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Abstract

Subject to periodic boundary conditions, it is known that the solution to a cer-

tain family of linear dispersive partial differential equations, such as the free linear

Schrödinger and Airy evolution, exhibits a dichotomy at rational and irrational

times. At rational times, the solution is decomposed into a finite number of trans-

lated copies of the initial condition. Consequently, when the initial function has a

jump discontinuity, then the solution also exhibits finitely many jump discontinu-

ities. On the other hand, at irrational times the solution becomes a continuous, but

nowhere differentiable function. These two effects form the revival and fractalisation

phenomenon at rational and irrational times, respectively.

The main aim of the thesis is to further investigate the phenomenon of revivals

in time evolution problems posed under appropriate boundary conditions on a finite

interval. We consider both first-order and second-order in time problems. For

the former, we examine the influence of non-periodic boundary conditions on the

revival effect. For the latter, we study the revivals under periodic and non-periodic

boundary conditions.

In terms of first-order in time evolution problems, we show that the revival

phenomenon persists in the free linear Schrödinger equation under pseudo-periodic

and Robin-type boundary conditions. Moreover, we prove that under quasi-periodic

boundary conditions, the Airy equation does not in general exhibit revivals. With

respect to second-order in time equations, we first formulate an abstract setting

for the revival phenomenon, which we then apply to establish that the periodic,

even-order poly-harmonic wave equation exhibits revivals. Finally, following the

lack of revivals in Airy’s quasi-periodic problem, we characterise quasi-periodic and

periodic problems, either of first-order or second-order in time, for which the revival

effect breaks.

In general, our approach relies on identifying the canonical periodic components

of the generalised Fourier series representations of solutions, in order to utilise the

classical periodic theory of revivals.
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Notation

Z The set of integers

N The set of positive integers

Q The set of rational numbers

R The set of real numbers

C The set of complex numbers

Re(z) The real part of z ∈ C

Im(z) The imaginary part of z ∈ C

z The complex conjugate of z ∈ C

|z| The absolute value or modulus of either a real or a complex number

z

Cm[0, 2π] The space of all m-times continuously differentiable functions on

[0, 2π]

C∞
c (0, 2π) The space of smooth functions with compact support in (0, 2π)

Cb(R) The space of bounded, continuous, complex-valued functions

defined on R

(·)′ Differentiation with respect to the space variable x

∥f∥ =
√∫ 2π

0
|f(x)|2dx

L2(0, 2π) The Lebesgue space of complex-valued functions on (0, 2π) with

∥f∥ <∞

⟨f, g⟩ =
∫ 2π

0
f(x)g(x)dx

ej(x) = eijx/
√
2π, j ∈ Z

f̂(j) = ⟨f, ej⟩, j ∈ Z

⟨f⟩ = 1
2π

∫ 2π

0
f(x)dx

Hm(0, 2π) The Sobolev space of integer order m ≥ 1 over the interval (0, 2π)

Hs
per(0, 2π) The 2π-periodic Sobolev space of order s ≥ 0
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f ∗ The 2π-periodic extension of a function f

Ts The periodic translation operator

Rn(p, q) The periodic revival operator of order n at (p, q)

f ♮ The reflection of a function f

f± The even/odd extension of a function f

f ∗ g The periodic convolution of two functions f and g

n0(x) = 1√
π

nj(x) =
√

2
π
cos(jx), j ∈ N

dj(x) =
√

2
π
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f(x)nj(x)dx, j ∈ {0} ∪ N

bj =
∫ π

0
f(x)dj(x)dx, j ∈ N

⟨f, g⟩L2(0,π) =
∫ π

0
f(x)g(x)dx

H Complex, separable, infinite-dimensional Hilbert space
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Chapter 1

Introduction

1.1 The Phenomenon of Revivals

The revival effect is one part of a dichotomy that is known to appear in the behaviour

of the solution to linear dispersive partial differential equations (PDEs) with integer

coefficients and under periodic boundary conditions posed on a finite interval. The

other part of the dichotomy is the fractalisation effect. The free linear Schrödinger

equation and the Airy PDE are two of the main examples that belong in this class

of equations which exhibit the phenomenon of revivals and fractalisation.

The two effects appear when we consider initial conditions with finitely many

jump discontinuities. The classical example is a piecewise constant initial function

at time zero. For such initial data, the solution at certain times, known as rational

times, is given in terms of a finite linear combination of translated copies of the initial

condition. This implies that the solution evaluated at rational times is also piecewise

constant and essentially revives the form of the initial function. This recurrence of

the initial condition in the structure of the solution at rational times is known

as the revival phenomenon. In stark contrast to the behaviour at rational times,

the solution at generic times, also called irrational times, evolves from an initially

discontinuous function to a continuous, nowhere differentiable function displaying

a fractal-like profile. This smoothing effect on the regularity of the solution at

irrational times is the fractalisation phenomenon.

The revival and fractalisation dichotomy is also known as the Talbot effect, see

for instance [1, Section 3.19] by Gbur. The Talbot effect refers to a diffraction
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phenomenon first discovered by Talbot [2] in 1836. It describes the reappearance

at a certain distance, the Talbot distance, of the image of a periodic diffraction

grating after light is incident upon the grading. At rational multiples of the Talbot

distance, a pattern of shifted copies of the profile of the grating is revealed and

as the denominator of the rational number increases a self-similar, fractal form is

constructed, see Figure 1.1.

Figure 1.1: Talbot effect : On the left end of the figure, light is diffracted by a periodic
grading. On the right end of the picture, at the Talbot distance, the full image of the
grading is reproduced. Half-way through the picture, a vertically shifted image of the
grading appears. At regular fractions of the Talbot distance self-images of the grading are
observed. (Original source [1].)

Talbot’s discovery remained unnoticed for almost 50 years. It was re-examined

by Lord Rayleigh [3] in 1881, who calculated the Talbot distance to be a2/λ, where

a is the period of the grading and λ the wavelength of the incident light. Further

experimental and theoretical developments on the Talbot effect seem to originate

again much later in the 1950s and 1960s, see for example the works of Cowley and

Moodie [4], Hiedemann and Breazeale [5], Winthrop and Worthington [6].

However, it was the contribution of Berry and Klein [7] in 1996, which popu-

larised the subject and attracted the interested of both the physics and mathematics

community. Indeed, Berry an Klein examined the Talbot effect based on the Fourier

series representation of the solution to the free linear Schrödinger equation with pe-

riodic boundary conditions on a bounded interval. They discovered that at rational

multiples of the Talbot distance, the solution reduces to a finite superposition of

copies of the grading, while at irrational multiples it has a fractal non-differentiable

profile.

The theoretical treatment of the Talbot effect as given by Berry and Klein gave an

analytical characterisation of the revival of the periodic grading at regular fractions
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of the Talbot distance. As mentioned in [7], it further indicated that the mathemat-

ical theory behind the Talbot effect is similar to this of the experimentally observed

quantum revival, see for example [8] by Vrakking, Villeneuve and Stolow and [9] by

Yeazell and Stroud. Indeed, in certain quantum systems, after a long period of time,

the wave function can be fully reconstructed in its original form, resulting in a full

revival of the initial wave packet. On the other hand, at fractional multiples of this

period, it evolves into a fractional revival which refers to a partial reconstruction

of the wave function in terms of specific copies of the initial form. In [10], Berry,

Marzoli and Schleich provide a good description of the similarities of the underlying

mathematics between the Talbot and the quantum revival effects.

The studies outlined above came from the physics community. However, here

we should also mention the independent contributions of three mathematicians. In

1992, before the work of Berry and Klein, Oskolkov in [11] had already explored the

discontinuous and continuous nature of the solution to the free linear Schrödinger

equation and the Airy PDE. Oskolkov rigorously showed that, for bounded variation

initial datum with a finite number of jump discontinuities, the solution is bounded

and has at most countably many discontinuities at rational times, and thus it revives

the initial discontinuity. At irrational times, Oskolkov proved that the solution is

a continuous function in space, addressing in this manner the fractalisation phe-

nomenon to some extent.

Independently of Oskolkov and Berry and Klein, Taylor [12] in 2003 showed that

the linear Schrödinger equation with zero potential exhibits revivals. In particular,

Taylor showed that the solution at rational times is a finite superposition of trans-

lations of the initial condition. Similar to the previous works of Oskolkov and Berry

and Klein, Taylor noticed that the coefficients in this finite superposition have the

form of Gauss sums which are studied in number theory. However, Taylor further

showed how a classical reciprocity identity for Gauss sums follows from the analysis

of the revival phenomenon.

Finally, in 2010 Olver [13] independently discovered the Talbot effect in the

context of the Airy PDE under periodic boundary conditions. By proving the revival

property at rational times, Olver showed that the effect persists in the class of first-

order in time, linear dispersive PDEs with integer coefficients. Furthermore, Olver
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named the effect dispersive quantisation capturing both the dispersive nature of the

equation and the quantisation (revival) of its solution at rational times.

Olver’s result settled the mathematical theory of revivals in the periodic setting

for first-order in time linear dispersive equations with integer coefficients. In the

last 12 years, various others researchers have contributed to the extension of the

revival and fractalisation phenomena in other types of time evolution problems.

Our contribution is in this exact direction and focuses on the revival effect.

1.2 Contribution

In this thesis we examine the revival phenomenon in various time evolution problems

posed on a finite interval under appropriate boundary conditions. The time evolution

problems under consideration can be distinguished into two classes. First-order and

second-order in time evolution problems. For first-order in time equations, we study

the revivals in the case of non-periodic boundary conditions, with the principal

examples being the free space linear Schrödinger equation

∂tu(x, t) = i∂2xu(x, t)

and the Airy PDE

∂tu(x, t) = ∂3xu(x, t).

On the other hand, for second-order in time problems, such as the bi-harmonic wave

equation

∂2t u(x, t) = −∂4xu(x, t),

we consider the phenomenon of revivals under both periodic and non-periodic con-

ditions.

Based on the framework of Chapter 3, we formulate our findings in Chapters 4

to 8. All these chapters include new results about the revival phenomenon and ex-

tend in various directions the classical theory from the literature, which is presented

in Chapter 2. Specifically, our contribution can be summarised as follows.

1. We introduce the concept of the weak revival effect. This is defined as a pure

revival effect perturbed by a continuous function in space. The pure revival
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refers to the classical, mathematical, interpretation of the revival phenomenon,

which means that for a given time evolution problem the solution at a rational

time is expressed as a finite linear combination of translations of the initial

datum. Both effects, pure and weak revivals, describe revival phenomena

in time evolution problems since, in any case, an initial jump discontinuity

reappears in the solution at rational times.

2. We show that the revival effect persists in the form of pure or weak revivals in

the context of the free linear Schrödinger equation under pseudo-periodic or

Robin-type boundary conditions, respectively.

3. We introduce an abstract setting for the revival phenomenon based on a func-

tional calculus for a non-self-adjoint differential operator. As an application,

we extend the revival effect for the even-order poly-harmonic wave equation

with periodic boundary conditions. In this case, the revivals manifest due to

the weak revival effect.

4. We characterise time evolution problems, with either periodic or quasi-periodic

boundary conditions, which do not in general support the phenomenon of

revivals (pure or weak). A primary example in this direction is the quasi-

periodic problem for the Airy PDE.

The results of Chapters 4, 5 and 6 were published in [14] in collaboration with

Boulton and Pelloni. Below, we briefly describe the context of each chapter of the

thesis whose main body consists of Chapters 2 to 9.

1.3 Structure of the Thesis

In Chapter 2, we consider both the revival and fractalisation effects in the periodic

setting. The material here relies on the existing literature and sets the ground to

establish some standard notation and terminology used in the thesis. We begin

with an illustration of the two phenomena based on the free linear Schrödinger

equation and derive the Fourier series representation of the solution by the Fourier

method. Within this setting we also introduce the concept of the generalised solution

which offers a rigorous framework for the consideration of the revival phenomenon.

Then, we present the classical theory of revivals and fractalisation. The classical
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theory refers to periodic problems for first-order in time, linear dispersive PDEs with

integer coefficients. At this stage, we introduce the notion of pure revivals in order

to distinguish the various revival phenomena encountered later. Plainly, the pure

revival effect addresses that at rational times the solution of an evolution problem is

a finite linear combination of only translations of the initial condition and does not

involve other transformations. Furthermore, we review some additional results on

the revivals and fractalisation phenomenona in other time evolution problems under

periodic conditions. For instance, we consider non-linear dispersive equations and

linear Schrödinger equations with potentials which exhibit revivals but in a weaker

sense. Thus, we introduce the weak revival effect defined as a perturbation by a

continuous function of a pure revival.

To prepare a clear mathematical framework for the revival effect, in Chapter 3 a

number of special transformations and their properties are considered. Motivated by

the pure revival effect in the periodic setting, we define the periodic revival operator

in terms of a finite linear superposition of periodic translation operators. The revival

operator yields a compact notation for the description of the revival effect. We

illustrate this with a specific example from the classical setting. More importantly,

as we explicitly demonstrate in later chapters, the revival operator allows us to

characterise the revival phenomenon in more complicated time evolution problems,

which do not belong in the classical theory. To complete the list of the necessary

transformations, we recall the properties of four well known, albeit crucial for the

analysis of revivals, transformations. These are the reflection of a function, the even

and odd extensions and the periodic convolution.

One of the fundamental chapters of the thesis is Chapter 4. We examine the

revival effect in the time evolution of the free linear Schrödinger equation with

pseudo-periodic boundary conditions. In [15], Olver, Sheils and Smith established

that the solution to this problem exhibits revivals at rational times. In this chapter,

we outline a different proof which indicates a more universal treatment of revivals in

boundary value problems beyond the classical periodic setting. After deriving the

generalised Fourier expansion of the solution, we show that at any time the solution

to the pseudo-periodic problem is given by a combination of the solutions of four

purely periodic problems for the free linear Schrödinger equation with appropriate
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initial conditions. This new representation has two central implications. First, at

rational times, it follows that the revival property for the pseudo-periodic problem

can be obtained directly from this of the periodic case. Additionally, at irrational

times, the fractalisation phenomenon occurs, again, due to the periodic components.

The main results are Theorem 4.8 and Corollary 4.9.

The revival phenomenon in the context of the Airy PDE under quasi-periodic

boundary conditions is examined in Chapter 5. The main result is Theorem 5.2

which establishes a correspondence between the quasi-periodic problem for the Airy

equation and a specific periodic problem for the free linear Schrödinger equation.

It shows that, in this case, the persistence of the revival relies on a real parameter

that controls the boundary conditions. In stark contrast to the Schödinger equa-

tion, when the parameter takes an irrational value then the revival breaks in Airy’s

quasi-periodic problem and instead the fractalisation phenomenon appears at ra-

tional times. The revivals survive only when the parameter is a rational number,

illustrating a strong influence of the boundary conditions for equations with higher

than two order derivatives in space. To our knowledge, Theorem 5.2 seems to be

the first rigorous result showing the lack of revivals in a first-order in time, linear

dispersive PDE with integer coefficients and coupled boundary conditions.

In Chapter 6, we show that the phenomenon of revivals persists in the free

linear Schrödinger equation under a specific type of Robin boundary conditions. In

contrast to the models of previous chapters, here, the boundary conditions do not

couple the end points of the interval. Following a similar line of argument as in

Chapters 4 and 5, we first establish the generalised Fourier series representation

of the solution by analysing the underlying eigenstructure of the problem. We

then prove that at any positive time the solution can be separated into two parts.

One part is always a continuous function in the space variable. The other part

is a periodic function which corresponds to the solution of a periodic problem for

the free linear Schrödinger equation with an even initial condition. By evaluating

the solution at rational times, we establish a weak revival formula which indicates

the existence of the revival phenomenon in the Robin problem. Theorem 6.7 and

Corollary 6.9 are the main contributions of this chapter.

In Chapter 7, we develop an abstract framework for the revival phenomenon
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based on a functional calculus approach generated by a non-self-adjoint operator.

A weaker version of this revival functional calculus is applied to second-order in

time evolution problems. In particular, we establish that the periodic problem for

the even-order poly-harmonic wave equation, which includes the wave and the bi-

harmonic wave equations, exhibits weak revivals at rational times. The weak revival

effect follows by deriving a solution representation which is decomposed into a peri-

odic component, which incorporates the pure revival effect, and a component which

is a continuous function in space at all times. The central results are Lemma 7.5,

Lemma 7.6, Proposition 7.8 and Corollary 7.9.

In Chapter 8, we present a different approach to the examination of the re-

vival effect in both first-order and second-order in time evolution problems with

self-adjoint quasi-periodic boundary conditions. We formulate our results by es-

tablishing a correspondence between a given quasi-periodic problem and a periodic

problem. In this way, we first extend the lack of revivals in Airy’s quasi-periodic

problem to quasi-periodic problems with higher order spatial derivatives. The tech-

nique further allows a simple generalisation of the Talbot effect in the cubic non-

linear Schrödinger equation with quasi-periodic boundary conditions. Moreover, we

show that the weak revival phenomenon is present in the quasi-periodic problem for

the bi-harmonic wave equation, but it breaks down for higher order poly-harmonic

wave equations, resembling the situation of the first-order problems. Through the

correspondence between quasi-periodic and periodic boundary conditions, we are

also able to identify periodic problems for linear dispersive PDEs with real, irra-

tional coefficients for which the revival phenomenon fails. As the main results, we

refer to Corollary 8.5 and its implications after it, Corollary 8.6 and the conclusions

following Proposition 8.9.

We conclude on the material of the thesis in Chapter 9, in which we also present

further directions for future work.

The thesis is supported by a number of appendices. The necessary background

for the development of our methods and the statement of the results are included

in the Appendices A to D. In the first appendix, we recall the definition of one-

dimensional linear dispersive partial differential equations which are the main class

of equations considered in the thesis. Appendix B contains the standard definitions
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of the generalised Fourier series and orthonormal and Riesz bases, together with

a number of useful properties. In Appendix C, we summarise some classical con-

cepts from the theory of linear operators, such as eigenvalue problems, eigenfunction

expansions, self-adjoint, symmetric and essentially self-adjoint operators. A brief

overview of the periodic Sobolev spaces and Sobolev spaces over a bounded interval

is given in Appendix D. The existence and uniqueness of the generalised solution to

the periodic problem for the free linear Schrödinger equation (Theorem 2.4) is given

in Appendix E. For the same problem, the proof that the generalised solution is the

weak solution (Proposition 2.6) of the problem is included again in Appendix E. In

the final appendix, we verify via numerical examples on the phenomena of revivals

and fractalisation the results established in Chapters 4, 5 and 6.
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Chapter 2

Revivals and Fractalisation in the

Periodic Setting

In this chapter, we describe the phenomena of revivals and fractalisation. Begin-

ning with the existing literature, we present a number of results on the revival and

fractalisation effects, in the context of dispersive PDEs under periodic boundary

conditions. Moreover, we settle the standard terminology and notation to be used

in the thesis.

In the first section, we illustrate the phenomenon of revivals and fractalisation

based on the free space linear Schrödinger equation. For a step initial function,

we show graphs of the profiles of the real and imaginary parts of the solution. We

observe that a dichotomy appears at rational and irrational times, which constitutes

the revival and fractalisation effects. At rational times, we notice piecewise constant

profiles with a finite number of jump discontinuities. Hence, a form of revival of the

initial condition. By contrast, at irrational times any discontinuity of the initial data

disappears and the profiles become continuous, nowhere differentiable functions in

space, displaying a fractal form.

In Section 2.2, the Fourier method is employed to obtain the solution of the free

linear Schrödinger equation with arbitrary initial conditions under periodic bound-

ary conditions. The method leads to the Fourier series representation of the solution.

Since it provides the first step for a rigorous treatment of the revival effect, we out-

line the details of the method. Moreover, we introduce the notion of generalised

solution which allows for an accurate interpretation of the solution representation
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as obtained from the Fourier method. We highlight that throughout the thesis, all

solution representations will be considered as generalised solutions (see Remark 2.5).

In Sections 2.3 and 2.4 we present the classical mathematical theory on the phe-

nomenon of revivals and fractalisation in a more systematic manner. The classical

setting refers to the formulation of the revivals and fractalisation effects in linear

dispersive PDEs with integer coefficients under periodic boundary conditions. This

family of equations includes as special cases the free linear Schrödinger equation and

the Airy PDE.

In Section 2.3, we characterise analytically the revival effect based on a represen-

tation of the solution in terms of a finite superposition of translations of the initial

data at rational times. This is the context of Theorem 2.8 which is crucial to our

analysis and sets the central statement on which we are going to improve upon.

The statement further motivates the definition of pure revivals which asserts that

a revival phenomenon occurs in a time evolution due to the decomposition of the

solution in terms of a finite number of only translations of the initial function. In

Section 2.4, we state known results that describe the behaviour of the solution at

irrational times and address the fractalisation effect. Although, our main subject is

the revival effect, the value of the results in Section 2.4 will also become apparent

in other parts of the thesis.

In Section 2.5 we consider perturbations of linear dispersive equations. We dis-

cuss known results that extend to the periodic setting the phenomena of revivals

and fractalisation in the cubic non-linear Schrödinger equation, the Korteweg-de

Vries equation and linear Schrödinger equations with potential. We elaborate on

the proof of the Talbot effect in the context of the non-linear Schrödinger equation,

which indicates that there is another type of revival effect different than the pure

revival. We use this to motivate the definition of the weak revival effect as a per-

turbation of a pure revival effect by a continuous function. The weak revival effect

manifests also in the case of the linear Schrödinger equation with non-zero potential.

Additionally, as we shall see in later chapters, weak revivals occur also in other time

evolution problems that do not belong in the classical setting of Section 2.3. Finally,

in Section 2.6 we refer to a few more results on the revivals and fractalisation.
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2.1 Revivals and Fractalisation

In this section, we introduce the phenomenona of revivals and fractalisation based

on the free space linear Schrödinger equation

∂tu(x, t) = i∂2xu(x, t). (FSLS)

Throughout, the variable t will denote time and x will denote the 1-D space co-

ordinate. It is well-known that the FSLS equation describes the time evolution of

the wave function u(x, t) associated with a free quantum particle, [16]. It further

provides a typical example of a linear dispersive PDE, where the dispersion relation

is ω = k2 (see Appendix A).

To describe the dichotomy of revivals and fractalisation, we consider the Schrödinger

equation (FSLS) on the closed interval [0, 2π] with an initial condition u(x, 0) =

u0(x), subject to periodic boundary conditions

u(0, t) = u(2π, t), ∂xu(0, t) = ∂xu(2π, t). (2.1)

In order to illustrate the main phenomena in question, we depict the solution

when u0 has jump discontinuities. Specifically, consider

u0(x) =

0, 0 ≤ x ≤ π

1, π < x ≤ 2π,

(2.2)

see Figure 2.1.
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-1
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2

Figure 2.1: Real (blue) and imaginary (red) parts of the step initial condition u0 in (2.2)

In Figures 2.2 and 2.3, we plot the solution in two different regimes. They

demonstrate a dichotomy on the behaviour of the solution occurring at rational and
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irrational times which we define as follows.

Definition 2.1. A positive t is called a rational time if t/2π ∈ Q. Equivalently, t

is a rational time if there exist co-prime, positive integers p, q ∈ N such that

t = 2π
p

q
.

If t/2π ̸∈ Q, then we call t an irrational time.
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Figure 2.2: Real (blue) and imaginary (red) parts of the solution to problem (FSLS),

(2.1), (2.2) at different rational times t = 2πp/q.

According to Figure 2.2, we observe a revival of the initial condition in the

structure of the solution at rational times. By this we mean that the real and

imaginary parts of the solution revive the initial jump discontinuity. Moreover,

the profiles are not just piecewise continuous, but in particular piecewise constant.

Furthermore, it seems that they are constructed by a finite number of certain copies

of the initial datum. This recurrence of the initial condition in the solution profile at

a rational time is known as the revival phenomenon. As we shall see later, there is an

explicitly characterisation of the revival phenomenon in this case, see Theorem 2.8.
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On the other hand and in contrast with the behaviour at rational times, in

Figure 2.3 we notice that at irrational times the initial condition has evolved to

a continuous function. In particular, both the real and imaginary parts are now

continuous and they display a non-differentiable structure resembling a fractal curve.

This is referred to as the fractalisation phenomenon which is a smoothing effect,

meaning that it improves the regularity of the solution. Precise statements regarding

the behaviour at irrational times are given in Theorems 2.12 and 2.13.
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Figure 2.3: Real (blue) and imaginary (red) parts of the solution to problem (FSLS),

(2.1), (2.2) at irrational times.

As mentioned in the introduction, after the work of Berry and Klein [7], the

manifestation of the revival and fractalisation effects in the FSLS equation has been

closely related to the Talbot effect from optics, with the terminology being inter-

changeable. We also refer to the recent exposition of this mathematical interplay

which is given by Eceizabarrena in [17]. Furthermore, a rigorous justification be-

tween the relation of the Talbot effect and the Schrödinger equation is given in [18]

by Eceizabarrena, addressing in this way Oskolkov’s question in [19]. In the next

sections, further references will be made on specific results and conjectures about

the Talbot effect under periodic boundary conditions in first-order in time, linear
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dispersive PDEs with integer coefficients.

2.2 Solution to the Free Linear Schrödinger Equa-

tion

We now derive a solution representation to the FSLS equation with the periodic con-

ditions (2.1). This will allow us to introduce the standard terminology and notation

to be used in the thesis. The solution will be obtained through the Fourier method,

and although it is standard, it will serve as the main technique to derive solutions

representations to all initial boundary value problems (IBVPs) encountered later.

As it provides a natural starting point to the analysis of the revival phenomenon,

see Remark 4.1, we will describe this well known technique in detail.

The Fourier method is a classical method to solve linear partial differential equa-

tions with constant coefficients and it applies to a variety of problems [20]. The

primary idea is to find a solution representation as a Fourier expansion in terms

of a basis of eigenfunctions of the space operator. The basis of eigenfunctions is

found by solving the eigenvalue problem associated to the latter. Definitions on the

concepts of bases and generalised Fourier series together with some useful charac-

terisations can be found in Appendix B. Also, the notion of a linear operator and

its corresponding eigenvalue problem is included in Appendix C.

The solution procedure begins by rewriting the problem in the following differ-

ential equation form

∂tu(x, t) = −iLu(x, t), u(x, 0) = u0(x), (2.3)

where L is the linear differential operator defined by the action Lf(x) = −f ′′(x) on

the domain

D(L) = {f ∈ C2[0, 2π] ; f(0) = f(2π), f ′(0) = f ′(2π)}.

By C2[0, 2π] we denote the space of all twice continuously differentiable functions

on the interval [0, 2π]. The notation (·)′ will always stand for differentiation in the

space variable. Problem (2.3) is equivalent to (FSLS) under the periodic conditions
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(2.1) and with u(x, 0) = u0(x).

Here, L is a linear operator acting on the complex Hilbert space L2(0, 2π), the

usual space of all square (Lebesgue) integrable complex-valued functions. Here and

elsewhere, the inner product and the norm of L2(0, 2π) are given by

⟨f, g⟩ =
∫ 2π

0

f(x)g(x)dx, ∥f∥ =
√

⟨f, f⟩, ∀ f, g ∈ L2(0, 2π). (2.4)

We seek eigenpairs of the operator. These are found by solving the corresponding

eigenvalue problem which in this case has the form of the boundary value problem

−f ′′(x) = λf(x), f(0) = f(2π), f ′(0) = f ′(2π), (2.5)

on [0, 2π]. From (2.5), we find that the eigenvalues are all real (as expected since L

is symmetric, Definition C.4). In particular, the eigenvalues and the corresponding

eigenfunctions are given by

λj = j2, fj(x) = A eijx, j ∈ Z, A ∈ C \ {0}.

Furthermore, by normalising the eigenfunctions fj(x) we see that the operator has

an orthonormal basis of eigenfunctions in L2(0, 2π) given by

ej(x) =
eijx√
2π
, j ∈ Z. (2.6)

Indeed, the family {ej}j∈Z is the classical orthonormal Fourier basis in L2(0, 2π),

[20], and we know that any function f in L2(0, 2π) admits a complex Fourier series

f(x) =
∑
j∈Z

f̂(j)ej(x), f̂(j) = ⟨f, ej⟩,

where the numbers f̂(j) are the Fourier coefficients of f and the convergence of

the series is understood in the norm of L2(0, 2π). In essence, the basis property of

the eigenfunctions allows the construction of a solution to (2.3) as a Fourier series

converging in L2(0, 2π).

We should remark that instead of looking for sufficiently smooth solutions that

satisfy the problem pointwise, we would like to obtain singular solutions that allow
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for jump discontinuities. Additionally, we would prefer to consider initial data that

can be piecewise continuous and permit the existence of such singular solutions. As

with the example of the step initial condition (2.2), the implications of the revival

and fractalisation phenomena on the behaviour of the solution clearly emerge when

we consider, in general, initial data of bounded variation with finitely many jumps

discontinuities. Such functions belong to the Hilbert space L2(0, 2π) which sets a

convenient framework for the theoretical development of the revival phenomenon,

which is the main subject of our study, both in and outside the classical setting of

Section 2.3.

First, we note that L2(0, 2π) is the natural space in which the eigenfunction

expansion representations of the solutions to our initial boundary value problems

will hold. Moreover, the results on the revival phenomenon could then be formulated

in terms of (bounded) linear operators on L2(0, 2π) based on the form of their Fourier

coefficients (see also Remark 2.11). Indeed, in the next chapter, we will set a toolbox

of special operators in L2(0, 2π), which we will then utilise in the study of the revival

phenomenon.

Let us now return to problem (2.3). We will now show that there is a meaningful

notion of solution for u0 in L
2(0, 2π). This is the concept of the so called generalised

solution, see [21] and [22], which is obtained as the L2(0, 2π) limit of a sequence

of smooth solutions of (2.3). By a smooth solution to problem (2.3), we mean a

bounded function u(x, t) which is smooth in x ∈ [0, 2π] and t ∈ [0,∞), with bounded

time derivative ∂tu(x, t) and satisfies point-wise the time evolution problem and

the boundary conditions. Before we proceed with the definition of the generalised

solution, we set the following notation.

Notation 2.2. Let u : [0, 2π]× [0,∞] → C be a function depending on x and t. For

every t ≥ 0 we denote by u(·, t) the function on [0, 2π] whose value at almost all x,

in the sense of Lebesgue measure, is u(x, t).

The notation u(·, t) allows us to separate the roles of the two independent vari-

ables x and t. With this, we formulate the definition below.

Definition 2.3. A function u : [0, 2π]× [0,∞] → C is called a generalised solution

in L2(0, 2π) to the IBVP (2.3) if it defines a continuous map t→ u(·, t) from [0,∞)
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to L2(0, 2π) and there exists a family {un(x, t)}n∈N of smooth solutions to the IBVP

(2.3) such that for every t ≥ 0

lim
n→∞

∥un(·, t)− u(·, t)∥ = 0.

The next theorem gives the existence of a unique generalised solution and it is

well known. It utilises the ideas of the Fourier method to find a sequence of smooth

solutions. The proof is included in Appendix E.

Theorem 2.4. Let u0 ∈ L2(0, 2π). Then, there exists a unique generalised solution

u(x, t) in L2(0, 2π) and for any fixed t ≥ 0 it is given by the Fourier expansion

u(x, t) =
∑
j∈Z

û0(j)e
−ij2tej(x), (2.7)

where the convergence is in the norm of L2(0, 2π) and û0(j) = ⟨u0, ej⟩ are the Fourier

coefficients of u0.

Remark 2.5. In what follows, we will always consider the generalised solution of the

time evolution problems encountered with initial conditions in L2(0, 2π). Sometimes,

we will refer to the generalised solution just as the solution of the problem and it will

be given as an eigenfunction expansion in L2(0, 2π). Motivated by Definition 2.3,

each generalised solution will be considered as a continuous map in the time variable

with respect to the norm of L2(0, 2π). It will be obtained as an L2(0, 2π) limit of

a sequence of smooth solutions which will always exist due to the Fourier method

following the lines of reasoning in the proof of Theorem 2.4.

The concept of the generalised solution is enough for setting a rigorous framework

for the revival phenomenon. However, one can proceed a little further and show that

the generalised solution obtained in Theorem 2.4, is a solution in the weak sense.

In particular, we close this section with the next statement which addresses this

direction.

Proposition 2.6. Let u0 ∈ L2(0, 2π) and consider the generalised solution u(x, t)

of the IBVP (2.3). Then, for arbitrary ϕ ∈ D(L), the map ⟨u(·, t), ϕ⟩ is continuous
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for every t ≥ 0 and continuously differentiable for t > 0 with

d

dt
⟨u(·, t), ϕ⟩ = −i⟨u(·, t), Lϕ⟩. (2.8)

Proof. See Appendix E.

A function u(x, t) that satisfies Definition 2.3 and Proposition 2.6 is called a

weak solution to the IBVP (2.3). We note that the definition of a weak solution

given here coincides with the definition of a weak solution as found in the context

of C0 one-parameter semigroups and abstract Cauchy problems in Hilbert spaces,

[23]. The equation (2.8) is known as the weak formulation of the problem.

2.3 The Classical Theory of the Revival Effect

In the first section we gave a short introduction to the phenomenon of revivals and

fractalisation based on the linear Schrödinger equation (FSLS). We now follow a

more systematic treatment and present what we call the classical theory, first of the

revival effect in this section and of the fractalisation effect in the next section. The

classical theory refers to the case of periodic boundary conditions for first-order in

time, linear partial differential equations with dispersion relation a polynomial with

integer coefficients. Concretely, we are interested in the following initial boundary

value problem posed on [0, 2π]

∂tu(x, t) = −iP (−i∂x)u(x, t), u(x, 0) = u0(x),

∂mx u(0, t) = ∂mx u(2π, t), m = 0, 1, . . . , n− 1,

(2.9)

where P (·) is a polynomial of degree n ≥ 2 with integer coefficients.

It is readily seen that the linear PDE in (2.9) has dispersion relation ω = P (k).

When P (x) = x2, the equation corresponds to (FSLS), and when P (x) = x3 we

obtain the third-order in space PDE

∂tu(x, t) = ∂3xu(x, t). (AI)

Equation (AI) is known as the Airy PDE, perhaps because its solution on the real
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line can be expressed in terms of the Airy function, [24]. For the same reason, the

equation with the negative sign, ∂tu = −∂3xu, is also called Airy PDE, [13], [24] and

it can be obtained by (AI) if we change t with −t. The negative-sign form is perhaps

more popular in the literature, since it is the linear part of the Korteweg–de Vries

equation (KdV), which is used to model the unidirectional propagation of surface

waves on shallow water, [25], [26]. In this thesis, we will always consider (AI).

In Theorem 2.8 below, we will show that the solution to the periodic problem

(2.9) at rational times can be decomposed into a finite number of translated copies

of the given initial condition u0. Hence, we will obtain a rigorous justification of

the revival of the initial condition in the structure of the solution at rational times.

This will further explain precisely the numerical example in Figure 2.2 for the FSLS

equation. Moreover, as we shall see in the following chapters, Theorem 2.8 will

serve as a fundamental ingredient to extend the revival phenomenon beyond periodic

boundary conditions and beyond first-order in time evolution problems.

To examine the revival phenomenon, we need to find a solution representation

to (2.9). In accordance with Remark 2.5, the Fourier method implies the existence

and uniqueness of a generalised solution in L2(0, 2π) for any initial function u0 ∈

L2(0, 2π). In particular, at any fixed time t ≥ 0, the (generalised) solution to (2.9)

is given by the complex Fourier series

u(x, t) =
∑
j∈Z

û0(j)e
−iP (j)tej(x), (2.10)

where the convergence is in the sense of L2(0, 2π).

The revival effect will follow by showing that at rational times the solution

(2.10) admits a representation in L2(0, 2π) in terms of a finite linear combination

of translations of the initial function. Such a representation was first considered in

the work of Berry and Klein [7] for the FSLS equation based on the analysis of the

Talbot effect. Independently, Taylor in [12] derived the revival representation for the

same equation. Later, Olver in [13] rediscovered the revival and fractalisation effect

in the context of the Airy equation (AI) and show that the revival effect extends

to the more general class of linear dispersive equations (2.9). Olver also named the

effect dispersive quantisation due to the dispersive nature of the model equation and
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the property of its solution to quantised into a finite number of copies of the initial

datum.

In order to state and prove the revival representation, we first need to give a

meaning to the translation of the initial function u0 in the periodic setting. Since

u0 is given originally on [0, 2π], we first extend it periodically to R. We will denote

by u∗0 the 2π−periodic extension of u0,

u∗0(x) = u0(x− 2πm), 2πm ≤ x < 2π(m+ 1), m ∈ Z. (2.11)

For any real number s, the function u∗(x− s) we will be called the translation of u0

by s.

Since the proof of the revival phenomenon will rely on the uniqueness of the

Fourier coefficients of the solution representation (2.10), we are also interested in

the form of the Fourier coefficients of the translation. With this in mind, notice

that if we restrict u∗(x− s) on [0, 2π], then u∗(· − s) defines a function in L2(0, 2π)

whenever u0 is in L2(0, 2π). Indeed,

∥u∗0(· − s)∥2 =
∫ 2π

0

|u∗0(x− s)|2dx =

∫ 2π−s

−s

|u∗0(y)|2dy =

∫ 2π

0

|u0(y)|2dy = ∥u0∥2.

(2.12)

Therefore, u∗(·−s) admits a Fourier series representation in L2(0, 2π) and its Fourier

coefficients have a simple form given by the following lemma.

Lemma 2.7. Let u0 ∈ L2(0, 2π) and s ∈ R. Then, the Fourier coefficients of

u0(· − s) are given by

⟨u0(· − s), ej⟩ = e−ijsû0(j), j ∈ Z. (2.13)

Proof. By definition we have

⟨u0(· − s), ej⟩ =
1√
2π

∫ 2π

0

u∗0(x− s)e−ijxdx.

For fixed s ∈ R we can find ℓ ∈ Z such that 2πℓ ≤ s < 2π(ℓ+1) or 0 ≤ s−2πℓ < 2π,
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and thus

⟨u0(· − s), ej⟩ =
1√
2π

∫ s−2πℓ

0

u∗0(x− s)e−ijxdx+
1√
2π

∫ 2π

s−2πℓ

u∗0(x− s)e−ijxdx.

If 0 ≤ x < s−2πℓ, then u∗0(x−s) = u0(x−s+2π(ℓ+1)), whereas if s−2πℓ ≤ x < 2π,

then u∗0(x− s) = u0(x− s+ 2πℓ). Thus, we have that

⟨u0(· − s), ej⟩ =
1√
2π

∫ s−2πℓ

0

u0(x− s+ 2π(ℓ+ 1))e−ijxdx

+
1√
2π

∫ 2π

s−2πℓ

u0(x− s+ 2πℓ)e−ijxdx.

Finally, by changing variables in each of the integrals and collecting terms we arrive

at (2.13).

We are now ready to show that the solution to the IBVP (2.9) at rational times is

constructed by a finite superposition of translations of the initial condition u0. The

following theorem is the main result of the chapter. The statement can be found in

many places, including the monograph [27, Theorem 2.14] by Erdoğan and Tzirakis.

