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Abstract

The industrial digitalisation enables the adoption of robust, data-driven maintenance

strategies that increase safety and reliability of critical assets such as electronics.

And yet, an implementation of data-driven methods which primarily address the

industrialisation of diagnostic and prognostic strategies is opposed by various, ap-

plication specific challenges. This thesis collates such restricting factors encountered

within the oil and gas industry, in particular for the critical electrical systems and

components in upstream deep drilling tools. A fleet-level, tuned machine learning

approach is presented that classifies the operational state (no-failure/ failure) of

downhole tool printed circuit board assemblies. It supports maintenance decision

making under varying levels of failure costs and fleet reliability scenarios. Applied

within a maintenance scheme it has the potential to minimise non-productive time

while increasing operational reliability. Likewise, a tailored and efficient deep learn-

ing data pipeline is proposed for a component-level forecast of the end of life of

electromagnetic relays. It is evaluated using high resolution life-cycle data which

has been collected as a part of this thesis. In combination with a failure analysis,

the proposed method improves the prognostics capabilities compared to traditional

methods which have been proposed so far in order to assess the operational health of

electromagnetic relays. Two case studies underpin the need for tailored prognostic

methods in order to provide viable solutions that can de-risk deep drilling operations.

In consequence, the proposed approaches alleviate the pressure on current mainte-

nance strategies which can no longer meet the stringent reliability requirements of

upstream assets.
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Chapter 1

Introduction

This thesis explores data-driven solutions considering challenges of industrial data

analysis encountered in complex and critical systems. The focus resides on industri-

alisation of data-driven prognostics, as this research aims to advance current main-

tenance practices relating to critical oil and gas deep drilling electronics. Within

the context of both, fleets of industrial assets and individual components, my re-

search is informed by an detailed analysis of academic and industrial literature as

to identify key enablers and barriers preventing the implementation of improved

maintenance schemes. Inter alia, the maintenance objectives as well as the avail-

ability, volume, and resolution of monitoring data guide the selection of a suitable

method. Two distinct scenarios are considered that operate on different scales: (1)

fleet-level failure data collected from electronic assemblies within drilling equipment;

(2) high-resolution life-cycle data of an electromechanical component. The devel-

oped Machine Learning (ML) and Deep Learning (DL) frameworks are tuned to the

respective challenges to best support maintenance decision making: (1) failure detec-

tion of Bottom Hole Assembly (BHA)-Printed Circuit Board Assemblies (PCBA)

by estimating failure probabilities under consideration of cost-risk scenarios; (2)

computational efficient forecasting of the number of Remaining Useful Actuations

(RUAs) for Electromagnetic Relays (EMRs) throughout the components life rely-

ing on sensor data collected through life-cycle experiments and readily available in

industrial systems 1.

1.1 Motivation

In spite of growing decarbonisation efforts, traditional hydrocarbons such as oil and

gas continue to form one central pillar of the overall energy mix for the foreseeable

future. Attributable to globally improving living standards and population growth,

1Parts of this chapter have already been published in my journal or conference arti-
cle: L. Kirschbaum, et al., (2020) and L. Kirschbaum, et al., (2022).
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the energy demand is projected to grow as a result of rising consumerism and indus-

trial manufacturing of goods and services [1]. This trend is led by non-Organisation

for Economic Cooperation and Development (OECD) countries, albeit there is am-

biguity associated with the absolute values of oil and gas contributions due to factors

such as changes in global environmental policies, fluctuations of oil and gas prices,

and uncertainties in the exploration of new resources. An increase in consumption

by 70 per cent compared to a 15 per cent increase in OECD member-states until 2050

is predicted [2]. It is anticipated that the global share of renewable energy sources

will increase significantly compared to the current energy mix in the coming decade,

with an annual growth of three to six per cent [1, 2]. Though oil is expected to reach

peak demand in the near future, an average annual growth of approximately 0.7 per

cent is predicted over the next one to five years. The gas-share, dominated by shale

gas and supported by the global extension of the Liquefied-Natural-Gas (LNG) in-

frastructure continues to grow with a prospected annual average of 0.9 to 1.7 per

cent [1, 3]. An oil demand between 70 to 130 million barrels per day is estimated for

2040 compared to the current demand of approximately 99 million barrels per day as

of 2018 [4]. Gas consumption is expected to reach 4000 billion cubic meters in 2035

and up to 5500 billion cubic meters in 2040 [1, 5]. Based on these forecasts, sim-

ply continuing to exploit existing oil and gas resources is not sufficient to meet the

estimated demand. Moreover, multi-trillion US dollars of investments into oil and

gas infrastructure as well as the exploration and development of existing resources

and new reserves are required over the next two decades [1, 6, 7]. But mind, the

costs associated with such exploration and development of new oil and gas reserves

are constantly rising, since conventional and unconventional hydrocarbon deposits

become increasingly remote and challenging to access while, at the same time, en-

vironmental regulations become more restrictive, i.e. with respect to environmental

safety [8]. In addition, the need of accessing new reserves, requires complex well-

bore geometries which can only be achieved using advanced deep drilling equipment.

These systems, referred to as BHA, resemble a multi-functional assembly of inter-

changeable tools for subsurface navigation, analysis of the surrounding formations,

power supply, and surface communication.

The growing complexity of BHAs has resulted in an ever-increasing number of as-

sorted electronic and electromechanical components contained within such downhole

tools. During drilling, downhole tools are exposed to dynamic and harsh environ-

ments which are commonly referred to as High Temperature High Pressure (HTHP)

environments. In the wellbore the internal electronics are subjected to ambient

temperatures exceeding 200 ◦C and extreme pressure regimes [9]; bending and high

levels of vibrational stress are induced during drilling, further accelerating fatigue

of electronics [8]. These ambient conditions lead to electronic component, circuit, or

system failures which cause Non Productive Time (NPT) threatening the economic
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viability of many drilling operations. Consequently, the proportion of drilling costs

of the total well costs is considerable [10], with even higher costs offshore [11], e.g.

NPT can cost up to $1 million per day [12]. 15 per cent of the total annual drilling

costs are due to NPT caused by downhole tool failure, more precisely, the failed

subcomponents within BHA modules [13].

Current maintenance strategies of downhole tool electronics greatly rely on tradi-

tional reliability testing and historically grown maintenance practices that are often

no longer able to match the encountered real-world, operational life-cycles. Fur-

thermore, classical reliability methods require large sample sizes and run-to-failure

data to derive an estimate of average life under load with sufficient accuracy - data

sets which are not readily available in sufficient quantities in many industrial en-

vironments [14]. Lastly, the use of predefined life-cycle estimates for maintenance

management schemes often results in a too early exchange or replacement of opera-

tionally viable electronics and, consequently, in cost and risk penalties [15].

This is precisely where new concepts of maintenance come into play because the reli-

ability and operational availability of electronic-rich systems has become increasingly

important [16, 17]. Such novel maintenance strategies are not limited to electronics

encountered in downhole tools. Instead they aim to provide frameworks in order to

extract key performance indicators that can support, guide, or automate mainte-

nance decision making. Consider the discipline of Prognostics and Health Manage-

ment (PHM) in which data analytics, both data-driven models and physical-models

[18, 19], can enable the deployment of maintenance concepts such as Predictive

Maintenance (PdM) or Prescriptive Maintenance (PrM), insofar as an integration

of physical and digital infrastructure into joint ecosystems provides sufficient access

to historical- and streamed-monitoring data, e.g. in the form of Big Data (BD) [20].

Clearly, the availability of such data and respective analytics provide the means for

performance and economic enhancement of industrial systems targeting higher reli-

ability of industrial asset and services that can lead to the desirable paradigm shift

in maintenance [21, 22, 23]. Furthermore, this transition is facilitated by increasing

safety compliance standards for legacy and emergent systems [24, 25, 26, 27, 28].

1.2 Research question

Electronic assemblies are present in the majority of all downhole tools. Due to the

multi-component nature of downhole tools, above average failure rates are registered

for relevant electronic or electromechanical components, placing them as a predom-

inate failure cause [18]. Hereinafter, the complexity of electronic assemblies requires

elaborate and costly maintenance because the prediction of electronic related fail-

ures is time demanding and insufficient with current methods while pronounced

PHM for electronics is constricted in its capabilities [29]. Nonetheless, the reduction
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of these electronic related failures is essential for improving reliability in industrial

assets, in particular, for the oil and gas industry to be able to continue to operate

economically and meet future targets.

The need for modern maintenance strategies has already been identified by other

sectors, e.g. the aviation industry adopts PHM strategies to improve the reliability,

reducing maintenance costs which have risen significantly over the past years [30, 16].

This is, likewise, valid for industries operating in environments comparable to the

oil and gas industry presently equipping their offshore assets with PHM capabilities

[31, 32, 33]. Furthermore, various sectors of the oil and gas industry have committed

to the adaption of novel operational support and maintenance strategies, cf. [34,

35, 36]. However, until very recently modern data-driven maintenance strategies

have been exclusively used for, e.g. reservoir modelling or surface and completion

tasks. Downhole tool electronics have been widely excluded, since implementation

of data-driven methods to improve reliability meets a variety of challenges. Thus,

this work addresses the following research question:

How to design data-driven maintenance to improve reliability of electron-
ics given application-specific constraints?

In general terms, I examine the industrialisation of data analysis by coupling engi-

neering knowledge with a review of the state of the art as to investigate the prereq-

uisites and criteria for scalable, effective and operational data analysis in the context

of maintenance support for expert elicitation decision making. Here, the design and

impact of targeted data analysis interlinking previously not considered data streams

and isolated sources is to be scrutinised, whereas the importance of life-cycle data in

order to validate derived methods is emphasised. Therefore, the thesis investigates

this question based on two scenarios focusing on high-resolution data at component

level and the conditional abstractions necessary at fleet-level.

1.2.1 BHA-PCBA fleet-level

The high level of specialisation of BHA tools, extended development cycles, space

and hardware constraints, real-time monitoring data bandwidth limitations, insuf-

ficient digital infrastructure, and the harsh, dynamic operating environment chal-

lenges current maintenance practices. Determining failure precursors for individual

electrical components is time intensive and costly for BHA electronics. Despite the

digitalisation which the oil and gas industry undergoes, the transition to novel data-

driven maintenance strategies is impeded, partially due to a conservative industry-

specific mindset. BHAs provide sensible amounts of monitoring and performance

fleet-level data which is directly and indirectly related to the failures of electronic

assemblies, i.e. the PCBAs. So far, however, this data is not leveraged. Reasons

are manifold, e.g.: limited data-transfer bandwidth during drilling; reduced data
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acquisition and storage resources within the tools allowing only low data resolution;

data-silos; limited information of failure modes and their propagation, sensor place-

ment, interaction of various sub-modules, and integration of legacy components.

All these factors limit the development of data-driven maintenance methods for BHA

electronics. Nonetheless, BHA-PCBAs hold a number of electronic components

whose proper functioning is critical for the entire BHA. These mission or safety

critical components may require more precise performance monitoring. Enabling

data-driven maintenance at the component-level for such individual electronics in

the BHA changes the requirements in terms of data quantity, data quality and data

resolution. To illustrate the complexity arising at the component-level, I consider

one selected component representative for the electronics in BHAs which is presented

in the following section.

1.2.2 EMR component-level

By far not limited to the use in downhole tools, EMRs play a safety critical role

in various industrial systems. Automation has supported an improvement in EMR

manufacturing and reliability. Population based methods have proven to be a cost

efficient solution to determine the reliability of bulk produced EMRs, where the pre-

dominant effort, to date, aims to quantify the degradation of EMRs using classical

reliability theory [37, 38]. Thus, EMR related maintenance strategies continue to

rely on traditional preventive maintenance approaches, e.g. Mean Time Between

Failure (MTBF). Whilst such approaches might be acceptable in low-risk activities,

high consequence environments such as deep drilling applications, require tailored

maintenance strategies. Here, an EMR will be subjected to specific direct and indi-

rect ambient loading, rather than being in conformance to generalised operational

requirements expected of bulk produced quantities. In consequence, the use of pre-

defined life-cycle estimates for maintenance management schemes often results in an

early replacement of operationally viable EMRs [15]. Likewise, classical reliability-

based testing methods have been increasingly challenged in terms of test duration by

the extended durability of the current generation of EMRs [38]. Lastly, the objective

of past research centres around the definition of expressive performance indicators

evaluated on data aggregated only over initial actuations [39, 40]. Distinct challenges

of current methods are: computationally inefficient for in-situ deployment; limited

generalisation; models predominately trained on constrained data sets and feature

selections; non-representative life-cycle data; reliance on classical performance indi-

cators (Contact Resistance (CR), Bounce Time (BT), Pick-Up Time (PT), Release

Time (RT), Arcing Time (AT), etc.) which are difficult to obtain within an in-

dustrial setting and suffer from significant fluctuations. All these factors render

traditional, threshold-based degradation models to determine the EMR-End Of Life

(EOL) inefficient.
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Monitoring EMRs has been traditionally cost prohibitive in many applications.

However, in line with the digital industrialisation there is an unprecedented access

to large volumes of system and component monitoring data and subsequent ana-

lytics that hold the potential to improve the derivation of enhanced EMR models

for maintenance purposes [22]. Nonetheless, transitioning to industrial applications

entails barriers [41, 42]. Among others, uncertainty and a sensible, efficient embed-

ding of physical, data-driven, or hybrid models into existing digital infrastructure

has to be considered [27]. In this scope, enabling modern maintenance strategies

by creating actionable insights from data through data-driven prognostics is con-

fronted with high volumes of Multivariate Time Series Data (MVTD). With the

advent of Artificial Intelligence (AI), research is addressing this challenge using ML

and increasingly DL for, e.g. Remaining Useful Life (RUL) prediction of electronics

[43, 44, 21, 45, 46]. Standalone approaches relying on Convolutional Neural Network

(CNN) architectures or in combination with Recurrent Neural Network (RNN) ele-

ments employing techniques such as MVTD imaging [47] resonate with high volumes

of data as recent publication demonstrate [48, 49, 50, 51, 52, 53, 54]. In particular,

CNN based models are popular, cf. methods that link Convolutional Auto Encoder

(CAE)s for automated feature extraction with RNN-based architectures [55, 56]. A

substantial amount of research exploits DL for RUL estimation because these meth-

ods scale with high data volumes. However, high volumes of MVTD still pose a

challenge, in particular very long input sequences.

1.3 Research contributions

BHA-PCBA maintenance support framework: The utilisation of downhole

tool memory data for data-driven maintenance of BHA electronics presents a first-

time adoption in the oil and gas industry sector. This research brings a distinct

contribution to the utilisation of ML on electronics for harsh environment deploy-

ments with an analysis extended into actionable decision making for operational

considerations at fleet-level. In this instance, fleet-level refers to the entire fleet of

BHAs made up out of the newest tool generations but also legacy tools. This fleet is

distributed around the entire globe and comprises more than 10000 interchangeable

units.

1. A detailed review of topical literature concerning the application of data-driven

strategies in the oil and gas industry with a focus on novel, operational support

and maintenance decision making.

2. Analysis of the state-of-the-art in reliability and maintenance using AI evi-

dencing that downhole tools employing such techniques are underrepresented

at the moment.

3. A comparison of current industry standard maintenance strategies with novel
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data-driven strategies that assess the central barriers which prevent a wider

implementation of data-driven approaches.

4. A data-driven ML support framework (Random Forest and XGBoost) for

maintenance optimisation and operational support is developed and evalu-

ated. It estimates the probability of PCBA failure within a BHA prior to

an upcoming maintenance action. The algorithms are trained on aggregated

downhole tool memory data; disregarding the failure mode, the method pro-

vides information of whether to conduct maintenance on the electronics or to

issue a re-run of the BHA.

5. The results are extended into a commercial analysis, demonstrating the value

of the methodology under various scenarios of infield failure costs and fleet

reliability levels.

EMR life-cycle data set: As identified through a review of the state of the art, one

central challenge for the development of data-driven prognostic strategies, in partic-

ular for the EMR, is the unavailability of high-volume and high-resolution life-cycle

data, i.e. data sets containing the entire life-cycle within a controlled experimental

environment. Therefore, such a life-cycle set for EMRs has been collected.

1. Development of an EMR life-cycle test platform that samples data continu-

ously at high rates over the entire EMR life; dedicated Printed Circuit Board

(PCB) to facilitate the exchange of the device under test and to enable switch-

ing a control circuit and a secondary circuit for CR measurements.

2. Aggregation of two EMR life-cycle data sets comprising unsealed and sealed

EMR experiments.

3. An extensive review of failure modes and failure mechanisms of EMRs and

distinct characteristics of switching EMR contacts in DC circuits.

4. A structured overview and critical analysis of commonly employed EMRDegra-

dation Indicator (DI)s, i.e. extracted indicators which can depict the degrada-

tion trend. Among those DIs, CR is frequently applied. However, as demon-

strated through the experiments, CR is subject to significant, random fluctua-

tions due to surface oxidation processes if unsealed silver-plated EMR contacts

are used. Dependent on the operating environment, this renders CR superflu-

ous in a prognostics context.

EMR prognostics pipeline: Electromechanical components such as EMRs are

omnipresent in electrical systems. A data-driven prognostics approach has the po-

tential to improve EMR reliability in a maintenance context. Unlike previous work,

high volumes of monitoring data are exploited which are commonly found in indus-

trial systems to determine the EOL of EMRs (no invasive measures are used).

1. The first exhaustive, critical, and comparative review of research concerned

with novel data-driven operation and maintenance strategies for EMRs.
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2. Considering the characteristics of the Temporal Convolutional Network (TCN),

a prognostic DL pipeline capable of providing actionable maintenance support

is introduced. The significant qualities of the framework are its computational

efficiency and its capability to take arbitrarily long MVTD inputs without an

increase in the number of trainable parameters. Lastly, using Monte Carlo

Dropout (MCD), a computationally efficient method to approximate the un-

certainty of the forecast during inference is adopted to the specifics of the

proposed approach.

3. As TCN is a novel DL architecture, the effects of distinct hyperparameters

on the model performance are analysed under consideration of the number of

trainable parameters and data-ingestion strategy.

4. The superiority of the statistical feature set based on Contact Voltage (CV)

and Contact Current (CI) measurements is demonstrated in comparison to

conventional features, e.g. CR, BT, AT, etc. which are traditionally used to

assess EMR degradation.

5. A detailed analysis of the experienced failure mechanisms is performed.

1.4 Thesis structure

Figure 1.1 presents the layout of the thesis.

Chapter 2.2 provides an introductory presentation of the governing concepts of

reliability and maintenance to which the field of Prognostics and Health Management

(PHM) and its methods are closely linked. Relevant to PHM, key concepts of AI

are presented and the respective considerations for tailoring a prognostics framework

are discussed. This chapter closes with a discussion of the stimulating technological

developments and trends that enable PHM based on a comparative analysis of trends

in the oil and gas industry.

Chapter 3 discusses the background of the two respective case studies namely the

Bottom Hole Assembly (BHA) in an oil and gas context and the Electromagnetic

Relay (EMR) whilst highlighting the unique challenges.

Chapter 4 extends the prior analysis of these two respective case studies, providing

an exhaustive, critical analysis of the state-of-the-art of PHM related research.

Chapter 5 presents the developed methods for BHA-PCBA maintenance classifi-

cation and EMR-RUA estimation.

Chapter 6 details the developed EMR life-cycle experiment and summarises the

collected data sets.

Chapter 7 highlights the findings of the two developed prognostic methods ver-
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Figure 1.1: Thesis road-map.

ified on the experimental data, reviewing inter alia improvements through model

hyperparameter tuning, sub-sampling strategies and feature engineering. Further, a

detailed study of the EMR failure manifestation is performed.

Lastly, Chapter 8 summarises the findings and discusses future research.
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Chapter 2

Prognostics and health

management

Introduction

The goal to reduce operational and Assembly Maintenance Overhaul (AMO) re-

lated costs in order to increase the availability of industrial assets is the central

force behind the development of novel, data-driven monitoring and maintenance

strategies. The industrial digitalisation provides the necessary means to accomplish

such transformation, e.g. digital industrial ecosystems or Big Data Analytics (BDA).

Along these lines, the remainder of this chapter discusses the underlying concepts

of reliability which relate to governing maintenance approaches. Further, the de-

velopment of novel maintenance strategies within the domain of PHM, methods,

and considerations are detailed. The chapter concludes highlighting the challenges

and opportunities of the digital industrialisation, in particular for PHM, based on a

survey of the oil and gas industry 1.

2.1 Reliability and maintenance strategies

The notion of reliability has first been coined, when, in the 1960s, mathematical

concepts of probability theory were adopted to an engineering domain [1]. Here,

reliability is defined as the probability of a component or system to operate over a

given time, within its specifications [2]. The reliability decreases over time, whereas

the probability of failure increases. Reliability engineering aims to ensure low fail-

ure rates and high availability over the designated operation time [3]. Estimating

reliability metrics is achieved using population-based testing methods. To this end,

reliability theory incorporates a toolbox of statistical methods. For example, an

1Parts of this chapter have already been published in my journal or conference arti-
cle: L. Kirschbaum, et al., (2020) and L. Kirschbaum, et al., (2022).
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established method used to describe population-based failure rates is known as the

bathtub-curve, cf. Figure 2.1. The first section of the trajectory exhibits a decreasing

failure frequency due to a high initial failure rate of a tested population of, e.g. com-

ponents. This can be attributed to originally weak or faulty components. Once such

components have failed the curve transfers to a stable phase. From now on, failures

occur randomly at an almost constant rate where the actual operating time has a

negligible influence. The third section is referred to as wear-out phase. The error

rate increases as fatigue processes accelerate. Based on this assumption the defined

useful life ends prior to the wear-out phase. An independent group of components

might be subject to numerous failure modes and mechanisms, each following their

own life distribution. Reliability theory makes use of a set of statistical distribution

functions in order to represent these different failure distributions within popula-

tions. Commonly assumed distributions are the Exponential-, Weibull-, Normal-,

or Lognormal-distribution. Thus, using a reliability centric approach an average life

distribution is estimated for the component or system from a population of samples

which is then projected to the individual component. Thereby, however, the actual

operation conditions and environmental influences on the degradation process are

neglected. This challenges traditional maintenance such as reactive and preventive

strategies, in sight of increasingly complex components or system assemblies.

Figure 2.1: Schematic of the bathtub-curve, a common assumption for population-based
failure behaviour in reliability engineering.

2.1.1 Reactive maintenance

Historically, a reactive or run-to-failure maintenance policy has been adopted under

the paradigm: an asset is operated until it fails. Advantages of this maintenance

strategy are minimal hold-ready resources, trained personal, and maintenance in-

frastructure. Reactive maintenance suits small, low-cost, and easily replaceable

machinery [4]. However, for critical systems a failure might entail serious conse-

quences, impacting other assets, or the safety of personnel and the environment. A

significant amount of time might be required for repair causing extended periods of

costly downtime.
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2.1.2 Preventive maintenance

For this reason, a reactive approach may not be suitable in many instances where

failure is costly or catastrophic. Preventive maintenance follows a time-based sched-

ule, as it aims to perform a proactive, corrective action in advance in order to avoid a

fault or failure as well as increasing system availability and life [5]. Such time-based

maintenance intervals are predetermined. Their duration is derived through reliabil-

ity testing, from historical data as well as manufacturing and expert knowledge [6].

In general, maintenance intervals are designed in such a way that only one to two

per cent of all assets break down prior to the scheduled maintenance [7]. Preventive

maintenance has proven to be a functioning method if degradation of components is

well understood and systems are statically operated. Further, it is well suited where

constant condition monitoring is not feasible in terms of complexity or costs. Thus,

high levels of reliability have been achieved in the past through the employment

of preventive maintenance strategies. However, preventive maintenance does not

consider the real operating conditions and loads that components and systems ex-

perience over the course of their operational life. An early maintenance action risks

additional costs, while the occurrence of a failure prior to a maintenance action may

lead to unscheduled downtime [8]. Hence, the economic efficiency of this approach

heavily depends on a well established maintenance scheme closely correlating to the

true time of failure. Another disadvantage is the rigid setup of this method which is

not easily adopted to dynamic operations and harsh environments. Along the lines

of preventive maintenance, various metrics have been established, such as reliability-

and hazard-functions as well as the Mean Time To Failure (MTTF), Mean Time To

Repair (MTTR), or Mean Time Between Failure (MTBF) [3].

2.2 Overview

The Joint Strike Fighter programme of the US Airforce, in the early 1990s, has been

the first to introduce the concept of Prognostics and Health Management (PHM) in-

tended to improve reliability of US Airforce assets [9]. Unlike reliability theory, PHM

prioritises the state prediction of individual system deviations over population-based

statistical knowledge. The spread of PHM to sectors outside the aviation industry is

largely driven by the prospect of reliability improvements, cost reduction, the avail-

ability of sensor technology, and the means of processing and analysing the collected

data [10, 11, 12, 13, 14]. PHM which incorporates novel maintenance strategies is an

emerging engineering discipline drawing from the fields of computer science, relia-

bility theory, and domain specific expert knowledge. Condition Based Maintenance

(CBM), PdM, or Prescriptive Maintenance are concerned with the transfer of PHM

methods into actionable maintenance strategies. Figure 2.2 illustrates the relation-

ship of PHM to classical maintenance strategies. PHM aims to provide a holistic
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solution, in some instances from the design stage onwards [15]. It is recognised

as an efficient systemic approach to technologies and methods aiming to optimise

operational control, improve asset lifetime, reduce maintenance intervals and costs,

whilst mitigating system downtime [16]. It can also support qualification testing of

components to guarantee reliability requirements [13, 17]. General frameworks to

support the PHM workflow are being developed and, simultaneously, established as

domain specific standards [18, 19, 20, 21]. To guide the development of PHM, ver-

ification and validation methods, as well as general performance metrics have been

proposed [22]. Several successful PHM implementations are reported, even though

its application tailored character delays a more general dissemination [10].

Figure 2.2: Schematic of PHM as a governing engineering discipline providing the methods
for diagnostics and prognostics applications.

2.2.1 Key concepts

As illustrated in Figure 2.2, diagnostics and prognostics are important concepts

within PHM. Diagnostics refers to the detection, isolation, and identification of a

fault or failure [23]. The detection of a faulty condition is associated with an assess-

ment of the severity of the degradation [24]. Less advanced than diagnostics [25],

prognostics acts on the assumption that every component or system degrades over

the course of its lifespan and fails eventually. Thus, it is concerned with modelling

and extrapolating the process trajectory to the EOL, i.e. estimating the time to fail-

ure, on conjecture of past, current, and expected load profiles [15, 18, 26]. For the
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prognostics approach, the RUL or a representative damage accumulation indicator

referred to as Health Index (HI) are typical prediction targets. While the RUL pro-

vides a direct interpretation, the HI needs to be extrapolated up to a threshold [27].

RUL, as per Figure 2.3, refers to the time over which a component or system can

perform its specified function. Detecting the deviation from its default operating

state and extrapolating its propagation into future states allow failure mitigation

and optimised maintenance intervals incorporated in, e.g. PdM.

Figure 2.3: Simplified schematic of RUL estimation.

2.2.2 Frameworks

Various reference architectures have been established which describe the core ele-

ments of PHM in order to reduce ambiguity in development and implementation

[28]. The National Institute of Standards (NIST) lays out the essentials of a PHM

system as it distinguishes consecutive diagnostic and prognostic techniques [29]. The

strategy puts a workflow forward where performance measures are continuously ex-

tracted from aggregated, preprocessed sensor data and ingested by a prognostic

model. The system’s degradation process is estimated and maintenance planned

accordingly. This understanding of PHM is complemented by the IEEE-Std. 1856-

2017 for electrical systems which elaborates on three PHM core components: sen-

sors, health-monitoring and assessment, and health-management [18]. First, sensors

are installed to collect system data. Second, the aggregated data is analysed to

assess the system state, i.e. fault detection, isolation, and identification. Facilitated

by a prognostics model, performance metrics are derived. On this basis an advisory

function is interpreting the results depicting the predicted degradation or rather

the development of the future system performance. Third, the health-management

process aims to return the system to its default conditions by recovering from fail-

ure. It can incorporate functionality which, additionally, suggests advice for repair

and maintenance as well as the mitigation of anticipated failures by adjusting the

operation regime accordingly. A systemic view of PHM is proposed by [26], like-

wise defining a three layer PHM arrangement. Observe - system health data is

continuously collected and preprocessed which involves de-noising and feature ex-

traction. Analyse - the system state is determined to assess the level of degradation.

Therefore, a diagnostic model identifies and isolates faults. Following the health as-

sessment, a prognostic model - under consideration of the asset’s history - derives a
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Table 2.1: Software tools for PHM.

Ref. Name Developer GUI Description
[31] PHM Software CALCE Yes A PHM toolbox that handles data pre-

processing and feature extraction. Various ML
models are implemented for anomaly detec-
tion, diagnostics, and prognostics tasks.

[31] PHM Maintenance
Planning Tool

CALCE Yes Modelling of PHM implementation costs and
maintenance planning.

[32] Predictive Mainte-
nance Toolbox

MATLAB Yes Diagnostics and prognostics modelling based
on condition monitoring data using, e.g. sur-
vival models or NN.

[33] Prognostics Al-
gorithm Python
Package

NASA No Physics-of-failure models for diagnostics and
prognostics applications.

[34] Pysurvival Pysurvival No Various parametric, non-parametric, and en-
semble algorithms for modelling the RUL.

RUL forecast with an associated measure of confidence. Once, new data is available,

the diagnostic and prognostic model are updated. Act - based on the estimation

of the prognostic model a health management function proposes the best action to

transfer the system back to its default, healthy operational state. In conclusion,

common among all reviewed frameworks, PHM consists of a set of structural, inter-

dependent elements: sensing and processing hardware, a diagnostics or prognostics

method, and an implementation of a health management function. Health manage-

ment adapts the results of the prognostic approach and supports the maintenance

decision making process to ensure the system integrity [26], either human-guided

or automated [15]. ISO-13381-1 proposes a standardisation of prognostics taxon-

omy. The standard interlinks aspects of health management with prognostics which

allows to use the prognostic information for maintenance decision making [30]. In

particular the diagnostics and prognostics modelling aspect of these frameworks has

been implemented in various software solutions used within industrial and research

applications. Table 2.1 summarises a number of relevant developments.

2.2.3 Methods

The broad field of methodologies that PHM includes is commonly divided into three

major areas, cf. Figure 2.2. Ultimately, the selected method depends on the phys-

ical understanding of relevant degradation processes, the availability of data and

hardware as well as the requirements on model explainability [35] (refer to Chapter

2.4). Physic-based methods translate the physical nature of the designated sys-

tem into a deterministic mathematical representation which depicts the degradation

[26]. Physical models, sometimes termed physical damage models, are restricted by

underlying assumptions enabling an analytical description of component or system

inter-dependencies [10]. Such approaches are successful if a profound understanding

of the degradation processes can be adequately mapped through a physical model
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Table 2.2: Comparison of PHM methods.

(I) Physic-based, (II) Data-driven, and (III) Hybrid
(I) The parameters of physical damage models are estimated from measured
data.

Approach (II) Statistical and AI approaches extract trend information from the data.
(III) Fusing physic-based with data-driven methods, either in series or in par-
allel.

(I) Accuracy; provides an understanding of the present state estimation; less
data required.

Advantages (II) Less knowledge regarding the physical degradation processes is required;
a wide range of powerful methods is available that can handle large amounts
of data.
(III) Compensating for drawbacks of the individual methods.

(I) Deducing an adequate physical model is challenging when the system com-
plexity increases; transfer from laboratory conditions affects the model perfor-
mance; parameter estimation is affected by measurement noise and uncertainty.

Disadvantages (II) High volumes of quality life-cycle data at different operational conditions
are required; black-box models suffer from poor explainability.
(III) Complex implementation.

[25]. Therefore, domain-specific expert knowledge as well as an extensive study of

failure modes on a sub-component or even material level is required [28]. The param-

eters of physical models need to be estimated from collected data by methods like

Kalman Filtering or Particle Filtering [17]. Unlike physical models, data-driven

approaches are the preferred choice if a physical model cannot be obtained [36, 37].

Operational data, time series data, failure data, and reports to assess the system

or component state are used to derive, e.g. the RUL without the need to explic-

itly model the physical processes [19]. Along traditional statistical approaches such

as Gaussian Process Regression or Hidden Markov Models, AI is a popular field

for data-driven PHM ranging from ML methods like Random-Forest to DL strate-

gies [38]. A hybrid approach fuses physical and data-driven methods in order

to compensate for the limitations of each individual approach [14]. Hybrid-series

approaches use data-driven approaches to infer missing data for physical models

[26]. If data-driven methods complement physical models to account for aspects

not tracked by the physical models they are referred to as hybrid-parallel [35]. A

comparison of the approaches is presented in Table 2.2.

2.2.4 Condition-based, predictive, and prescriptive mainte-

nance

Industries with a paramount focus on safety and availability such as the energy

or aviation industry are striving to evolve their policies from reactive or preven-

tive maintenance towards more dynamic maintenance paradigms with the intention

to improve the scheduling of the maintenance action and to reduce related costs

19



Chapter 2: Prognostics and health management

[39]. Such novel approaches, as illustrated in Figure 2.2, are Condition Based Main-

tenance (CBM) and Predictive Maintenance (PdM) situated within the realm of

PHM. By collecting (real-time) condition monitoring data through sensors, a more

accurate picture of the asset’s deterioration can be derived. Condition monitoring

through processing this data can be applied to report imminent faults. CBM and

PdM adopt such strategies. Note, however, a persisting terminological inconsis-

tency because the concept of PHM has evolved over the last decade. CBM enables

maintenance work to be carried out when the current measured condition no longer

meets the expectations of a regularly operating system within the defined framework

conditions [40]. In PdM, using a prognostics method, a failure event is predicted.

The anticipation of the failure is the main advantage of PdM over conservative

maintenance strategies [22]. PdM updates the maintenance frequency and reduces

unplanned downtime whilst minimising too early maintenance. Hence, its dynamic

nature makes predetermined intervals superfluous and improves safety and reliability

by avoiding unscheduled maintenance. Further, it simplifies logistic aspects of spare

part availability [18, 15]. Based on this, Prescriptive Maintenance (PrM) extends

the concept of PdM. Including the capability of making appropriate operational

adjustments PrM issues maintenance actions through a strategic feedback that up-

dates the maintenance policy [41]. The prognostics model, for example, anticipates

the failure. The subsequent prescriptive method determines the optimal point for

maintenance in consideration of future loading and supply chain availability con-

siderations [42]. Research is concerned with all these aspects, developing advanced

sensing technologies for condition monitoring, distinct methods to detect impending

faults from the streamed data, forecast the fault propagation, and the methods used

to optimise the subsequent maintenance decision making [43, 44].

