

Figure C.4: Sensitivity analysis for the hyperparameter τ for τ -iFDD+. The total
undiscounted rewards received in each episode is shown.

Figure C.5: Sensitivity analysis for the hyperparameter τ for τ -iFDD+. The total
number of features added to Φ is shown.

number of objects in the problem, it scales well with large scale problems. This is

evident in Figure C.3 which shows that the number of features in a ground approx-

imation is order of magnitudes larger than that of a first-order approximation. A

large value for ξ slows down feature discovery which could increase sample complex-

253

Appendix C: Additional Empirical Results

ity. This is the case for ξ = 10 in AA5, RC6, RF2, and SR1 as shown in Figure C.2.

In summary, the results show that the tuning of ξ is problem-specific and can result

in large variance in performance or even intractability.

Next, we analyse the sensitivity of τ for our proposed variant of iFDD+, τ -iFDD+.

Figures C.4 and C.5 show the results. The values 1, 5, 10, and 20 are used. In

all of the runs, they are tractable. For AA5, results for τ = 5 and τ = 10 with a

first-order approximation are omitted as they are equivalent to τ = 1—at most one

feature can be added per time step for all three of them. Figure C.4 shows that

the performance for the different values of τ are comparable in all problems. The

number of features added to Φ is consistent with the value of τ—a larger value of τ

results in a larger number of features with the exception in TT6 and SR1 because the

features necessary to approximate the Q-function have been added and no additional

features are required. Despite starting off with a small value of ξ = 0.1, τ -iFDD+

does not add too many features. The rate of feature addition is high initially, then

decreases in later episodes. This is because more candidate features are generated as

features are added to Φ and τ -iFDD+ incrementally increases ξ whenever too many

candidate features have relevances larger than ξ.

C.2 Empirical Results for Chapter 4

C.2.1 Tuning the Hyperparameter ν for MBFS

Although ν seems like a hyperparameter that needs to be tuned with expert knowl-

edge, we posit that it is less tedious to tune as it is an integer and ideal values

typically range from 2 to 3. Figure C.6 shows the number of base features for

different values of ν.1 This is compared with the number of base features given

by MFFS. This information can be obtained from MBFS (Algorithm 12) without the

need to run any experiments and can provide some guidance to tune ν. In gen-

eral, when ν increases, the number of base features increases to a fixed point—the

value of ν where MBFS no longer adds new base features with further increases to

ν. The fixed point ranges from 3 to 4 in the six domains. For all domains except

1For brevity here, we refer to base features and first-order base features collectively as base
features unless necessary to distinguish them.

254

Appendix C: Additional Empirical Results

Figure C.6: The number of base features or first-order base features given by MFFS

and MBFS for different values of ν. Legend: Small (Large) stands for a small (large)
scale problem of the domain, GND stands for ground approximation, and FO stands
for first-order approximation.

Academic Advising, the number of base features at the fixed point is close to or

equal to the number of base features from MFFS. That is, MBFS at the fixed point is

equivalent to MFFS for some domains. For ν = 1, the number of base features is too

small; the granularity of the Q-function approximation is expected to be too coarse

and this typically results in a poor performance. Therefore, the values to consider

for ν ranges from 2 to 3.

As a side note, the number of first-order base features is the same for the small

scale and large scale problems except for Service Robot. This is because the first-

order approximation uses the same set of base features for abstract-equivalent prob-

lems. Large scale problems of Service Robot (SR2 and SR3) have more first-order

base features than SR1 because they are not abstract-equivalent problems and the set

of first-order base features for large scale problems has to be augmented as described

in Section 3.3.3.

C.2.2 Sensitivity Analysis for β

To select a value for β, the coefficient for the intrinsic reward (see Equation 4.7),

we tested the sensitivity of β using TDE as the intrinsic reward (see Section 4.4.2)

255

Appendix C: Additional Empirical Results

Figure C.7: Sensitivity analysis for the coefficient for intrinsic reward, β. The
intrinsic reward used is TDE. Both the extrinsic and intrinsic approximations are
first-order approximations.

and greedy-ε-greedy policy where ε is initialised to 1 and decayed exponentially to

0 over the episodes. We use the values {0.01, 0.05, 0.1, 0.5, 1} for β. For β = 1, β is

exponentially decayed from 1 over episodes at the same rate as ε for the ε-greedy

policy. Figure C.7 shows the results for the sensitivity analysis. The baseline is the

first-order approximation without intrinsic rewards. The asymptotic performance

for all values of β are comparable with the baseline. For β = 0.01, the performance is

similar to the baseline. This is because the coefficient is too small and any intrinsic

reward becomes insignificant. Increasing β to 0.05 and 0.1 gives the best overall

performance.

When β is too large, as is the case for β = 0.5, there might be too much ex-

ploration rather than exploitation. This can deteriorate the performance as evident

in AA5 and SR1. Even though the initial performance of β = 0.5 is better than the

baseline, the asymptotic performance is significantly worse. This can be mitigated

by decaying β. As observed for β = 1 in SR1, the asymptotic performance is compa-

rable with the baseline unlike β = 0.5. Thus, one possible strategy to avoid having

too large a value for β is to decay it.

256

Appendix C: Additional Empirical Results

Figure C.8: Dyna uses the true models to generate imagined observations which an
extrinsic first-order approximation learns from. Different number of rollouts, Nsim,
are tested with a simulated horizon Hsim = 40. For Nsim = 0, Dyna is not used.

C.2.3 Sensitivity Analysis for Number of Rollouts in Dyna

We performed a sensitivity analysis on the number of rollouts (Nsim) for Dyna.

For all runs, the simulated horizon Hsim is 40. Figure C.8 shows the results for

the true model and Figure C.9 shows the results for the learned models where

Dyna uses a different learned model for each run. All experiments use a first-order

approximation. There is no intrinsic approximation; Dyna trains and initialises

the extrinsic approximation. The baseline is the result for which Dyna is not used

(denoted by Nsim = 0 in the figure).

In general, varying the value of Nsim does not significantly impact the perfor-

mance. In some cases, increasing Nsim gives a marginal improvement in performance

while in other cases, this does not impact the performance. Dyna gives a significant

jump start in all problems. The jump start is observed in SR1 only when the or-

acle model is used (for other domains, the oracle model and the true model are

the same). The oracle model predicts unpredictable transitions of state predicates

as described in Example 27 and exogenous events (i.e., a person needs assistance).

This shows that unpredictable dynamics can affect model-based methods. Since

some parts of the state space is not reached, learning is not possible in these states

until they are observed. Nevertheless, it is encouraging that the true model and the

257

Appendix C: Additional Empirical Results

Figure C.9: Dyna uses the learned models to generate imagined observations which
an extrinsic first-order approximation learns from. The models are learned from a set
of training data which contains 500 state transitions per symbolic action. Different
rollouts Nsim are tested with a simulated horizon Hsim = 40. Nsim = 0 implies that
Dyna is not used.

learned models give improved performance over the baseline in SR1. This is likely

due to the addition of useful candidate features to Φ by Dyna. For all problems, the

asymptomatic performance are comparable with the baseline; despite errors in the

learned models, Dyna did not worsen the asymptomatic performance.

C.3 Empirical Results for Chapter 5

C.3.1 Effect of ∆T on TDORMDP Problems

∆T determines the time bounds for TGs (see Equations 5.2 and 5.3). Example 34

shows that ∆T is the average time given for achieving each TG if the policy is

optimal. We tested values of 150, 300, and 600 seconds for ∆T in randomised

TDORMDP problems of SR3. In all problems, the first-order approximation is

learned from scratch. The results are shown in Figure C.10. ∆T = ∞ denotes

RMDP problems (i.e., no dynamic objects and time-bounded goals); their results

serve as a baseline. The performance when ∆T = 600 is close to the performance

when ∆T = ∞. On the other end of the spectrum, the performance is poor when

258

Appendix C: Additional Empirical Results

Figure C.10: Effect of ∆T on performance in randomised problems of SR3. All
problems have dynamic objects and time-bounded goals except for those with ∆T =
∞. The values of ∆T are in seconds.

∆T = 150; the goal state was never reached in 3000 episodes. As a middle ground,

we use ∆T = 300. We want a value for ∆T that makes TDORMDP problems

challenging but not (near) impossible to solve. 300 seconds is a reasonable value for

∆T considering the action durations, probabilistic effects (e.g., loss of localisation,

failure to grasp an item), and non-greedy behaviours due to exploration.

259

Appendix D

RDDL Domains

D.1 Recon

domain recon_mdp {

requirements = {

reward-deterministic

};

types {

wp : object;

obj : object;

agent: object;

tool : object;

};

pvariables {

COST: {non-fluent, real, default = -1.0};

ADJACENT(wp, wp) : {non-fluent, bool, default = false};

OBJECT_AT(obj, wp) : {non-fluent, bool, default = false};

HAZARD(wp) : {non-fluent, bool, default = false};

DAMAGE_PROB(tool) : {non-fluent, real, default = 0.0};

DETECT_PROB : {non-fluent, real, default = 1.0};

DETECT_PROB_DAMAGED : {non-fluent, real, default = 0.4};

CAMERA_TOOL(tool) : {non-fluent, bool, default = false};

LIFE_TOOL(tool) : {non-fluent, bool, default = false};

WATER_TOOL(tool) : {non-fluent, bool, default = false};

BASE(wp) : {non-fluent, bool, default = false};

260

Appendix D: RDDL Domains

GOOD_PIC_WEIGHT : {non-fluent, real, default = 20.0};

BAD_PIC_WEIGHT : {non-fluent, real, default = 20.0};

damaged(tool) : {state-fluent, bool, default = false};

waterChecked(obj) : {state-fluent, bool, default = false};

waterDetected(obj) : {state-fluent, bool, default = false};

lifeChecked(obj) : {state-fluent, bool, default = false};

lifeChecked2(obj) : {state-fluent, bool, default = false};

lifeDetected(obj) : {state-fluent, bool, default = false};

pictureTaken(obj) : {state-fluent, bool, default = false};

agentAt(agent, wp) : {state-fluent, bool, default = false};

move(agent, wp) : {action-fluent, bool, default = false};

useToolOn(agent, tool, obj) : {action-fluent, bool, default = false};

repair(agent, tool) : {action-fluent, bool, default = false};