Theorem 2.8 ([13], [27]). Let u0 ∈ L2(0, 2π). At a rational time t = 2π p
q
the

solution to the IBVP (2.9) is given by

u
(
x, 2π

p

q

)
=

√
2π

q

q−1∑
k=0

Gp,q(k)u
∗
0

(
x− 2π

k

q

)
. (2.14)

The equality in (2.14) holds in L2(0, 2π) and the coefficients Gp,q(k) are given by

Gp,q(k) =

q−1∑
m=0

e−2πiP (m) p
q em

(
2π
k

q

)
. (2.15)

Proof. We show that the right-hand side of (2.14) has Fourier coefficients

û0(j)e
−iP (j) 2πp

q .

Thus, by comparing this with the solution representation (2.10) at a rational time,

we conclude that the claim holds due to the uniqueness of the Fourier coefficients.
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Denote by R(x) the right-hand side of (2.14). Then, by virtue of (2.13) we have

R̂(j) =

√
2π

q

q−1∑
k=0

q−1∑
m=0

e−2πiP (m) p
q em

(
2π
k

q

)
e−2πij k

q û0(j)

=
û0(j)

q

q−1∑
m=0

e−2πiP (m) p
q

q−1∑
k=0

e2πi(m−j) k
q ,

where we have used the definition of the em(x) as given by (2.6). We now distinguish

two cases based on the integer m running from 0 to q − 1.

If m ̸≡ j (mod q), then there exists z ∈ Z not a multiple of q, such that m− j =

z1q + z for z1 ∈ Z. Hence,

q−1∑
k=0

e2πi(m−j) k
q =

q−1∑
k=0

e2πiz1q
k
q e2πiz

k
q =

q−1∑
k=0

(
e2πi

z
q

)k

=
1−

(
e2πi

z
q

)q

1− e2πi
z
q

= 0.

On the other hand, whenever m ≡ j (mod q), we have m − j = z2q for z2 ∈ Z and

so
q−1∑
k=0

e2πi(m−j) k
q =

q−1∑
k=0

e2πiz2q
k
q = q.

Moreover, in this case, we know that P (m) ≡ P (j) (mod q), since P is a polynomial

of order n ≥ 2 with integer coefficients. So, P (m) = P (j) + z3q for some other

z3 ∈ Z, and this implies that

e−2πiP (m) p
q = e−2πiP (j) p

q e−2πiz3q
p
q = e−2πiP (j) p

q . (2.16)

Therefore, as m runs from 0 to q − 1, we find that

R̂(j) = û0(j)e
−iP (j)2π p

q ,

as claimed.

The representation (2.14) clearly states that for a given initial condition u0, the

solution at rational times is constructed by a finite superposition of translations of

u0. Thus, at rational times the solution revives the structure or the profile of the

initial condition. In particular, this implies that for a piecewise constant function
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u0, the solution is piecewise constant at rational times as a linear combination of

piecewise constant functions. In turn, this fully justifies the appearance of the

piecewise constant profiles observed at rational times in Figure 2.2, for the real and

imaginary part of the solution to the FSLS equation. As mentioned in Section 2.1,

this recurrence of the initial condition in the structure of the solution at rational

times is known as the revival effect or revival phenomenon. With Theorem 2.8 we

achieve a precise meaning to the revival effect for the periodic problem (2.9).

In order to show that a given IBVP exhibits revivals, we look for a revival rep-

resentation of the type (2.14). But a revival representation, as considered in other

parts of the thesis, might involve other transformations of the initial condition apart

from translations. For instance, the revival phenomenon for the pseudo-periodic

problem associated to the FSLS equation in Chapter 4 follows by a revival repre-

sentation that includes translations of reflected copies of the initial condition (see

Corollary 4.9). On the other hand, the revival representation that we prove in Chap-

ter 6 (see Corollary 6.9) for the FSLS equation with Robin-type boundary conditions

implies that the structure of the revival effect is different from both the periodic and

the pseudo-periodic case. In general, as it has been noticed in the review paper [28]

by Smith, a rigorous definition of the revival property that captures the various

revival phenomena remains an open problem.

Similar to the revival representation (2.14), all the analytical results on the

revival phenomenon appear to share the following implications. We state them in

the context of the periodic problem (2.9) with the following remark.

Remark 2.9. For u0 ∈ L2(0, 2π), the revival representation (2.14) implies the fol-

lowing.

(I) If u0 is a piecewise continuous function on [0, 2π], the solution u(·, t) at rational

times t = 2π p
q
is also a piecewise continuous function of x on [0, 2π].

(II) If u0 is 2π-periodic and continuous as a function on R, the solution u(·, t) at

rational times t = 2π p
q
depends on finitely many values of u0 and it is also a

continuous function of x on [0, 2π].

Motivated by the revival formula (2.14), we will establish the following termi-

nology.
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Definition 2.10. Let u(x, t) be the solution to an IBVP with initial condition u0(x)

at time zero. We say that the IBVP exhibits the phenomenon of pure revivals, if at

any rational time t = 2π p
q
the solution can be expressed as a finite linear combination

of translations of the initial function u0.

Definition 2.10 serves as a convenient terminology for the exposition of the ma-

terial in the thesis and we will not regard it as a fully rigorous definition of the

revival effect. Its main limitation comes from the fact that it does not necessarily

captures the various revival phenomena observed in time evolution problems outside

the classical setting.

Nonetheless, it sets a point of reference on the concept of revivals. It will help

distinguishing other revival phenomena that we will encountered later and which,

sometimes, will incorporate the pure revival effect. Therefore, we stress that es-

sentially the pure revival effect addresses that the revival phenomenon in a time

evolution problem occurs due to the reconstruction of the solution in terms of a

finite number of only translations of the initial condition and does not involve other

transformations.

Remark 2.11. The statement and proof of Theorem 2.8 provides a tool to char-

acterise the revival property in an IBVP from an operational point of view. In

particular, the right hand-side of (2.14) can be viewed as an operator in L2(0, 2π)

constructed by a finite number of translations or in other words translation oper-

ators. In Chapter 3, we properly define first the translation operator and then the

revival operator. The revival operators will allow a more clear reformulation of The-

orem 2.8 in the monomial case (P (x) = xn) and will help us identify the pure revival

effect in time evolution problems which are not in the classical setting of this section.

In the bibliography, the proof of the revival effect usually relies on the funda-

mental solution of the equation with initial condition a (2π−periodically extended)

delta distribution supported on x = π. By showing that the fundamental solution at

a rational time satisfies the revival representation (2.14), then the conclusion for ar-

bitrary initial condition follows by convolution. This was the direction suggested by

Olver [13] and a self-contained proof can be found in [27] by Erdoğan and Tzirakis.

Taylor, [12], similarly considered the fundamental solution to the FSLS equation
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and compared the revival formula (2.14), when P (x) = x2, with another revival

formula derived by solving the FSLS equation on the real line but with 2π-periodic

initial conditions. This gives an equivalent point of view of the periodic case, which

is often considered in the literature. Following this idea, Taylor derived a classical

reciprocity identity from number theory involving the coefficients Gp,q(k) which are

given by
q−1∑
m=0

e−2πim2 p
q e2πim

k
q , (2.17)

as follows from (2.15) when P (x) = x2. For k = 0, these are known as quadratic

Gauss sums, [29]. Note that in general although the coefficientsGp,q(k) are q-periodic

functions and have the form of Gauss sums

q−1∑
m=0

χ(m)em

(
2π
k

q

)
χ(m) = e−2πiP (m) p

q ,

they are not Gauss sums since the function χ(m) is not a Dirichlet character, [29].

The above proof of Theorem 2.8 is partly inspired by Theorem 1 in [13] which

address the solution to one of the exercises in [26, Exercise 8.5.8 ] by Olver. With

this theorem, Olver in [13] showed that for a piecewise constant initial function

the solution to Airy’s equation at rational times corresponds to a piecewise constant

function. The underlying ingredient of the argument is the uniqueness of the Fourier

coefficients which is combined with the periodicity of the Fourier coefficients of piece-

wise constant functions. The same characterisation of the revival phenomenon for

the Schrödinger equation with piecewise constant initial data is achieved by Theo-

rem 5.1 in Thaller’s book [16] by following the same idea and we also refer to [30,

Section 9.4 and Exercise 9.46] by Kammler. However, in our case, we were mainly

motivated by the argument in [15] by Olver, Sheils and Smith, where they obtained

the revival property for the FSLS equation under pseudo-periodic boundary con-

ditions. We will consider these boundary conditions later in Chapter 4. For the

moment, we just mention that, roughly speaking, their idea was to carefully con-

struct a linear combination of translations of the initial datum and then show that

the (generalised) Fourier coefficients correspond to these of the solution representa-

tion at rational times. In the case of Theorem 2.8, the construction was given by

Erdoğan and Tzirakis in [27, Thoerem 2.14].
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Finally, as noted in [13] by Olver, we should mention that the revival result of

Theorem 2.8 can be extended to the case when the coefficients of the polynomial

P are integer multiples of a common real number. This follows easily by a suitable

rescaling in time and includes the case of rational coefficients.

2.4 The Classical Theory of Fractalisation

Recall from Section 2.1 that in contrast to the revival effect in the FSLS equation,

the fractalisation effect refers to the improvement of the regularity of the solution

at irrational times. In particular, at irrational times the initial discontinuity of the

step function (2.2) disappears and the solution profile becomes a continuous, though

nowhere differentiable function (see Figure 2.3). In this section we now collect the

main results on the fractalisation effect for the time evolution problem (2.9) which

includes the free linear Schrödinger equation and the Airy PDE.

Although the main focus of the thesis is on the revival phenomenon, the state-

ments given here on the fractalisation effect, especially for the FSLS equation (see

Theorems 2.12 and 2.13), will allow us to draw some interesting conclusions in other

cases of boundary conditions. Indeed, in Chapter 4, both the revival and the frac-

talisation effect will be shown to persist in the FSLS equation with pseudo-periodic

boundary conditions. Furthermore, in Chapter 5 we will prove that the revival

phenomenon in general breaks in the Airy PDE under quasi-periodic boundary con-

ditions and instead of revivals the fractalisation effect occurs at rational times.

The methods required to analytically study the fractalisation effect are beyond

the scope of the thesis. Therefore, in this section, we will refer to the original papers

for the proofs and will not include them here. Our approach on the revival effect

will rely on the classical theory of linear differential operators and eigenfunction

expansions in L2(0, 2π). On the other hand, the examination of the fractalisation

effect relays on specialised methods in the analysis of periodic linear dispersive

partial differential equations. A variety of such methods can be found in [27] by

Erdoğan and Tzirakis with applications on the Talbot effect. In this direction, we

further refer to the work by Erdoğan and Shakan in [31]. Their study is on the

fractal dimension of the graphs of the solutions to a number of periodic dispersive
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PDEs. The introduction of [31] offers a concrete overview of the fractalisation effect.

As a smoothing effect, the fractalisation phenomenon cannot be observed in the

setting of L2(0, 2π) or in general in the setting of the periodic Sobolev space of order

s ≥ 0 (see Appendix D)

Hs
per(0, 2π) =

{
f ∈ L2(0, 2π) ;

∑
j∈Z

(
1 + j2

)s|f̂(j)|2 <∞

}
,

which is often regarded as the standard functional space for the analysis of (2.9).

Indeed, notice that for any non-negative reals s and t and integer j, we have that

(1 + j2)s|e−iP (j)tû0(j)|2 = (1 + j2)s|û0(j)|2.

Hence, at any fixed time t > 0 the solution preserves the Sobolev regularity. That

is, whenever the initial data u0 belongs in Hs
per(0, 2π), so does u(·, t).

Instead, in [11] Oskolkov focused on the behaviour of the solution (2.10) to the

equations (FSLS) and (AI) when the initial condition is of bounded variation over

[0, 2π] which could possess countably many jump discontinuities. In particular,

recall that a function of bounded variation can only have a countable set of points

at which it is discontinuous, see [32, Theorem 3.27]. Under this specific assumption

and by examining the converge properties of a family of discrete Hilbert transforms,

including

HN(x, t) =
N∑

0̸=j=−N

eij
nt+ijx

j
, n = 2 or 3,

Oskolkov proved that there is a dichotomy at rational and irrational values of t/2π

in the behaviour of the solution to these two equations.

Theorem 2.12 ([11]). Let P (x) = xn, with n = 2 or n = 3 and consider the

solution u(x, t) given by (2.10) to the IBVP (2.9) with initial condition u0 of bounded

variation over the interval [0, 2π]. Then, we have the following.

(i) If t/2π is an irrational number, then u(x, t) is a continuous function of x.

(ii) If t/2π is a rational number and u0 has at least one jump discontinuity, then

u(x, t) as a function of x is a bounded function with at most countably many

discontinuities.
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(iii) If u0 is also continuous on [0, 2π] and such that u0(0) = u0(2π), then u(x, t)

is continuous in x and t.

A concise proof of Theorem 2.12-(i), and Theorem 2.13 below due to Rodni-

anski, is also outlined in [33] by Chousionis, Erdoğan and Tzirakis. Oskolkov’s

Theorem 2.12 explains to some extent the dichotomy of revivals and fractalisation

in the case of the Schrödinger and Airy equations. Indeed, for discontinuous ini-

tial data of bounded variation, at irrational times the solution becomes continuous,

whereas at rational times can exhibit countably many discontinuities. Hence, at

irrational times the solution gains regularity whereas at rational times revives the

initial discontinuities as we notice in the example of the step function in Section 2.1.

In [7], Berry and Klein observed that for a step initial function the graph of

the solution to the free linear Schrödinger equation has a fractal structure at irra-

tional times. In particular, they considered rational approximations to understand

the behaviour of the solution at irrational times and they argued that the fractal

dimension of the real and imaginary parts of the solution should be 3/2. Moreover,

Berry in [34] continued the investigation of the Talbot effect in the context of the

FSLS equation confined in a d-dimensional box. Berry, [34], conjectured that for

almost all times t the graphs of the real and imaginary parts of the solution and its

density |u(x, t)|2 are fractal sets with dimension d+1/2. In the one-dimensional case,

Rodnianski [35] provided a mathematical proof that justified Berry’s conjecture on

the fractal dimension of the real and imaginary parts.

Before we state Rodnianski’s result, we should mention that with the term fractal

dimension we refer to the upper Minkowski dimension (also known as box counting

dimension), [36], of a non-empty bounded set A of Rd. The fractal dimension of A

is given by

lim sup
ϵ→0

log
(
N
(
A, ϵ

))
log(1/ϵ)

,

where N
(
A, ϵ

)
is the smallest number of ϵ-balls needed to cover A, see [36] for more

details.

Theorem 2.13 ([35]). Let P (x) = x2 and consider the solution u(x, t) given by

(2.10) to the IBVP (2.9). Let u0 be of bounded variation over the interval [0, 2π]
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and such that

u0 /∈
⋃

s>1/2

Hs
per(0, 2π). (2.18)

Then, for almost all times t, the fractal dimension of the graph of either the function

Re
(
u(x, t)

)
or the function Im

(
u(x, t)

)
, or both is 3/2.

Condition (2.18) ensures that the initial function u0 of bounded variation does

not admit a continuous representative, since Sobolev’s embedding does not apply

(see Lemma D.5). Thus, any possible discontinuity of u0 is a jump discontinuity and

not removable. The step function (2.2) is an initial condition of this type. Then,

for singular conditions of this form, it follows from Theorem 2.13 that the real and

imaginary parts of the solution have fractal dimension 3/2. In turn, this essentially

implies that they are continuous, but non-differentiable functions and justifies the

fractalisation effect as observed in Figure 2.3 for the FSLS equation.

Rodnianski derived Theorem 2.13 using the results in [37] by Kapitanski and

Rodnianski. Kapitanski and Rodnianski, [37], examined the regularity properties of

the fundamental solution to the FSLS equation with periodic boundary conditions on

the setting of Besov spaces, see [37] and references therein. Measuring the regularity

in this framework, they were able to show that, in general, at irrational times the

solution to the free linear Schrödinger equation is more regular than at rational

times.

In total, Oskolkov’s and Rodnianski’s theorems completely characterise the frac-

talisation effect in the case of the FSLS equation. Moroever, Oskolkov’s result

address the continuity of the solution to the Airy PDE at irrational times. The

extension of both Theorems 2.12 and 2.13 in the monomial case, P (x) = xn for

any integer n ≥ 3, of the periodic time evolution problem (2.9) were obtained in

[33] by Chousionis, Erdoğan and Tzirakis. The statement of their theorem holds

for general polynomials with integer coefficients and can be found in the book [27,

Theorem 2.16] with a self-contained proof.

Theorem 2.14 ([27], [33]). Let P be a polynomial of degree n ≥ 2 with integer

coefficients and P (0) = 0. Consider the solution u(x, t) given by (2.10) to the IBVP

(2.9) with initial condition u0 of bounded variation over the interval [0, 2π]. Then,

we have the following.
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(i) For almost every time t, the solution u(x, t) is a continuous function of x.

(ii) Assume in addition that

u0 ̸∈
⋃

s>1/2

Hs
per(0, 2π).

If P is not an odd polynomial, then for almost all times t, the fractal dimension

of the graph of the functions Re
(
u(x, t)

)
and Im

(
u(x, t)

)
lies in [1 + 21−n, 2−

21−n], whereas if P is an odd polynomial, the statement holds for the real-valued

solutions.

Theorem 2.8 and Theorem 2.14 complement one another and mathematically

describe in the periodic setting the dichotomy of revivals and fractalisation for the

time evolution problem (2.9). In particular, by Theorem 2.8, for any initial condition

u0 ∈ L2(0, 2π), at rational times the solution u(x, t) is a finite superposition of

translations of the initial function and thus the IBVP exhibits the phenomenon of

pure revivals (see Definition 2.10). Moreover, if u0 is of bounded variation over the

segment [0, 2π] and has finitely many jump discontinuities, then at rational times

the solution displays finitely many jump-discontinuities. On the other hand, by

Theorem 2.14, at irrational times the solution becomes a continuous function of x

with its real and imaginary parts being fractal curves.

2.5 Perturbations and Weak Revivals

Apart from the family of linear dispersive PDEs (2.9), the phenomenon of revivals

and fractalisation has been shown to appear in other type of equations under periodic

boundary conditions. In this section, we describe how revivals manifest in non-linear

dispersive equations and linear Schrödinger equations with potential.

The results presented here will serve as context of the notion of weak revivals.

Plainly, a weak revival effect is understood as a pure revival effect perturbed by a

continuous function in space. The term was introduced in [14] to describe the revival

phenomenon in the FSLS equation subject to a specific type of separated boundary

conditions on [0, π]. The revival property for this initial boundary value problem

will be discussed extensively in Chapter 6.

31



Starting with the non-linear regime, the numerical studies [38] and [39] by Chen

and Olver indicated that, under periodic boundary conditions, the quantisation and

fractalisation of the solutions to the free linear Schrödinger and Airy evolution per-

sist into their non-linear counterparts, including both integrable and non-integrable

cases. Some of their numerical observations were subsequently proved in the works

[40], [41] by Erdoğan and Tzirakis for the cubic non-linear Schrödinger equation

∂tu(x, t) = i∂2xu(x, t) + i|u(x, t)|2u(x, t) (NLS)

and the Korteweg–de Vries equation

∂tu(x, t) = −∂3xu(x, t)− 2u(x, t)∂xu(x, t), (KdV)

respectively.

By virtue of the seminal work of Bourgain, [42] and [43], we know that the 2π-

periodic problems for (NLS) and (KdV) are globally well-posed in L2(0, 2π). The

results in [41] and [40] showed that for initial data of bounded variation, there is

a smoothing effect on the solution at irrational times. This follows from a more

general smoothing property that, at any positive time, the difference between the

solution and their linear evolution is more regular than the initial data. Thus, in

both cases, the revival/fractalisation dichotomy is characterised in terms of change

in the regularity of the solution at rational/irrational times. As we will explain

shortly, the analysis of the phenomenon for the NLS equation still gives a revival

representation, but this time in a weak sense.

Below, we state the main theorem from [41] due to Erdoğan and Tzirakis on the

periodic problem for the NLS equation.

Theorem 2.15 ([41]). Consider the equation (NLS) with periodic boundary condi-

tions on [0, 2π]

u(0, t) = u(2π, t), ∂xu(0, t) = ∂xu(2π, t),

and initial condition u0 of bounded variation on [0, 2π]. Then, we have the following.

(i) If t/2π is an irrational number, then u(x, t) is a continuous function of x.

(ii) For rational values of t/2π, the solution u(x, t) is a bounded function with at
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most countably many discontinuities.

(iii) If u0 is also continuous on [0, 2π] and such that u0(0) = u0(2π), then u(x, t)

is continuous in x and t.

(iv) Assume in addition that

u0 ̸∈
⋃

s>1/2

Hs
per(0, 2π).

Then, for almost all times, the fractal dimension of the graph of the functions

Re
(
u(x, t)

)
and Im

(
u(x, t)

)
is 3/2.

From the results of [40], it also follows that parts (i)-(iii) of Theorem 2.15 hold

for the solution to (KdV) under periodic boundary conditions on [0, 2π]. Later, in

[33], the graph of the solution was shown to have fractal dimension in [5/4, 7/4].

Apart from the original papers, [41], [40], [33], we also refer to the monograph [27,

Section 5.3], for the statements and proofs of Theorem 2.15 and the similar result

for the Korteweg–de Vries equation.

We would now like to elaborate more on the approach of the proof of Theo-

rem 2.15. This will give a motivation to the weak revival effect. Using Duhamel’s

principle, Erdoğan and Tzirakis, [41], decomposed the solution into two parts

u(x, t) = uFSLS(x, t) +N(x, t), (2.19)

by considering the NLS equation as a non-linear perturbation of the FSLS equa-

tion. Here, uFSLS denotes the solution to the periodic problem for the free linear

Schrödinger equation with initial condition u0 and N(x, t) is the contribution of the

non-linearity. When u0 is of bounded variation, they proved that the functionN(x, t)

is continuous in both variables. Thus, by applying Oskolkov’s (Theorem 2.12) and

Rodnianski’s (Theorem 2.13) results to the linear part uFSLS, Theorem 2.15 follows.

As a direct implication of (2.19) combined with Theorem 2.8, we notice that the

solution at any rational time t = 2πp/q is given by

u(x, 2π
p

q
) =

√
2π

q

q−1∑
k=0

q−1∑
m=0

e−2πim2 p
q em

(
2π
k

q

)
u∗0(x− 2π

k

q
) +N(x, 2π

p

q
). (2.20)
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From (2.20), it is clear that although the solution is no longer a finite superposition

of translations of u0, the revival of jump discontinuities in the solution profile still

occurs at rational times, whenever the initial condition is a piecewise continuous

function in L2(0, 2π). The representation (2.20) shows that there exists a weaker

type of revivals and motivates the following definition.

Definition 2.16. We say that an initial boundary value problem exhibits weak re-

vivals if its solution evaluated at rational times is given as the sum of a pure revival

effect and a continuous function in space.

In accordance with Definition 2.16, the main observation is that the weak revival

effect has the same implications as the pure revival effect, outlined in Remark 2.9.

Hence, the revival effect in the periodic problem for the NLS equation is viewed as

the revival of the initial jump discontinuities and occurs due to a weak revival effect.

Recently, similar results to Theorem 2.15 have been reported on the periodic

problem for the linear Schrödinger equation with a potential function V (x),

∂tu(x, t) = −i(−∂2xu(x, t) + V (x)u(x, t)). (2.21)

In [44], Cho, Kim, Kim, Kwon and Seo considered the linear Schrödinger equation

(2.21), where the potential V is in ∪s>0H
s
per(0, 2π). Following, the same line of

arguments as in [41], they show that for an initial condition u0 of bounded variation

on [0, 2π], parts (i)-(iii) of Theorem 2.15 hold for (2.21). They also provide lower

and upper bounds on the fractal dimension of the real and imaginary parts of u(x, t)

and of the density |u(x, t)|2. In particular, based again on Duhamel’s principle, they

show that the solution to (2.21) at any fixed time t ≥ 0, is given by the sum of the

solution to FSLS with initial condition u0 and a continuous function in the space

variable. Thus, similar to the cubic NLS equation, at rational times the solution to

the periodic problem for the Schrödinger equation will exhibit a weak revival effect.

At this point, we should mention that Rodnianski in [45] also studied the Talbot

effect for the Schrödinger equation (2.21). In particular, for a potential function in

∪s>1/2H
s
per(0, 2π), it follows from [45] that the fundamental solution to (2.21), re-

sulting from a periodic delta distribution, can be represented by the sum of the fun-

damental solution to the FSLS equation and a more regular function. Therefore, the
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regularity of the fundamental solution to (2.21) is completely determined by that of

the fundamental solution to the FSLS which incorporates the revival/fractalisation

dichotomy, [37].

We further note that the results on the periodic problems for the NLS equation,

[41], and the linear Schrödinger equation (2.21), [44], [45], strongly support that

the additional conjecture of Berry in [34] is true. In turn, the Talbot effect should

survive under non-linear or smooth perturbations of the free linear Schrödinger

equation. Although, as we discussed above, the solution is not given purely by a finite

number of translations of u0 at rational times, but by a weak revival representation

in accordance with Definition 2.16. Surprisingly, the same type of weak revival takes

place in the behaviour of the solution to the FSLS equation with separated boundary

conditions on [0, π] (see Chapter 6). Similarly, for second-order in time evolution

problems with periodic boundary conditions the main revival phenomenon seems to

be the weak revival effect (see Chapter 7).

2.6 Further Results

In [38], Chen and Olver considered also periodic problems for dispersive equations

having a non-polynomial dispersion relation. Examples include the linearisations of

the Benjamin-Ono and Boussinesq equations from water wave theory. They numer-

ically observed that other types of revival phenomena should exist. Indeed, later

in [46], Boulton, Olver, Pelloni and Smith investigated the revivals in three mod-

els of integro-differential equations with non-polynomial dispersion relations. They

analytically described another type of revival and rigorously confirmed some of the

observations of Chen and Olver [38]. For example, in case of the linear Benjamin-

Ono equation, they showed that at rational times the solution is given by a finite

linear combination of translates of the initial function and of its periodic Hilbert

transform.

An unexpected manifestation of the revival and fractalisation effect was reported

by de la Hoz and Vegas in [47] for the vortex filament equation. The equation

models the motion of a vortex filament (a vortex curve) in a ideal fluid and there is a

correspondence between the equation and the cubic non-linear Schrödinger equation
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due to Hasimoto’s transformation, [48]. For initial datum a planar regular polygon,

de la Hoz and Vegas showed that at rational times the solution becomes a skew

polygon. At generic times, their numerical considerations suggest that the solution

exhibits a fractal behaviour.
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Chapter 3

Special Transformations and their

Fourier Representation

In this chapter we define a number of isometries and other maps of L2(0, 2π). We

describe the form of the Fourier coefficients under the action of these operators

and summarise their properties. Both the notation and the results presented here

will provide a clear mathematical framework of the revival phenomenon beyond the

classical setting. This will be used extensively in the upcoming chapters.

Following Remark 2.11, in Section 3.1 we introduce the periodic translation and

the revival operators. Based on these two transformations, we reformulate Theo-

rem 2.8 (for P (x) = xn) in terms of the latter. In this way, we obtain a compact,

convenient notation to describe the revival property. Moreover, their consideration

allows for further extensions. Indeed, as we shall see in later chapters, combining

the transformations described in Sections 3.2 and 3.3 with the translation and re-

vival operators, we will be able to characterise the revival effect in more complicated

situations than the periodic problem (2.9) from Chapter 2. Therefore, in Section 3.2

we recall the definitions of the reflection and the even and odd extension of a func-

tion, whereas in Section 3.3 we consider the 2π-periodic convolution of two function.

Although the setting of Sections 3.11 and 3.3 is considered well known, we review

these transformations due to their fundamental role in the analysis of the revival

phenomenon later.
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3.1 Periodic Translation and Revival Operators

A revival operator is constructed as a finite linear combination of periodic translation

operators which in turn are defined from the periodic extension of a function given

on [0, 2π). We begin by fixing our notation with the following definition.

Definition 3.1. The 2π−periodic extension to R of a function f given on [0, 2π)

is defined by

f ∗(x) = f(x− 2πm), 2πm ≤ x < 2π(m+ 1), m ∈ Z. (3.1)

The first important isometry is the translation operator which we properly define

as follows.

Definition 3.2. Consider s ∈ R. The periodic translation operator Ts : L
2(0, 2π) →

L2(0, 2π) is defined by the formula

Tsf(x) = f ∗(x− s), x ∈ [0, 2π). (3.2)

The periodic translation operator is a linear operator. Moreover, as we see from

the next lemma, it is an isometry on L2(0, 2π). The first claim below follows from

calculation (2.12), whereas the proof of (ii) is exactly the same as the proof of

Lemma 2.7.

Lemma 3.3. Let s ∈ R. Then, we have the following.

(i) Ts is an isometry on L2(0, 2π).

(ii) For any f ∈ L2(0, 2π), the Fourier coefficients of Tsf are given by

T̂sf(j) = e−ijsf̂(j). (3.3)

We now introduce the concept of the revival operator which is defined as a finite

superposition of translation operators. In particular, the revival operator describes

the pure revival effect in the classical periodic setting of the time evolution problem

(2.9) in the monomial case P (x) = xn, with n ≥ 2 in N. In accordance with

Remark 2.11, the definition of the revival operator is based on the right-hand side

of the revival representation (2.14) in Theorem 2.8.

38



Definition 3.4. Consider p and q co-prime integers and let n ≥ 2 in N. The

periodic revival operator Rn(p, q) : L2(0, 2π) → L2(0, 2π) of order n at (p, q) is

defined by the formula

Rn(p, q)f =

√
2π

q

q−1∑
k=0

G(n)
p,q (k)T2π k

q
f (3.4)

where the coefficients G
(n)
p,q (k) are given by

G(n)
p,q (k) =

q−1∑
m=0

e−2πimn p
q em

(2πk
q

)
. (3.5)

Revival operators provide a concise notation for the revival statements. To illus-

trate this claim, let us consider the IBVP (2.9) for the monomial case P (x) = xn,

where n is an integer with n ≥ 2. That is, we consider the time evolution problem

∂tu(x, t) = −i(−i∂x)nu(x, t), u(x, 0) = u0(x),

∂mx u(0, t) = ∂mx u(2π, t), m = 0, 1, . . . , n− 1,

(3.6)

on [0, 2π]. Now, based on the definition of the revival operators, we can reformulate

Theorem 2.8 in the case of the periodic problem (3.6) and describe the pure revival

effect.

Corollary 3.5. Let u0 ∈ L2(0, 2π). Then, at any rational time t = 2π p
q
, the solution

to (3.6) admits the representation

u
(
x, 2π

p

q

)
= Rn(p, q)u0(x). (3.7)

Two main features of the revival operator are given in the next lemma. The first

property gives the expression of the Fourier coefficients of R(p, q)f . The second

assertion characterises the mathematical invariance of the revival operator. Similar

to the translation operator, the revival operator preserves the norm in L2(0, 2π).

Lemma 3.6. Let p and q be co-prime integers and n ≥ 2 in N. Then, we have the

following.
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(i) For any f ∈ L2(0, 2π), the Fourier coefficients of Rn(p, q)f are given by

⟨Rn(p, q)f, ej⟩ = e−2πijn p
q f̂(j). (3.8)

(ii) Rn(p, q) defines an isometry on L2(0, 2π).

Proof. From the proof of Theorem 2.8 we directly deduce (i). Moreover, using

Parseval’s identity (Lemma B.1-(iii)) it follows that Rn(p, q) is an isometry.

Remark 3.7. Revival operators are formed as finite linear combinations of specific

translation operators. As such, they are a finite linear combination of isometries

of L2(0, 2π). In turn, this implies that in the classical periodic setting the revival

effect corresponds to the property of the solution being expressed at rational times,

in terms of a finite number of isometries (or equivalently in terms of one non-trivial

isometry, the revival operator). This observation stays in agreement with the case of

pseudo-periodic boundary conditions for the linear Schrödinger equation (FSLS) in

Chapter 4. There, we will show that the solution at rational times can be given via

a combination of four isometries with each one containing a revival operator (see

Corollary 4.9).

Remark 3.8. The expression of the Fourier coefficients of Rn(p, q)f enable us to

describe the revival phenomena in more complex cases. In particular, due to the

form of the coefficients we can identify the pure revival effect (Definition 2.10) when

working with the eigenfunction expansion of the solution to a given IBVP. As we

shall see in Chapter 5, using (3.8) an operational approach can be applied on the

examination of the revival effect for the Airy PDE (AI) with quasi-periodic boundary

conditions (see Proposition 5.2).

3.2 Reflections and Even and Odd Extensions

In this section we provide the standard definitions of the reflection with respect to

π of a function on [0, 2π] and the even and odd extension to [0, 2π] of a function in

[0, π]. As in the case of the translation and revival operators, we are also interested

in their Fourier series representation. Similar to what we mentioned in Remark 3.8,

by knowing the form of the Fourier coefficients of these transformations, we can
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analyse the revival effect based on an operational manner. More precisely, we will

be able to represent the solutions of the time evolution problems of Chapters 4

and 6 through reflections and even and odd extensions of the initial condition (see

Theorems 4.8 and 6.7). With this, the study of the revival effect under pseudo-

periodic (Chapter 4) or Robin-type boundary conditions (Chapter 6) for the FSLS

equation will be based on the classical periodic theory.

We begin by recalling the definition of the reflection of a function f ∈ L2(0, 2π)

and set our notation as follows.

Definition 3.9. The reflection with respect to π of a function f ∈ L2(0, 2π) is

denoted by the symbol f ♮ and is defined by

f ♮(x) = f(2π − x). (3.9)

The function f ♮ is also in L2(0, 2π) and its norm is equal to f since, after the

change of variables y = 2π − x, we have that

∥f(2π − ·)∥2 =
∫ 2π

0

|f(2π − x)|2dx =

∫ 2π

0

|f(y)|2dy = ∥f∥2.

The main property of interest is the expression of the Fourier coefficients of f ♮.

These are given in terms of the Fourier coefficients of f by the following lemma.

Lemma 3.10. Let f ∈ L2(0, 2π) and consider its reflection f ♮. Then, for all integers

j we have

f̂ ♮(j) = f̂(−j). (3.10)

Proof. The proof follows by the calculation

f̂ ♮(j) =
1√
2π

∫ 2π

0

f(2π − x)e−ijxdx =
1√
2π

∫ 2π

0

f(y)eijxdx = f̂(−j), ∀ j ∈ Z,

where the second equality comes from the change of variables y = 2π − x.

We now change our point of view and consider a function on [0, π] and define

its even and odd extension to [0, 2π]. These extensions provide a convenient way

to consider the free linear Schrödinger on [0, π] with either zero Neumann or zero

Dirichlet boundary conditions as a time evolution problem on [0, 2π] with periodic
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boundary conditions. We will elaborate on this more in Section 6.1. Furthermore,

as stated above, even and odd extensions will also appear in the context of more

complicated separated boundary conditions (see Theorem 6.7).

Definition 3.11. Let f be a function defined on [0, π]. The even (+) and odd (-)

extension of f to the segment [0, 2π] are defined by

f±(x) =

f(x), 0 ≤ x ≤ π,

±f(2π − x), π < x ≤ 2π.

(3.11)

Definition 3.11 implies that f± is an even/odd function with respect to the

middle point π of [0, 2π]. Each extension naturally introduces the cosine or sine

Fourier series. Indeed, from [20] recall that the cosine and sine orthonormal Fourier

bases in L2(0, π) are given accordingly by

n0(x) =
1√
π
, nj(x) =

√
2

π
cos(jx), j ∈ N, (3.12)

and

dj(x) =

√
2

π
sin(jx), j ∈ N. (3.13)

Therefore, any element f ∈ L2(0, π) admits, in the L2(0, π) sense, a Fourier cosine

expansion

f(x) =
∞∑
j=0

ajnj(x), aj =

∫ π

0

f(y)nj(y)dy, j ∈ {0} ∪ N, (3.14)

or a Fourier sine expansion

f(x) =
∞∑
j=1

bjdj(x), bj =

∫ π

0

f(y)dj(y)dy, j ∈ N. (3.15)

The connection of the Fourier coefficients of f± with the cosine/sine Fourier coef-

ficients of f is given explicitly in the lemma below. The proof is a direct consequence

of Definition 3.11.

Lemma 3.12. Let f ∈ L2(0, π) and consider the even and odd extension f± in

L2(0, 2π). Then, we have the following.
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(i) f̂+(j) = aj and f̂+(−j) = f̂+(j) for all j ∈ N. For j = 0, f̂+(0) =
√
2a0.

(ii) f̂−(j) = −ibj and f̂−(−j) = −f̂−(j) for all j ∈ N.

Consequently, by Lemma 3.12, we recover the expansions (3.14) and (3.15) by

the Fourier expansion of f±. Specifically, we have that

f+(x) =
∑
j∈Z

f̂+(j)ej(x) =
∞∑
j=0

ajnj(x),

f−(x) =
∑
j∈Z

f̂−(j)ej(x) =
∞∑
j=1

bjdj(x).

(3.16)

Remark 3.13. From (3.16) we observe that a cosine Fourier series in L2(0, 2π)

represents an even function or equivalently the even extension in [0, 2π] of a function

in L2(0, π). Similarly, a sine Fourier series in L2(0, 2π) corresponds to an odd

L2(0, 2π) function or equivalently to the odd extension in [0, 2π] of a function in

L2(0, π).

3.3 Periodic Convolution

In this final section, we review two properties of the 2π-periodic convolution of two

functions in L2(0, 2π). We present a regularity property of this operation and also

recall the form of its Fourier coefficients.

Definition 3.14. Let f , g be in L2(0, 2π). The (normalised) 2π-periodic convolu-

tion of f and g is defined by

f ∗ g(x) = 1√
2π

∫ 2π

0

f ∗(x− y)g∗(y)dy, x ∈ [0, 2π]. (3.17)

Since the product of two measurable functions is measurable, the integral in

(3.17) makes sense for any x ∈ [0, 2π]. As it turns out, the convolution is even more

regular than both f and g. Following the argument in [49, Proposition 3.2] by Stein

we prove the following statement.

Lemma 3.15. Let f and g be in L2(0, 2π). Then, we have the following.

(i) f ∗ g is a continuous function on [0, 2π] and f ∗ g(0) = f ∗ g(2π).
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(ii) f ∗ g belongs in L2(0, 2π) and its Fourier coefficients are given by

f̂ ∗ g(j) = f̂(j)ĝ(j). (3.18)

Proof. (i) First we show the implication of the statement for functions f and g in

{f ∈ C[0, 2π] ; f(0) = f(2π)}.

The assumption on f implies that the 2π-periodic extension f ∗ is a 2π-periodic

continuous function on R. Hence, it is uniformly continuous on every closed interval

and due to the periodicity, f ∗ is uniformly continuous on R.