2.2.5 Challenges

Regardless of the methodological approach, there are fundamental challenges op-

posing the ready installation of PHM in industrial settings. General guidelines are

required to standardise data aggregation across the entire industrial infrastructure

[45]. It is opposed by location dependent factors, a changing dynamic operation

environment, and considerable signal noise [46]. Thus, the chosen approach needs

to be sensitive enough to reliably detect state changes, classify known faults, detect

unknown faults, but should be invariant to noise. Data availability is often lim-

ited; moreover, historical data sets might not be available in digital or standardised

form. Computational efficiency plays a crucial role in order to alleviate front-end

systems, also with regard to energy consumption. It poses a deployment challenge,

since the volume of sensing sources is growing, whereas embedded computing re-

sources remain limited. Industrial fleets, usually, consist of various generations of

assets developed and serviced over long time spans. They require specific knowledge
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for each asset generation because they may exhibit distinct fault characteristics.

Therefore, the success of PHM is constrained when the required sensing technology

is to be retrofitted into legacy systems [47]. The extent of these challenges depends

on the industrial sector; the success of PHM is bound to the availability of data

and in turn significantly influenced by the maturity of digitalisation. Thus, the key

technological enabler is considered to be the Industry 4.0 of which the Industrial

Internet of Things and BDA represent core elements [48]. Lastly, the adoption of

these technologies challenges existing domain expertise. Therefore, besides the dis-

semination of smart sensor technology and secure cloud infrastructure to facilitate

BDA, the trust of stakeholders plays a central role, since the implementation of a

digital ecosystem acts as backbone technology for successful PHM. In Chapter 2.5

these implementation challenges, the opportunities, and the existing reservations

are illustrated based on the oil and gas industry.

2.3 Data-driven techniques

Individual electronic and electromechanical components often comprise complex

electronic assemblies that interact and influence each other. Hence, a model needs to

be able to depict or consider the system interactions with respective subsystems and

its environment [25]. Thus, with such rising complexity, physical models might not

be a viable solution due to the associated development and implementation costs,

since deducing the relevant physical principles becomes infeasible [17, 49]. Data-

driven approaches provide an alternative. Industrial assets are armed with abundant

sensing equipment already capturing a wide range of condition monitoring data (vi-

bration, temperature, pressure, etc.), images, videos, and maintenance reports [46].

This accumulation in sensing capabilities, enabled through improvements and avail-

ability of sensor and computing hardware, calls for data-driven methods [25]. In

combination with supporting historical data, such techniques provide readily im-

plementable, computational and cost efficient alternatives to physical models which

reduces or mitigates the need for specific expert knowledge [13, 28, 36]. Generally,

using some ML method, patterns and trends are first extracted from the measured

signals and then correlated with their respective failure class or a cumulative degra-

dation measure. As stated, the probability of failure prior to a maintenance action or

the RUL are common prognostic targets [25]. At the same time, the sole reliance on

data poses a disadvantage. The reliability of the proposed method highly depends

on the complete coverage of healthy and faulty operation states and the accuracy of

the aggregated data [15].

Figure 2.4 illustrates the plethora of methods that can be applied or combined.

Traditionally, statistical methods have been used on failure data, e.g. counting

the number and time of failures for a population. Increasingly, they are directly
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Figure 2.4: Statistical methods and ML might require higher levels of feature abstraction.
In contrast, representation learning methods such as DL can learn simple and higher levels
of abstracted feature representations directly from the raw data.

applied to condition monitoring data. Statistical methods derive a representation

from the data (for example in the form of a Probability Density Function (PDF))

that correlates with an expected healthy operation state and, concurrently, rejects

new observations if they do not match the derived statistical properties [13, 36].

Statistical methods assume underlying statistical characteristics, e.g. normally dis-

tributed data. However, this assumption does not hold true in many real world

applications, where the underlying PDF is not easily obtainable, especially in the

presence of high-dimensional data sets. As a rule, parametric and non-parametric

approaches are distinguished. If the data follows the assumed distribution para-

metric methods derive their parameters on basis of the assumed distribution. If

no assumption regarding the statistical characteristics of the data can be made be-

cause the underlying physics cannot be accurately identified and the evolution of

the deterioration process cannot be traced, then, non-parametric methods can be

applied [50]. The number of parameters used by non-parametric methods is not

restricted. Like parametric methods, a wide range of non-parametric methods have

found application for PHM, cf. [51].

Apart from statistical methods, more recently, several AI approaches have been es-

tablished. The common defining denominator of these methods is the ability to au-

tomatically learn given tasks or patterns from high volumes of data without the need

for explicit programming and annotation [52]. As to diagnostics and prognostics, this

implies a direct mapping of the degradation to the target variable (for example the

RUL) from processed data inputs through a learnable model, i.e. learn-by-example

[17]. Generally spoken, an AI model aims to minimise an objective function over all

training examples. Thus, it measures the error, i.e. the distance between a predicted

value and a target. Improving the model’s performance is achieved by iteratively

adjusting the weights or parameters of the model which can be many millions in the

case of DL models. Three general approaches are distinguished, namely supervised

learning, unsupervised learning, and reinforcement learning. Supervised learning

maps an input to a provided output. This mapping is learned from the labelled
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data, i.e. the target [53]. Within supervised learning, classification tasks (e.g. a

set of discrete values referring to individual fault classes) and regression tasks are

further distinguished. While classification is used for diagnostic purposes, regression

is of value to prognostics by forecasting RUL. If the desired output is unknown, e.g.

various unidentified fault classes, unsupervised learning methods isolate groups

of similar samples by identifying patterns in the input data, e.g. the correlation of

an operational pattern with a distinct fault state. Unsupervised learning can be of

interest for anomaly detection in systems where faults occur infrequently and, in

consequence, no such labels are available [46]. Relevant to the optimisation of main-

tenance scheduling, reinforcement learning is concerned with learning to take the

best course of action within a certain environment through trial and error, cf. [54].

In a prognostics context transfer learning may be of interest to account for changes

in operating conditions, cf. [55]. Lastly, as hybrid diagnostic or prognostic solutions,

ML and DL models can be interwoven with physical cause-effect information [56].

The applicability of data-driven strategies to detect deviations from the expected

operational state, e.g. AI for PHM is subject of extensive research. As a rule, in

a first instance research is concerned with the detection of anomalies [57]. Only in

subsequent stages the classification of operational states, faults and failures, as well

as predicting the trajectory of the degradation are of interest [15, 25]. Consider the

example of an electrical component, namely the Insulated Gate Bipolar Transistor

(IGBT). First, based on collected historical data, in [58] a method using a distance

measure for anomaly detection of IGBTs is presented. Then, in [59], not only

the non-nominal operating state of IGBTs is detected, but also fifteen different

fault modes are classified as part of a diagnostics framework. Lastly, the authors in

[60, 61] evidence how data-driven methods are used to estimate IGBT-RUL applying,

e.g. Neural Network (NN) or Fuzzy-Logic relying on Accelerated Life Cycle Testing

(ALT) data.

2.3.1 Machine learning and deep learning

ML algorithms such as Support Vector Machine (SVM), Decision Tree (DT), or

K-Means Classifier are used for prognostic applications. However, these classical

ML algorithms are limited in their capability to process raw data [52]. They often

face poor generalisation, despite a variety of techniques for feature engineering that

highlight discriminative aspects or suppress noise. For prognostics carefully hand-

tuned, expert-engineered features depending on intrinsic domain knowledge are used.

Representation learning in general (methods which learn the salient information

for, e.g. classifying an input) and DL in particular circumvents this critical step

automatising the feature learning from a raw, generic input [17].

DL is a modern term for the use of NN in the field of AI. A strong scientific and
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industrial interest in the capabilities of DL has been initiated by the recent increase

in computing performance. This, in turn, is driven by the development of Graphics

Processing Units (GPU)s, BD, and an improved access to these resources [52]. Con-

trary to the early adoptions of NNs composed of two or three consecutive layers,

nowadays NN architectures can be made up of multiple hundred layers, hence, the

term deep learning. The many-layered models containing trainable parameters in

each layer propagate an input to an output via a series of linear or non-linear map-

pings. Salience of relevant features is increased with each subsequent layer which

enables the model to learn multiple abstractions of the input representation [52].

Non-linear deep networks represent intricate functions able to register small rel-

evant variations whilst suppressing irrelevant information contained in the input.

DL excels on the detection of hidden structures and patterns in high-dimensional

and spatially large inputs as the success of relevant research in classification and

regression tasks has demonstrated. Applications are manifold such as image, text,

and speech recognition [62, 63]. Other examples of Deep NNs include Restricted-

Boltzman Machines in the form of Deep-Belief Networks or Deep-Boltzman Ma-

chines, Auto Encoder (AE) for denoising or feature extraction, CNN and RNN as

further detailed in Chapter 5.2.1. In a prognostics context, key properties of DL

can be summarised as follows: models can learn non-linear degradation processes

through extraction of salient features from multi-dimensional data without explicit

programming. Main disadvantages are the black-box character of these approaches

as well as the demand for large quantities of training data.

2.4 Tailoring data-driven diagnostics and prog-

nostics

The choice of an appropriate data-driven model is governed by various application

specific factors, as detailed in Figure 2.5. One can identify fundamental, mutually

related aspects such as the availability, quantity, resolution, and expressiveness of

the data. In turn, this directly impacts the prognostics depth, i.e. whether the

development of a fleet-wide, a system or even a component specific model is desirable.

The scope of the considered application decides if an online approach is required or

an offline implementation suffices. In a later instance, the tailoring of the data-

driven strategy must be guided by aspects like generalisability beyond the acquired

data set (transfer and adaption to different failure modes), operating conditions, or

types of components and systems. The remainder of this section discusses but some

selected aspects, although a multitude of factors may be considered.
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Figure 2.5: Overview of important considerations for selecting a data-driven prognostics
approach.

2.4.1 Data

The selection of the prognostics approach is guided by the type of collected data

[15]. To be more precise, it depends on the historic and future availability of the

data (in batches or as continuous streams), its quantity, granularity or resolution,

and sample size (number of individual components). Finally, the meaningfulness of

the data collected in regard to the monitored wear processes has to be considered

as it relates to the ability to map a monotone degradation process. Thus, it is non-

trivial to select a method that operates efficiently on large, heterogeneous inputs and

updates its prognostic’s forecast based on recent changes. This process is further

complicated by the fact that the amount of extracted data is growing exponentially

along with the techniques to collect it [46].

A significant challenge of data-driven methods is the demand for large amounts of

data. The data must cover the entire deterioration process under different operating

regimes, cf. Chapter 6 which is concerned with the creation of such a data set. Data

can be obtained from multiple sources and through different techniques. Figure 2.6

provides an overview of relevant data sources. Comprehensive sets of infield fail-

ure data that offer a complete coverage of the component’s or system’s operational

history are often not easily to obtain and costly [15]. Further, failures might occur

infrequently, since preventive maintenance actions lead to a scheduled, but early
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Figure 2.6: Data-driven prognostics require significant amounts of historical data in order
to develop models for RUL prediction. Sources of historical data have to cover different
environmental conditions, operating patterns, and failure modes which the component or
system might experience: (I) field data from already deployed equipment using condition
monitoring information; (II) life-cycle data which encompasses the generation of complete
run-to-failure data sets for multiple components or systems. This data is collected in a
laboratory setting where the exposure and influence of external factors can be controlled;
(III) simulation of life-cycle data for distinct components or entire systems.

exchange. In addition, data gathered from infield sensors does not provide compre-

hensive monitoring if not enough sensing capabilities are installed [64]. Therefore,

experimental test beds constitute an alternative to obtain run-to-failure data in or-

der to develop data-driven prognostic models. On the downside, life-cycle test beds

are expensive and require the availability of testable components or systems [17]. In

many instances, acceleration of the degradation through ALT or Highly Accelerated

Life Cycle Testing (HALT) is required to make components fail in reasonable time

[65]. This may falsify the degradation mechanisms to the point that not all fail-

ure modes are sufficiently covered. Popular life-cycle tests and associated data sets

used for benchmarking prognostic methods have been presented by [66, 67]. Lastly,

simulation has been put forward as a method to obtain large quantities of life-cycle

data [68]. However, simulating the degradation requires an in-depth understanding

of the wear processes which - similar to a physic-based model - is difficult to obtain

in case the complexity of the considered application grows.

2.4.2 Feature extraction

Prior to the development of any data-driven method, the acquired data needs to

be processed. Thus, coined as feature extraction, the derivation of meaningful data

representations from the raw signals and the subsequent denoising and compression

of an input is an established practice [64]. Features aim to emphasise hidden trends

in the raw data that are able to adequately map the component or system deteri-

oration process [69]. The feature extraction process can be automatised as further

detailed in Chapter 5.2.1.2, whereas, in prognostics it is commonly a manual, guided

process informed by expert knowledge. For example, summary statistics as in Figure
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(a) The raw data from a sensor measurement.

(b) Summary statistics for the sensed signal averaged over each window.

Figure 2.7: Feature extraction through waveform windowing.

2.7b can provide a downsampled feature representation of the original signal in the

time-domain which is useful for diagnostic and prognostic purposes [70]. Likewise,

signal processing methods inspecting the frequency-domain such as time-frequency

representations, e.g. Short-Time Fourier Transform or Wavelet Transform, are tech-

niques to derive expressive features [71, 72, 73, 74]. Prognostic applications usually

deal with some form of time series data which is distinguished from other data, be-

side its dependence on time, by certain attributes. These components are referred

to as trend, seasonality, cycle, and irregularity. Depending on the sampling rate,

real-world time series data can be considered continuous [75]. In particular, prog-

nostics is concerned with non-stationary time series data that may exhibit trends or

cyclic patterns and non-regular behaviour, induced by random external influences

and advancing fatigue.

While diagnostics requires features that aim to maximise the separability of nominal

and non-nominal operating states from the data, i.e. faulty and non-faulty classes,

prognostics is concerned with the establishment of continuous features that relate

to certain intervals in the component’s and system’s lives, i.e. how one health

state class propagates to another [76]. Thus, features are to be derived that are as

monotonous as possible (either increasing or decreasing uniformly throughout the

entire life). In this regard, the monotonicity of one given feature or a set of features

should be verified across all samples in order to only retain such features with good

predictability [64].

As shown in Figure 2.8, data preprocessing does not only involve feature extraction
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Figure 2.8: Data preprocessing steps. Failure Modes Mechanisms and Effects Analysis
(FMMEA) can guide this process.

but also feature selection. Selecting a subset from the original feature set that is

relevant to the degradation can improve model performance, reduce computational

costs, and simplify the interpretation of results [25, 26, 77, 78]. Thus, as summarised

by [79], a selected feature subset should be highly correlated with the predictive

target, but the features themselves should not be correlated among each other. For

example, in a supervised classification problem, the main objective would be to

derive a subset of features that maximise the accuracy of the model [78]. So, the

feature selection removes irrelevant and redundant features. Common measures for

feature correlation are, e.g. the Correlation Coefficient based on the covariance and

variance of two feature vectors, the Pearson Correlation, or the Euclidean Distance.

Principal Component Analysis (PCA) is another popular method to reduce the

dimensionality of the original data while retaining its relationship by ranking the

features [80]. In a prognostics context, PCA has been applied for RUL estimation

of bearings by [81]. Other approaches could be considered, cf. [78].

2.4.3 Depth of implementation

The explanatory context provided by the diagnostics or prognostics method follows

the depth of implementation, i.e. whether an entire fleet, a single system, a sub-

system, or a sole component are to be considered [17]. Table 2.3 provides some

qualitative comparison. The vast majority of current research approaches prog-

nostics from a single-unit, component-specific viewpoint rather than a system-wide

perspective [82]. Besides mechanical components such as bearings, electronic com-

ponents are of interest to diagnostics and prognostics research, e.g. Metal Oxide

Semiconductor Field Effect Transistor (MOSFET), Light Emitting Diode (LED),

IGBT, Capacitor [83]. For example, [84] presents a prognostics framework using

the least square method. The authors rely on condition monitoring data to predict

the MOSFET’s EOL at a predetermined threshold based on changes in resistance

during the on-state. Comparable prognostic applications for MOSFET-RUL esti-

mation have been proposed, cf. [85, 86]. It should be noted that the majority of

researched frameworks do only consider a single failure mechanism, i.e. die-attach

degradation [87]. Various ML approaches such as K-Nearest Neighbour (KNN),
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Table 2.3: Comparison of the requirements and the expressive power of prognostics. A
targeted maintenance action relates to the ability of the deployed model to recommend
which maintenance action to take in detail to remedy an identified failure.

Level Data resolution Number of indi-
vidual samples

Targeted mainte-
nance action

Fleet + +++ +
System/ Circuit ++ ++ ++
Component +++ + +++

Relevance Vector Machine (RVM), or SVM have been proposed for LED anomaly

detection and RUL estimation [88, 89, 90]. Likewise, e.g. Long Short Term Mem-

ory Neural Network (LSTM) and RNN have been evaluated on their capabilities to

predict RUL based on a decay of the initial light emission [91]. As it is the case

for physical models, such data-driven models rely on measurements which relate

directly to the degradation of the individual, monitored component [17]. To allow

for a timely RUL estimation, measurements must be obtained in real-time and cover

the degradation process [92]. Hence, an approach will face economical and technical

constraints in practical application due to two major reasons. First, in electronic-

rich systems, a continuously increasing number of electronic components renders

the implementation of condition monitoring and subsequent prognostic modelling

for each individual component infeasible. Second, as electronic components usually

reside within circuits, obtained measurements such as voltage, current, and resis-

tance are affected by other components of this circuit. To meet these challenges,

data-driven models have been proposed that prioritise the cumulative deterioration

state of an entire system (circuit) over the wear of its individual components. For

example, a circuit’s response is considered by [93] using a SVM diagnostic model. A

subsequent prognostic method deploys particle filtering triggered upon the detection

of a non-nominal operation. After these explanations regarding the methodologies

for component and system prognostics, finally, fleet-wide prognostics will be con-

sidered. At this scale, predicting RUL at the component level or detecting faults

is not of concern. Instead, highlighting performance deviations within a fleet is of

great interest [45]. Though fleet-level prognostics might support overall performance

monitoring of a multitude of assets, in practice it cannot enable prescriptive main-

tenance, unless a system- or component-level model for a particular asset can be

consulted. Due to the low data resolution the failure modes are not identifiable. In

turn, the automation of necessary maintenance actions to prevent a failure is not

possible. Within this realm of prognostics, concepts such as the digital twin that

target the deployment of prognostic approaches are under development [94].
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2.4.4 Embedding

Prognostics can be applied in an online fashion (sometimes referred to as on-board

health monitoring), supported through condition monitoring data, aiding real-time

mission planning [25]. For example, embedded prognostics applications enable elec-

tronics to self-test and verify their operational state [13]. Therefore, the ability of

a method under consideration of its computational complexity to produce reliable

RUL estimates is a guiding selection criterion for online prognostics. On the other

hand, if real-time estimation of RUL is not a concern, offline prognostics can be

used. Such an approach, implemented as a framework for subsequent maintenance

support, is not overly concerned with aspects of computational costs. It can also tap

into additional data sources that are not available in an online environment. Since

a forecast will not be produced in real-time, offline prognostics is selected whenever

the functioning of the monitored component or system is not predominantly mission-

or safety-critical and failures are rare [15].

2.4.5 Explainability

Diagnostics and prognostics models should support maintenance and business deci-

sions respectively. Hence, trustworthiness of these models is crucial. However, unlike

physical models, data-driven ML methods are not primed with fundamental phys-

ical principles of the application, its failure modes and mechanisms [25]. And yet,

if researched solutions are supposed to propagate into an industrial setting, the ex-

plainability of AI which entails transparency through the explanation of the model’s

reasoning is paramount [95]. The simplicity of the model remains an important con-

sideration, as gains in performance through an increase of the model’s complexity

often come at the expense of explainability [84]. For example, DT models are easy

to interpret through visualisation, but suffer from overfitting. By contrast, Random

Forest (an ensemble of DT) improves performance at the cost of explainability. Ex-

plainability not only relates to the prediction model itself, but rather to the entire

prognostics pipeline, e.g. pre-processing steps such as feature selection. An evalu-

ation of the interaction and impact of each single feature on the model’s estimate

can further improve the explanatory power [96, 97]. There are pertinent methods

deployed in ML such as Local Interpretable Model-Agnostic Explanation, but so far

they have found little application in the domain of diagnostics and prognostics, cf.

[98].

2.4.6 Uncertainty

All prognostics related applications are inevitably affected by the uncertainty of the

forecast. Hence, uncertainty needs to be explicitly addressed in order to provide a

meaningful RUL forecast [26]. Though, as later evidenced, cf. Chapter 4.2, prognos-
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tics research ignores uncertainty in many instances. The standard classification of

uncertainty into epistemic and aleatric sources can be adopted for prognostics, but

classifying uncertainty based on the occurrence along the prognostics process may

be more appropriate [17]. First, sources of inherent uncertainty in the prognostics

pipeline must be identified and quantified. They stem from production variance

within the same type of monitored system or component, unknown past loading

patterns, and current operational conditions. Equally, uncertainty induced by mea-

surement errors has to be considered. Selection of appropriate sensors can reduce

this type of uncertainty [15]. In addition to sensor noise, measurement errors, and

uncertain state estimations the future loading pattern might be unknown. Uncer-

tainty from modelling errors and selection of model parameters has to be taken into

account [99]. In this instance, increasing the sample size commonly reduces model

uncertainty.

Model uncertainty becomes especially important if DL approaches are selected, since

they are widely considered to be black-box models [100]. Prognostic applications

using DL are only recently brought to the fore which poses a challenge for an effi-

cient quantification of uncertainty. A general overview of methods for uncertainty

estimation to be integrated in DL architectures has been presented by [101]. A

Bayesian approximation, termed MCD, to estimate predictive uncertainty has been

proposed by [102]. It has been evaluated for prognostics, applied to steam gener-

ators and lithium-ion batteries in order to derive confidence bounds by [103, 104].

This method is further detailed in Chapter 5.2.6.4.

2.5 Survey of the digital transformation in the oil

and gas industry

The efficiency of upstream, midstream, and downstream operations is crucial for the

oil and gas industry. On one hand, due to the strong volatility of oil and gas prices,

on the other hand, due to overall challenging energy market conditions in combi-

nation with stricter environmental regulations [105]. Thus, in accordance with the

efficiency of maintenance strategies, the industry has readily identified the need to

develop application tailored methods in order to retain high levels of fleet availability

[106, 107]. Yet, one has also to consider efforts taken beyond the oil and gas ser-

vice industry [108]. Examples of novel, data-driven approaches to maintenance have

been implemented throughout the aviation industry [109], the automotive industry

[110], the manufacturing industry [14], and the offshore wind turbine industry [111].

Here, the challenges are similar, in many respects, to those faced by the oil and gas

industry. At present, in comparison to other industries, the oil and gas industry, in

particular the upstream sector, is conspicuous for its comparatively limited adoption
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of modern digital infrastructure, industry-wide standardised digital ecosystems, and

novel maintenance strategies [105, 112, 113]. Consider, for instance, the subpar de-

ployment of already collected data to guide decision making [105, 114]. As a result,

disparities between the upstream, midstream, and downstream industry and towards

other industries in terms of digital maturity are evident. This issue is reflected by the

growing number of publications and industrial surveys that are concerned with facil-

itating the digitalisation of the oil and gas industry, cf. Chapter 4.1. Such reports,

commonly, identify the digital transformation as a driver for efficiency concurrently

reducing costs - an essential process in order to meet the estimated energy demand

[115, 116]. Moreover, in order to facilitate the deployment of data-driven solutions,

extensive collaboration between key players hand in hand with less aversion towards

greater reliance on data-driven solutions is imperative [114]. A common industry-

wide framework to promote, align and verify digitalisation is being promoted under

the term Oil and Gas 4.0 [117]. As for the improvement of AMO through PHM,

governing considerations are the implementation of the required digital infrastruc-

ture, data streamlining and aggregation, a shared digital environment, an industry

wide Industrial-Internet-of-Things, and BDA [118]. Table 2.4 summarises these key

findings aggregated from selected industry surveys, providing a clear picture of the

main digital transformation barriers encountered in the oil and gas industry, e.g.:

lacking trust in the capabilities of data-driven methods and a conservative mindset;

no scalable infrastructure that facilitates data collection and analysis.

Table 2.4: Survey of oil and gas related studies that assess the state of the digital trans-
formation.

Ref. Key Findings (I), Opportunities (II), and Challenges (III)
(I) Key enabler digitalisation; terabytes of data readily available for decision making,
however, until now only small amounts of data are effectively used; estimated $1.6 trillion
potential of digital transformation; remarkable increase in application of BDA and related
technologies; essential collaboration between key players.

[105] (II) Data-driven digital life-cycle management strategies within an industry wide digital
ecosystem; data-driven, real-time cost and business models to reduce costs, improve
efficiency and safety.
(III) Conservative approach; Non-systematic, highly selective adoption of digital technol-
ogy based on rudimentary data; current frameworks limit the exchange of data through-
out the value chain; no industry-wide data/ sensor standards.

(I) Limited adaption of data-driven technologies compared to other industries; high costs,
unknown scalability, marginal improvements and uncertainties are associated with the
transition to digital solutions.

[112] (II) Declining costs for sensor technology, etc.; potential of increased efficiency and pro-
ductivity; improved resilience against market fluctuations; promotion of layered digital
integration.
(III) Fast-paced digital market impedes identification of viable technologies; few flagship
projects promoting the benefits; insufficient legacy digital infrastructure due to scale of
operations and obsolete asset databases; lack of standards; data silos.

Continued on next page
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Table 2.4 – continued from previous page
Ref. Key Findings (I), Opportunities (II), and Challenges (III)

(I) Efficient technologies will be needed to meet the predicted increase in energy demand;
standardised digital frameworks are key cost savers; majority of data-driven applications
are used for asset monitoring.

[115] (II) Digital solutions speed up complex decision making processes through an evolution
of operational and maintenance practices.
(III) Costs of digital integration; risk adverse culture opposing the transfer from physical
models towards data-driven approaches.

(I) Low level of digital transformation compared with other industries; digital technology
perceived as key tool to remain successful in the face of increasingly remote and difficult
to access conventional resources.

[116] (II) Reduction in on-site personnel through enhanced remote monitoring technologies;
provision of novel revenue sources; growing levels of automation; improved capability to
adapt to current market demands; optimisation of the asset life-cycle.
(III) Cyber-security; financial constraints; aspects of remote asset connectivity; data
integration and verification.

(I) Limited adaption of digital technologies; so far only few lighthouse projects; collabo-
ration efforts sharing data in order to develop new digital strategies and business models.

[114] (II) Improving operational aspects through, e.g. PHM; efficiency and safety.
(III) Data is only partially utilised for decision making, despite significant amounts of
data being collected; data is often not suitable for consecutive analytics; cyber-security;
lack of digital standards; despite the recognised potential a change opposing cultural
exists; requiring fully proven solution prior to implementation; limited understanding
and awareness of the potentials and pitfalls of digital technology.

(I) Striking lack of digital solutions in the upstream industry; automation of the drilling
process enables higher levels of connectivity among subsystems of the rig; industry wide
digital ecosystem to drive the transformation.

[113] (II) Connecting technologies among the entire supply chain; cross-organisational barriers
transfer the classic linear supply chain to an integrated process entailing customers and
service providers; novel data-driven strategies reduce procurement and supply chain costs.
(III) Data silos within upstream, midstream, and downstream assets; overcoming cul-
tural barriers and building trust.

(I) Costs for interconnecting industrial assets have decreased; midstream and down-
stream sectors adjust business models to cope with the changing energy landscape; up-
stream industry is asked to improve efficiency through, e.g. PHM because business model
changes are limited; digitalisation is the key technology to facilitate the transformation;
alignment of the digital road map with future, strategic developments.

[107] (II) Reducing costs and increasing revenue, through digital frameworks relying on BDA
for, e.g. project design, automatisation of the drilling process and fleet reliability.
(III) Developments of renewable energy sources challenge and limit the potential of
investments in oil and gas related technologies; digitalisation is not an independent tech-
nical consideration because it requires a corporate-wide view as well as cultural shift.

(I) PdM strategies replace traditional maintenance paradigms in the long term; they are
conceived as central deliverables from the digitalisation; establishing the infrastructure
to sustain the paradigm shift towards data-driven business models.

[118] (II) Cloud technology is perceived as an important enabler for supply chain integration;
it is critical for future, strategic decision making.
(III) Cultural resistance; shift into a digital cloud environment is conceived as threat
because it may lead to an on-premises control loss.
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Summary

This chapter laid the foundation upon which prognostics methods can be formu-

lated. The associated concepts of reliability, diagnostics, and prognostics as well as

the subsequent integration of novel maintenance strategies have been highlighted.

Special emphasis has been placed on the role and configuration of data-driven prog-

nostics. Central criteria in order to select and tailor apposite prognostics solutions

were examined. Subsequently, the general challenges of PHM and the backbone

technology setting, realised within the digital transformation, have been discussed.

It has been shown that the oil and gas industry acknowledges the potential of this

digital industrialisation. However, it is facing a laborious transition to meet the

stipulated objectives.

To further support this transition process within the oil and gas industry and to

highlight its importance, the subsequent chapters consider two scenarios, namely

the BHA-PCBA (Chapter 3.1) and the EMR (Chapter 3.2) - complex assemblies of

electronics found in downhole tools and an electromechanical component are stud-

ied. First, the failure modes and mechanisms of the respective applications are

discussed. Second, the state-of-the-art of PHM relating to each application is pre-

sented in detail in Chapter 4. In doing so, the specific, practical challenges when

deriving prognostic strategies for upstream assets and their electronic components

are extracted. Such analysis emphasises that critical applications in niche sectors

benefit from the use of data-driven methods which enable and expedite the digi-

tal transition and, thus, provide a viable alternative to physic-based models. This

is exactly where my research takes effect, since it explores the use of data, sub-

ject to restrictions in volume, variety, and resolution – aspects that predominantly

govern the development of tailored, data-driven maintenance support strategies, cf.

Chapter 5.
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Electronic Press, 2019.

[43] A Bousdekis, K Lepenioti, D Apostolou, and G Mentzas. Decision making in predictive
maintenance: literature review and research agenda for industry 4.0. IFAC, 52(13):607–612,
2019. doi:10.1016/j.ifacol.2019.11.226.

[44] A Elwany and N Gebraeel. Sensor-driven prognostic models for equipment replace-
ment and spare parts inventory. IIE Transactions, 40(7):629–639, 2008. doi:10.1080/
07408170701730818.

[45] A Voisin, G Medina-Oliva, M Monnin, J Leger, and B Iung. Fleet-wide diagnostic and
prognostic assessment. In Annual Conference of the Prognostics and Health Management
Society. PHM Society, 2013. doi:10.36001/phmconf.2013.v5i1.2311.

[46] O Fink, Q Wang, M Svensen, P Dersin, W Lee, and M Ducoffe. Potential, challenges and
future directions for deep learning in prognostics and health management applications. En-
gineering Applications of Artificial Intelligence, 92:103678, 2020. doi:10.1016/j.engappai.
2020.103678.
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Chapter 3

Considered electronic assembly

and electromechanical component

Introduction

As explained in the previous chapter, the selection of diagnostic or prognostic strate-

gies in the context of PHM follows a variety of criteria. Foremost, the application

nature and the available data are to be considered. Thus, the understanding of the

respective application is a key prerequisite.

In order to provide the necessary technical context, Chapter 3.1 discusses the im-

portance of the BHA during the deep drilling process and its built-in electronic

assemblies, i.e. BHA-PCBAs. Subsequently, the relevant failure modes and current

maintenance practices are studied. Likewise, the design and construction of EMRs

as well as associated failure modes and mechanisms are presented in Chapter 3.2,

where the focus is placed on DC electrical arcing.

3.1 BHA-PCBA and deep drilling

The Bottom Hole Assembly (BHA) is a multi-functional assembly that allows a

precise navigation of the drill bit through the subsurface and reservoir. The drivers of

this technical capability relate to the need to improve the drilling efficiency through

a more detailed understanding of the ambient geological formations 1.

3.1.1 Synopsis of the deep drilling process

In order to exploit oil and gas reservoirs, a well is drilled into the subsurface cutting

through various geological formations, cf. Figure 3.1-(a). To facilitate the drilling

1Parts of this chapter have already been published in my journal or conference arti-
cle: L. Kirschbaum, et al., (2020).
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process a rig is installed at the surface. The well is drilled following a mapped-out

wellbore trajectory. Its design is guided by information obtained through geophysical

measurements. At the lowest part of the drill string the drill bit cuts the adjacent

rock face. The BHA controls the drilling process and is situated just behind the

drill bit, cf. Figure 3.1-(b). The modules of the BHA are followed by a set of drill

collars, i.e. heavy drill pipes which increase the Weight On Bit (WOB). This force

pushes the drill bit against the rock face. As the wellbore becomes deeper more

and more drill pipes are added to the drill string from the surface. Drilling mud is

pumped continuously through the drill pipes down to the drill bit and up the drilled

wellbore at high pressures. The drilling mud exits into the surrounding wellbore at

nozzles placed within the drill bit. Then, it transports the rock cuttings back to

the surface, where the cuttings are removed and the cleaned mud is pumped back

down again. Further functions of the drilling mud (some kind of bentonite-water

mixture) are: firstly, stabilisation of the wellbore preventing it to collapse onto the

drill string by exerting counter pressure on the formation; secondly, a sealing layer

on the wellbore’s wall is formed by the drilling mud termed filter-cake. It limits

the loss of drilling fluid into the surroundings formations which becomes important

when drilling through highly soluble or permeable formations, e.g. salt or clay. As

the well becomes deeper, the drilling process is interrupted at regular intervals in

order to stabilise the newly drilled section of the well using metal tube casings.

The casing is then cemented. Hence, with each completed section the borehole

becomes deeper, but also narrower. Once in the reservoir, a horizontal section is

drilled in order to maximise the inflow area for oil or gas. The well is completed for

production through the installation of production tubing, sand screens, pumps, and

a blow-out-preventer at the surface’s wellhead.

3.1.2 BHA and downhole data transfer

The BHA provides measurement, steering and communication capabilities during

drilling; it supplies power to the downhole tools and allows control of the wellbore

trajectory, while surveying the surrounding formation. As illustrated in Figure 3.1-

(b), multiple interchangeable tools are assembled, based on the requirements of the

drilling operation. The BHA commonly exceeds a length of 9 m.