};

cpfs {

damaged’(?t) =

if (damaged(?t) ^ ~(exists_{?loc : wp, ?a: agent}

[agentAt(?a, ?loc) ^ BASE(?loc) ^ repair(?a, ?t)]))

then true

else if (exists_{?loc : wp, ?a: agent}

[agentAt(?a, ?loc) ^ ~BASE(?loc) ^ HAZARD(?loc)])

then Bernoulli(DAMAGE_PROB(?t))

else if (exists_{?loc : wp, ?a: agent, ?loc2 :wp}

[agentAt(?a, ?loc) ^ ~BASE(?loc)

^ HAZARD(?loc2) ^ ADJACENT(?loc, ?loc2)])

then Bernoulli(DAMAGE_PROB(?t) / 2.0)

else false;

waterChecked’(?o) =

KronDelta(waterChecked(?o) | exists_{?a: agent, ?t: tool}

[useToolOn(?a, ?t, ?o) ^ WATER_TOOL(?t)]);

waterDetected’(?o) =

if (waterDetected(?o)) then true

else if (waterChecked(?o)) then false

else if (exists_{?t : tool, ?a: agent}

261

Appendix D: RDDL Domains

[WATER_TOOL(?t) ^ damaged(?t) ^ useToolOn(?a, ?t, ?o)])

then Bernoulli(DETECT_PROB_DAMAGED)

else if (exists_{?t : tool, ?a: agent}

[WATER_TOOL(?t) ^ useToolOn(?a, ?t, ?o)])

then Bernoulli(DETECT_PROB)

else false;

lifeChecked’(?o) =

KronDelta(lifeChecked(?o) | exists_{?a: agent, ?t: tool}

[useToolOn(?a, ?t, ?o) ^ LIFE_TOOL(?t)]);

lifeChecked2’(?o) =

KronDelta(lifeChecked2(?o) | lifeChecked(?o) ^

exists_{?a: agent, ?t: tool}

[useToolOn(?a, ?t, ?o) ^ LIFE_TOOL(?t)]);

lifeDetected’(?o) =

if (lifeDetected(?o)) then true

else if (lifeChecked2(?o) | ~waterDetected(?o)) then false

else if (exists_{?t : tool, ?a: agent}

[LIFE_TOOL(?t) ^ damaged(?t) ^ useToolOn(?a, ?t, ?o)])

then Bernoulli(DETECT_PROB_DAMAGED)

else if (exists_{?t : tool, ?a: agent}

[LIFE_TOOL(?t) ^ useToolOn(?a, ?t, ?o)])

then Bernoulli(DETECT_PROB)

else false;

pictureTaken’(?o) =

if (pictureTaken(?o)) then true

else KronDelta(exists_{?a: agent, ?t: tool}

[CAMERA_TOOL(?t) ^ useToolOn(?a, ?t, ?o) ^ ~damaged(?t)]);

agentAt’(?a, ?loc) =

if (move(?a, ?loc)) then true

else if (exists_{?loc1 : wp} (move(?a, ?loc1))) then false

else agentAt(?a, ?loc);

};

reward =

262

Appendix D: RDDL Domains

[sum_{?a: agent, ?loc: wp} [COST * move(?a, ?loc)]] +

[sum_{?a: agent, ?t: tool, ?o : obj}

[COST * useToolOn(?a, ?t, ?o)]] +

[sum_{?a: agent, ?t: tool} [COST * repair(?a, ?t)]] +

[sum_{?o : obj} (GOOD_PIC_WEIGHT *

[~pictureTaken(?o) ^ lifeDetected(?o) ^ exists_{?a: agent, ?t: tool}

[useToolOn(?a, ?t, ?o) ^ CAMERA_TOOL(?t) ^ ~damaged(?t)]])] +

[sum_{?o : obj} -(BAD_PIC_WEIGHT *

[~lifeDetected(?o) ^ exists_{?a: agent, ?t: tool}

[useToolOn(?a, ?t, ?o) ^ CAMERA_TOOL(?t)]])];

action-preconditions {

forall_{?a: agent, ?to: wp} [move(?a, ?to) =>

(exists_{?from : wp} [(agentAt(?a, ?from) ^

(ADJACENT(?from, ?to) | ADJACENT(?to, ?from)))])];

forall_{?a: agent, ?t: tool, ?o: obj} [useToolOn(?a, ?t, ?o) =>

(exists_{?loc : wp} [(agentAt(?a, ?loc) ^ OBJECT_AT(?o, ?loc))])];

};

}

D.2 Robot Fetch

domain robot_fetch_mdp {

types {

obj : object;

robot : object;

wp : object;

};

pvariables {

TASK_REWARD : {non-fluent, real, default = 20.0};

COST : {non-fluent, real, default = -1.0};

OBJECT_GOAL(obj, wp) : {non-fluent, bool, default = false};

robot_at(robot, wp) : {state-fluent, bool, default = false};

localised(robot) : {state-fluent, bool, default = false};

emptyhand(robot) : {state-fluent, bool, default = false};

holding(robot, obj) : {state-fluent, bool, default = false};

263

Appendix D: RDDL Domains

object_at(obj, wp) : {state-fluent, bool, default = false};

move(robot, wp) : {action-fluent, bool, default = false};

localise(robot) : {action-fluent, bool, default = false};

pick_up(robot, obj, wp) : {action-fluent, bool, default = false};

put_down(robot, obj, wp) : {action-fluent, bool, default = false};

};

cpfs {

robot_at’(?r, ?loc) =

if (~robot_at(?r, ?loc) ^ move(?r, ?loc) ^ localised(?r)) then true

else if (exists_{?loc1: wp}

[(robot_at(?r, ?loc) ^ move(?r, ?loc1) ^ localised(?r))])

then false

else robot_at(?r, ?loc);

localised’(?r) =

if (localise(?r)) then true

else if (exists_{?loc: wp} [move(?r, ?loc)]) then true

else localised(?r);

emptyhand’(?r) =

if (exists_{?o: obj, ?loc: wp} [pick_up(?r, ?o, ?loc)])

then false

else if (exists_{?o: obj, ?loc: wp} [put_down(?r, ?o, ?loc)])

then true

else if (exists_{?o: obj} [holding(?r, ?o)]) then false

else true;

holding’(?r, ?o) =

if (exists_{?loc: wp} [pick_up(?r, ?o, ?loc)]) then true

else if (exists_{?loc: wp} [put_down(?r, ?o, ?loc)]) then false

else holding(?r, ?o);

object_at’(?o, ?loc) =

if (exists_{?r: robot} [pick_up(?r, ?o, ?loc)]) then false

else if (exists_{?r: robot} [put_down(?r, ?o, ?loc)]) then true

else object_at(?o, ?loc);

};

264

Appendix D: RDDL Domains

reward =

[sum_{?o: obj}

[TASK_REWARD * (exists_{?r: robot, ?loc: wp}

[(put_down(?r, ?o, ?loc) ^ OBJECT_GOAL(?o, ?loc))]) -

TASK_REWARD * (exists_{?r: robot, ?loc: wp}

[(pick_up(?r, ?o, ?loc) ^ OBJECT_GOAL(?o, ?loc))])]] +

[sum_{?r: robot, ?loc: wp} [COST * move(?r, ?loc)]] +

[sum_{?r: robot} [COST * localise(?r)]] +

[sum_{?r: robot, ?o: obj, ?loc: wp} [COST * pick_up(?r, ?o, ?loc)]] +

[sum_{?r: robot, ?o: obj, ?loc: wp} [COST * put_down(?r, ?o, ?loc)]];

action-preconditions {

forall_{?r: robot, ?loc: wp} [move(?r, ?loc) =>

(localised(?r) ^ ~robot_at(?r, ?loc))];

forall_{?r: robot, ?o: obj, ?loc: wp} [pick_up(?r, ?o, ?loc) =>

(robot_at(?r, ?loc) ^ object_at(?o, ?loc) ^ emptyhand(?r))];

forall_{?r: robot, ?o: obj, ?loc: wp} [put_down(?r, ?o, ?loc) =>

(robot_at(?r, ?loc) ^ holding(?r, ?o) ^

~(exists_{?o1: obj} [object_at(?o1, ?loc)]))];

};

}

D.3 Robot Inspection

domain robot_inspection_mdp {

types {

wp: object;

robot: object;

obj: object;

};

pvariables {

COST_MOVE : {non-fluent, real, default = -1.0};

COST_LOCALISE : {non-fluent, real, default = -1.0};

COST_DOCK : {non-fluent, real, default = -1.0};

COST_UNDOCK : {non-fluent, real, default = -1.0};

COST_SURVEY : {non-fluent, real, default = -1.0};

265

Appendix D: RDDL Domains

COST_INSPECTION : {non-fluent, real, default = -1.0};

COST_TRANSMIT : {non-fluent, real, default = -1.0};

COST_CALIBRATE : {non-fluent, real, default = -1.0};

TASK_REWARD : {non-fluent, real, default = 20.0};

PROB_LOSING_LOCALISATION : {non-fluent, real, default = 0.0};

PROB_POOR_CALIBRATION : {non-fluent, real, default = 0.0};

PROB_LOW_ENERGY : {non-fluent, real, default = 0.0};

PROB_SUCCESSFUL_SURVEY : {non-fluent, real, default = 1.0};

PROB_SUCCESSFUL_OBSERVATION : {non-fluent, real, default = 1.0};

PROB_SUCCESSFUL_SURVEY_DAMAGED : {non-fluent, real, default = 1.0};

PROB_SUCCESSFUL_OBSERVATION_DAMAGED : {non-fluent, real, default = 1.0};

DOCK_AT(wp) : {non-fluent, bool, default = false};

COMM_TOWER(wp) : {non-fluent, bool, default = false};

OBJECT_AT(obj, wp) : {non-fluent, bool, default = false};

robot_at(robot, wp) : {state-fluent, bool, default = false};

undocked(robot) : {state-fluent, bool, default = false};

docked(robot) : {state-fluent, bool, default = false};

localised(robot) : {state-fluent, bool, default = false};

object_found(robot, obj) : {state-fluent, bool, default = false};

object_inspected(robot, obj) : {state-fluent, bool, default = false};

object_info_received(obj) : {state-fluent, bool, default = false};

camera_calibrated(robot) : {state-fluent, bool, default = false};

has_energy(robot) : {state-fluent, bool, default = false};

low_energy(robot) : {state-fluent, bool, default = false};

reward_received(obj) : {state-fluent, bool, default = false};

move(robot, wp) : {action-fluent, bool, default = false};

localise(robot) : {action-fluent, bool, default = false};

dock(robot, wp) : {action-fluent, bool, default = false};

undock(robot, wp) : {action-fluent, bool, default = false};

survey(robot, wp) : {action-fluent, bool, default = false};

inspect_object(robot, obj) : {action-fluent, bool, default = false};

transmit_info(robot) : {action-fluent, bool, default = false};

calibrate_camera(robot) : {action-fluent, bool, default = false};