Let ϵ > 0. Then, there exists δ > 0 such that for every x1, x2 ∈ [0, 2π] and

y ∈ R, with

|x1 − x2| = |(x1 − y)− (x1 − y)| < δ,

we have that

|f ∗(x1 − y)− f ∗(x2 − y)| < ϵ.

From this and Definition 3.14, we obtain

|f ∗g(x1)−f ∗g(x2)| ≤
1√
2π

∫ 2π

0

|f ∗(x1−y)−f ∗(x2−y)||g∗(y)|dy ≤ ϵ√
2π

∥g∥L1(0,2π).

Therefore, f ∗ g is also continuous.

For general f and g, we use the density of the function space

{f ∈ C[0, 2π] ; f(0) = f(2π)},

on L2(0, 2π). Let {fn}∞n=1 and {gn}∞n=1 be two sequences in the function space above

such that

∥f − fn∥ and ∥g − gn∥ → 0,
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as n→ ∞. Fixing x ∈ [0, 2π],

|f ∗ g(x)− fn ∗ gn(x)| ≤ |(f − fn) ∗ g(x)|+ |fn ∗ (g − gn)(x)|

≤ 1√
2π

∫ 2π

0

|f ∗(x− y)− f ∗
n(x− y)||g∗(y)|dy

+
1√
2π

∫ 2π

0

|f ∗
n(x− y)||g∗(y)− g∗n(y)|dy.

The sequence {fn}∞n=1 is uniformly bounded in n by, say, a positive constant C.

From this and the Cauchy-Schwarz inequality in L2(0, 2π) we obtain

|f ∗ g(x)− fn ∗ gn(x)| ≤
∥g∥√
2π

∥f − fn∥+ C∥g − gn∥.

Thus, for any x ∈ [0, 2π],

lim
n→∞

fn ∗ gn(x) = f ∗ g(x),

and we conclude that f ∗g is continuous on [0, 2π] as the uniform limit of continuous

functions on [0, 2π].

Now, by definition, the periodicity condition is satisfied

f ∗ g(0) = 1√
2π

∫ 2π

0

f ∗(−y)g∗(y)dy =
1√
2π

∫ 2π

0

f(2π − y)g∗(y)dy = f ∗ g(2π).

(ii) Because we have concluded that f ∗ g is continuous on [0, 2π], it follows that

it also belongs in L2(0, 2π). Hence, it admits a Fourier series representation. The

proof of (3.18) is based on Fubini’s Theorem. We refer to [49] for an approximation

argument with continuous 2π-periodic functions as in (i), or to [50] directly for

L1(0, 2π) functions (any function in L2(0, 2π) belongs in L1(0, 2π)).

We conclude this section with a remark which gives a first indication of the con-

sequences of the continuity of the periodic convolution on the revival phenomenon.

We will return to this idea and expand it thoroughly in Chapters 6, 7 and 8.

Remark 3.16. As we shall see in Chapter 6, the generalised Fourier series rep-

resentation of the solution to the FSLS equation with a specific form of separated
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boundary conditions on [0, π] can be expressed through the solutions of five particu-

lar 2π-periodic problems for the same equation. Four of these problems have initial

conditions which are given in terms of 2π-periodic convolutions, involving the even

and odd extensions of the initial condition. The fifth one starts with the even exten-

sion of the initial function (see Theorem 6.7). As a consequence of the continuity of

the periodic convolution, we will then deduce that the four 2π-periodic solutions are

continuous functions on [0, 2π] (and thus on [0, π]) at any rational time. The other

periodic solution at rational times will exhibit the phenomenon of pure revivals in

accordance with Definition 2.10. Hence, the solution at rational times will be given

as a weak revival representation, a pure revival plus a continuous function.

Similar results based on the 2π-periodic convolution will be derived for the even-

order poly-harmonic wave equation under periodic (Section 7.3) or quasi-periodic

(Section 8.4) boundary conditions. Therefore, we will show that the weak revival

is possibly the main revival phenomenon in second-order in time, linear dispersive

PDEs.
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Chapter 4

Revivals in the Free Linear

Schrödinger Equation with

Pseudo-Periodic Boundary

Conditions

In this chapter we examine the revival phenomenon for the linear Schrödinger equa-

tion with zero potential under pseudo-periodic boundary conditions on [0, 2π]. For

this problem the revival property of the solution at rational times was obtain for

the first time in the work of Olver, Sheils and Smith in [15]. Here, we provide a

different proof and develop further the results in [15].

In Section 4.1 we outline the basic idea of our approach which comprises two

steps. The method is developed in Sections 4.2 and 4.3. In the former, we examine

the properties of the underlying spatial differential operator and derive a gener-

alised Fourier series representation of the solution. In the latter, we show that the

pseudo-periodic problem exhibits revivals at rational times. The proof follows by

manipulating the generalised Fourier series in order to obtain a new representation

of the solution. This holds at any positive time. We show that the solution is a

combination of the solutions of four purely periodic problems for the FSLS equation.

Thus, the revival property follows from that in the periodic case. On the other hand,

at irrational times, we can further conclude that the fractalisation effect occurs in

the pseudo-periodic problem.
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The main results of this chapter are Theorem 4.8 and Corollary 4.9 and were

published in [14].

4.1 The Time Evolution Problem and a Remark

on the Methodology

Let β0 and β1 be complex numbers. Consider the initial boundary value problem

for the free linear Schrödinger equation on [0, 2π]

∂tu(x, t) = i∂2xu(x, t), u(x, 0) = u0(x)

β0u(0, t) = u(2π, t), β1∂xu(0, t) = ∂xu(2π, t).

(4.1)

The boundary conditions in (4.1) are called pseudo-periodic. When β0 = β1 = 1,

these reduce to periodic conditions for which the revival phenomenon holds, as we

have seen in Chapter 2. Our goal in this chapter is to show that the revival prop-

erty at rational times extends to the pseudo-periodic problem (4.1). The method

compromises two steps which we describe in the next two sections.

Conditions on β1, β2 that enable a representation of the solution as a generalised

Fourier series are given in the next section. From this representation we decompose

the solution at each time as the sum of four terms. Each term includes the solution

of a periodic problem for the FSLS equation with an initial condition a suitable

transformation of the original initial function u0. Hence, the revival effect for the

pseudo-periodic problem at rational times is recovered from this new representation

based on the existence of pure revivals for periodic problems.

This technique provides a new approach to discover revivals beyond periodic

boundary conditions. The effectiveness of the method will be further discussed in

Chapters 5 and 6. In the former, we will consider the Airy PDE (AI) on [0, 2π]

with a particular type of pseudo-periodic boundary conditions called quasi-periodic.

In the latter, we discuss the FSLS equation with separated Robin-type boundary

conditions on [0, π].

Remark 4.1. In general, for a given boundary value problem the strategy can be

summarised as follows.
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1. We obtain the generalised Fourier series representation of the solution. This

is due to the basis property of the eigenfunctions of the underlying spatial

differential operator.

2. We identify the canonical periodic components by decomposing the solution

representation.

4.2 Generalised Fourier Series Representation

Our first task is to derive a representation of the solution. Let us write the initial

boundary value problem as

∂tu(x, t) = −iLu(x, t), u(x, 0) = u0(x), (4.2)

where the linear differential operator L : D(L) → L2(0, 2π) is given by Lf = −f ′′

on the domain

D(L) = {f ∈ C2[0, 2π] ; β0f(0) = f(2π), β1f
′(0) = f ′(2π)}. (4.3)

A crucial difference between the pseudo-periodic and periodic boundary conditions

comes from the underlying spatial differential operator. The operator is not always

symmetric and thus non-self-adjoint in general. This is the context of the following

lemma which provides a necessary and sufficient condition on the parameters β0 and

β1 for the operator to be symmetric or have a self-adjoint extension.

Lemma 4.2. Consider the above linear differential operator L : D(L) → L2(0, 2π).

Then, the following are equivalent.

(i) β0β1 = 1.

(ii) L is symmetric.

(iii) L has a self-adjoint extension.

(iv) L is essentially self-adjoint.

Proof. We first show that (i) ⇒ (ii). Let f and g be functions in the domain of L.

Then, integration parts twice yields

⟨Lf, g⟩ = (β0β1 − 1)f ′(0)g(0) + (β0β1 − 1)f(0)g′(0) + ⟨f, Lg⟩.
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Thus, If β0β1 = 1, then ⟨Lf, g⟩ = ⟨f, Lg⟩.

To show (ii) ⇒ (i), let f , g ∈ D(L). Then, since L is symmetric, we have

(β0β1 − 1)f ′(0)g(0) + (β0β1 − 1)f(0)g′(0) = 0.

The above holds for any functions f and g that satisfy the boundary conditions and

for which f(0), f ′(0), g(0) and g′(0) can be arbitrary values. Set f and g such that

f(0) = 1, g′(0) = 1, f ′(0) = 0, then β0β1 = 1.

Now, each one of (iii) and (iv) imply (ii) by definition. We finish by showing

that (ii) implies (iii) and (iv). So, let L be symmetric, then (i) holds. Moreover,

from Lemmas 4.5 and 4.6, which we prove below, we know that when β0β1 = 1, then

the eigenfunctions of L form a family of orthonormal basis in L2(0, 2π). Hence, L is

essentially self-adjoint by Lemma C.6, and thus it has a self-adjoint extension.

The analysis of the pseudo-periodic problem (4.1) will be considered under con-

sistency conditions on β0 and β1 as stated below. One of the assumptions depends

on the self-adjointness condition β0β1 = 1. However, this does not affect the treat-

ment of the problem and our methods work regardless of the self-adjointness or not

of the boundary conditions. Consequently, this further implies that the revival effect

for the pseudo-periodic problem does not depend on whether β0β1 = 1.

Assumption 4.3. We pose the following restrictions on the complex parameters β0

and β1.

(i)

β0 ̸= 1 and β1 ̸= 1,

(ii)

β0 + β1 ̸= 0 with
1 + β0 β1
β0 + β1

∈ C \ (−∞,−1) ∪ (1,+∞) for β0β1 ̸= 1,

or β0 + β1 ̸= 0 with
1 + β0 β1
β0 + β1

=
2Re(β1)

1 + |β1|2
∈ (−1, 1) for β0β1 = 1,
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(iii)

arccos
(1 + β0β1
β0 + β1

)
∈ R.

From the Assumption 4.3, the first condition excludes the periodic case and it

will imply that zero is not an eigenvalue of the differential operator L. The other

two conditions will allow us to obtain a solution in L2(0, 2π) to the pseudo-periodic

problem (4.1). In particular, the second condition will ensure that the eigenfunctions

of the operator L form a Riesz basis in L2(0, 2π), whereas the third condition will

guarantee that all the eigenvalues are real, and thus avoiding that the equation is

ill-posed. Here and in the rest of this chapter, we will assume that the parameters

β0 and β1 satisfy these three conditions.

To find a solution to the initial boundary value problem (4.1), we follow the

Fourier method and express the solution as an eigenfunction expansion. Hence, we

consider the eigenvalue problem associated with the linear operator L

−ϕ′′(x) = λϕ(x), β0ϕ(0) = ϕ(2π), β1ϕ
′(0) = ϕ′(2π). (4.4)

Set

k0 =
1

2π
arccos

(
1 + β0 β1
β0 + β1

)
, γ = ei2πk0 =

1 + β0 β1
β0 + β1

+ i

√
1−

(
1 + β0 β1
β0 + β1

)2

,

(4.5)

where the square root in (4.5) is well defined due to Assumption 4.3-(ii).

Lemma 4.4. The eigenvalues of the operator L are all real and are given by

λj = k2j , kj = (j + k0), j ∈ Z, k0 =
1

2π
arccos

(
1 + β0 β1
β0 + β1

)
̸= 0. (4.6)

The corresponding eigenfunctions can be written as follows

ϕj(x) =
A√
2π

(eikjx + Λ0e
−ikjx), j ∈ Z, A ∈ C \ {0}, (4.7)

where Λ0 is a complex constant given by

Λ0 =
γ − β0
β0 − γ−1

=
γ − β1
γ−1 − β1

. (4.8)
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Proof. Consider the eigenvalue problem (4.4). If λ = 0, then ϕ(x) = Ax + B, with

A and B in C. From Assumption 4.3-(i) on β0, β1 and the boundary conditions it

follows that A = B = 0, and so ϕ(x) = 0 for all x ∈ [0, 2π]. Hence, λ = 0 is not an

eigenvalue.

Let λ ̸= 0. Then, the general solution to (4.4) is

ϕ(x) = Aeikx +Be−ikx,

where k is taken as the principal branch of the square root of λ ∈ C. From the

boundary conditions we obtain a linear system for the two unknown complex con-

stants A and B

A(β0 − ei2πk) +B(β0 − e−i2πk) = 0,

A(β1 − ei2πk) +B(e−i2πk − β1) = 0.

Eigenfunctions do not vanish identically, hence |A|2 + |B|2 ̸= 0. Thus,

(β0 + β1)(e
i2πk + e−i2πk) = 2(1 + β0β1).

So,

cos(2πk) =
1 + β0β1
β0 + β1

and

kj = j + k0,

with k0 given by (4.5). Hence, the eigenvalues are λj = k2j .

Now, the eigenfucntions take the form

ϕj(x) = Aeikjx +Be−ikjx.

Since

e−ikj2π = e−i2πk0 = γ,

the boundary conditions imply that

B = A
γ − β0
β0 − γ−1

= A
γ − β1
γ−1 − β1

.
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Hence,

ϕj(x) = A(eikjx + Λ0e
−ikjx),

with Λ0 as in (4.8). Rescaling A′ = A/
√
2π yields (4.7).

Having found the expression of the eigenfunctions, we now show that they form

a basis of L2(0, 2π). This will allow us to represent the solution of the pseudo-

periodic problem by a generalised Fourier series. In [51], an approach relying on the

Cauchy method of residues and the Green’s function of the non-self-adjoint problem

(4.4) rendered that the family of eigenfunctions {ϕj}j∈Z is a Riesz basis. On the

other hand, in [15], the basis property was obtained from the Unified Transform

Method (UTM) applied directly to the evolution problem (4.2). This correspondence

between time evolution problems and spectral problems in the context of UTM has

been examined in more details in [52]. Nevertheless, noticing that the eigenfunctions

(4.7) are a linear combination of two orthonormal bases of L2(0, 2π), we can deduce

that they form a Riesz basis (see Lemma B.5).

Proposition 4.5. The family of eigenfunctions {ϕj}∈Z forms a Riesz basis of L2(0, 2π).

Proof. Write the eigenfunctions in the form

ϕj(x) = Ahj(x), hj(x) =
eikjx√
2π

+ Λ0
e−ikjx

√
2π

, j ∈ Z,

with A ∈ C \ {0}. If {hj}j∈Z forms a Riesz basis, then the same is true for {ϕj}j∈Z.

So, it is enough to check the conditions of Lemma B.5 for the family {hj}j∈Z.

We know that ej(x) = eijx/
√
2π for j ∈ Z is an orthonormal basis of L2(0, 2π).

Moreover, the reflections

e−j(x) = ej(2π − x), j ∈ Z,

form an orthonormal basis.

Set

mj(x) =
eikjx√
2π

= eik0xej(x),

ℓj(x) =
e−ikjx

√
2π

= e−ik0xe−j(x).
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Then, both {mj}j∈Z and {ℓj}j∈Z are orthonormal families in L2(0, 2π). By virtue

of Lemma B.1-(i), we see that they are actually orthonormal bases. Indeed, let

w(x) = e−ik0x for x ∈ [0, 2π] and f ∈ L2(0, 2π). If ⟨f,mj⟩ = 0, then we equivalently

have that ⟨w f, ej⟩ = 0 or that w f = 0. Since, w can not be zero, we conclude

that f = 0, which means that {mj}j∈Z is an orthonormal basis. A similar argument

shows that {ℓj}j∈Z is also an orthonormal basis.

Finally, we show that |Λ0| ≠ 1. Suppose, the opposite holds true. Then, |Λ0|2 = 1

and using the definition (4.8), we have that

( γ − β0
β0 − γ−1

)(γ−1 − β0

β0 − γ

)
= 1 ⇐⇒ (γ − β0)(γ

−1 − β0) = (β0 − γ−1)(β0 − γ),

where γ = eik02π. The above implies that

γ = γ−1 = γ.

Hence, we require γ ∈ R, which gives sin(2πk0) = 0 or 2πk0 = nπ, for n ∈ Z. Recall

that k0 is given by (4.5). Therefore, |Λ0| = 1 if and only if

1 + β0β1
β0 + β1

= ±1.

But the last condition contradicts Assumption (4.3)-(ii). So, |Λ0| ≠ 1 and from

Lemma B.5 we conclude that hj(x) forms a Riesz basis.

In what follows we choose

A =
1√
τ
, τ =

(γ2 + 1)(β0β1 + 1)− 2γ(β0 + β1)

(β0γ − 1)(β1γ − 1)
, (4.9)

so that the eigenfunctions (4.7) take the form

ϕj(x) =
1√
2πτ

(eikjx + Λ0e
−ikjx). (4.10)

The choice of A reflects the biorthogonality property of the basis {ϕj}j∈Z when

paired with the eigenfunctions of the adjoint eigenvalue problem on [0, 2π]

−ψ′′(x) = λψ(x), ψ(0) = β1ψ(2π), ψ
′(0) = β0ψ

′(2π), (4.11)
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see [51]. The adjoint eigenvalue problem is associated with the adjoint operator of

L which is an extension of the linear differential operator Hf = −f ′′ with domain

D(H) = {f ∈ C2[0, 2π] ; f(0) = β1f(2π), f
′(0) = β0f

′(2π)}.

As with the eigenvalue problem (4.11), we find the family of the adjoint eigenfunc-

tions

ψj(x) =
1√
2πτ

(eikjx + I0e
−ikjx) (4.12)

where τ is as in (4.9) and

I0 =
γ − 1/β1

1/β1 − γ−1
. (4.13)

The eigenvalues of H are the same as those of L.

We now show the biorthogonality property of the two systems of eigenfunctions.

Moreover, under the self-adjointness condition β0β1 = 1, we see that they coincide

and become orthonormal.

Lemma 4.6. Consider the eigenfunctions (4.10) and their adjoints (4.12). Then,

they form a biorthogonal system

⟨ϕj, ψℓ⟩ =

1, j = k,

0, j ̸= ℓ.

If β0β1 = 1, then ϕj = ψj for all j ∈ Z and {ϕj}j∈Z becomes an orthonormal family.

Proof. We first prove the biorthogonality condition for general β0 and β1. Let j =

ℓ ∈ Z, then using the expressions of ϕj(x) and ψj(x) we have that

⟨ϕj, ψj⟩ =
1

2πτ

∫ 2π

0

(1 + Λ0I0)dx+
1

2πτ

∫ 2π

0

(I0e
ikjx + Λ0e

−ikjx)dx.

The second integral on the right-hand side is zero. Indeed, recalling that γ = ei2πk0 ,

we have

I0

∫ 2π

0

eikjxdx+ Λ0

∫ 2π

0

e−ikjxdx = I0
γ2 − 1

2ikj
− Λ0

γ−2 − 1

2ikj
=
γ2 − 1

2ikj

(
I0 +

Λ0

γ2

)
.
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Then, using the definitions of I0 and Λ0 by (4.8) and (4.13), we find that

I0 +
Λ0

γ
=
γ − 1/β1
1/β1 − γ

+
γ − β1

(γ−1 − β1)γ2
= 0.

On the other hand,

1 + ΛI0 = 1 +
( γ − β0
β0 − γ−1

)(γ − 1/β1
1/β1 − γ

)
= τ,

thus ⟨ϕj, ψj⟩ = 1.

For integers j and ℓ, such that j ̸= ℓ, we compute

⟨ϕj, ψℓ⟩ =
1

2πτ

(∫ 2π

0

eikjxe−ikℓxdx+ Λ0I0

∫ 2π

0

e−ikjxeikℓxdx
)

+
1

2πτ

(
I0

∫ 2π

0

eikjxeikℓxdx+ Λ0

∫ 2π

0

e−ikjxe−ikℓxdx
)
.

Since ∫ 2π

0

eikjxe−ikℓxdx = 0 and

∫ 2π

0

e−ikjxeikℓxdx = 0,

we find that

⟨ϕj, ψℓ⟩ =
1

2πτ

(
I0

∫ 2π

0

eikjxeikℓxdx+ Λ0

∫ 2π

0

e−ikjxe−ikℓxdx
)

=
γ2 − 1

2πτ(2k0 + j + ℓ)

(
I0 +

Λ0

γ2

)
= 0.

Finally, if β0β1 = 1 then by definition I0 = Λ0, which implies that ϕj = ψj, for

τ = 1 + |Λ0|2. Then, the orthonormality condition is automatically fulfilled.

From the above analysis of the eigenvalue problem and its adjoint, it follows

that every function f in L2(0, 2π) admits a unique expansion in L2(0, 2π) in terms

of {ϕj}j∈Z,

f(x) =
∑
j∈Z

⟨f, ψj⟩ϕj(x).

Therefore, the Fourier method yields a unique solution in L2(0, 2π) to the pseudo-
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periodic problem (4.2) as an eigenfunction expansion

u(x, t) =
∑
j∈Z

⟨u(·, t), ψj⟩ϕj(x).

Assuming at the moment that u(x, t) is a smooth solution of the problem sat-

isfying the pseudo-periodic boundary conditions, then for each generalised Fourier

coefficient we have

d

dt
⟨u(·, t), ψj⟩ = ⟨∂tu(·, t), ψj⟩ = ⟨i∂2xu(·, t), ψj⟩ = −iλj⟨u(·, t), ψj⟩,

since each ψj satisfies the adjoint boundary conditions. Note that, on the left-

hand side above, we can exchange differentiation with integration by the Dominated

Convergence Theorem since we assume that u(x, t) and ∂tu(x, t) are bounded and

continuous functions of t (see Theorem 2.27 in [32]). Now, solving for ⟨u(·, t), ψj⟩,

with initial condition ⟨u0, ψj⟩ at time zero, we obtain

⟨u(·, t), ψj⟩ = ⟨u0, ψj⟩e−iλjt.

We finish this section with a proposition which gathers the precise expression of

the generalised Fourier series representation of the solution with initial condition in

L2(0, 2π). This completes the first step of the analysis in Remark 4.1. The proof

runs along similar lines as this of Theorem 2.4.

Proposition 4.7. Let u0 ∈ L2(0, 2π). Then, there exists a sequence of smooth

solutions of the IBVP (4.2) denoted by {un(x, t)}n∈N such that for every fixed t ≥ 0,

as n→ ∞, un(x, t) converges in L2(0, 2π) to

u(x, t) =
∑
j∈Z

⟨u0, ψj⟩e−iλjtϕj(x). (4.14)

Moreover, the map t → u(·, t) is continuous in L2(0, 2π) with respect to the time

variable t ∈ [0,∞).
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Proof. Let n ∈ N and set

un(x, t) =
n∑

j=−n

⟨u0, ψj⟩e−ik2j tϕj(x).

The functions un(x, t) are smooth in both variables, for x ∈ [0, 2π] and t ≥ 0.

Moreover, they satisfy the free linear Schrödinger equation, the pseudo-periodic

boundary conditions in (4.1) and at time zero the initial condition is the partial

sum

un(x, 0) =
n∑

j=−n

⟨u0, ψj⟩ϕj(x) = un0 (x),

of the initial function u0. Hence, the functions un(x, t) form a sequence of smooth

solutions of the pseudo-periodic problem (4.2).

Now for any t ≥ 0, |⟨u0, ψj⟩e−ij2t|2 = |⟨u0, ψj⟩|2. Hence

n∑
j=−n

|⟨u0, ψj⟩e−ij2t|2 =
n∑

j=−n

|⟨u0, ψj⟩|2.

Since u0 ∈ L2(0, 2π), then as n → ∞ we see that the series on the right hand side

above converges due to the Riesz basis property of {ϕj}j∈Z (see Lemma B.5-(iii)).

Therefore, the sequence of partial sums un(·, t) converges uniformly in t with respect

to the L2(0, 2π) norm and defines a map

u(·, t) =
∑
j∈Z

⟨u0, ψj⟩e−iλjtϕj,

which takes every t ∈ [0,∞) into L2(0, 2π), again by Lemma B.5-(iii).

We show continuity in t from the right with respect to the L2(0, 2π) norm. A

similar argument establishes continuity from left for t ≥ 0. Fix t ≥ 0 and let h > 0.

Then, from Lemma B.5-(ii), there exists positive constant c such that

∥u(·, t+ h)− u(·, t)∥2 ≤ 1

c

∑
j∈Z

|e−ij2h − 1|2|⟨u0, ψj⟩|2.

However, because

|e−ij2h − 1|2|⟨u0, ψj⟩|2 ≤ 4|⟨u0, ψj⟩|2,
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and u0 ∈ L2(0, 2π), the series on the right-hand side above converges absolutely and

uniformly with respect to h by the Weierstrass M-test. Moreover, since

|e−ij2h − 1|2 = 2(1− cos
(
j2h

)
)

is continuous as a function of h and vanishes as h→ 0, we see that

lim
h→0

∥u(·, t+ h)− u(·, t)∥2 = 0.

For each fixed t ≥ 0, the function u(x, t) given in L2(0, 2π) by the generalised

Fourier series (4.14) is called the generalised solution of the IBVP (4.2) and from

now on we will call it just the solution of the pseudo-periodic problem in accordance

with Remark 2.5.

4.3 The Revival Effect

In this section we show that the revival effect is exhibited at rational times in the

context of the pseudo-periodic problem (4.2) for the free space linear Schrödinger

equation. The revival property will be obtained as a corollary of the next more

general result which is one of the main contributions of this thesis. Examining the

structure of the pseudo-periodic eigenpairs, we will find that the solution u(x, t)

at any time (thus at rational times) can be constructed from the solutions of four

periodic problems for the FSLS equation with initial data some transformations of

the initial condition u0.

Recalling from Chapter 3 the definitions of the reflection f ♮ of a function and

the periodic translation operator Ts, we have the following statement.

Theorem 4.8. Let u0 ∈ L2(0, 2π) and set

v0(x) = u0(x)e
−ik0x, w0(x) = u0(x)e

ik0x. (4.15)

Consider the FSLS equation with periodic boundary conditions on [0, 2π] and denote

by
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• v(x, t) the solution corresponding to initial condition v0(x),

• w(x, t) the solution corresponding to initial condition w0(x),

• v♮(x, t) the solution corresponding to initial condition v♮0(x),

• w♮(x, t) the solution corresponding to initial condition w♮
0(x).

Then, for every fixed time t ≥ 0, the solution to the pseudo-periodic problem (4.2)

has the L2(0, 2π) representation

u(x, t) =
e−ik20t

τ

{
eik0xT2k0tv(x, t) + Λ0e

−ik0xT−2k0tv
♮(x, t)

+ I0e
ik0xT2k0tw

♮(x, t) + Λ0I0e
−ik0xT−2k0tw(x, t)

}
.

(4.16)

Proof. Let u0 ∈ L2(0, 2π). Then for fixed t ≥ 0, we know from Proposition 4.7 that

the solution is given by the eigenfunction expansion

u(x, t) =
∑
j∈Z

⟨u0, ψj⟩e−ik2j tϕj(x)

=
1

2πτ

∑
j∈Z

(∫ 2π

0

u0(y)e
−ikjydy + Ī0

∫ 2π

0

u0(y)e
ikjydy

)
e−ikjt

2(
eikjx + Λ0e

−ikjx
)
.

(4.17)

We consider each of the terms in the series above and recall that kj = k0 + j.

From the definition (4.15) of v0 and w0, we have

∫ 2π

0

u0(y)
e−ikjy

√
2π

dy + Ī0

∫ 2π

0

u0(y)
eikjy√
2π
dy = v̂0(j) + I0ŵ0(−j). (4.18)

We further have the elementary relation,

e−ik2j t = e−ik20t e−2k0jt e−ij2t, (4.19)

and for the eigenfunctions

eikjx√
2π

+ Λ0
e−ikjx

√
2π

= eik0xej(x) + Λ0e
−ik0xe−j(x), (4.20)

where ej(x) are the periodic eigenfunctions (the classical Fourier basis (2.6)).
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By substituting (4.18), (4.19) and (4.20) into (4.17), we obtain

u(x, t) =
e−ik20t

τ

∑
j∈Z

e−i2k0jte−ij2t
(
eik0xv̂0(j)ej(x) + Λ0e

−ik0xv̂0(j)e−j(x)

+ I0e
ik0xŵ0(−j)ej(x) + Λ0I0e

−ik0xŵ0(−j)e−j(x)
)
.

(4.21)

Each term in (4.21) involves the solution of a periodic problem. Indeed, from (3.3)

it follows that for f ∈ L2(0, 2π) and s ∈ R

Tsf(x) =
∑
j∈Z

e−ijsf̂(j)ej(x), (4.22)

hence we have for the first term

∑
j∈Z

e−i2k0jte−ij2teik0xv̂0(j)ej(x) = eik0xT2k0t

(∑
j∈Z

v̂0(j)e
−ij2tej(x)

)
= eik0xT2k0tv(x, t),

(4.23)

where v(x, t) solves the FSLS equation with periodic boundary conditions on [0, 2π]

and with initial condition v0(x).

For the second sum in (4.21), recalling that the Fourier coefficients of the reflec-

tion has the form (3.10), we find that

∑
j∈Z

e−i2k0jte−ij2tΛ0e
−ik0xv̂0(j)e−j(x) = Λ0e

−ik0x
∑
j∈Z

ei2k0jtv̂0(−j)e−ij2tej(x)

= Λ0e
−ik0xT−2k0t

(∑
j∈Z

v̂0(−j)e−ij2tej(x)
)

= Λ0e
−ik0xT−2k0tv

♮(x, t),

(4.24)

where according to the hypothesis v♮(x, t) solves the FSLS equation with periodic

boundary conditions on [0, 2π] and with initial condition the reflection of v0, that is

v♮0(x).
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Similarly, the fourth sum can be written as

∑
j∈Z

e−i2k0jte−ij2tΛ0I0e
−ik0xŵ0(−j)e−j(x) = Λ0I0e

−ik0x
∑
j∈Z

e−i2k0jte−ij2tŵ0(−j)e−j(x)

= Λ0I0e
−ik0x

∑
j∈Z

ei2k0jtŵ0(j)e
−ij2tej(x)

= Λ0I0e
−ik0xT−2k0t

(∑
j∈Z

ŵ0(j)e
−ij2tej(x)

)

= Λ0I0e
−ik0xT−2k0tw(x, t).

(4.25)

Finally, the third sum gives

∑
j∈Z

e−i2k0jte−ij2tI0e
ik0xŵ0(−j)ej(x) = I0e

ik0x
∑
j∈Z

e−i2k0jtŵ0(−j)e−ij2tej(x)

= I0e
ik0xT2k0t

(∑
j∈Z

ŵ0(−j)e−ij2tej(x)
)

= I0e
ik0xT2k0tw

♮(x, t),

(4.26)

where w♮(x, t) solves the FSLS equation with periodic boundary conditions on [0, 2π]

and with initial condition w♮
0(x), the reflection of w0.

Combining (4.23), (4.24), (4.25) and (4.26) with (4.21), yields (4.16)

As we have mentioned earlier, in [15] the authors showed that the FSLS equa-

tion with pseudo-periodic boundary conditions exhibits the phenomenon of revivals

at rational times t = 2πp/q. In particular, they showed that at rational times the

solution (4.14) is constructed by a finite linear combination not only of translations

of the initial condition but also of reflections. This gives a more complex structure

of the revival phenomenon than that found in the periodic case. Indeed, moti-

vated by numerical investigation, in [15] the authors carefully constructed a finite

superposition of translated and reflected pseudo-periodic extensions of u0(x) of the

form

ũ0(x) = γnu0(x− 2πn), 2πn ≤ x < 2π(n+ 1), n ∈ Z, (4.27)

with γ given in (4.5). Then, by comparing the generalised Fourier coefficients of
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the solution at rational times with the generalised Fourier coefficients of the finite

superposition they were able to rigorously confirm the revival effect.

In contrast to the argument in [15], (the proof of) Theorem 4.8 clearly indicates

the mathematical reason for the persistence of revivals in the FSLS equation, subject

to this general class of non-self-adjoint boundary conditions. It shows that we can

solve the pseudo-periodic problem via certain associated periodic problems. This

enables us to deduce from the existing results on the periodic case, that at rational

times the pseudo-periodic problem (4.2) exhibits the revival effect. On the other

hand, due to Oskolkov’s (Theorem 2.12) and Rodnianski’s (Theorem 2.13) results

on the periodic setting, at irrational times the fractalisation effect arises under the

pseudo-periodic boundary conditions. To be precise, when the initial profile has

a finite number of jump discontinuities, the solution at irrational times becomes a

continuous, though nowhere differentiable, function of the space variable.

As a consequence of Theorem 4.8, we can derive a revival representation at

rational times. Recall from Lemma 3.5, that the solution at a rational time to a

periodic problem for the FSLS equation is given by the second-order revival operator

R2(p, q) as defined in Chapter 3.

Corollary 4.9. Let u0 ∈ L2(0, 2π). Then, at any rational time t = 2π p
q
, the solution

to the pseudo-periodic problem (4.2) is given in L2(0, 2π) by

u
(
x, 2π

p

q

)
=
e−i

2πk20p

q

τ

{
eik0x

[
T 4πk0p

q

R2(p, q)
]
e−ik0xu0(x)

+ e−ik0x
[
Λ0γ

−1T− 4πk0p
q

R2(p, q)
]
eik0xu♮0(x)

+ eik0x
[
I0γT 4πk0p

q

R2(p, q)
]
e−ik0xu♮0(x)

+ e−ik0x
[
Λ0I0T− 4πk0p

q

R2(p, q)
]
eik0xu0(x)

}
.

(4.28)

Similar to the classical periodic case and in accordance with Remark 3.7, the

revival effect in the pseudo-periodic setting can be characterised as the property

of the solution to be given in terms of a finite linear combination of isometries in
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L2(0, 2π). In particular, given in terms of four isometries which have the form

e±ik0xT± 4πk0p
q

R2(p, q)e
∓ik0x

acting on the initial condition u0 or its reflection u♮.

We further highlight that the revival formula (4.28) holds in the general case of

β0 and β1 (under Assumption 4.3). Thus, in the pseudo-periodic case the lack of self-

adjointness in the boundary conditions does not affect the existence of the revival

phenomenon. On the other hand, in stark contrast, the case of the Airy PDE in

the next chapter will not exhibit such behaviour. As we shall see, under self-adjoint

quasi-periodic boundary conditions, the revival phenomenon in general breaks for

the Airy PDE. Hence, in the context of first-order in time linear dispersive PDEs

with integer coefficients the FSLS equation seems to be special with regards to the

revival phenomenon. An additional confirmation of this will come in Chapter 6,

where we show that the FSLS equation exhibits revivals (in the weak sense) when

subject to separated Robin-type boundary conditions.

The appearance of the reflections in the revival formula (4.28) are worth a com-

ment. It is evident that the reflections arise from the solution representation (4.16).

They can be viewed as a consequence of the form of the eigenfunctions ϕj. We

observe from (4.10) that the second component of the eigenfunctions is formed by

multiplying the function e−ik0x with the reflection eij(2π−x) or as a constant multiple

of the reflection of the first component of the eigenfunctions

e−ikjx = eik02πeikj(2π−x).

Remarkably, the presence of reflections does not depend on the self-adjointness

of the boundary conditions. If we consider the case when the differential operator

L is symmetric, that is when β0β1 = 1, the solution representation (4.16) of the

pseudo-periodic problem (4.2) with self-adjoint boundary conditions becomes

u(x, t) =
e−ik20t

1 + |Λ0|2
{
eik0xT2k0tv(x, t) + Λ0e

−ik0xT−2k0tv
♮(x, t)

+ Λ̄0e
ik0xT2k0tw

♮(x, t) + |Λ0|2e−ik0xT−2k0tw(x, t)
}
.

(4.29)
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Here, at a rational time t = 2π p
q
a similar revival formula as in Corollary 4.9 holds,

and reflected copies of the initial condition are still present as expected from the

decomposition (4.29).

However, for Λ0 = 0 we should not expect to have reflections. An example of

this case is the self-adjoint quasi-periodic boundary conditions, which correspond to

the following choice of the boundary parameters

β0 = β1 = β.

The self-adjointness of the boundary conditions requires |β|2 = 1. Hence, we can

set β = e2πiθ for θ ∈ (0, 1). Then from (4.5), k0 satisfies

cos(2πk0) =
1 + β2

2β
=

1 + e4πiθ

2e2πiθ
= cos(2πθ),

and so we pick k0 = θ. From (4.5) and (4.8) we find that

γ = e2πiθ = β and Λ0 =
γ − β

β − γ−1
= 0.

Substituting these values into (4.29), yields the reduced expression

u(x, t) = e−iθ2teiθxT2θtv(x, t), (4.30)

where

v(x, t) =
∑
j∈Z

v̂0(j)e
−ij2tej(x),

is the solution of the periodic problem for the FSLS equation with initial condition

v0(x) = e−iθxu0(x). Again, because we know that v(x, t) supports the revival effect

at rational times, from (4.30) we obtain the revival formula

u
(
x, 2π

p

q

)
= e−iθ22π p

q eiθxT4πθ p
q
R2(p, q)e

−iθxu0(x), (4.31)

with the absence of reflections. Note that (4.31) holds for any any choice of θ ∈ (0, 1).

As mentioned above, in the next chapter we will compare the Schrödinger equation

with the Airy PDE under these conditions. We will find that the revival effect in
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the quasi-periodic Airy PDE holds only when θ is a rational number in (0, 1).

According to the results above, the revival phenomenon persists under the gen-

eral class of pseudo-periodic boundary conditions for the free linear Schrödinger

equation. Specifically, at all times, the solution of the pseudo-periodic problem is

the sum of four components corresponding to solutions of a periodic problem for the

same equation with appropriate initial condition. From this decomposition, both

the revival and the fractalisation effect follow. In the first section of Appendix F, we

provide numerical examples which illustrate and confirm the statements presented

here. We close this section with a final remark on the revival representations.

Remark 4.10. Consider the revival representation (4.31). The solution is given

explicitly in terms of a finite number of translated copies of e−iθxu0(x). Note that the

final result is then multiplied by eiθx, and hence the solution is indeed given in terms

of a finite linear combination of translated copies of u0(x). Using the definitions of

the revival operator R2(p, q) and the periodic translation operator Ts, then (4.31)

can be written as

u
(
x, 2π

p

q

)
= eiθ

22π p
q F̃

(
x− 4πθ

p

q

)
,

F (x) =
1

q

q−1∑
k=0

q−1∑
m=0

e−2πim2 p
q e2πi(m+θ) k

q ũ0
(
x− 2π

k

q

)
,

where the tilde denotes the quasi-periodic extension of a function (γ = e2πiθ in

(4.27)). Similar considerations apply for each one of the four terms in the revival

formula (4.28), which reduces to an analogous statement with the main result in

[15].