The Rotary Steering System (RSS) has been developed to allow drill-bit steering

and subsequently to control the well path. Today, two technologies are established:

push-the-bit in the desired direction by extending hydraulic pads; point-the-bit by

bending the shaft above the drill bit [1]. Measurement While Drilling (MWD) tools

determine the position and orientation of the drill string. Common measurements

during drilling are the inclination, the azimuth, and the rotational speed of the

drill string. Logging While Drilling (LWD) tools measure the characteristics of

the surrounding formations, such as resistivity, porosity, or formation pressure. A
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(a) Schematic of the drilling process.

(b) Schematic diagram of a BHA consisting of various modules such as Logging While
Drilling (LWD), Measurement While Drilling (MWD), or the Rotary Steering System
(RSS). The BHA modules contain complex electronic and electromechanical systems to
provide advanced functionality; PCBAs hold a multitude of electric components and are
embedded into the downhole tools.

Figure 3.1: Oil and gas drilling.
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turbine situated within the BHA power module through which the drilling mud flows

is used to drive a generator that supplies power to the BHA electronics. However,

in order to drive the drill bit at the rock face a so called mud motor is used - an

additional BHA module. Unlike the turbine, the mud motor follows the principles of

a progressive cavity displacement pump. The telemetry unit is usually located at the

top of the BHA. This module serves as communication link between the BHA and

the surface. Via mud pulse telemetry, data is sent to and received from the surface.

This is the only reliable technique for communication to greater drilling depths and

is standard throughout the oil and gas industry [2]. However, data transfer rates

are slow at only 10 bit/s [3].

Prior to each drilling operation, drilling service customers specify their survey re-

quirements for the expected geological formation, i.e. type of data and sampling

rate. Hereinafter, the service provider designs the BHA. There are a multitude of

mission possibilities and combinations of BHA modules. Data transmission band-

width is utilised to operate the BHA and transmit formation data. Spare bandwidth

may not be available to transmit tool health data while drilling. However, three gen-

eral data sources relevant to BHA operation and maintenance can be distinguished.

Field data is acquired during drilling and serves as the predominant source for real-

time operational decision making. It contains information such as tool azimuth and

inclination. The data received from downhole tools during drilling is truncated due

to slow data transfer rates. After completion of a run, high resolution downhole tool-

memory data is available on the surface and manually downloaded from the BHA

tools. This data may contain various sensor measurements as well as tool-specific

diagnostic information and event-logs. Personnel might enter supplementary notes.

In practice this post-run data is often not readily available, since it is only occa-

sionally downloaded during any follow-up maintenance. Furthermore, an insufficient

digital infrastructure or data regulations imposed by local authorities confine access

to this data. Maintenance data is obtained during the process of AMO. It can

provide detailed insights of BHA failure root causes. However, it is subjective, and

formats may vary widely. Like post-run data, aggregating complete maintenance

reports and converting those to a practical format is expensive and time demand-

ing due to the lack of standardisation. Table 3.1 summarises the advantages and

disadvantages of various drilling data sources.

3.1.3 Failure modes of downhole tool electronics

The growing complexity of downhole tools has resulted in an ever-increasing count of

electrical subsystems and components placed on PCBAs, larger memory storage, and

faster processors. Recall, the downhole tools and the electronic assemblies experience

a HTHP environment during drilling. Depending on the drilling method and the
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Table 3.1: Downhole tool data sources.

Data type Field data Post-run data Maintenance data
Advantages Real-time; availability;

supports onsite decisions
Tool-memory; field-
reports; event-logs

Detailed failure analysis;
cost data

Disadvantages Low sampling rate;
sparse data; additional
effort to collect and
store; quantity and
quality varies

Availability, as not com-
monly stored; advanced
expertise needed for
analysis; ignored as
no immediate payoff;
quantity and quality
varies

Low sampling rate; tex-
tual data; no concise re-
porting standard; often
subjective

depth of the borehole this exposure can range from hours to several days. Whilst

in the wellbore the electronics are subjected to ambient temperatures exceeding

200 ◦C, extreme pressures, bending stresses, and high levels of vibration [4, 5].

Thus, the variety of electronics deployed, e.g. switches and relays, Small Outline

Integrated Circuits (SOIC)s (typically as dual in line package in legacy tools), multi-

chip modules, capacitors, semiconductors, and resistors are susceptible to a variety

of failure mechanisms. Bulk quantities of these off-the-shelf components are sourced

through external suppliers. All components must be rated as high-temperature

electronics.

In order to mitigate failure and avoid accelerated ageing of BHA electronics, various

techniques have been established. Electronics are kept under atmospheric pressure

by the means of pressure barrels. Likewise, thermal effects are opposed through the

use of flasks, heat sinks, and thermal paste that improve heat dissipation and defer

the inevitable temperature increase of electronic components during drilling. How-

ever, the heat produced by the electronic components themselves will eventually

exceed the rising ambient temperature which significantly affects their durability

and performance. Sealing components are an established strategy to suppress stress

from vibration acting as a damper. Further factors that should be considered are

the component orientation, the number of components, the type of the electronic

packaging, the soldering type, and the board geometry. In addition, the PCBA

placement and the orientation within the housing of the BHA modules are decisive

factors in order to suppress effects of vibrations. Typical PCBA failures can be func-

tional, software related, physical, or a combination of the three. Figure 3.2 presents

examples of a connector damage, a semiconductor failure, and a capacitor failure.

Connection damages can be due to mechanical load, e.g. excessive vibrations. Semi-

conductor and capacitor failures may be caused by shorted circuits or overheating

which then leads to shorted circuits. Effects to consider are, e.g. electromigration

or corrosion. Various additional factors are reported that affect the reliability of

electrical components, e.g. unsteady power supply and drill string rotations per

minute [5]. However, exposure to high temperature and subsequent overheating of
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Figure 3.2: Failed BHA-PCBAs due to: (I) Connector damage, (II) Semiconductor Failure,
(III) Capacitor failure.

components is identified as the predominant cause for electrical component failure

[6]. The failure rate of downhole electronics doubles with every 10 ◦C increase in

ambient temperature [3]. High temperature reduces the strength of connections and

components. Furthermore, SOICs are especially liable to wire bond fatigue and

breakage due to the thermo-mechanical cycling the BHA undergoes during drilling.

This thermo-mechanical cycling is due to the repetitive process of drilling and re-

moval of the drill string from the wellbore in order to change the configuration of

the BHA or the drill bit. At the surface the components cool down to ambient

temperature, while in the wellbore the temperature may exceed 200 ◦C. This can

lead to failure of entire circuits due to fatigue. Moreover, lateral, axial, and tor-

sional vibrations predominantly impact the electronics reliability [7]. Note, lateral

vibrations have been identified as the principal factor contributing to the PCBA

degradation accounting for up to 29 % of vibration related MWD tool failures [8].

3.1.4 Data-driven downhole tool maintenance strategies

Current BHA electronic maintenance strategies greatly rely on reliability testing.

Though, due to the large number of subsystems and their individual components

coupled with harsh operating conditions, traditional maintenance strategies based

on offline reliability analysis are not able to match the encountered operational life-

cycle of downhole tools. Moreover, significant efforts, time, and expenditures are

needed to derive reliability metrics via traditional methods, e.g. tools like Failure

Modes Mechanisms and Effects Analysis (FMMEA) due to the diverse range of fail-

ure modes. The complexity of the tools imposes arduous procedures to adequately

reproduce failures and perform root cause analyses. Simultaneously, the required

time for AMO services of downhole tool electronics increases – concurrently reducing

fleet availability. Ultimately, an increased fleet volume is required to serve the same

customer base. The inability to find failure root causes often leads to bulk removal

of parts. Since the 1980s, a MTBF approach is widely used throughout the oil and
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gas industry in order to determine the statistical downhole tool reliability. Depend-

ing on the wellbore, the formation, and previous exposure to high temperature and

vibration levels the electronics life is typically in the range of around 100 hours.

However, MTBF is misleading if applied as a metric for downhole tool reliability [8].

The dynamic environmental and operational parameters are not consistent within

the wellbore due to HTHP and, therefore, do not fulfil the assumption of a static

operation behind the MTBF approach. Furthermore, notwithstanding an overall

improvement of downhole tool reliability, since the introduction of these metrics ev-

ery third BHA continues to remain the cause for NPT [9]. In addition to insufficient

reliability metrics, no concise definition of a failure has been issued throughout the

industry. For example, [10] lists a large number of BHA states which, depending on

the respective source, are sometimes classified as still-operational, at other times as

faulty. Moreover, in practice, determining the failure mode is often not feasible and

circuits are replaced as a whole, since NPT on the drilling rig is significantly more

expensive than such immediate, corrective maintenance action. Under these very

aspects MTBF – a solely statistical reliability-based measure – turns out to be an

overall ill-defined metric for assessing the true reliability of downhole tools and its

components. Likewise, it is difficult to make an informed maintenance decision on

this basis. Moreover, with the ongoing automation of oil and gas industry assets, the

technical and operational complexity evolves, questioning the capability of current

strategies to meet stringent maintenance requirements in the future.

3.2 EMR and electrical contacts

3.2.1 EMR operation principle

The EMR is of similar importance to downhole tool electronics, but also of general

interest within applications where it plays a safety or mission critical role. The

main task of an EMR is the electrical separation of the control- from the load-

circuit [11]. It consists of a magnetic coil, a travel armature, a spring, and a contact

pair, cf. Figure 3.3. Although the EMR has been subjected to considerable design

improvements over the past decades, the core components and working principle

remain essentially unchanged 2.

Even though alternative electrical switching devices are available, e.g. MOSFETs

or Solid-State-Relays without mechanical parts that exhibit an improved reliability,

the EMR puts a set of distinct characteristics forward [12]. It features an overall low

CR in the mΩ range which reduces switching losses; high breakdown voltage of up

to 1000 V; total isolation of the switching and control. The latter is not the case for

2Parts of this chapter have already been published in my journal or conference arti-
cle: L. Kirschbaum, et al., (2022) and L. Kirschbaum, et al., (2021).
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Figure 3.3: Schematic, simplified working diagram of the central functions and main
components of an EMR (cf. [11]).

most semiconductor-based switching components. EMRs can be employed where

switching is independent from the current direction. For example, EMRs are com-

monly the preferred choice in safety critical applications within nuclear power plants

as they can be run in a fail-open fashion [13]. However, despite miniaturisation ef-

forts, EMRs have a comparatively large form factor. In addition, the switching is

slow - in the ms range, cf. MOSFET in the ns, or Solid-State-Relays < 0.2 ms

range [14].

3.2.2 Failure modes

Due to the electromechanical nature of the EMR, its life is dependent on the me-

chanical life and the electrical life of the individual subcomponents. Generally, the

mechanical life is in the order of 107 actuations compared to the electrical life at 106

actuations [14]. An EMR is considered failed if it can no longer perform the required

switching function. Electrical, contact related failures prevail. Contact making or

breaking related failures are the predominant failure modes [15, 16, 17, 18]. Be-

side the electrical load, the EMR life is affected by the operating environment, e.g.

operating in environments with high humidity will lead to increasing rates of con-

tact corrosion. Degradation is further accelerated through elevated temperatures.

Continuous wear of the contact surface causes poor conductivity and high CR [19].

Atmospheric contamination, e.g. particles or vapours of silicons, contaminate the

contact surface and affect EMR performance. Vibrations can cause contact chat-

tering or damage mechanical parts depending on the EMR design. Though one
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can distinguish failure modes by type, multiple of the respective failure mechanisms

interact. The following sections discuss the relevant failure modes and failure mech-

anisms.

3.2.2.1 Contacts

As a rule, contact related failures occur over long duration. Such failures depend

on the applied voltage and current, load type, the operating temperature, and the

pollution of the operating environment. The root-causes for contact failures are

excessive material transfer and material loss due to electrical arc discharge and

contact bouncing [15]. A symptom of contact erosion is reduced contact force and

increased CR. Further, welding, bridging, and sticking of contacts or corrosion and

contamination (through deposition of isolating and semiconducting films that stem

from eroded and worn contact material or carbides dissolved from organic gases)

are the governing failure mechanisms. They lead to making and breaking failures,

impermissible operate and release times, respectively, an increase of CR beyond

an acceptable threshold, and high levels of contact noise [11]. An overview of the

contact related failure modes is provided in Table 3.2. A comprehensive list of

contact related failure modes and mechanisms can be found in [14].

Making failure: The inability to make a connection whilst the CR remains below

the maximum permissible CR. If the application setting is favourable for electrical

arcing, the likelihood of a making failure due to erosion and subsequent material

transfer is high [17]. In some instances an increasing CR can point to an impending

making failure. However, the actual failure starts to emerge when erosion has well

advanced and the Over-Travel Time (OT) and contact force have become too small

to enforce sufficient contact making. In general, a conjoint increase in BT can be

observed [14]. However, making failure can also be caused by preceding mechanical

failures, such as spring failure, bent armature, and coil failure.

Breaking failure: The inability to break a connection and interrupt the current

flow within the specified maximum opening time. If contacts are switched under

load, contact bridging due to contact welding may occur. Contact welding is com-

mon during contact making if bouncing is present because of the intermittent arc

discharge. If the weld is strong enough, it prevents the contacts from separating. If

contacts are welded together, CR is lower than the specified minimum CR for open

contacts. Mechanical failures preventing the contacts from opening relate to spring

or armature failures.

Operation time failure: The duration of contact making and contact breaking

exceeds a specified threshold. If the RT increases, this can be due to the spring
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degradation which may reduce the contact pull force. However, more likely are

local micro-welds across the contact surfaces that cause the contacts to stick. Both,

PT and RT are likely to increase if the coil operating voltage changes due to coil

deterioration [20].

Elevated contact resistance failure: Unacceptably high CR while contacts are

closed. Manufacturers specify the maximum acceptable CR for closed contacts (in

the mΩ range). In general, different interacting factors influence the CR which can

be distinguished by having either a decreasing or increasing effect. EMRs in storage

are subject to chemical reactions on the contact surface, such as the formation of

silver sulphides that deposit as insulating layers and, in turn, cause an increased CR

[11]. During operation under low-load changes of CR are dominated by mechanical

effects, despite occasional increases of CR through, e.g. polymerisation or corro-

sion on the contact surface. However, if the amount of carried current increases -

and the contact temperature respectively - continuous electrical fatigue due to arc

erosion inevitably reduces the contact force. In such instances, film formation in

combination with corrosion becomes the dominating degradation regime. A subse-

quent reduction of the effective contact area leads to a significant increase of CR.

Unsealed EMRs operating in high temperature environments are liable to serious

rates of contact oxidation. Mechanical actuation may rupture deposited films and,

thereby, reduce CR [21]. In addition, effects like ion-sputtering can temporally clean

the contact surface and reduce CR. One should note that an increase in CR is, in

general, accompanied by increasing levels of contact noise.

3.2.2.2 Coil and mechanical parts

Coil Long-term switching impacts the coil resistance. Deposition of evaporated

contact material particles on the coil wire or combustion of the insulation material

due to excessive heat reduce the coil’s insulation resistance [22]. Further, poorly

welded coil wires might be a failure root-cause. In general, coil failure is most likely

to happen if the ambient temperature is high which causes the coil to overheat. The

encountered failure modes are a shorted coil or changes in the pick-up or release

voltage. However, it should be noted that the likelihood of these failures is very low

in comparison to contact related failures.

Mechanical parts The wear of mechanical parts, e.g. the armature or spring,

causes a reduction in contact force or variations in contact velocity. This wear stems

from material fatigue due to vibrations or excessive heat, e.g. from high-current arc

discharges.
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Table 3.2: Contact related failure modes and mechanisms.

Modes & Mechanisms Causes
Making Failure
Reduced Contact Force Excessive contact material loss due to electrical erosion.
Mechanical Fatigue Reduction in spring force; bent or stuck armature.
Breaking Failure
Welding and Bridging Arc discharge during bouncing and a reduction in contact force.
Mechanical Fatigue Stuck armature.
High Contact Resistance
Contact Erosion Contact surface roughness increases due to ongoing material

loss and material re-deposition from electrical arcing reducing
the effective contact area.

Fretting Deposition of material on the contact surface (partially insu-
lating) due to mechanical wear.

Contamination Corrosion; film-formation from various sources, e.g. organic
particles, oxides, carbides.

Extended Operate and Release Time
Micro-Welding Formation of small, weak welds during contact bouncing cause

the contacts to stick together.
Coil Fatigue Increase in CR due to wear of insulation material from long

exposure to elevated temperature, subsequently increasing the
required pick-up voltage.

Spring Fatigue A reduction in spring force that cause a reduced pull-in force
and, therefore, a reduction in contact velocity.

3.2.3 Contact resistance

In order to understand electrical arcing and the deteriorating effects that act on the

contact surfaces during switching, a brief explanation of CR is beneficial.

3.2.3.1 Constriction resistance

Though not obvious to the eye, the nominal contact area is not the true conductive

contact area. The inherent microscopic surface roughness restricts the path of the

current flow [14, 23]. The actual contact points are referred to as a-spots. The

observed increase of CR through this limited interface compared to the resistance

via the apparent contact surface is termed constriction resistance Rconstriction. It is

subject to the elastic and plastic properties of the contact material [11, 24]. Different

shapes of a-spots can be distinguished based on the contact surface texture because

the shape of the a-spot affects Rconstriction. Usual simplifications assume square,

rectangular, or circular shapes. Rconstriction of a single, circular a-spot interface is

defined in Equation 3.1.

Rconstriction =
(ρ1 + ρ2)

4a
(3.1)

where ρ defines the resistivity of each contact body, a the radius of the a-spot. As

[14] reports, the actual contact making surface is not required to be large to cause

the constriction resistance to be low (an effective contact area of 10 µm causes

a resistance around 1 mΩ). Metallic contacts embody multiple a-spots that are
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found to be arranged in clusters. The distribution of these clusters has a negligible

effect on CR in practical applications. Here, the assumption that contact is made

uniformly across the nominal contact area is common [23]. Equation 3.2 gives an

approximation of the Rconstriction for n circular a-spots in a cluster

Rconstriction = ρ
( 1

2na
+

1

2α

)
(3.2)

α =
(A
π

) 1
2

(3.3)

where α denotes the cluster radius and A represents the nominal contact area [25].

An empirically supported approximation for Rconstriction is given by [23] in Equation

3.4 if only plastic deformation is assumed under a contact force F . H denotes

the Brinell -material-hardness; θ represents an empirical coefficient describing the

contact surface cleanliness.

Rconstriction =
(ρ2θπH

4F

) 1
2

(3.4)

Equation 3.5 provides an alternative, simplified approximation that is found to be

used in practice assuming clean contacts, cf. [11].

Rconstriction =
ρ1 + ρ2

2

√
H

F
(3.5)

As becomes apparent from Equation 3.4 or Equation 3.5, low contact forces result

in high CR. In general, CR is deemed unacceptable if the contact force is smaller

than 0.05 N [11].

As a rule, CR will increase if the power increases up until the material softening

voltage is reached. A temperature differential can be observed between the a-spots

and the contact body. The contact material is subjected to plastic deformation at the

conducting a-spots, since Joule heating causes a local temperature increase. Plastic

deformation increases the effective contact area. This, in turn, causes an observable

drop in CR. However, if the voltage continues to rise, the CR will continue to increase

until the melting point of the contact material is reached. Now, a rapid increase

in the effective contact area can be observed going hand in hand with a secondary

decrease in CR [11]. This effect is sometimes referred to as self-healing of contacts

[14]. Concluding, the CR is highly dependent on the contact force, but essentially

independent of the nominal contact area A due to plastic deformation of the contacts

upon closure.
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3.2.3.2 Film resistance

The CR is affected not only by the contact shape and the Rconstriction, but also

by a problematic thin film layer build up on the contacts. This causes the actual

number of conducting a-spots to be further limited because such layers may form

an isolating barrier. Thus, electrical conduction only takes place at the spots where

the film ruptures during contact making. As [11] reports, surface films as thin as

10 nm can result in high CR. Equation 3.6 gives an approximation for films of a

thickness l and an area πa2; ρfilm denotes the resistivity of the film.

Rfilm =
ρfilml

πa2
(3.6)

However, depending on the type of the film, the resistance of the film may be

neglectable. In some instances, it might even further decrease the constriction re-

sistance, as the effective contact area is increased through a conducting film.

3.2.4 Failure mechanisms

This section elaborates failure mechanisms most relevant to EMR contacts. Essen-

tially, all failure mechanisms contribute to a change in CR, ultimately leading to

one of the listed failure modes.

3.2.4.1 DC arc erosion

Electrical arcing leads to electrical erosion across the contact surface [14, 26, 27,

28, 29]. Electrical arcs are the result of a voltage applied across a pair of open

electrical contacts that cause an electric field. An arc consists of plasma which is

the ionised gas in the contact gap. Thus, the arc is a high current gaseous discharge.

A comprehensive discussion of the phenomenon of electrical arcing can be found in

[11, 14, 30]. In DC circuits, a material redistribution process due to electrical erosion

manifests as a continuous net transfer from one contact to the other. A pip and

crater structure on the contact surfaces forms. Whether the pip and crater are

located on the cathode or the anode depends on the duration and energy of the arc,

the circuit’s inductance, the contact material, the switching speed of the contacts,

the cleanliness of the contact surface, and the contact dimensions [14]. The rate of

material erosion will increase as the energy and duration of the arc increases.

Two phases of the erosion process can be distinguished: the initial metallic-phase

arcing and the following gaseous-phase arcing. The physical processes governing

these two stages are schematically illustrated in Figure 3.4. During the metallic-

phase arc, after the rupture of the molten metal bridge (cf. Chapter 3.2.5.2), the

gross of current is transferred by metal-ions. Hence as [31, 32] demonstrate, mate-

rial accumulates at the cathode, stemming from vaporised and subsequently ionised
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Figure 3.4: Schematic display of the erosion processes at cathode and anode during the
phase of electrical arcing in metallic vapour and in ambient air.
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metal atoms. Simultaneously at the anode, electron bombardment leads to disin-

tegration of anode material. Hereinafter, the electrical arc will transfer to an arc

operating in ambient air as the density of the metallic vapour decreases. The arc is

now predominantly ionising the ambient gas atoms. The impact of the ionised gas

atoms further erodes material on the cathode. This process is termed gaseous ion

sputtering [33]. As one can see in the upper section of Figure 3.4, with the transfer

to an gaseous-phase arc an increasing net gain at the anode is observed because the

metallic atoms - separated from the cathode contact surface through the impacting

gaseous ions - aggregate at the anode region. In DC circuits a cathode gain - ma-

terial build up (i.e. pip) - is likely in circuits with short arcing times because the

duration of the arc operating in ambient air is relatively short in comparison to the

metallic-phase arc, cf. Chapter 7.2. With increasing arcing duration, an anode pip

and a cathode crater will become more likely.

Bouncing during contact making is common because kinetic energy is preserved in

the closing contacts, cf. Chapter 3.2.5.1. As [34] report, high frequent bouncing,

i.e. many short bounces in close succession accelerate erosion through arcing and

the formation of pip and crater structures. Hence, adjusting the bounce to a lower

frequency is an important design consideration for switching contacts. However, if

bouncing is neglectable, the bulk of contact erosion will take place during contact

breaking. In general, a lower erosion rate can be achieved through higher opening

speeds shortening the overall arc duration, since the rate of erosion depends on

the duration of the arc [35]. Though, this may again lead to more bouncing and,

therefore, erosion during contact making respectively.

To conclude, electrical arcing in DC circuits causes contact material vaporisation

or ejection and re-deposition of vaporised and ejected material. Whether anodic or

cathodic erosion is dominant depends on the contact material, the surface contam-

ination or film, the duration of the arc, and the electrical current. Contact erosion

leads to a deterioration of the contact surface and a reduced effective contact area of

closed contacts. This is reflected by an increase in CR. The problem is aggravated

whenever the contact force is reduced due to such material loss. General methods

to mitigate the effects of contact erosion through electrical arcing are presented in

Chapter 6.1.

3.2.4.2 Contact welding

When the contacts part, local Joule heating heats up the contact material, leading

to a locally constrained melt and a sequential weld, illustrated in Figure 3.5. Just

like electrical erosion, welding of contacts depends on a multitude of factors. It is,

indeed, critical if the contacts can no longer part, i.e. welds cannot be separated

and the contacts continue to stick together [36]. Although, welding during contact
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Figure 3.5: Schematic display of the welding process of closing contacts subjected to arcing.
(I) Contacts close; (II) due to the preserved kinetic energy the contacts bounce for the
first time; (III) the voltage drops to the minimum arc voltage and an arc forms, heating
up the contact material on the anode fall and cathode fall region; (IV) the contacts close
on the molten metal pools; (V) as the contacts open for the second bounce, a weld forms;
(VI) if a weld establishes and cools down quickly, its strength might be greater than the
remaining kinetic contact force. This prevents the contacts from closing or opening again.

breaking is possible, it is not very likely [37, 38]. On the contrary, the problem of

contact welding during contact making is exacerbated if contact bouncing and arcing

are present. Depending on the current and the type of the contact material, molten

metal pools develop on both contacts. As the contacts open and close upon these

interfaces a weld is formed. Such weld becomes problematic if the contact force is

reduced prior to the contacts being fully closed, since the simultaneous reduction in

contact velocity provides more time for the weld to cool down and harden [39].

Relevant to the welding strength is the load current and the duration of the bounce.

The strength of the weld increases with the amplitude of the applied current [40].

As bouncing events become shorter with each subsequent bounce an increase in

the weld strength for late bounce events, somewhat growing exponentially past the

4th bounce can be observed [41]. Further effects of welding during bouncing are

discussed in [36, 14].

3.2.4.3 Contact contamination

In addition to the effects of contact shape and constriction resistance, the CR is

affected by the film resistance. Isolating or semiconducting layers can be deposited

on the contact surfaces through, e.g. outgassing of plastic sealings or insulation

materials, material abrasion, and contamination from the ambient air. Thus, the

actual number of conducting a-spots is further reduced which may lead to a CR

build-up [23]. The extent of film formation depends on the storage duration, the
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environment, the operational conditions, and alterations of the contact surfaces from

electrical arcing.

A major source for surface film contamination is silicon. Silicon compounds are

commonly found in, e.g. lubrication, insulation material, paints, and plastic com-

ponents such as EMR enclosures. Vapours emitted from those silicon containing

materials can form insulating films that deposit on the contact surface [42, 43].

During switching silicon breaks down to silica (silicon-dioxide), compromising con-

tact performance, significantly increasing CR towards the EMR-EOL [44]. Highly

contaminated environments may also contain other particles that are deposited on

the contact surfaces. These particles sometimes have a higher hardness than the

contact material itself, e.g. gold [14]. Hence, if contacts are closed, such particles

are embedded into the contact surface, increasing the surface roughness in turn re-

ducing the number of current carrying a-spots. As the authors in [45] point out,

depending on the particle orientation and size, a temporary reduction of the in-

creased CR can be achieved by applying a sufficiently large contact force. Further,

one should consider fritting in the presence of contaminating films. Fritting, ex-

tensively discussed in [14, 45], refers to the electrical destruction of the isolating

layer when the switching voltage increases and an instantaneous reduction of CR is

observed.

3.2.4.4 Fretting

Lastly, not to be confused with fritting, contact surfaces are liable to fretting [47, 48].

Fretting contributes to the wear of the contacts as the mutual displacement of the

contacts against each other leads to the abrasion of the surface as it produces debris.

External vibrations or different rates of thermal expansion of the contact materials

are responsible for fretting. It increases CR and promotes other degradation mech-

anisms that contribute to CR fluctuations over the EMR life as well as an increase

in contact noise [11]. The process stages of fretting are detailed in Figure 3.6.

3.2.5 Contact operation

3.2.5.1 Contact making

An arc establishes if the voltage across two contacts is higher than the breakdown

voltage and the travel time to make contact is longer than the minimum time nec-

essary for the discharge. This type of arc is sometimes termed pre-strike arc and

might be of very short duration, i.e. ns-range. It can be observed that a voltage in-

crease relates to a decreased time to discharge which allows sufficient arcing already

in closely spaced, fast-closing contacts.

In Figure 3.7 the first contact is established at 0.5 ms. The voltage drops and the
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Figure 3.6: Schematic display of the process of closed contacts subjected to fretting. (I)
Partially and fully oxidised metallic particles on the rough contact interfaces restrict the
current flow to the current carrying a-spots that are affected by the distribution of surface
asperities [46]. Some temporary current carrying paths may establish through metallic
and partially oxidised particles in the debris matrix [14]. (II) Over the course of operation
the contact surface further degrades, reducing the effective contact interface accumulating
more debris and increasing CR. (III) A significant increase in CR can be detected, since
no direct contact is made. Current conduction may only take place along isolated current
carrying paths in the debris matrix that is made up of non-oxidised particles and subject
to immediate changes whenever debris is displaced.

Figure 3.7: Voltage and current waveform for a making actuation; EMR (AgSnO2In2O3)-
plated copper contacts; measurements obtained during the experiment presented in Chap-
ter 6.
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current increases as the contact is made among the conducting a-spots. However, due

to the kinetic energy preserved in the contacts, the moving contact carrier bounces

back. This can be observed around 0.6 ms. A molten metal bridge forms and

then ruptures which is followed by a very short metallic-phase arc. As the contact

gap widens, the arc passes into an ambient-gaseous-arc. This is accompanied by a

voltage spike prior to it settling around the minimum arc voltage of 13 V at 0.65 ms.

This very voltage spike is due to the high pressure metal vapour region between the

closely spaced contacts which initially does not allow conductivity within the metal

particle cloud [30, 49, 50]. The arc reaches its maximum length approximately at

0.7 ms as the contacts start to close again. The contacts touch the 2nd time at

0.8 ms; the arc is extinct and the voltage drops to the closed-circuit voltage. During

this second bounce the contacts essentially close on a molten metal surface because

of the arc’s heat up. This damps the impact of the contacts and further reduces the

kinetic energy. However, it is here where contact welding might occur. The duration

of the subsequent bounces decreases - one can observe a second and third arc, each

shorter in duration than the previous one - as the preserved kinetic energy of the

contacts is further reduced. Due to the effects of electric arcs, the decrease of kinetic

energy of the contacts is accelerated compared to a decrease by purely mechanical

bouncing. Lastly the contacts settle at 1.8 ms because the contact force overcomes

the remaining kinetic energy.

3.2.5.2 Contact breaking

When metallic, current carrying contacts separate, an instantaneous sequence com-

mences. A large number of research projects have dealt with this topic, trying

to empirically understand the processes involved and to determine the underlying

physical phenomena [31, 51, 52]. In general, EMR contacts break as follows: 1st,

the contact force decreases and the contacts part. As the effective contact area

diminishes the voltage increases because the number of current carrying a-spots is

further reduced. This process of opening is accelerated by the so called blow-off force

which is a result of the increasingly restricted current flow through the diminishing

effective contact area [53]. This force will reduce quickly as the contacts further

open and is substituted by forces stemming from the electrical arc. During the ini-

tial phase the voltage increases above the static voltage of the closed contacts; as

the contact surface decreases further, the local restriction of the current flow heats

up the remaining contact spots. Reaching the melting temperature at the contact

spots, a bridge of molten metal will form and span between the parting contacts.

Meanwhile, a steady voltage increase can be observed whereas the melting voltage

exhibits a quasi-static behaviour only for currents below 100 A [50]. 2nd, during the

stable phase, the voltage increases. This can be observed for all current levels, in an

air environment as well as in vacuum [49]. Different mechanisms contribute to the
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material transfer as the contacts separate, some being attributed to the Thomson-

Effect [11]. However, the author in [54] argues that the majority of material transfer

is due to electromigration. It is reasoned that electromigration will be predominant,

since molten metal bridges are of small diameters. Hence, high current densities and

elevated temperatures increase the rate of diffusing ions. The temperature varies

between the melting and the boiling point of the metal. As soon as the contacts

are further separated, the 3rd regime commences. The bridge becomes increasingly

unstable which ultimately leads to its rupture. This phase distinguishes itself by its

oscillating voltage fluctuations, spiking up to the minimum arc voltage and drop-

ping down to the melting voltage. Note, however, such voltage spikes can have a

stabilising effect on the bridge. Due to the increased power more metal is molten

at the bridge root and sustains the elongating bridge by increasing its diameter.

Vice versa, the current density is reduced which minimises thermal stress. How-

ever, a set of interacting processes excites the molten metal bridge rupture, e.g.

the temperature in the bridge might reach the boiling temperature of the material,

hydrodynamic instabilities in the material, dynamic changes in surface tension as

the bridge stretches, and magnetic pinch forces depending on the carried current

[50, 55]. Following the rupture of the molten metal bridge, the 4th phase commences

as an initial arc forms, also referred to as bridge-column arc or pseudo-arc [55].

However, is it important to emphasise that the arc will only form once the bridge

has ruptured [49]. Metal vapour remains in the contact gap that consists of ±5 %

of the particles from the molten bridge rupture. At this very initial stage and prior

to the bridge-column arc a non-equilibrium high pressure zone is established. It is

characterised by the high density metal vapour and very low conductance [49, 56].

Thereby, the voltage rapidly increases between the contacts and peaks as soon as

the pressure begins to fall to 2− 3 bar. Along with this ongoing pressure decrease,

the voltage decays just as quickly [14]. Now, the area between the contacts acts like

a capacitor with a very small capacitance [49]; remaining charges from the circuit

inductance, which prevent an instantaneous change in current, flow into this capaci-

tor. At last, the bridge-column arc is established as the current carrying ions impact

the cathode at the origin of the molten metal bridge. High erosion rates resulting

in material transfer from anode to cathode can be observed during this phase as

most current is carried by ions. Because the pressure continues to fall, the bridge

column arc changes into a normal arc operating predominantly in the ambient gas

rather than in the metal vapour, at a voltage near the material dependent minimum

arc voltage. Material transfer continues from anode to cathode, though the transfer

rate decreases.