};

cpfs {

266

Appendix D: RDDL Domains

robot_at’(?r, ?loc) =

if (~robot_at(?r, ?loc) ^ move(?r, ?loc) ^ localised(?r)) then true

else if (exists_{?loc1: wp}

[(robot_at(?r, ?loc) ^ move(?r, ?loc1) ^ localised(?r))])

then false

else robot_at(?r, ?loc);

undocked’(?r) =

undocked(?r) ^ ~(exists_{?loc: wp} (dock(?r, ?loc))) |

docked(?r) ^ (exists_{?loc: wp} (undock(?r, ?loc)));

docked’(?r) =

docked(?r) ^ ~(exists_{?loc: wp} (undock(?r, ?loc))) |

undocked(?r) ^ (exists_{?loc: wp} (dock(?r, ?loc)));

localised’(?r) =

if (localise(?r)) then true

else if (exists_{?from: wp, ?loc: wp}

[move(?r, ?loc) ^ localised(?r)])

then Bernoulli (1-PROB_LOSING_LOCALISATION)

else localised(?r);

object_found’(?r, ?o) =

if (object_found(?r, ?o)) then true

else if (exists_{?loc: wp}

[localised(?r) ^ (survey(?r, ?loc) ^ OBJECT_AT(?o, ?loc))] ^

camera_calibrated(?r))

then Bernoulli (PROB_SUCCESSFUL_SURVEY)

else if (exists_{?loc: wp} [localised(?r) ^ (survey(?r, ?loc) ^

OBJECT_AT(?o, ?loc))] ^ ~camera_calibrated(?r))

then Bernoulli (PROB_SUCCESSFUL_SURVEY_DAMAGED)

else object_found(?r, ?o);

object_inspected’(?r, ?o) =

if (object_inspected(?r, ?o)) then true

else if (exists_{?loc: wp}

[localised(?r) ^ inspect_object(?r, ?o) ^

object_found(?r, ?o) ^ robot_at(?r, ?loc) ^

OBJECT_AT(?o, ?loc) ^ camera_calibrated(?r)])

267

Appendix D: RDDL Domains

then Bernoulli (PROB_SUCCESSFUL_OBSERVATION)

else if (exists_{?loc: wp}

[localised(?r) ^ inspect_object(?r, ?o) ^

object_found(?r, ?o) ^ robot_at(?r, ?loc) ^

OBJECT_AT(?o, ?loc) ^ ~camera_calibrated(?r)])

then Bernoulli (PROB_SUCCESSFUL_OBSERVATION_DAMAGED)

else object_inspected(?r, ?o);

object_info_received’(?o) =

if (exists_{?r: robot, ?loc: wp}

[transmit_info(?r) ^ object_inspected(?r, ?o) ^

robot_at(?r, ?loc) ^ COMM_TOWER(?loc)])

then true

else object_info_received(?o);

camera_calibrated’(?r) =

if (exists_{?loc: wp}

[calibrate_camera(?r) ^ robot_at(?r, ?loc) ^ DOCK_AT(?loc)])

then true

else if (exists_{?o: obj}

[inspect_object(?r, ?o) ^ camera_calibrated(?r)])

then Bernoulli (1-PROB_POOR_CALIBRATION)

else camera_calibrated(?r);

low_energy’(?r) =

if (docked(?r)) then false

else if (low_energy(?r)) then false

else if (exists_{?loc: wp} [move(?r, ?loc) ^ localised(?r)])

then Bernoulli (PROB_LOW_ENERGY)

has_energy’(?r) =

if ((exists_{?loc: wp} [dock(?r, ?loc)]) | docked(?r))

then true

else if (low_energy(?r)) then false

else has_energy(?r);

reward_received’(?o) =

if (object_info_received(?o)) then true else reward_received(?o);

};

268

Appendix D: RDDL Domains

reward =

[sum_{?r: robot, ?loc: wp} [COST_MOVE * move(?r, ?loc)]] +

[sum_{?r: robot} [COST_LOCALISE * localise(?r)]] +

[sum_{?r: robot, ?loc: wp} [COST_DOCK * dock(?r, ?loc)]] +

[sum_{?r: robot, ?loc: wp} [COST_UNDOCK * undock(?r, ?loc)]] +

[sum_{?r: robot, ?loc: wp} [COST_SURVEY * survey(?r, ?loc)]] +

[sum_{?r: robot, ?o: obj} [COST_INSPECTION * inspect_object(?r, ?o)]] +

[sum_{?r: robot} [COST_TRANSMIT * transmit_info(?r)]] +

[sum_{?r: robot} [COST_CALIBRATE * calibrate_camera(?r)]] +

[sum_{?o: obj}

[TASK_REWARD * (~reward_received(?o) ^ object_info_received(?o))]];

action-preconditions {

forall_{?r: robot, ?loc: wp} [move(?r, ?loc) =>

(has_energy(?r) ^ undocked(?r) ^ ~robot_at(?r, ?loc))];

forall_{?r: robot, ?loc1: wp, ?loc2: wp}

[?loc1 == ?loc2 | (robot_at(?r, ?loc1) => ~robot_at(?r, ?loc2))];

forall_{?r: robot} [localise(?r) => has_energy(?r) ^ undocked(?r)];

forall_{?r: robot, ?loc: wp} [undock(?r, ?loc) =>

(has_energy(?r) ^ DOCK_AT(?loc) ^ robot_at(?r, ?loc))];

forall_{?r: robot, ?loc: wp} [survey(?r, ?loc) =>

has_energy(?r) ^ undocked(?r) ^ robot_at(?r, ?loc)];

forall_{?r: robot, ?o: obj} [inspect_object(?r, ?o) =>

has_energy(?r) ^ undocked(?r) ^ (exists_{?loc: wp}

[(robot_at(?r, ?loc) ^ OBJECT_AT(?o, ?loc))])];

forall_{?r: robot} [transmit_info(?r) => has_energy(?r)];

forall_{?r: robot} [calibrate_camera(?r) => has_energy(?r)];

};

state-invariants {

forall_{?r: robot} [docked(?r) <=> ~undocked(?r)];

};

}

D.4 Service Robot

domain service_robot_mdp {

269

Appendix D: RDDL Domains

types {

obj : object;

person : object;

robot : object;

wp : object;

};

pvariables {

COST : {non-fluent, real, default = -1.0};

TASK_REWARD : {non-fluent, real, default = 20};

PROB_LOSING_LOCALISATION : {non-fluent, real, default = 0.0};

PROB_NEED_ASSISTANCE(person) : {non-fluent, real, default = 0.1};

TABLE_AT(wp) : {non-fluent, bool, default = false};

PERSON_GOAL_OBJECT_AT(person, obj, wp) :

{non-fluent, bool, default = false};

PERSON_GOAL_OBJECT_WITH(person, obj, person) :

{non-fluent, bool, default = false};

PERSON_IS_AT(person, wp) : {non-fluent, bool, default = false};

robot_at(robot, wp) : {state-fluent, bool, default = false};

localised(robot) : {state-fluent, bool, default = false};

emptyhand(robot) : {state-fluent, bool, default = false};

holding(robot, obj) : {state-fluent, bool, default = false};

object_at(obj, wp) : {state-fluent, bool, default = false};

object_with(obj, person) : {state-fluent, bool, default = false};

goal_object_at(obj, wp) : {state-fluent, bool, default = false};

goal_object_with(obj, person) : {state-fluent, bool, default = false};

person_at(person, wp) : {state-fluent, bool, default = false};

need_assistance(person) : {state-fluent, bool, default = false};

needed_assistance(person) : {state-fluent, bool, default = false};

goal_attempted(obj) : {state-fluent, bool, default = false};

reward_received(obj) : {state-fluent, bool, default = false};

move(robot, wp, wp) : {action-fluent, bool, default = false};

localise(robot) : {action-fluent, bool, default = false};

find_person(robot, person) : {action-fluent, bool, default = false};

talk_to_person(robot, person) : {action-fluent, bool, default = false};

pick_up(robot, obj) : {action-fluent, bool, default = false};

put_down(robot, obj) : {action-fluent, bool, default = false};

270

Appendix D: RDDL Domains

take(robot, obj, person) : {action-fluent, bool, default = false};

give(robot, obj, person) : {action-fluent, bool, default = false};

};

cpfs {

robot_at’(?r, ?loc) =

if (exists_{?loc1: wp} [(move(?r, ?loc1, ?loc))]) then true

else if (exists_{?loc1: wp}

[(robot_at(?r, ?loc) ^ move(?r, ?loc, ?loc1))])

then false

else robot_at(?r, ?loc);

localised’(?r) =

if (localise(?r)) then true

else if (~localised(?r)) then false

else if (exists_{?loc1 : wp, ?loc2 : wp} [move(?r, ?loc1, ?loc2)])

then (Bernoulli (1 - PROB_LOSING_LOCALISATION))

else if (exists_{?p: person} [find_person(?r, ?p)])

then (Bernoulli (1 - PROB_LOSING_LOCALISATION))

else localised(?r);

emptyhand’(?r) =

if (exists_{?o: obj} [pick_up(?r, ?o)]) then false

else if (exists_{?o: obj} [put_down(?r, ?o)]) then true

else if (exists_{?o: obj, ?p: person} [take(?r, ?o, ?p)]) then false

else if (exists_{?o: obj, ?p: person} [give(?r, ?o, ?p)]) then true

else emptyhand(?r);

holding’(?r, ?o) =

if (pick_up(?r, ?o)) then true

else if (put_down(?r, ?o)) then false

else if (exists_{?p: person} [take(?r, ?o, ?p)]) then true

else if (exists_{?p: person} [give(?r, ?o, ?p)]) then false

else holding(?r, ?o);

object_at’(?o, ?loc) =

if (exists_{?r: robot} [(pick_up(?r, ?o) ^ robot_at(?r, ?loc))])