66



Chapter 5

Revivals in Airy’s Partial

Differential Equation with

Self-Adjoint Quasi-Periodic

Boundary Conditions

In this chapter we consider the Airy PDE (AI) subject to quasi-periodic bound-

ary conditions of self-adjoint type and examine the revival property. In contrast to

the periodic case and even more surprisingly to the quasi-periodic problem of the

free space linear Schrödinger equation, we will show that the Airy PDE with quasi-

periodic boundary conditions does not in general supports the revival effect. In

particular, the revival phenomenon depends explicitly on a real parameter control-

ling the boundary conditions. Whenever this boundary parameter is an irrational

number, then at rational times the revival property breaks and instead, the frac-

talisation phenomenon takes place. On the other hand, for rational values of the

parameter the revival indeed persists.

To confirm our claims, we follow the general method described in the previous

chapter. In Section 5.1 we solve the time evolution problem by means of a gener-

alised Fourier series. Then, in Section 5.2 we simplify the solution representation to

reveal its periodic components and show that the solution at rational times can be

computed via the solution of a periodic problem for the FSLS equation, but at times

that depend on the boundary parameter. This is the main result of the chapter,
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which corresponds to Theorem 5.2 and is also included in [14]. Theorem 5.2 seems to

be the first rigorous result showing the lack of revivals in linear dispersive PDEs of

first order in time, with integer coefficients and under coupled boundary conditions

on a finite interval.

5.1 The Time Evolution Problem and its Solution

Recall from Chapter 2, that under periodic boundary conditions on [0, 2π], both the

Airy PDE and the free space linear Schrödinger equation exhibit the phenomenon

of revivals at rational times (Theorem 2.8). Furthermore, in Chapter 4 we found

that the revival property extends to the case of the free linear Schrödinger equation

subject to pseudo-periodic boundary conditions, both of self-adjoint and non-self-

adjoint type.

Therefore, we now investigate the effect of the boundary conditions on the re-

vivals in the context of the Airy PDE

∂tu(x, t) = ∂3xu(x, t). (5.1)

We consider an initial state at time zero u(x, 0) = u0(x) and fix quasi-periodic

boundary conditions on [0, 2π] of the form

ei2πθ∂mx u(0, t) = ∂mx u(2π, t), m = 0, 1, 2, θ ∈ (0, 1). (5.2)

According to Remark 4.1, our first step is to solve the initial boundary value

problem and obtain a series representation. Various non-periodic boundary value

problems for Airy’s PDE and the properties of the underlying eigenvalue problem

were thoroughly examined by Pelloni in [53] and an explicit general representation

of the solution was given. Here, due to the simplicity of the boundary conditions,

we can derive the solution as a generalised Fourier series.

For fixed θ ∈ (0, 1), we consider the third-order, essentially self-adjoint, linear

differential operator Lf = if ′′′ with dense domain in L2(0, 2π) given by

D(L) = {f ∈ C3[0, 2π] : ei2πθf (m)(0) = f (m)(2π), m = 0, 1, 2}. (5.3)
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The time evolution problem can be written as follows

∂tu(x, t) = −iLu(x, t), u(x, t) = u0(x). (5.4)

Integrating by parts three times yields that, for f and g in the domain of the

operator, the symmetry condition

⟨Lf, g⟩ = ⟨f, Lg⟩

is satisfied. Hence, we expect that the eigenvalues of the operator are all real. We

confirm this by solving the eigenvalue problem in the lemma below. We also compute

the eigenfunctions.

Lemma 5.1. The eigenvalues of L : D → L2(0, 2π) are all real and are given by

λj = k3j , kj = j + θ, j ∈ Z. (5.5)

The corresponding eigenfunctions can be written as follows

ϕj(x) =
eikjx√
2π
, j ∈ Z. (5.6)

Proof. We solve the boundary value problem on [0, 2π]

iϕ′′′(x) = λϕ(x), ei2πθϕ(m)(0) = ϕ(m)(2π), m = 0, 1, 2. (5.7)

If λ = 0, then the boundary conditions imply that ϕ(x) = 0 for all x ∈ [0, 2π]. Thus,

λ = 0 is not an eigenvalue.

Let λ ̸= 0 and write λ = |λ|eis with s ∈ [0, 2π). Due to the symmetry of

the operator, we know that any eigenvalue should be real, hence s = 0 or s = π.

However, it is more convenient to treat λ as an arbitrary complex number. For this,

we set λ = µ3 and take µ = |λ|1/3eis/3, the principal branch of the third root of λ.

Then, the general solution to the differential equation iϕ′′′(x) = µ3ϕ(x) is given by

ϕ(x) = C0e
ρ0x + C1e

ρ1x + C2e
ρ2x,
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where

ρ0 = iµ, ρ1 = −µ
2
(
√
3 + i) and ρ2 =

µ

2
(
√
3− i).

Applying the boundary conditions, results to the following linear system

(e2πiθ − e2πρ0)C0 = (e2πρ1 − e2πiθ)C1 + (e2πρ2 − e2πiθ)C2,

(ρ0 − ρ1)(e
2πρ1 − e2πiθ)C1 = (ρ2 − ρ0)(e

2πρ2 − e2πiθ)C2,

(e2πρ2 − e2πiθ)C2 = 0.

We focus on the third equation of the system above and distinguish two cases.

(I) Let C2 ̸= 0. Then, e2πρ2 = e2πiθ and taking the complex logarithm we find

that

µj = (j + θ)
(
√
3 + i)i

2
, j ∈ Z,

which gives

λj = (j + θ)3, j ∈ Z.

Since C2 ̸= 0 and µ = µj the second equation of the system gives (e2πρ1−e2πiθ)C1 = 0.

However, when µ = µj, then e
2πρ1 ̸= e2πiθ, so C1 = 0, and then from the first equation

we have (e2πiθ − e2πρ0)C0 = 0. But again for µ = µj, e
2πρ2 ̸= e2πiθ, and thus C0 = 0.

Therefore, we conclude that

ϕj(x) = C2e
ρ2x = C2e

i(j+θ)x, λj = (j + θ)3, j ∈ Z.

(II) If C2 = 0, then the second equation gives (e2πρ1 − e2πiθ)C1 = 0. If moreover,

C1 ̸= 0, then we require e2πρ1 = e2πiθ. Thus, in this case, we find that

µj = (j + θ)
(−i)(

√
3− i)

2
,

which gives

λj = (j + θ)3, j ∈ Z.

Now because C2 = 0, C1 ̸= 0 and e2πρ1 = e2πiθ, the first equation implies that
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C0 = 0. Therefore, we see that

ϕj(x) = C1e
ρ1x = C1e

i(j+θ)x, λj = (j + θ)3, j ∈ Z.

On the other hand if C1 = 0, we require C0 ̸= 0 and so e2πρ0 = e2πiθ. This implies

that µj = (j + θ), for j ∈ Z and

λj = (j + θ)3, ϕj(x) = C0e
i(j+θ)x, j ∈ Z.

From these two cases above, we conclude that the eigenvalues are given by (5.5)

and the eigenfunctions can be written as in (5.6).

It is readily seen from (5.6) that the eigenfuctions form an orthonormal basis in

L2(0, 2π). In fact,

e−iθxϕj = ej(x) =
eijx√
2π
,

meaning that they directly satisfy Definition B.2.

The solution, in a generalised sense, to the quasi-periodic problem (5.4) follows as

an eigenfunction expansion converging in L2(0, 2π). That is, for any initial condition

u0 ∈ L2, the unique (generalised) solution in L2(0, 2π) is given at any fixed time

t ≥ 0, by the generalised Fourier series

u(x, t) =
∑
j∈Z

⟨u0, ϕj⟩e−ik3mtϕj(x), (5.8)

where the series converges in L2(0, 2π).

Using the exact same arguments as for the proof of Theorem 2.4, u(x, t) given

by (5.8) is obtained as the L2(0, 2π) limit of smooth solutions and defines a map

t → u(·, t) form [0,∞) to L2(0, 2π), which is continuous in t with respect to the

norm of L2(0, 2π).

5.2 Lack of Revivals at Rational Times

In contrast with the Schrödinger equation, the quasi-periodic problem for Airy’s

PDE (5.4) does not exhibit any form of revivals at rational times in general. As we
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show below, the revival property holds in this case only for rational values of θ and

it breaks otherwise. The manifestation of this dichotomy on θ is explained through

the next theorem which gives a correspondence between the solution to Airy’s quasi-

periodic problem at a rational time with the solution to the FSLS equation at a time

which is a θ multiple of the given rational time.

Recalling the definitions of the periodic translation and revival operators from

Chapter 3, we obtain the main result of this chapter.

Theorem 5.2. Fix θ ∈ (0, 1) and let u(x, t) be the solution to Airy’s quasi-periodic

problem with an initial condition u0 in L2(0, 2π). Let p and q be positive, co-prime

integers and set

v
(p,q)
0 (x) = R3(p, q)

[
u0(x)e

−iθx
]
. (5.9)

Then, the solution at rational time tr = 2π p
q
is given by

u(x, tr) = e−itrθ3eiθxT3θ2trv
(p,q)(x, 3θtr), (5.10)

with v(p,q)(x, t) being the solution of the periodic problem for the FSLS equation with

initial condition v
(p,q)
0 .

Proof. At a fixed rational time tr = 2π p
q
, the solution to Airy’s quasi-periodic prob-

lem is given by

u(x, tr) =
∑
j∈Z

⟨u0, ϕj⟩e−ik3j trϕj(x). (5.11)

According to (5.6), ϕj(x) = eiθxej(x), where {ej}j∈Z is the periodic Fourier basis.

Hence,

⟨u0, ϕj⟩ =
∫ 2π

0

u0(x)e
−iθxej(x)dx = ŵ0(j), w0(x) = u0(x)e

−iθx. (5.12)

The exponential term e−ik3j tr can be written as

e−ik3j tr = e−i(j+θ)3tr = e−iθ3tre−ij3tre−ij3θ2tre−ij23θtr . (5.13)
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Substituting all this into (5.11) for the solution of (5.4), we find

u(x, tr) =
∑
j∈Z

⟨u0, ϕj⟩e−ik3j trϕj(x)

=
∑
j∈Z

ŵ0(j)e
−iθ3tre−ij3tre−ij3θ2tre−ij23θtreiθxej(x)

= e−iθ3treiθx
∑
j∈Z

ŵ0(j)e
−ij3tre−ij3θ2tre−ij23θtrej(x)

= e−iθ3treiθxT3θ2tr

(∑
j∈Z

ŵ0(j)e
−ij3tre−ij23θtrej(x)

)
.

(5.14)

For the last equality we have used the Fourier representation (3.3) of the translation

operator Ts.

Now, by virtue of Lemma 3.6,

ŵ0(j)e
−ij3tr = ⟨R3(p, q)w0, ej⟩ = ⟨v(p,q)0 , ej⟩ = v̂

(p,q)
0 (j),

where the function v
(p,q)
0 (x) is given by (5.9). Substituting this final identity into

(5.14), gives

u(x, tr) = e−iθ3treiθxT3θ2tr

(∑
j∈Z

v̂
(p,q)
0 (j)e−ij23θtrej(x)

)
= e−iθ3treiθxT3θ2trv

(p,q)(x, 3θtr).

(5.15)

as claimed.

The surprising statement in Theorem 5.2 can be compared with the case of the

free linear Schrödinger equation. As follows, we observe that the fundamental differ-

ence between the two equations lies in the fact that the solution of the quasi-periodic

problem for the Airy equation corresponds to the solution of a periodic problem for

the Schrödinger equation but evaluated at a different time. Indeed, the solution of

(5.4) at a rational time t = tr is obtained via the solution of a periodic problem

for the Schrödinger equation evaluated at time t = 3θtr. Therefore, if θ /∈ Q, this

is an irrational time, for which the fractalisation effect occurs (Theorems 2.12 and

2.13). From this, it follows that the quasi-periodic Airy problem exhibits revivals at

rational times if and only if θ ∈ Q. More precisely, we have the following dichotomy
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on θ.

1. Let θ ∈ Q. Then, the time t = 3θtr is a rational time for Schrödinger’s

periodic problem. Hence, Airy’s quasi-periodic problem will exhibit revivals

at any rational time tr.

2. Let θ /∈ Q. Then, the time t = 3θtr an is an irrational time for Schrödinger’s

periodic problem. It follows that for piecewise continuous initial conditions,

the solution to Airy’s quasi-periodic problem at rational times tr becomes a

continuous but nowhere differentiable function. Hence, there is no revival at

rational times in this case.

Remarkably, this additional dichotomy controlled by the parameter θ, does not

seem to have been observed in second-order models. We strongly suspect that the

revival property carries onto the case of higher-order in space linear dispersive PDEs

only under very specific hypotheses, even if the boundary conditions support it for

the second-order case. The influence of the boundary conditions on the revival

property appears to be crucial for this to hold true. It further suggests that the

general pseudo-periodic case for third-order PDEs should not exhibit revivals.

Through the revival operator, we can now establish an explicit representation

formula for the solution at rational times, whenever θ ∈ Q. A direct consequence of

combining Theorem 5.2 with Lemma 3.5 provides the next statement.

Corollary 5.3. Let (p, q), (c, d) be pairs of co-prime positive integers, with c < d.

Set θr = c/d and let u0 ∈ L2(0, 2π). For fixed θ = θr, the solution u(x, t) of Airy’s

quasi-periodic problem (5.4) at rational time tr = 2π p
q
is given by the representation

u(x, tr) = eiθrxe−iθ3r trT3θ2r tr
R2(3cp, dq)R3(p, q)

[
e−iθrxu0(x)

]
. (5.16)

Remark 4.10 applies also to the revival identity (5.16). We give below another

representation involving the quasi-periodic eigenfunctions ϕj(x). The formula can

be verified directly, following the proof of Theorem 2.8 by showing that both sides

of the equality have the same generalised Fourier coefficients with respect to the

orthonormal basis {ϕj}j∈Z.
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Proposition 5.4. Let p, q, c, d, u0(x) and θr be as in Corollary 5.3. Set

ũ0(x) = e2πi
c
d
nu0(x− 2πn), 2πn ≤ x < 2π(n+ 1), n ∈ Z,

to be the quasi-periodic extension of u0. Then, the solution u(x, t) to Airy’s quasi-

periodic problem (5.4), for θ = θr, is given at a rational time tr = 2π p
q
by the

representation

u(x, tr) =

√
2π

d2q

d2q−1∑
k=0

d2q−1∑
m=0

e−i(m+ c
d
)3trϕm

(
2πk

d2q

)
ũ0

(
x− 2πk

d2q

)
. (5.17)

In the second section of Appendix F, we provide numerical examples displaying

the implications of Theorem 5.2 on the existence and non-existence of the revival

property whenever θ ∈ Q or θ ̸∈ Q respectively. Furthermore, we note that in

Chapter 8 we will revisit the self-adjoint quasi-periodic problems. By invoking a

different method, based on space-time transformations, the results on the Airy and

Schrödinger equation will extend to time evolution problems with higher-order spa-

tial differential operators.

Finally, we close this chapter with the remark below. It address the question

of considering other times, different than 2π p
q
, for which the revival effect could

possibly persist in Airy’s quasi-periodic problem when θ ̸∈ Q. Specifically, times

that depend on the parameter θ and have the form 2π
θ

p
q
, where p and q are positive

co-prime integers.

Remark 5.5. Fixing θ ∈ (0, 1) and following a similar approach as in the proof

of Theorem 5.2, the solution u(x, t) to Airy’s quasi-periodic problem with initial

condition u0 is given at a fixed time tθ =
2π
θ

p
q
by the representation

u(x, tθ) = e−itθθ
3

eiθxT3θ2tθ

(∑
j∈Z

⟨R2(6p, q)v0, ej⟩e−ij3tθej(x)
)
,

where v0 is as in Theorem 5.10. We observe that the term in the brackets above

corresponds to the Fourier series representation of the solution to Airy’s periodic

problem at time tθ with initial condition R2(6p, q)v0. If θ ̸∈ Q, then tθ is an irrational

time for Airy’s periodic problem. Hence, for irrational values of θ, the revival effect
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breaks down at times tθ in the quasi-periodic case.
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Chapter 6

Weak revivals in the Free Linear

Schrödinger Equation with

Robin-type Boundary Conditions

In this chapter we further explore the revival phenomenon in the context of the free

linear Schrödinger equation. The equation is posed on the interval [0, π] and we

impose separated boundary conditions. This is in contrast to the coupled condi-

tions in the previous chapters. Under a specific type of Robin boundary conditions,

which allows an exact analytical treatment of the model, we characterise the revival

phenomenon based on the notion of the weak revival effect, see Definition 2.16.

Thus, in this case, the dichotomy between the behaviour of the solution at rational

and irrational times is still present, resembling the Talbot effect in the context of

the cubic non-linear Schrödinger equation or the linear Schröndinger equation with

potential described in the 2π-periodic setting of Section 2.5.

In Section 6.2, by solving the underlying eigenvalue problem, we obtain the

solution representation as a generalised Fourier series. Then, in Section 6.3, we

show that at all times the solution can be decomposed as the summation of two

components. One of them is at all times a continuous function of the space variable,

whereas the other part is periodic in space and, at rational times exhibits the pure

revival effect, see Definition 2.10. These results were also in [14], however here

we provide complete proofs of the properties found. Our main tool described in

Section 6.1 involves two auxiliary problems for the free space linear Schrödinger
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equation on [0, 2π] with periodic boundary conditions.

Note that, since we are going to work on both intervals [0, π] and [0, 2π], we keep

the notation ⟨·, ·⟩ for the inner-product in L2(0, 2π) and we denote the inner-product

in L2(0, π) by a subscript

⟨f, g⟩L2(0,π) =

∫ π

0

f(x)g(x)dx, ∀ f, g ∈ L2(0, π).

6.1 Two auxiliary problems. The Dirichlet and

Neumann boundary conditions

We begin by establishing a correspondence between periodic problems on [0, 2π] for

the free space linear Schrödinger equation with the time evolution problems for the

same equation posed on the half interval [0, π] with either zero Dirichlet or zero

Neumann boundary conditions at the end points. We show that the Dirichlet and

Neumann problems can be recast in terms of periodic boundary conditions on [0, 2π]

by considering odd or even initial conditions with respect to π. The statements and

proofs in the following sections will rely on these two time evolution problems.

Furthermore, as we shall see, these correspondences allow periodic revival operators

to characterise completely the revivals in these two cases.

We are interested in the following two time evolution problems on [0, π]. The

first is the Dirichlet problem

∂tu(x, t) = i∂2xu(x, t), u(x, 0) = u0(x), u(0, t) = u(π, t) = 0, (6.1)

and the second one is the Neumann problem

∂tu(x, t) = i∂2xu(x, t), u(x, 0) = u0(x), ∂xu(0, t) = ∂xu(π, t) = 0. (6.2)

We have chosen the sub-interval [0, π], because we want to describe their solutions

through periodic boundary conditions on [0, 2π]. Indeed, on [0, π] the eigenvalues

of the underlying spectral problems have the same form as the eigenvalues with

the periodic problem on [0, 2π], although they do not take all the integers values.
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Specifically, the eigenvalue problem for the Dirichlet case

−ϕ′′(x) = λϕ(x), ϕ(0) = ϕ(π) = 0,

has eigenvalues λj = j2, with j ∈ N and corresponding eigenfunctions the elements

dj(x) of the sine Fourier basis, which, recalling from (3.13), are given by

dj(x) =

√
2

π
sin(jx), j ∈ N. (6.3)

On the other hand, the eigenpairs for the Neumann eigenvalue problem

−ϕ′′(x) = λϕ(x), ϕ′(0) = ϕ′(π) = 0,

are (j2, nj(x)) with j running on all non-negative integers and nj(x) being the ele-

ments of the cosine Fourier basis given by

n0(x) =
1√
π
, nj(x) =

√
2

π
cos(jx), j ∈ N, (6.4)

as we recall from (3.12).

Hence, for the Dirichlet problem (6.1), it follows that the (generalised) solution

representation in L2(0, π) is given by the sine Fourier expansion

u(x, t) =
∞∑
j=1

bje
−ij2tdj(x), bj = ⟨u0, dj⟩L2(0,π). (6.5)

For the Neumann problem (6.2), the (generalised) solution in L2(0, π) has the form

of the cosine Fourier expansion

u(x, t) = a0n0(x) +
∞∑
j=1

aje
−j2tnj(x), aj = ⟨u0, nj⟩L2(0,π). (6.6)

Then, as we observe from (6.5) and (6.6), the generalised Fourier coefficients resem-

ble the form of the Fourier coefficients f̂(j)e−ij2t, of a periodic problem on [0, 2π]

with some initial function f ∈ L2(0, 2π). Therefore, going from [0, π] to [0, 2π] we

match the form of the Fourier coefficients.
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Recall further that the revival property is described by a finite number of trans-

lations of the initial function. But, to describe the translation of a function defined

on [0, π] we need to extend its values outside of its interval of definition to the whole

real line. The extension follows the behaviour of the eigenfunctions. Thus, since

dj(x) are odd in [0, 2π] with respect to π and 2π-periodic in R, for Dirichlet bound-

ary conditions, we take odd extensions on [0, 2π]. Then, the periodic translation

operator acts on the odd 2π-periodic extension of the initial condition. The same

idea applies to Neumann boundary conditions, however instead of odd extensions

we take even extensions following the behaviour of the eigenfunctions nj(x).

The correspondence between 2π-periodic and Dirichlet or Neumann problems

can be formulated in terms of the following two lemmas. The proofs are elementary

and almost the same with the only difference lying on odd and even extensions of

the initial condition. So, for the Neumann case we briefly sketch it.

Lemma 6.1. Let u0 ∈ L2(0, π) and u−0 be its odd extension defined by (3.11). Then,

u(x, t) solves the periodic problem on [0, 2π]

∂tu(x, t) = i∂2xu(x, t), u(x, 0) = u−0 (x),

u(0, t) = u(x, 2π), ∂xu(0, t) = ∂xu(2π, t),

if and only if its restriction on [0, π] solves the Dirichlet problem (6.1) on [0, π].

Proof. Suppose that u(x, t) is the solution to the periodic problem. Since the ini-

tial condition u−0 is odd with respect to π, its Fourier coefficients are given by

Lemma 3.12-(ii). That is for every j ∈ N,

û−0 (j) = −i
√

2

π

∫ π

0

u0(x) sin(jx)dx = −ibj.

For j = 0, û−0 (0) = 0. Moreover, we have that

û−0 (−j) = −û−0 (j), ∀ j ∈ N.

We know that for every time t ≥ 0, the solution to the periodic problem has the
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L2(0, 2π) representation

u(x, t) =
∑
j∈Z

û−0 (j)e
−j2tej(x). (6.7)

However, the form of the Fourier coefficients û−0 (j) imply that

u(x, t) =
∑
j∈Z

û−0 (j)e
−j2tej(x)

=
∞∑
j=1

û−0 (j)e
−j2tej(x) +

∞∑
j=1

û−0 (−j)e−j2te−j(x)

=
∞∑
j=1

û−0 (j)e
−j2t(ej(x)− e−j(x))

= −i
∞∑
j=1

bje
−j2t 2i√

2π
sin(jx), bj = ⟨u0, dj⟩L2(0,π).

Therefore,

u(x, t) =
∞∑
j=1

bje
−j2tdj(x). (6.8)

Comparing with (6.5), we notice that the right hand-side of (6.8), when restricted

on [0, π], corresponds to the sine Fourier series representation of the solution to the

Dirichlet problem on [0, π].

For the reverse direction, starting from (6.5) or (6.8) on [0, π], we can equivalently

extend to [0, 2π] and go back to (6.7) using

dj(x) =
eijx − e−ijx

√
2πi

.

Lemma 6.2. Let u0 ∈ L2(0, π) and u+0 its even extension defined by (3.11). Then,

u(x, t) solves the periodic problem on [0, 2π]

∂tu(x, t) = i∂2xu(x, t), u(x, 0) = u+0 (x),

u(0, t) = u(x, 2π), ∂xu(0, t) = ∂xu(2π, t),
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if and only if its restriction on [0, π] solves the Neumann problem (6.2) on [0, π].

Proof. Suppose u(x, t) is the solution to the periodic problem. Then for every fixed

t ≥ 0, its solution is given by the Fourier expansion in L2(0, 2π)

u(x, t) =
∑
j∈Z

û+0 (j)e
−j2tej(x). (6.9)

Because u+0 is even with respect to π, by virtue of Lemma 3.12-(i), its Fourier

coefficients are given by

û+0 (0) =

√
2

π

∫ 2π

0

u0(y)dy =
√
2a0,

û+0 (j) =

√
2

π

∫ π

0

u0(y) cos(jy)dy =, j ∈ N.

Moreover, we have that

û+0 (−j) = û+0 (j), j ∈ N.

Hence, the solution representation (6.9) becomes

u(x, t) =
∑
j∈Z

û+0 (j)e
−j2tej(x) = a0n0(x) +

∞∑
j=1

aje
−j2t(ej(x) + e−j(x)), (6.10)

or

u(x, t) = a0n0(x) +
∞∑
j=1

aje
−j2tnj(x), aj = ⟨u0, nj⟩L2(0,π). (6.11)

Finally, comparing with (6.6), we notice that the right hand-side of (6.11), when

restricted on [0, π], corresponds to the cosine Fourier series representation of the

solution to the Neumann problem on [0, π]. This establishes the correspondence,

with the opposite direction obtained by

nj(x) =
eijx + e−ijx

√
2π

.

Remark 6.3. The solution to the Dirichlet problem with initial function u0, is the

restriction on [0, π] of the solution to the periodic problem on [0, 2π] with initial

condition the odd extension of u0. On the other hand, the solution to the Neumann
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problem corresponds to the restriction on [0, π] of the solution to the periodic prob-

lem on [0, 2π] with initial condition the even extension of u0. Hence, for Dirichlet

and Neumann boundary conditions on [0, π], we can describe the revival property at

rational times as the restriction of the action of the periodic revival operator applied

on odd and even extensions.

Therefore, we obtain the following statement addressing the revival effect in the

Dirichlet and Neumann problems. In particular, we see that both problems exhibit

pure revivals (in accordance with Definition 2.10).

Corollary 6.4. Consider the free space linear Schrödinger equation on [0, π] with

initial condition u0 ∈ L2(0, π). Denote by u±0 the even and odd extensions of u0 to the

interval [0, 2π]. Then, at rational time t = 2π p
q
the solution under Dirichlet boundary

conditions is given in L2(0, π) by the restriction on [0, π] of the representation

u
(
x, 2π

p

q

)
= R2(p, q)u

−
0 (x),

and under Neumann boundary conditions is given in L2(0, π) by the restriction on

[0, π] of the representation

v
(
x, 2π

p

q

)
= R2(p, q)v

+
0 (x).

6.2 The Time Evolution Problem and its Solution

We turn our attention on the initial boundary value problem on [0, π]

∂tu(x, t) = i∂2xu(x, t), u(x, 0) = u0(x),

bu(x0, t) = (1− b)∂xu(x0, t), x0 = 0, π, b ∈ (0, 1).

(6.12)

The boundary conditions are a type of Robin boundary conditions which involve

the value of the function and its derivative at the each endpoint. These specific

form of Robin conditions in (6.12) can be viewed as an interpolation between the

Neumann (b → 0) and Dirichlet (b → 1) boundary conditions. Although from the

previous section the revival property at rational times under Neumann or Dirichlet
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conditions follows easily from the periodic problem on [0, 2π] in terms of the revival

operator only, the case when b ̸= 0, 1 turns out to be fundamentally different. The

difference lies in the solution representation of problem (6.12), which, at any time

t ≥ 0, consists of the solution to a Neumann problem perturbed by a continuous in

space component.

The presence of the Neumann component guarantees that the dichotomy be-

tween the persistence versus regularisation of discontinuities at rational versus ir-

rational times still holds. This perturbed revival is exactly the weak revival, see

Definition 2.16. The time evolution problem under question provides a benchmark

example for which a complete analytical description of the weak revival phenomenon

in the context of linear dispersive equations can be conducted.

As in the previous chapters, we begin our analysis with the solution of the

underlying eigenvalue problem

−ϕ′′(x) = λϕ(x), bϕ(x0) = (1− b)ϕ′(x0), x0 = 0, π, b ∈ (0, 1). (6.13)

This eigenvalue problem is a regular Sturm-Liouville problem, [20]. The boundary

conditions are self-adjoint and the eigenvalue problem (6.13) corresponds to the

eigenvalue problem of the essentially self-adjoint differential operator Lf = −f ′′

defined on the domain

D(L) = {f ∈ C2[0, π] ; bf(x0) = (1− b)f ′(x0), x0 = 0, π}.

Lemma 6.5. Let b ∈ (0, 1). The eigenvalues and the corresponding normalised

eigenfunctions of the eigenvalue problem (6.13) are given by

(i) λb = −m2
b < 0, mb =

b

1− b
, ϕb(x) = Abe

mbx, Ab =

√
2mb

e2amb − 1
,

(ii) λj = j2 > 0, ϕj(x) =
1√
2π

(
eijx − Λje

−ijx
)
, j ∈ N,

(6.14)
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where

Λj =
b− (1− b)ij

b+ (1− b)ij
, j ∈ N. (6.15)

Proof. Assume λ = 0. From the boundary conditions follows that ϕ = 0, and so

there is no eigenpair. Moreover, since we know that the eigenvalues are all real, we

can consider the two cases λ < 0 and λ > 0 separately.

Let λ = −m < 0, with m > 0. Then, the general solution of the differential

equation in (6.13) is

ϕ(x) = Ae
√
mx +Be−

√
mx.

From the boundary conditions we know that m satisfies the equation

(b2 − (1− b)2m)(e−
√
mπ − e

√
mπ) = 0,

whose solution yields

m =
b2

(1− b)2
.

Setting mb = b/(1 − b), we have λb = −m2
b . Hence, ϕ(x) = Aembx + Be−mbx.

However, the boundary conditions imply that B = 0, and thus ϕb(x) = Abe
mbx,

with the normalising constant Ab to be given as in (6.14).

If now λ > 0, then the general solution of the differential equation in (6.13) is

ϕ(x) = Aei
√
λx +Be−i

√
λx.

Applying the boundary conditions we find that λ has to satisfy the equation

(b2 + (1− b)2λ)(e−i
√
λπ − ei

√
λπ) = 0,

which gives solutions of the form λj = j2 with j ∈ N.

Moreover, using the boundary conditions again we can find that A and B satisfy

B = −ΛjA, Λj =
b− (1− b)ij

b+ (1− b)ij
, j ∈ N.

Consequently, after normalisation, the eigenfunctions ϕj are indeed (6.14).

Remark 6.6. Since {ϕj}∞j=b,1 is an orthonormal basis in L2(0, π), we have that any
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f ∈ L2(0, π) has a generalised Fourier expansion in terms of the eigenfunctions

f(x) = ⟨f, ϕb⟩L2(0,π)ϕb(x) +
∞∑
j=1

⟨f, ϕj⟩L2(0,π)ϕj(x). (6.16)

In the limiting cases b→ 0 and b→ 1, this expansion behaves as follows.

(i) When b→ 0, the boundary conditions in (6.13) become of the Neumann type

ϕ′(0) = ϕ′(π) = 0.

Using the expressions from (6.14) we find that

Ab → 1/
√
π, ϕb(x) → 1/

√
π, Λj = −1, ϕj(x) =

√
2

π
cos(jx).

Hence, (6.16) becomes, as expected, the usual cosine Fourier series of the func-

tion f in L2(0, π)

f(x) =
1

π

∫ π

0

f(y)dy +
2

π

∞∑
j=1

∫ π

0

f(y) cos(jy)dy cos(jx).

(ii) When b→ 1, then the boundary conditions are of the Dirichlet type

ϕ(0) = ϕ(π) = 0.

Since (6.14) yields mb → ∞ and Ab → ∞, it follows that λb → −∞ and

ϕb(x) → ∞. Hence, (λb, ϕb) is not an eigenpair. Again from (6.14), we have

Λj → 1 and so

ϕj(x) = i

√
2

π
sin(jx).

Therefore, as expected, the expansion (6.16) takes the form of the sine Fourier

series of f

f(x) =
2

π

∞∑
j=1

∫ π

0

f(y) sin(jy)dy sin(jx).

Having obtained explicitly the form of the orthonormal basis {ϕj}∞j=b,1 in (6.14),

the solution of the time evolution problem (6.12) can be expressed as a generalised

Fourier series. Indeed, for any initial condition u0 ∈ L2(0, a), the Fourier method
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provides the generalised solution at any fixed time t ≥ 0 in terms of the eigenfunction

expansion

u(x, t) = ⟨u0, ϕb⟩L2(0,π)e
im2

btϕb(x) +
∞∑
j=1

⟨u0, ϕj⟩L2(0,π)e
−ij2tϕj(x), (6.17)

where equality is understood in the norm of L2(0, π).

6.3 The Weak Revival

Now, in this section, we follow the idea of decomposing the solution representation

(6.17) into 2π-periodic components in order to derive the revival effect for the Robin

problem (6.12). We focus on the infinite sum in (6.17) and break it in terms of

specific solutions of the 2π-periodic problem for the linear Schrödinger equation

with zero potential, noticing that the eigenvalues λj = j2 have the same form as

those of the periodic problem.

Furthermore, to give perhaps an intuition as to why we should expect some form

of revivals, let us focus for a moment on the eigenfunctions

ϕj(x) =
1√
2π

(
eijx − Λje

−ijx
)
, j ∈ N.

On the one hand, the first component eijx/
√
2π corresponds to elements of the

classical Fourier basis. Thus, if we isolate the terms multiplied by this component,

we will obtain a solution representation similar to the periodic problem. Since j runs

on N and not on Z, writing eijx = cos(jx)+i sin(jx), we expect to have Neumann and

Dirichlet boundary conditions involved, that is periodic boundary conditions with

even and odd extensions. On the other hand, the second component e−ijx/
√
2π will

produce reflections of even and odd extensions. Since we also have multiplication

by Λj, we expect a new transformation applied to the initial condition. This new

transformation will be the 2π-periodic convolution with a function whose Fourier

coefficients will involve the real and imaginary parts of Λj.

All the above realises as follows. Let the auxiliary function

f1(x) =

√
π

2

mb

e2πmb − 1
embx, x ∈ [0, 2π), (6.18)
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where mb is the positive constant in (6.14). Note that, following Definition 3.9, its

reflection with respect to π is given by

f ♮
1(x) = f1(2π − x) =

√
π

2

mb

1− e−2πmb
e−mbx, x ∈ [0, 2π). (6.19)

Then, the Fourier representation of these two functions has

f̂1(j) =
mb

2(mb − ij)
and f̂ ♮

1(j) = f̂1(−j) =
mb

2(mb + ij)
, j ∈ Z. (6.20)

We now establish the main result of this section. We show that the solution of

(6.12) can be expressed at all times in terms of (the restrictions to [0, π] of) the

solutions to five periodic problems for the free space linear Schödinger equation.

The initial condition of each problem is specified by an explicit transformation of

u0. In particular, four of these initial conditions are obtained as the 2π-periodic

convolution of f1 or f
♮
1 with corresponding odd or even 2π-periodic extensions of the

initial data. The other initial condition is the even extension of u0(x).

Theorem 6.7. Let u0 ∈ L2(0, π) and u±0 ∈ L2(0, 2π) be its even and odd extension.

Consider the following solutions to the 2π-periodic problem for the free space linear

Schrödinger equation

• n(x, t) denotes the solution corresponding to initial condition n0(x) = u+0 (x),

• h(x, t) denotes the solution corresponding to initial condition h0(x) = (f1 +

f ♮
1) ∗ u+0 (x),

• v(x, t) denotes the solution corresponding to initial condition v0(x) = (f ♮
1 −

f1) ∗ u+0 (x),

• z(x, t) denotes the solution corresponding to initial condition z0(x) = (f1 −

f ♮
1) ∗ u−0 (x),

• w(x, t) denotes the solution corresponding to initial condition w0(x) = (f1 +

f ♮
1) ∗ u−0 (x),

where f1(x) and f ♮
1(x) are defined by (6.18) and (6.19) respectively. Then, for all

t ≥ 0 the solution u(x, t) in L2(0, π) to the initial boundary value problem (6.12) is

given by

u(x, t) = ⟨u0, ϕb⟩L2(0,π)e
im2

btϕb(x)+n(x, t)−h(x, t)+v(x, t)+z(x, t)+w(x, t). (6.21)

88



Here, the pair (mb, ϕb(x)) is given by (6.14).

Proof. Write (6.17) as

u(x, t) = ⟨u0, ϕb⟩L2(0,π)e
im2

btϕb(x) + U(x, t),

where

U(x, t) =
∞∑
j=1

⟨u0, ϕj⟩L2(0,π)e
−ij2tϕj(x). (6.22)

We show that U(x, t) = n(x, t)− h(x, t) + v(x, t) + z(x, t) + w(x, t).

Step 1. Recall that the elements of the sine dj(x) and cosine nj(x) Fourier bases

for j ∈ N are given by (6.3) and (6.4) respectively. Note that for the cosine basis

we have an extra element for j = 0, which is n0(x) = 1/
√
π. Let j ∈ N. The

eigenfunctions can be written as follows

ϕj(x) =
(1− Λj

2

)
nj(x) + i

(1 + Λj

2

)
dj(x). (6.23)

Moreover,

⟨u0,ϕj⟩L2(0,π) =
(1− Λj

2

)
aj +

(1 + Λj

2i

)
bj,

aj =

∫ π

0

u0(y)nj(y)dy, bj =

∫ π

0

u0(y)dj(y)dy.

(6.24)

Substituting (6.23) and (6.24) into (6.22), yields

U(x, t) =
∞∑
j=1

e−imjt
[(1− Λj)(1− Λj)

4
ajnj(x) +

(1− Λj)(1 + Λj)

4
iajdj(x)

(1 + Λj)(1− Λj)

4i
bjnj(x) +

(1 + Λj)(1 + Λj)

4
bjdj(x)

]
.

(6.25)

However, since |Λj| = 1, we have

(1− Λj)(1− Λj) = 2(1− Re(Λj)) , (1− Λj)(1 + Λj) = 2i Im(Λj)

(1 + Λj)(1− Λj) = −2i Im(Λj) , (1 + Λj)(1 + Λj) = 2(1 + Re(Λj)).
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Using the expression of Λj in (6.15), we get

Re(Λj) =
m2

b − j2

m2
b + j2

, Im(Λj) =
−2mbj

m2
b + j2

,

where mb = b/(1− b) as in (6.14). Therefore, the expression (6.25) for U(x, t) takes

the form

U(x, t) = S1(x, t) + S2(x, t) + S3(x, t) + S4(x, t), (6.26)

where

S1(x, t) =
∞∑
j=1

j2

m2
b + j2

aje
−ij2tnj(x) , S2(x, t) =

∞∑
j=1

mbj

m2
b + j2

aje
−ij2tdj(x)

S3(x, t) =
∞∑
j=1

mbj

m2
b + j2

bje
−ij2tnj(x) , S4(x, t) =

∞∑
j=1

m2
b

m2
b + j2

bje
−ij2tdj(x).