Following the breakdown of the molten metal bridge, detailed above, one can com-

prehend the process of ambient air arc establishment, sustainment, and extinguish-

ment in Figure 3.8. First, the contact gap increases, the voltage spikes, then settles
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Figure 3.8: Voltage and current waveform for a breaking actuation; EMR (AgSnO2In2O3)-
plated contacts; measurements obtained during the experiment presented in Chapter 6.

around 13 V across the contacts, cf. [14] for an analysis of the required minimum

arc voltage. An instantaneous current drop to 5 A follows; the initial arc establishes

at 0.95 ms. Now, the metallic-phase arc transfers into an arc burning in ambient

air. The arc begins to lengthen due to the contacts parting. Simultaneously, the arc

diameter shrinks. This causes the reported increase in voltage. The waveform of

the current and the voltage behave increasingly linear and smooth at higher current

levels during contact breaking. Though, at relatively low current-levels, as in Figure

3.8, a distinct sequence of voltage steps and fluctuation can be differentiated. [57]

report the occurrence of those distinct steps. The initial voltage step can always be

observed, though, the probability of subsequent steps decreases as the circuit volt-

age is increased. However, the steps observed in Figure 3.8 are less distinct, despite

the relatively low switching voltage. This can be attributed to the fast switching of

the EMR contacts (around 0.6 ms to complete the opening of the contacts). The

voltage spike at 1.0 ms may be attributed to the ongoing transfer from metallic to

ambient air arc because the metal vapour in the contact gap is still being diffused by

the molecules of the ambient air, but no longer able to maintain the discharge of the

electric arc [58]. However, [59] shows that such behaviour can also be observed in

vacuum and, therefore, the explanation of this phenomenon given by [58] does not

yet provide a satisfactory answer. Prior to 1.6 ms, one can notice a sharp decrease

in current turning the energy balance of the arc negative, i.e. the arc loses more

energy than supplied through the cathode. Hence, it becomes unstable as soon as

the current drops below 1 A and the voltage reaches 30 V. Subsequently the arc is

extinct at 0.5 A, which agrees with measurements reported by [60].

Summary

In this chapter, the background of the two case studies considered has been dis-

cussed. BHA-PCBAs were examined from the point of view of the upstream oil

and gas industry. The distinct failure modes and mechanisms of EMRs have been

presented from a general viewpoint that is not limited to the application within
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downhole tools. Based upon this analysis, the following Chapter 4 assesses the in-

dustry and component specific state of the art in the realm of data-driven approaches

to maintenance and reliability.
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Chapter 4

Data-Driven approaches to

reliability and maintenance

Introduction

In the previous chapter aspects of the two considered case studies have been outlined.

This chapter offers a review of recent scientific literature in respect to reliability and

maintenance paradigms for such systems and components. It aims first at identifying

the salient research areas; second to critically assess the results achieved so far;

third to characterise the desiderata in both theoretical approaches and methods

applied. Recent developments in the oil and gas industry driven by digitalisation

in combination with upstream specific approaches to improve asset reliability are

reviewed in Chapter 4.1. Subsequently, in Chapter 4.2 the state of the art applicable

to EMR reliability, diagnostics, and prognostics is discussed.

4.1 Strategies in the upstream oil and gas indus-

try

4.1.1 Review of topical literature

A thorough bibliometric study of research published in the relevant field has been

conducted in order to determine the state of the art of data-driven applications.

Using key-word search, publications in various literature data-bases have been anal-

ysed based on Google-Scholar [1], OnePetro [2], Elsevier [3], Scopus [4], and the

Web-of-Science [5]. The search count for different combinations of key-words, e.g.

”NN” & ”PdM” & ”BHA” & ”PCBA”, has been aggregated over the considered lit-

erature data-bases. As shown in Figure 4.1, over the past two decades the utilisation

of data-driven applications has increased throughout the sectors of the oil and gas
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Figure 4.1: Application of data-driven methods throughout the oil and gas industry clas-
sified into three major sub-disciplines. Searched research data-bases: [1, 2, 3, 4, 5].

industry. However, the focus resides on Reservoir Modelling & Characterisation, cf.

[6, 7, 8], and on Completion & Production related applications, cf. [9, 10, 11, 12].

Drilling as part of the upstream sector has only recently received research inter-

est. The remainder of this section analyses the contribution of relevant data-driven

approaches, barriers, and enabling technologies 1.

Over the last two decades academia and industry have turned their interest towards

the application of data-driven methodologies leveraging, e.g. BD in the context of

deep drilling [13]. Many deep drilling related applications focus on performance

optimisation during the drilling process. Conventional drilling performance metrics

such as WOB, Rate Of Penetration (ROP)2, or torque have been used to identify

critical issues during the drilling processes. The authors in [14] present an approach

using a NN to identify bit balling3 based on such features. The NN is trained on

time series data in order to predict the ROP which is then compared to the measured

ROP during drilling. The authors conclude that bit balling is likely whenever the

experienced ROP deviates from the model’s prediction. Likewise, a DL method for

ROP prediction is presented in [15]. A LSTM model is deployed which incorporates

additional features for training to improve forecasting performance. These features

are: type of the drill bit, formation properties, rheological properties of the drilling

mud. Alternatively, a recent case study by [16] demonstrates how a ML method

employing DT can be used to forecast ROP based on surface measurements such as

WOB, Rotations Per Minute (RPM), torque, and drilling depth. However, due to

1Parts of this chapter have already been published in my journal or conference arti-
cle: L. Kirschbaum, et al., (2020).

2Rate Of Penetration - the speed at which the drill bit advances through the formation.
3In shale formation clay particles might stick to the tool face blocking the bits’ nozzles and

reducing the ROP which is known as bit balling.

66



Chapter 4: Data-Driven approaches to reliability and maintenance

Figure 4.2: Application of data-driven methods for different downhole tools, i.e. BHA
modules in general, MWD & LWD, and Drill Bits compared to general Surface & Com-
pletion related applications. Searched research data-bases: [1, 2, 3, 4, 5].

a tendency towards overfitting, [17] discards DT as suitable method for ROP pre-

diction. Instead, the authors utilise a Random Forest Regressor that is less prone

to overfitting and further improves performance over various considered ML algo-

rithms such as Support Vector Machines, K-Nearest Neighbours or NN. In [18] the

authors propose a deployable real-time solution for ROP prediction. Its performance

is evaluated by comparing eight different algorithms. The algorithms are trained on

a data set aggregated from drilling operations at 50 different wellbore locations.

In addition to the above-mentioned features, additional features like flow-rate and

formation property indicators are being used to boost performance. In order to

improve interpretability and increase the reliability of ROP prediction a hybrid ap-

proach combining physical models with ML is suggested in [19]. Further examples

using AI for ROP estimation can be found in [20, 21].

As evidenced in Figure 4.2, a more detailed analysis of data-driven methods for

oil and gas industry assets reveals an increasing interest in the application of these

approaches for downhole tools. Only a small proportion of relevant publications

considers data-driven methods for optimisation of operation and maintenance ap-

plied to downhole tools, e.g. for the BHA amounting to 8.4 % of the considered

research body between 2015 to 2019. However, recent trends that relate to the in-

creasing economical and operational challenges the oil and gas industry is facing,

suggest significant future investments into novel maintenance related applications.

Such investments have a technology-enhancing industry-wide effect on the oil and

gas industry, but in detail they have a particular effect on the development of data-

driven maintenance strategies for the upstream industry, especially for deep drilling

tools. To further illustrate such research efforts, the remainder of this section reviews
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Figure 4.3: Data-driven methods for novel maintenance strategies distinguishing between
downhole tool applications and the remained of oil and gas sectors. Searched research
data-bases: [1, 2, 3, 4, 5].

approaches relating to the upstream industry.

Predictive maintenance of artificial lift systems is an active field of research. These

lift systems are used in the completed wellbore to maximise production from the

well once the initial pressure of the reservoir has depleted. In [22] Principal Compo-

nent Analysis is applied to identify deviation from nominal operation conditions of

Electrical Submersible Pumps (ESP)s which are used as artificial lift system. This

promising approach identifies impending pump failures. It coincides with findings

reported in [23]. A Support Vector Machine based approach is developed by [24].

Thereby, the authors demonstrate an alternative ML application for the prediction

of ESP failures. Besides ESP, a system to prolong oil production is known as beam-

or rod-pumping. Traditionally the working conditions of these pumps are assessed

by the use of dynamometer cards. The authors in [25] deploy a CNN for classifi-

cation of the operating stages of rod-pumps from such dynamometer cards. The

method achieves over 90 % classification accuracy of rod-pump failures during a

field deployment test. A different approach for rod-pump diagnostics is presented in

[26]. Here, the authors identify DT to be well suited for classifying the operational

state of rod-pumps. Further examples can be found in [27, 28, 29, 30, 31]. Novel

maintenance is of increasing interest in other upstream sectors as well. Offshore

assets such as platforms, generators, or turbines are the focus of multiple AI-driven

CBM, PdM, or digital-twin applications [32, 33, 34]. For example, the detection,

analysis, and prediction of corrosion of offshore infrastructures with state-of-the-art

ML algorithms is an actively pursued area of research, cf. [35, 36].

Contrary to the application scenarios outlined above, research related to the BHA

or its modules, e.g. the RSS, MWD, and LWD only accounts for a small portion
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of the overall research efforts, cf. Figure 4.3. Multiple reasons explaining this lack

in research can be identified. Besides the constraints imposed by the harsh and

uncertain environments in which downhole tools operate, the challenges associated

with a data-driven maintenance approach need to be understood. Restrictions in

terms of hardware availability and a lack in data availability have – so far – impeded

the broad application of data-driven maintenance strategies. While the latter one is

by far the more pressing issue, hardware constraints in downhole tools have proven

to be a major hurdle. In [37], the author discusses various reasons which prevent

the installation of additional sensing capabilities required for more elaborate data-

driven maintenance applications: space constraints, long lasting development cycles,

and hardware availability. Furthermore, any computational process needs to be

designed to use as little power as possible to avoid any additional heat dissipation

from the electronic components. Hence, the computational resources for downhole

data processing, e.g. high-volume data sampling, are limited. Along these lines, the

authors in [13] state the need for improved electronic resilience in combination with

extended functional capabilities to be able to continue to cope with those challenges.

This insight is supported by the advancements in enabling sensors and electronics.

As evidenced in Chapter 2.5, the oil and gas industry has begun to adopt modern

digital infrastructures to streamline and centralise data from drilling operations.

Admittedly more data is becoming available, however, the limited access to this

data still represents a significant challenge for the implementation of data-driven

maintenance for downhole tools. Here, the global scale of drilling operations, the

volume, veracity, variety, velocity, and value of the data along the manifold value

chain towards data aggregation and management have to be taken into account. For

example, [38] highlight the need of access to complete and concise data throughout

the entire life of a downhole tool, essential for robust lifetime prediction. This ratio-

nal is supported by [39], stipulating the importance of high quality/ high frequency

data for detection of tool failures and a complementary tool database capturing the

tool history from various data sources. Further case studies of the challenges the oil

and gas industry is facing in centralising and streamlining drilling data are presented

in [40, 41].

4.1.2 Comparative assessment

The success of upstream data-driven maintenance, therefore, depends heavily upon

future data consistency and availability. In addition, increasingly complex well ge-

ometries and harsh drilling environments are to be taken into account. According

to the analysis of scientific literature and personal consultation with experts the

following five major challenges can be formulated:

1. Increasingly complex electronic assemblies render current maintenance strate-
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gies inefficient.

2. Extreme environmental, dynamic operation conditions restrict the applicabil-

ity of metrics such as MTBF.

3. Real-time health monitoring is constrained due to the limited data transfer

during drilling.

4. Space, design, and hardware constraints impose restrictions on retrofitting

required sensing capabilities, e.g. canary-sensors.

5. Governmental data restrictions, local data-silos, and industry policies limit

access to data required to develop data-driven solutions.

This list makes the interdependencies and constraints as well as the desiderata in re-

search paramount. The following section presents research approaches that directly

tackle these issues. Already in 1999, Aldred et al. [42] stressed the importance of a

holistic data approach in order to minimise unplanned downtime due to BHA failure.

The concept of a holistic BHA reliability method in order to improve the decision

making for BHA maintenance is then discussed in [43]. BHA reliability is improved

by implementing a streamlined approach to capture tool-data and failure-reports in

order to reduce the number of systematic downhole tool failures. However, again, the

authors note that maintaining such an approach on a global scale and throughout

many departments participating in the development, maintenance, and operation

of the tools requires considerable efforts. In order to illustrate the potential, the

authors in [44] propose - as one of the first - a data-driven model to determine

the stress level a BHA has been exposed to. Cumulative stress-time functions are

calculated using lateral vibration run-to-failure data. This resembles the encoun-

tered stress history of the BHA and reflects various stress scenarios. Subsequently,

approximation functions are used to determine the stress-history of an operating

BHA. This new curve is then compared to the nominal stress-time type curves us-

ing kernel regression. Via a similarity measure a RUL prediction for the operating

BHA is derived. The authors achieve an accuracy range of 2 − 20 % of the total

tool lifetime. The authors further refine their methodology in [38] to address the

common issue of unavailability of complete BHA stress-history data records. The

proposed health state estimation model determines the stress-time curves based on

parts of the data rather than the complete history. The overall life of the BHA is

then estimated based on these results.

The requirements for an offline RUL estimation model supporting the operator’s

decision whether to rerun a downhole tool is investigated in [39]. In order to reduce

NPT, [45] present a RNN based approach to estimate the RUL of composite drill

pipes. Failure of drill pipes often results in long downtime as recovery from the

wellbore is difficult. With a similar aim, the authors in [40] develop a data-driven

model for anomaly detection of the RSS using a non-parametric Fuzzy Inference

system that relies on field-data measurements (RPM, electrical current of the mod-
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Table 4.1: Overview of data-driven maintenance applications for downhole tools.

Ref. Year Tool Approach
[43] 2008 BHA Establishing a reliable tool data base to aid operational and

maintenance decision support respectively improving BHA fleet
reliability.

[44] 2009 BHA Cumulative vibration stress profiles reflecting tool degradation;
RUL forecast based on stress profile similarity measure.

[48] 2010 MWD Identification of meaningful features from field-data relating to
MWD failures.

[38] 2010 BHA Extending the approach developed in [44] to reduce the required
data volume.

[40] 2011 RSS Anomaly detection using non-parametric Fuzzy Inference Sys-
tem and a sequential probability ratio test to identify possible
degradation trends utilising field-data.

[45] 2014 BHA RNN for RUL prediction based on field-data for composite drill
pipes.

[49] 2014 BHA-PCBA Field-data based cumulative degradation model for RUL esti-
mation.

[47] 2015 BHA-PCBA Retrofittable health management solution for RUL estimation
using canary sensors.

[50] 2015 RSS Maintenance framework utilising field-data and failure-reports.
[51] 2018 LWD Fault classification using DT.
[39] 2018 BHA Framework for holistic downhole tool data aggregation to derive

fleet-level reliability information in order to reduce NPT.

ule, steering-pad pump pressure). Based on BHA-PCBA failure reports, in [46] an

elaborate hybrid method for the development of a cumulative stress model for RUL

forecasting and maintenance decision support is presented. In [47] a retrofittable

health management solution for real-time BHA-PCBA prognostics is proposed. The

authors suggest implementing a set of canary sensors to be embedded in the PCBAs

recording different sources of downhole tool vibration. Against the background of

pre-defined stress-levels a cumulative stress-score is attained. A data-driven degra-

dation model correlates the canary sensor failure times with the encountered stress-

levels during drilling in order to provide a RUL forecast.

In [48], the authors establish a relation between drilling dynamics and MWD tool

failures. Sources of downhole vibration data are consulted to obtain failure probabil-

ities using a Logistic Regression approach. These probabilities reflect the cumulative

stress the MWD module has been exposed to. However, the authors state that their

approach operates under the assumption that each module is considered new at the

beginning of the drilling operation. This assumption clearly limits the applicability

of the proposed method because the complete stress history of the tool is no longer

considered. Lastly, a data-driven method for the assessment of the health state of

the neutron pulse generator of the LWD module is presented in [51]. Therefore,

tool memory data is downloaded after each run. Relevant data is selected based

on expert knowledge. A robust health state indicator is constructed using three

input features, namely: the output of the neutron detector, the drawn current, and
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voltage. Based on these features a DT Classifier is trained, determining a healthy or

non-healthy operating state of the neutron pulse generator during drilling. Further

case studies that look at the potential of data-driven maintenance for downhole tools

are presented in [50, 52, 49]. An overview of the reviewed applications is provided

in Table 4.1.

4.2 Strategies for EMR operation and maintenance

Various measures have been developed to determine and represent the degradation

in EMR applications. Of particular interest is the electrical lifetime subject to con-

tact wear [53, 54]. Hence, as a first step this chapter discusses the advantages and

disadvantages of EMR performance indicators that aim to quantify the degradation

by introducing CR in Chapter 4.2.1 and commonly deployed reference Degradation

Indicators (DI)s in Chapter 4.2.2. Thereafter, Chapter 4.2.3 reviews the reliability

and maintenance related strategies for a number of critical EMR applications; it con-

cludes with a critical assessment of the examined approaches presented in Chapter

4.2.4 4.

4.2.1 Contact resistance

The most popular measure among the developed DIs is CR [55]. However, as the

initial EMR-CR is already very small, its increase until failure is typically only within

the mΩ-range. This poses a challenge for accurately measuring changes which can

be achieved reliably only with a 4-Wire setup [56]. Therefore, presupposing accurate

CR measurements in embedded online health management is not a viable solution

due to the required sensing hardware and associated costs. In addition, depending

on the type of EMR, CR is subject to more or less random fluctuations ranging well

above the rated maximum permissible CR and masking underlying trends. This

renders the definition of a static CR-based EOL threshold unfeasible. The rate and

intensity of fluctuations depends inter alia on the operating pattern and the load, but

foremost on the contact material and environment [57]. Hence, CR measurements

are often not capable to capture the overall EMR degradation [58, 53]. Chapter 7.2

discusses the aspects of CR fluctuations in detail.

4.2.2 Derived reference DIs

The above mentioned challenges in combination with the need to distinguish failure

modes drove the search for alternative DIs. Derived DIs aim to depict EMR wear

and can be split in two groups namely: (1) non-intrusive time-based reference DIs

4Parts of this chapter have already been published in my journal or conference arti-
cle: L. Kirschbaum, et al., (2022).
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Figure 4.4: Selected time-based reference DIs derived for contact making of a normally
open EMR. Pick-Up Time (PT), Over-Travel Time (OT), Bounce Time (BT), Super-Path
Time (ST), Release Time (RT), Arcing Time (AT); cv0 closed circuit voltage, cv1 minimum
arcing voltage, cv2 open circuit voltage, cc0 inductive nick current.

and amplitude-based reference DIs; (2) intrusive DIs which require dissembling the

EMR or ancillary sensing capabilities.

4.2.2.1 Non-intrusive DIs

Such DIs predominately rely on the measurement of CV and Coil Current (CC)

waveforms during contact making and contact breaking. By processing CV and CC

waveforms one can derive a set of measures as displayed in Figure 4.4 to detect rising

or falling edges. Therefore, threshold values for the closed and open circuit volt-

age, the minimum arcing voltage (e.g. silver-plated copper contacts approximately

13 V ) and the coil current are used that are further detailed in Table 4.2. However,

note that for time-based reference DIs naming conventions throughout literature are

somewhat ambiguous and depend on the type of contact configuration [59].

The trajectory of time-based reference DIs over the EMR life time varies in respect

to the experienced failure mechanism, the design of the EMR, and the operational
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Table 4.2: An overview of classical EMR DIs.

Time-based reference DI
Pick-Up Time The time between the increase of coil voltage and the first CV drop during

making. BT is not considered [63]. For example, [64] report that the
magnetic force decreases if the coil wire resistance increases, causing a
slower movement of the armature and therefore an increase in PT. PT
decreases if the spring force decreases due to stress relaxation.

Over-Travel Time The time between the armature/ contact start of travel and the complete
closure of the armature [62]). For example, [57] report decreasing OT till
stuck-open failure as the contacts erode and the subsequent armature over-
travel becomes too small to force proper contact making. Likewise [60]
reports decreasing OT for eroding contacts. However, if contact sticking/
welding is predominant OT is likely to increase.

Arcing Time The time when CV is between the limits of 10 % and 90 % of the open
circuit voltage during contact breaking or contact making [54]. The ef-
fective start of the arcing duration depends inter-alia on the minimum
arcing-voltage of the contact material.

Bounce Time The interval between the CV drop during contact making and the last
bounce, i.e. before the CV settles. The start of BT is sometimes specified
at 90 % of the open circuit voltage; the bounce pulse has to be longer than
10 µs [59]. The entropy of the BT appears to correlate with the EMR-EOL
[65]. BT significantly depends on the amount of contact surface wear [66].

Release Time The time interval between the coil voltage drop/ de-energization and the
initial CV increase. BT and AT are not considered [59]. RT increases
towards EOL when contacts are subject to erosion. A decreasing trend is
reported in [60] if contact welding is the governing failure mechanism.

Super-Path Time The time interval between the CV drop at the contacts and the inductive
nick of the pick-up CC at the coil during contact making [63]. [67] finds
this to be a significant DI.

Amplitude-based reference DI
Dynamic Contact
Resistance (DCR)

The resistance across the closed contacts just after the contacts have set-
tled. This can be measured by recording CV and CI, though the accuracy
of the used sensing equipment needs to be considered. For an extensive
discussion on Dynamic Contact Resistance (DCR) as DI refer to [66].

Pull-In Voltage The coil voltage at which the armature movement commences. This DI has
relevance for coil failures as an increase in coil resistance can be observed
via an increase in the pull-in voltage [62].

Dynamic CV The CV drop upon first contact making.
Static CV The CV as soon as contact bouncing has settled and contact is made.

environment [60, 61, 62]. However, as Section 4.2.3 will demonstrate in detail,

no generally valid non-intrusive DI has been established so far within the body

of reviewed research. Nevertheless, DIs can provide application-specific, valuable

information regarding the state of EMR degradation. An overview of EMR time-

based reference DIs and amplitude-based reference DIs is provided in Table 4.2.

4.2.2.2 Intrusive DIs

Various research approaches have used intrusive measurements to describe and quan-

tify EMR contact degradation, e.g. the mass transfer of the contacts determined

by detaching and weighing the contacts at regular intervals. Alternatively, radioac-

tive tracers have supported the understanding of material transfer among switching,
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arcing contacts [68]. Further analysis of contact surfaces at different stages using

Energy Dispersive X-Ray (EDX) and Scanning Electron Microscopy (SEM) have

been employed [69, 70]. In [71] the arc discharge is optically monitored. Lastly,

measurements of static and dynamic contact pressure have allowed an assessment

of the contact health [72]. While all these DIs are able to depict the degradation

in some way, obtaining these measurements at scale outside controlled laboratory

environments is impractical [59, 73].

4.2.3 Review of topical literature

This chapter reviews research approaches that consider the plethora of discussed

DIs and CR in order to derive data-driven methods that support EMR maintenance

decision making. The following section is structured by the EMR application domain

since the reviewed research relies on previous findings from those industrial sectors.

General DC EMRs are found in consumer electronics. They rarely play a mission

or safety critical purpose. However, as the review shows researchers actively explore

the capabilities of data-driven maintenance in domains where EMRs play such a

critical role: for example, the aviation and aerospace industry (Chapter 4.2.3.2, cf.

the ISO 5867-1:1996 [74]); the railway industry - here EMRs are used, e.g. track

circuit monitoring to detect whether a certain part of the railway track is currently

occupied by a train (Chapter 4.2.3.4); or the automotive industry (Chapter 4.2.3.5)

that requires low manufacturing costs - but the EMRs also have to withstand high

levels of vibrations and shocks, varying temperatures, contamination whilst also

being able to switch circuits with inrush currents of up to 100 A.

4.2.3.1 General DC EMR

In [75], the authors present results of life-cycle tests and a failure mode analysis,

studying silver-plated copper contact rivets. A high, repeating rate of random, but

non-critical switching failures (i.e. relatively high CR while closed) is observed,

after which the EMR returns to nominal operation. Different CR stages can be

distinguished over the course of the EMR life. An increase of the CR beyond the

manufacturer’s maximum rating and CR fluctuations are reported. Towards the

EOL the amplitude and frequency of the fluctuations increases, though, an under-

lying increasing trend of CR is documented. The authors attribute this to contact

contamination which deteriorates the connection between the contact surfaces. Just

before the EMR’s EOL a rapid CR increase is observed. The operational failure is

traced back to an excessive build up of oxide layers on the contact surface. Reaching

a critical thickness, the contact force is too low to cause a rupture of the contamina-

tion layer, nor can a conducting path be established by electrical arcing. Apart from

unacceptable high CR failures, mechanical failure of the contact carrier (spring-type)

is discussed. The authors extend their research towards a predictive maintenance
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approach in [58], focusing on prediction of the CR degradation trajectory. A Moving

Average Model, an Auto Regressive Integrated Moving Average (ARIMA)-Model,

an Exponential Smoothing Model, and a NN-Model are compared in terms of pre-

dictive performance. The last one is found to be best suited to predict EMR-EOL.

However, the authors state that predicting the EOL solely on CR is highly dependent

on the type of application and, thus, does not generalise well.

The authors of [76] are concerned with improving EMR maintenance schemes. The

authors point out that in many instances EMRs are exchanged early, often in accor-

dance with pre-determined life estimates, cf. preventive maintenance approaches.

Following up on the arguments given by [58], [76] emphasise that dynamic CR mea-

surements should be used in addition to static CR measurements for EMR-RUL

estimation. The authors demonstrate that Dynamic Contact Resistance (DCR),

recorded during the closing actuation, can be a valuable DI. DCR shows a compar-

atively more pronounced trend. A statistical regression model to estimate the EMR

life that forecasts CR is then presented. Even though CR is one of the most promi-

nent indicators of contact life, in [77] the authors refine their prior work stressing the

importance of alternative DIs, since an accurate analytical solution describing CR

is yet to be found. Therefore, to enable data-driven methods, meaningful EMR DIs

need to have a low correlation among each other, while highly correlating with the

EMR’s life. Using factor-analysis, the authors identify promising indicators from the

sensed waveform, being the DCR, CRmax, and BT. Based on the extracted features

a fuzzy model is used to evaluate contact reliability. However, no further insight into

the concrete nature of the measurements, nor the contact failure modes is provided.

The authors revisit their approach in [65], addressing the use of BT for estimation of

the EMR performance. Analysing the entropy of the BT using sequence encoding,

the extracted trend relates to the EMR life and its EOL, although the analysis is

performed on a fairly small data set.

The research in [60] is motivated by the need for a novel method to evaluate the

EMR life, since traditional reliability methods have become too time demanding

no longer yielding failures in reasonable test-time due to improvements in design

and quality of EMRs. The experiments conducted within the study further reveal

that different failure mechanisms change the shape of DI degradation trajectories,

demonstrated for Closing Time (CT), RT, and OT. It is found that OT decreases,

and RT increases as the contacts erode; however, if contacts fail due to contact

welding OT increases and RT decreases; contact failure due to contamination and

unacceptable high CR did not exhibit a clear trend. As in [75], the authors attribute

this to alterations of the mass transfer between the contacts and the resulting ran-

dom contact morphology. The potential of a regression model combining the effects

of the identified failure mechanisms to predict the EMR degradation process for

reliability purposes is explored. In [61], the authors confirm prior findings, high-
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lighting different characteristic trajectories of DIs for various failure mechanisms,

e.g. contact erosion, contact welding, and contact contamination. A trendable DI

is presented, referred to as the fluctuation coefficient, i.e. the correlation between

the changes in CR, PT, RT, OT, BT, and AT. After preprocessing features using

Wavelet Decomposition a linear-model is derived for DI trajectory forecasting. The

best performance is achieved for either OT and BT related degradation trajectories

if the EMR’s degradation is dominated by contact erosion. The subsequent model

does not perform as well for contact welding and contamination failures. While the

proposed fluctuation coefficient improves the performance for these failure mecha-

nisms the reported accuracy, however, remains low. In addition, the authors study

the performance of a physical model considering arc energy and contact form fac-

tors mapping the degradation of contacts to different environmental factors and

materials.

A recent analysis highlights two key challenges for a broad application of PHM to

EMR [62]: (1) the lack of life-cycle data, since, currently, there are only very few

deployed online monitoring health management solutions for EMR; (2) the uncer-

tainty associated with the DIs. To address the former issue, simulation of EMR

life-cycle data is proposed. Coil and armature related failure mechanisms are simu-

lated and compared to the measured CC waveform. This allows to derive a reference

for healthy or unhealthy CC waveform shapes. A diagnostic framework is proposed

using the Mahalanobis Distance to discriminate between EMR operation states and

failure modes respectively. [78] investigates DIs of EMRs subjected to contact weld-

ing under a Direct Current (DC) lamp-load setting. The representative PDFs of CC

and CV for different states throughout the EMR life are determined.

4.2.3.2 Aviation and Aerospace DC EMR

In [53] the authors propose a methodology for aerospace EMR life estimation. Key

to this methodology is the decomposition of the derived DIs into a trend, cyclic terms

using Wavelet decomposition, and a stochastic term. Forecasting models are devel-

oped respectively, using a Polynomial Model and Auto Regressive Moving Average

(ARMA) Model. The authors find that such preceding decomposition might improve

accuracy and point out that previous work has focused solely on the trend term of

degradation parameters, e.g. [79], ignoring the influence of repeating/ fluctuating

patterns in the waveform, i.e. the cyclic term, that can deteriorate the performance

of the forecasting model. The authors affirm that CR is not a robust DI due to the

encountered significant fluctuations. However, PT, OT and RT are found to be good

indicators reflecting the degradation behaviour of the EMR contacts. PT increases

throughout the EMR life which is attributed to a growth of the contact gap due to

contact erosion. PT returns the most accurate forecasts for EOL estimation among

all tested DIs. Though, as previously pointed out by [58, 80], the success of such ap-
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proach highly depends on the specific EMR design and the distinct application. As

in [53], in [81] the authors present a time series based EMR life prediction method

identifying CR, the CV peak voltage, BT, RT, and Super-Path Time (ST) as valu-

able DIs. Relying on ST, a Volterra Series based Regression Model in combination

with optimised Wavelet Decomposition, significant frequencies are derived to fore-

cast the ST trajectory. The model accurately predicts ST through the second half

of an EMR’s life. However, no EOL threshold is presented making an evaluation of

the performance of the proposed model challenging. In [82] the authors show that

the initial mean and variation of CR time series measurements can be used to esti-

mate the life of the EMR. The value of the proposed approach lies in the capability

to determine whether a new EMR will perform within its specification throughout

the rated life under known operational conditions based only on its initial state.

The initial parameters are determined over the course of the first 1000 actuations.

To estimate robust parameters, the authors derive the probability-weighted average

of the selected DI. The life of the EMR is modelled using polynomial-fitting. The

authors, using EMR life-cycle data, determine the relationship between the EMR

life and the sum of the weighted distance of the initial mean and variation of CR.

The proposed model shows a tendency to underestimate the EOL, yielding an early

prediction of around 15 %. Since only a small data set was used, it is difficult to

assess the applicability of the proposed approach.

[83] combine a physical-model of erosion related contact degradation with the find-

ings of an ALT performed on EMRs used by the aviation industry. Using Kalman

Filtering, the measured CR is fused with the physical-model to estimate the degra-

dation dependent trajectory of the CR. However, no measure of performance for

this approach is presented. As emphasised before, the feasibility of CR as the sole

measure for the advancing EMR degradation is conditional on the application cho-

sen [75, 60]. The authors themselves present evidence of the shortcomings when

predicting CR as they extend on their initial research in [84]. Results from EMR

life-cycle tests are introduced which focus on contact welding related failures. As in

[75], [84] find that the CR degradation trajectory can be separated in various stages.

In some instances it is shown that CR increases linearly until the manufacturers’

stated minimum operating life. Beyond this, CR is subject to significant fluctua-

tions. However, the authors disregard CR, since it lacks the necessary expressive

power in order to be considered as robust DI (high variance among the recorded

samples). It is further limited by the anomalous short-time fluctuations through-

out it’s operation life. Nonetheless, the authors postulate a regression model using

Grey-System theory relying on the CR EOL-threshold. And yet, these very fluctu-

ations in combination with a static threshold cause the proposed model to predict

the EOL too early.
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4.2.3.3 High-Voltage DC EMR

The authors in [73] review the failure modes of High-Voltage DC EMRs. Here, the

predominant failure mechanisms are contact erosion and contact welding. To judge

the severity of arcing the authors point out that contact mass variations are un-

suitable for online life time prediction models as they are difficult to obtain without

dismantling the EMR for each measurement. However, the arc charge directly relates

to the contact mass loss from electrical erosion. It can be calculated by measuring

the current of the arc discharge. In turn, this serves as a DI, since the cumulative

variation of the arc charge increases linearly towards the EOL, whereby the failure

threshold is experimentally determined for the presented application. Furthermore,

the effects of the arc charge under the influence of a permanent magnet used for arc

suppression are studied. As expected, with increasing magnetic flux density the arc

duration is shortened. Likewise, the cumulative variation of the arc charge exhibits

a smaller slope. The authors derive the linear relationship between flux density and

the EMR-life. Using the proposed method, the minimal flux density needed to reach

a specified number of actuations is estimated. The authors state that their method

could decrease EMR development time. The applicability of the proposed approach

to low-voltage DC EMR applications and the effects of contact contamination on

the arc charge are to be discussed. Building on [73], the authors in [80] analyse the

correlation between contact velocity and electrical life. Experimentally it is demon-

strated that higher breaking velocities decrease arc erosion as the arc is extinguished

earlier due to the widening contact gap. The authors show that the cumulative arc

erosion mass under different breaking velocities increases linearly with decreasing

breaking velocity. A mean EOL threshold based on the arc erosion mass is experi-

mentally determined. It is pointed out that contact velocity and the magnetic flux

density are both subject to variations due to manufacturing tolerances which may

significantly impact the life estimation. A prerequisite for the proposed method is

an extensive experimental study of the parameters contributing to electrical erosion

in order to determine the linear relationship between the increasing erosion rate, the

magnetic flux density, and the contact velocity. Therefore, as it is the case in [73],

the generalisability of this approach is at issue.

4.2.3.4 Railway EMR

[54, 67] present diagnostic methods for railway EMRs using Wavelet Decomposition

for denoising of extracted DIs. RUL prediction is performed with ST, BT, AT, and

RT as features. To further constrain the feature space, reliable degradation features

based on the Fisher-Discrimination-Criterion are selected. ST and BT are identified

as key DIs. Contact erosion, contact welding, and contact contamination are the

dominant failure mechanisms important to railway EMR as the study suggests. To

account for the variance in the derived DIs, the authors propose the use of the
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Mahalabonis-Distance to classify failure modes, cf. [62]. For RUL prediction, NN is

employed, achieving 84 % forecasting accuracy. However, the study does not provide

details on the extent of the prediction horizon. As before, the authors emphasise

the difficulties when selecting appropriate EOL thresholds for respective EMR-DIs.