then false

else if (exists_{?r: robot}

271

Appendix D: RDDL Domains

[(put_down(?r, ?o) ^ robot_at(?r, ?loc))])

then true

else object_at(?o, ?loc);

object_with’(?o, ?p) =

if (exists_{?r: robot} [(take(?r, ?o, ?p))]) then false

else if (exists_{?r: robot} [(give(?r, ?o, ?p))]) then true

else object_with(?o, ?p);

goal_object_at’(?o, ?loc) =

if (exists_{?r: robot, ?p: person}

[(need_assistance(?p) ^ talk_to_person(?r, ?p) ^

PERSON_GOAL_OBJECT_AT(?p, ?o, ?loc))])

then true

else goal_object_at(?o, ?loc);

goal_object_with’(?o, ?p) =

if (exists_{?r: robot, ?p2: person}

[(need_assistance(?p2) ^ talk_to_person(?r, ?p2) ^

PERSON_GOAL_OBJECT_WITH(?p2, ?o, ?p))])

then true

else goal_object_with(?o, ?p);

person_at’(?p, ?loc) =

if (exists_{?r: robot}

[(find_person(?r, ?p) ^ PERSON_IS_AT(?p, ?loc))])

then true

else person_at(?p, ?loc);

need_assistance’(?p) =

if (~needed_assistance(?p) ^ ~need_assistance(?p))

then (Bernoulli (PROB_NEED_ASSISTANCE(?p)))

else if (exists_{?r: robot}

[(need_assistance(?p) ^ talk_to_person(?r, ?p))])

then false

else need_assistance(?p);

needed_assistance’(?p) =

if (exists_{?r: robot}

272

Appendix D: RDDL Domains

[(need_assistance(?p) ^ talk_to_person(?r, ?p))])

then true

else needed_assistance(?p);

goal_attempted’(?o) =

if (exists_{?r: robot, ?loc: wp}

[(put_down(?r, ?o) ^ goal_object_at(?o, ?loc))])

then true

else if (exists_{?r: robot, ?p: person}

[(give(?r, ?o, ?p) ^ goal_object_with(?o, ?p))])

then true

else goal_attempted(?o);

reward_received’(?o) =

if (exists_{?loc: wp} [(goal_attempted(?o) ^

object_at(?o, ?loc) ^ goal_object_at(?o, ?loc))])

then true

else if (exists_{?p: person} [(goal_attempted(?o) ^

object_with(?o, ?p) ^ goal_object_with(?o, ?p))])

then true

else reward_received(?o);

};

reward =

[sum_{?r: robot} [COST]] +

[sum_{?o: obj}

[TASK_REWARD * (exists_{?loc: wp}

[(~reward_received(?o) ^ goal_attempted(?o) ^

object_at(?o, ?loc) ^ goal_object_at(?o, ?loc))]) +

TASK_REWARD * (exists_{?p: person, ?loc: wp}

[(~reward_received(?o) ^ goal_attempted(?o) ^

object_with(?o, ?p) ^ goal_object_with(?o, ?p))])]];

action-preconditions {

forall_{?r: robot, ?loc1: wp, ?loc2: wp} [move(?r, ?loc1, ?loc2) =>

(robot_at(?r, ?loc1) ^ localised(?r))];

forall_{?r: robot} [localise(?r) => (~localised(?r))];

forall_{?r: robot, ?p: person} [find_person(?r, ?p) =>

(~(exists_{?loc: wp} [person_at(?p, ?loc)]) ^ localised(?r))];

273

Appendix D: RDDL Domains

forall_{?r: robot, ?p: person} [talk_to_person(?r, ?p) =>

(exists_{?loc: wp} [(robot_at(?r, ?loc) ^ person_at(?p, ?loc))])];

forall_{?r: robot, ?o: obj} [pick_up(?r, ?o) =>

(exists_{?loc: wp} [(robot_at(?r, ?loc) ^ TABLE_AT(?loc) ^

object_at(?o, ?loc) ^ emptyhand(?r) ^ ~goal_attempted(?o))])];

forall_{?r: robot, ?o: obj} [put_down(?r, ?o) => (exists_{?loc: wp}

[(robot_at(?r, ?loc) ^ TABLE_AT(?loc) ^ holding(?r, ?o))])];

forall_{?r: robot, ?o: obj, ?p: person} [take(?r, ?o, ?p) =>

(exists_{?loc: wp} [(robot_at(?r, ?loc) ^ person_at(?p, ?loc) ^

emptyhand(?r) ^ object_with(?o, ?p) ^ ~goal_attempted(?o))])];

forall_{?r: robot, ?o: obj, ?p: person} [give(?r, ?o, ?p) =>

(exists_{?loc: wp} [(robot_at(?r, ?loc) ^

person_at(?p, ?loc) ^ holding(?r, ?o))])];

};

}

D.5 Blocks World

domain blocksworld_mdp {

requirements = {reward-deterministic};

types {

block : object;

};

pvariables {

GOAL_REWARD_ON : {non-fluent, real, default = 0.0};

GOAL_REWARD_UNSTACK : {non-fluent, real, default = 0.0};

GOAL_REWARD_STACK : {non-fluent, real, default = 0.0};

COST : {non-fluent, real, default = 0.0};

GOAL(block,block) : {non-fluent, bool, default = false};

clear(block) : {state-fluent, bool, default = false};

on_table(block) : {state-fluent, bool, default = false};

on(block, block) : {state-fluent, bool, default = false};

stack(block, block) : {action-fluent, bool, default = false};

unstack(block, block) : {action-fluent, bool, default = false};

274

Appendix D: RDDL Domains

};

cpfs {

clear’(?block) =

if (exists_{?block2 : block} [stack(?block2, ?block)]) then false

else if (exists_{?block2: block} [unstack(?block2, ?block)])

then true

else if (exists_{?block2: block, ?block3: block}

[stack(?block2, ?block3) ^ on(?block2, ?block)])

then true

else clear(?block);

on_table’(?block) =

if (exists_{?block2 : block} [stack(?block, ?block2)]) then false

else if (exists_{?block2 : block} [unstack(?block, ?block2)])

then true

else on_table(?block);

on’(?block1, ?block2) =

if (unstack(?block1, ?block2)) then false

else if (stack(?block1, ?block2)) then true

else if (exists_{?block3: block} [stack(?block1, ?block3)])

then false

else on(?block1, ?block2);

};

reward =

[sum_{?block1 : block, ?block2 : block}

+(GOAL_REWARD_ON * [GOAL(?block1, ?block2) ^ on(?block1, ?block2)])

-COST*stack(?block1, ?block2)

-COST*unstack(?block1, ?block2)

]

+ (GOAL_REWARD_STACK * [exists_{?block1 : block} [on_table(?block1) ^

~exists_{?block2 : block} (?block1 ~= ?block2 ^ on_table(?block2))]])

+ (GOAL_REWARD_UNSTACK * [~exists_{?block1 : block, ?block2 : block}

[on(?block1, ?block2)]]);

state-action-constraints {

forall_{?block : block} [~on(?block, ?block)];

275

Appendix D: RDDL Domains

};

action-preconditions {

forall_{?block1 : block, ?block2 : block} [stack(?block1, ?block2) =>

(clear(?block1) ^ clear(?block2))];

forall_{?block1 : block, ?block2 : block} [unstack(?block1, ?block2) =>

(clear(?block1) ^ on(?block1, ?block2))];

};

}

276

Bibliography

[1] Abel, D.; Hershkowitz, D.; and Littman, M. 2016. Near optimal behavior via

approximate state abstraction. In Proceedings of the International Conference

on Machine Learning, 2915–2923.

[2] Achiam, J.; and Sastry, S. 2017. Surprise-based intrinsic motivation for deep

reinforcement learning. arXiv preprint 1703.01732.

[3] Agarwal, A.; Kakade, S.; and Yang, L. F. 2020. Model-based reinforcement

learning with a generative model is minimax optimal. In Abernethy, J.; and

Agarwal, S., eds., Proceedings of Conference on Learning Theory, volume 125,

67–83.

[4] Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong, R.; Welinder, P.;

McGrew, B.; Tobin, J.; Pieter Abbeel, O.; and Zaremba, W. 2017. Hindsight

experience replay. In Proceedings of the International Conference on Machine

Learning, volume 30, 5048–5058.

[5] Aubret, A.; Matignon, L.; and Hassas, S. 2019. A survey on intrinsic motiva-

tion in reinforcement learning. arXiv preprint arXiv:1908.06976.

[6] Bai, A.; Srivastava, S.; and Russell, S. J. 2016. Markovian state and action

abstractions for MDPs via hierarchical MCTS. In Proceedings of the Interna-

tional Joint Conference on Artificial Intelligence, 3029–3039.

[7] Barto, A. G.; and Mahadevan, S. 2003. Recent advances in hierarchical rein-

forcement learning. Discrete Event Dynamic Systems, 13(1): 41–77.

[8] Bellemare, M.; Srinivasan, S.; Ostrovski, G.; Schaul, T.; Saxton, D.; and

Munos, R. 2016. Unifying count-based exploration and intrinsic motivation.

277

BIBLIOGRAPHY

In Proceedings of the Conference on Neural Information Processing Systems,

1471–1479.

[9] Bellman, R. 1957. Dynamic programming. Dover Publications.

[10] Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J. 2009. Curriculum

learning. In Proceedings of the International Conference on Machine Learning,

41–48.

[11] Benson, S. S. 1996. Learning action models for reactive autonomous agents.

Ph.D. thesis, Stanford University.

[12] Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal planning with pref-

erences and time-dependent continuous costs. In Proceedings of International

Conference on Automated Planning and Scheduling.

[13] Bertsekas, D. P. 1995. Dynamic programming and optimal control, volume 1.

Athena scientific Belmont, MA.

[14] Blockeel, H. 2009. The ACE datamining system. https://dtai.cs.

kuleuven.be/ACE/. Accessed: 03.02.2022.

[15] Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000. Stochastic dynamic

programming with factored representations. Artificial intelligence, 121(1-2):

49–107.

[16] Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic dynamic programming

for first-order MDPs. In Proceedings of the International Joint Conference on

Artificial Intelligence, 690–700.

[17] Boyan, J. A.; and Littman, M. L. 2001. Exact solutions to time-dependent

MDPs. In Proceedings of the Conference on Neural Information Processing

Systems, 1026–1032.