In the following steps we analyse each of the sums Si(x, t), i = 1, 2, 3, 4, and

show that they give solutions to specific 2π-periodic problems.

Step 2. Consider S1(x, t). We have

S1(x, t) =
1

π

∫ π

0

u0(y)dy −
1

π

∫ π

0

u0(y)dy +
∞∑
j=1

m2
b + j2 −m2

b

m2
b + j2

aje
−ij2tnj(x)

=
( 1
π

∫ π

0

u0(y)dy +
∞∑
j=1

aje
−ij2tnj(x)

)

−
( 1
π

∫ π

0

u0(y)dy +
∞∑
j=1

m2
b

m2
b + j2

aje
−ij2tnj(x)

)

= n(x, t)− h(x, t),

where

n(x, t) =
1

π

∫ π

0

u0(y)dy +
∞∑
j=1

aje
−ij2tnj(x),

h(x, t) =
1

π

∫ π

0

u0(y)dy +
∞∑
j=1

m2
b

m2
b + j2

aje
−ij2tnj(x).

By Lemma 6.2, we know that n(x, t) is a solution to the 2π-periodic problem with

initial condition n0(x) = u+0 (x). Furthermore, h(x, t) is the solution to the 2π-
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periodic problem for the free space linear Schrödinger equation with initial condition

h0(x) = (f1 + f ♮
1) ∗ u+0 (x). Indeed,

∑
j∈Z

ĥ0(j)e
−ij2tej(x) =

∑
j∈Z

(f̂1(j) + f̂ ♮
1(j))û

+
0 (j)e

−ij2tej(x),

where we have used (3.18). Recall that

û+0 (0) =

√
2

π

∫ π

0

u0(y)dy, û+0 (j) =

√
2

π

∫ π

0

u0(y) cos(jy)dy, j ̸= 0.

Also from (6.20) we have for all integers j,

f̂1(j) + f̂ ♮
1(j) =

mb

2(mb − ij)
+

mb

2(mb + ij)
=

m2
b

m2
b + j2

, j ∈ Z.

Therefore,

∑
j∈Z

(f̂1(j) + f̂ ♮
1(j))û

+
0 (j)e

−ij2tej(x) =
û+0 (0)(f̂1(0) + f̂2(0))√

2π

+
∞∑
j=1

m2
b

m2
b + j2

aje
−ij2t

[eijx + e−ijx

√
2π

]

=
1

π

∫ π

0

u0(y)dy +
∞∑
j=1

m2
b

m2
b + j2

aje
−ij2tnj(x)

= h(x, t).

Step 3. Now, we consider S2(x, t). Let v(x, t) be the solution to the 2π-periodic

problem for the free space linear Schrödinger equation with initial condition v0(x) =

(f ♮
1 − f1) ∗ u+0 (x). Then, we know that

v(x, t) =
∑
j∈Z

v̂0(j)e
−imjtej(x) =

∑
j∈Z

(f̂ ♮
1(j)− f̂1(j))û

+
0 (j)e

−ij2tej(x).

Now,

f̂ ♮
1(j)− f̂1(j) =

mb

2(mb + ij)
− mb

2(mb − ij)
= −i mbj

m2
b + j2

, j ∈ Z.
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Thus, since f̂ ♮
1(0)− f̂1(0) = 0, we have

v(x, t) =
∞∑
j=1

−i mbj

m2
b + j2

aje
−ij2t

[eijx − e−ijx

√
2π

]

=
∞∑
j=1

−i2 mbj

m2
b + j2

aje
−ij2tdj(x)

= S2(x, t).

Step 4. For S3(x, t), we consider z(x, t) to be the solution of a 2π-periodic

problem for the free space linear Schrödinger equation with initial condition z0(x) =

(f1 − f ♮
1) ∗ u−0 (x). Then,

z(x, t) =
∑
j∈Z

ẑ0(j)e
−ij2tej(x) =

∑
j∈Z

(f̂1(j)− f̂ ♮
1(j))û

−
0 (j)e

−ij2tej(x).

Recall that for all j ∈ Z,

û−0 (j) = −i
√

2

π

∫ π

0

u0(y) sin(jy)dy.

Hence, û−0 (−j) = −û−0 (j). Also, from (6.20) we have

f̂1(j)− f̂ ♮
1(j) =

mb

2(mb − ij)
− mb

2(mb + ij)
= i

mbj

m2
b + j2

, j ∈ Z.

Therefore, since f̂1(0)− f̂ ♮
1(0) = 0 and û−0 (0) = 0, we have

z(x, t) =
∞∑
j=1

−i2 mbj

m2
b + j2

bje
−ij2t

[eijx + e−ijx

√
2π

]

=
∞∑
j=1

mbj

m2
b + j2

bje
−ij2tnj(x)

= S3(x, t).

Step 5. Finally consider S4(x, t). Let w(x, t) be the solution to a 2π-periodic

problem for the free space linear Schrödinger equation with initial condition w0(x) =
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(f1 + f ♮
1) ∗ u−0 (x). Then,

w(x, t) =
∑
j∈Z

ŵ0(j)e
−ij2tej(x) =

∑
j∈Z

(f̂1(j) + f̂ ♮
1(j))û

−
0 (j)e

−ij2tej(x).

Thus, according to Step 2 and Step 4, we have

w(x, t) =
∞∑
j=1

−i m2
b

m2
b + j2

bje
−ij2t

[eijx − e−ijx

√
2π

]

=
∞∑
j=1

−i2 m2
b

m2
b + j2

bje
−ij2tdj(x)

= S4(x, t).

Each of the solutions n(x, t), h(x, t), v(x, t), z(x, t), w(x, t) is an even or odd

function with respect to π, since in each case they come from an even or odd initial

function. Consequently, according to Lemmas 6.1 and 6.2, they also represent solu-

tions to Dirichlet and Neumann problems for the free linear Schrödinger equation

with initial conditions the restrictions on [0, π] of the initial conditions n0, h0, v0,

z0, w0. Therefore, we could have characterised the solution representation (6.17) in

connection with Neumann or Dirichlet problems on [0, π]. However, our choice on

the periodic problems on [0, 2π] corresponds to the revival property, which as with

Neumann or Dirichlet boundary conditions, can be deduced by applying the revival

operator on a specific transformation of the initial condition extended on [0, 2π].

Thus, making the action of the periodic translation operator possible.

A further point to highlight before we proceed to a revival representation is the

following.

Remark 6.8. Due to the linearity of the FSLS equation, the representation (6.22)

for U(x, t) corresponds to the solution of the 2π-periodic problem with initial condi-

tion

U0(x) = n0(x)− h0(x) + v0(x) + z0(x) + w0(x).

In the context of Theorem 6.7 and by the distributive property of the convolution,
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we have that

U0(x) = u+0 (x) + 2f1 ∗ (u−0 − u+0 )(x).

Therefore, at any fixed t ≥ 0, U(x, t) admits the L2(0, 2π) representation

U(x, t) =
∑
j∈Z

û+0 (j)e
−ij2tej(x) +

∑
j∈Z

⟨2f1 ∗ (u−0 − u+0 ), ej⟩e−ij2tej(x). (6.27)

The next corollary characterises the revivals in the Robin problem (6.12). The

proof follows from Theorem 6.7 and Remark 6.8

Corollary 6.9. Let u0 ∈ L2(0, π) and u±0 ∈ L2(0, 2π) be the corresponding even/odd

extension. For any fixed rational time t = 2π p
q
, where p and q are co-prime integers,

the solution of the time evolution problem (6.12) is given in L2(0, π) by the restriction

on [0, π] of the representation

u
(
x, 2π

p

q

)
=⟨u0, ϕb⟩L2(0,π)e

2πm2
b
p
q
iϕb(x) +R2(p, q)u

+
0 (x)

+R2(p, q)
[
2f1 ∗ (u−0 − u+0 ))(x)

]
.

(6.28)

We distinguish the three components on the right hand side of (6.28).

1. The first and third term are continuous on x ∈ [0, π]. For the first term this

obvious. The third term is the revival of a 2π-periodic continuous, and thus

continuous on [0, π]. Indeed, first note that the translation of a continuous

2π-periodic function on R would be continuous on [0, 2π] as well, and we

know that the periodic convolution is a 2π-periodic continuous function (see

Lemma 3.15).

2. The second term is the revival of the (even extension of the) given initial

condition.

As a consequence of the representation (6.28), we conclude that (6.12) exhibits

the weak form of revivals. The weak revival effect observed in equation (6.12) is

manifested as a perturbation by a continuous function of the Neumann revival (2π-

periodic problem with even initial condition), which is a pure revival effect. While

the solution is not simply a linear combination of translated copies of the initial

condition, and thus not a pure revival, the second term in (6.28) ensures that the
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functional class of the initial condition is preserved at rational times. Recall that the

implications of the weak revival are the same as those of the pure revival described in

Remark 2.9. In particular, whenever u0 has a finite number of jump discontinuities,

then the same will be true for the solution at rational times. Then, the dichotomy

in the behaviour of the solution between rational and irrational times will still be

present in the weak revival regime. In fact, if t/2π is an irrational number, then

following Remark 6.8 the solution has the representation

u(x, t) =⟨u0, ϕb⟩L2(0,π)e
im2

btϕb(x) +
∑
j∈Z

û+0 (j)e
−ij2tej(x)

+
∑
j∈Z

⟨2f1 ∗ (u−0 − u+0 ), ej⟩e−ij2tej(x)

Hence, the first term is again obviously continuous on [0, π]. The second and third

terms will be continuous on [0, 2π] due to Oskolkov’s result on the periodic problem,

see Theorem 2.12. Thus continuous on [0, π]. Additionally, with regards to the

third term, at all times the series represents the Fourier expansion of a 2π-periodic

smooth function in the real line.

In the final section of Appendix F, we provide numerical evidence which illus-

trates weak revivals and non-revivals in the time evolution problem (6.12). Finally,

as we shall see in the next chapter, the weak revival will appear again. It will be the

main revival phenomenon in the context of second-order in time evolution problems

with periodic boundary conditions.
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Chapter 7

Functional Calculus for Revivals

and Further Applications

We now give an abstract treatment of the revival phenomenon and examine some

applications of this scheme. In the first section we introduce a functional calculus on

a non-self-adjoint setting and develop a transfer principle which enables a derivation

of various properties of the non-self-adjoint case from the periodic self-adjoint model.

In Section 7.2, we then generalise the classical revival statement, Theorem 2.8. The

actual application, in Section 7.3, is a family of second-order in time evolution

problems, including the wave and the bi-harmonic wave equation under periodic

boundary conditions. We show that these periodic time evolution problems exhibit

weak revivals at rational times. This is in contrast with the pure revival effect in

first-order in time evolution problems. The main results, Lemma 7.5, Lemma 7.6,

Proposition 7.8 and Corollary 7.9 appear to be new. We are preparing a manuscript

to report on these findings.

7.1 Functional Calculus of a Non-Self-adjoint Op-

erator

A functional calculus of a linear operator refers to the procedure of constructing

functions of this operator, which are again linear operators. In our case, we introduce

a functional calculus for the linear differential operator denoted by Lh,θ and defined

in L2(0, 2π) as follows.
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Let h > 0 and θ ∈ [0, 1), and consider the linear operator Lh,θ by

Lh,θ = −i∂x + i lnh : D(Lh,θ) → L2(0, 2π) (7.1)

on the domain

D(Lh,θ) = {ϕ ∈ H1(0, 2π) ;
(
heiθ

)2π
ϕ(0) = ϕ(2π)}, (7.2)

where H1(0, 2π) denotes the usual Sobolev space of order one on the interval (0, 2π).

We refer to Appendix D for the definition of Sobolev spaces and some of their

properties.

For specific values of the parameters h and θ, powers of the model operator Lh,θ

incorporate (extensions of) some of the differential operators encountered in the

time evolution problems from previous chapters. For example, when h = 1, the time

evolution of L2
1,θ or L3

1,θ corresponds to the free space linear Schrödinger equation

or the Airy PDE, respectively, under periodic (θ = 0) or quasi-periodic boundary

conditions (θ ̸= 0). On the other hand, when h ̸= 1, then the theory developed

below could possibly support the examination of the revival effect in time evolution

problems where the underlying spatial differential operator is non-self-adjoint. In

the second subsection of Section 9.2, we state an appropriate time evolution problem

to be considered in the context of the operator L2
h,θ.

With regards to the revival property and within the framework of this and the

next section on the differential operator Lh,θ, of main interest will be the even-order

poly-harmonic wave equation under periodic boundary conditions

∂2t u(x, t) = −(−i∂x)2ru(x, t), u(x, 0) = f(x), ∂tu(x, 0) = g(x),

∂mx u(0, t) = ∂mx u(2π, t), m = 0, 1, 2, . . . , 2r − 1,

(7.3)

on [0, 2π] and with r ≥ 1 an integer. Notice that when r = 1, the time evolution

problem is posed for the wave equation, whereas for r = 2 for the bi-harmonic

wave equation. As it will be shown, in contrast to first-order in time evolution

problems with periodic boundary conditions, the solution to (7.3) at rational times

will exhibit weak revivals, enriching the class of linear PDEs for which this perturbed
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pure revival effect holds.

Although the applications regarding the revival effect occur when h = 1, this

follows from treating the more general case h ̸= 1. Therefore, our main focus will

be on Lh,θ, which, in general, is a non-self-adjoint operator with its adjoint given by

the statement below.

Proposition 7.1. The adjoint of the operator Lh,θ is given by

L∗
h,θ = −i∂x − i lnh : D(L∗

h,θ) → L2(0, 2π) (7.4)

on the domain

D(L∗
h,θ) = {ψ ∈ H1(0, 2π) ; h−2πe2πiθψ(0) = ψ(2π)}. (7.5)

Proof. Let ψ ∈ D(L∗
h,θ) ⊂ L2(0, 2π). Then, there is g ∈ L2(0, 2π) such that g =

L∗
h,θψ and ⟨Lh,θϕ, ψ⟩ = ⟨ϕ, g⟩, for all ϕ ∈ D(L∗

h,θ). In particular, for any ϕ ∈ D(L∗
h,θ),

using the definition of Lh,θ, we have that

∫ 2π

0

ψ(x)∂xϕ(x)dx =

∫ 2π

0

(−ig(x) + lnh)ψ(x)ϕ(x)dx,

or equivalently

∫ 2π

0

ψ(x)∂xϕ(x)dx =

∫ 2π

0

(−ig(x) + lnh)ψ(x)ϕ(x)dx.

Now, since C∞
c (0, 2π) ⊂ D(Lh,θ) and (−ig+lnh)ψ ∈ L2(0, 2π), it follows that ψ has

first weak derivative ∂xψ in L2(0, 2π), and thus ψ ∈ H1(0, 2π). Moreover, we have

that

∂xψ(x) = −(−ig(x) + lnh)ψ(x),

which implies that the action of the adjoint L∗
h,θ is given by

L∗
h,θψ(x) = g(x) = (−i∂x − i ln(h))ψ(x),

for any ψ ∈ D(L∗
h,θ).

To specify the domain of the adjoint, let ψ ∈ H1(0, 2π). Then for all ϕ ∈ D(Lh,θ),

98



integration by parts implies that

⟨Lh,θϕ, ψ⟩ = −i
[
ϕ(x)ψ(x)

]2π
0

+

∫ 2π

0

ϕ(x)(−i∂x − i lnh)ψ(x)dx.

Now, if ψ satisfies the boundary condition h−2πe2πiθψ(0) = ψ(2π), then the

boundary term above equals zero and thus ⟨Lh,θϕ, ψ⟩ = ⟨ϕ, L∗
h,θψ⟩. Therefore, ψ

belongs in D(L∗
h,θ). On the other hand, if ψ ∈ D(L∗

h,θ) then the boundary term

turns to be zero, that is [
ϕ(x)ψ(x)

]2π
0

= 0.

Equivalently,

(
ψ(0)− h2πe2πiθψ(2π)

)
ϕ(0) = 0, ∀ ϕ ∈ D(Lh,θ),

or h−2πe2πiθψ(0) = ψ(2π). We conclude that the domain is given as in the statement.

To motivate the functional calculus of Lh,θ, let us first briefly review the case of

L1,0. Notice that L1,0 is self-adjoint and the boundary condition in the domain of

definition becomes periodic, ϕ(0) = ϕ(2π).

If we denote by Cb(R) the space of continuous and bounded complex valued

functions then a functional calculus in L2(0, 2π) of L1,0 can be defined from the

eigenvalues λj = j ∈ Z and the normalised eigenfunctions ej(x) = eijx/
√
2π, which

are the elements of the complex Fourier basis. In particular, for any function σ ∈

Cb(0, 2π), σ(L1,0) is defined as the linear bounded operator in L2(0, 2π) by the

formula

σ(L1,0)f =
∑
j∈Z

f̂(j)σ(j)ej, f ∈ L2(0, 2π). (7.6)

Note that in the literature it is common to use the notation σ(L) for the spectrum

of a linear operator L. But here and everywhere below σ will always be a function

in Cb(R).

Now, since {σ(j)}j∈Z is a bounded complex valued sequence, then σ(L1,0) coin-

cides with the Fourier multiplier associated to the sequence σ = σ(j). For a concise
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introduction to Fourier multipliers in the periodic setting see [54] and for extensions

of the functional calculus (7.6) within the framework of periodic distributions see

[55].

We now mention a couple of examples. Fix integer r ≥ 1 and a real parameter

t ≥ 0, and consider the functions cos(xrt) and sin(xrt) for x ∈ R. Then, from (7.6)

we have the representations

cos
(
Lr
1,0t

)
f =

∑
j∈Z

f̂(j) cos(jrt)ej, sin
(
Lr
1,0t

)
f =

∑
j∈Z

f̂(j) sin(jrt)ej,

for all f ∈ L2(0, 2π). As we shall see in Section 7.3, linear combinations of these

operators will be solution representations of the periodic poly-harmonic wave equa-

tion (7.3). The complex exponential function of L1,0 provides another interesting

example which will be considered in the next chapter.

Going back to the operator Lh,θ, in order to define σ(Lh,θ) we follow the def-

inition of Fourier multipliers (7.6). Thus, we determine the eigenvalues and the

eigenfunctions of the operator Lh,θ. For this, we solve the eigenvalue problem

−iϕ′(x) + i ln(h)ϕ(x) = λϕ(x), (heiθ)2πϕ(0) = ϕ(2π), (7.7)

on [0, 2π]. The solution to (7.7) is given by

λj = j + θ, ϕj(x) = hxeiθxej(x), j ∈ Z. (7.8)

From the expression of the eigenfunctions, we deduce that they form a Riesz basis

of L2(0, 2π), since h−xe−iθxϕj(x) = ej(x). Therefore, any f ∈ L2(0, 2π) admits a

generalised Fourier series in terms of the eigenfunctions

f(x) =
∑
j∈Z

⟨f, ψj⟩ϕj(x),

where the series converges in the mean and ψj are the eigenfunctions of the adjoint

operator L∗
h,θ. These are given by

ψj(x) = h−xeiθxej(x), j ∈ Z, (7.9)
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and when paired with ϕj, they form a biorthogonal system

⟨ϕj, ψℓ⟩ =

1, j = ℓ,

0, j ̸= ℓ.

Now, if σ ∈ Cb(R) and we take a function f ∈ L2(0, 2π), focusing on the gener-

alised Fourier coefficients ⟨f, ψj⟩σ(λj) and since σ is bounded by a positive constant

C, we have

∑
j∈Z

|⟨f, ψj⟩σ(λj)|2 ≤ C2
∑
j∈Z

|⟨f, ψj⟩|2 ≤ C2∥f∥2 <∞. (7.10)

Due to (7.10) and because {ϕj}j∈Z forms a Riesz basis in L2(0, 2π), from Lemma B.4-

(iii) follows that we can define a map denoted by σ(Lh,θ) and which takes any

f ∈ L2(0, 2π) to

σ(Lh,θ)f =
∑
j∈Z

⟨f, ψj⟩σ(λj)ϕj ∈ L2(0, 2π).

Proposition 7.2. Let σ ∈ Cb(R). Consider the map σ(Lh,θ) : L
2(0, 2π) → L2(0, 2π)

defined by

σ(Lh,θ)f =
∑
j∈Z

⟨f, ψj⟩σ(λj)ϕj. (7.11)

Then, we have the following.

(i) σ(Lh,θ) is a linear bounded operator in L2(0, 2π).

(ii) Each σ(λj) is an eigenvalue of σ(Lh,θ) with associated eigenfunction ϕj.

Proof. Linearity follows from the linearity of the inner product in its first argument.

Now, let f ∈ L2(0, 2π). Then, from the hypothesis on σ and Lemma B.4-(ii), there

is a positive constant C such that (7.10) holds. This shows (i). For (ii), let ℓ be an

arbitrary integer. Then, by biorthogonality, we have

σ(Lh,θ)ϕℓ =
∑
j∈Z

⟨ϕℓ, ψj⟩σ(λj)ϕj = σ(λℓ)ϕℓ.

Expression (7.11) describes the functional calculus generated by the linear op-
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erator Lh,θ on the space of continuous and bounded functions and it will be used

to formulate a revival functional calculus in Section 7.2. Before we proceed, we

should mention that recently in [56], Ruzhanski and Tokmagambetov considered an

arbitrary linear differential operator accompanied by fixed boundary conditions in

a bounded domain Ω of Rd. Under the assumption that the given operator has dis-

crete spectrum and its eigenfunctions consist a Riesz basis of L2(Ω) and do not have

zeros in Ω (this was relaxed in [57] by the same authors), they developed a func-

tional calculus of pseudo-differential operators generated by the given operator. In

our case, the operator Lh,θ provides another example which falls into this framework

and the functional calculus (7.11) is a special occurrence, which holds in L2(0, 2π),

of their “L-quantization” representation [56, Theorem 9.2, Equation (9.2)].

We close this section with the following lemma which can be viewed as a transfer

principle between the functional calculus of Lh,θ and the functional calculus of L1,0.

Meaning that, when proving a particular property for L1,0, using the lemma below,

we extend it to the case of Lh,θ for general h and θ. As an application of this

procedure, in the next section we establish an abstract framework for the revival

property.

Lemma 7.3. Fix h > 0, with h ̸= 1 and θ ∈ (0, 1). Let σ ∈ Cb(R) and denote by

σθ the function σ(x+ θ). Then, for any f ∈ L2(0, 2π)

σ(Lh,θ)f(x) = hxeiθxσθ(L1,0)(h
−xe−iθxf(x)). (7.12)

Proof. Let f ∈ L2(0, 2π). Then, by (7.11)

σ(Lh,θ)f(x) = hxeiθx
∑
j∈Z

∫ 2π

0

h−ye−iθyf(y)ej(y)dyσ(j + θ)ej(x).

Because σ ∈ Cb(R), the function σθ = σ(x+ θ) also belongs in Cb(R). Therefore, if

we denote by F (x) = h−xe−iθxf(x), then

σ(Lh,θ)f(x) = hxeiθx
∑
j∈Z

⟨F, ej⟩σθ(j)ej(x)

= hxeiθxσθ(L1,0)(h
−xe−iθxf(x)).
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Remark 7.4. Lemma 7.3 implies the following. There exist a bounded linear op-

erator S : L2 → L2(0, 2π) given by Sf(x) = hxeiθxf(x), with bounded inverse

S−1f(x) = h−xe−iθxf(x), such that the operator σ(Lh,θ) is given by

σ(Lh,θ) = Sσθ(L1,0)S
−1.

This observation might allow further generalisations of the revival functional calculus

presented next.

7.2 Functional Calculus for Revivals

In this section, we generalise Theorem 2.8 by showing that a special class of functions

of the operator Lh,θ can be decomposed into finite linear copies of the operator

h−s exp(−isLh,θ) : L
2(0, 2π) → L2(0, 2π), (7.13)

where s is a real number. The operator (7.13) corresponds to the quasi-periodic

analogue of the periodic translation operator Ts. More specifically, through the

functional calculus of Proposition 7.2, we have that

exp(−isLh,θ)f =
∑
j∈Z

⟨f, ψj⟩e−is(j+θ)ϕj,

for any f ∈ L2(0, 2π). On the other hand, if we regard the quasi-periodic extension

of an L2(0, 2π) function f by

f̃(x) = (heiθ)mf(x− 2πm), 2πm ≤ x < 2π(m+ 1), m ∈ Z,

then the quasi-periodic translation of f by a real number s, denoted by fs, is

fs = f̃(x− s).
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From the generalised Fourier coefficients of fs with respect to the adjoint eigenfunc-

tions ψj, we find by a similar argument as in Lemma 2.7, that

⟨fs, ψj⟩ = h−se−i(j+θ)s⟨f, ψj⟩,

which implies that

fs = h−s exp(−isLh,θ)f.

To motivate the idea behind the main lemma below, we look at Theorem 2.8.

There, we showed that the first-order in time problem (2.9) under periodic boundary

conditions, exhibits pure revivals at rational times t = 2π p
q
. In particular, translating

the revival representation (2.14), in terms of complex exponential functions of the

operator L1,0 we have that

σ(L1,0)f(x) =

√
2π

q

q−1∑
k=0

q−1∑
m=0

σ(m)em

(2πk
q

)
exp

(
−i2πk

q
L1,0

)
f(x), (7.14)

with σ(x) = e−iP (x) 2πp
q , where P is a polynomial with integer coefficients and integer

order n ≥ 2 and x ∈ R. One of the key features that lead to (7.14) was that

for m and j integers such that m ≡ j mod q, then σ(m) = σ(j). Based on this

observation, we establish the following generalisation of Theorem 2.8. The proof

consists of two steps. First, we extend the revival formula (7.14) in the context of

the operator L1,0 and through Lemma 7.3 we pass to the case of Lh,θ. The following

is one of the main results of this chapter.

Lemma 7.5. Fix h > 0, θ ∈ [0, 1) and consider the linear differential operator

Lh,θ defined by (7.1) and (7.2). Let s ∈ R and q be a positive integer. Consider a

function σ : R → C in Cb(R) satisfying the property

σ(m) = eis(m−j)σ(j), whenever m ≡ j mod q, m, j ∈ Z. (7.15)

Then, for any f ∈ L2(0, 2π), we have

σ(Lh,θ)f(x) =

√
2π

q

q−1∑
k=0

Γθ(k)h
−( 2πk

q
−s) exp

(
−i

(2πk
q

− s
)
Lh,θ

)
f(x), (7.16)
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where

Γθ(k) =

q−1∑
m=0

σ(m+ θ)ϕm

(2πk
q

− s
)
. (7.17)

Proof. Step 1. Let h = 1 and θ = 0. Recall that in this case the eigenpairs of the

operator L1,0 are (j, ej(x)) where j runs over the integers and ej(x) = eijx/
√
2π is

the Fourier basis. By definition of the functional calculus for the operator L1,0 we

know that for any f ∈ L2(0, 2π)

σ(L1,0)f(x) =
∑
j∈Z

f̂(j)σ(j)ej(x),

where equality is in L2(0, 2π).

Note that for any s ∈ R,

exp(−isL1,0)f(x) =
∑
j

f̂(j)e−ijsej(x) = Tsf(x),

where Ts is the periodic translation operator. Therefore, the right hand side of

(7.16) in this case corresponds to the representation

√
2π

q

q−1∑
k=0

Γ0(k)T 2πk
q

−sf(x), Γ0(k) =

q−1∑
m=0

σ(m)em

(2πk
q

− s
)
.

Calculating the Fourier coefficients of this representation, we have

〈√2π

q

q−1∑
k=0

Γ0(k)T 2πk
q

−sf, ej

〉
=

√
2π

q

q−1∑
k=0

Γ0(k)e
−ij( 2πk

q
−s)f̂(j)

=
f̂(j)

q

q−1∑
k=0

q−1∑
m=0

e−is(m−j)σ(m)ei(m−j) 2πk
q

=
f̂(j)

q

q−1∑
m=0

e−is(m−j)σ(m)

q−1∑
k=0

ei(m−j) 2πk
q .

By the hypothesis (7.15) on the function σ and since

q−1∑
k=0

ei(m−j) 2πk
q =


0, m ̸≡ j mod q,

q, m ≡ j mod q,
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we conclude that

〈√2π

q

q−1∑
k=0

Γ0(k)T 2πk
q

−sf, ej

〉
= f̂(j)σ(j) = ⟨σ(L1,0)f, ej⟩.

Hence,

σ(L1,0)f(x) =

√
2π

q

q−1∑
k=0

Γ0(k)T 2πk
q

−sf(x), Γ0(k) =

q−1∑
m=0

σ(m)em

(2πk
q

− s
)
,

and so (7.16) holds whenever h = 1.

Step 2. Let h > 0, with h ̸= 1, and θ ∈ (0, 1). From Lemma 7.3 we have that

σ(Lh,θ)f(x) = h−xe−iθxσθ(L1,0)h
xeiθxf(x),

with σθ = σ(x+ θ). Moreover, from Step 1, we obtain that

σ(Lh,θ)f(x) = h−xe−iθx

√
2π

q

q−1∑
k=0

q−1∑
m=0

σθ(m)em

(2πk
q

− s
)
T 2πk

q
−sh

xeiθxf(x)

=

√
2π

q

q−1∑
k=0

q−1∑
m=0

σ(m+ θ)em

(2πk
q

− s
)
h−xe−iθxT 2πk

q
−sh

xeiθxf(x).

However, we see that

h−xe−iθxT 2πk
q

−sh
xeiθxf(x) = h−xe−iθx exp

(
−i

(2πk
q

− s
)
L1,0

)
hxeiθxf(x).

Now, consider the function defined on R,

g(x) = exp

(
−i

(2πk
q

− s
)
x+ i

(2πk
q

− s
)
θ

)
.

Then, if gθ(x) = g(x+ θ), we have that

gθ(x) = exp

(
−i

(2πk
q

− s
)
x

)
.
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Therefore, using Lemma 7.3 once more, we obtain

h−xe−iθxT 2πk
q

−sh
xeiθxf(x) = h−xe−iθxgθ(L1,0)h

xeiθxf(x) = g(Lh,θ)f(x).

On the other hand, the functional calculus implies that

g(Lh,θ)f(x) =
∑
j∈Z

⟨f, ψj⟩g(j + θ)ϕj(x) = e

(
2πk
q

−s
)
iθ exp

(
−i

(2πk
q

− s
)
Lh,θ

)
.

Going back to σ(Lh,θ), we find that

σ(Lh,θ)f(x) =

√
2π

q

q−1∑
k=0

q−1∑
m=0

σ(m+ θ)em

(2πk
q

− s
)
e

(
2πk
q

−s
)
iθ exp

(
−i

(2πk
q

− s
)
Lh,θ

)
.

Finally, due to (7.9), we know that ϕm(x) = hxeiθxem(x), which implies that

σ(Lh,θ)f(x) =

√
2π

q

q−1∑
k=0

q−1∑
m=0

σ(m+ θ)ϕm

(2πk
q

− s
)
h−( 2πk

q
−s) exp

(
−i

(2πk
q

− s
)
Lh,θ

)
f(x)

=

√
2π

q

q−1∑
k=0

Γθ(k)h
−( 2πk

q
−s) exp

(
−i

(2πk
q

− s
)
Lh,θ

)
f(x),

where Γθ(k) is given as in the statement.

It follows from (7.16) that for any function σ ∈ Cb(R) which satisfies (7.15), the

operator σ(Lh,θ) can be expressed as a finite linear combination of the operators

h−( 2πk
q

−s) exp

(
−i

(2πk
q

− s
)
Lh,θ

)
, k = 0, 1, . . . , q − 1.

In turns this is a finite superposition of operators and an extension of the revival

phenomenon in an theoretical operator setting.

Indeed, first note that the revival functional calculus (7.16), extends the concept

of the periodic revival operator Rn(p, q) of order n ∈ N, recall Definition 3.4,

Rn(p, q) = exp

(
−i2πp

q
Ln
1,0

)
,

where p and q are co-prime, positive integers. Furthermore, it includes Theorem 2.8
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which holds for the operator

σ(L1,0) = exp

(
−i2πp

q
P (L1,0)

)
.

Here P is a polynomial of order n ≥ 2 and integer coefficients. Hence, in some sense,

any operator σ(Lh,θ) can be thought of as a revival operator whenever the function σ

satisfies the periodicity condition (7.15). In the following section more applications

of Lemma 7.5 will be considered in the context of specific time evolution problems

and the revival phenomenon.

In accordance with Remark 7.4, we could possibly take a step further and broaden

the revival functional calculus (7.16) for any linear bounded operator A in L2(0, 2π)

given by a similarity transformation S−1σ(L1,0)S. Here, S is some arbitrary bounded

operator with bounded inverse and σ in Cb(R). If σ satisfies the periodicity property

(7.15), then we see that A admits a linear decomposition in terms of the operators

S T 2πk
q

−s S
−1, k = 0, 1, . . . , q − 1.

Finally, as an implication of Lemma 7.5 and for later convenience in applications,

we extract the periodic case, corresponding to the operator L1,0.

Lemma 7.6. Consider the linear differential operator L1,0 defined by (7.1) and

(7.2). Let s ∈ R and q be a positive integer. Consider a function σ : R → C in

Cb(R) satisfying the property

σ(m) = eis(m−j)σ(j), whenever m ≡ j mod q, m, j ∈ Z.

Then, for any f ∈ L2(0, 2π), we have

σ(L1,0)f(x) =

√
2π

q

q−1∑
k=0

Γ0(k)T 2πk
q

−sf(x), Γ0(k) =

q−1∑
m=0

σ(m)em

(2πk
q

− s
)
.
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7.3 The Even-Order Poly-harmonic Wave Equa-

tion

In the existing literature, the revival phenomenon seems to be restricted to first-

order in time evolution problems, consistent with the linear dispersive PDEs that

we examined in the previous chapters. Here we consider second-order in time PDEs,

and using Lemma 7.6, we will show that the weak revival effect is present in the

poly-harmonic wave equation of even-order with periodic boundary conditions. This

class of equations includes the wave equation and the bi-harmonic wave equations,

both models of special interested in mathematics and physics.

Fix an integer r ≥ 1 and consider the initial boundary value problem on [0, 2π]

∂2t u(x, t) = −(−i∂x)2ru(x, t), u(x, 0) = f(x), ∂tu(x, 0) = g(x),

∂mx u(0, t) = ∂mx u(2π, t), m = 0, 1, 2, . . . , 2r − 1.

(7.18)

In order to explore the phenomenon of revivals, we begin with the Fourier series

representation of the solution as we did in the preceding cases. In particular, for

any initial conditions f and g in L2(0, 2π), the Fourier method gives at any time

t ≥ 0 the L2(0, 2π) representation

u(x, t) =
∑
j∈Z

f̂(j) cos(jrt)ej(x) + ⟨g⟩ t+
∑

0 ̸=j∈Z

ĝ(j)

jr
sin(jrt)ej(x), (7.19)

where ⟨g⟩ is the mean of g over [0, 2π],

⟨g⟩ = 1

2π

∫ 2π

0

g(x)dx.

Note that (7.19) is a solution in a generalised sense. Indeed, u(x, t) given by (7.19)

defines a continuous function of the time parameter t with respect to the norm of

L2(0, 2π). Also, for every t ∈ [0,∞), u(x, t) is the limit in L2(0, 2π) as n → ∞ of
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the sequence of smooth solutions of (7.18) given by the partial sums

un(x, t) = ⟨f⟩+ ⟨g⟩t+
n∑

0̸=j=−n

(
f̂(j) cos(jrt) +

ĝ(j)

jr
sin(jrt)

)
ej(x).

We can already observe a form of weak revival at a rational time t = 2π p
q
on

each of the terms of (7.19). More specifically, using

cos(jrt) =
eij

rt + e−ijrt

2
,

it follows that the first term represents a linear combination of the revival operators

Rr(p, q) and Rr(−p, q) applied on f . However, as we see shortly, we can directly use

Lemma 7.6 and deduce a pure revival effect. On the other hand, the second term,

at each time, always gives a constant, so we can concentrate on the third term. For

any g ∈ L2(0, 2π), note that∣∣∣∣ ĝ(j)jr sin(jrt)ej(x)

∣∣∣∣ ≤ ∣∣∣∣ ĝ(j)jr
∣∣∣∣ .

Moreover,by the Cauchy-Schwarz inequality, we have

∑
0̸=j∈Z

∣∣∣∣ ĝ(j)jr
∣∣∣∣ ≤ √ ∑

0̸=j∈Z

|ĝ(j)|2
√ ∑

0̸=j∈Z

1

|j|2r
<∞.

Hence, it follows from the Weierstrass M-test (see for example [26, Theorem 3.27]),

that the third term gives, at each time, a continuous 2π-periodic function in the

space variable (otherwise we may invoke Lemma D.5).

The above indicate that at rational times we should expect the phenomenon of

weak revivals, since the solution representation (7.19) will be given by the sum of a

pure revival effect and a continuous function in space (recall Definition 2.16).

In the case of the periodic poly-harmonic wave equation, we can derive a weak re-

vival representation utilizing Lemma 7.6, by explicitly characterising the continuous

function given in terms of the Fourier series

∑
0̸=j∈Z

ĝ(j)

jr
sin(jrt)ej(x).
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We do this by introducing a sequence of polynomials {hr(x)}r∈N defined on [0, 2π)

such that hr is of order r and their Fourier coefficients are of the form j−r, for j ̸= 0.

Lemma 7.7. There exists a sequence of polynomials denoted by hr(x), r ∈ N,

with x ∈ [0, 2π), such that each hr(x) is of order r and ĥr(j) = j−r when j ̸= 0.

Concretely, for fixed integer r ≥ 1, hr(x) is defined inductively by

hr(x) =
(−i)r

(−1)r−1

√
2π

2πr!
xr −

r−1∑
ℓ=1

(−1)ℓ−r

(−i)ℓ−r

(2π)r−ℓ

(r − ℓ+ 1)!
hℓ(x). (7.20)

Proof. Fix integer r ≥ 1 and consider the function fr(x) = xr with x ∈ [0, 2π).

Then, for j ̸= 0, the Fourier coefficients of fr(x) are given by

f̂r(j) = ⟨fr, ej⟩ =
r!√
2π

r−1∑
k=0

(−1)k

(−i)k+1

(2π)r−k

(r − k)!

1

jk+1
,

Solving the above equation for j−r and setting ℓ = k + 1 in the sum over k, we

find that
1

jr
=

(−i)r

(−1)r−1

√
2π

2πr!
f̂r(j)−

r−1∑
ℓ=1

(−1)ℓ−r

(−i)ℓ−r

(2π)r−ℓ

(r − ℓ+ 1)!

1

jℓ
.

Let hr(x) be the function whose Fourier coefficients are given equal to j−r for

j ̸= 0. Then, the last equation above implies that

∫ 2π

0

hr(x)ej(x)dx =

∫ 2π

0

[ (−i)r

(−1)r−1

√
2π

2πr!
xr −

r−1∑
ℓ=1

(−1)ℓ−r

(−i)ℓ−r

(2π)r−ℓ

(r − ℓ+ 1)!
hℓ(x)

]
ej(x)dx.