In [85], the authors address the previously encountered challenges. A novel EMR

life forecasting strategy is proposed, allowing a prediction horizon of up to 500 actu-

ations ahead. The authors point out how this strategy can be beneficial for railway

related PdM. RT is identified as key DI using the method previously presented in

[54]. The non-linear and non-stationary behaviour of the degradation process is em-

phasised in this research context. An ensemble of Empirical Mode Decomposition in

combination with improved Variational Mode Decomposition is proposed in order to

decompose the RT time series. Eight Intrinsic Mode Functions and a Residual Com-

ponent are then derived. These features act as input to a multi-layer Radial Basis

Function NN. The NN predicts the trajectory of RT. The authors demonstrate that

the proposed preprocessing steps to prime the input features for the NN improve

model performance. Nevertheless, the meaningfulness of predicting a DI trajectory

to infer EOL is debatable, since the DIs are prone to fluctuations and high levels

of variance as reported in previous works. Accurately predicting such fluctuations

is not of immediate benefit to EMR-RUL forecasting and underpins the need for

uncertainty quantification with any prognostics methodology.

[86] propose a method for PdM and the reduction of test-time for railway EMRs. CR

and CT are recorded during ALT experiments at various elevated temperature levels

in order to shorten the required time-to-failure. Two physical models are derived:

(1) with regard to a CR increase that is attributed to contact corrosion; (2) with

regard to the observed changes in CT. To determine the coefficients, the models

are fitted to life-cycle data using the Least Square Method. The fitted models are

evaluated on the EMR life at lower temperatures, yielding a low prediction error

against the observed EMR life.

4.2.3.5 Automotive EMR

[63] consider CR, PT, ST, BT, AT, and RT as DIs for automotive EMRs. The

authors emphasise the degradation behaviour of the EMR motivates the selection

of a NN model due to its capability of learning non-linear relationships. Using the

aforementioned DIs as input, the authors evaluate the performance considering var-

ious NN topologies and training sets to predict the EMR-RUL. They deploy a NN

using a Wavelet Function as activation function, since it yields superior results. The

failure mode of the tested automotive EMR is not further specified in the publica-

tion. In [66] an alternative model to predict EMR life in automotive applications

is proposed, using the Improved Fireworks Algorithm Grey NN, i.e. a swarm opti-
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misation based algorithm. The method is evaluated with life-cycle tests at different

temperatures predicting the EMR-RUL based on the initial state of the EMR where

measurements of DCR, closed-circuit and open-circuit contact voltage, and BT are

taken at regular intervals. Finally, the authors stress that the model could be further

refined if more parameters would be considered, e.g. the operating environment.

4.2.3.6 Nuclear EMR

In [87] an embedded, non-intrusive method to determine welded EMR contacts in

safety critical application is presented. Contact welding poses a significant risk, since

some circuitry could no longer be decoupled during an emergency. This insight drives

the research for an online health monitoring scheme in the context of nuclear power

plants. Recall, the armature movement produces a distinct CC waveform (the so

called inductive-nick and inductive-peak), since the travelling armature affects the

inductance of the coil [88]. [87] demonstrate that welded contacts prevent the EMR

armature from moving in a similar fashion. Thus, the CC waveform does not exhibit

such distinct characteristics. To not adversely affect the nominal operation of an

application through contact making and breaking a short de-energisation of the coil

is followed by an immediate re-energisation of the coil (prior to contact breaking).

The CC waveform is recorded. It is concluded that the distinction between welded

and non-welded contacts is possible solely based on the shape of the CC waveform.

Therefore, the EMR contacts are not required to be opened in order to determine

the presence of contact welding. The authors are aware that the application of

the proposed method heavily depends on the type and design of the EMR. In [89]

they expand their research. An integrated circuit for online diagnostic of EMR

contact welding detection referred to as Relay Output Card is presented. Using

a Markov Model and the CC waveform shape characteristics deduced in [87], the

capabilities of the proposed circuit are demonstrated by improving the reliability of

safety critical EMRs with low failure rates in nuclear application. Similar research

has been conducted by [90]. The authors extend on the non-intrusive contact welding

detection proposed by [87, 89]. A range of failure criteria aiding the automatic

detection of contact welding is reviewed and the robust determination of a healthy

CC waveform using an embedded circuit is further refined.

4.2.3.7 Storage of EMR

The degradation of EMR when stored, in particular, the deterioration of the con-

tacts during storage has been subject to an evolving field of research over the past

decade [91, 92, 93, 64, 94, 95, 96] and [69, 97]. In [91], the authors expose aerospace

EMRs to accelerated degradation testing without contact switching under elevated

temperature conditions. Performance measures are taken, namely CR. It is shown

that temperature stressing of EMRs leads to a faster increase in CR. This behaviour
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becomes significant beyond 100 ◦C. The authors identify temperature accelerated

corrosion as a principal cause for high CR and low conductivity due to surface film

formation of oxide corrosion films in silver-plated contacts. These effects are further

analysed in [96, 95], attributing the increase of CR during extended storage time

not only to oxides but also to sulphides and carbides depositing on the contact sur-

face. The authors demonstrate that measurements of PT, RT, OT, and BT exhibit

distinct trends [91]. Exploiting these findings, a method to predict CR for EMR

in storage is proposed in [92]. The selection of Grey-NN as prediction model is

motivated by the non-linearity of the degradation process, cf. [63]. The proposed,

combined Grey-NN is superior to using either standalone Grey-System-Theory or

NN. A similar approach, employing Grey-NN for aerospace EMR in storage is pre-

sented in [94]. However, CT is chosen as prediction target instead of CR. In [93], the

authors link their previous research of elevated temperature testing to storage life

prediction at ambient temperature. To facilitate this, the authors pre-process the

CR measurements obtained at elevated temperature using Wavelet Decomposition.

An exponential model is found to exhibit the best predictive performance for CR.

Then, the maximal storage life under ambient conditions is obtained using the Ar-

rhenius Model. However, it is important to point out that no experimental validation

for the estimated EMR storage life under ambient temperature is provided.

In [64] the authors develop a degradation model for aerospace EMR using PT. Two

major factors affecting PT are identified. If the coil wire resistance increases, the

magnetic force decreases causing a slower movement of the armature and, therefore,

an increase in PT. On the contrary if the spring force decreases due to ageing stress

relaxation, PT decreases. The latter one is the dominating degradation mechanism

in the examined study. It exhibits a direct linear relationship with the spring force

relaxation. Based on the Larson Miller Model a method is proposed that establishes

the relationship between spring force decrease and EMR storage life. Since no

assessment is provided whether the decrease in PT and the failure threshold based

on CR resemble similar trajectories for the sampled EMR population, the question

for EOL-threshold selection is left unanswered.

[69] presents a method to predict EMR degradation during storage based on CR

increase. Accelerated storage degradation tests have been conducted and failure

mechanisms determined with SEM and EDX analysis. Using Particle Filtering the

unknown parameters of a physical-model are determined from the experimental

data. This research has been extended in [97]. The life shortening effects under the

influence of elevated temperature leading to excessive fretting corrosion are revisited

by the authors. A refined model to forecast the storage life based on estimating the

CR trajectory is proposed. As the results indicate, the proposed model is capable

of forecasting the storage life accurately for the considered EMR. The forecasting

performance improves closer to the actual EOL.
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4.2.4 Comparative assessment

In Table 4.3 a summary of the reviewed literature is presented, comparing various

approaches and objectives to diagnose the operating state of the EMR in order to

forecast the EOL or a DI trajectory. Figure 4.5 illustrates the relation of mea-

surements, derived features, models, and research objectives. The line thickness

between the nodes corresponds with the usage frequency within the reviewed body

of literature. For example, CR is a prominent feature, derived either directly using

an Ohmmeter or via CV and CI measurements. Likewise, data-driven models are

frequently employed to asses the EMR-EOL through an estimation of the future

state of certain time-based reference DIs.

From the analysis of the literature several challenges in monitoring and maintaining

EMR using data-driven techniques become evident. Classical DIs do not generalise

across different EMR designs, contact types, contact material, operational envi-

ronments, or loading scenarios, since each application results in distinctly different

degradation trajectories, cf. [98, 53, 62, 54, 85, 86]. In addition, different failure

modes cause classical DIs to exhibit incoherent, opposing trends often even changing

within the same batch of EMRs, cf. [60, 62]. This inevitably affects the direct use

of DIs as performance metrics. Predicting or forecasting the trajectory of such DIs

is flawed, because they are subject to high levels of variance and fluctuations in the

switching process, cf. the build-up and destruction of oxide films on the contact

surface (particularly problematic for CT and OT) as adverted by the above review.

Furthermore, CR is disregarded as DI for a wide variety of EMRs (silver-plated

contacts), because in most instances any noticeable trend is masked by significant

fluctuations, cf. [53, 84] and Chapter 7.2. Research is further affected by the lack

of sufficient EMR life-cycle data sets to validate and benchmark the proposed data-

driven approaches. Moreover, uncertainty of the forecast is not of concern in any of

the reviewed approaches. Collectively, this impedes the development of applicable

data-driven diagnostics and prognostics for EMRs.

Table 4.3: Summary of reviewed methodologies.

No. Ref. Year Signals Features Method(s) Objectives
General DC EMR

0 [58] 2004 CV, CI CR ARIMA, Exp.
Reg. Model

Predicting EOL
based on CR tra-
jectory.

1 [76] 2004 CV, CI DCR, CR,
max.-CR, BT

Reg. Model Predicting CR.

2 [77] 2006 CV, CI DCR, CR,
max.-CR, BT

Fuzzy Model EMR contact relia-
bility evaluation.

3 [60] 2010 CR, CC,
CV

PT, CT, BT Reg. Model Improving EMR re-
liability estimation.

Continued on next page
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Table 4.3 – continued from previous page
No. Ref. Year Signals Features Method(s) Objectives
4 [65] 2012 CC, CV BT Symbolic-

Sequence-
Analysis

Estimating entropy
of BT.

5 [61] 2012 CV, CI CR, OT, RT,
CT, BT, AT,
Fluctuation
Coefficient

Wavelet
Dec., Linear-
Model, Physi-
cal Model

Predicting the DI
trajectory.

6 [78] 2017 CV, CC CV, CC Weibull Distri-
bution

Classifying EMR
state based on
distribution of CV
and CC measure-
ments.

7 [62] 2017 Simulation PT, OT, CC,
Spring Force

Mahalanobis
Distance

Classifying EMR
failure modes.

Aviation and Aerospace DC EMR
8 [53] 2009 CC, CV PT, OT, RT Wavelet-Dec.,

ARIMA
Predicting EOL
based on DIs.

9 [83] 2014 CR CR Kalman Fil-
ter, Physical
Model

Contact degra-
dation modelling
based on CR.

10 [84] 2015 CV, CR CR Grey System
Theory

Predicting EOL
based on CR.

11 [82] 2016 CV, CI CR Polynomial
Model

Predicting EMR
life based on initial
measurements of
CR.

12 [81] 2016 CV, CC,
CR

CR, BT, RT,
ST

Wavelet Dec.,
Reg. Model

Predicting EOL
based on DIs.

High-Voltage DC EMR
13 [73] 2016 CI Arc-Charge,

Magnetic-Flux
Linear Model Predicting EOL

based on variations
in DI.

14 [80] 2017 CI, Ero-
sion
Mass,
Velocity

Velocity - Predicting EOL
based on changes in
Contact-Velocity.

Railway EMR
15 [99] 2016 CV, CC ST PCA, NN,

Mahalanobis
Distance

Failure classifi-
cation and RUL
prediction.

16 [86] 2018 CR, CV,
CC

CR, CT Physical
Model

Correlating ele-
vated temperature
tests to predict
contact degrada-
tion at ambient
temperature.

17 [85] 2019 CV, CC RT NN Predicting changes
in EMR RT.

Automotive EMR
18 [63] 2017 CR, CV,

CC
CR, PT, RT,
BT, ST, AT

Wavelet Dec.
NN

Life prediction util-
ising the proposed
features.

19 [66] 2020 CV, CI DCR-
duration, BT,
CV-static,
-dynamic

Particle
Swarm Op-
timisation,
Grey NN

Life prediction
based on the initial
state of the mea-
sured DIs.

Nuclear EMR
Continued on next page
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Table 4.3 – continued from previous page
No. Ref. Year Signals Features Method(s) Objectives
20 [89] 2016 CC CC waveform

shape
Threshold Classification of

contact welding (cf.
[87]).

21 [90] 2017 CC CC waveform
shape

Threshold Diagnostic circuit
to detect the con-
tact welding.

Storage of EMR
22 [91] 2012 CR, CV,

CC
CR, PT, OT,
RT, BT

- DI derived at ele-
vated temperature,
cf. [96, 95].

23 [92] 2013 CR CR Grey NN Predicting the tra-
jectory of CR.

24 [93] 2014 CR CR Wavelet Dec.,
Exponential
Model

Predicting the tra-
jectory of CR.

25 [64] 2015 CV, CC PT Miller Larson
Model

Utilising the lin-
ear relationship be-
tween spring relax-
ation and PT to
predict EMR-EOL.

26 [94] 2016 CV, CC CT Grey NN Predicting the tra-
jectory of CT.

27 [69] 2017 CR CR Physical
Model, Parti-
cle Filtering

Predicting CR.

28 [97] 2019 CR CR Physical
Model

Predicting CR.

Summary

This chapter recapitulated the state of the art. The unique challenges impeding the

dissemination of novel maintenance solutions and, therefore, the industrialisation of

data-driven maintenance to inform decision making for such applications have been

identified. Taking these findings into account, data-driven maintenance frameworks

can be tailored for BHA-PCBA failure classification and EMR-RUA estimation re-

spectively. Thus, the following Chapter 5 integrates the distinct characteristics of

each developed method in the context of the relevant areas of research.
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Chapter 5

Developed data-driven methods

Introduction

As argued in Chapter 1 this thesis proposes solutions which emphasise the role of

data-driven techniques in order to enable informed maintenance decision making.

Yet, to gain acceptance within an industrial setting such solutions need to sustain

within a given data environment. Moreover, they should facilitate an expressive

prognostic feedback under the application specific constraints. With these objec-

tives in mind, the methods proposed here develop two distinctly different responses,

both customised to the respective settings: (1) prediction of failure class proba-

bility of electronic assemblies at fleet-level (BHA-PCBA); (2) RUA estimation for

the EMR on component-level (Electromagnetic-Relay-Remaining-Useful-Actuation

(EMRUA)). Along these lines, Chapter 5.1 presents the developed BHA-PCBA

pipeline, while Chapter 5.2 details the proposed strategy for the EMR. Here, special

attention is paid to data-driven approaches that are challenged by high volumes of

MVTD. Relevant DL terminology and key principles - in particular Convolutional

Neural Networks and their adaption in PHM - are introduced in Chapter 5.2.1.

5.1 BHA-PCBA maintenance support framework

As elaborated in Chapter 3.1, the BHA is a complex system assembly. Within the

upstream service industry, the individual BHA units resemble tool-fleets that are

used interchangeably over multiple operations before being maintained according to

their respective maintenance schedule. As detailed, the BHA holds a set of PCBAs.

The electronics mounted on the PCBAs are liable to failure, since they are operated

in harsh and often unpredictable operating conditions. The aim of the developed

method is to determine a malfunctional behaviour of the BHA-PCBA and support

the maintenance decision making within a potential PdM framework. Note, in

practice a maintenance recommendation translates into a scrapping decision, i.e.
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replacement of the entire board prior to the next run of the BHA. Replacing a

whole PCBA is economically more efficient than first screening, then maintaining if

necessary, and lastly qualifying the various components on the PCBA 1.

5.1.1 Failure classification using machine learning

From a ML perspective, the problem of support for maintenance decision making is

treated as a classification problem, where predicting the need for maintenance can be

phrased as a two-class problem. One class represents the case when a PCBA needs

replacement (failure k=1), while the other class indicates the PCBA is fit for a rerun

(no-failure k = 0). In addition to a hard decision boundary, the confidence of the

algorithm in it’s prediction by means of a conditional probability output p(y=k|x)
is considered, where x denotes the model inputs and y the output corresponding to

the predicted target class. Therefore, an algorithm is confident in a prediction if it

outputs the probability of a sample belonging to one of the classes greater or equal

to a user specified threshold. This threshold is denoted here as maintenance decision

threshold THm. Translated into an engineering context, a recommendation to carry

out replacement of the PCBA is recommended in all cases where the probability of

failure is greater or equal to THm. Depending on operational circumstances THm

can vary in accordance with the acceptable level of prediction uncertainty.

To facilitate BHA-PCBA failure prediction two different ML algorithms are con-

sidered, namely Random Forest and XGBoost. Independent of the chosen method,

the hierarchical executed steps to derive a trained model (also referred to as offline-

phase) are the following: (1) data processing, (2) data augmentation, (3) model

training, and (4) performance evaluation.

5.1.2 Data sources

As prior discussed, data from various sources is collected during drilling containing

information regarding the geological formations, tool health, and event logs. There-

fore, the proposed approach utilises a combination of field data (surface data and

telemetry data), post-run data (higher resolution memory data from the BHA), and

subsequent reports (number of attempts and mission status) which are all aggre-

gated into a single data set. The post-run data has been collected following each

tool’s arrival in a maintenance workshop from 208 missions over a six-month period.

Recorded missions are of one specific type of BHA. Post-run data and field data

records have been post-processed. Such processing of the post-run data provides the

number of attempts of various BHA components to successfully or unsuccessfully

establish an internal communication link. This internal communication network is

1Parts of this chapter have already been published in my journal or conference arti-
cle: L. Kirschbaum, et al., (2020).
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Figure 5.1: (I) A schematic display of the layout of the used data set. (II) The hierarchical
training process for the RFC and the XGBoost Classifier using adversarial examples to
augment the data set. (III) the deployed classification model predicting the failure prob-
ability for PCBA in a BHA i based on features X aggregated from multiple downhole
tool data sources. This mitigates the need for labour intensive disassembly and manual
inspection of the BHA-PCBA in order to make a informed maintenance/ rerun decision.
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Figure 5.2: The numerical features (left and centre) and the discrete features (right) of the
BHA-PCBA data set. (*) Due to data confidentiality the absolute values of the features
can not be displayed.

resembled by various nodes. An accumulation of unsuccessful attempts or delays

in communication at these nodes indicates faulty behaviour of a PCBA within the

BHA. Concluding, as shown in Figure 5.1-(I), the data set is aggregated from BHA-

PCBA post-run data and field data. It compromises out of n = 208 BHA instances,

with m = 23 preprocessed and selected features. The jth BHA instance holds the

feature space vector xi
j = [f 1

j , ...f
m
j ] and a status report classifying the BHA as

healthy (80 % of the data) or failed (20 % of the data) using a label yj. The data set

can be represented as D = (X i
j, Yj) holding the input matrix X = [x1, x2, ...xn] and

the target class vector Y = [y1, y2, ..yn]. Out of the m features, 21 are numerical and

2 are discrete. The mean and the variance of the numerical features of no-failure

and failure BHA-PCBAs are displayed in Figure 5.2 on the (left) and in the (cen-

tre) respectively. Likewise the percentage of each category of the 2 used discrete

features is displayed in Figure 5.2-(right). The discrete features only comprise two

categories, e.g. off and on.

21 out of the 23 features are part of the BHA memory data. As detailed, they are

either error flags or represent counts of unsuccessful communication attempts within

the BHA-PCBA system. However, feature 1 and feature 2 represent two measures

of time-till-failure that are derived using surface data. The reliability of the BHA-

PCBAs can be modelled using a Weibull fit, cf. the survival function displayed in

Figure 5.3. It is evident, that an increasing exposure to the drilling process decreases

the reliability. In particular, feature 2 exhibits a steep initial decline of the reliability.

This shows that the probability of failure increases as exposure time captured using

feature 1 and feature 2 increases, cf. Chapter 2.1 .

As explained in Chapter 5.1.4, the employed ensemble algorithms do not require

the features to be normalised. The remainder of this chapter details the subsequent

data augmentation process, ML models, training, and performance evaluation.
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Figure 5.3: Survival plot of (top) feature 1 and (bottom) feature 2 incoporating a 2-
Parameter Weibull fit. Samples that are labelled as failure are fully observables while no-
failure samples are considered right-censored. (*) Due to data confidentiality the absolute
values of the failure times and the parameters of the fit can not be displayed.

5.1.3 Data augmentation

As illustrated in Figure 5.1-(II), prior to model training the aggregated BHA-PCBA

data set is split into a training and a validation set. The validation data is provided

by the industrial partner independently of the training data and accounts for about

one third of all available data, containing representative examples of failed and non-

failed PCBAs. The training data is augmented, i.e. artificially created examples

are added to the original data set, due to the limited extent of the data set in

order to account for out-of-distribution examples and increase robustness towards

outliers. Thus, the generalisation ability of the considered algorithms is improved.

Note, there are no augmented examples in the validation set. Adversarial examples

are only introduced to the training data set [1, 2]. These adversarial examples are

carefully designed to be similar to a genuine training example but are misclassified by

the algorithm. In particular, linear ML models are challenged by the introduction

of adversarial examples. Misclassification of adversarial examples is not due to

overfitting (e.g. a too complex decision boundary), but rather due to underfitting,

since the model behaves too linear and is falsely extrapolating into regions where no

examples have been observed. This is increasingly problematic in high dimensional

data. To the naked eye, adversarial examples are almost imperceptible from the

original input, but fool the model. While there are other methods, given an input x

with target y, a similar approach to [1] is used to generate the augmented data set

employing the fast gradient sign method to define an adversarial example as
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x∗ = x+ ϵ sign
(
∇xL(θ, x, y)

)
(5.1)

where ϵ is a small perturbation value, L is the loss function with respect to the

model parameters θ, input x and target y. The loss function represents the error

between the model’s prediction and the expected output and is calculated after each

training iteration. In order to obtain the gradient of the loss function, ∇xL(θ, x, y),

the Ridge Classifier is employed [3]. A range of data sets containing adversarial

examples with perturbation factors in the interval of ϵ = [0.00, 0.10] is created. The

reason here is to investigate the effect of ϵ on the model performance. The newly

generated data sets are further referred to as adversarial training data sets. The

initial perturbation range has been determined by trial and error. For an elaborate

discussion on possible perturbation values ϵ refer to [1].

5.1.4 Ensemble algorithms

While a DT model can be used for regression, the remainder of this section focuses

on classification, i.e. predicting discrete values in a supervised learning context.

A DT is a powerful ML method because of its invariance towards types of data

and scales. It derives decision rules for categorical and continuous attributes alike;

therefore, it mitigates distinct data preprocessing steps, e.g. normalisation [4]. Due

to the rule-based nature, the DT offers interpretability in terms of how an estimate

has been reached, e.g. highlighting the feature interdependence [5]. DT models form

the basic building blocks of ensemble methods. Figure 5.4 provides the scheme of a

DT which can be graphically abstracted as an inverted tree.

An efficient DT should be as small as possible. However, with an increasing feature

space and data set size the computational complexity to derive the ideal tree rises

exponentially [6]. Hence, a so called greedy heuristic approach is recursively deployed

where on each node the next best local split is determined in order to maximise the

class separability [7]. In general the Gini Impurity GI , measuring the class variance

for a feature as per Equation 5.2 is used.

GI = 1−
C∑
c=1

(pc)
2 (5.2)

Here C denotes the number of classes and pc the respective class probability. Alter-

natively, the Entropy E for a subset of the data S is calculated as per Equation 5.3 -

a measure of disorder in the data set - and the information gain which indicates how

the entropy in the data set is reduced by further splitting the parent node feature

according to a condition. The information gain is used to select a threshold to split

continuous features.
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Figure 5.4: Schematic display of a DT, classifying an input based on fn features into a
failure and a no-failure class. The top node constitutes as root node from which the tree
grows. A node contains a criterion relating to a feature which splits the attribute, e.g.
x ≤ 3. A binary split based on whether a condition/ threshold is true or false extends the
DT. This might require continuous splits on the same feature or other features. If the split
yields a set of features only relating to one class a leaf node terminates the tree at this
branch. Contrary, if no clear class separation can be obtained a decision node is entered.

E(S) =
C∑
c=1

−pc log2 pc (5.3)

During learning DT models have a tendency to overfit, e.g. because of the noise

present in the training data. Further, DT models are sensitive to very small changes

in the training data yielding highly varying results for each data set split. There-

fore, different mechanisms have been established to reduce overfitting forcing the

algorithm to build simple trees. For example, one can consider the following: the

maximum tree depth can be limited; a minimum number of available samples is

required at each node to allow a further split; pruning techniques remove redundant

branches [8].

To reduce the susceptibility to variance in the training data set as well as overfitting

from a very deep, single tree, the results of many individual, shallow DTs can be

averaged to increase robustness. This popular ML algorithm is known as Random

Forest and is one of the so called ensemble methods [9]. In general, ensemble methods

are learning algorithms that first construct a set number of classifiers and then

estimate a sample’s class by casting a weighted vote of their predictions. It has long

been observed that ensemble methods improve predictive performance over single

based algorithms [10]. Different ensemble methods exist, cf. [11]. 1st the bagging

approach is a randomisation-based technique where models are trained in parallel
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without any interaction, e.g. Random Forest Classifier (RFC). Hence, the RFC

holds a set of randomly generated DT models. The randomness is introduced via

bootstrap-aggregation (known as bagging) where each DT is trained on a different

subset of the training data, i.e. n random subsets S = [S1, S2, ...Sn] are drawn from

the training data while randomly subsampling the set of candidate splits at each

node [12, 13, 14].

2nd in contrast to bagging techniques in which DT models are grown to their max-

imum extent in parallel, boosting makes use of trees with fewer splits [15]. The

boosting approach is a method where the ensemble members are trained sequen-

tially, e.g. common implementations are AdaBoost or XGBoost, such that each

subsequent tree aims to reduce the errors of the previous tree [12]. Hence, each

DT learns from its predecessors and updates the residual errors [16]. The gradient

descent is used to minimise a loss function, i.e. Extreme Gradient Boosting Algo-

rithms implementations such as XGBoost, where models are sequentially added and

optimised based on the residual of previous predictions, cf. [15, 17]. While ensemble

learning can be implemented with any learning strategy, ensembles of DTs (e.g. RFC

or XGBoost) are popular due to the computational efficiency of the DT model. They

are known to achieve state-of-the-art performance on numerous supervised learning

problems which has been demonstrated in [18].

The above-mentioned algorithms require careful hyperparameter tuning. Instead of

the common grid-search, a random-search approach is adopted in order to determine

the optimal set of hyperparameters. In this instance, a random uniform distribution

is considered for each algorithm’s hyperparameter space [19]. The choice for selecting

such tuning technique is motivated by the fact that empirically and theoretically

randomly chosen trials, no matter the distribution they are chosen from, are more

efficient for hyperparameter optimisation than trials on a grid [20]. In addition,

the randomised-search is coupled with a Stratified K-Fold Cross-Validation (SKF)

technique in order to accommodate for the high imbalance in the two classes – a low

number of failure instances compared to no-failure instances. The SKF incorporates

folds of the data that preserve the percentage of samples for each class and thus

allow the algorithm to train on balanced subsets in order to prevent overfitting on

one of the two classes.

5.1.5 Performance evaluation

Each algorithm is evaluated based on specific classification scoring metrics. Some

metrics are scoring qualitatively, others are quantifying the probabilistic outputs.

Qualitative measures take the predicted class label as input depending on the deci-

sion threshold THm. Probabilistic scores, on the contrary, are calculated based on

the output probability associated with its respective class prediction k. Since this is

99



Chapter 5: Developed data-driven methods

Figure 5.5: The confusion matrix for the proposed BHA-PCBA failure classification
methodology using either RFC or XGBoost.

a binary classification task, discrete performance measures of the prediction of each

algorithm can be derived from the confusion matrix as illustrated in Figure 5.5.

Traditionally, the accuracy denoted as acc in Equation 5.4, the precision in Equa-

tion5.5, the recall in Equation 5.6, and the F1-score denoted as F1 in Equation 5.7

are used in this context. Accuracy can give misleading performance results on data

sets. with imbalanced class distribution. Hence it is important to consider other

metrics. Precision is selected, if only correctly classifying failures is more important

than identifying all failures. On the contrary, if identifying all failures is paramount,

whilst misclassifying some is acceptable, recall is chosen. The F1 score combines

both precision and recall providing a unified metric. A comprehensive explanation

of the metrics used in classification settings can be found in [21].

acc =
tp+ tn

tp+ tn+ fp+ fn
(5.4)

precision =
tp

tp+ fp
(5.5)

recall =
tp

tp+ fn
(5.6)

F1 =
2 ∗ tp

2 ∗ tp+ fp+ fn
(5.7)

The tp refers to all faulty BHA-PCBA instances that have been classified correctly,

tn to all instances where no-failure has been correctly identified, fn to all instances

which have been misclassified as no-failure, and fp to all instances where a failure

has been predicted but no actual failure occurred. Further, the true positive rate

tpr = tp
tp+fn

(equivalent to recall), i.e. the number of correctly classified failed BHA-

PCBAs from all correctly classified instances, and the false positive rate fpr = fp
tn+fp

are considered. The fpr measures the ratio of all falsely predicted failures. Using
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Figure 5.6: Left - BHA-PCBA probability distributions for no-failure class (red) and the
failure class (blue). Right - ROC-AUCC score curves. (a) A perfect model, (b) deviating
model performance, (c) a model that can not differentiate between the classes.

the true positive rate and false positive rate the Receiver Operating Characteristic

- Area Under the Curve (ROC-AUC) score can be used to assess how certain the

algorithm is in its prediction [22]. It acts as a measure for class separability based on

the predicted class probabilities. If the ROC-AUC increases, the class separability

becomes more distinct. This class separability score is calculated as the Area Under

the Curve (AUC). Consider the three edge cases illustrated in Figure 5.6 with a

fixed decision threshold THm at 0.5. In Figure 5.6-(a) the prediction of a perfect

model is shown. On the left the probability distribution curve for the no-failure class

(red) and the failure class (blue) are illustrated. The ROC-AUC curve is displayed

on the right plotting the fpr against the tpr. An AUC= 1.0 indicates full class

separability, i.e. fp = 0 and fn = 0. This can also be seen on the left of 5.6-(a),

as the distributions of each respective class are non-overlapping. However, if the

model’s performance deviates the distributions begin to overlap which is reflected in

a reduced AUC= 0.8, consider 5.6-(b). If performance further decreases, the model

is no longer able to differentiate between the classes, as can be seen in 5.6-(c).

5.2 EMR prognostics pipeline

This section presents the EMRUA-Pipeline and formulates the problem of Remain-

ing Useful Actuation (RUA) prediction for Electromagnetic Relay (EMR) in Chapter

5.2.6. Research context is provided in Chapter 5.2.4 and Chapter 5.2.5 to under-

pin the decision for the selected DL method - the Temporal Convolutional Network
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(TCN). However, first Chapter 5.2.1 introduces the basic principles of DL essential

to the functionality of TCN. Subsequently chapter 5.2.2 presents examples of DL

frameworks in the context of PHM.

5.2.1 CNN-RNN based methods for multivariate time series

data

As discussed, data-driven prognostics methods are challenged by increasing amounts

of data, i.e. BD. In particular, processing MVTD recorded at high rates over long

periods of time is challenging for conventional ML models and demands consid-

erable hardware resources. Autoregressive DL models such as the LSTM model

have seen an increasing interest in a prognostic context, e.g. health monitoring and

RUL prediction [23, 24] or automatic processing of written maintenance logs [25].

However, high dimensional inputs cause RNN-type models to be computational inef-

ficient due to the required high numbers of trainable parameters. Further, valuable

inter-sensor correlation might be lost [26]. Hence, CNN based architectures have

been deployed in a supervised learning context to reduce the spatial dimensional-

ity of the input by transforming signals into image-like representations that retain

robust, lower-dimensional, non-linear feature-representation [27]. Consequently, re-

search leverages the combination of CNN and RNN network topologies in supervised

learning applications for PHM [26, 28, 29, 30]. The following section details CNN,

CNN-AE, and RNN, some of which are the central DL building-blocks for TCN 2.

5.2.1.1 Neural networks

NNs have been a topic of varying research interest for the last 70 years [31]. More

recently they are being used in a wide variety of PHM applications summarised in

[26, 32, 33, 34]. A NN’s basic structure is made up of interconnected individual

nodes or cells, often referred to as neuron, organised in layers through which the in-

formation flows in one direction (known as feed-forward NN). A node, cf. Figure 5.7,

may have several connections to other nodes in the previous and subsequent layers.

The neuron processes the received information from each connection by multiplying

it with an assigned weight wi and summing up these products, i.e. the weighted

sum under consideration of the bias b. Activated by a non-linear function p, it sends

this result to multiple neurons in the consecutive layer. Various activation functions

have been considered including the Sigmoid -, the Hyberbolic-Tangent or the Recti-

fied Linear Unit (ReLU), cf. Table 5.1. [35] provides a comprehensive description

of various other activation functions such as the parametric-, exponential-, or leaky-

ReLU that are commonly employed. In general, the node is activated if the input

2Parts of this chapter have already been published in my journal or conference arti-
cle: L. Kirschbaum, et al., (2021).
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Table 5.1: Selected NN activation functions.

Name Range Abbreviation Function p(x)

Sigmoid (0, 1) σ(x) p(x) =
1

1+e−x

Hyperbolic tangent (−1, 1) tanh(x) p(x) =
ex−e−x

ex+e−x

Rectified linear unit [0,∞) relu(x) p(x) = max(0, x)

contains the learned feature. The weights and biases are initially set up random

and then adjusted during training.

Figure 5.7: Single neuron schematic. Consider inputs x⃗i, weight wi for each input and a
bias b using an activation function p.

The choice of the hyperparameters such as the activation function, the number of

layers, the learning rate, or the initialisation of the weights and biases is decisive

for the final performance of the NN. Thus, optimisation of these parameters and

regularisation to prevent overfitting is a central objective when training NNs. In

supervised applications the training process in order to adjust the weights and biases

of the nodes in each layer comprises of three general steps. First, the NN will pass

the input data x⃗i received at the input layer forward through its architecture and

outputs a prediction ˆ⃗yi at the final layer. Second, the loss is calculated, using an

error function E, e.g. for a regression task this may be the mean squared error.

The prediction result ˆ⃗yi is compared against the ground truth y⃗i which yields an

error. Third, the NN is trained using, e.g. stochastic gradient descent or, more

commonly applied, the Adam optimiser [36]. Regularisation can be achieved by, e.g.

the L1-norm, L2-norm, i.e. penalising the objective function, or Early-Stopping, i.e.

terminating the training process if the validation error increases. A comprehensive

explanation can be found in [35].

5.2.1.2 Convolutional neural networks

CNNs are a type of specialised DL architecture able to operate on various data input

topologies (1D, 2D, or 3D). CNNs were first proposed more than two decades ago by
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Figure 5.8: Concept of a CNN architecture for failure mode classification of EMR contacts.