[18] Bradtke, S.; and Duff, M. 1994. Reinforcement learning methods for

continuous-time Markov decision problems. Advances in Neural Information

Processing Systems, 7.

278

https://dtai.cs.kuleuven.be/ACE/
https://dtai.cs.kuleuven.be/ACE/

BIBLIOGRAPHY

[19] Brafman, R. I.; and Tennenholtz, M. 2002. R-MAX - A general polynomial

time algorithm for near-optimal reinforcement learning. Journal of Machine

Learning Research, 3: 213–231.

[20] Buckman, J.; Hafner, D.; Tucker, G.; Brevdo, E.; and Lee, H. 2018. Sample-

efficient reinforcement learning with stochastic ensemble value expansion. In

Proceedings of the Conference on Neural Information Processing Systems,

8224–8234.

[21] Burda, Y.; Edwards, H.; Storkey, A.; and Klimov, O. 2018. Exploration by

random network distillation. arXiv preprint arXiv:1810.12894.

[22] Camacho, A.; Muise, C.; and McIlraith, S. A. 2016. From FOND to robust

probabilistic planning: Computing compact policies that bypass avoidable

deadends. In Proceedings of the International Conference on International

Conference on Automated Planning and Scheduling, 65–69.

[23] Canal, G.; Cashmore, M.; Krivic, S.; Alenyà, G.; Magazzeni, D.; and Torras,

C. 2019. Probabilistic planning for robotics with ROSPlan. In Proceedings of

the TAROS, 236–250.

[24] Carreno, Y.; Ng, J. H. A.; Petillot, Y.; and Petrick, R. P. A. 2022. Plan-

ning, execution, and adaptation for multi-robot systems using probabilistic

and temporal planning. In Proceedings of the International Conference on

Autonomous Agents and Multiagent Systems.

[25] Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; Ridder, B.; Carrera, A.;

Palomeras, N.; Hurtos, N.; and Carreras, M. 2015. ROSPlan: Planning in

the robot operating system. In Proceedings of the International Conference on

Automated Planning and Scheduling.

[26] Chapman, D.; and Kaelbling, L. P. 1991. Input generalization in delayed rein-

forcement learning: An algorithm and performance comparisons. In Proceed-

ings of the International Joint Conference on Artificial Intelligence, 726–731.

[27] Christiano, P.; Shah, Z.; Mordatch, I.; Schneider, J.; Blackwell, T.; To-

bin, J.; Abbeel, P.; and Zaremba, W. 2016. Transfer from simulation to

279

BIBLIOGRAPHY

real world through learning deep inverse dynamics model. arXiv preprint

arXiv:1610.03518.

[28] Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010. Forward-chaining partial-

order planning. In Proceedings of International Conference on Automated

Planning and Scheduling, 42–49.

[29] Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013. Acquiring planning

domain models using LOCM. The Knowledge Engineering Review, 28(2): 195–

213.

[30] Croonenborghs, T.; Driessens, K.; and Bruynooghe, M. 2007. Learning rela-

tional options for inductive transfer in relational reinforcement learning. In

Proceedings of the International Conference on Inductive Logic Programming,

88–97.

[31] Croonenborghs, T.; Ramon, J.; Blockeel, H.; and Bruynooghe, M. 2007. On-

line learning and exploiting relational models in reinforcement learning. In

Proceedings of the International Joint Conference on Artificial Intelligence,

726–731.

[32] Cserna, B.; Doyle, W. J.; Ramsdell, J. S.; and Ruml, W. 2018. Avoiding dead

ends in real-time heuristic search. In Proceedings of the AAAI Conference on

Artificial Intelligence.

[33] Cullen, J.; and Bryman, A. 1988. The knowledge acquisition bottleneck: Time

for reassessment? Expert Systems, 5(3): 216–225.

[34] Dabney, W.; and McGovern, A. 2007. Utile distinctions for relational rein-

forcement learning. In Proceedings of the International Joint Conference on

Artificial Intelligence, volume 7, 738–743.

[35] Dean, T.; and Kanazawa, K. 1989. A model for reasoning about persistence

and causation. Computational Intelligence, 5(2): 142–150.

[36] Deisenroth, M.; and Rasmussen, C. E. 2011. PILCO: A model-based and

data-efficient approach to policy search. In Proceedings of the International

Conference on Machine Learning, 465–472.

280

BIBLIOGRAPHY

[37] Dietterich, T. G. 2000. Hierarchical reinforcement learning with the MAXQ

value function decomposition. Journal of Artificial Intelligence Research, 13:

227–303.

[38] Diuk, C. 2010. An object-oriented representation for efficient reinforcement

learning. Ph.D. thesis, Rutgers, The State University of New Jersey.

[39] Diuk, C.; Li, L.; and Leffler, B. R. 2009. The adaptive k-meteorologists prob-

lem and its application to structure learning and feature selection in reinforce-

ment learning. In Proceedings of the International Conference on Machine

Learning, 249–256.

[40] Doshi-Velez, F.; and Kim, B. 2017. Towards a rigorous science of interpretable

machine learning. arXiv preprint arXiv:1702.08608.

[41] Driessens, K.; and Džeroski, S. 2004. Integrating guidance into relational

reinforcement learning. Machine Learning, 57: 271–304.

[42] Driessens, K.; and Džeroski, S. 2005. Combining model-based and instance-

based learning for first order regression. In Proceedings of the International

Conference on Machine Learning, 193–200.

[43] Driessens, K.; and Ramon, J. 2003. Relational instance based regression for re-

lational reinforcement learning. In Proceedings of the International Conference

on Machine Learning, 123–130.

[44] Driessens, K.; Ramon, J.; and Blockeel, H. 2001. Speeding up relational

reinforcement learning through the use of an incremental first order decision

tree learner. In Proceedings of the European Conference on Machine Learning,

97–108.

[45] Driessens, K.; Ramon, J.; and Gärtner, T. 2006. Graph kernels and Gaussian

processes for relational reinforcement learning. Machine Learning, 64: 91–119.

[46] Duckworth, P.; Lacerda, B.; and Hawes, N. 2021. Time-bounded mission

planning in time-varying domains with semi-MDPs and Gaussian processes.

In Proceedings of the Conference on Robot Learning, volume 155, 1654–1668.

281

BIBLIOGRAPHY

[47] Džeroski, S.; De Raedt, L.; and Driessens, K. 2001. Relational reinforcement

learning. Machine Learning, 43(1-2): 7–52.

[48] Feinberg, V.; Wan, A.; Stoica, I.; Jordan, M. I.; Gonzalez, J. E.; and Levine,

S. 2018. Model-based value estimation for efficient model-free reinforcement

learning. arXiv preprint arXiv:1803.00101.

[49] Fern, A.; Yoon, S. W.; and Givan, R. 2003. Approximate policy iteration

with a policy language bias. In Proceedings of the International Conference

on Machine Learning, 847–854.

[50] Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new approach to the appli-

cation of theorem proving to problem solving. Artificial Intelligence, 2(3-4):

189–208.

[51] Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic meta-learning for

fast adaptation of deep networks. In Proceedings of the International Confer-

ence on Machine Learning.

[52] Fox, M.; and Long, D. 2003. PDDL2.1: An extension to PDDL for expressing

temporal planning domains. Journal of Artificial Intelligence Research, 20:

61–124.

[53] Garg, S.; Bajpai, A.; and Mausam. 2020. Symbolic network: Generalized neu-

ral policies for relational MDPs. In Proceedings of the International Conference

on Machine Learning, 3397–3407.

[54] Geramifard, A.; Dann, C.; and How, J. P. 2013. Off-policy learning combined

with automatic feature expansion for solving large MDPs. In Proceedings

of the Multidisciplinary Conference on Reinforcement Learning and Decision

Making, 29–33.

[55] Geramifard, A.; Doshi, F.; Redding, J.; Roy, N.; and How, J. 2011. Online dis-

covery of feature dependencies. In Proceedings of the International Conference

on Machine Learning, 881–888.

282

BIBLIOGRAPHY

[56] Geramifard, A.; Walsh, T.; Roy, N.; and How, J. 2013. Batch iFDD: A

scalable matching pursuit algorithm for solving MDPs. In Proceedings of the

Conference on Uncertainty in Artificial Intelligence.

[57] Geramifard, A.; Walsh, T. J.; Tellex, S.; Chowdhary, G.; Roy, N.; and How,

J. P. 2013. A tutorial on linear function approximators for dynamic program-

ming and reinforcement learning, volume 6. Now Foundations and Trends.

[58] Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated planning. Elsevier.

ISBN 9781558608566.

[59] Gil, Y. 1994. Learning by experimentation: Incremental refinement of incom-

plete planning domains. In Proceedings of the International Conference on

Machine Learning, 87–95.

[60] Gordon, D.; Kadian, A.; Parikh, D.; Hoffman, J.; and Batra, D. 2019. Split-

Net: Sim2Sim and Task2Task transfer for embodied visual navigation. In

Proceedings of the IEEE/CVF International Conference on Computer Vision.

[61] Grounds, M. J.; and Kudenko, D. 2007. Combining reinforcement learning

with symbolic planning. In Proceedings of the European Workshop on Adaptive

Agents and Multi-Agent Systems.

[62] Grzes, M.; Hoey, J.; and Sanner, S. 2014. International Probabilistic Planning

Competition (IPPC) 2014. In Proceedings of the International Conference on

Automated Planning and Scheduling.

[63] Guerin, J.; Hanna, J. P.; Ferland, L.; Mattei, N.; and Goldsmith, J. 2012. The

Academic Advising planning domain. In Proceedings of the ICAPS Workshop

on the International Planning Competition.

[64] Guestrin, C.; Koller, D.; Gearhart, C.; and Kanodia, N. 2003. Generalizing

plans to new environments in relational MDPs. In Proceedings of the Interna-

tional Joint Conference on Artificial Intelligence, 1003–1010.

[65] Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; and Pe-

dreschi, D. 2018. A survey of methods for explaining black box models. ACM

Computing Surveys, 51(5).

283

BIBLIOGRAPHY

[66] Guo, Z. D.; and Brunskill, E. 2017. Sample efficient feature selection for

factored MDPs. arXiv preprint arXiv:1703.03454.

[67] Guo, Z. D.; and Brunskill, E. 2019. Directed exploration for reinforcement

learning. arXiv preprint arXiv:1906.07805.