Therefore, hr(x) is the polynomial of order r ≥ 1 given by (7.20).

Hence, we have another representation of the solution u(x, t) to (7.18), in terms

of convolutions with hr(x). Recall that the linear differential operator L1,0 = −i∂x
is accompanied by the periodic boundary condition on [0, 2π].

Proposition 7.8. Fix integer r ≥ 1 and let f and g be in L2(0, 2π). Then at every

time t ≥ 0 the solution to (7.18) admits the L2(0, 2π) representation

u(x, t) = cos
(
Lr
1,0 t

)
f(x) + ⟨g⟩ t+ sin

(
Lr
1,0 t

)
[g̃ ∗ hr](x), (7.21)

where g̃ = g − ⟨g⟩ and hr is given by (7.20).
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Proof. From (7.19) and the definition of the functional calculus (7.11) for the oper-

ator L1,0, we have that

u(x, t) = cos
(
Lr
1,0 t

)
f(x) + ⟨g⟩ t+

∑
0̸=j∈Z

ĝ(j)

jr
sin(jrt)ej(x).

Let g̃ = g − ⟨g⟩, then calculating its Fourier coefficients we found that

̂̃g(j) = ĝ(j), ̂̃g(0) = 0.

Moreover, from Lemma 7.7 we know that for fixed integer r ≥ 1 and when

j ̸= 0 the Fourier coefficients of hr(x) are equal to j−r. Hence, by considering the

2π-periodic convolution

g̃ ∗ hr(x) =
1√
2π

∫ 2π

0

g̃∗(x− y)h∗(y)dy, x ∈ [0, 2π],

we obtain that

̂̃g ∗ hr(j) =


0, j = 0,

ĝ(j)
jr
, j ̸= 0.

Therefore, using the functional calculus again, the solution u(x, t) admits the rep-

resentation

u(x, t) = cos
(
Lr
1,0 t

)
f(x) + ⟨g⟩ t+

∑
j∈Z

̂̃g ∗ hr(j) sin(jrt)ej(x)

= cos
(
Lr
1,0 t

)
f(x) + ⟨g⟩ t+ sin

(
Lr
1,0 t

)
[g̃ ∗ hr](x).

By combing Proposition 7.8 with Lemma 7.6, the next corollary gives the weak

revival representation of the solution to the poly-harmonic wave equation at rational

times.

Corollary 7.9. Fix integer r ≥ 1 and let f and g be in L2(0, 2π). Then, at rational

time t = 2π p
q
, with p and q co-prime integers, the solution to (7.18) is given in
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L2(0, 2π) by

u
(
x, 2π

p

q

)
= 2π⟨g⟩p

q
+

√
2π

q

q−1∑
k=0

q−1∑
m=0

cos

(
2πmr p

q

)
em

(2πk
q

)
T 2πk

q
f(x)

+

√
2π

q

q−1∑
k=0

q−1∑
m=0

sin

(
2πmr p

q

)
em

(2πk
q

)
T 2πk

q
[g̃ ∗ hr] (x).

(7.22)

Proof. From Proposition 7.8, at rational time t = 2π p
q
, the solution to (7.18) is given

by

u
(
x, 2π

p

q

)
= 2π

p

q
⟨g⟩+ cos

(
2π
p

q
Lr
1,0

)
f(x) + sin

(
2π
p

q
Lr
1,0

)
[g̃ ∗ hr](x)

However, we observe that both functions (of m)

cos

(
2π
p

q
mr

)
, sin

(
2π
p

q
mr

)

satisfy the hypothesis of Lemma (7.6) with s = 0, which implies that representation

(7.22) holds in L2(0, 2π).

As a consequence of (7.22), the even-order poly-harmonic wave equation un-

der periodic boundary conditions exhibits the weak revival effect at rational times.

More specifically, the second term in (7.22) corresponds to the pure revival of the

initial function f , whereas the third term is the revival of the continuous on [0, 2π]

function g̃ ∗ hr and thus, together with the constant term, a continuous function on

[0, 2π]. Hence, whenever the initial condition f has a finite number of jump discon-

tinuities, then the solution profile at rational time will exhibit finitely many jump

discontinuities.

We now focus on the specific important models of the wave and bi-harmonic

wave equation. In the case of the wave equation, we are going to compare the

(weak) revival representation (7.22) with the classical D’Alembert’s representation

at rational times. For the bi-harmonic wave equation, we will establish a different

approach to the revival effect. This approach stems from the special structure of the
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bi-harmonic wave equation which can be factorised in terms of two linear Schrödinger

equations.

7.3.1 The Wave Equation

When r = 1, the corresponding PDE is the classical wave equation

∂2t u(x, t) = ∂2xu(x, t) (WA)

which is posed under periodic boundary conditions on [0, 2π] and with initial con-

ditions u(x, 0) = f(x) and ∂tu(x, 0) = g(x). For the one dimensional wave equation

we classically know that the solution at any time t ≥ 0 is also given by D’Alembert’s

formula

u(x, t) =
1

2

(
Ttf(x) + T−tf(x)

)
+

1

2

∫ x+t

x−t

g∗(y)dy, (7.23)

where recall that g∗ denotes the 2π-periodic extension of g.

Notice that D’Alembert’s formula indicates that the weak revival effect is in fact

present at all times for the wave equation. The pure revival of the initial condition

comes from the finite linear combination of translations

1

2

(
Ttf(x) + T−tf(x)

)
and the continuous in space component is given by the other term

1

2

∫ x+t

x−t

g∗(y)dy

which is a continuous function of x. As a matter of fact, we can show that at rational

times the weak revival representation (7.22), when r = 1, reduces to D’Alembert’s

formula (7.23) evaluated at rational times.

Proposition 7.10. Let r = 1. Then, the weak revival representation (7.22) of

the solution to the wave equation reduces to D’Alembert’s formula at rational time

t = 2π p
q
,

u
(
x, 2π

p

q

)
=

1

2

(
T2π p

q
f(x) + T−2π p

q
f(x)

)
+

1

2

∫ x+2π p
q

x−2π p
q

g∗(y)dy.
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Proof. For r = 1, we look at the second term on the right hand-side of (7.22). Then,

we have

√
2π

q

q−1∑
k=0

q−1∑
m=0

cos

(
2πm

p

q

)
em(

2πk

q
)T 2πk

q
f(x)

=
1

2q

q−1∑
k=0

f ∗
(
x− 2π

k

q

)( q−1∑
m=0

(e−im2π p
q + eim2π p

q )eim2π k
q

)

=
1

2q

( q−1∑
k=0

f ∗
(
x− 2π

k

q

) q−1∑
m=0

eim
2π
q
(k−p) +

q−1∑
k=0

f ∗(x− 2π
k

q
)

q−1∑
m=0

eim
2π
q
(k+p)

)
,

which gives √
2π

q

q−1∑
k=0

q−1∑
m=0

cos

(
2πm

p

q

)
em(

2πk

q
)T 2πk

q
f(x)

=
1

2

(
f ∗
(
x− 2π

p

q

)
+ f ∗

(
x+ 2π

p

q

))
=

1

2

(
T2π p

q
f(x) + T−2π p

q
f(x)

)
.

Therefore, when r = 1, (7.22) is

u
(
x, 2π

p

q

)
=
1

2

(
T2π p

q
f(x) + T−2π p

q
f(x)

)
+

(
2π⟨g⟩p

q
+

√
2π

q

q−1∑
k=0

q−1∑
m=0

sin

(
2πm

p

q

)
em(

2πk

q
)T 2πk

q
[(g − ⟨g⟩) ∗ h1] (x)

)
,

where from (7.20), the polynomial h1 is given by h1(x) = −ix/
√
2π, for x ∈ [0, 2π).

Let

G(x) = [(g − ⟨g⟩) ∗ h1] (x), x ∈ [0, 2π),
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and let

J
(
x, 2π

p

q

)
= 2π⟨g⟩p

q
+

√
2π

q

q−1∑
k=0

q−1∑
m=0

sin

(
2πm

p

q

)
em(

2πk

q
)T 2πk

q
G(x)

= 2π⟨g⟩p
q
+

1

q

q−1∑
k=0

q−1∑
m=0

sin

(
2πm

p

q

)
eim

2πk
q G∗(x− 2πk

q
)

= 2π⟨g⟩p
q
+

1

2iq

q−1∑
k=0

G∗(x− 2πk

q
)

q−1∑
m=0

(
eim

2πp
q − e−im 2πp

q
)
eim

2πk
q .

We have

q−1∑
k=0

G∗
(
x− 2πk

q

) q−1∑
m=0

(
eim

2πp
q − e−im 2πp

q
)
eim

2πk
q

=
[ q−1∑

k=0

G∗
(
x− 2πk

q

) q−1∑
m=0

eim
2π(k+p)

q −
q−1∑
k=0

G∗
(
x− 2πk

q

) q−1∑
m=0

eim
2π(k−p)

q

]

= q
[
G∗

(
x+

2πp

q

)
−G∗

(
x− 2πp

q

)]
,

and thus, J
(
x, 2π p

q

)
becomes

J(x, 2π
p

q
) = 2π⟨g⟩p

q
+

1

2i

[
G∗

(
x+

2πp

q

)
−G∗

(
x− 2πp

q

)]
.

By definition,

G(x) = (g − ⟨g⟩) ∗ h(x) = g ∗ h(x)− ⟨g⟩ ∗ h(x)

=
1√
2π

∫ 2π

0

h∗(x− y)g∗(y)dy − ⟨g⟩√
2π

∫ 2π

0

h∗(x− y)dy.
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Now, since h(x) = −ix/
√
2π in [0, 2π), we find that

∫ 2π

0

h∗(x− y)dy =

∫ x

0

h∗(x− y)dy +

∫ 2π

x

h∗(x− y)dy

=

∫ x

0

h(x− y)dy +

∫ 2π

x

h(x− y + 2π)dy

=

∫ x

0

−i(x− y)√
2π

dy +

∫ 2π

x

−i(x− y + 2π)√
2π

dy = −iπ
√
2π.

Similarly, we have

∫ 2π

0

h∗(x− y)g∗(y)dy =

∫ x

0

h(x− y)g∗(y)dy +

∫ 2π

x

h(x− y + 2π)g(y)dy

=
−i√
2π

[
2π⟨g⟩x+ 2π

∫ 2π

x

g∗(y)dy −
∫ 2π

0

yg(y)dy
]
.

By substitution, we arrive at

G(x) = −i⟨g⟩f(x)− i

∫ 2π

f(x)

g∗(y)dy +
i

2π

∫ 2π

0

yg(y)dy + iπ⟨g⟩, x ∈ [0, 2π),

where f(x) = x in [0, 2π).

Going back to J
(
x, 2π p

q

)
, the above calculations give that

J
(
x, 2π

p

q

)
= 2π⟨g⟩a

q
+

1

2i

[
G∗

(
x+

2πp

q

)
−G∗

(
x− 2πp

q

)]

= 2π⟨g⟩p
q
+

1

2i

[
− i⟨g⟩f ∗

(
x+

2πp

q

)
− i

∫ 2π

f∗
(
x+ 2πp

q

) g∗(y)dy
+

i

2π

∫ 2π

0

yg(y)dy + iπ⟨g⟩+ i⟨g⟩f ∗
(
x− 2πp

q

)
+ i

∫ 2π

f∗
(
x− 2πp

q

) g∗(y)dy
− i

2π

∫ 2π

0

yg(y)dy − iπ⟨g⟩
]
,

or equivalently,

J
(
x, 2π

p

q

)
= 2π⟨g⟩p

q
+

⟨g⟩
2
[f ∗

(
x− 2πp

q

)
− f ∗

(
x+

2πp

q

)
] +

1

2

∫ f∗
(
x+ 2πp

q

)
f∗
(
x− 2πp

q

) g∗(y)dy.
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Recall that f(x) = x in [0, 2π) and since 2π p
q
is a positive real number we can

write

f ∗
(
x− 2π

p

q

)
= x− 2π

p

q
− 2πℓ, f ∗(x+ 2π

p

q
) = x+ 2π

p

q
− 2πn,

for some ℓ and n in Z, with n ≥ 0. Then, we have

J
(
x, 2π

p

q

)
= 2π⟨g⟩p

q
+

⟨g⟩
2

(
x− 2πp

q
− 2πℓ− x− 2πp

q
+ 2πn

)
+

1

2

∫ x+ 2πp
q

−2πn

x− 2πp
q

−2πℓ

g∗(y)dy

= π⟨g⟩(n− ℓ) +
1

2

(∫ x−2π p
q

x− 2πp
q

−2πℓ

g∗(y)dy +

∫ x+ 2πp
q

−2πn

x+2π p
q

g∗(y)dy
)

+
1

2

∫ x+2π p
q

x− 2πp
q

g∗(y)dy.

Because n ≥ 0, using the periodicity of g∗, we see that

∫ x+ 2πp
q

−2πn

x+2π p
q

g∗(y)dy = −
∫ x+2π p

q

x+ 2πp
q

−2πn

g∗(y)dy = −n
∫ 2π

0

g∗(y)dy = −2π⟨g⟩n,

which gives

J
(
x, 2π

p

q

)
= π⟨g⟩(n− ℓ) +

1

2

(∫ x−2π p
q

x− 2πp
q

−2πℓ

g∗(y)dy − 2π⟨g⟩n
)
+

1

2

∫ x+2π p
q

x− 2πp
q

g∗(y)dy.

To complete the proof, we distinguish the two cases ℓ ≥ 0 and ℓ < 0.

(i) If ℓ ≥ 0, then

∫ x−2π p
q

x− 2πp
q

−2πℓ

g∗(y)dy = ℓ

∫ 2π

0

g∗(y)dy = 2π⟨g⟩ℓ,

giving

J
(
x, 2π

p

q

)
= π⟨g⟩(n−ℓ)+1

2
(2π⟨g⟩ℓ−2π⟨g⟩n)+1

2

∫ x+2π p
q

x− 2πp
q

g∗(y)dy =
1

2

∫ x+2π p
q

x− 2πp
q

g∗(y)dy.
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(ii) If ℓ < 0, then ℓ = −|ℓ| and

∫ x−2π p
q

x− 2πp
q

+2π|ℓ|
g∗(y)dy = −|ℓ|

∫ 2π

0

g∗(y)dy = −2π⟨g⟩|ℓ|

giving

J
(
x, 2π

p

q

)
= π⟨g⟩(n+|ℓ|)+1

2
(−2π⟨g⟩|ℓ|−2π⟨g⟩n)+1

2

∫ x+2π p
q

x− 2πp
q

g∗(y)dy =
1

2

∫ x+2π p
q

x− 2πp
q

g∗(y)dy.

Therefore, in any case we conclude that

J
(
x, 2π

p

q

)
=

1

2

∫ x+2π p
q

x− 2πp
q

g∗(y)dy.

7.3.2 The Bi-harmonic Wave Equation

The existence of the weak revival in the poly-harmonic wave equation can be con-

jectured in the basis of its special structure. The bi-harmonic wave equation sets an

interesting example for this analysis through a system of linear Schrödinger equa-

tions. When r = 2, the initial boundary value problem (7.3) reduces to the periodic

boundary value problem on [0, 2π] for the bi-harmonic wave equation

∂2t u(x, t) = −∂4xu(x, t), (BHW)

with initial conditions u(x, 0) = f(x) and ∂tu(x, 0) = g(x). This PDE is also known

as the beam or Euler-Bernoulli equation and is of fundamental importance in engi-

neering applications since it describes the free, absent to external loads, transverse

vibrations of a homogeneous beam [58].

Notice that we can write (BHW) in the form

(
∂t + i∂2x

)(
∂t − i∂2x

)
u(x, t) = 0.

Hence, setting

w(x, t) =
(
∂t − i∂2x

)
u(x, t),
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we see that the bi-harmonic wave equation can be equivalently written as the coupled

system of linear Schrödinger equations

∂tu(x, t) = i∂2xu(x, t) + w(x, t), ∂tw(x, t) = −i∂2xw(x, t).

The solution u(x, t) of the periodic by-harmonic wave equation can be obtained

by solving the initial boundary value problems on [0, 2π]

∂tu(x, t) = i∂2xu(x, t) + w(x, t), ∂tw(x, t) = −i∂2xw(x, t)

u(x, 0) = f(x), w(x, 0) = g(x)− i∂2xf(x),

u(0, t) = u(2π, t), w(0, t) = w(2π, t)

∂xu(0, t) = ∂xu(2π, t), ∂xw(0, t) = ∂xw(2π, t).

(7.24)

By looking at the inhomogeneous linear Schödinger equation

∂tu(x, t) = i∂2xu(x, t) + w(x, t),

we conjecture that, most likely, there will be a type of a revival phenomenon. Intu-

itively, this is a consequence of Duhamel’s principle, which states that the solution

to the inhomogeneous equation is obtained by the solution to the homogeneous

equation with initial condition f(x), denoted by uf (x, t), plus an integral, that is

u(x, t) = uf (x, t) +

∫ t

0

uw(x, t− s)ds.

In our case the solution to the homogeneous equation is given by

uf (x, t) =
∑
j∈Z

f̂(j)e−ij2tej(x),

and consequently whenever f(x, t) is piecewise continuous, uf (x, t) would be piece-

wise continuous at rational times. From the Fourier method, we will show that the

Duhamel integral corresponds to a continuous function in x, as expected from the
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weak revival formula (7.22).

In the next statement, we will consider the domain of the linear operator L2
1,0 =

−∂2x,

D(−∂2x) = {ϕ ∈ H2(0, 2π) ; ϕ(0) = ϕ(2π), ϕ′(0) = ϕ′(2π)}.

Theorem 7.11. Let f ∈ D(−∂2x) and g ∈ L2(0, 2π) and consider the system of

periodic problems (7.24). Then, at any time t ≥ 0, the solution u(x, t) admits the

following representations in L2(0, 2π)

(i)

u(x, t) =
∑
j∈Z

f̂(j) cos
(
j2t

)
ej(x) + ⟨g⟩ t+

∑
0̸=j∈Z

ĝ(j)

j2
sin

(
j2t

)
ej(x), (7.25)

(ii)

u(x, t) = exp
(
−iL2

1,0t
)
f(x) + ⟨g⟩ t

+
1

2i

(
exp

(
iL2

1,0t
)
− exp

(
−iL2

1,0t
))
[(w(·, 0)− ⟨w(·, 0)⟩) ∗ h2(x)],

(7.26)

where w(x, 0) = g(x)−i∂2xf(x) and h2(x) is the polynomial defined in Lemma 7.7.

Proof. We begin by deriving a representation in L2(0, 2π) for u(x, t) using the Fourier

method. For this, we expand both u(x, t) and w(x, t) in Fourier series in L2(0, 2π),

u(x, t) =
∑
j∈Z

û(j, t)ej(x), w(x, t) =
∑
j∈Z

ŵ(j, t)ej(x).

Since w(x, t) is the solution to a free space linear Schrödinger equation, its Fourier

coefficients are given by

ŵ(j, t) = ŵ(j, 0)eij
2t,

and because f ∈ D(−∂2x), we have that

ŵ(j, 0) = ĝ(j) + ij2f̂(j).

Now, to compute the Fourier coefficients of u(x, t), notice that if we multiply the
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inhomogeneous equation

∂tu(x, t) = i∂2xu(x, t) + w(x, t)

by a function ϕ ∈ D(−∂2x), and integrade over (0, 2π), then we obtain

⟨∂tu(·, t), ϕ⟩ = i⟨∂2xu(·, t), ϕ⟩+ ⟨w(·), ϕ⟩.

After integration by parts twice in the first term of the right-hand side, and using

the periodic boundary conditions satisfied by u(x, t), we arrive at the weak form

d

dt
⟨u(·, t), ϕ⟩ = i⟨u(·, t), ϕ′′⟩+ ⟨w(·, t), ϕ⟩.

Choosing ϕ(x) = ej(x) = eijx/
√
2π, the last equation above gives for each Fourier

coefficient û(j, t) the differential equation

d

dt
u(j, t) = −ij2û(j, t) + ŵ(j, t).

Taking as initial conditions û(j, 0) = f̂(j), the Fourier coefficients are obtained by

û(j, t) = f̂(j)e−ij2t +

∫ t

0

ŵ(j, s)e−ij2(t−s)ds.

However, we know the form of ŵ(j, t) from above, and thus

û(j, t) = f̂(j)e−ij2t + ŵ(j, 0)e−ij2t

∫ t

0

e2ij
2sds.

So, u(x, t) is given in L2(0, 2π) by

u(x, t) =
∑
j∈Z

f̂(j)e−ij2tej(x) +
∑
j∈Z

ŵ(j, 0)e−ij2t

∫ t

0

e2ij
2sds ej(x)

=
∑
j∈Z

f̂(j)e−ij2tej(x) +
∑
j∈Z

ŵ(j, 0)e−ij2t

∫ t

0

e2ij
2sds ej(x)

=
∑
j∈Z

f̂(j)e−ij2tej(x) +
ŵ(0, 0)√

2π
t+

1

2i

∑
0̸=j∈Z

ŵ(j, 0)

j2
(
e−ij2t − eij

2t
)
ej(x).
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Observe that ŵ(0, 0) = ĝ(0), hence

u(x, t) =
∑
j∈Z

f̂(j)e−ij2tej(x) + ⟨g⟩ t+ 1

2i

∑
0 ̸=j∈Z

ŵ(j, 0)

j2
(
e−ij2t − eij

2t
)
ej(x).

From the last representation we derive (i) and (ii) as follows.

(i) Using ŵ(j, 0) = ĝ(j) + ij2f̂(j), the solution u(x, t) becomes

u(x, t) =
∑
j∈Z

f̂(j) cos
(
j2t

)
ej(x)− i

∑
j∈Z

f̂(j) sin
(
j2t

)
ej(x) + ⟨g⟩ t

+
∑

0 ̸=j∈Z

ĝ(j)

j2
sin

(
j2t

)
ej(x) + i

∑
0̸=j∈Z

f̂(j) sin
(
j2t

)
ej(x).

Hence,

u(x, t) =
∑
j∈Z

f̂(j) cos
(
j2t

)
ej(x) + ⟨g⟩ t+

∑
0̸=j∈Z

ĝ(j)

j2
sin

(
j2t

)
ej(x).

(ii) From our previous calculation, using the functional calculus for the operator

L1,0, we have

u(x, t) = exp
(
−iL2

1,0t
)
f(x) + ⟨g⟩ t+ 1

2i

∑
0̸=j∈Z

ŵ(j, 0)

j2
(
eij

2t − e−ij2t
)
ej(x).

Moreover, recall from Lemma 7.7 that the polynomial

h2(x) =
1

2
√
2π

(x2 − 2πx), x ∈ [0, 2π),

has Fourier coefficients j−2. Therefore, the Fourier coefficients of the 2π-periodic

convolution

(w(·, 0)− ⟨w(·, 0)⟩) ∗ h2(x)

are given by

⟨(w(·, 0)− ⟨w(·, 0)⟩) ∗ h2, ej⟩ =


0, j = 0,

ŵ(j,0)
j2

, j ̸= 0.
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Hence,

u(x, t) = exp
(
−iL2

1,0t
)
f(x) + ⟨g⟩ t

+
1

2i

(
exp

(
iL2

1,0t
)
− exp

(
−iL2

1,0t
))
[(w(·, 0)− ⟨w(·, 0)⟩) ∗ h2(x)].

Part (i) from Theorem 7.11 shows that the solution to the bi-harmonic wave

equation can be obtained through the system of linear Schrödinger equations (7.24).

Indeed, as we noticed, solving (7.24) for u(x, t) results into the same Fourier series

representation in L2(0, 2π) as in (7.19) when r = 2.

On the other hand, from the representation in part (ii) of Theorem 7.11, it

follows that the solution to the periodic bi-harmonic wave equation exhibits weak

revivals at rational times as anticipated earlier by the intuition given by the Duhamel

principle. In particular, at rational times, we have

u
(
x, 2π

p

q

)
= R2(p, q)[f(x)]

+ 2π
p

q
⟨g⟩+ 1

2i

(
R2(−p, q)−R2(p, q)

)
[(w(·, 0)− ⟨w(·, 0)⟩) ∗ h2(x)],

(7.27)

which is exactly the definition of the weak revival, a pure revival effect perturbed

by a continuous function.

The weak revival representations (7.27) and (7.22)-(r = 2) is an attempt to a

mathematical treatment of the revival effect in the context of the bi-harmonic wave

equation. In accordance with this, only recently in [59] the revival phenomenon was

experimentally observed in the context of the bi-harmonic wave equation in the two

dimensional setting and under clamped boundary conditions.

Here, we note that the revival property can be extended to the case of simply

supported boundary conditions on [0, π]

u(x0, t) = ∂2xu(x0, t) = 0, x0 = 0, π.

This follows from the periodic problem by considering the initial conditions to be
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odd functions with respect to π. Then, the solution representation (7.25) becomes

u(x, t) =
2

π

∞∑
j=1

(∫ π

0

f(y) sin(jy)dy cos
(
j2t

)
+

1

j2

∫ π

0

g(y) sin(jy)dy sin
(
j2t

))
sin(jx),

which when restricted to L2(0, π) corresponds to the solution of the bi-harmonic

wave equation on [0, π] subjected to simply supported boundary conditions.

Finally, to close this section, we remark that the poly-harmonic wave equation

of order 2r, for any r ≥ 3, can always be written in the form

(
∂t + i(−i∂x)r

)(
∂t − i(−i∂x)r

)
u(x, t) = 0.

Consequently, a similar approach as in the bi-harmonic wave equation (r = 2) would

be effective for the study of the weak revival. However, and more importantly, this

approach indicates that properties of the first-order in time dispersive equations

∂tu(x, t) = −i(−i∂x)ru(x, t)

are transferred to the poly-harmonic wave equation, with perhaps some perturba-

tions. For example, the pure revival phenomenon in the first-order in time problems

became weak revival in the second-order case. So, one can asks if the weak revival

property will be present in the poly-harmonic wave equation under quasi-periodic

boundary conditions. Also, recalling that the Airy PDE under quasi-periodic bound-

ary conditions does not in general exhibit revivals, should we then expect a break of

the weak revival in the poly-harmonic wave equation of order 2× 3, under the same

type of boundary conditions? In the next chapter, we will address these questions

in detail.
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Chapter 8

Revivals Under Self-adjoint

Quasi-periodic Boundary

Conditions

In this final chapter, we generalise various results obtained earlier. We consider both

first-order and second-order in time evolution problems under, self-adjoint quasi-

periodic boundary conditions. From Chapter 4, we know that, in contrast to the

free space linear Schrödinger equation, the revival phenomenon in general breaks at

rational times in the context of the Airy PDE. Here, we extend this result to higher-

order linear differential operators using a Galilean transformation approach which

allows to convert quasi-periodic boundary conditions to periodic. As an additional

consequence of this approach, we extend the Talbot effect in the cubic non-linear

Schrödinger equation with quasi-periodic boundary conditions. Moreover, a similar

technique in second-order in time problems shows that in this case the weak revival

phenomenon is present in the bi-harmonic wave equation, whereas for higher-order

poly-harmonic wave equations this is no longer true.

8.1 Overview

Our purpose is to examine the revival property in the family of PDEs

∂mt u(x, t) = (−i)m
(
− i∂x

)mn
u(x, t),
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with initial conditions

u(x, 0) = f(x), ∂m−1
t u(x, t) = g(x),

and under the quasi-periodic boundary conditions on [0, 2π]

ei2πθ∂kxu(x, t) = ∂kxu(x, t), k = 0, 1, 2, . . . ,mn− 1,

for integers n ≥ 1 and m = 1, 2 and θ ∈ (0, 1).

This class of equations includes the main PDEs we have encountered in previous

chapters. For example, when m = 1, it includes the free space linear Schrödinger

equation and the Airy PDE, whereas when m = 2, it corresponds to the family of

poly-harmonic wave equations of even order greater or equal than two.

In order to examine the revival property, we will develop a different approach

in comparison with the analysis in the previous chapters and Remark 4.1. Instead

of examining directly the quasi-periodic problems through their generalised Fourier

series, we establish a correspondence between the solutions of the quasi-periodic

problems and a class of periodic problems. Then, using the classical Fourier series

representation of the solution to the periodic problems, will be able to deduce various

conclusions for the quasi-periodic problems regarding the revival effect at rational

times.

The main idea in the correspondence between quasi-periodic and periodic bound-

ary conditions is encoded in the following transformation

fθ(x) = e−iθxf(x) (8.1)

and a modification of this involving Galilean-type transformations in x and t. Ob-

serve that if f is quasi-periodic,

ei2πθf(0) = f(2π),

then fθ is periodic.

In Chapter 4, a similar situation was encountered for the free linear Schrödinger

equation with quasi-periodic boundary conditions, that is when (m,n) = (1, 2)
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above. Recall that, in this case, the solution u(x, t) to the quasi-periodic problem is

given by the representation (4.30) stating that

u(x, t) = e−θ2teiθxT2θtv(x, t),

where v(x, t) denotes the solution to the free linear Schrödinger equation with peri-

odic boundary conditions and initial condition v(x, 0) = e−iθxu(x, 0). The represen-

tation can be rewritten in terms of a Galilean transformation as

u(x, t) = ei(θx−θ2t)v∗(x− 2θt, t), (8.2)

with v∗ denoting the 2π-periodic extension of v.

The expression (8.2) implies that, whenever v(x, t) solves the linear Schrödinger

equation with periodic boundary conditions and initial condition e−iθxu(x, 0), the

transformed function u(x, t) given by (8.2) solves the same equation with quasi-

periodic boundary conditions and initial condition u(x, 0). In particular, the free

linear Schrödinger equation is invariant under the transformation (8.2), meaning

that whenever v(x, t) satisfies the equation, so does u(x, t). This is known as the

Galilean invariance of the linear Schrödinger equation, [60]. From (8.2) and as a

direct consequence of the Galilean invariance, the revival effect in the quasi-periodic

case follows immediately from the periodic case.

Following a generalised form of (8.2), we will show in Section 8.2 that first-

order in time evolution problems (m = 1) under quasi-periodic boundary conditions

correspond to time evolution problems with periodic conditions. However, for n ≥ 3,

the PDE does not stay invariant under the transformation and the revival effect for

the obtained periodic problems is present if and only if the quasi-periodic parameter

θ is a rational number. This generalises the lack of revivals in the quasi-periodic Airy

PDE. Another implication of this approach is for the cubic non-linear Schrödinger

equation, as for the linear Schrödinger equation there is also a form of revival. Thus,

in Section 8.3 we establish an extension of the (weak) revival and fractalisation effects

from the periodic case by Erdoğan and Tzirakis [41] to the quasi-periodic case.

Finally, in Section 8.4, the quasi-periodic problem for the poly-harmonic wave

equation (m = 2), will be transformed through (8.1) to a periodic problem. Again,
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by considering the Fourier series representation of the periodic problem, we will

deduce that the weak revival phenomenon holds in the quasi-periodic case for all

θ ∈ (0, 1) when n = 2, that is for the bi-harmonic wave equation, whereas for n ≥ 3

the revival persists only when θ is rational.

8.2 First-Order in Time Evolution Problems

In this section we consider the revival property in the initial boundary value problem

on [0, 2π]

∂tu(x, t) = −i(−i∂x)nu(x, t), u(x, 0) = f(x),

ei2πθ∂kxu(0, t) = ∂kxu(2π, t), k = 0, 1, . . . , n− 1, θ ∈ (0, 1),

(8.3)

with n ≥ 2 a fixed integer.

From Chapter 4, we know that the revival property at rational times t = 2π p
q
,

with p
q
∈ Q, holds for any value of θ in (0, 1) when n = 2, whereas when n = 3

this is true only if θ ∈ Q. In both of these cases, the revival effect was implied by

a representation at rational time of the solution of the quasi-periodic problem in

terms of a solution of a periodic problem for the Schrödinger equation.

In contrast to this, and the arguments in Chapter 4 based on eigenfunction ex-

pansions through the Fourier method, here we provide an one-to-one correspondence

between the quasi-periodic problem (8.3) and a periodic problem where the spatial

differential operator is a polynomial of −i∂x with real but, not necessarily rational

coefficients. As a corollary, we find that the solution to (8.3) can be derived through

another time evolution problem with periodic boundary conditions.

Lemma 8.1. Let n ≥ 2 be an integer and θ ∈ (0, 1). Consider the transformation

w(x, t) = ei(θ
nt−θx)u(x, t). (8.4)
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Then, w(x, t) satisfies the initial boundary value problem on [0, 2π]

(
∂t + nθn−1∂x

)
w(x, t) = −i

(
(−i∂x)n +

n−1∑
k=2

n
k

 θn−k(−i∂x)k
)
w(x, t),

w(x, 0) = fθ(x) = e−iθxf(x), ∂kxw(0, t) = ∂kxw(a, t), k = 0, 1, . . . , n− 1,

(8.5)

if and only if u(x, t) satisfies the quasi-periodic problem (8.3).

Proof. We show that w(x, t) satisfies the periodic problem when u(x, t) satisfies the

quasi-periodic problem. We note that the converse follows by similar calculations.

Take the time derivative of w(x, t). From the assumption on u(x, t), we find that

∂tw(x, t) = iθnw(x, t) + ei(θ
nt−θx)∂tu(x, t)

= iθnw(x, t) + (−i)n+1ei(θ
nt−θx)∂nxu(x, t).

(8.6)

We claim that

ei(θ
nt−θx)∂mx u(x, t) =

(
∂x + iθ

)m
w(x, t), ∀m ∈ N. (8.7)

It is straightforward to see that the claim holds for m = 1 and 2, and we proceed

by induction. Assuming that it is true for m we examine the case m+ 1. We have

∂x

(
ei(θ

nt−θx)∂mx u(x, t)
)
= ∂x

((
∂x + iθ

)m
w(x, t)

)
which gives

ei(θ
nt−θx)∂m+1

x u(x, t) =
(
∂x
(
∂x + iθ

)m
+ iθ

(
∂x + iθ

)m)
w(x, t).

Using the Binomial Theorem the last equation becomes

ei(θ
nt−θx)∂m+1

x u(x, t) =
(
∂x
( m∑

k=0

m
k

 (iθ)m−k∂kx
)
+ iθ

( m∑
k=0

m
k

 (iθ)m−k∂kx
))
w(x, t)

=
( m∑

k=0

m
k

 (iθ)m−k∂k+1
x +

m∑
k=0

m
k

 (iπθ)m−k+1∂kx

)
w(x, t).
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We expand the sums over k and find that

ei(θ
nt−θx)∂m+1

x u(x, t) =
(
∂m+1
x +

 m

m− 1

 iθ∂mx +

 m

m− 2

 (iθ)2∂m−1
x + . . .

+

m
0

 (iθ)m∂x +

m
m

 iθ∂mx +

 m

m− 1

 (iθ)2∂m−1
x + . . .

+

m
1

 (iθ)m∂x + (iθ)m+1
)
w(x, t)

=
(
∂m+1
x +

m+ 1

m

 iθ∂mx +

m+ 1

m− 1

 (iθ)2∂m−1
x + . . .

+

m+ 1

1

 (iθ)m∂x + (iθ)m+1
)
w(x, t)

=
(m+1∑

k=0

m+ 1

k

(
iθ)m+1−k∂kx

)
w(x, t)

=
(
∂x + iθ

)m+1
w(x, t).

Hence, (8.7) holds true. Now substituting for m = n in (8.6), we arrive at

∂tw(x, t) = iθnw(x, t) + (−i)n+1
(
∂x + iθ

)n
w(x, t)

= iθnw(x, t) + (−i)n+1

n∑
k=0

n
k

 (iθ)n−k∂kxw(x, t)

= (i+ (−i)n+1in)θnw(x, t) + (−i)n+1in−1

n
1

 θn−1∂xw(x, t)

+ (−i)n+1

n−1∑
k=2

n
k

 (iθ)n−k∂kxw(x, t) + (−i)n+1∂nxw(x, t).

Now, for any n, we have that i + (−i)n+1in = 0. Also, since (−i)n+1in−1 = −1, the
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above equation takes the form, after clearing,

(
∂t + nθn−1∂x

)
w(x, t) = (−i)

((
− i∂x

)n
+

n−1∑
k=2

n
k

 θn−k(−i)nin−k∂kx

)
w(x, t).

Observing that (−i)nin−k∂kx = (−i∂x)k, we find that w(x, t) satisfies the PDE

(
∂t + nθn−1∂x

)
w(x, t) = (−i)

((
− i∂x

)n
+

n−1∑
k=2

n
k

 θn−k(−i∂x)k
)
w(x, t),

which is exactly the one in the statement and with initial condition

w(x, 0) = e−iθxu(x, 0) = e−iθxf(x) = fθ(x).

Finally, we need to show that w(x, t) satisfies the periodic boundary conditions

on the interval [0, 2π]. For any m = 0, 1, . . . , n− 1 we have from (8.7) at x = 2π

∂mx w(2π, t) = eiθ
nte−i2πθ∂mx u(2π, t)−

m−1∑
k=0

m
k

 (iθ)m−k∂kxw(2π, t)

= eiθ
nte−i2πθ∂mx u(2π, t)−

m−1∑
k=0

m
k

 (iθ)m−k∂kxw(2π, t)

= eiθ
nt∂mx u(0, t)−

m−1∑
k=0

m
k

 (iθ)m−k∂kxw(2π, t).

As w(0, t) = w(2π, t) and ∂xw(2π, t) = ∂xw(2π, t), assuming that ∂jxw(0, t) =

∂jxw(2π, t) holds for j = 0, 1, . . . ,m− 1, the above equation gives

∂mx w(2π, t) = eiθ
nt∂mx u(0, t)−

m−1∑
k=0

m
k

 (iθ)m−k∂kxw(0, t) = ∂mx w(0, t). (8.8)

We continue with a second transformation in the following lemma and recall that

Ts, for s ∈ R, denotes the periodic translation operator (see Definition 3.2).
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Lemma 8.2. Let integer n ≥ 2 and θ ∈ (0, 1). Consider the transformation

z(x, t) = e−i
(
(n−1)θnt+θx

)
T−nθn−1tu(x, t). (8.9)

Then, z(x, t) satisfies the initial boundary value problem on [0, 2π]

∂tz(x, t) = −i
(
(−i∂x)n +

n−1∑
k=2

n
k

 θn−k(−i∂x)k
)
z(x, t),

z(x, 0) = fθ(x) = e−iθxf(x), ∂kxz(0, t) = ∂kxz(2π, t), k = 0, 1, . . . , n− 1,

(8.10)

if and only if u(x, t) satisfies the quasi-periodic problem (8.3).

Proof. From Lemma 8.1 we know that if u(x, t) satisfies the quasi-periodic problem

(8.3) then

w(x, t) = ei(θ
nt−θx)u(x, t) (8.11)

satisfies the periodic problem (8.5). We apply on w(x, t) the Galilean transformation

x = y + nθn−1τ, t = τ.

Hence,

∂τw =
(
∂t + θn−1∂x

)
w, ∂my w = ∂mx w, m = 1, . . . , n.