[37, 38]. Relevant tasks are, i.e. pattern recognition, image classification, instance

segmentation, or object detection [39, 40, 41]. In a PHM context CNN has been used

to monitor infrastructure condition thriving on image data, e.g. cracks in rails, fault

identification, and analysis of rotating machinery equipment by [42, 43, 44]. CNNs

can automatically learn low-level and high-level abstractions from the input data. In

order to illustrate the general working principle of CNN consider Figure 5.8. Here,

the concept of a CNN for failure mode classification (class F1 and F2) of electrical

contacts based on images of failed contacts is displayed. The network is trained

with a data set of labelled images of failed EMR contacts (the label represents the

failure mode). Note, learning the failure mode mapping directly from the raw sensory

information is difficult, i.e the individual pixels of the image. However, using a CNN

the mapping is divided into a series of sequential, simpler tasks. From the visible

input layer the raw input is propagated through a series of hidden layers. These

layers are learned, containing salient representations of the data. The complexity of

the representations increases with the network depth. The representations of edges,

contours, and structures in the 3rd hidden layer enables the trained NN to recognise

the failure mode (class F1 or F2) depicted on the provided input image.

Just like the general NN, a CNN comprises a set of subsequent layers where the

output of each layer forms the input to the consecutive layer [35]. Unlike the con-

ventional NN, the CNN stacks a set of so called convolutional layers. The utilisation

of these convolutional layers is unique to the CNN. A CNN can be made up out

of many of subsequent convolutional layers, as can be seen in Figure 5.9-(top).

Throughout the network the abstraction of the feature representation increases. To-

day’s successfully deployed CNNs are very deep and contain millions of trainable

parameters. Starting from the vanilla CNN architecture LeNet, a CNN referred to as

AlexNet developed by [45] stacks many convolutional layers for image classification.

Such architectures have been further refined by building even more complex, deeper

network topologies, cf. [46]. The recent state-of-the-art CNN architecture for image
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recognition, i.e. ResNet, contains more than 10 million trainable parameters, cf.

[47].

If one considers an individual convolutional layer, a defined sequence of operations

is performed, namely convolution, activation and pooling, cf. Figure 5.9-(bottom).

The remainder of this section discusses the details of the operations performed on

the input of each convolutional layer and the final Fully Connected Layers (FC)s

layer. The details of these operations are schematically illustrated:

1. The convolution layer performs a linear operation. The convolution stage

slides a set of learnable kernels (equivalent to a matrix of weights, cf. the

concept of weights presented in Chapter 5.2.1.1) over the layers’ input. The

learned weights are then adjusted at each training iteration. These convolution

operations are performed in parallel returning a set of output feature maps (one

for each kernel). The convolution operation is displayed in Figure 5.10.

2. To increase non-linearity each feature map is activated using, e.g. the ReLU

activation function. The activation operation is displayed in Figure 5.11–(left).

3. To improve invariance against small spatial changes in the input, i.e. trans-

lational invariance, pooling is applied. The pooling operation is displayed in

Figure 5.11–(right).

4. The final layer is typically a FC layer which transforms the output of the last

convolutional layer into a vector of class probabilities in the case of a supervised

classification task or a single value in the case of a supervised regression task.

The FC is displayed in Figure 5.12.

(1) Convolution Operation The first step is the actual convolution operation

performed instead of matrix multiplication as it is the case for classical NNs. This is

termed convolution stage. Note, the notation of this subsection refers to images since

CNN is typically applied to images. The convolution is performed as the elementwise

product given each value of an input of I = H in × W in × Cin corresponding to

the height, the width, and the depth (for an image this would be the number of

colour channels) as well as a set of n kernels (during training the network aims

to learn the set of kernels, i.e. the set of weights) K = [k1, k2, ...kn] (of size k =

Hk ×W k × Cin, where Hk denotes the height and W k the width of the kernel). In

general, the kernel is significantly smaller than the spatial dimension of the input

I [35]. The convolution operation results in an output A sometimes referred to as

feature maps or activations. If Cin ≥ 1 then the convolution operation is performed

individually for each channel and summed up over all channels. Lastly, the bias is

added. To extract various features at the same position, CNN architectures typically

use multiple kernels. Hence, e.g. kernels used in CNNs in image classification

applications can be of different type e.g. edge detection, sharpen, etc. and spatial

extent, cf. [35] for an extensive discussion of typical kernels. The kernel parameters
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Figure 5.9: (Top) A CNN with n convolutional layers that each process the input from the
prior layer and pass the results on to the consecutive layer. Typically, prior to the output
layer, the results of the last convolutional layer are flattened into a single 1D vector which
is then passed into a fully connected (FC) layer. (Bottom) Each convolution layer holds
a set of feature maps which each correspond to a different kernel.
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Figure 5.10: Convolution operation using n kernels K operated on an input I. Schemati-
cally illustrated for feature map Ai using a kernel ki convoluted on all three channels for
a representative section of the input Iwin.

are learned during training. After the convolution operation n feature maps are

derived as depicted in Figure 5.10. Besides the number and the spatial extent of the

kernels, the output of the convolution operation depends on two more parameters.

The stride s defines the step width at which the kernel is moving across the input. If

s = 1, element-wise multiplication is performed on each value of the input. If s ≥ 1,

only every sth of the input image is scanned by the kernel so that the convolution

operation decreases the spatial extent of the feature maps A in comparison to I,

cf. Equation 5.8. However, in order to maintain the original dimension of I in A

zero-padding can be used. Thus, the input is padded with zeros around its outer

boundaries.

A = ((H in −Hk) + 1)× ((W in −W k) + 1)× n (5.8)

Discrete convolution is motivated by the type of grid-structured data, e.g. images

containing areas that locally correlate - irrespective of their absolute location [48].

Hence, detecting a pattern independent of its location in the input is achieved by

sharing the weights across the entire input instead of being locally bound to one

specific area of the input. This sharing of the weights reduces the number of train-

able parameters significantly in comparison to traditional NN that employ matrix

multiplication [35].

(2) Activation Operation Within the detector stage, the objective of the

activation layer is to increases the non-linear behaviour of the network, i.e. the

output is only activated for regions that exhibit the learned salient pattern, cf.

Figure 5.11-(left). The non-linear ReLU function is commonly used in CNN. ReLU

truncates the input for each element, according to 5.9.
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Figure 5.11: Activation as in the detector stage on the left, and pooling on the right (max-
pooling only retrieves the maximum of the 2x2 sub-region; avg.-pooling takes the mean of
the 2x2 sub-region).

Figure 5.12: Fully connected (FC) layers in different configurations for supervised regres-
sion and classification tasks.

y(x) = max(0, x) (5.9)

(3) Pooling Operation Lastly, the pooling stage is applied, cf. Figure 5.11-

(right). The aim of the pooling layer is twofold: 1st to down-sample the input in

order to reduce the required network parameters in the subsequent layers, there-

fore, improving computational efficiency [35]; 2nd to reduce the effect of small local

translations in the input, so called local translation invariance [48]. Pooling maps

non-overlapping sub-regions of the input to a single numerical representation of this

sub-region. Thereby, the majority of the pooled elements in the output remain

constant, despite locally bound small variations. Two types of pooling exist: max-

pooling returns only the maximum of the sub-region; average-pooling returns the

mean of the sub-region.

Fully Connected Layer In practice, a set of Fully Connected Layers (FCs) are

often used as the final network layers. Figure 5.12 illustrates how the final CNN layer

needs to be complemented for classification and regression task respectively. Prior
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Figure 5.13: CAE operating on an 3D input using stacked convolutional layers to extract
meaningful representations contained in a lower dimensional representation referred to as
latent-space encoding (LSE). Reverse mirroring the structure in the encoder stage, the
decoder reconstructs the original input solely from the latent-space encoding.

to the the FCs, the feature maps of the last pooled convolution layer are flattened

into a single 1D vector. If a classification task is considered, the final fully connected

layer is made up of as many nodes as there are classes using softmax activation to

output class probabilities. In the case of regression one single node using linear

activation returns a continuous value.

5.2.1.3 Convolutional Auto Encoder

A variation of the CNN is the CAE. AEs are NN structures that consist of two

building blocks: the encoder and the decoder. The (general) aim of the AE is

to replicate its input to the output. An under-complete AE constrains this copying

task, i.e. learning the identity function, as it encodes the input to a lower dimensional

representation and respectively reconstruct this input from the latent space, trying

to minimise a loss function [49]. The lower dimensional representation acts as a

bottleneck, enforcing the encoder to learn the prominent features of the input. If

non-linear activation functions are employed during encoding, the AE is capable

of learning expressive non-linear mappings of the input [35]. For a comprehensive

study of AEs refer to [50]. CAE can be used for unsupervised automated feature

extraction or denoising from the stacked raw multi-channel input data [49]. This

DL architecture performs a set of subsequent operations on an input as depicted in

Figure 5.13. The lower dimensional latent-space encoding - the spatial dimensionality

of the large input is reduced through a set of subsequent convolutional layers -

contains the learned expressive non-linear feature representations.

5.2.1.4 Recurrent neural networks

RNNs are a type of autoregressive NNs used for sequential tasks. They have been

heavily deployed in natural language processing [51], but also improved performance
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Figure 5.14: (I) Schematic of RNN cell; (II) the activation functions employed by RNN
and LSTM; (III) Schematic of LSTM cell.

in tasks that relate to time series data Xn = [x1, x2, ..., xt−1, xt], e.g. predicting the

next sequence step xt+1. RNN extends the concept of the traditional feed forward

NN using some kind of sequential memory, i.e. repeating nodes for each sequence

step. A RNN transports the hidden state vector ht−1 from the previous cell to the

current cell to derive an updated current state vector ht in respect to the current

sequence step xt (point-wise addition of xt and ht−1), cf. Figure 5.14-(I). As detailed

in Chapter 5.2.1.1, the non-linear behaviour of the RNN is achieved using the tanh

activation function [35, 51], cf. Table 5.1.

RNN suffer from short-term memory due to a vanishing gradient during back-

propagation [52] (the gradient of the errors at each training iteration inform the

direction in which the layer weights are adjusted to reduce the error at the next

training iteration, cf. Chapter 5.2.1.1 and [35]). However, the gradient not only

shrinks from the networks output layer to the input layer, but also as it propa-

gates backwards through each learned time-step damping the influence of long-term

dependencies and earlier information. In addition, during training the vanishing gra-

dient problem prevents the earlier layers from being updated. Hence, the RNN does

not learn these long-term dependencies. This issue has been addressed in LSTMs

aiming to improve short-term and long-term memory alike.

In 1997 [53] proposed the Long Short Term Memory Neural Network network, a

modification of the RNN to address the above discussed short-term memory issue.

Therefore, in addition to the hidden state vector of the previous sequence step ht−1,

a cell state vector ct−1 is introduced as illustrated in Figure 5.14-(III). As extensively

discussed in [54] this modification improves the retention of long-term memory from

previous cells. However, one should note, the design of LSTM reduces the vanishing-

gradient problem but does not eliminate it. The cell state, the hidden state, and
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the input of the current state xt are combined using three gates. The forget gate ft

applies the σ activation function to the concatenated input of the previous hidden

state ht−1 and the current sequence input xt under consideration of the weights wf1

and wf2. The bias of the forget gate is denoted as bf . The forget gate controls the

amount of information from the previous state that will contribute to the new state.

A similar operation is performed on the input gate it. The same input as used by ft

and it is then regularised with the tanh activation to the range of (−1, 1) returning

the new preliminary cell state ĉt. it and ĉt are first combined using point-wise

multiplication and then point-wise added to the product of ft and ct−1 resulting in

the current cell state ct. Lastly, identical to the current hidden state ht, the output

gate ot is derived by regularising ct with tanh and then point-wise multiplying it with

the input xt and ht−1 which has been passed through the σ activation function. Like

RNNs, LSTMs have found application in the domain of natural language processing

[55], but also in PHM. Various modifications to the LSTM architecture have been

proposed throughout literature [56]. For example, the Bidirectional LSTM [57], a

LSTM coupled with an Attention Mechanism [58], or the so called Gated Recurrent

Unit Neural Network (GRU) architecture [59].

5.2.2 Time series encoding enabling CNN-RNN topolgies

A wide range of methods address the extraction of key insights from time series data,

e.g. signal decomposition or forecasting. A detailed discussion of time series data

and time series data analysis can be found in [60]. However, the focus of this section

resides on the application of CNN to time series data. Motivated by the success

in image representation learning, CNN’s application has been extended from the

analysis of condition monitoring image-like data to the application on time series

data in the domain of PHM. A univariate time series Xi = [x1, x2, ...xt] consisting

of one time-dependent variable can be encoded as a representation where W = t

and H = 1. This allows the usage of a 1D-CNN with a kernel of Hk = 1. Such an

example for a PHM related application is presented by, e.g. [61]. Likewise, as in

[62], a multivariate time series X = [X1, X2, ...Xn] is encoded as 2D representations

where W = t and H = n (n is the number of signals), cf. Figure 5.15-(top, centre).

MVTD can also be encoded as 3D representations through windowing and stack-

ing as visualised in Figure 5.15-(bottom). Further time series encoding methods

to consider are Frequency Transformation, Inter-Sensor Correlation Maps [63, 64],

Gramian Angular Field (GAF), Markov Transition Fields [65], or Recurrence Plots

[66]. The findings of the authors suggest that prediction performance of CNN archi-

tectures can be improved if such 2D encodings are exploited in comparison to the raw

1D time series data. A comparative study confirming this assumption is presented

in [27]. For example, the GAF can be seen as some form of data augmentation

which allows the model to learn temporal dependencies as well as complex spatial
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Figure 5.15: (Top) MVTD comprising three signals n = 3 of length t (X =
[XS1, XS2, XS3]). Each Xi can be represented as 1D Vector. (Centre) X can also be
represented as a 2D matrix, imagine a 1-channel image where the width corresponds with
the time W = t (i.e. the number of samples), and the height with each individual sig-
nal, i.e. H = n. (Bottom) representation of X as 3D matrix. This can be achieved by
windowing each signal and stacking these windows vertically. Hence the width is equal
to W = t/h where n is the size of the window, so that the height H = h and the depth
C = n.
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dependencies of the signal. Its applicability in a PHM context for, e.g. anomaly

detection is currently an active area of research [26].

CNN is indifferent towards sequential dependencies of the input, since it does not

retain information from previous sequential steps to inform the current sequential

step. On the other hand, a CNN combined with a LSTM forms a DL network that

allows to derive sequential information from a spatial-temporal input. This has been

shown to be useful for PHM [64, 67, 68]. Many different topological combinations

of convolutional and autoregressive DL models can be tailored to a wide range of

supervised learning tasks including anomaly detection, classification, and regression.

5.2.3 Review of topical literature

Not limited to diagnostics and prognostics purposes, CNN and RNN in various

arrangements have been proposed for supervised tasks in order to cope with in-

creasingly high volumes of time series data. Research shows how CNN can be used

as standalone DL method or in combination with autoregressive DL methods to

leverage the potential of data parallelism capabilities for dealing with large input

feature maps, e.g. MVTD in high resolution. Table 5.2 provides an overview of

relevant research not limited to PHM 3.

Table 5.2: Comparison of DL time series related methods (UV - Univariate time series
data; MV - Multivariate time series data; W - Width of the input; H - Height of the
input; C - Depth/Channels of the input; t - length of the time series window; td - length
of down-sampled time series window; ts - length of signal dependent time series window,
i.e. it might be different for each signal depending on the sampling rate; n - number of
individual signals; nf - number of individual frequencies or frequency bands; ∗ - data set
not publicly available).

Ref. Year Type Domain Feature Map Model

Anomaly Detection
[69] 2016 UV Time 1D - W = t,H = 1, C = 1 CNN based architecture;

DEAP Physiological, 512 Hz,
unlabelled [70]

[68] 2018 UV Time 1D - W = ts, H = 1, C = 1 DeepAnT; Yahoo time series
anomaly benchmark

[64] 2018 MV Time 3D - W = t,H = t, C = n Multi-Scale Convolutional
Recurrent Encoder-Decoder
(MSCRED); Power Plant∗, 5
anomaly classes, labelled

[67] 2019 MV Time 1D per signal - W = t,H =
1, C = 1

Multi-head CNN-RNN;
Elevator∗, 3 anomaly classes,
labelled.

[71] 2019 UV Freq. 1D using spectral residual
transform - W = t,H =
1, C = 1

Salience Residual CNN (SR-
CNN); Yahoo time series
anomaly benchmark

Continued on next page

3Parts of this chapter have already been published in my journal or conference arti-
cle: L. Kirschbaum, et al., (2021) and L. Kirschbaum, et al., (2022).

113



Chapter 5: Developed data-driven methods

Table 5.2 – continued from previous page
Ref. Year Type Domain Feature Map Model
[72] 2019 MV Time 2D - W = t,H = 1, C = n time series segmentation

CNN based on U-Net archi-
tecture; Dodgers Loop [73]
and Gasoil Plant Heating

[74] 2020 UV Time 1D - W = t,H = 1, C = 1 Robust time series anomaly
detection (RobustTAD)
based on U-Net; Yahoo time
series anomaly benchmark

Classification
[75,
76]

2014 MV Time 1D per signal - W = ts, H =
1, C = 1

Multi Channel Depp CNN
(MC-DCNN); PAMAP2, 12
classes [77].

[78] 2015 MV Time 2D - W = t,H = n,C = 1 CNN based architecture; Op-
portunity Activity Recogni-
tion, 18 classes, 113 signals,
30Hz [79]

[65] 2015 UV GAF 2D W = t,H = t, C = 1 Tiled CNN; GunPoint, 2
classes [80]

[81] 2016 MV Time,
Freq.

2D per signal - W = t,H =
nf , C = 1

Multi Scale CNN (MS-CNN);
UCR time series classification
[80]

[82] 2017 UV Time 1D - W = t,H = 1, C = 1 CNN; UCR time series classi-
fication [80]

[83] 2017 UV Time 1D - W = t,H = 1, C = 1 LSTM-CNN; UCR time se-
ries classification [80]

[62] 2017 MV Time,
Freq.

1D - W = t,H = 1, C = 1 Adaptive Multi-Sensor data
Fusion Deep CNN; Planetary
Gearbox∗, 7 classes, 4 signals,
20kHz

[84] 2017 UV Freq. 2D - W = t,H = nf , C = 1 Wavelet Transform CNN
(WT-CNN)l; Gearbox∗, 10
classes, 24kHz

[85] 2017 UV Freq. 2D - W = t,H = nf , C = 1 Short-Fourier and Wavelet-
Transform based CNN;
MFPT Bearing Fault, multi-
ple fault classes [86]

[87] 2017 UV Freq. 2D - W = t,H = nf , C = 1 Energy Fluctuated Multi-
Scale Feature CNN; CWRU,
2 fault classes

[88] 2017 UV Time 2D - W =
√
t,H =

√
t, C = 1 Temporal CNN; CWRU, 2

fault classes
[89] 2017 UV Time 1D - W = t,H = 1, C = 1 CNN; Electrocardiogram∗, 12

classes, 200Hz
[66] 2018 UV Time 1D - W = t,H = 1, C = 1 CNN; UCR time series classi-

fication [80]
[90] 2019 MV Time 3D - W = t,H = 2, C = 2 Multivariate CNN

(MVCNN); PHM 2015
Data Challenge

[91] 2019 MV Time 2D - W = n,H = t, C = 1 Multi-Task Attention CNN;
Air Quality∗

Regression
[61] 2016 MV Time 2D - W = t,H = n,C = 1 CNN; C-MAPSS aircraft en-

gine, PHM 2018 Data Chal-
lenge

[92] 2018 MV Time 2D - W = n,H = t, C = 1 CNN-LSTM; PEMS Traffic,
NREL Solar Energy

Continued on next page
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Table 5.2 – continued from previous page
Ref. Year Type Domain Feature Map Model
[28] 2019 MV Time 2D - W = t,H = n,C = 1 CNN-Bi-LSTM; IHEPC Elec-

tricity
[30] 2020 MV Time 2D - W = t,H = n,C = 1

and a separate 1D statistical
feature vector

Multi-Channel and Multi-
Scale CNN–LSTM; AEP,
COMED, DAYTON.

To enable modern maintenance by creating actionable insights from data, e.g. data-

driven CBM and PdM, researchers are confronted with high volumes of MVTD.

Thus, deriving meaningful insights from high volumes of time series data in a data-

driven context may be challenging:

• dealing with high dimensional inputs (of different scale) in an efficient manner

[91];

• extracting relevant features may require domain expertise;

• improving the utilisation of information from spatial, temporal and inter-

sensor correlations [64, 93];

• applicable to different types of MVTD, long term dependencies and slow

trends, often masked by noise - rendering many traditional time series classi-

fication and forecasting methods unsuitable [71, 91, 94].

With the advent of AI research is addressing this challenge using ML and increas-

ingly DL also for RUL prediction of electronics [95, 96, 97, 98]. As evidenced, DL

is a promising candidate, since it supplies a scalable architecture for automatic fea-

ture extraction from raw data [69] and the ability to learn complex time dependent

degradation processes [99]. Inter alia, solutions combining DL techniques, capable of

operating directly on large inputs while preserving sequential aspects have become a

popular choice for classification and regression tasks. Standalone CNN architectures

or in combination with RNN that employ techniques such as multivariate-time series

imaging resonate with high-volumes of MVTD as recent publication have demon-

strated [26, 27, 61, 75, 76, 78, 85, 87, 91]. CNN can extract local and global, spatial

features that show good generalisation qualities due to the sharing of parameters

[68]; or are capable to operate directly on raw multivariate input data [61]. In

particular, approaches utilising CNN in the form of CAE for automated feature ex-

traction while drawing on the autoregressive power from RNN-based architectures

are accepted combinations [29, 28]. Such approaches have been further refined to

improve performance of CNN-LSTM architectures, e.g. multi-input NN topologies

which consider statistical feature vectors derived from windowed time series data in

parallel to the CNN-LSTM [30].

Although accurate for auto-regressive tasks, one major shortcoming of the above re-

viewed approaches is their computational efficiency, since RNNs somewhat limit the
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efficiency of CNN. They require considerable computational resources particularly

when dealing with long inputs and evince deficits in retaining extended long-term

dependencies [94]. A recent, novel DL architecture addressing above challenges is

referred to as Temporal Convolutional Network (TCN). In contrast to, e.g. CNN-

LSTM, TCN extends CNN’s traditional applicability to sequence classification or

forecasting problems without the need to integrate a RNN architecture. It exhibits

improvements in training time as well as performance [100]. Unlike, e.g. LSTM,

TCN is able to be trained on input sequences, irrespective of the length of the input,

since the number of trainable parameters per layer only depends on the number of in-

put features, filters and the kernel-size. The working principle, its advantages over,

e.g. CNN-LSTM and recent applications implementing TCN for State of Health

(SOH) and RUL are detailed in the following Chapter 5.2.4.

5.2.4 Principles of TCN

Proposed by [100], Temporal Convolutional Network (TCN) is a novel, autoregres-

sive DL architecture based on 1D-CNN. TCN extends the functionality of CNN used

for, e.g. image classification tasks towards sequence classification and forecasting

[101] 4.

TCN compensates the shortcomings of classical autoregressive DL models when it

comes to learning very long sequences [102]. Advantages are the mitigation of the

vanishing or exploding gradient problem when back-propagating through time as

often encountered with LSTM, reduction of memory usage as well as training and

inference time over traditional RNN architectures [103]. Compared to LSTM, TCN

requires less trainable parameters to store intermediate results [100]. To elaborate,

1D-convolution adopted in TCN shares the learned filters across the entire input

feature map of length l per input channel c. This can be attributed to the parallelism

of the convolution operation. Given a sequence xl = [x1, x2, ...xi−1, xi], retrieving a

result for xi using RNNs depends on the prediction of xi−1 and all previous time

steps. However, convolution can operate in parallel on the entire sequence xl as the

same kernel k is shared across the entire layer. Lastly, controlling the size of the

receptive field r can be accomplished by different means providing greater flexibility

in the design of the architecture [100].

TCN shares the ability to map an arbitrary-length input sequence xl to an output

sequence yl of the same length using 1D-convolution. However, in sequence mod-

elling it is important that an output yi only depends on the current and previous

inputs [x1, x2, ..., xi−1, xi]. Figure 5.16-(I) displays the concept of causal convolu-

tion. Consider a multivariate input sequence with to input signals c = 2 so that

4Parts of this chapter have already been published in my journal or conference arti-
cle: L. Kirschbaum, et al., (2022).
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Figure 5.16: (I) Causal 1D casual convolution with multi-channel input c = 2 for a se-
quence of length l and a kernel of size k = 3, zero-padding p = 2; (II) 1D causal convolution
with k = 3, d = 1, p = 2, no full history coverage as r < l; (III) 1D causal convolution
with k = 3, constant dilation d = 2, p = 4, full history coverage as r = l; (IV) 1D causal
convolution with k = 3, exponential dilation with db = 2 and d = [2, 4, 8], full history
coverage as r = l.
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X = [X1, X2], cf. Figure 5.16-(I)-(left). This input feature map is convolved moving

sets of learnable kernels of size k = 3, unique for each channel c, in one direction

along one axis only across the multivariate input, cf. Figure 5.16-(I)-(centre). This

outputs a 2D tensor X̂ of the same length l and width c, cf. Figure 5.16-(I)-(right).

Hence, at each training iteration in each convolution layer, the learnable kernel of

size k is shifted across the input with a step-width of s = 1 utilising the same kernel

weights across the entire input channel. In practice, if c > 1, the 1D-convolution

can be imagined like a 2D-CNN, where the filters are restricted to the channel. The

number of weights used in the model depends on the kernel size k, the number of

filters f and the network depth n. As one can see in 5.16-(I), in order to retain

the same sequence length for the output yl, zero padding at the beginning of the

sequence is required. In the case of simple 1D causal convolution the padding length

is p = k − 1.

The receptive field of size r, i.e. the number of elements in the input xl which relate

to an output yi, is important to consider. In the case of TCN, the width of r defines

how far back the model’s horizon reaches. If r covers the entire input length it is

termed full history coverage. As one can see in Figure 5.16-(II), the receptive field

r grows linearly with the network depth n as r = 1 + n(k − 1) if k is constant

throughout the entire network. Therefore, increasing r can be achieved by either

increasing the depth of the network n or the kernel size k. Hence, due to this linear

relationship between network depth n and receptive field r, achieving full history

coverage for sequences where l is large would require very deep networks. In turn,

this may cause problems with the vanishing gradient and undo the advantages of

TCN over RNN based architectures.

To circumvent this problem dilation is introduced. Dilation, somewhat similar to the

step-width used in classical CNNs, spreads out the kernel across the input skipping

certain elements depending on the dilation step-width d. A kernel of size k = 3

and dilation d = 1 would convolve over an input of l = 3. Contrary, if d = 2, the

same kernel would cover an input of l = 5 with holes at the 2nd and 4th elements.

This concept is introduced in Figure 5.16-(III). The receptive field grows as r =

n(1 + d(k − 1)), depending not only on n and k, but also on d. However, if d is

a constant r still grows linearly. Hence, to more effectively increase r along the

network depth, d should grow exponentially as illustrated in Figure 5.16-(IV). This

yields a dilation of di = d
ni−1

b and r as per Equation 5.10.

r = 1 +
n−1∑
i=0

(k − 1)dib = 1 + (k − 1)
dnb − 1

db − 1
(5.10)

Typically, the dilation is increased with the base of db = 2. To achieve full history

coverage, i.e. r >= l, the minimum number of required layers is
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Figure 5.17: A TCN consisting of two residual blocks R = [R0, R1] with filters f = 3 and a
kernel size of k = 3. The first residual block R0 employs two casual 1D convolution layers
with dilation d = 1 and padding p = 2. The second residual block R1 employs 2 causal
1D convolution layers with a dilation of d = 2 and padding p = 4. After each convolution
layer, sequentially weight normalisation, activation using ReLU (for non-linearity), and
spatial dropout for regularisation are employed. A residual connection is used to stabilise
the network during training.

nl = logdb

(
(1− l)(db − 1)

(k − 1)
+ 1

)
(5.11)

where the padding for each layer is pi = d
ni−1

b (k − 1). To avoid gridding, i.e. an

incomplete coverage of the elements in the input xl within r, the kernel should be

chosen as k >= db [104].

Adapted from [105], the authors in [100] utilise a structural element referred to as

residual block replacing the simple 1D convolutional layer. TCN encapsulates this

structural element to improve the stability of the architecture as the model learns

a modification of the input feature map [100]. A network using residual blocks R

is displayed in Figure 5.17 with d = [1, 2], f = 3, and k = 3 resulting in a network

with R = [R0, R1] blocks.

The proposed structure alters the typical CNN building block, comprising h = 2

1D-convolution layers using the same k and d. The receptive field r which allows

full history coverage for this architecture can be expressed as

r = 1 +
n−1∑
i=0

h(k − 1)dib = 1 + h(k − 1)
dnb − 1

db − 1
(5.12)

nl = logdb

(
(1− l)(db − 1)

(k − 1)h
+ 1

)
(5.13)

Figure 5.18 visualises the growth of the receptive field after each TCN convolution

layer. One can see that dilation only increases the size of the receptive field effectively

if the dilation is increased alongside the network depth (cf. constant dilation and
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dilation with db). As becomes apparent, the introduction of residual blocks nearly

doubles the size receptive field.

Figure 5.18: The size of the receptive field r depends on the number of residual blocks,
the dilation base and the kernel size (here k = 3). Four cases are considered: (blue) - no
dilation d = 1, k = 3; (orange) - constant dilation d = 2, k = 3; (grey) - dilation with
db = 2, k = 3; (black) - usage of residual blocks architecture h = 2.

After each convolution layer, weight-normalisation to normalise the convolution out-

puts and reduce effects of an exploding gradient, activation for non-linearity using

ReLU and regularisation using spatial dropout to minimise overfitting are employed.

Contrary to dropout (randomly dropping out some elements in the feature maps)

spatial dropout randomly drops out entire feature maps. The number of feature

maps to be dropped out is controlled by the dropout rate. To retain the input

sequence length l between residual blocks, a residual connection operates a 1 × 1

convolution directly on the blocks input and is then element-wise added to the blocks

output. This stabilises the network and counteracts the vanishing gradient problem

encountered when back-propagating the errors through deep networks [100].

5.2.5 Applications of TCN in a prognostics context

In [106], the authors propose the use of TCN for RUL estimation as an alternative to

existing RNN-DL strategies. The method improves forecasting accuracy compared

to, e.g. LSTM. K-Means Clustering is employed to distinguish between different

component operating states. Evaluation is performed using a piece-wise linear RUL

curve on the turbofan-engine degradation NASA C-MAPPS data set [107]. Likewise,

verified on the NASA C-MAPPS data set, in [108] a refined approach utilising TCN

for piece-wise linear RUL is presented. Instead of passing the multivariate input

sequence directly into TCN, as in [106], a distributed hierarchical attention network

is employed. The feature map weighs each channel, i.e. each sensor, in regard to

its contribution to RUL. Subsequently, estimation of a RUL sequence using TCN,

an attention network determines the contribution of each time-step to the final

RUL. RUL prediction combining TCN and a sliding-window, fixed-size multi-channel

feature map is evaluated on the NASA C-MAPPS data set by [109]. The proposed
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method improves performance on some samples compared to [106, 108]. Moreover,

it is demonstrated that an increase of the TCN’s receptive field through either the

kernel-size or the dilation can both have a positive impact, though the number of

trainable parameters increases.

Research on the performance of linear RUL estimation for bearings using TCN is

presented by [110, 111]. In [110], the authors present a DL architecture operating

on statistical features for windowed segments of MVTD in the time- and frequency-

domain. The proposed model exhibits an overall improved performance compared to

LSTM or GRU and reduced model training time. The approach is evaluated on the

PRONOSTIA bearing data set [112]. Evaluated on the same data set, in [111] the

authors replace the feature extraction process with Empirical Mode Decomposition

that creates an input feature map with a distinct number of intrinsic mode functions

revealing different characteristics of the input in the time domain. The authors then

demonstrate how TCN performance, generalisabilty, and robustness of the RUL

forecast can be further tuned using dilation to increase the size of the receptive

field. However, compared to the approach proposed by [110] the improvements are

marginal.

As in [111], in [104] the authors apply Empirical Mode Decomposition in combination

with TCN for SOH and RUL prediction of lithium-ion batteries. In this context SOH

is defined as the capacity at t over the initial capacity. The RUL refers to the number

of cycles remaining till EOL, where the EOL is defined as a threshold capacity. For

both tasks the proposed architecture exhibits improved performance compared to

RNN architectures. The authors attribute this to the increased receptive field of the

TCN. The proposed approach is evaluated on the NASA lithium-ion battery data

set [113].

In [114] the TCN model serves as a forecasting model for piece-wise linear RUL es-

timation in critical nuclear power plant infrastructure, namely some electric valves.

The authors propose to use CAE for robust feature extraction prior to RUL estima-

tion by TCN. It is demonstrated that such feature extraction improves robustness

against sensor noise over the direct use of the raw data. As emphasised before,

the authors underpin the importance of hyperparameter selection for TCN, i.e. the

number of causal layers, the size of the respective field, and the dilation. It is con-

cluded that under some conditions increasing the number of layers and the size of

the receptive field may deteriorate the performance. Therefore, the choice of TCN

hyperparameters is not trivial and appears to be highly application dependent.

While TCN has shown promising results in various engineering disciplines, a com-

prehensive review of the impact of TCN hyperparameters and possible sub-sampling

strategies have not yet been subject of extensive research. Moreover, none of the

reviewed diagnostic and prognostic methods that use TCN integrate a measure of
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uncertainty with their forecast. This is why the following section addresses these

very challenges, inter alia focusing on a computationally efficient uncertainty esti-

mation for TCN during inference.

5.2.6 EMRUA pipeline

In this section the Electromagnetic-Relay-Remaining-Useful-Actuation (EMRUA)

pipeline is introduced. The pipeline performs a set of sequential steps to estimate

the EMR’s Remaining Useful Actuation (RUA) at any point during the components

life. For the sake of clarity - rather than measuring the remaining time to failure

as RUL [115, 116] - this work is concerned with the estimation of the number of

RUA which refers to the number of EMR making and breaking actuation left until

an EMR has failed. A failure can occur due to one of the multiple reasons discussed

in Chapter 3.2.2 5.

Figure 5.19 provides an overview of EMRUA. In general, two major stages are

distinguished:

1. During training and testing: Suitable input feature representations ex-

tracted from the raw data are determined; a range of sub-sequence selection

strategies to sample from MVTD are considered; TCN-model combinations

for RUA predictions are tuned (the aim is to minimise the loss between target

RUA-sequence and estimated RUA-sequence).

2. During inference: Once the best model has been determined, RUA estima-

tions under consideration of uncertainty can be performed.