[68] Hasselt, H. v.; Guez, A.; and Silver, D. 2016. Deep reinforcement learning

with Double Q-learning. In Proceedings of the AAAI Conference on Artificial

Intelligence, 2094–2100.

[69] Hester, T.; and Stone, P. 2010. Real time targeted exploration in large do-

mains. In Proceedings of the International Conference on Development and

Learning, 191–196.

[70] Illanes, L.; Yan, X.; Icarte, R. T.; and McIlraith, S. A. 2020. Symbolic plans

as high-level instructions for reinforcement learning. In Proceedings of the

International Conference on Automated Planning and Scheduling.

[71] Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018. Training deep reactive

policies for probabilistic planning problems. In Proceedings of the International

Conference on Automated Planning and Scheduling, volume 28.

[72] James, S.; Davison, A. J.; and Johns, E. 2017. Transferring end-to-end vi-

suomotor control from simulation to real world for a multi-stage task. In

Proceedings of the Conference on Robot Learning.

[73] James, S.; and Johns, E. 2016. 3D Simulation for robot arm control with deep

Q-learning. In Proceedings of the Workshop on Deep Learning for Action and

Interaction.

[74] James, S.; Wohlhart, P.; Kalakrishnan, M.; Kalashnikov, D.; Irpan, A.; Ibarz,

J.; Levine, S.; Hadsell, R.; and Bousmalis, K. 2019. Sim-To-Real via Sim-To-

Sim: Data-efficient robotic grasping via randomized-to-canonical adaptation

networks. In Proceedings of the Conference on Computer Vision and Pattern

Recognition, 12619–12629.

284

BIBLIOGRAPHY

[75] Jiménez, S.; De la Rosa, T.; Fernández, S.; Fernández, F.; and Borrajo, D.

2012. A review of machine learning for automated planning. The Knowledge

Engineering Review, 27(4): 433–467.

[76] Jong, N. K.; and Stone, P. 2005. State abstraction discovery from irrelevant

state variables. In Proceedings of the International Joint Conference on Arti-

ficial Intelligence, volume 8, 752–757.

[77] Jong, N. K.; and Stone, P. 2007. Model-based function approximation in

reinforcement learning. In Proceedings of the International Conference on

Autonomous Agents and Multiagent Systems, 1–8.

[78] Jonsson, A.; and Barto, A. G. 2001. Automated state abstraction for options

using the U-tree algorithm. Proceedings of the International Conference on

Machine Learning, 1054–1060.

[79] Joshi, S.; Khardon, R.; Tadepalli, P.; Raghavan, A.; and Fern, A. 2013. Solving

relational MDPs with exogenous events and additive rewards. In Proceedings of

the Joint European Conference on Machine Learning and Knowledge Discovery

in Databases, 178–193.

[80] Jung, T.; and Stone, P. 2009. Feature selection for value function approxi-

mation using Bayesian model selection. In Proceedings of the Joint European

Conference on Machine Learning and Knowledge Discovery in Databases, 660–

675.

[81] Kakade, S. M. 2003. On the sample complexity of reinforcement learning.

Ph.D. thesis, University College London.

[82] Karia, R.; and Srivastava, S. 2020. Learning generalized relational heuristic

networks for model-agnostic planning. arXiv preprint arXiv:2007.06702.

[83] Kartal, B.; Nunes, E.; Godoy, J.; and Gini, M. 2016. Monte Carlo Tree Search

with branch and bound for multi-robot task allocation. In Proceedings of the

IJCAI Workshop on Autonomous Mobile Service Robots.

285

BIBLIOGRAPHY

[84] Kearns, M.; and Singh, S. 1998. Near-optimal reinforcement learning in poly-

nomial time. In Proceedings of the International Conference on Machine

Learning, 260–268.

[85] Keller, P.; Mannor, S.; and Precup, D. 2006. Automatic basis function con-

struction for approximate dynamic programming and reinforcement learning.

In Proceedings of the International Conference on Machine Learning, volume

2006, 449–456.

[86] Keller, T.; and Eyerich, P. 2012. PROST: Probabilistic planning based on

UCT. In Proceedings of the International Conference on Automated Planning

and Scheduling.

[87] Keller, T.; and Helmert, M. 2013. Trial-based heuristic tree search for finite

horizon MDPs. In Proceedings of the International Conference on Automated

Planning and Scheduling, 135–143.

[88] Kocsis, L.; and Szepesvári, C. 2006. Bandit based Monte-Carlo planning. In

Proceedings of the European Conference on Machine Learning, volume 2006,

282–293.

[89] Koenig, N.; and Howard, A. 2004. Design and use paradigms for Gazebo,

an open-source multi-robot simulator. In Proceedings of the International

Conference on Intelligent Robots and Systems, volume 3, 2149–2154.

[90] Koenig, S.; Tovey, C.; Lagoudakis, M.; Markakis, V.; Kempe, D.; Keskinocak,

P.; Kleywegt, A.; Meyerson, A.; and Jain, S. 2006. The power of sequential

single-item auctions for agent coordination. In Proceedings of the National

Conference on Artificial Intelligence, 1625–1629.

[91] Kokel, H.; Manoharan, A.; Natarajan, S.; Ravindran, B.; and Tadepalli, P.

2021. RePReL: Integrating relational planning and reinforcement learning

for effective abstraction. In Proceedings of the International Conference on

Automated Planning and Scheduling, 533–541.

[92] Kolobov, A.; Mausam; and Weld, D. S. 2010. SixthSense: Fast and reliable

286

BIBLIOGRAPHY

recognition of dead ends in MDPs. In Proceedings of the AAAI Conference on

Artificial Intelligence, 1108–1114.

[93] Kolobov, A.; Mausam; and Weld, D. S. 2012. LRTDP vs. UCT for online

probabilistic planning. In Proceedings of the AAAI Conference on Artificial

Intelligence, 1786–1792.

[94] Konidaris, G.; and Barto, A. 2006. Autonomous shaping: Knowledge transfer

in reinforcement learning. In Proceedings of the International Conference on

Machine Learning, 489–496.

[95] Konidaris, G. D.; and Barto, A. G. 2007. Building portable options: Skill

transfer in reinforcement learning. In Proceedings of the International Joint

Conference on Artificial Intelligence, volume 7, 895–900.

[96] Kroon, M.; and Whiteson, S. 2009. Automatic feature selection for model-

based reinforcement learning in factored MDPs. In Proceedings of the Inter-

national Conference on Machine Learning and Applications, 324–330.

[97] Lacerda, B.; Parker, D.; and Hawes, N. 2017. Multi-objective policy generation

for mobile robots under probabilistic time-bounded guarantees. In Proceedings

of the International Conference on Automated Planning and Scheduling, 504–

512.

[98] Lang, T.; and Toussaint, M. 2010. Planning with noisy probabilistic relational

rules. Journal of Artificial Intelligence Research.

[99] Lang, T.; Toussaint, M.; and Kersting, K. 2012. Exploration in relational

domains for model-based reinforcement learning. Journal of Machine Learning

Research, 13: 3725–3768.

[100] Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a unified theory of

state abstraction for MDPs. Proceedings of the International Symposium on

Artificial Intelligence and Mathematics, 4: 5.

[101] Lin, L. J. 1992. Reinforcement learning for robots using neural networks. Ph.D.

thesis, Carnegie Mellon University.

287

BIBLIOGRAPHY

[102] Lipovetzky, N.; Muise, C.; and Geffner, H. 2016. Traps, invariants, and dead-

ends. In Proceedings of the International Conference on Automated Planning

and Scheduling, 211–215.

[103] Little, I.; and Thiebaux, S. 2007. Probabilistic planning vs. replanning. In Pro-

ceedings of the ICAPS Workshop on the International Planning Competition:

Past, Present and Future.

[104] Liu, L.; and Sukhatme, G. 2018. A solution to time-varying Markov decision

processes. IEEE Robotics and Automation Letters.

[105] Mahadevan, S.; and Maggioni, M. 2007. Proto-value functions: A Laplacian

framework for learning representation and control in Markov decision pro-

cesses. Journal of Machine Learning Research, 8(Oct): 2169–2231.

[106] Mart́ınez, D.; Alenya, G.; Ribeiro, T.; and Torras, C. 2017. Relational rein-

forcement learning for planning with exogenous effects. Journal of Machine

Learning Research, 18(1): 2689–2732.

[107] Mart́ınez, D.; Alenya, G.; and Torras, C. 2017. Relational reinforcement learn-

ing with guided demonstrations. Artificial Intelligence, 247: 295–312.

[108] Mart́ınez, D.; Alenya, G.; Torras, C.; Ribeiro, T.; and Inoue, K. 2016. Learning

relational dynamics of stochastic domains for planning. In Proceedings of the

International Conference on Automated Planning and Scheduling, 235–243.

[109] Mausam; and Weld, D. S. 2003. Solving relational MDPs with first-order

machine learning. In Proceedings of the ICAPS Workshop on Planning Under

Uncertainty And Incomplete Information.

[110] McCallum, A. K. 1996. Reinforcement learning with selective perception and

hidden state. Ph.D. thesis, University of Rochester.

[111] McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram, A.; Veloso, M.;

Weld, D.; and Wilkins, D. 1998. PDDL - The Planning Domain Definition

Language. Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for

Computational Vision and Control.

288

BIBLIOGRAPHY

[112] Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra,

D.; and Riedmiller, M. 2013. Playing Atari with deep reinforcement learning.

In Proceedings of the NeurIPS Deep Learning Workshop.

[113] Morales, E. 2003. Scaling up reinforcement learning with a relational rep-

resentation. In Proceedings of the Workshop on Adaptability in Multi-agent

System.

[114] Mourão, K.; Zettlemoyer, L. S.; Petrick, R. P. A.; and Steedman, M. 2012.

Learning STRIPS operators from noisy and incomplete observations. In Pro-

ceedings of the Conference on Uncertainty in Artificial Intelligence, 614–623.

[115] Mourão, K. M. T. 2012. Learning action representations using kernel percep-

trons. Ph.D. thesis, The University of Edinburgh.

[116] Muggleton, S.; and de Raedt, L. 1994. Inductive Logic Programming: Theory

and methods. The Journal of Logic Programming, 19-20: 629–679. Special

issue: Ten years of logic programming.

[117] Ng, J. H. A.; and Petrick, R. P. A. 2019. Incremental learning of action

models for planning. In Proceedings of the ICAPS Workshop on Knowledge

Engineering for Planning and Scheduling (KEPS).