Therefore the function

z(y, τ) = w(y + nθn−1τ, τ) = e−i
(
(n−1)θnτ+θy

)
T−nθn−1τu(y, τ)

satisfies the periodic problem (8.10).

For the converse, by applying on z(x, t) the Galilean transformation

x = y − nθn−1τ, t = τ,

we find that the function w(y, τ) = Tnθn−1τz(y, τ) satisfies the periodic problem

(8.5). Therefore, by Lemma 8.1, the function

u(y, τ) = e−i
(
θnτ−θy

)
w(y, τ) = e−i

(
θnτ−θy

)
Tnθn−1τz(y, τ)
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satisfies the quasi-periodic problem (8.3).

The following corollary from Lemma 8.2 gives the solution to the quasi-periodic

problem (8.3) through the solution to the periodic problem (8.10).

Corollary 8.3. Let integer n ≥ 2, θ ∈ (0, 1) and consider the quasi-periodic problem

(8.3) for u(x, t). Then, at a fixed time t ≥ 0 we have

u(x, t) = e−iθnteiθxTnθn−1tz(x, t), (8.12)

where z(x, t) satisfies the periodic problem (8.10).

Now that we have obtained the solution u(x, t) of the quasi-periodic problem

(8.3) in terms of the solution z(x, t) of the periodic problem in Lemma 8.2, we can

focus on z(x, t) and study the revival property in the periodic setting. The behaviour

of the quasi-periodic problem at rational (or irrational) times will be determined by

the behaviour of the periodic problem. Whenever the periodic problem exhibits

revivals at rational times, according to Corollary 8.3, the same will be true for the

quasi-periodic one. In particular, we will show that for the periodic problem (8.10),

when n ≥ 3, the revival effect breaks if θ ̸∈ Q, whereas as we already know it exists

for all θ ∈ (0, 1) when n = 2. There are two main consequences of this statement

which reflect one another.

First, as we said above, this will imply that all quasi-periodic problems of order

n ≥ 3 lack the revival property whenever θ ̸∈ Q, generalising the result for the

quasi-periodic Airy PDE from Chapter 4. Moreover, there exists a family of lin-

ear dispersive PDEs with spatial differential operator a polynomial of order n ≥ 2

of −i∂x and with real non-rational coefficients, for which under periodic bound-

ary conditions the revival phenomenon breaks at rational times when the order of

the operator is n ≥ 3. In turn, this is in contrast to the classical revival result,

Theorem 2.8, which shows that the revival property holds under periodic bound-

ary conditions for any linear dispersive PDE with spatial differential operator a

polynomial of order n ≥ 2 and with integer coefficients.

We make all this precise and from now on we concentrate on the periodic problem

(8.10). We replace fθ by a general initial condition z0, and so for a fixed θ ∈ (0, 1)

134



and integer n ≥ 2, we consider the initial boundary value problem (8.10) on [0, 2π],

which is re-written in the following manner

∂tz(x, t) = −iP (−i∂x)z(x, t), z(x, 0) = z0(x),

∂mx z(0, t) = ∂mx z(2π, t), m = 0, 1, . . . , n− 1.

(8.13)

Here, in (8.13), P is a polynomial of order n ≥ 2 with real coefficients and it is given

by

P (x) =
n∑

k=2

n
k

 θn−kxk. (8.14)

For the analysis of the revival phenomenon we rely on the Fourier series represen-

tation of the generalised solution to (8.13). Specifically, for any initial function

z0 ∈ L2(0, 2π), the Fourier method yields at any fixed time t ≥ 0 the representation

z(x, t) =
∑
j∈Z

ẑ0(j)e
−iP (j)tej(x), (8.15)

where ej(x) = eijx/
√
2π denotes the elements of the Fourier basis, ẑ0 are the Fourier

coefficients of z0, and the convergence of the series holds in the norm of L2(0, 2π).

For any integer n ≥ 2, the solution (8.15) can be expressed in terms of the

generalised solutions of the simpler periodic problems on [0, 2π]

∂tv(x, t) = −i(−i∂x)kv(x, t), v(x, 0) = v0(x),

∂mx v(0, t) = ∂mx v(a, t), m = 0, 1, . . . , k − 1, k = 2, . . . n.

(8.16)

For any fixed t ≥ 0, the generalised solution of (8.16) in L2(0, 2π), which is given by

v(x, t) =
∑
j∈Z

v̂0(j)e
−ijktej(x),

is isometric in L2(0, 2π) to v0. We denote this isometry by Pk(t). Concretely,

Pk(t) : L
2(0, 2π) → L2(0, 2π), Pk(t)v0 =

∑
j∈Z

v̂0(j)e
−ijktej. (8.17)

Notice that the definition of Pk(t) coincides with the definition of the operator
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exp
(
−iLk

1,0t
)
from the periodic functional calculus (7.6) in Section 7.1. Thus, it also

defines a Fourier multiplier and sometimes it is referred as the solution operator of

the initial boundary value problem (8.16).

Allowing negative values of t, then Pk(t) can be also viewed as the family of

operators parametrised by t ∈ R. Using the definition (8.17) we see that the family

{Pk(t)}t∈R satisfies the following properties

(i) For any t ∈ R, Pk(t) is an isometry on L2(0, 2π). It is also surjective with

the inverse operator given by Pk(−t). Thus, Pk(t) is a unitary operator for all

t ∈ R.

(ii) For any t1 and t2 real numbers we have the semi-group property

Pk(t1 + t2) = Pk(t1)Pk(t2).

(iii) For every v0 ∈ L2(0, 2π), the map t ∈ R → Pk(t)v0 is continuous in t with

respect to the norm of L2(0, 2π).

Properties (i), (ii) and (iii) are what normally referred to as a strongly continuous

one parameter unitary group of operators in L2(0, 2π), see [55]. The proof of the

third property follows from the same argument as found in the proof of Theorem 2.4.

Finally, notice that Pk(0) = I either directly by the definition (8.17) or by taking

t1 = t2 = 0.

With the notation and definition above we will draw central conclusions regard-

ing the revival property for the periodic problem (8.13) and subsequently for the

quasi-periodic problem (8.3) through Corollary 8.3. The following proposition pro-

vides an alternative representation of the solution z(x, t), in terms of a product (or

composition) of the operators Pk(t) as k runs from 2 to n ≥ 2.

Proposition 8.4. Fix integer n ≥ 2 and θ ∈ (0, 1). Then, for any z0 ∈ L2(0, 2π),

the solution to (8.13) at each fixed time t ≥ 0 admits the following representation

z(x, t) =
n∏

k=2

Pk

(n
k

 θn−kt
)
z0(x), (8.18)

where
∏

denotes the product of operators.
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Proof. Fix positive time t and note that

e−iP (j)t =
n∏

k=2

exp

−ijk
n
k

 θn−kt

.
Therefore, (8.15) becomes

z(x, t) =
∑
j∈Z

ẑ0(j)
n∏

k=2

exp

−ijk
n
k

 θn−kt

ej(x)

= P2

(n
2

 θn−2t
)[∑

j∈Z

ẑ0(j)
n∏

k=3

exp

−ijk
n
k

 θn−kt

ej(x)]

=
n−1∏
k=2

Pk

(n
k

 θn−kt
)[∑

j∈Z

ẑ0(j)e
−ijntej(x)

]

=
n∏

k=2

Pk

(n
k

 θn−kt
)
z0(x).

Now, we combine Proposition 8.4 with Oskolkov’s result from Theorem 2.12

or Theorem 2.14 and derive the following corollary for the revival property of the

periodic problems (8.13). Recall that Rn(p, q) denotes the periodic revival operator

of order n ≥ 2, which is given by Definition 3.4.

Corollary 8.5. Let n, p and q be positive integers with n ≥ 2, p and q co-prime

and consider θ ∈ (0, 1). Then, for any z0 ∈ L2(0, 2π), the solution z(x, t) to (8.16)

at a rational time t = 2π p
q
admits the representation

z
(
x, 2π

p

q

)
=

n−1∏
k=2

Pk

(
2π

n
k

 p

q
θn−k

)[
Rn(p, q)z0(x)

]
. (8.19)

Moreover,
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(i) if θ = d/m ∈ Q, then we have

z
(
x, 2π

p

q

)
=

n∏
k=2

Rk(n!pd
n−k, k!(n− k)!qmn−k)z0(x), (8.20)

(ii) if θ ̸∈ Q, n ≥ 3 and z0 is of bounded variation with finitely many jump

discontinuities, then the solution z
(
x, 2π p

q

)
is a continuous function of x.

Proof. Representation (8.19) follows easily by substituting the rational times t =

2π p
q
in (8.18), which gives

z
(
x, 2π

p

q

)
=

n−1∏
k=2

Pk

(
2π

n
k

 p

q
θn−k

)[
Pn

(
2π
p

q

)
z0(x)

]
.

However, from the representation (8.17) of Pn(t) and Lemma 3.6 we have

Pn

(
2π
p

q

)
z0(x) =

∑
j∈Z

ẑoe
−ijn2π p

q ej(x) = Rn(p, q)z0(x).

Hence, we obtain (8.19). Now, we distinguish on rational or irrational values of

θ ∈ (0, 1).

(i) Let θ = d
m

be a rational number in reduced form. Again from (8.17) and

Lemma 3.6 on the revival operators we have for k = 2, . . . , n− 1 that

Pk

(
2π

n
k

 p

q

dn−k

mn−k

)[
Rn(p, q)z0(x)

]

=
∑
j∈Z

⟨Rn(p, q)z0, ej⟩ exp

−ijk2π

n
k

 p

q

dn−k

mn−k

ej(x),
or equivalently,
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Pk

(
2π

n
k

 p

q

dn−k

mn−k

)[
Rn(p, q)z0(x)

]

=
∑
j∈Z

⟨Rn(p, q)z0, ej⟩ exp
(
−ijk2π n!pdn−k

k!(n− k)!qmn−k

)
ej(x)

= Rk(n!pd
n−k, k!(n− k)!qmn−k)

[
Rn(p, q)z0(x)

]
.

Consequently, from the (8.19) it follows that

z
(
x, 2π

p

q

)
=

n∏
k=2

Rk(n!pd
n−k, k!(n− k)!qmn−k)z0(x).

(ii) On the other hand, if θ ̸∈ Q, we re-write the solution as

z
(
x, 2π

p

q

)
= P2

(
2π

n
2

 p

q
θn−2

)[ n−1∏
k=3

Pk

(
2π

n
k

 p

q
θn−k

)[
Rn(p, q)z0(x)

]]
.

Moreover, if z0 is of bounded variation with finitely many jump discontinuities, then

Rn(p, q)z0 is a function of the same class. Now, for any k = 3, . . . , n−1, the function

Pk

(
2π

n
k

 p

q
θn−k

)[
Rn(p, q)z0(x)

]

will at least be of bounded variation with finitely many jump discontinuities. Finally,

since the time

t = 2π

n
2

 p

q
θn−2

corresponds to an irrational time for the free space linear Schrödinger equation,

then due to Theorem 2.12, the solution z
(
x, 2π p

q
) is a continuous function of x.

Otherwise, we can directly invoke the first part of Theorem 2.14 and conclude that

z
(
x, 2π p

q
) is continuous in x.

From Corollary 8.5 we finally arrive at the following conclusions regarding the

revival phenomenon for the periodic problem (8.13) and the quasi-periodic problem
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(8.3). The following summarises our findings.

1. There exists a class of linear dispersive PDEs of order n ≥ 3, given by

∂tz(x, t) = −i
n∑

k=2

n
k

 θn−k(−i∂x)kz(x, t)

for which the revival phenomenon under periodic boundary conditions breaks

at rational times whenever θ is not rational in (0, 1). If θ is rational, then the

revival phenomenon survives at rational times (as a pure revival effect). In

general, subject to periodic boundary conditions the class of linear dispersive

PDEs

∂tz(x, t) = −iP (−i∂x)z(x, t),

where P is a polynomial of degree n ≥ 3 and with real, but not rational

coefficients, does not exhibit revivals at rational times.

2. Due to Corollary 8.3, for any integer n ≥ 3, the quasi-periodic problem (8.3)

exhibits revival if and only if the periodic problem (8.13) exhibits revival which

holds if and only if θ is rational.

8.3 Cubic Non-linear Schrödinger Equation

As another application of the approach presented in the previous section we now con-

sider the quasi-periodic problem for the cubic non-linear Schrödinger (NLS) equation

over the interval [0, 2π]

∂tu(x, t) = i∂2xu(x, t) + i|u(x, t)|2u(x, t), u(x, 0) = f(x),

ei2πθu(0, t) = u(2π, t), ei2πθ∂xu(0, t) = ∂xu(2π, t),

(8.21)

where the parameter θ lies in (0, 1).

Recall that in Chapter 2, Theorem 2.15, due to Erdoğan and Tzirakis [41], ad-

dresses that the revival and fractalisation effects occur accordingly at rational and

irrational times in the cubic NLS equation under periodic boundary conditions. On

the other hand, similar to the free space linear Schrödinger equation, the cubic NLS
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equation is invariant under the transformation

z(x, t) = e−i(θ2t+θx)u(x, t+ 2θt),

with the property also being known as the Galilean invariance of the cubic NLS

equation.

Therefore, following the same arguments as in the proof of Lemmas 8.1 and 8.2,

it results that, if u(x, t) solves the quasi-periodic problem (8.21), then it is given by

u(x, t) = e−iθ2teiθxT2θtz(x, t).

Here, z(x, t) solves the cubic NLS with periodic boundary conditions on [0, 2π] and

with initial value z(x, 0) = e−θxf(x) = fθ(x).

Notice that if f is of bounded variation, then fθ is also of bounded variation

as the product of the non-zero continuous function e−iθx and f . With this and the

remarks above, we extend the revival and fractalisation phenomena in the case of

the quasi-periodic problem (8.21) for the NLS equation.

Corollary 8.6. Fix θ ∈ (0, 1) and consider the quasi-periodic problem (8.21) for

the NLS equation. Assume that f is of bounded variation on [0, 2π]. Then, we have

the following

(i) If t/2π is an irrational number, then the solution u(x, t) is a continuous func-

tion of x.

(iii) For rational values of t/2π, the solution u(x, t) is a bounded function with at

most countably many discontinuities.

(iii) If f is also continuous on [0, 2π] and such that ei2πθf(0) = f(2π), then u(x, t)

is continuous in x and t.

8.4 Second-Order in Time Evolution Problems

In this last section, we turn our attention to second-order in time problems subject

to quasi-periodic boundary conditions. More specifically for integer n ≥ 1 and

θ ∈ (0, 1), we consider the initial boundary value problem for the poly-harmonic

wave equation on [0, 2π]
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∂2t u(x, t) = −(−i∂x)2nu(x, t), u(x, 0) = f(x), ∂tu(x, 0) = g(x),

e2πiθ∂kxu(0, t) = ∂kxu(2π, t), k = 0, 1, 2, . . . , 2n− 1.

(8.22)

As we mentioned earlier, our approach here will be to transform the quasi-

periodic boundary conditions into periodic boundary conditions. Then, the solu-

tion to (8.22) would be given through the solution of a periodic problem for which

the revival property will be considered. The following lemma provides the desired

correspondence.

Lemma 8.7. Let integer n ≥ 1, θ ∈ (0, 1). Consider the transformation

w(x, t) = e−iθxu(x, t). (8.23)

Then, w(x, t) solves the initial boundary value problem on [0, 2π]

∂2tw(x, t) = −(−i∂x + θ)2nw(x, t),

w(x, 0) = fθ(x) = e−iθxf(x),

∂tw(x, 0) = gθ(x) = e−iθxg(x),

∂kxw(0, t) = ∂kxw(2π, t), k = 0, 1, 2, . . . , 2n− 1.

(8.24)

if and only if u(x, t) solves the quasi-periodic problem (8.22).

Proof. Assume that u(x, t) is the solution to the quasi-periodic problem (8.22) with

initial conditions f(x) and g(x). Then, if w(x, t) is given by (8.23), differentiating

twice in time we obtain

∂2tw(x, t) = −e−iθx(−i∂x)2nu(x, t).

Now, from the proof of Lemma 8.1, we have that

e−iθx∂mx u(x, t) =
(
∂x + iθ)mw(x, t), ∀m ∈ N.
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Therefore, w(x, t) satisfies the equation

∂2tw(x, t) = −
(
− i∂x + θ

)2n
w(x, t).

Moreover, at time zero the initial values for w and ∂tw are obtained through (8.23)

and given as in (8.24). Again, as in Lemma 8.1, it follows by the transformation

(8.23), that w and ∂kxw satisfy periodic boundary conditions on [0, 2π]. Finally, the

complementary direction of the correspondence is obtained by a similar calculation.

According to Lemma 8.7, we can now concentrate on the periodic problem (8.24)

and examine the revival property through its Fourier series representation. Then,

via the transformation u(x, t) = eiθxw(x, t), we can extract any related information

on the revival effect for the quasi-periodic problem (8.22).

Hence, for θ ∈ (0, 1) and integer n ≥ 1 fixed, we consider on [0, 2π] the initial

boundary value problem for w(x, t),

∂2tw(x, t) = −(−i∂x + θ)2nw(x, t),

w(x, 0) = w0(x), ∂tw(x, 0) = w1(x)

∂kxw(0, t) = ∂kxw(2π, t), k = 0, 1, 2, . . . , 2n− 1.

(8.25)

In order to study the revival phenomenon at rational times, we follow once again

our general methodology outlined in Remark 4.1. We manipulate the Fourier series

representation of the periodic problem (8.25) in order to decompose it in simpler

components for which the classical periodic revival effect holds. As we shall see,

when n ≥ 3, the revival survives only under rational values of the parameter θ,

which is in alignment with the case of first-order in time dispersive PDEs from

Section 8.2.

Suppose that the initial data w0 and w1 are in L2(0, 2π). Then, by the Fourier

method, at a fixed positive time t, the (generalised) solution of the periodic problem
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(8.25) is given by the L2(0, 2π) representation

w(x, t) =
∑
j∈Z

(ŵ0(j)

2
+

ŵ1(j)

2i(j + θ)n

)
ei(j+θ)ntej(x)

+
∑
j∈Z

(ŵ0(j)

2
− ŵ1(j)

2i(j + θ)n

)
e−i(j+θ)ntej(x),

(8.26)

where {ej}j∈Z is the classical orthonormal Fourier basis of L2(0, 2π) given by (2.6).

Recall that in Section 7.3, when the even-order poly-harmonic wave equation

was considered under periodic boundary conditions, we identified in Lemma 7.7 the

polynomials of order n ≥ 1 with Fourier coefficients j−n for j ̸= 0. This allowed us

to derive an alternative solution representation from which the weak revival formula

was obtained. Similarly, the next lemma identifies functions hn(x, θ) whose Fourier

coefficients are (j + θ)−n.

Lemma 8.8. Let θ ∈ (0, 1). Then, there exists a sequence of smooth functions

denoted by hn(x, θ), n ∈ N, with x ∈ [0, 2π) and such that ĥn(j, θ) = (j + θ)−n. For

fixed integer n ≥ 1, hn(x, θ) is defined inductively by

hn(x, θ) =

√
2πin

1− e−i2πθ

xn−1e−iθx

(n− 1)!
− 1

1− ei2πθ

n−1∑
ℓ=1

(2πi)n−ℓ

(n− ℓ)!
hℓ(x, θ). (8.27)

Proof. Let θ ∈ (0, 1), n ∈ N and consider the function of x

fn(x, θ) = xn−1e−iθx,

with x ∈ [0, 2π). Then, for j ∈ Z, the Fourier coefficients of fn(x, θ) are given by

f̂n(j, θ) = ⟨fn(·, θ), ej⟩ =
n−1∑
ℓ=1

(−1)ℓ+1

(−i)ℓ
(2π)n−ℓ

√
2π

(n− 1)!

(n− ℓ)!

e−i2πθ

(j + θ)ℓ

+
(−1)n+1

√
2π

(n− 1)!

(−i)n
(e−i2πθ − 1)

(j + θ)n
.

Solving the above equation for (j + θ)−n gives that

1

(j + θ)n
=

√
2πin

1− e−i2πθ

f̂n(j, θ)

(n− 1)!
− 1

1− ei2πθ

n−1∑
ℓ=1

(2πi)n−ℓ

(n− ℓ)!

1

(j + θ)ℓ
.
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For ℓ ∈ {1, 2, . . . , n}, let hℓ(x, θ) be the function whose Fourier coefficients are

equal to (j + θ)−ℓ. Then, the last equation above implies that

∫ 2π

0

hn(x,θ)ej(x)dx

=

∫ 2π

0

[ √
2πin

1− e−i2πθ

xn−1e−iθx

(n− 1)!
− 1

1− ei2πθ

n−1∑
ℓ=1

(2πi)n−ℓ

(n− ℓ)!
hℓ(x, θ)

]
ej(x)dx.

Therefore, for every n ∈ N, the function hn(x, θ) is defined by (8.27).

We proceed by obtaining a representation of w(x, t) in terms of the isometries

Pk(t) given by (8.17), with k = 2, . . . , n.

Proposition 8.9. Let integer n ≥ 1 and θ ∈ (0, 1). Then, for any initial conditions

w0 and w1 in L
2(0, 2π), the solution to (8.25) at fixed time t ≥ 0 admits the following

representation

w(x, t) = w+(x, t) + w−(x, t), (8.28)

where

w±(x, t) = e±iθntT∓nθn−1t

n∏
k=2

Pk

(
∓

n
k

 θn−kt
)
[w0(x)± w1 ∗ hn(·, θ)(x)].

Proof. From (8.26), we write w(x, t) as (8.28), where

w±(x, t) =
∑
j∈Z

(ŵ0(j)

2
± ŵ1(j)

2i(j + θ)n
)
e±i(j+θ)ntej(x).

From Lemma 8.8 we have that

ŵ1(j)

2i(j + θ)n
=

1

2i
⟨w1 ∗ hn(·, θ), ej⟩, ∀j ∈ Z.

Thus, if we set

w±
0 (x) = w0(x)± w1 ∗ hn(·, θ)(x),

then we can write w±(x, t) as

w±(x, t) =
∑
j∈Z

ŵ±
0 (j)e

±i(j+θ)ntej(x).
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Focusing on w±(x, t), for any t ≥ 0 we have

e±i(j+θ)nt =
n∏

k=0

exp

±ijk
n
k

 θn−kt

,
which implies that

w±(x, t) =
∑
j∈Z

ŵ±
0 (j)

n∏
k=0

exp

±ijk
n
k

 θn−kt

ej(x).
Equivalently, the last representation is written as

w±(x, t) = e±iθnt
∑
j∈Z

ŵ±
0 (j)e

±ijnθn−1t

n∏
k=2

exp

±ijk
n
k

 θn−kt

ej(x)

= e±iθntT∓nθn−1t

[∑
j∈Z

ŵ±
0 (j)

n∏
k=2

exp

±ijk
n
k

 θn−kt

ej(x)],
where T∓nθn−1t is the periodic translation operator.

Finally, for each k = 2, . . . , n using the definition of the operators Pk we find

that

w±(x, t) = e±iθntT∓nθn−1t

n∏
k=2

Pk

(
∓

n
k

 θn−kt
)
w±

0 (x).

From Proposition 8.9, we now address the behaviour of the solution at rational

times and draw some conclusions on the revival property.

If we let t = 2π p
q
be a rational time, then each component w±(x, t) in (8.28)

becomes

w±
(
x, 2π

p

q

)

= e±2πiθn p
q T∓2πnθn−1 p

q

n−1∏
k=2

Pk

(
∓ 2π

n
k

 p

q
θn−k

)[
Rn(∓p, q)(w0(x)± (w1 ∗ hn(·, θ))(x)

]
,
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or due to linearity

w±
(
x, 2π

p

q

)
= e±2πiθn p

q T∓2πnθn−1 p
q

n−1∏
k=2

Pk

(
∓ 2π

n
k

 p

q
θn−k

)[
Rn(∓p, q)(w0(x)

]

± e±2πiθn p
q T∓2πnθn−1 p

q

n−1∏
k=2

Pk

(
∓ 2π

n
k

 p

q
θn−k

)[
Rn(∓p, q)((w1 ∗ hn(·, θ))(x)

]
.

(8.29)

Now, we first notice that for any θ ∈ (0, 1) the second component corresponds to a

continuous function on [0, 2π]. Indeed, w1 ∗hn(·, θ) is a 2π-periodic smooth function

in R, so when we apply the revival operator Rn(∓p, q), we obtain a continuous

function on [0, 2π] and the same is true after the action of Pk(·) for all k = 2, · · ·n−1.

On the other hand, the behaviour of the first component in (8.29) depends on

the value of n and the parameter θ. In particular, observe that the expression

n−1∏
k=2

Pk

(
∓ 2π

n
k

 p

q
θn−k

)[
Rn(∓p, q)(w0(x)

]
(8.30)

is the same, for the plus sign, as the representation (8.19) of Corollary 8.5. If n = 2,

it reduces to R2(±p, q)w0(x) and if n = 1 we just obtain w0. So, when n ≤ 2, it

provides a pure revival representation for any θ ∈ (0, 1). However, if n ≥ 3, the

expression (8.30) reduces to a revival formula only when θ is rational. If otherwise,

it becomes a continuous function on [0, 2π] even if w0 exhibits jump discontinuities.

Similar considerations apply to the minus sign in (8.30).

Summarising the above, we find that representation (8.29) implies that, at ratio-

nal times, the two components w±(x, t) are given by a pure revival effect perturbed

by a continuous function for all θ ∈ (0, 1) when n = 1 or n = 2. For values n ≥ 3, this

weak revival property holds if and only if θ is a rational number in (0, 1). Moreover,

because the solution to the periodic problem (8.25) is given by

w(x, t) = w+(x, t) + w−(x, t),

it follows that, when n ≤ 2, the periodic problem (8.25) exhibits weak revival at

rational times, whereas if n ≥ 3 the weak revival phenomenon breaks whenever θ is
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not rational. Finally, from Lemma 8.7, the same conclusion applies to the solution

u(x, t) at rational times of the even-order poly-harmonic wave equation under quasi-

periodic boundary conditions on [0, 2π].
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Chapter 9

Conclusion and Further Directions

9.1 Conclusion

The main goal of this work was to examine the revival phenomenon in a variety

of time evolution problems for linear dispersive PDEs subject to boundary condi-

tions posed on a finite interval. We extended the classical revival Theorem 2.8 in

several time evolution problems. Theorem 2.8 describes analytically the revival phe-

nomenon, as a pure revival (see Definition 2.10), in the family of first-order in time,

linear dispersive PDEs with integer coefficients when subject to periodic boundary

conditions on [0, 2π]. In this thesis, we considered two main directions. The influ-

ence of the boundary conditions on the revival phenomenon and the persistence of

the revivals in time evolution problems with second-order derivatives in time.

In Chapters 4 and 6, we showed that the free space linear Schrödinger equation

exhibits revivals under two different types of boundary conditions. Pseudo-periodic

conditions which couple the two endpoints of [0, 2π] in Chapter 4, and Robin-type

boundary conditions posed separately at the two ends of [0, π] in Chapter 6. From

Theorem 4.8 and Corollary 4.9 on the pseudo-periodic problem, we concluded that

the non-self-adjointness of the boundary conditions does not affect the revival effect

in this case. On the other hand, by the examination of the Robin problem we estab-

lished Theorem 6.7 and Corollary 6.9, which showed that the revival phenomenon

appears in this case due to the weak revival effect defined as a perturbation of a

pure revival effect by a continuous function in space (see Definition 2.16).

In comparison to the FSLS equation, we saw in Chapter 5 that there is a strong
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influence of the boundary conditions on the revival property for the Airy PDE.

In particular, Theorem 5.2 implied that the Airy PDE does not in general exhibit

revivals under quasi-periodic boundary conditions on [0, 2π], even though they are

self-adjoint. This indicated that outside the classical periodic setting of Theorem 2.8,

the revival phenomenon could break in PDEs with polynomial dispersion relation

and higher than two order derivatives in space, when we consider quasi-periodic

boundary conditions. We confirmed this assertion in Section 8.2 where we gener-

alised the lack of revivals in Airy’s quasi-periodic problem to quasi-periodic problems

with monomial dispersion relations of order higher than two. Furthermore, we were

able to conclude that periodic problems for first-order in time PDEs with dispersion

relation a polynomial with real, non-rational coefficients, do not, in general, exhibit

revivals.

With regards to second-order in time evolution problems, our main model was the

even-order poly-harmonic wave equation. For this family of equations, we analysed

the revival effect under periodic and quasi-periodic boundary conditions on [0, 2π] in

Chapters 7 and 8, respectively. For periodic boundary conditions, we found that the

poly-harmonic wave equation exhibit revivals at rational times and thus we extended

Theorem 2.8 to second-order in time periodic problems. The revival phenomenon in

this case resulted due to the weak revival effect as established by Corollary 7.9 and

formulated using the revival functional calculus given in Lemma 7.6. Lemma 7.6 is

a special case of the more general revival functional calculus given in Lemma 7.5.

Both lemmas imply the validity of Theorem 2.8 and provide an abstract operator-

based framework for the revival phenomenon. The quasi-periodic problem for the

even-order poly-harmonic wave equation was consider in Section 8.4. Similar to

the first-order in time problems, we were able to deduce that the (weak) revival

phenomenon survives in the case of the bi-harmonic wave equation (fourth-order in

space), whereas for higher-order space derivatives, in general, breaks.

For any revival phenomenon to manifest, the periodicity and number-theoretic

properties of the Fourier series representation of periodic solutions seem to be es-

sential. Our analysis strongly supports this conjecture. Indeed, for a given time

evolution problem, in the spirit of Remark 4.1 and the overview given in Section 8.1,

our approach on the examination of the revival phenomenon beyond the classical
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theory of Theorem 2.8 was to identify the individual periodic components that en-

sure the existence of pure or weak revivals. We were able to follow this idea either

by decomposing the solutions representations to simpler periodic components and

utilise the special transformations from Chapter 3, or to perform a suitable trans-

formation that converts non-periodic boundary conditions to periodic, such as a

Galilean-type transformation. In the future, we aim to confirm this claim by con-

sidering more general time evolution problems which could require a generalisation

of the methods here or a completely different approach. Possible directions on the

revival phenomenon are included in the next section.

9.2 Open Problems

Below, we list a few open problems for future consideration and indicate further

directions for the study of the revival phenomenon.

9.2.1 Linear Perturbations and More General Boundary Con-

ditions

Recall from Section 2.5, that due to the results of Cho, Kim, Kim, Kwon and Seo in

[44] and Rodnianski in [45], the linear Schrödinger equation with a potential V (x),

∂tu(x, t) = −i(−∂2xu(x, t) + V (x)u(x, t)),

exhibits weak revivals (see Definition 2.16) at rational times t = 2π p
q
, under periodic

boundary conditions on [0, 2π]. We believe that the weak revival phenomenon is also

present in the linear Schrödinger equation with separated boundary conditions such

that the underlying eigenvalue problem is of the regular Sturm-Liouville type.

Conjecture 9.1. Let h and H be real numbers. The IBVP for the linear Schrödinger

equation,

∂tu(x, t) = −i(−∂2xu(x, t) + V (x)u(x, t)), u(x, 0) = u0(x)

∂xu(0, t)− hu(0, t) = 0, ∂xu(π, t) +Hu(π, t) = 0,

(9.1)
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on [0, π], exhibits the phenomenon of weak revivals at rational times t = 2π p
q
, where

p and q are co-prime positive integers.

As a first step, we may consider the potential V (x) to be a twice, continuously

differentiable function on [0, π]. Observe that Conjecture 9.1 holds true for the

time evolution problem (6.12) from Chapter 6, which is a special case of the time

evolution problem (9.1) when V (x) = 0 for all x ∈ [0, π]. However, the eigenvalues of

the more general problem (9.1) can not be computed explicitly, with either V (x) = 0

or V (x) ̸= 0. Thus, a completely similar approach as in Chapter 6 is not possible.

A possible direction could be to utilise the precise asymptotic behaviour of the

eigenvalues λj and then decompose the solution into a continuous and a discontinu-

ous part at rational times. It is known that the eigenvalues behave like j2 for large j

when V ∈ C2[0, π], see [61] by Levitan and Sargsian. For more singular potentials,

the work of Fulton and Pruess, [62], on the asymptotic behaviour of the eigenpairs

to regular Sturm-Liouville problems should be valuable.

We should further mention that a rigorous proof of Conjecture 9.1 will strongly

support the general conjecture of Chen and Olver in [38]. Indeed, in [38, page 12],

Chen and Olver suggested that dispersion relations with polynomial growth should

lead the solution of a given time evolution problem to exhibit revivals. Additional

numerical examples by Olver, Sheils and Smith in [15], on the free linear Schrödinger

equation, are in favour of an affirmative answer.

In [15], the authors derived the generalised Fourier series representation of the

solution to the FSLS equation

∂tu(x, t) = i∂2xu(x, t),

with an initial condition u(x, 0) = u0(x) and subject to the general linear, homoge-

neous boundary conditions

β11∂xu(2π, t)+β12u(2π, t) + β13∂xu(0, t) + β14u(0, t) = 0,

β22u(2π, t) + β23∂xu(0, t) + β24u(0, t) = 0,

on [0, 2π], where the coefficients are, in general, complex numbers. They performed
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numerical experiments for a variety of boundary conditions and observe that there

are cases for which the revival and fractalisation effects occur. However, complete

analytical results have not been established yet.

Another model of notable interest is the bi-harmonic wave equation with clamped

boundary conditions on [0, π],

∂2t u(x, t) = −∂4xu(x, t), u(x, 0) = u0(x),

u(0, t) = u(π, t) = 0, ∂xu(x, t) = ∂x(π, t) = 0.

(9.2)

Contrast to the periodic or simply supported boundary conditions considered

in Section 7.3 and Subsection 7.3.2, in the case of (9.2), the eigenvalues satisfy

a transcendental equation for which a closed form solution is not possible. Thus,

a direct derivation of the revival effect can not follow based on the methods of

Chapter 7 or observed by simply plotting the truncated eigenfuction representation.

Accurate numerical approximation of the solution will first allow the observation

of the revivals at rational times. For example, by employing the shooting method for

the numerical solution of the underlying eigenvalue problem, see [63] by Guenther

and Lee. Furthermore, an analytical approach could follow by deriving the precise

asymptotic behaviour of the eigenpairs in order to extract the periodic components

of the solution. The approach here will be in the same lines as for the study of

Conjecture 9.1. We speculate that if any revival phenomenon is present in the time

evolution problem (9.2), this is because of the weak revival effect, resembling the

case of periodic and simply supported boundary conditions.

Conjecture 9.2. The IBVP (9.2) for the bi-harmonic wave equation on [0, π] ex-

hibits weak revivals at rational times t = 2π p
q
, where p and q are co-prime positive

integers.

As mentioned in Subsection 7.3.2, recently, in [59], Dubois, Lefebvre and Sebbah

provided experimental data for the observation of the revival effect in the context of

the two-dimensional bi-harmonic wave equation with clamped boundaries. There-

fore, a rigorous analysis of Conjecture 9.2, will provide, in the one-dimensional

regime, strong theoretical support to [59].

Finally, in a different direction, as we have seen throughout the thesis, the anal-
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ysis of the revival phenomenon has been on the base of eigenfunction expansions,

see also Remark 4.1-1. Still, for the Airy equation

∂tu(x, t) = ∂3xu(x, t)

there exist boundary conditions for which the associate spatial differential opera-

tor does not admit a basis of eigenfunctions. For example, the pseudo-Dirichlet

boundary conditions

u(0, t) = u(2π, t) = ∂xu(2π, t) = 0

on [0, 2π], do not yield a generalised Fourier series representation. Nonetheless, an

integral representation of the solution is available via the Unified Transform Method.

For a detailed analysis of the Airy PDE with pseudo-Dirichlet conditions we refer

to [53], [64] by Fokas and Pelloni. Therefore, for these types of boundary conditions

the investigation of the revival phenomenon requires new ideas. Moreover, it would

be interesting to identify other boundary conditions for which the revival effect

breaks at rational times in the Airy PDE, similar to the quasi-periodic conditions

in Chapter 5.

9.2.2 Applications of the Revival Functional Calculus

In Chapter 7, based on the non-self-adjoint differential operator Lh,θ, defined by

(7.1) and (7.2), we developed a functional calculus for the revival phenomenon.

This was the context of Lemma 7.5. However, the main application of the revival

functional calculus was in the framework of Lemma 7.6, which corresponds to the

periodic self-adjoint case of the operator L1,0. This allowed us to derive the weak

revival representation (7.22) of the solution to the periodic problem for the even-

order poly-harmonic wave equation.

Ideally, we would like to identify situations where the general form of the revival

functional calculus, that is Lemma 7.5, can be utilised. As a starting point in this
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direction, the following initial boundary value problem on [0, 2π],

∂tu(x, t) = (i∂2x − 2i ln(h)∂x + i ln2(h))u(x, t), u(x, 0) = u0(x),

(heiθ)2π u(0, t) = u(2π, t), (heiθ)2π∂xu(0, t) = ∂xu(2π, t),

(9.3)

seems to be a suitable example. In (9.3), h and θ are fixed real numbers such that

h > 0 and θ ∈ [0, 1).

9.2.3 Non-linear Equations

In this thesis, we mainly considered the revival effect in linear dispersive PDEs. In

terms of non-linear equations, we were able to extend the Talbot effect from the

periodic problem for the cubic NLS equation, Theorem 2.15 due to Erdoğan and

Tzirakis [41], to the quasi-periodic problem (8.21), Theorem 8.6. We expect that

it is likely to generalise the Talbot effect to the more general non-linear, pseudo-

periodic problem

∂tu(x, t) = i∂2xu(x, t) + i|u(x, t)|2u(x, t), u(x, 0) = f(x),

β0u(0, t) = u(2π, t), β1∂xu(0, t) = ∂xu(2π, t),

given on [0, 2π] and where the complex numbers β0, β1 satisfy Assumption 4.3. The

main idea here is to combine the decomposition derived in Theorem 4.8 for the

linear problem in terms of periodic problems together with the analysis in [41] for

the periodic non-linear equation.

In the non-linear regime, a further direction is to consider the revival and fractali-

sation effects in the Korteweg-de Vries (KdV) equation with quasi-periodic boundary

conditions,

∂tu(x, t) = −∂3xu(x, t)− 2u(x, t)∂xu(x, t), u(x, 0) = u0(x),

ei2πθ∂mx u(0, t) = ∂mx u(2π, t), m = 0, 1, 2, θ ∈ [0, 1),

(9.4)

on [0, 2π]. For θ = 0, the boundary conditions become periodic, and we know that

in this case the Talbot effect persists due to the results in [40] by Erdoğan and
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Tzirakis.

For θ ̸= 0, compared to the quasi-periodic problem for the cubic NLS equation,

the KdV equation is not invariant under the transformation (8.9), for n = 3, which

transforms the quasi-periodic boundary conditions to periodic. This suggests that

new ideas needed to tackle this problem.