5.2.6.1 Data extraction

MVTD snippets are recorded during EMR switching. Together, each contact mak-

ing and the consecutive contact breaking comprises one single actuation A. For

each actuation Aj from c sensors, a set of sensor signals X = [X1, X2, ..., Xc] is

recorded. The ith signal is Xi = [x0, x1, x2, ...xs] of length s, i.e. samples for the

contact making and breaking respectively. Figure 5.19-(I) illustrates the process of

data extraction for the CV and CI within EMRUA from recorded EMR making

and breaking actuations. While EMRUA utilises only CV and CI waveforms, the

principal architecture is not limited to these two input signals. The properties of CV

and CI waveforms for normally open EMR contacts have been discussed in Chapter

3.2.5.2 and Chapter 3.2.5.1.

5Parts of this chapter have already been published in my journal or conference arti-
cle: L. Kirschbaum, et al., (2022).
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Figure 5.19: (I) The sampling strategy for CV and CI from the EMR opening and closing
waveform during switching; (II) the process of feature extraction and preparation as TCN
input feature map; (III) schematic display of the three sequence selection strategies GI,
LI, and EI; (IV) the EMRUA pipeline to learn the mapping from CV and CI waveforms
to the RUA target, cf. Chapter 5.2.6.3 and Chapter 5.2.6.4. (1) - the extracted statistical
features are detailed in Chapter 7.3.
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5.2.6.2 Feature extraction

The feature extraction process follows a set of consecutive steps, schematically illus-

trated in Figure 5.19-(II). The aim is to derive features which depict the underlying

degradation process that is common among the population of sampled EMRs. A set

of features is derived for l actuations, where each actuations comprises the making

CV, the making CI, the breaking CV, and the breaking CI. The resulting features

are somewhat similar to down-sampled representations of the original waveforms

Aj. Subsequently, each feature in the group Aj is averaged providing the feature

vector Wh. Two sets of derived features are distinguished being time-based refer-

ence DIs denoted as feature-set FT consisting of cT features, e.g. the BT, AT, RT,

etc.; and a feature-set FS composed of cS features representing a combination of

amplitude-based reference DIs and statistical features such as the mean, max, min,

etc. extracted from CV and CI waveforms. Normalisation of the derived feature sets

is performed to make them suitable inputs for the TCN. Therefore, each feature is

scaled to a range of [0, 1], as per Equation 5.14,

F norm
i =

Fi −min(Fi)

max(Fi)−min(Fi)
(5.14)

where Fi denotes the ith feature of the feature set F . In addition to FT and FS a

combination being FT,S = [FT , FS] is also considered as a data set. The changes

in the waveforms due to deterioration of the EMR’s contacts from switching under

load are extensively discussed in the Chapter 7.2. The respective sets of features

are introduced in greater detail in Chapter 7.3.

5.2.6.3 Sequence selection

As elaborated, TCN performs causal-convolution over the input feature map F , to

estimate a RUA target sequence of the same length. As the kernel is shared across

the entire input sequence, the number of trainable parameters in the model is in-

dependent of the sequence length ls. It only depends on the number of considered

input features c, the number of filters f , the kernel-size k, and the number of resid-

ual blocks R. However, different strategies can be employed to select a subset of

representative windows W from the interval T = [0, t], i.e. in order to sub-sample

the waveform. The different processes of considered sequence selection strategies

are pictured in Figure 5.19-(III).

Growing sequence indexing From an input sequence of length ls = t, Growing-

Sequence Indexing (GI) considers every single making and breaking actuation for

the entire interval T = [0, t]. Hence, the sequence will grow over the course of the

life of the EMR until the EOL. In practice this poses a challenge as the extension
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of the sequence length needs to be considered during the model training stage. As

input to the model serves a randomly selected batch B containing b examples which

may vary in their length ls, but remain constant in regard to the number of features

c, cf. [117]. However, all sequences within one training batch need to have the

same length. Hence, all b randomly selected sequences are padded to the maximum

sequence length ls(max) encountered in the batch B, as displayed in Figure 5.20. A

sequence ranges always from the first switching actuation to an actuation at time t

relative to the EOL of the respective sample.

Linear sequence indexing In the case of Linear Indexing (LI), the entire degra-

dation sequence is equally considered. ls ∈ Z+ actuations are selected, evenly spaced

in the interval of T = [0, t]. Hence, even as t increases, ls remains constant. The

selection of ls actuations can be expressed as

A = {A0, A t
li−1

, ..., At} (5.15)

Exponential sequence indexing Contrary to Section 5.2.6.3, this Exponential

Indexing (EI) selection strategy favours recent actuations because ls actuations are

selected in the interval T = [0, t], expressed as

A = {A0, At−( t2

li−1
)2
..., At} (5.16)

5.2.6.4 RUA estimation and uncertainty

RUA behaves linear - consider the actuations which have passed at any t against

the actuations still left. Equation 5.17 defines RUA for the ith actuation ai,

RUA(ai) = aEOL − ai where ai ≤ aEOL, ai ∈ Z+ (5.17)

However, since TCN is capable of mapping each input X[1,i] to an output Y[1,i], the

problem at hand is concerned with a sequence to sequence mapping task. Thus,

RUA can be imagined as a vector, cf. Equation 5.18.

RUA(a[1,i]) = aEOL −


a1

a2
...

ai

 (5.18)

As evidenced in Chapter 5.2.5, PHM methods employing TCN are yet to address

uncertainty. The remainder of this section is, therefore, concerned with the integra-
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Figure 5.20: (I) The input batch B of batch-size b = 5 with a maximum sequence length
ls(max) and features c = 3; (II) the RUA target sequence for each instance in the input
batch.
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tion of a method to estimate uncertainty into a TCN-based prognostics architecture

that can be used during the inference phase. Monte Carlo Dropout (MCD) can be

applied in order to determine uncertainty during inference in DL. MCD has been pro-

posed by [118]. It approximates the Bayesian Gaussian Process providing a highly

computational efficient solution for DL to estimate the posterior distribution [119].

Note, the effect of the model’s input dimension on the computational complexity is

an important aspect to consider [116]. The number of used features during infer-

ence has a negligible effect, however, the length of the input time series might be of

concern in terms of computational efficiency. MCD achieves uncertainty estimation

by utilising dropout during inference on the trained NN model f which results in a

different prediction of Yt = [y0, y1, ...yt] for an input sequence Xt = [x1, x2, ..., xt] at

each forward pass through f , since the dropout-mask δi is selected at random. This

yields

Y i
t = f(Xt|δi) + ϵ (5.19)

where ϵ ∼ N (µ, σ2) represents the Gaussian distributed process noise stemming

from measurement errors. The distribution derived from averaging over N forward

passes is somewhat similar to an ensemble of N trained models. Consequently,

one can compare this to estimating a distribution of the learned weights per layer

that can be approximated using a relatively small number of forward passes, i.e.

N ≤ 1000 [120]. To facilitate MCD, [121] suggests to employ dropout after each

layer. [119] point out it is important that the dropout rate is kept constant and not

tuned along other hyperparameters during training.

Making use of a batch B with the size b during inference, the RUA for N forward

passes can be efficiently estimated in parallel so that b = N , where each feature map

Xt in B represent the same input. This yields the total input Bt = [X0
t , X

1
t , ...X

b
t ].

The posterior distribution of Yt is then estimated in parallel, since the dropout mask

∆N = [δ0, δ1, ..., δb] for each X i
t is chosen at random across the input Bt. Therefore,

Equation 5.19 can be amended to

Y N
t = f(Bt|∆N) + ϵ (5.20)

The process is illustrated in Figure 5.21. It is evident that DL methods deploying

convolution are especially well suited NN architectures to integrate MCD in order to

quantify uncertainty due to the parallel computing capabilities exhibited by those

architecture. However, one should be careful with a combination of very long se-

quences and a large N , since this requires significant memory overhead because of

the size of the resulting input feature map.
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Figure 5.21: Parallel sampling of RUA from an input Xt using a batch B with b different
dropout masks during inference, predicting Y N

t posterior RUA sequences.
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The RUA is estimated from Y N
t , as summarised in Figure 5.21. The best linear

fit for each predicted RUA sequence Y i
t is determined reducing the residual sum of

squares. The mean as in Equation 5.21 and the variance as in Equation 5.22 for

each ai is then calculated from the N extrapolated linear RUA trajectories (ranging

from a0 till the aEOL) to derive a confidence interval. Within this interval the model

is 95% confident that the true mean of the population is contained, i.e. the true

RUA.

µ(ai) =
1

N

N∑
j=0

mj(ai) + bj (5.21)

σ(ai)
2 =

∑N
j=0((mj(ai) + bj)− µ(ai))

2

(N − 1)
(5.22)

5.2.7 Model configuration and scoring

An overview of the model hyperparameters is provided in Table 5.3. The model

consists of a number of stacked residual blocks, depending on the final width of the

receptive field r; followed by a final FC layer using linear activation. Dropout is

employed within each residual block. Model performance is evaluated using Mean

Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean

Squared Error (RMSE) where RUAi denotes the target and RUA∗
i the estimated

RUA.

MAE(RUA∗
i , RUAi) =

1

N

N∑
i=0

|RUA∗
i −RUAi| (5.23)

MAPE(RUA∗
i , RUAi) =

100%

N

N∑
i=0

|RUA∗
i −RUAi|
RUAi

(5.24)

RMSE(RUA∗
i , RUAi) =

√√√√ 1

N

N∑
i=0

(RUA∗
i −RUAi)2 (5.25)

In addition to the RMSE, a scoring metric proposed by [122] is adopted to evaluate

the performance under consideration of the model’s estimated uncertainty, cf. for a

prognostics use case [97, 123]. An accuracy zone α is defined that provides bounds

of allowed deviation from the targeted RUA. This zone is limited by an upper

threshold α+ and a lower threshold α−. α is selected according to the needs of the

specific application. Here, α = 0.2 is chosen for evaluating the EMRUA. The αsc is

calculated by counting the frequency of RUA estimates within the α± bounds, cf.

[122, 124].

129



REFERENCES

Table 5.3: Evaluated TCN model hyperparameters.

Hyperparameter Value
Filters f 64
Kernel k [3, 5, 7]
Dilation base db [2, 3, 4]
Residual blocks Rn [6, 7, 8]
Dropout rate - 0.5
Activation - ReLU
Optimisation - Adam
Learning Rate - 0.0001
Batch size b [400, 200, 100]
FC-Layer Units - 1
FC-Layer Activation − Linear

Summary

This chapter has detailed the developed methodologies for the two case studies this

dissertation is concerned with, namely the BHA-PCBA maintenance support frame-

work and the EMR prognostics pipeline. Both approaches rely on AI, but differ in

terms of the selected method, their prognostics output, and the depth of implemen-

tation. For the BHA-PCBA the choice of method, i.e. RFC or XGBoost Classifier,

is justified by the complexity of the monitored systems, unknown sensor placement,

failure modes, and a low resolution as well as availability of monitoring data. For

the second use case, i.e. the EMR-RUA estimation, the high volume of MVTD that

needs to be processed (high sampling rates over extended periods of time) is the

determining selection criterion that motivates the use of an appropriate DL model,

i.e. TCN combined with an efficient implementation of MCD. The following Chap-

ter 6 discusses the ALT-EMR design. Hereinafter, the results of the respective case

studies are presented in Chapter 7.
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[59] K Cho, B Van Merriënboer, C Gulcehre, D Bahdanau, F Bougares, H Schwenk, and Y Ben-
gio. Learning phrase representations using RNN encoder-decoder for statistical machine
translation. arXiv preprint, 2014. arXiv::1406.1078.

[60] James Douglas Hamilton. Time series analysis. Princeton university press, 2020.
[61] G Babu, P Zhao, and X Li. Deep convolutional neural network based regression approach

for estimation of remaining useful life. In International conference on database systems for
advanced applications, pages 214–228. Springer, 2016. doi:10.1007/978-3-319-32025-0_14.

[62] L Jing, T Wang, M Zhao, and P Wang. An adaptive multi-sensor data fusion method based
on deep convolutional neural networks for fault diagnosis of planetary gearbox. Sensors,
17(2):414, 2017. doi:10.3390/s17020414.

[63] D Song, N Xia, W Cheng, H Chen, and D Tao. Deep r-th root of rank supervised joint
binary embedding for multivariate time series retrieval. In 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, page 2229–2238. ACM, 2018. doi:10.
1145/3219819.3220108.

[64] C Zhang, D Song, Y Chen, X Feng, C Lumenazu, W Cheng, J Ni, B Zong, H Chen, and
N. Chawla. A deep neural network for unsupervised anomaly detection and diagnosis in
multivariate time series data. arXiv preprint, 2018. arXiv:1811.08055.

[65] Z Wang and T Oates. Imaging time-series to improve classification and imputation. arXiv
preprint, 2015. arXiv:1506.00327.

[66] N Hatami, Y Gavet, and J Debayle. Classification of time-series images using deep con-
volutional neural networks. In Tenth international conference on machine vision (ICMV),
volume 10696, page 106960Y. International Society for Optics and Photonics, 2018. doi:10.
1117/12.2309486.

[67] M Canizo, I Triguero, A Conde, and E Onieva. Multi-head CNN-RNN for multi-time series
anomaly detection: An industrial case study. Neurocomputing, 363:246 – 260, 2019. doi:10.
1016/j.neucom.2019.07.034.

[68] M Munir, S Siddiqui, A Dengel, and S Ahmed. DeepAnT: A deep learning approach for
unsupervised anomaly detection in time series. IEEE Access, 2018. doi:10.1109/ACCESS.
2018.2886457.

[69] K Wang, Y Zhao, Q Xiong, M Fan, G Sun, L Ma, and T Liu. Research on healthy anomaly
detection model based on deep learning from multiple time-series physiological signals. Sci-
entific Programming, 2016, 2016. doi:10.1155/2016/5642856.

[70] S Koelstra, C Muhl, M Soleymani, J Lee, A Yazdani, T Ebrahimi, T Pun, A Nijholt,
and I Patras. Deap: A database for emotion analysis; using physiological signals. IEEE
transactions on affective computing, 3(1):18–31, 2011. doi:10.1109/T-AFFC.2011.15.

[71] H Ren, B Xu, Y Wang, C Yi, C Huang, X Kou, T Xing, M Yang, J Tong, and Q Zhang.
Time-series anomaly detection service at Microsoft. arXiv preprint, 2019. arXiv:1906.03821.

[72] T Wen and R Keyes. Time series anomaly detection using convolutional neural networks
and transfer learning. arXiv preprint, 2019. arXiv:1905.13628.

[73] J Hutchins. Dodgers loop sensor data set. UCI Machine Learning Repository, 2006.

133

https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1016/j.physd.2019.132306
https://arxiv.org/abs/1508.05326
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.18653/v1/D16-1058
https://arxiv.org/abs/:
https://doi.org/10.1007/978-3-319-32025-0_14
https://doi.org/10.3390/s17020414
https://doi.org/10.1145/3219819.3220108
https://doi.org/10.1145/3219819.3220108
https://arxiv.org/abs/1811.08055
https://arxiv.org/abs/1506.00327
https://doi.org/10.1117/12.2309486
https://doi.org/10.1117/12.2309486
https://doi.org/10.1016/j.neucom.2019.07.034
https://doi.org/10.1016/j.neucom.2019.07.034
https://doi.org/10.1109/ACCESS.2018.2886457
https://doi.org/10.1109/ACCESS.2018.2886457
https://doi.org/10.1155/2016/5642856
https://doi.org/10.1109/T-AFFC.2011.15
https://arxiv.org/abs/1906.03821
https://arxiv.org/abs/1905.13628


REFERENCES

[74] J Gao, X Song, Q Wen, P Wang, L Sun, and H Xu. Robusttad: Robust time series
anomaly detection via decomposition and convolutional neural networks. arXiv preprint,
2020. arXiv:2002.09545.

[75] Y Zheng, Q Liu, E Chen, Y Ge, and J Zhao. Time series classification using multi-channels
deep convolutional neural networks. In International conference on web-age information
management, pages 298–310. Springer, 2014. doi:10.1007/978-3-319-08010-9_33.

[76] Y Zheng, Q Liu, E Chen, Y Ge, and J Zhao. Exploiting multi-channels deep convolutional
neural networks for multivariate time series classification. Frontiers of Computer Science,
10(1):96–112, 2016. doi:10.1007/s11704-015-4478-2.

[77] A Reiss. UCI machine learning repository: PAMAP2 physical activity monitoring data set,
2016.

[78] J Yang, M Nguyen, P San, X Li, and S Krishnaswamy. Deep convolutional neural networks
on multichannel time series for human activity recognition. In Proceedings of the 24th Inter-
national Conference on Artificial Intelligence, IJCAI’15, page 3995–4001. AAAI Press, 2015.
doi:10.5555/2832747.2832806.

[79] D Roggen, A Calatroni, M Rossi, T Holleczek, K Förster, G Tröster, P Lukowicz, D Bannach,
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Chapter 6

ALT-EMR design

Introduction

To demonstrate the merits of an EMR prognostics solution the lack of relevant life-

cycle data constitutes a major obstacle, as has been pointed out before in Chapter

4.2.3. To address this shortcoming, as part of my dissertational project an ALT-

EMR platform has been developed. Its objective is the aggregation of high resolution

life-cycle data from different sensing sources. The analysis of these data allows trac-

ing of the EMR deterioration processes. Throughout the development and testing

phase of the ALT some alterations had to be realised to accommodate challenges en-

countered with the initial design. For example, in order to reliably capture life-cycle

data at very high rates continuously over a long duration, considerable changes in

the selection, design, and operation of hardware as well as software were made.

This chapter opens with a review of established methods for ALT-EMR in Chap-

ter 6.1, since such considerations have informed the initial design of the life-cycle

platform. The characteristics of the tested EMR are presented in Chapter 6.2. A

description of the experimental platform is given in Chapter 6.3. Here, the design

and selection of the testing hardware, the implementation of the software control,

and data acquisition procedures are discussed in detail. The chapter concludes with

an overview of the experiments’ specifics and a summary of the aggregated data 1 2.

6.1 Review of testing methodologies

As previously stated, the contacts of EMRs are most liable to failure, since the

mechanical life of the EMR is significantly higher [1]. Hence, the EMR life is heav-

1Parts of this chapter have already been published in my journal or conference arti-
cle: L. Kirschbaum, et al., (2021) and L. Kirschbaum, et al., (2022).

2At the time of completion of this PhD thesis, the life cycle data is not published. However,
publication is planned and will be announced on https://smartsystems.hw.ac.uk/.
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ily impacted by the contact life - to be more precise by the electrical life of the

contacts. Therefore, the focus of the proposed life-cycle experiments are contact

related failure modes. In particular, when testing EMR it is important not to in-

duce uncharacteristic failure modes through poor choice of test-parameters. Hence,

a common approach to test only the contacts is a model switch, i.e. a device which

allows to precisely control the switching parameters [2, 3]. However, whilst yielding

results applicable to the contact material, carefully tuning such replica to match the

properties of an EMR under test is challenging [1]. Factors such as closing velocity

of the contacts or contact bounce need to be considered.

Despite the fact that alterations in CR are not necessarily reliable indicators for

EMR wear, cf. Chapter 4.2.4, it remains a common measure to judge EMR perfor-

mance. [4, 5] specify dry-contact measurements preferable at low test currents and

voltages of less than 80 mV. Dry-contact measurements might not return accurate

CR measurements if the contacts are under load. Fritting, cf. Chapter 3.2.4, can be

the cause for significantly higher CR readings. In regard to contact testing [1] points

out, although it is industry standard to test at maximum rated specifications, no

assurance can be given that the degradation behaviour of electrical contacts at lower

loads will be similar. For example, testing using high loads will initially circumvent

problems like contact film contamination encountered only at lower loads.

In order to accelerate the general degradation or one particular degradation type, one

can explore different means. The most apparent approach is an increase in switching

frequency under the assumption that this does not alter the overall degradation

behaviour of the contacts and the EMR. Alternatively, an increase of the contacts

stress through elevated current levels can be considered. Testing under elevated

ambient temperature might promote degradation effects like contact corrosion or

the possibility of coil failure [6]. Multiple factors influence the EMR degradation.

As pointed out in Chapter 3.2.4, the severity of electrical arcing and, thus, the

contact degradation not only depends on the EMR design. Other factors have to be

considered, e.g. the electric circuit in which the EMR is placed. Likewise, external

factors such as ambient temperature and atmosphere should be taken into account.

While many more aspects could be discussed [1], Table 6.1 focuses on predominant

considerations when designing an EMR-ALT experiment.

Table 6.1: Aspects to consider when testing EMR.

Factor Description

Power
AC In AC application the contacts constantly change polarity. Hence,

the anodic and subsequent cathodic erosion lead to a comparable net
erosion on both contacts.

Continued on next page
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Table 6.1 – continued from previous page
Factor Description

DC Contrary, the polarity of the contacts in DC applications does not
change. Hence, typically the majority of erosion is encountered on
the anode (craters). The cathode gains material (pips). Refer to
Chapter 3.2.4.1.

Load
Lamp (filament) A high inrush current and variations of contact bounce accelerate

contact erosion.
Inductive In DC circuits inductive loads can cause a current lag of up to 7ms

[7]. This leads to longer lasting arcs during break, while no arcing
and therefore no erosion takes place during make due to the current
lag. Effects of bouncing might become irrelevant, refer to Chapter
3.2.4.2.

Resistive Purely resistive loads have the smallest effect on contact erosion as
inductive effects are mitigated, though arcing during bouncing has to
be considered.

Contact Bounce
Contact bounce can lead to contact welding. The frequency of short
unstable welds typically increases towards the EOL as the contact
force and the over-travel are being reduced [8]. Notice, in DC circuits
the contribution of the one-sided material loss is problematic. The
frequency of the re-bounce effects the rate of erosion. High-frequent,
short-gap bouncing accounts for the highest material transfer rates
[1].

Arcing Suppression
Protective Gas Testing contacts in inert gases or nitrogen will increase the contact

life and mitigate contact contamination effects.
Blowout Magnet For DC a permanent magnetic field next to the contacts can be intro-

duced into the EMR design to reduce effects of arcing when switching
an inductive load as the arc is drawn away from the contact dispers-
ing heat [9, 7]. Hence, such contacts are subjected to reduced rates
of electrical erosion.

Sealing
Enclosed The contact life might be considerably longer if contacts are tested

in a plastic enclosure typically found as a sealing enclosure in many
EMR applications[10]. The out-gassing of the plastic leads to a con-
tamination of the contact surfaces through deposited particles and
the arc moves across the contact surface at each operation. This
in turn leads to an even degradation of the entire surface. Contact
life can be increased through adsorption effects from getter-materials
used to reduce contact degradation through film-formation adsorbing
harmful molecules [7].

Unsealed The arc will more likely develop a static anode and cathode fall re-
gion, accelerating the degradation process at these spots and leading
to earlier failures. Effects of contact activation and reaction of the
contact material with the ambient air should be taken into account.

Switching Frequency
The switching frequency depends on the operate and release prop-
erties of the EMR, subject to the contact mass and velocity. In the
presence of arcing, heat dissipation from the contacts should be con-
sidered, in order to not falsify the failure mode.

In DC testing, the effects of switching the anode and cathode among the contacts in

the test setup may alter the degradation pattern, since cost-efficient consumer-EMRs

tend to have a thicker stationary contact carrier and a thinner movable contact
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Table 6.2: Specifications of the selected EMR under test.

Parameter Specification
Coil Rating 5 VDC, 105 mA
Operate/ Release V at max. 70 %/ min. 15 %
Operate/ Release t 15 ms/ 5 ms
Contacts Rating 30 VDC, 10 A (resistive load)
Contact Resistance 30 mΩ
Contact Type Plated Copper Rivets
Contact Plating AgSnO2In2O3

Max. op. Temp. 70◦C
Casing Flux-Protection/ Sealing

carrier, i.e. realised as an integrated spring. Therefore, the moving contact carrier

may experience severe heating during operation as it is much thinner. This can

accelerate the deterioration in an unintended way. Ultimately, the thinner, moving

spring contact carrier might melt because of the increased heat build-up. It should be

stressed that such failure mode needs to be carefully examined, since its occurrence

greatly depends on the design and dimension of the contact-carriers. To reduce the

heat build-up while testing in a DC setting, the experimental design can specify the

static contact carrier side as anode [1].

6.2 Selected test component

While EMRs are available in many different designs and contact arrangements, the

choice for the EMR under test was greatly motivated by the EMRs availability as

well as its simplicity in order to be able to facilitate a subsequent failure analysis.

Hence, a general-purpose Single Pole Single Throw (SPST)-Normally-Open (NO)

EMR was selected (an unsealed and sealed variant with the same specification), cf.

Table 6.2.

The selected EMR comprises a coil, an armature which is pulled down once the coil

is energised and snaps back once de-energised, and two contact carriers of which one

is static and one is moving. The latter one is designed as contact spring retracting

the contact when the coil is de-energised, cf. Figure 6.1. The maximum operating

conditions depend on the type of load and whether AC or DC is switched. For the

developed test stand the maximum specified operating conditions of a resistive DC

load are considered for the selection of an appropriate test load, cf. Figure 6.2.

6.3 Life-cycle platform

This section introduces the ALT-EMR platform. The experiment was designed

from the outset as an iterative process and has yielded two distinctly different data

sets. Data obtained during the first run is termed Data Set 1 (DA1); the second
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Figure 6.1: The selected test EMR (unsealed variant), top- and side-view of coil and
moving armature.

(a) Operational threshold of the un-
sealed test EMR, adopted from data
sheet [11]; the red-shaded area corre-
sponds with the allowed DC resistive
load.

(b) Operational threshold of the sealed
test EMR, adopted from data sheet [11];
the red-shaded area corresponds with
the allowed DC resistive load.

Figure 6.2: EMR test thresholds.
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run produced Data Set 2 (DA2). Table 6.3 provides a detailed description of the

experimental setup.

• DA1:

– Purpose: Full coverage of EMR life-cycle data

– EMR Type: 16 unsealed EMRs

– ALT-Mode: High temperature (60 ◦C), low switching frequency (0.25 Hz)

– Sampling: Each actuation at 25 kHz

– Measurements: CV, CI

• DA2:

– Purpose: Analysis of EMR failure modes and mechanisms

– EMR type: 4 unsealed EMRs and 10 sealed EMRs

– ALT-Mode: Low temperature (30 ◦C), high switching frequency (20 Hz)

– Sampling: Every 1000th actuation at 150 kHz

– Measurements: CV, CI, CC, CR

The remainder of this chapter details the experimental process and the collected

data sets.

6.3.1 Design and hardware selection

Figure 6.3: The lab and the life-cycle test platform. On the left, the oven can be seen in
which the EMRs have been tested. A port on the side of the oven allows to connect the
test equipment and sensors with the test stand and the DAQ, shown on the right side.

Various sources of hardware are required, i.e. recording and control equipment,

sensors, electrical loads, power supplies, and an oven. The laboratory setup of the
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Figure 6.4: Simplified overview of the experimental platform.

experiment is shown in Figure 6.3. The central component of the experimental

setup is the deterministic National Instruments (NI) PXIe-8880 controller 3. As

detailed in Figure 6.4, this module, termed Data Acquisition Unit (DAQ), controls

the data acquisition and the switching of the the tested EMR. LabVIEW-RealTime

is deployed as operating system. In order to log data and monitor the experiment

the DAQ is interfaced with an independent host Control-PC, termed Host PC Unit

(H-PC), via a network Ethernet connection. In combination with the DAQ, a NI

PXI-2567 module is used to precisely trigger switching of the test EMR according to

a defined switching frequency and duty-cycle. Experimental data is collected using

the multi-input NI PXIe-6365 module. Depending on the data set two or three

measurements are taken at high resolution: Contact Voltage (CV), Contact Current

(CI) and Coil Current (CC). CC is directly recorded whilst the amplitude of the CV

signal is reduced using a voltage divider to scale the signal into an interval of ±10 V

due to the limited input range of the measurement hardware. As per specification

for NI PXIe-6365 for the full ±10 V range the accuracy of the measurements is

±0.0166 %. Measurements are set up as differential-referenced, i.e. connected to

the DAQ ground using two bias resistors for each channel. CI is recorded with a

hall-effect current sensor (LEM HX 03-P/SP2) outputting a voltage equivalent of

[2.5, 5] V for the range of [0, 9] A. An external power supply (AimTTI CPX400DP)

and two parallel, variable resistors set up with opposing winding to reduce effects of

load inductance are used to simulate a resistive test-load. The load is continuously

cooled using two fans. The power supply is connected via serial RS-232 to the

experimental setup in order to control voltage and current while providing the option

of a safe, automated shutdown.

A PCB has been developed to house the necessary sensors and components and to

facilitate the exchange of the EMR under test, once it has failed, cf. Appendix A.1.

3In this case, determinism refers to software determinism, i.e. hardware that can execute a
software loop at very low rates of jitter.
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The PCB is placed in an oven in order to control the ambient temperature during

the experiment. For reference the ambient temperature in the oven is monitored

using a type-K thermocouple. In addition to the ambient temperature, an infrared

temperature sensor (CTL-Fast) is placed behind the EMR’s static contact rivet

pointing at the EMR enclosure. The temperature of the enclosure is measured on a

0.7 mm wide black surface spot. To facilitate CR-measurements, a secondary circuit

can be switched in using a Double Pole Double Throw (DPDT)-EMR positioned

as close as possible to the EMR under test. This circuit is connected to the 4-wire

measurement setup of a Milli-Ohmmeter (GOM-805) which is in turn directly linked

to the H-PC via a serial RS-232 connection. As increases of CR reside in the mΩ

range, a measurement range resolution of 500 mΩ is selected with an accuracy of

±0.05 %. The selected Ohmmeter facilitates different CR measurement modes.

Figure 6.5: The PCB (length 100 mm, width 60 mm) is situated in the oven and facilitates
the exchange of the EMR test samples. Further sensors, terminals, and connection points
to the Ohmmeter 4-wire measurement setup are integrated. The infrared temperature
sensor can be adjusted to point directly at the EMR enclosure. (a) connection to the
test-load; (b) current sensor; (c) DPDT-EMR to switch in the CR circuit; (d) connection
to the test EMR adaptor board on which the test sample is soldered onto; (e) terminals
and clamps of the 4-wire setup.
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6.3.2 Control and data acquisition

Figure 6.6: Simplified schematic of the experiment (test EMR - Device Under Test (DUT);
Power Supply (PS)). The H-PC is used to initialise all parameters and forward them to
the DAQ. The EMR switching and data acquisition is triggered by the NI PXIe-8880 and
its sub-modules. Data is send for logging and analysis to the H-PC. Further the H-PC
controls the switch-in of the CR measurement circuit.

The test platform and all connected hardware is monitored via NI LabVIEW de-

ployed on the H-PC. Life-cycle experiments are launched through the User-Interface,

cf. Appendix A.2. Each experiment is initialised based on a set of pre-configured

test parameters. First, an automatic pre-test of all components is conducted; if suc-

cessful, the subsequent EMR switching and sampling software-loops on the H-PC

and the DAQ are initiated, cf. Appendix A.3 and Appendix A.4. Sampling starts

prior to and ends after each making and breaking actuation respectively. The in-

terval in-between actuations is not recorded. The EMR actuation itself is very fast

(< 1 ms), with significant delay between the switching trigger and PT during mak-
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ing and RT during breaking. Control commands are broadcasted from the H-PC to

the DAQ; experimental data is streamed from the DAQ using a buffered queue. The

DAQ incorporates all switching functionality, measurements and control of external

components such as the power supply. Acquired data is logged in the .hdf5 file

format, cf. the simplified experiment workflow in Figure 6.6.

In the case of DA1, CV and CI are recorded at high resolution for each actuation.

Likewise, supplementary measurements of the ambient temperature are taken at

lower resolution. In the case of DA2, CV, CI, and CC high resolution measurements

are recorded in combination with CR, ambient temperature, and EMR enclosure

temperature measurements at regular intervals. To facilitate CR measurements

switching of the contacts is paused, the EMR under test is then closed. The DPDT-

EMR - controlled via a secondary channel on the NI PXI-2567 - switches from

the test-circuit to the CR-measurement-circuit. The Ohmmeter then takes several

readings. Simultaneously, using the infrared temperature sensor the EMR casing

temperature is recorded in close proximity to the EMR contacts.

6.3.3 Specifics of the experiments conducted

Table 6.3: Comparison of the two sets of life-cycle experiments performed. (∗) Logged
waveforms every 10th actuation just prior to failure.

Experiment DA1 DA2
Parameters
Tested EMR Unsealed Sealed & Unsealed
Sample size 16 14
Mode of ALT Temperature Switching frequency
Temperature 60 ◦C 30 ◦C
Switching frequency 0.25 Hz 20 Hz
Duty Cycle 50/50 % 50/50 %
Load 30 VDC/ 6 A 35 VDC/ 6 A
Load type resistive (cooled) resistive (cooled)

Measurements
Trigger Signal Analog voltage read back Digital trigger (timestamped)
Coil Current (CC) - every 1000th actuation at

150 kHz (∗); resistor
Contact Voltage (CV) every actuation at 25 kHz;

voltage divider
every 1000th actuation at
150 kHz (∗); voltage divider

Contact Current (CI) every actuation at 25 kHz;
current sensor

every 1000th actuation at
150 kHz (∗); current sensor

CR measurements - Dry-/Full-mode every
10000th actuations

Contact Temperature - Infrared every 10000th actua-
tions

Ambient temperature Thermocouple K-Type Thermocouple K-Type
Additional Sensors Acoustic Emission, Vibration -

Logging
Continued on next page

146



Chapter 6: ALT-EMR design

Table 6.3 – continued from previous page
Experiment DA1 DA2
Data format raw .txt files converted to

.hdf5
.hdf5, supplementary mea-
surements of CR as .csv

Data structure File-Keys(Actuations)-
Keys(Open/Closed)-
Keys(data/t0)-
data([Samples,Sensors]),
t0(timestamp)

Files(breaking/making)-
Keys(Actuations)-
data([Samples,Sensors]),
attributes(timestamp,dt)

The major differences and similarities regarding the two sets of experiments con-

ducted are highlighted in Table 6.3. Foremost, in DA1 only unsealed EMRs have

tested, whereas DA2 comprised sealed and unsealed components. In DA1 acceler-

ation of the EMR deterioration has been achieved through testing at an elevated

ambient temperature. However, upon conclusion of the experiment DA1 it was

found that the rate of contact erosion was predominantly affected by the number

of conducted switching operations until failure. Therefore, to stimulate a realistic

degradation pattern, the mode of acceleration in DA2 was altered from elevated

ambient temperature to an increased switching frequency. Regarding the type of

measurements taken, CV, CI, and CC measurements where recorded at higher res-

olution in DA2 compared to DA1, but at lower rate. In addition, DA2 aggregated

CR measurements in order to allow for a direct comparison with results reported in

the literature.