[118] Ng, J. H. A.; and Petrick, R. P. A. 2019. Incremental learning of planning

actions in model-based reinforcement learning. In Proceedings of the Interna-

tional Joint Conference on Artificial Intelligence, 3195–3201.

[119] Ng, J. H. A.; and Petrick, R. P. A. 2020. Practical feature selection for online

reinforcement learning and planning in relational MDPs. In Proceedings of the

Workshop of the UK Planning and Scheduling Special Interest Group.

[120] Ng, J. H. A.; and Petrick, R. P. A. 2021. First-order function approximation

for transfer learning in relational MDPs. In Proceedings of the ICAPS Work-

shop on Bridging the Gap Between AI Planning and Reinforcement Learning

(PRL).

289

BIBLIOGRAPHY

[121] Ng, J. H. A.; and Petrick, R. P. A. 2021. Generalised linear function approx-

imation with first-order features. In Proceedings of the IJCAI Workshop on

Generalization in Planning (GenPlan).

[122] Ng, J. H. A.; and Petrick, R. P. A. 2021. Generalised task planning with

first-order function approximation. In Proceedings of the Conference on Robot

Learning.

[123] Ng, J. H. A.; and Petrick, R. P. A. 2022. First-Order Dead End Situations

for Policy Guidance in Relational Problems. In Proceedings of the IJCAI

Workshop on Generalization in Planning (GenPlan).

[124] Nguyen, T.; Li, Z.; Silander, T.; and Leong, T. Y. 2013. Online feature

selection for model-based reinforcement learning. In Proceedings of the Inter-

national Conference on Machine Learning, 498–506.

[125] Nunes, E.; and Gini, M. 2015. Multi-robot auctions for allocation of tasks with

temporal constraints. In Proceedings of the AAAI Conference on Artificial

Intelligence, 2110–2216.

[126] Oates, T.; and Cohen, P. R. 1996. Learning planning operators with condi-

tional and probabilistic effects. In Proceedings of the AAAI Spring Symposium

on Planning with Incomplete Information for Robot Problems, 86–94.

[127] Ornik, M.; and Topcu, U. 2021. Learning and planning for time-varying MDPs

using maximum likelihood estimation. Journal of Machine Learning Research,

22: 1–40.

[128] Oudeyer, P.-Y.; Kaplan, F.; and Hafner, V. V. 2007. Intrinsic motivation

systems for autonomous mental development. IEEE Transactions on Evolu-

tionary Computation, 11(2): 265–286.

[129] Painter-Wakefield, C.; and Parr, R. 2012. Greedy algorithms for sparse rein-

forcement learning. In Proceedings of the International Conference on Machine

Learning.

[130] Palmer, T. J. 2015. Learning action-state representation forests for implicitly

relational worlds. Ph.D. thesis, University Of Oklahoma.

290

BIBLIOGRAPHY

[131] Pardo, F.; Tavakoli, A.; Levdik, V.; and Kormushev, P. 2018. Time limits

in reinforcement learning. In Proceedings of the International Conference on

Machine Learning.

[132] Parr, R.; Li, L.; Taylor, G.; Painter-Wakefield, C.; and Littman, M. 2008.

An analysis of linear models, linear value-function approximation, and fea-

ture selection for reinforcement learning. In Proceedings of the International

Conference on Machine Learning, 752–759.

[133] Parr, R.; Painter-Wakefield, C.; Li, L.; and Littman, M. 2007. Analyzing

feature generation for value-function approximation. In Proceedings of the

International Conference on Machine Learning, volume 227, 737–744.

[134] Pasula, H.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2004. Learning probabilis-

tic relational planning rules. In Proceedings of the International Conference

on Automated Planning and Scheduling, 73–82.

[135] Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2007. Learning symbolic

models of stochastic domains. Journal of Artificial Intelligence Research, 29:

309–352.

[136] Peng, J.; and Williams, R. 1998. Incremental multi-step Q-learning. Machine

Learning, 22.

[137] Pereira, R. F.; Oren, N.; and Meneguzzi, F. 2017. Landmark-based heuristics

for goal recognition. In Proceedings of the AAAI Conference on Artificial

Intelligence, 3622–3628.

[138] Puiutta, E.; and Veith, E. 2020. Explainable reinforcement learning: A survey.

In Machine Learning and Knowledge Extraction, 77–95. Springer International

Publishing. ISBN 978-3-030-57320-1.

[139] Puterman, M. L. 2014. Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons.

[140] Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger,

E.; Wheeler, R.; and Ng, A. Y. 2009. ROS: An open-source Robot Operating

291

BIBLIOGRAPHY

System. In Proceedings of the ICRA Workshop on Open Source Software,

volume 3.

[141] Ramon, J.; Driessens, K.; and Croonenborghs, T. 2007. Transfer learning in

reinforcement learning problems through partial policy recycling. In Proceed-

ings of the European Conference on Machine Learning, volume 4701, 699–707.

[142] Rao, D.; and Jiang, Z. 2015. Learning planning domain descriptions in RDDL.

International Journal on Artificial Intelligence Tools, 24(3).

[143] Ribeiro, T.; and Inoue, K. 2014. Learning prime implicant conditions from

interpretation transition. In Proceedings of the International Conference on

Inductive Logic Programming.

[144] Rodrigues, C.; Gérard, P.; and Rouveirol, C. 2008. On and off-policy relational

reinforcement learning. Inductive Logic Programming, 99.

[145] Roncagliolo, S.; and Tadepalli, P. 2004. Function approximation in hierarchical

relational reinforcement learning. In Proceedings of the ICML Workshop on

Relational Reinforcement Learning, 1–5.

[146] Ryan, M. R. K. 2002. Using abstract models of behaviours to automatically

generate reinforcement learning hierarchies. In Proceedings of the International

Conference on Machine Learning, 522–529.

[147] Sanner, S. 2006. Online feature discovery in relational reinforcement learn-

ing. In Proceedings of the Open Problems in Statistical Relational Learning

Workshop.

[148] Sanner, S. 2011. ICAPS 2011 International Probabilistic Planning Competi-

tion (IPPC). http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/. Ac-

cessed: 18.12.2020.

[149] Sanner, S. 2011. Relational Dynamic Influence Diagram Language

(RDDL): Language description. Http://users.cecs.anu.edu.au/ ssan-

ner/IPPC 2011/RDDL.pdf.

292

http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/

BIBLIOGRAPHY

[150] Sanner, S.; and Boutilier, C. 2012. Practical linear value-approximation tech-

niques for first-order MDPs. In Proceedings of the Conference on Uncertainty

in Artificial Intelligence, 409–417.

[151] Schaul, T.; Horgan, D.; Gregor, K.; and Silver, D. 2015. Universal value

function approximators. In Proceedings of the International Conference on

Machine Learning, volume 37, 1312–1320.

[152] Schillinger, P.; Bürger, M.; and Dimarogonas, D. V. 2018. Auctioning over

probabilistic options for temporal logic-based multi-robot cooperation under

uncertainty. In Proceedings of the International Conference on Robotics and

Automation, 7330–7337.

[153] Schmidhuber, J. 2010. Formal theory of creativity, fun, and intrinsic motiva-

tion (1990-2010). IEEE Transactions on Autonomous Mental Development, 2:

230– – 247.

[154] Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and Klimov, O. 2017.

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

[155] Seurin, M.; Strub, F.; Preux, P.; and Pietquin, O. 2021. Don’t do what

doesn’t matter: Intrinsic motivation with action usefulness. In Proceedings of

the International Joint Conference on Artificial Intelligence.

[156] Sharma, M.; Holmes, M.; Santamaŕıa, J.; Irani, A.; Jr, C.; and Ram, A.

2007. Transfer learning in real-time strategy games using hybrid CBR/RL.

In Proceedings of the International Joint Conference on Artificial Intelligence,

1041–1046.

[157] Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; van den Driess-

che, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.;

Dieleman, S.; Grewe, D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap,

T.; Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D. 2016. Master-

ing the game of Go with deep neural networks and tree search. Nature, 529:

484–503.

293

BIBLIOGRAPHY

[158] Singh, S.; Barto, A. G.; and Chentanez, N. 2005. Intrinsically motivated rein-

forcement learning. In Proceedings of the Conference on Neural Information

Processing Systems, 1281–1288.

[159] Singh, S.; Sutton, R.; and Kaelbling, P. 1995. Reinforcement learning with

replacing eligibility traces. Machine Learning, 22.

[160] Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008. Learning generalized

plans using abstract counting. In Proceedings of the National Conference on

Artificial Intelligence, 991–997.

[161] Srivastava, S.; Russell, S.; Ruan, P.; and Cheng, X. 2014. First-order open-

universe POMDPs. In Proceedings of the Conference on Uncertainty in Arti-

ficial Intelligence, 742–751.

[162] Steinmetz, M.; and Hoffmann, J. 2017. Search and learn: On dead-end detec-

tors, the traps they set, and trap learning. In Proceedings of the International

Joint Conference on Artificial Intelligence, 4398–4404.

[163] Strehl, A. L.; Diuk, C.; and Littman, M. L. 2007. Efficient structure learning

in factored-state MDPs. In Proceedings of the AAAI Conference on Artificial

Intelligence, 645–650.

[164] Strehl, A. L.; and Littman, M. L. 2008. An analysis of model-based interval

estimation for Markov decision processes. Journal of Computer and System

Sciences, 74(8): 1309–1331.

[165] St̊ahlberg, S.; Francès, G.; and Seipp, J. 2021. Learning generalized unsolv-

ability heuristics for classical planning. In Proceedings of the International

Joint Conference on Artificial Intelligence, 4175–4181.

[166] Sutton, R. S. 1984. Temporal credit assignment in reinforcement learning.

Ph.D. thesis, University of Massachusetts Amherst.

[167] Sutton, R. S. 1991. Dyna, an integrated architecture for learning, planning,

and reacting. SIGART Bull., 2(4): 160–163.

294

BIBLIOGRAPHY

[168] Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning: An introduction.

MIT press.

[169] Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between MDPs and semi-MDPs:

A framework for temporal abstraction in reinforcement learning. Artificial

intelligence, 112(1-2): 181–211.

[170] Szita, I.; and Lőrincz, A. 2008. The many faces of optimism: A unifying ap-

proach. In Proceedings of the International Conference on Machine Learning,

1048–1055.