Further, we remark that, to our knowledge, there is no result that indicates the

well-posedness of the IBVP (9.4) when θ ̸= 0. Therefore, a first direction would be

to analyse this aspect, starting with the case when θ is a rational number. Then, it

might be feasible to adopt the arguments in [27], [40] for the periodic case into the

case of the quasi-periodic problem (9.4). We suspect that the framework provided

by Ruzhanski and Tokmagambeto in [56] should be valuable for the analysis of (9.4),

either for rational or generic θ in (0, 1).

Finally, if we assume that there exists a well-posed setting for the quasi-periodic

problem (9.4), then a natural question that arises is if the revival phenomenon

breaks whenever θ is irrational, similar to the quasi-periodic problem for the Airy

PDE (Theorem 5.2). In other words, if we fix θ to be an irrational number in (0, 1),

then is there a smoothing effect on the solution of (9.4) at rational times t = 2π p
q
?

9.2.4 Revivals in Higher Dimensions

In the existing literature, the revival phenomenon in higher dimensions seems to be

restricted to the free space linear Schrödinger equation

∂tu(x, t) = i∆u(x, t). (9.5)

In (9.5), ∆ denotes the Laplace operator and x is regarded as the space co-ordinate

of dimension d. Extensions of the revival property on higher dimensional spheres

and tori were obtained by Taylor in [12]. Moreover, in [65], Běĺın, Horsley and Tyc

recently derived a surprising result. They showed that the revival effect persists in

the Schrödinger equation (9.5) when posed on the surface of a regular tetrahedron.

It should be possible to extend the revival phenomenon in the case of zero Dirich-

let (and/or Neumann) boundary conditions on specific two-dimensional, triangular

domains for the linear Schrödinger equation (9.5). Similar to the one-dimensional
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case, in order to examine the revival phenomenon an investigation of the spectral

problem of the Laplace operator is required. In the case of a half-square (right trian-

gle with two equal sides), the eigenpairs can be obtained by the spectral problem on

the square under rigid transformation methods. From our end, preliminary results

show that at rational times the revivals persist in this case. On the other hand, the

eigenvalues of the Dirichlet-Laplacian on an equilateral triangle are known since the

work of Lamé in the 19th Century and since then many researchers have re-derived

them together with the completeness of the associated eigenfunctions, see for exam-

ple [66] by McCartin. In the future, based on these results we plan to examine the

revival phenomenon. Further directions might include the case of an isosceles or an

arbitrary triangle and regular polygonal domains.

Another, perhaps more ambitious, direction in higher dimensions is the exami-

nation of the revival phenomenon, with either numerical or analytical methods, in

the two-dimensional, bi-harmonic wave equation

∂2t u(x, t) = −∆2u(x, t), (9.6)

on the square [0, π] × [0, π]. In (9.6), the symbol ∆2 denotes the bi-harmonic op-

erator. We pose the equation under either simply supported or clamped boundary

conditions. Both cases set physical problems of special interest for the theoretical

treatment of the revival effect, since they may lead to full justification of the experi-

mental revival observations in [59]. Simply supported boundary conditions could be

considered as a first step. In this case, we may approach the problem either by utiliz-

ing the one-dimensional results or the equivalence of the bi-harmonic wave equation

with a system of linear Schrödinger equations. For the case of clamped boundaries,

which corresponds to the experimental study [59], a numerical examination of the

revival could be based on spectral methods for the underlying eigenvalue problem

of the bi-harmonic operator, see [67] by Trefethen.
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Appendix A

Linear Dispersive Partial

Differential Equations

One possible classification of a partial differential equation in one space dimension

is based on the attached dispersion relation. Following [25], consider a linear PDE

P (∂t, ∂x)u(x, t) = 0, (A.1)

where P is a polynomial in the partial derivatives and with complex constant co-

efficients. The variable t denotes time and x serves as the space co-ordinate of

dimension one. By fixing plane wave solutions of the form

u(x, t) = ei(kx−ωt) (A.2)

we obtain by substitution the dispersion relation

P (−iω, ik) = 0, (A.3)

which gives the time frequency ω(k) as a function of the spatial frequency or the

wave number k (assuming that we can solve (A.3) for ω).

In physical terms, see [25] or [26], a linear dispersive equation describes the fact

that plane wave solutions of different wave numbers k propagate with a different
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phase velocity w(k)/k. Thus, for example, the transport equation

∂tu(x, t) = −∂xu(x, t),

with dispersion relation ω = k, is not dispersive. Similarly, the classical wave

equation

∂2t u(x, t) = ∂2xu(x, t),

is not dispersive. On the other hand, a typical example of a linear dispersive PDE

is the linear Schrödinger equation (FSLS)

∂t(x, t) = i∂2xu(x, t), (A.4)

which has dispersion relation ω = k2. Another case is the Airy PDE (AI)

∂tu(x, t) = ∂3xu(x, t), (A.5)

with the dispersion relation given by ω = k3.

In rigorous terms, for a given linear PDE of the form (A.1), the term dispersive

amounts for the following definition, [25].

Definition A.1. The PDE (A.1) is called dispersive if for each wave number k,

the frequency ω(k) is real and the second derivative of ω with respect to k does not

vanish identically (ω′′ ̸≡ 0).

The condition ω′′ ̸≡ 0 eliminates some controversial cases, such as the class of

equations with dispersion relation ω(k) = ak + b, where a and b are some fixed real

numbers. For example, the equation

∂tu(x, t) = −∂xu(x, t)− iu(x, t)

has dispersion relation ω(k) = k + 1, which implies that the phase velocity is not

constant. Thus, in a sense it is a dispersive equation. However, by a standard

Fourier-transform argument, it follows that an initial waveform f(x) evolves, at

time t > 0, to

u(x, t) = eitf(x− t).
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Therefore, although the initial function f(x) is modified by the propagation, there

is no dispersion in the sense that the shape of f(x) stays essentially unaltered and

does not spread out.

In particular, ω′′ ̸≡ 0 implies that the group velocity ω′(k), which in the one-

dimensional setting has a more significant role than the phase velocity, is not a

constant. We refer to [25] for further details on the group velocity in linear dispersive

equations.

Regarding our investigation of the revival phenomenon, equations (A.4) and

(A.5) are the main points of reference for first-order in time evolution problems.

Moreover, the bi-harmonic wave equation

∂2t u(x, t) = −∂4xu(x, t),

gives a model of a second-order in time linear dispersive equation, with dispersion

relation ω2 = k2.
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Appendix B

Bases in Hilbert Space

In many instances, the solution to an initial boundary value problem on a finite

interval can be expressed as an infinite series in terms of a basis of square integrable

functions. For example, when applicable, this is the result of the classical Fourier

method. Hence, to set some agreed-upon terminology, in this appendix we briefly

revise the notion of a basis in a Hilbert space and provide also relevant properties

useful for the solution to initial boundary value problems.

Following [68], see also [69], a countable family {ϕj}∞j=1 of elements of a complex,

separable, infinite-dimensional Hilbert space H is called a Schauder basis or simply

a basis if any f ∈ H has a unique expansion of the form

f =
∞∑
j=1

fjϕj := lim
n→∞

n∑
j=1

fjϕj (B.1)

for some (unique) fj ∈ C.

The convergence in (B.1) is with respect to the norm of H defined as usual by

∥f∥ =
√

⟨f, f⟩, with ⟨f, g⟩ the inner product on H. The numbers fj in (B.1) are

called generalised Fourier coefficients or simply Fourier coefficients of f with respect

to {ϕj}∞j=1 and the expansion is called the generalised Fourier series or Fourier series

of f with respect to {ϕj}∞j=1.

We say that {ϕj}∞j=1 forms an orthonormal set in H if it satisfies the condition

⟨ϕj, ϕk⟩ =

1, j = k,

0, j ̸= k.

(B.2)
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If it is a basis, then {ϕj}∞j=1 is said to be an orthonormal basis in H. The next,

elementary lemma gives equivalent conditions for an orthonormal set to be a basis,

see [32, Theorem 5.27].

Lemma B.1. Let {ϕj}∞j=1 be an orthonormal set in H. Then, the following are

equivalent.

(i) {ϕj}∞j=1 is an orthonormal basis.

(ii) For every f ∈ H the expansion

f =
∞∑
j=1

⟨f, ϕj⟩ϕj,

holds with the respect to the norm of H.

(iii) For every f ∈ H, we have Parseval’s identity

∥f∥2 =
∞∑
j=1

|⟨f, ϕj⟩|2.

(iv) If ⟨f, ϕj⟩ = 0 for all j, then f = 0.

Apart form orthonormal bases, in the analysis of time evolution problems we

may encountered other types of bases. For particular interest to us, are the Riesz

bases defined as follows.

Definition B.2 ([68],[69]). A sequence {ϕj}∞j=1 is called a Riesz basis in a Hilbert

space H if there exists a bounded linear operator B : H → H, with bounded inverse,

and such that the sequence {Bϕj}∞j=1 is an orthonormal basis of H.

Notice that if {ϕj}∞j=1 is a Riesz basis then it is a basis. Indeed, for every f ∈ H

we have

Bf =
∞∑
j=1

⟨Bf,Bϕj⟩Bϕj.

Because B is a bounded linear operator we can exchange its action and take the

limit. Hence,

Bf = B
( ∞∑

j=1

⟨Bf,Bϕj⟩ϕj

)

162



Then, we take the inverse on both sides to obtain the expansion

f =
∞∑
j=1

⟨Bf,Bϕj⟩ϕj =
∞∑
j=1

fjϕj.

Note that the generalised Fourier coefficients are given by

fj = ⟨Bf,Bfj⟩ ∈ C,

or in terms of B and its adjoint B∗ by

fj = ⟨f,B∗Bfj⟩.

In particular, for a given Riesz basis we obtain a sequence {ψj}∞j=1 defined by

ψj = B∗Bϕj,

for which the biorthogonality condition

⟨ϕj, ψk⟩ = ⟨Bϕj, Bϕk⟩ =

1, j = k,

0, j ̸= k.

holds. This motivates the following classical definition.

Definition B.3. Two countable sets {ϕj}∞j=1, {ψj}∞j=1 in a separable, infinite -

dimensional Hilbert space H are called biorthogonal if the following condition holds

⟨ϕj, ψk⟩ =

1, j = k,

0, j ̸= k.

(B.3)

We note that {ψj}∞j=1 is also a Riesz basis when {ϕj}∞j=1 is. The next lemma is

the analogue to Lemma B.1 for Riesz bases, see [68, Theorem 3.4.5]

Lemma B.4. Given a countable set {ϕj}∞j=1 in H the following conditions are equiv-

alent.

(i) {ϕj}∞j=1 is a Riesz basis.
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(ii) There is a positive constant c such that

c−1∥f∥2 ≤
∞∑
j=1

|⟨f, ϕj⟩|2 ≤ c∥f∥2,

for all f in H.

(iii) Given complex numbers {fj}∞j=1, the series

∞∑
j=1

fjϕj

is norm convergent and defines an element in H if and only if

∞∑
j=1

|fj|2 <∞.

We close with a specific criterion for a sequence to form a Riesz basis in a Hilbert

space. It allows us to derive a generalised Fourier series representation to the solution

of the free linear Schrödinger equation under the class of pseudo-periodic boundary

conditions in Chapter 4. We were not able to find a specific reference for this result,

so we include a self-contained proof.

Lemma B.5. Let {mj}∞j=1 and {ℓj}∞j=1 be orthonormal bases in a Hilbert space H

and let a ∈ C such that |a| ≠ 1. Then, the sequence

ϕj = mj + aℓj, j ∈ N

forms a Riesz basis in H.

Proof. Consider the linear map S : H → H given by

Sf =
∞∑
j=1

⟨f,mj⟩ℓj.

Then, since {mj}∞j=1 and {ℓj}∞j=1 are both orthonormal bases, by Parseval’s identiy,

we have ∥Sf∥2 = ∥f∥2, which implies that S is an isometry of H. Moreover, S is

164



also one-to-one and onto with inverse given by

S−1f =
∞∑
j=1

⟨f, ℓj⟩mj, ∀ f ∈ H.

Clearly, S−1 is also bounded as it is also an isometry. Moreover, for each j ∈ N,

Smj =
∞∑
n=1

⟨mj,mn⟩ℓn = ℓj.

Now assume that |a| < 1. Then, ∥aSf∥ < |a|∥f∥ for any f ∈ H. Thus, if I

denotes the identity operator, then the operator operator T = I+aS has a bounded

inverse T−1 (see [70, Theorem 4.40]). Because Tmj = ϕj, we see that T−1ϕj = mj,

which implies that ϕj is a Riesz basis.

If |a| > 1, then we can write ϕj = ahj, with hj = ℓj+a
−1mj. However, |a−1| < 1,

and so {hj}∞j=1 is a Riesz basis and the same is true for ϕj.
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Appendix C

Linear Opeators and

Eigenfunction Expansions

In time evolution partial differential equations the spatial part of the equation is

usually viewed as a linear operator, in general unbounded, defined on a suitable

subset of a Hilbert space. For example, the linear Schrödinger equation (FSLS) or

the Airy PDE (AI) can be rewritten as

∂tu(x, t) = −iLu(x, t)

where L is either −∂2x or i∂3x. When we require u(x, t) to satisfy a number of

specific boundary conditions on a finite interval, then L can be defined on a space of

sufficiently continuously differentiable functions satisfying the boundary conditions.

Therefore, in this appendix we introduce the standard concepts around the theory

of (unbounded) linear operators. A detailed exposition of the material here can be

found in [71, sections 1.1 and 1.2].

Definition C.1. A linear operator on the Hilbert space H is a linear map L :

D(L) → H, where D(L) is a linear dense subspace of H. We call D(L) the domain

of the operator L.

The problem of funding all complex numbers λ and non-zero f ∈ D(L) such that

Lf = λf,
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is called the eigenvalue problem for the linear operator L. If such a pair (λ, f)

exists then we call λ an eigenvalue of L and f an eigenfunction (associated with the

eigenvalue λ). Sometimes we refer to the pair (λ, f) as an eigenpair of the operator

L.

In the analysis of initial boundary value problems, the underlying spatial linear

differential operator often has a family of eigenfuctions which forms a Riesz basis

of the underlying Hilbert space H. In these cases, for an arbitrary element f ∈ H

its unique expansion with respect to the basis of eigenfunctions is known as an

eigenfunction expansion.

The set of eigenvalues is a subset of the spectrum of an operator L, which is

denoted by Spec(L) and defined below, where I : H → H is the identity operator.

Definition C.2. The spectrum of a linear operator L : D(L) → H is the set Spec(L)

containing all complex numbers z such that the operator (zI − L) : D(L) → H does

not have a bounded inverse.

Eigenvalue problems for linear differential operators correspond to particular

types of boundary value problems for linear differential equations. In such problems,

we often encounter the special classes of self-adjoint operators.

Definition C.3. Let L : D(L) → H be a linear operator. Define D(L∗) ⊂ H to be

the set of all g ∈ H such that there exist h ∈ H so that

⟨Lf, g⟩ = ⟨f, h⟩, ∀ f ∈ D(L).

The adjoint operator L∗ : D(L∗) → H is defined by L∗g = h. If L = L∗, meaning

that D(L) = D(L∗) and Lf = L∗f for all f ∈ D(L), then L is called self-adjoint.

Due to the density of D(L) in H the adjoint L∗ is a well-defined linear operator.

Indeed, let g ∈ D(L∗) and h1, h2 be two elements of H such that

⟨Lf, g⟩ = ⟨f, h1⟩ = ⟨f, h1⟩

for all f ∈ D(L). Then, ⟨f, h1 − h2⟩ = 0, for all f ∈ D(L), which implies that

h1 = h2. Moreover, because Hilbert spaces are reflexive Banach spaces, it follows

that the adjoint is a linear map with dense domain and hence a linear operator.
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A related class of operators is that of symmetric operators.

Definition C.4. A linear operator L : D(L) → H is called symmetric if for every

f and g in D(L) we have

⟨Lf, g⟩ = ⟨f, Lg⟩.

Notice, that self-adjoint operators are particular cases of symmetric operators.

It is well known that the eigenvalues of a symmetric operator are always real. This

can be seen by considering an eigenpair (λ, f) with ∥f∥ = 1. Then, we have

λ = λ∥f∥2 = λ⟨f, f⟩ = ⟨λf, f⟩ = ⟨Lf, f⟩ = ⟨f, Lf⟩ = ⟨f, λf⟩ = λ⟨f, f⟩ = λ,

where (·) denotes complex conjugation.

A symmetric operator L is always closable, meaning that there exists an extension

L̄ of L (that is L̄f = Lf , for all f in D(L) and D(L) ⊂ D(L̄)) which is closed. In

turn, L̄ is said to be closed, if for a sequence fn ∈ D(L̄) with limit f ∈ H and for

g ∈ H such that L̄fn → g as n → ∞, it follows that f ∈ D(L̄) and L̄f = g. For a

given closable operator there always exists a closed extension with minimal domain

among all closed extensions, which is called the closure. Self-adjoint operators are

always closed.

Regarding the applications of interest in this thesis, for initial boundary value

problems sometimes it is more convenient to work with domains for which the dif-

ferential operators are not necessarily closed, but nonetheless they are symmetric.

An intermediate class between symmetry and self-adjointness is known as essential

self-adjointness.

Definition C.5. A linear operator L : D(L) → H is called essentially self-adjoint

if it is symmetric and its closure L̄ is self-adjoint.

In practise, working with an essentially self-adjoint operator is almost the same

as working with a self-adjoint operator, since we can use the density of the domain

to argue. The next lemma provides a useful criterion, suited for the framework of

the thesis, which establishes when a symmetric operator is essentially self-adjoint,

see [71, Lemma 1.2.2].
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Lemma C.6. Let L : D(L) → H be a linear symmetric operator with a family

of eigenfuctions {fn}∞n=1 ⊂ D(L) forming an orthonormal basis of H. Then L is

essentially self-adjoint and the spectrum of its closure L̄ is the closure of the set of

eigenvalues {λn}∞n=1 of L in R.

Observe that, if a linear operator is symmetric and has an orthonormal basis of

eigenfunctions, then Lemma C.6 implies that its closure is self-adjoint.
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Appendix D

Sobolev Spaces

In this appendix we recall the standard L2(0, 2π) based Sobolev spaces. First, we

give the definition of the Sobolev space of positive integer order over the open

interval (0, 2π) and outline some of their properties. For this part we follow Grubb

[72, Chapter 4]. Then, we consider the case of 2π-periodic Sobolev spaces of real

non-negative order. For this part see either Kress [73, Chapter 8] or Iorio and Iorio

[55, Chapter 3]. In the former, the approach is directly in the setting of Fourier series

in L2(0, 2π), whereas in the latter, the approach is in the more general framework

of periodic distributions.

Below, we use the notation ϕ′, ϕ′′, ϕ(m) for the derivatives of a function and we

denote by C∞
c (0, 2π) the space of smooth functions with compact support in (0, 2π).

We begin with the notion of the weak derivative in L2(0, 2π).

Definition D.1. Let m ∈ N. We say that a function f ∈ L2(0, 2π) is m times

weakly differentiable in L2(0, 2π) if there exist functions gn ∈ L2(0, 2π), n = 1, . . . ,m,

such that ∫ 2π

0

f(x)ϕ(n)(x)dx = (−1)n
∫ 2π

0

gn(x)ϕ(x)dx,

for all for all ϕ ∈ C∞
c (0, 2π) and j = 1, . . . ,m. We call gn the n-th weak derivative

of f and write gn = f (n).

The L2(0, 2π) based Sobolev space Hm(0, 2π) can now be defined as follows.

Definition D.2 ([72]). The first-order Sobolev space H1(0, 2π) consists of functions

f in L2(0, 2π) which have a weak derivative f ′ ∈ L2(0, 2π). For integer m ≥ 2, the
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Sobolev space Hm(0, 2π) is defined inductively by

Hm(0, 2π) = {f ∈ Hm−1(0, 2π) ; f ′ ∈ Hm−1(0, 2π)}.

For any m ∈ N, it is known that Hm(0, 2π) is a complex Hilbert space under the

inner product

⟨f, g⟩m =
m∑

n=0

∫ 2π

0

f (n)(x)g(n)(x)dx, ∀ f, g ∈ Hm(0, 2π).

Also, it is readily seen that Hm(0, 2π) contains Cm[0, 2π], i.e. the space of all m

times continuously differentiable functions on [0, 2π]. In particular, as we see in the

next proposition, one-dimensional Sobolev spaces can be characterised in terms of

continuously differentiable functions. Moreover, the formula of integration by parts

extends in the Sobolev space setting. For the proof of each part we refer to [72,

Theorem 4.17 and 4.14].

Proposition D.3. Let m ∈ N. Then Hm(0, 2π) admits the following properties.

(i) H1(0, 2π) consists of continuous functions on [0, 2π] which are weakly differ-

entiable. For any integer m ≥ 2, Hm(0, 2π) can be characterised as follows

Hm(0, 2π) = {f ∈ Cm−1[0, 2π] ; f (m−1) ∈ H1}.

(ii) If f, g ∈ H1(0, 2π), then the product fg belongs in H1(0, 2π) with (fg)′ =

f ′g + fg′ and for any a, b ∈ [0, 2π] the integration by parts formula

∫ b

a

f ′(x)g(x)dx = [f(x)g(x)]ba −
∫ b

a

f(x)g′(x)dx,

holds.

We now turn our attention to the periodic setting and define the 2π-periodic

Sobolev Spaces of real non-negative order.

Definition D.4 ([73], [55]). Let s ≥ 0. The 2π-periodic Sobolev space Hs
per(0, 2π)

171



of order s is defined as the following subspace of L2(0, 2π)

Hs
per(0, 2π) =

{
f ∈ L2(0, 2π) ;

∑
j∈Z

(
1 + |j|2

)s|f̂(j)|2 <∞

}
,

where f̂(j) are the Fourier coefficients of f .

To give an intuition behind Definition D.4 and establish a connection with Def-

inition D.2, let f ∈ H1
per(0, 2π). We show that f belongs in H1(0, 2π) and satisfies

the periodic boundary condition f(0) = f(2π). First, note that since f belongs in

L2(0, 2π), it admits a Fourier series. Thus, we have

f =
∑
j∈Z

f̂(j)ej,

where ej(x) = eijx/
√
2π and the hats denote the Fourier coefficients. Also, note

that |f̂(j)ej(x)| = |f̂(j)|. Moreover, by the Cauchy-Schwarz inequality in ℓ2(Z) (the

Hilbert space of square-summable sequences) and the hypothesis on f , we have that

∑
j∈Z

|f̂(j)| =
∑
j

(1 + |j|2)1/2|f̂(j)|
(1 + |j|2)1/2

≤
√∑

j∈Z

(1 + |j|2)|f̂(j)|2
√∑

j∈Z

1

(1 + |j2|)
<∞.

Now, by Weierstrass M-test, the Fourier series of f converges absolutely and uni-

formly to a continuous 2π-periodic function and coincides with f (since f ∈ L2(0, 2π)).

Thus, f ∈ C[0, 2π] and f(0) = f(2π).

To show that f has a first weak derivative in L2(0, 2π), let ϕ ∈ C∞
c (0, 2π). By

the uniform converge of the Fourier series of f we can exchange integration with

summation below and have the following

⟨f, ϕ′⟩ =
∫ 2π

0

∑
j∈Z

f̂(j)ej(x)ϕ′(x)dx =
∑
j∈Z

f̂(j)

∫ 2π

0

ej(x)ϕ′(x)dx

= −
∑
j∈Z

jf̂(j)ϕ̂(j).
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The function

g =
∑

jf̂(j)ej

belongs in L2(0, 2π) due to the hypothesis

∑
j∈Z

|jf̂(j)|2 <∞.

Therefore, there is g ∈ L2(0, 2π) such that

⟨f, ϕ′⟩ = −
∑
j∈Z

ĝ(j)ϕ̂(j) = −⟨g, ϕ⟩, ∀ϕ ∈ C∞
c (0, 2π),

where the second equality above follows from the isometry f → f̂(n) between

L2(0, 2π) and ℓ2(Z), see [50]. It follows that f has a weak derivative in L2(0, 2π).

Now, the converse is also true. Indeed, let f ∈ H1(0, 2π) such that f(0) = f(2π).

Since, both f and its weak derivative f ′ are in L2(0, 2π), they admit a Fourier series

representation

f =
∑
j∈Z

f̂(j)ej and f ′ =
∑
j∈Z

f̂ ′(j)ej.

The boundary condition implies that for any j ∈ Z,

f̂ ′(j) =

∫ 2π

0

f ′(x)ej(x)dx = −ij
∫ 2π

0

f(x)ej(x)dx = −ijf̂(j).

Moreover, by Parseval’s identity we have that

⟨f, f⟩1 = ∥f∥2 + ∥f ′∥2 =
∑
j∈Z

(1 + |j|2)|f̂(j)|2.

In particular, we notice that for any f ∈ H1(0, 2π) such that f(0) = f(2π), the

series on the right-hand side above converges.

Consequently, we see that the periodic boundary conditions are encoded in the

definition of H1
per(0, 2π). Similar considerations yield, for any positive integer m,

the following identification

Hm
per(0, 2π) = {f ∈ Hm(0, 2π) ; f (n)(0) = f (n)(2π), n = 0, 1, · · · ,m− 1}.
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For s ≥ 0, the Space Hs
per(0, 2π) is also a Hilbert space with the inner-product

given by

⟨f, g⟩s =
∑
j∈Z

(1 + |j|2)sf̂(j)ĝ(j), ∀ f, g ∈ Hs
per(0, 2π).

For s = 0, Hs
per(0, 2π) is identified with L2(0, 2π). Finally, the next lemma, known

also as Sobolev embedding, holds true (see [73, Theorem 8.4] or [55, Theorem 3.195]).

Lemma D.5. Let s > 1/2 and f ∈ Hs
per(0, 2π). Then, the Fourier series of f

converges absolutely and uniformly. Its limit is a continuous 2π-periodic function

which coincides with f almost everywhere.
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Appendix E

Two Proofs

In this appendix we prove two statements from Chapter 2.

Proof of Theorem 2.4. We know that a fixed initial function u0 in L2(0, 2π) admits

the L2(0, 2π) Fourier series representation

u0(x) =
∑
j∈Z

û0(j)ej(x).

To prove the theorem, we first construct a sequence of smooth solutions. In partic-

ular, for n ∈ N, the bounded, smooth functions

un(x, t) =
n∑

j=−n

û0(j)e
−ij2tej(x), (E.1)

form a sequence of smooth solutions to the periodic problem (2.3) with the initial

conditions given by the partial Fourier sums

un0 (x) =
n∑

j=−n

û0(j)ej(x).

The construction (E.1) of these smooth solutions follows from the Fourier method

illustrated along the subsequent lines.

Assume that un(x, t) is a smooth solution to (2.3) with initial condition un0 (x).

Then, for a fixed time t ≥ 0, from Fourier series theory, the solution can be written

as an absolutely and uniformly convergent Fourier series of the space variable, see
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[20],

un(x, t) =
∑
j∈Z

ûn(j, t)ej(x).

Since un(x, t) satisfies the IBVP (2.3) point-wise, we can uniquely determine the

Fourier coefficients ûn(j, t). Indeed, for each fixed j ∈ Z, taking the inner-product

with ej(x) we have that

∫ 2π

0

∂tu
n(x, t)ej(x)dx = i

∫ 2π

0

∂2xu
n(x, t)ej(x)dx.

On the left-hand side, we can exchange differentiation with integration by the Dom-

inated Convergence Theorem since un(x, t) and ∂tu
n(x, t) are bounded and contin-

uous functions of t (see Theorem 2.27 in [32]). On the right-hand side we perform

integration by parts twice using the periodic boundary conditions. Thus, for each

j ∈ Z, ûn(j, t) satisfies the differential equation with respect to the time variable

d

dt
ûn(j, t) = −ij2ûn(j, t),

with initial condition ûn(j, 0) = ûn0 (j). Hence, for each j ∈ Z,

ûn(j, t) = ûn0 (j)e
−ij2t,

and the solution un(x, t) takes the form

un(x, t) =
∑
j∈Z

ûn0 (j)e
−ij2tej(x) =

n∑
j=−n

û0(j)e
−ij2tej(x).

This finishes the construction of the smooth solutions and we continue by showing

that (2.7) satisfies Definition 2.3 of a generalised solution.

Observe that for any t ≥ 0, |û0(j)e−ij2t|2 = |û0(j)|2 and so

n∑
j=−n

|û0(j)e−ij2t|2 =
n∑

j=−n

|û0(j)|2.

Since u0 ∈ L2(0, 2π), then as n→ ∞ we see that the series in the right-hand side of

the expression above converges to ∥u0∥2 (Parseval’s identity). Hence, the sequence

of the partial sums un(x, t) converges uniformly in t with respect to the L2(0, 2π)
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norm, and so the map

u(·, t) =
∑
j∈Z

û0(j)e
−ij2tej

takes every t ∈ [0,∞) into L2(0, 2π).

To prove continuity in t with respect to the norm of L2(0, 2π), we fix t ≥ 0 and

let h > 0. Then, using Parseval’s identity we have that

∥u(·, t+ h)− u(·, t)∥2 =
∑
j∈Z

|e−ij2h − 1|2|û0(j)|2.

However, because |e−ij2h − 1|2|û0(j)|2 ≤ 4|u0|2 and also u0 ∈ L2(0, 2π), the series in

the right-hand side above converges absolutely and uniformly with respect to h by

the Weierstrass M-test. Moreover, since

|e−ij2h − 1|2 = 2(1− cos
(
j2h

)
)

is continuous as a function of h and goes to zero as h goes to zero we see that

lim
h→0

∥u(·, t+ h)− u(·, t)∥2 = 0,

proving continuity from the right. To show continuity from the left, we fix t > 0

and pick h ∈ (0, t). Then, we have

∥u(·, t)− u(·, t− h)∥2 =
∑
j∈Z

|1− e−ij2h|2|û0(j)|2,

and a similar argument as before shows that

lim
h→0

∥u(·, t)− u(·, t− h)∥2 = 0.

Finally, note that the uniqueness of the generalised solution is implied from the

uniqueness of the Fourier coefficients or equivalently from the basis property of the

periodic eigenfunctions ej(x).

Proof of Proposition 2.6. For an initial function u0 in L2(0, 2π), we consider the

generalised solution u(x, t) of (2.3) given for each fixed t ≥ 0 by the Fourier series
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(2.7).

Let t, t1 ≥ 0. Then by the Cauchy-Schwarz inequality in L2(0, 2π) we find that

for any ϕ ∈ D(L)

|⟨u(·, t), ϕ⟩ − ⟨u(·, t1), ϕ⟩| = |⟨u(·, t)− u(·, t1), ϕ⟩| ≤ ∥u(·, t)− u(·, t1)∥∥ϕ∥.

Hence, the continuity of the function ⟨u(·, t), ϕ⟩ for any t ≥ 0 follows from the

continuity of the map u(·, t) : [0,∞) → L2(0, 2π).

To show (2.8), first notice that since every partial sum

un(x, t) =
n∑

j=−n

û0(j)e
−ij2tej(x), n ∈ N,

is a smooth solution with initial condition the n-th partial sum of the Fourier series

of u0, it satisfies
d

ds
⟨un(·, s), ϕ⟩ = i⟨un(·, s), ϕ′′⟩,

for any ϕ ∈ D(L). This implies that

⟨un(·, t), ϕ⟩ − ⟨un(·, δ), ϕ⟩ = i

∫ t

δ

⟨un(·, s), ϕ′′⟩ds,

where 0 < δ < t. We want to take the limit as n→ ∞.

Observe that by the Cauchy-Schwartz inequality once more, we have

|⟨u(·, t), ϕ⟩ − ⟨un(·, t), ϕ⟩| ≤ ∥u(·, t)− un(·, t)∥∥ϕ∥,

and ∣∣∣∣∫ t

δ

⟨u(·, s), ϕ′′⟩ds−
∫ t

δ

⟨un(·, s), ϕ′′⟩ds
∣∣∣∣ ≤ (t− δ)∥u(·, t)− un(·, t)∥∥ϕ′′∥.

Because for any t > 0, un(·, t) converges in L2(0, 2π) to u(·, t) as n → ∞, letting

n→ ∞ we obtain that

⟨u(·, t), ϕ⟩ − ⟨u(·, δ), ϕ⟩ = i

∫ t

δ

⟨u(·, s), ϕ′′⟩ds,
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which gives
d

dt
⟨u(·, t), ϕ⟩ = i⟨u(·, t), ϕ′′⟩.
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Appendix F

Numerical Examples of Revivals

and Fractalisation

This appendix contains numerical examples which illustrate the revival and frac-

talisation phenomena in three time evolution problems considered in the thesis. In

all the examples, we start with a step initial condition with the jump discontinuity

placed in the middle of the interval of definition. In Section F.1, we display the

numerical solutions to the pseudo-periodic problem for the free linear Schrödinger

equation analysed in Chapter 4. Both non-self-adjoint and self-adjoint boundary

conditions are treated. Numerical examples for the Airy PDE with quasi-periodic

boundary conditions are given in Section F.2. This was the problem examined in

Chapter 5. Finally, in Section F.3, we display numerical examples which correspond

to the free linear Schrödinger equation under the Robin boundary conditions consid-

ered in Chapter 6. All graphs were plotted in Octave by summing over 4000 terms

of the generalised Fourier series representations (4.14), (5.8), (6.17).

F.1 Free Linear Schrödinger Equation with Pseudo-

Periodic Boundary Conditions

Here, we illustrate the phenomenon of revivals and fractalisation in the pseudo-

periodic problem (4.1) for the free linear Schrödinger equation with initial condition
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u0(x) =

0, 0 ≤ x ≤ π

1, π < x ≤ 2π.

In Figures F.1 and F.2 we plot the graph of the solution (4.14) at rational and

irrational times for non-self-adjoint boundary conditions specified by the choice of

parameters β0 = 1/5 and β1 = 2. In the first figure, the solution is evaluated at

rational times. We clearly notice that the real and imaginary parts are piecewise

constant functions, confirming the revival effect as obtained by Corollary 4.9. On

the other hand, in Figure F.2, the solution profiles at generic times appear to be

continuous, nowhere differentiable functions. Thus in both figures, the behaviour of

the solution is in accordance with the consequences of Theorem 4.8, which gives at

any time, the solution to the pseudo-periodic problem in terms of the solutions to

specific periodic problems.
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Figure F.1: Real (blue) and imaginary (red) parts of the solution of the pseudo-periodic

(4.1) for the FSLS equation with β0 = 1/5, β1 = 2 at rational times t = 2πp/q.
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Figure F.2: Real (blue) and imaginary (red) parts of the solution of the pseudo-periodic

(4.1) for the FSLS equation with β0 = 1/5, β1 = 2 at generic times.
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Figure F.3: Real (blue) and imaginary (red) parts of the solution of the pseudo-periodic

(4.1) for the FSLS equation with β0 = β1 = ei2πθ, θ =
√
2/3, at rational times t = 2πp/q.
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Figure F.4: Real (blue) and imaginary (red) parts of the solution of the pseudo-periodic

(4.1) for the FSLS equation with β0 = β1 = ei2πθ, θ =
√
2/3, at generic times.

Similarly, in Figures F.3 and F.4, the revival and fractalisation phenomena man-

ifest in the simpler case of self-adjoint boundary conditions. In these two figures,

the boundary parameters are fixed by choosing β0 = β1 = ei2πθ, with θ =
√
2/3. In

the next section, the same choice of quasi-periodic boundary conditions shows the

lack of revivals in Airy’s PDE at rational times.

F.2 Airy’s Partial Differential Equation with Self-

Adjoint Quasi-Periodic Boundary Conditions

In this section, we display the numerical solutions of the quasi-periodic problem

(5.4) for Airy’s PDE, where the boundary conditions determined by β = e2πiθ with

θ ∈ (0, 1). We use the generalised Fourier series (5.8) with the step initial condition

u0(x) =

0, 0 ≤ x ≤ π

1, π < x ≤ 2π,
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and illustrate the phenomenon of revivals and fractalisation for two choices of the

boundary parameter θ, one rational and one irrational. The figures clearly demon-

strate the extra dichotomy posed on the revival effect by rational and irrational

values of θ.

In Figures F.5 and F.6, we plot the solution profile in space when θ is rational.

In the first figure, the time is set to be rational and we clearly see the reappearance

of the initial jump discontinuity. In the second figure, the time is irrational and

the real and imaginary parts of the solution are both continuous. As expected, the

discontinuity has been smoothed out.

Now, in Figures F.7 and F.8 we choose θ irrational. At any time, either rational

or irrational, no discontinuities appear in the solution. In particular, in Figure F.7,

there is no revival at rational times. This is in agreement with Theorem 5.2, which

gives the solution at rational times in terms of the solution of a periodic problem

for the free linear Schrödinger equation at an irrational time. Moreover, note that

the lack of revivals in Airy’s PDE is in contrast to the case of the FSLS equation

for which the revival effect persists under these quasi-periodic boundary conditions,

as this was illustrated in Figures F.3 and F.4.
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Figure F.5: Real (blue) and imaginary (red) parts of the solution of Airy’s problem (5.4)

with θ = 1/4 at rational times t = 2πp/q.
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Figure F.6: Real (blue) and imaginary (red) parts of the solution of Airy’s problem (5.4)

with θ = 1/4 at generic times.
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Figure F.7: Real (blue) and imaginary (red) parts of the solution of Airy’s problem (5.4)

with θ =
√
2/3 at rational times t = 2πp/q.
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Figure F.8: Real (blue) and imaginary (red) parts of the solution of Airy’s problem (5.4)

with θ =
√
2/3 at generic times.

F.3 Free Linear Schrödinger Equation with Robin-

type Boundary Conditions

In this section, we display numerical experiments which correspond to the initial

boundary value problem (6.12). As an initial condition we consider the piecewise

constant function

u0(x) =

0, 0 ≤ x ≤ π
2

1, π
2
< x ≤ π.

Picking different values of the parameter b ∈ [0, 1], we plot at generic (irrational)

and rational times the real and imaginary part of the solution u(x, t) as given by

(6.17). In figures (F.9) and (F.11), we observe that at rational times the solution

evolves to, not exactly, only translations (and/or reflections) of the initial profile.

However, the revival of the discontinuities is preserved as predicted by Corollary 6.9.

This is the weak revival effect (Definition 2.16). On the other hand, see figures F.10

and F.12, at generic times the solution profile is clear of discontinuities.
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Figure F.9: Real (blue) and imaginary (red) part of the solution of the IBVP (6.12) with

b = 0.35 at rational times t = 2πp/q.
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Figure F.10: Real (blue) and imaginary (red) parts of the solution of the IBVP (6.12)

with b = 0.35 at generic times.
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Figure F.11: Real (blue) and imaginary (red) parts of the solution of the IBVP (6.12)

with b = 0.6 at rational times t = 2πp/q.
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Figure F.12: Real (blue) and imaginary (red) parts of the solution of the IBVP

(6.12) with b = 0.6 at generic times.
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