[171] Tadepalli, P.; Givan, R.; and Driessens, K. 2004. Relational reinforcement

learning: An overview. In Proceedings of the International Conference on

Machine Learning, volume 4, 1–9.

[172] Taylor, M. E.; and Stone, P. 2007. Cross-domain transfer for reinforcement

learning. In Proceedings of the International Conference on Machine Learning,

879–886.

[173] Taylor, M. E.; and Stone, P. 2007. Representation transfer for reinforcement

learning. In Proceedings of the AAAI Fall Symposium: Computational Ap-

proaches to Representation Change during Learning and Development, 78–85.

[174] Taylor, M. E.; and Stone, P. 2009. Transfer learning for reinforcement learning

domains: A survey. Journal of Machine Learning Research, 10(7).

[175] Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; and Abbeel, P. 2017.

Domain randomization for transferring deep neural networks from simulation

to the real world. In Proceedings of the International Conference on Intelligent

Robots and Systems, 23–30.

[176] Torrey, L.; and Shavlik, J. 2010. Transfer learning. In Handbook of Research on

Machine Learning Applications and Trends: Algorithms, Methods, and Tech-

niques, 242–264. IGI Global.

[177] Toyer, S.; Trevizan, F. W.; Thiébaux, S.; and Xie, L. 2020. ASNets: Deep

learning for generalised planning. Journal of Artificial Intelligence Research,

68: 1–68.

295

BIBLIOGRAPHY

[178] Tsitsiklis, J.; and van Roy, B. 1997. An analysis of temporal-difference learn-

ing with function approximation. IEEE Transactions on Automatic Control,

42(5): 674–690.

[179] van Otterlo, M. 2004. Reinforcement learning for relational MDPs. In Pro-

ceedings of the Machine Learning Conference of Belgium and the Netherlands.

[180] van Otterlo, M. 2005. A survey of reinforcement learning in relational domains.

Technical report, CTIT Technical Report Series.

[181] van Otterlo, M. 2012. Solving relational and first-order logical Markov decision

processes: A survey. In Reinforcement Learning, 253–292. Springer.

[182] van Seijen, H.; Mahmood, A. R.; Pilarski, P. M.; Machado, M. C.; and Sutton,

R. S. 2016. True online temporal-difference learning. Journal of Machine

Learning Research, 17(145): 1–40.

[183] Veeriah, V.; Oh, J.; and Singh, S. 2018. Many-goals reinforcement learning.

arXiv preprint arXiv:1806.09605.

[184] Walker, T. 2004. Relational reinforcement learning via sampling the space of

first-order conjunctive features. In Proceedings of the ICML Workshop on n

Relational Reinforcement Learning.

[185] Walsh, T.; Li, L.; and Littman, M. 2006. Transferring state abstractions be-

tween MDPs. In Proceedings of the ICML Workshop on Structural Knowledge

Transfer for Machine Learning.

[186] Walsh, T. J. 2010. Efficient learning of relational models for sequential decision

making. Ph.D. thesis, Rutgers, The State University of New Jersey.

[187] Wang, C.; Joshi, S.; and Khardon, R. 2008. First order decision diagrams for

relational MDPs. Journal of Artificial Intelligence Research, 31: 431–472.

[188] Wang, X. 1995. Learning by observation and practice: An incremental ap-

proach for planning operator acquisition. In Proceedings of the International

Conference on Machine Learning, 549–557.

296

BIBLIOGRAPHY

[189] Watkins, C. J. C. H. 1989. Learning from Delayed Rewards. Ph.D. thesis,

King’s College, Cambridge, UK.

[190] Wiering, M.; and van Otterlo, M. 2012. Reinforcement learning, volume 12 of

Adaptation, learning, and optimization. Springer.

[191] Wu, J.-H.; and Givan, R. 2005. Feature-discovering approximate value itera-

tion methods. In Zucker, J.; and Saitta, L., eds., Proceedings of the Interna-

tional Symposium on Abstraction, Reformulation and Approximation, volume

3607 of Lecture Notes in Computer Science, 321–331.

[192] Wu, J.-H.; and Givan, R. 2010. Automatic induction of Bellman-error features

for probabilistic planning. Journal of Artificial Intelligence Research, 38: 687–

755.

[193] Yang, F.; Lyu, D.; Liu, B.; and Gustafson, S. 2018. PEORL: Integrating

symbolic planning and hierarchical reinforcement learning for robust decision-

making. In Proceedings of the International Joint Conference on Artificial

Intelligence, 4860–4866.

[194] Yang, Q.; Wu, K.; and Jiang, Y. 2005. Learning actions models from plan

examples with incomplete knowledge. In Proceedings of the International Con-

ference on Automated Planning and Scheduling, 241–250.

[195] Younes, H. L.; and Littman, M. L. 2004. PPDDL1.0: An extension to PDDL

for expressing planning domains with probabilistic effects. Technical Report

CMU-CS-04-162, Carnegie Mellon University.

[196] Zambaldi, V.; Raposo, D.; Santoro, A.; Bapst, V.; Li, Y.; Babuschkin, I.;

Tuyls, K.; Reichert, D.; Lillicrap, T.; Lockhart, E.; Shanahan, M.; Langston,

V.; Pascanu, R.; Botvinick, M.; Vinyals, O.; and Battaglia, P. 2018. Relational

deep reinforcement learning. arXiv preprint arXiv:1806.01830.

[197] Zhang, K.; Yang, Z.; and Başar, T. 2019. Multi-agent reinforcement

learning: A selective overview of theories and algorithms. arXiv preprint

arXiv:1911.10635.

297

BIBLIOGRAPHY

[198] Zhang, S.; Jiang, Y.; Sharon, G.; and Stone, P. 2017. Multirobot symbolic

planning under temporal uncertainty. In Proceedings of the International Con-

ference on Autonomous Agents and Multiagent Systems, 501–510.

[199] Zhang, Y.; Tino, P.; Leonardis, A.; and Tang, K. 2021. A Survey on Neural

Network Interpretability. IEEE Transactions on Emerging Topics in Compu-

tational Intelligence, 5(5): 726–742.

[200] Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning complex ac-

tion models with quantifiers and logical implications. Artificial Intelligence,

174(18): 1540–1569.

298

	List of Tables
	List of Figures
	List of Algorithms
	Notation
	Introduction
	Exploiting The Structure of a Problem
	Transferring Knowledge
	Other Aspects of a Problem
	Overview of Our Approach
	Objectives and Contributions
	Structure

	Background and Related Work
	Problem Representations
	States and Actions
	Markov Decision Processes
	Relational Markov Decision Processes
	Semi-Markov Decision Processes
	Other Extensions of MDPs
	Terminal States, Goals, and Dead Ends

	Planning Languages
	STRIPS Action Models
	Probabilistic Planning Domain Definition Language
	Relational Dynamic Influence Diagram Language

	Generative Models
	Maximum Likelihood Model
	Dynamic Bayesian Network
	Model Learning
	Evaluate Correctness of Approximate Models

	Reinforcement Learning
	Model-Free Reinforcement Learning
	Model-Based Reinforcement Learning
	Measuring Performance

	Function Approximation
	State Abstraction
	Granularity
	Linear Function Approximation
	Feature Discovery
	Neural Network

	Relational Reinforcement Learning
	Model-Free RRL
	Model-Based RRL
	Planning Methods

	Additional Related Work
	Temporal Considerations
	Multi-Agent Coordination

	Benchmark Domains
	IPPC Benchmark Domains
	Robotic Domains
	Properties of Domains

	Summary

	First-Order Approximation
	Online Relational Reinforcement Learning
	Online Feature Discovery
	Adaptive online feature discovery
	Update Q-function Approximation

	Ground Approximation
	Consistent Abstraction with First-Order Features
	Initialising First-Order Base Features
	Consistent Abstraction and Abstract-Equivalent Problems
	Augmenting First-Order Base Features
	Conjunctive First-Order Features

	Grounding First-Order Features
	Granularity and Pitfalls of First-Order Abstraction
	Contextual Knowledge

	Dealing with Plateaus
	Model-Based Q-value Tree Expansion
	Ensemble of Approximations

	Transfer Learning
	Empirical Evaluation and Discussion
	Experimental Setup
	Ablation Study for Contextual Knowledge
	Resolving Plateaus
	Transfer Learning

	Summary

	Generalised Knowledge for RRL
	Types of Generalised Knowledge
	Model Predictions
	Model-Based Learning and Planning
	Model-Based Feature Selection
	UCT with Model-Free RRL

	Policy Control
	Learning from Dead Ends
	Intrinsic Motivation

	Empirical Evaluation and Discussion
	Correctness of Learned Models
	MBFS vs MFFS
	Learning from Dead Ends
	Intrinsic Motivation
	Continual Learning
	Combining Model-Based and Model-Free RL

	Summary

	Dynamic Objects, Time, and Coordination
	Service Robot in the Real World
	Dynamic Object Relational Markov Decision Process
	Dynamic Objects in Service Robot

	Temporal Considerations
	Durative Actions
	Time-Bounded Goals
	Time-Dependent DORMDP

	Dealing with TDORMDP Problems
	Dynamic Base Features
	Representing Violated TGs
	Model-Based Methods
	Learning from Hindsight
	Extensions to Online RRL

	Simulation-to-Simulation Transfer
	Simulated Environment in Gazebo
	Differences between Simulated Environments

	Empirical Evaluation and Discussion
	Dynamic Objects and TGs
	Sim-to-Sim Transfer

	Multi-Agent Coordination
	Coordinated Actions
	Decomposition with Temporal Planning
	Auctioning TGs

	Summary

	Discussion
	Conclusions and Future Work
	Future Work

	Proofs
	Proofs from Chapter 3
	Proofs from Chapter 4

	Additional Examples
	Examples for MBFS

	Additional Empirical Results
	Empirical Results for Chapter 3
	Blocks World
	Comparison with Other RRL Methods
	Sensitivity Analysis for Online Feature Discovery

	Empirical Results for Chapter 4
	Tuning the Hyperparameter for MBFS
	Sensitivity Analysis for
	Sensitivity Analysis for Number of Rollouts in Dyna

	Empirical Results for Chapter 5
	Effect of T on TDORMDP Problems

	RDDL Domains
	Recon
	Robot Fetch
	Robot Inspection
	Service Robot
	Blocks World

	Bibliography