Figure 6.7: DA1 - Trigger Signal, CV, and CI measurements of the making actuation
sampled over an interval of 0.04 s. The contacts start closing after a delay of 8 ms with
an actual closing duration of 1 ms.

In the case of DA1, the trigger signal which actuates the EMR by energising the coil,

the CV, and the CI have been sampled at 25 kHz for a window of 0.04 s yielding

1000 measurement points for each making and breaking operation respectively, cf.

Figure 6.7 and 6.9. Due to the high resolution of measurements in DA2, sampling
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Figure 6.8: DA2 - CC, CV, and CI. As the coil is being energised the contact armature
begins to move and closes completely at 0.009 s which is indicated by the inductive nick
of the CC waveform. The higher sampling rate in comparison to DA1 provides a more
detailed picture of the closing process showing two distinct bounces just after the initial
make at 0.009 s and 0.011 s.

Figure 6.9: DA1 - Trigger Signal, CV, and CI measurement of the breaking actuation. The
delay between the initial coil de-energisation and the opening of the contacts is ±10 ms.

did not start with the actual trigger of the EMR actuation because the initialisation

of any recording channel is affiliated with a certain degree of jitter at this rate. Thus,

recording commenced with the actual energisation of the coil, cf. Figure 6.8 and 6.10.

The sampling rate is set to 150 kHz, sampled over a window of 0.02 ms which yields

a higher resolution of the signals CC, CV, and CI with 3000 measurement points

each for the making and the breaking actuation operation respectively. However,

only every 1000th making and breaking actuation is logged. In addition, the closed-

circuit voltage vcc and open-circuit voltage voc as further detailed in Chapter 7.2

have been logged for every actuation only in DA2.
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Figure 6.10: DA2 - CC, CV, and CI providing a higher resolution signal of the contact
breaking lasting from 0.0075 s to 0.009 s.

6.3.4 Data set DA1

As for DA1, life-cycle experiments have been conducted at 30 VDC, 6 A and elevated

ambient temperature (60 ◦C). Overall, 16 unsealed EMR samples have been tested,

cf. Table 6.4 and Appendix A.5. All tested EMRs failed stuck-closed.

Table 6.4: Overview of the recorded data in DA1.

Sample Type Actuations Time [hr] Failure
DA1-01 Unsealed 94190 104.7 Stuck-Closed
DA1-02 Unsealed 120739 134.5 Stuck-Closed
DA1-03 Unsealed 100868 112.1 Stuck-Closed
DA1-04 Unsealed 109970 122.8 Stuck-Closed
DA1-05 Unsealed 98968 110.0 Stuck-Closed
DA1-06 Unsealed 174264 193.6 Stuck-Closed
DA1-07 Unsealed 133251 148.1 Stuck-Closed
DA1-08 Unsealed 162220 180.3 Stuck-Closed
DA1-09 Unsealed 79826 88.7 Stuck-Closed
DA1-10 Unsealed 77438 86.0 Stuck-Closed
DA1-11 Unsealed 91543 101.8 Stuck-Closed
DA1-12 Unsealed 102729 114.1 Stuck-Closed
DA1-13 Unsealed 80014 88.9 Stuck-Closed
DA1-14 Unsealed 198747 220.8 Stuck-Closed
DA1-15 Unsealed 78968 87.7 Stuck-Closed
DA1-16 Unsealed 113246 125.8 Stuck-Closed

6.3.5 Data set DA2

Ten sealed and four unsealed EMRs were tested for DA2, cf. Table 6.5 and Appendix

and A.6. Unlike DA1, the tests were conducted at higher switching frequency but

lower ambient temperature (30 ◦C). This significantly affected the EMR life. The

mean time to failure increased to approximately four million actuations. This is

equivalent to a test duration of 1 − 2 weeks per EMR. Because of excessive con-

tact erosion, nine out of ten of the EMRs failed stuck-open. The unsealed EMRs
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predominantly failed stuck-closed due to contact welding.

Table 6.5: Overview of the recorded data in DA2.The time to failure is not provided
because the CR measurements have been automatically taken every 10000th actuation
which took several seconds at which the experiment was halted.

Sample Type Actuations Failure
DA2-01S Sealed 2550135 Stuck-Open
DA2-02S Sealed 3494924 Stuck-Open
DA2-03S Sealed 2836161 Stuck-Open
DA2-04S Sealed 3683048 Stuck-Open
DA2-05U Unsealed 3417789 Stuck-Open
DA2-06S Sealed 4350630 Stuck-Open
DA2-07S Sealed 3556590 Stuck-Open
DA2-08S Sealed 4283131 Stuck-Open
DA2-09U Unsealed 6194520 Stuck-Closed
DA2-10S Sealed 3075211 Stuck-Closed
DA2-11S Sealed 3483071 Stuck-Open
DA2-12S Sealed 2455181 Stuck-Open
DA2-13U Unsealed 5574044 Stuck-Closed
DA2-14U Unsealed 7460384 Stuck-Closed

Summary

The central objective of this chapter has been the summary of the experimental

workflow that was used to generate ALT-EMR data sets. The specification of the

designed test rig, including the hardware and software components were discussed.

The experiments yielded two sets of data that are suitable for different purposes.

In Chapter 7.2 the analysis of the failure mechanisms acting on the EMR contacts

is presented utilising the high resolution CV and CI waveform recordings obtained

at 150 kHz at each 1000th actuation, i.e. the data set DA2. Chapter 7.3 makes

use of data set DA1 to evaluate the performance of the EMRUA pipeline previously

introduced in Chapter 5.2.
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Chapter 7

Results and analysis

Introduction

This chapter presents the results for the BHA-PCBA case study in Chapter 7.1,

analyses the observed EMR failure modes and mechanisms based upon DA2 in

Chapter 7.2, and details the results obtained when deploying EMRUA on DA1 in

Chapter 7.3. With respect to the two case studies set up in this dissertation, cf.

Chapter 5, the results presented in this Chapter exhibit prominent differences based

on the data environment and the prognostic response returned.

7.1 BHA-PCBA maintenance support framework

The following section describes and examines the results based on a BHA-PCBA

data set provided for this research, cf. Chapter 5.1.2 1.

7.1.1 Model accuracy

As elaborated in Chapter 5.1, the training data set is augmented using adversar-

ial examples. Various perturbation factors have been studied, namely the original

training data ϵ = 0.00 and the following augmented data sets ϵ = 0.02, ϵ = 0.05,

ϵ = 0.1. A visualisation of the effects on the feature space Xn through such aug-

mentation is depicted using the correlation heatmap in Figure 7.1. The RFC 2 and

1Parts of this chapter have already been published in my journal or conference arti-
cle: L. Kirschbaum, et al., (2020).

2The python sci-kit learn implementation is used for the RFC, i.e.
sklearn.ensemble.RandomForestClassifier (version 0.22.2) [1]. The model rfc is configured
as follows: the Gini Impurity is used to determine the best splits rfc.criterion = ’gini’;
rfc.bootstrap = True; rfc.n estimators search-space [10, 300]; rfc.max depth search-
space [2, 110]; rfc.max features search space [’log2’, ’sqrt’]; rfc.min samples split

search-space [2, 5, 10]; rfc.min samples leaf search-space [1, 2, 4]; all other parameters default.
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Figure 7.1: The correlation heatmap shows the correlation of each feature pair (numbered
0−22). The original data set ϵ = 0.00 (top-left) and the augmented data sets are depicted.
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Table 7.1: Performance comparison of RFC and XGBoost Classifier using different scoring
functions.

Classifier Data set Accuracy F1 ROC-AUC
RFC ϵ = 0.00 0.55 0.47 0.59

ϵ = 0.02 0.85 0.82 0.96
ϵ = 0.05 0.85 0.83 0.94
ϵ = 0.10 0.60 0.45 0.62

XGBoost ϵ = 0.00 0.53 0.39 0.61
ϵ = 0.02 0.90 0.89 0.96
ϵ = 0.05 0.90 0.89 0.93
ϵ = 0.10 0.60 0.37 0.65

XGBoost Classifier 3 are trained in turn on each of the four training data sets. For

example, the randomised grid search based hyperparameter selection for the RFC

trained on the augmented data set ϵ = 0.02 yields 200 parallel trees (the num-

ber of estimators) with a maximum depth of 50 as the best hyperparameter set.

Trained on the same data set, the XGBoost Classifier uses 100 sequential trees with

a maximum depth of 5 per tree. The results for the standard decision threshold

THm = 0.5 are depicted in Table 7.1. As the results indicate, the XGBoost Classi-

fier improves the performance over the RFC. In fact, using perturbation factors of

ϵ = 0.02 and ϵ = 0.05 an accuracy of 90 % has been obtained. This demonstrates

that the introduction of adversarial examples as additional learning samples to the

training data improve model generalisation and reduce overfitting on the training

data. However, as one can see in Table 7.1 the performance of the RFC and the

XGBoost Classifier starts deviating if the perturbation continues to increase, i.e. a

training data set is augmented with adversarial examples using a perturbation of

ϵ = 0.10. Consider the correlation heatmap for the original data ϵ = 0.10 in Figure

7.1-(top-left) and the data augmented with a perturbation factor ϵ = 0.10 in Figure

7.1-(bottom-right). The correlation between the features of the augmented data

set ϵ = 0.10 has increased considerably among the majority of considered features

in comparison to the original data set ϵ = 0.00. As observed by [3], the obtained

results exemplify that high perturbation factors introduce spurious correlations be-

tween features which in turn leads to a correlation bias causing instabilities in the

DT based algorithms.
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Figure 7.2: Accuracy score depending on decision threshold THm for RFC and XGBoost
Classifier.

7.1.2 Maintenance threshold interpretation

Since downhole tool failures can be very costly, the operational and maintenance

support provided by the BHA-PCBA framework needs to be adjusted according to

the risk exposure of the operation. Hence, a more cautious prediction shifts the pri-

ority towards the mitigation of all BHA-PCBA failures during drilling which comes

at the cost of over-maintenance. Therefore, if the maintenance decision threshold

THm is increased, the algorithms predictions are treated more conservatively. The

predictions for both classes are filtered according to p(y = k|x) ≥ THm, correspond-

ing to the confidence threshold in the interval 0.5 ≤ THm ≤ 1. All test instances

are rejected if the predicted probability is below THm. Subsequently such a BHA is

treated as suspended, thus, maintenance is required. The results in Figure 7.2 are

obtained by plotting the accuracy of both classes while increasing THm. As THm

increases, it can be observed, in particular for RFC, how the accuracy increases.

Likewise, the rate of BHAs classified as possibly failed, i.e. fp, increases. The aug-

mented data sets ϵ = 0.02 and ϵ = 0.05 yield stable results, whereas the performance

of the XGBoost Classifier is only marginally affected by THm.

Because the forecast certainty depends on the decision threshold THm and, in turn,

on the separability of the predicted probabilities for the failure and no-failure class,

the ROC-AUC score introduced in Chapter 5.1 is used as the guiding metric to

assess the model performance. Consider the ROC-AUC score displayed in Table

7.1; the RFC or the XGBoost Classifier exhibit the best performance if trained on

the augmented data set ϵ = 0.02. Therefore, the consecutive analysis is performed

only on the models trained on the augmented data set ϵ = 0.02. Exemplary, Table

7.2 presents distinct results of the trained RFC model during inference, i.e. pre-

dicting the no-failure/ failure probability for BHA-PCBAs. The results for a BHA

fleet under consideration of three operational risk scenarios which would require an

adjustment of THm are shown. In a high-risk scenario the operator might demand

a higher confidence in the accuracy of tn and tp predictions due to the increased

3The XGBoost python package provides the XGBoost Classifier using
xgboost.sklearn.XGBClassifier (version 0.7) [2]. The model xgbc is configured as fol-
lows: xgbc.learning rate=0.1; xgbc.n estimators search-space [10, 300]; xgbc.max depth

search-space [2, 110]; xgbc.grow policy = 0; xgbc.objective = ’binary:logistic’;
xgbc.colsample bytree = 0.8; all other parameters default.
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Table 7.2: Maintenance support for BHA units considering the no-failure probability
for three risk scenarios by adjusting THm; results of RFC, data set augmentation ϵ =
0.02; accept indicates a BHA re-run recommendation without prior maintenance of the
electronics, reject indicates that maintenance of BHA-PCBA is recommended prior to a
re-run of the unit as the probability of no-failure throughout the operation is too low.

Operational Risk no-failure Low Medium High
BHA Unit (probability) THm = 0.5 THm = 0.6 THm = 0.7
BHA 00001 0.82 accept accept accept
BHA 00002 0.68 accept accept reject
BHA 00003 0.95 accept accept accept
BHA 00004 0.59 accept reject reject
...
BHA j 0.64 accept accept reject

severity of a BHA failure during drilling. Under such circumstances an operator

considers a BHA-PCBA only fit for re-run if the algorithm predicts no-failure with

a probability higher than THm = 0.7. If the model’s predictions fall below the

specified threshold THm, then the BHA-PCBA is suspended and maintenance is

recommended. On the contrary, in a low risk application, e.g. THm = 0.5, the

above predictions would have met the decision threshold criterium and the BHA-

PCBA would be considered fit for a re-run.

In order to better understand the interpretation of THm the relevance of the pro-

posed approach is explored through an example of a maintenance business case.

Maintenance expenditures are inevitably linked to tool design and its reliability,

spare-parts costs, labour costs, the employed maintenance strategy, and personnel

competency. In this example, only tool design and reliability are considered for a

BHA fleet. Personal competency is not considered. Thus, a simplified cost model

is introduced. This cost model accounts for spare-parts costs (average PCBA re-

placement cost), labour costs (average cost of maintaining a tool without parts),

and infield failure costs. The total costs of failure are determined through Equation

7.1

Cf = CfFfn (7.1)

The total infield failure costs Cf are calculated by the average failure cost Cf , de-

pending on the severity of the failure, and the total number of failures Ffn which have

not been correctly identified by the model, i.e the false negative (fn) classifications.

Cm = (Cp + C l)(Ftp + Ffp +BHAnc) (7.2)

The total maintenance costs Cm are calculated according to Equation 7.2. Cp rep-

resent the average part cost and Cl the average labour cost; Ftp the total number
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of correctly classified failures, i.e. the true positive (tp) classifications and Ffp the

total number of falsely classified failures, i.e. the number of false positive (fp) classi-

fications; BHAnc is the total number of BHA units which have not been considered.

Such instances are discarded because the prediction for a failure or no-failure lies

below the decision threshold THm. Subsequently the overall costs Ct are calculated

as per Equation 7.3.

Ct = Cm + Cf (7.3)

Twelve scenarios to evaluate the efficiency of the proposed approach are considered.

The scenarios are created by assuming three average failure cost factors of Cf = 1,

Cf = 3, and Cf = 10. Here Cf = 1 – a low impact failure – represents a scenario

in which a failure does not impact the business significantly and Cf = 10 – a

high impact failure – relates to a scenario where a failure can lead to severe loss of

business. Fleet A, B, C, and D can be assumed to represent various reliability levels

of the BHA fleet. An outdated fleet can have a low level of reliability, i.e. referred to

as fleet A. Contrary, a lightly used, proactively maintained, younger fleet can have

a high level or reliability, i.e. fleet D. Fleet reliability, in this example, is modelled

as the percentage of no-failure and failure, e.g. 90 % fleet reliability equates to

90 % no-failures and 10 % failures in the scrutinised test data set. The reliability

levels chosen here are not necessarily representative for a real fleet, but rather serve

as a mathematical exercise to select the optimal threshold THm in the context of

the proposed BHA-PCBA maintenance support framework. Figure 7.3 visualises

the results of the considered business case for each combination of fleet reliability

(A, B, C, and D) and average failure costs. The results for the RFC classifier are

represented by a solid line and for the XGBoost Classifier by a dashed line. The

first column displays the distribution of the predicted no-failure probabilities derived

on the test set. A right skewed distribution indicates better class separation, i.e.

the models capability to distinguish between the no-failure and failure instances.

Each of the graphs shown in the three columns of the average failure cost scenarios

(Cf = 1, Cf = 3, and Cf = 10) plots the decision threshold THm ranging from 0.5

to 0.8 against the not considered PCBAs BHAnc (right y-axis, blue lines) and the

resulting costs of infield failure Cf (left y-axis, green lines).

The results displayed in this Figure 7.3 indicate that it is not necessary to have

one superior approach for all scenarios. A variety of solutions should be deployed.

Consequently, a choice is made based on the fleet reliability, available data, available

maintenance infrastructure, availability of spare parts, and the business case. Var-

ious conclusions can be drawn from the analysis of the above stated business case.

In general, the XGBoost Classifier allows a better distinction between no-failure

and failure classes compared to RFC (consider the class probability distribution in
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Figure 7.3: Business case – predictions based on models trained on the augmented data
set ϵ = 0.02; Models: solid line - RFC, dashed line - XGBoost Classifier; BHAnc - blue
lines; Cf - green lines.

7.3-(left)). However, for a high failure cost scenario, over-maintenance will further

mitigate costs as the results for RFC indicate. If the failure costs increase relative

to the maintenance costs, selecting a higher threshold THm can considerably re-

duce costs. The impact of a higher THm is heavily depended on the fleet reliability

and decreases when the fleet reliability increases. Two root-causes are identified for

lower expenses at higher THm. Firstly, as the number of BHA units increases for

which predictions are not considered due to a non-meaningful forecast, the amount

of misclassified entities declines (the no-failure probability is below THm). Simulta-

neously, the accuracy increases. Secondly, a misclassified failure fp tends to have a

lower no-failure probability and will rather be considered as a BHA unit requiring

maintenance when the threshold THm increases. Thus, not identified in-field fail-

ures are mitigated. This trend gains significance as the fleet reliability decreases and

failures become more costly. However, predictions for fleets with a high reliability

and low impact failures indicate the best threshold being THm = 0.5.
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Figure 7.4: The developed API using python. User interaction is supported through: (1)
the option to retrain the selected model with new data; (a) returns the scoring of the
retrained model on the validation data set; (2) selection of a data set containing BHA
units for which failure and no-failure estimations are required; (b) the returned estimates
showing the absolute class estimations at THm = 0.5 and the distinct probabilities in case
a higher risk business case is considered; (3) provides the option to export the results.

7.1.3 Deployed API

A key deliverable for the industrial usage of the proposed framework is the provision

of a custom Application Programming Interface (API) that allows to retrain the pool

of developed ML models once new data is available. Further, it provides predictions

for any number of BHA units and facilitates the export of these results. The interface

of the developed API is presented in Figure 7.4.

7.1.4 Discussion of PdM integration and data constraints

The proposed fleet-level method provides the means to predict a failure of PCBAs

within the BHA without the need for tedious disassembly and manual inspection

of the built-in electronics. This is achieved by using an aggregated feature set from

field data and diagnostic tool memory data. In order to integrate such an approach

into an data-driven PdM framework two distinct phases should be considered, cf.

[4]. First, the collected data serves as training data for the offline training phase.

Second, once deployed, newly collected data of the same format acts as an input

during the online phase to predict imminent PCBA failures. In order to extend the

capabilities of the presented method in a PdM framework, additional data sources

should be consulted and the model regularly retrained to account for changes in the

overall BHA-PCBA fleet reliability and newly acquired data.

The complex nature of the BHA (a multi-component system) with different inter-

acting failure modes and mechanisms poses a challenge. Thus, at the moment, a
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circuit-level or even component-level resolution owning a diagnostics or prognostics

character is not achievable given the low availability and resolution of the data as

well as missing failure diagnosis and sensor localisation. Nonetheless, in order to

reduce sources of uncertainty for the proposed fleet-level approach and to improve

the models maintenance support capabilities, some form of time series data would

be beneficial, rather than only aggregating data in form of sparse snapshots for each

BHA unit. The degradation process and its propagation could then be adequately

mapped, e.g. a continuous recording of tool memory data. To facilitate such an

approach, detailed specifications of the environmental influences through extensive

and continuous measurements of the experienced dynamic operating conditions and

the sensor-placements within the BHA are required in order to derive meaningful

relations between such data and the diagnostic tool memory data.

7.2 EMR failure analysis of silver-plated contacts

Silver-based contacts (designed as pure silver, silver-alloy, or silver-metal oxide con-

tacts) are widely used as contact material for EMRs. They can be either welded di-

rectly onto the contact carrier or on a copper-based contact-rivet that is then placed

on the contact carrier strip. Besides economic considerations, silver-based contacts

possess a low CR. This is due to comparably lower oxidation rates, despite the effec-

tive temperature increase on the contact’s surfaces initiated through electrical arcing

[5]. In addition, the oxides formed from silver are unstable at higher temperatures.

However, since pure silver has a high tendency for contact welding, silver-composite

materials are used instead. Internal-oxidation of these materials increases the ma-

terial hardness improving its resistance against arcing while it reduces the weld

strength, contact sticking, and material loss [6, 7]. On the downside, in comparison

to raw silver, silver-composite materials exhibit an operating temperature increase.

This relates to the decreasing electrical conductivity that is caused by increased

rates of internal-oxidation [8]. Manufactured through such internal-oxidisation pro-

cesses, EMR applications utilise silver-metal oxides in low power applications of up

to 20 A [7]. Up to 15 % oxides are common among these types of electrical con-

tacts [9]. Still, predominant failure mechanisms are connected to arcing leading to

excessive contact erosion. In general, the plated surface material is subject to con-

tinuous decomposition through evaporation, splattering, and welding as the silver

and the oxidised metal dissociate [10]. The improvement of contact materials is an

active field of research. For example, [11, 12] report results of contact erosion rates

for silver-oxide contacts under the influence of elevated load currents. Toxic Silver-

Cadmium-Oxide AgCdO contacts exhibit lower erosion rates than Silver-Tin-Oxide

(AgSnO2) contacts. Oxidised Silver-Tin-Indium AgSnO2In2O3 contacts show even
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further reduced rates of erosion in comparison to, e.g. AgCdO contacts [8] 4.

Certainly, silver-based contact materials improve the performance of electrical con-

tacts. And yet, in terms of monitoring the health of contacts, such materials present

a challenge because the environment in which they operate significantly alters the

prevailing failure mechanisms and its propagation. In order to understand the ratio-

nale behind this, it is helpful to investigate the formation of contact faults due to con-

tact erosion and contact welding. Consider the case of silver-based AgSnO2In2O3

contacts found in the tested unsealed and sealed EMRs that, as a matter of a fact,

exhibit these very diverging degradation patterns. So as to identify the underlying

root-causes, the closed-circuit voltage vcc, open-circuit voltage voc, CR, and contact

temperature measurements are aggregated alongside high resolution CV, CI, and

CC recordings. The analysis of the evolution and manifestation of experienced fail-

ures is supported by an examination of the contact rivets by the means of Computer

Tomography Scan (CTS). Finally, the results are evaluated with regard to the ap-

plicability of CR as a DI for silver-based EMR contacts. Possible alternatives are

then presented. The following examination places the focus on DA2.

7.2.1 Observed failure modes and mechanisms

Measurements of vcc after contact making are taken at tm (i.e. PT+BT; measured

from first coil voltage increase trigger) just past the maximum allowed contact mak-

ing time tm,max = 15 ms. Likewise, measurements of voc after contact breaking are

recorded at tb (i.e. RT+AT; measured from first coil voltage drop trigger) just past

the maximum allowed contact breaking time tb,max = 5 ms. Displayed in Figure 7.5-

(top), if EMR contacts are operating nominally, the measured vcc(tm) settles at a

relatively low value; the measured voc(tb) retains a high value. However, if the EMR

degrades, contact making and contact breaking are liable to varying degrees of drift.

As a rule, such changes of the waveform become more apparent towards the EOL,

since various failure mechanisms act on the EMR components, predominantly the

contact’s surface. Hence, two cases of non-nominal actuations can be distinguished,

cf. 7.5-(bottom). First, during contact making, contacts might not have fully settled

when the reference vcc measurement is taken at tm yielding an elevated vcc reading

beyond the specified time tm,max threshold, i.e. in the case of DA2 vcc > 0 V. Second,

contact breaking may take longer and the sensed voc taken at (tb) is lower than the

required open-circuit voltage required at tb,max, i.e. vcc < 35 V.

4Parts of this chapter have already been published in my journal or conference arti-
cle: L. Kirschbaum, et al., (2022) and L. Kirschbaum, et al., (2018).
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Figure 7.5: Schematic display of measurements of the vcc and voc of nominal (top) and
non-nominal actuation (bottom).

7.2.1.1 Sealed EMR

First, consider the case of sealed EMRs. As for contact making, depicted in Fig-

ure 7.6, the measured vcc resides nominally around 0.1 V due to the inherent

CR. The majority of non-nominal closing actuations with prolonged making time

(vcc(tm,max) > 0.1 V) predominantly occur within the last 10 % of the EMR’s life.

This indicates that contact is not sufficiently established within 15 ms past the ini-

tial coil voltage increase. In such cases, the measured vcc settles around ±10 V, but

in general does not reach the voc prior to the actual stuck-open failure. In many

instances the non-nominal actuations appear in batches after which the actuations

settle again to the nominal behaviour over the extent of certain intervals.

Multiple reasons can be identified that contribute to the growing number of non-

nominal operations towards the EOL. First, consider reference-times derived for

EMR DA2-03S, cf. displayed in Figure 7.7. Both, the PT and BT, determined ac-

cording to the criteria stated in Table 7.3, exhibit a subtle upwards trend through-

out the EMR’s life. Likewise, deviations from the nominal bounce duration become

more frequent. Directly related to the BT and, therefore, the duration of the in-

dividual bounces, is the AT during bouncing. The increase in AT suggests that

the cumulative time during bouncing at which arcing is present rises towards the

EOL. The increase in BT and AT can be attributed to accelerated contact erosion.

This reduces the contact force because the contact over travel diminishes due to

the reduction in contact thickness. Furthermore, a reduced contact force might lead

to a higher number of individual bouncing events. As can be seen in Appendix

B.1, the CC waveform is also subjected to change over the course of the EMR life,

whereas the shape of the salient inductive nick changes. This mirrors the observed

PT increase. Fluctuations due to an increased coil resistance over the course of the
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Figure 7.6: DA2 - Sealed EMR vcc. The magnified section displays the voltage of the last
2 % of the EMR life.
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Figure 7.7: DA2-03S contact making actuations; actuations are averaged over each 1%
bin of the EMR life; (top) normalised BT, (centre) normalised PT, (bottom) normalised
AT (cf. Table 7.3).

EMR life relate to the travel of the armature. In such cases, the closing velocity of

the moving contact carrier is reduced if the coil resistance increases. Lastly, higher

contact force to establish current carrying paths is required. Here, the build up of

non-conducting layers in combination with increasing contact surface roughness and

the contact force needed to break such contaminating layers has to be considered,

cf. the effects of fretting detailed in Chapter 3.2.4.

So far, only detrimental effects relevant to the deterioration of the EMR contacts

during contact making have been discussed. Thus, in Figure 7.8 the voc is displayed,

nominally residing at ±35 V. Voltages lower than this nominal voc indicate extended

arcing beyond 5 ms. If voc = vcc, the contacts have failed to break sufficiently.

Unlike non-nominal making operations, non-nominal breaking operations appear

throughout the entire EMR life. However, most of these non-nominal breaking

actuations are only of extended arcing duration, since they do not reach vcc. No

coherent trend among the tested sealed EMRs can be recognised that would suggest

any correlation between the EMR life and the occurrence of non-nominal breaking

events.

Similar to the analysis carried out for the making operation, consider reference-
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Figure 7.8: DA2 - Sealed EMR voc. The magnified section displays the CV of the last 2 %
of the EMR life.
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Table 7.3: The table defines how the time-based reference DIs used in this thesis have
been calculated; PT, BT, and AT during contact making and RT, and AT during contact
breaking. These have been introduced in general in Chapter 4.2.2 and Figure 4.4.

Time-based DI Definition
Making
PT (Pick-Up Time) Determine the first occurrence of the voltage below the vcc and the CI> 0.

This is the first falling edge of the CV making waveform and the first
rising edge of the CI making waveform.

BT (Bounce Time) Detect the last falling edge of the CV making waveform where the voltage
has been above the minimum arcing voltage (13 V) and settles below vcc.
BT is defined as the time passed between PT and the time at which the
voltage falls below the vcc in regards to this last falling edge of the CV.

AT (Arcing Time) Determine the duration of the signal where the CV making waveform is
below voc but above the minimum arcing voltage (13 V) in-between PT
and PT+BT.

Breaking
RT (Release Time) Determine the first occurrence on the CV breaking waveform of the voltage

rising above the minimum arcing voltage (13 V) and the current of the CI
breaking waveform dropping below 6 A.

AT (Arcing Time) Determine the interval between PT and the CV reaching 90 % of the voc.

times derived for the breaking actuations, cf. DA2-03S displayed in Figure 7.9. An

increasing occurrence of micro-welding causes the contacts to stick more frequently

towards the EOL as the subtle increase of RT documents, cf. Table 7.3. More-

over, the spring force relaxation due to material ageing is likely to contribute to a

reduction in contact retraction force and, consequently, velocity. To illustrate this

phenomenon, consider the windowed high resolution CV and CI breaking waveforms

in Appendix B.2. Though, no increase in AT can observed which implies that degra-

dation is not accelerated by growing arcing duration during breaking. These results

are consistent with those shown in Figure 7.8 with respect to voc, since the EMR

does not exhibit excessive arcing beyond tb,max for all sealed EMRs.

Apart from DA2-10S, all sealed EMRs failed stuck-open. As mentioned before, this

failure mode can be identified through the immediate increase of the vcc to ±35 V

at the EOL, cf. Figure 7.6. At this point, the erosion of contact material, the con-

tamination of the contact surface (through a reduction of the contact force fostered

by the widening contact gap), and the spring force relaxation have progressed too

far to establish any current carrying path among the contact interfaces.

The high resolution CV measurements taken over the last couple of actuations prior

to the occurrence of the stuck-open failure provide further details regarding the

manifestation of the failure. Measurements relating to EMR DA2-03S are presented

in Figure 7.10. During contact making, at actuation 2833140, continuous bouncing

of the EMR contacts can be observed. However, at the consecutive break opera-

tion 25 ms later the contacts have settled and good contact has been established,

since the measured CV at the start of the recording is equivalent to vcc. At the
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Figure 7.9: DA2-03S contact breaking actuations; actuations are averaged over each 1%
bin of the EMR life; (top) normalised RT; (bottom) normalised AT.

making operation 10 actuations later, i.e. actuation 2833150, the contacts continue

to bounce beyond tm,max for almost the entire 25 ms period in-between switching,

cf. the break operation 2833150. This continuous bouncing occurs for all following

actuations until the making actuation 2833160. Now, followed by this period of

extended bouncing, the contacts touch only one time. The measured CV instantly

settles around the minimum arc voltage of the contacts; no consecutive bouncing

nor acceptable contact making can be observed from this point onward. On the con-

trary, a continuous burning arc establishes between the closely spaced non-touching

contact surfaces. It lasts until the consecutive break operation 2833160. Here, the

arc is extinct when the armature and, therefore, the moving contact carrier are fully

retracted. No contact making can be seen during the following making actuation, cf.

make 2833170, despite the armature does indeed travel forward pushing the moving

contact carrier which is indicated by the inductive nick of the CC (also compare the

CV waveform settling around ±35 V).

The data considered so far show a distinct pattern of how the failures evolve in time.

Despite a continuously increasing PT, AT during making, and BT throughout the

course of any sealed EMR’s life, a severe manifestation of failure becomes evident

only in the last several 100 actuations. The first indicator of imminent failure

is excessive bouncing lasting for multiple ms over the course of many actuations.

This, in turn, causes significantly higher rates of contact erosion, severe material
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Figure 7.10: DA2-03S sealed EMR failed stuck-open; (top) voc and vcc measurements;
(bottom) CV and CC of the actuations sampled at 150 kHz for 2 ms every 10th making
and breaking actuation.

ejection, dispersion, and redistribution, e.g. from micro welding. As mentioned

before, eventually the over-travel is too low and the contact force too small to make

good contact, in particular, when acting against blow-off forces of arcing contact

interfaces. Prior to the actual failure, during contact making a continuous ambient

arc establishes burning the entire period in-between contact making and contact

breaking (i.e. ±25 ms). This arc is comparably more powerful than the short

interval arcs during bouncing or during contact breaking, in particular, whenever

the contacts are pushed very close together by the armature but do not establish

any contact. Its impact initiates the final deterioration of the contact surface leaving

too little material on the contact rivets so that the contacts fail stuck-open.

Further, consider a set of sealed EMR contacts subjected to a stuck-open failure.

On the anode, the majority of the original contact surface has eroded leaving a

concave contact surface in the rivet body. Many small craters that are scattered

over the entire contact surface can be recognised, cf. Figure 7.11-(a). The rendering

of the CTS, in Figure 7.12-(a) highlights this, indicating that only the edge of the

original contact plating material is left. Contrary, in Figure 7.11-(b) the moving

contact forms a convex shape studded with pips, cf. Figure 7.12-(b). Both contact

carriers reveal, in the vicinity of the contact rivet, sputtered black material on the

carrier surfaces. This material consists of silver-oxides and carbons as EDX analysis

suggests, cf. Appendix B.5.

The examination of the worn contact rivets with the help of CTS documents an

unidirectional material transfer and the erosion of electrical contacts that is to be

expected in DC switching circuits. The predominant material loss is found to be

at the anode (formation of craters). In contrast, a material gain can be observed

at the cathode (formation of pips). Since the operation of the arc in ambient air

in DC circuits is relatively short, metallic arcing from the static contact carrier

rivet (anode) to the moving contact carrier rivet (cathode) is responsible for this

one-sided re-distribution of contact material and the concurrent net-loss of material
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(a) Static contact - anode. (b) Moving contact - cathode.

Figure 7.11: DA2-02S: CTS of sealed EMR; (I) photography of the static contact carrier
(anode) after failure; (II),(III) and (IV) cross-sections, the brighter grey area on the contact
rivet can be identified as oxidised silver and the silver contact plating material, while the
darker grey area is the copper contact rivet body.

(a) Static contact - anode. (b) Moving contact - cathode.

Figure 7.12: DA2-02S: Rendering of the CTS. The red circle indicates contact pips.

during switching. The governing failure mechanism acting on the contacts of the

sealed EMRs are excessive bouncing and electrical arcing between the EMR contacts

during contact making.

7.2.1.2 Unsealed EMR

A similar analysis of the degradation process can be performed for the unsealed

EMRs which, unlike the sealed EMRs, predominantly failed stuck-closed. First,

consider the vcc measurements that are shown in Figure 7.13. No accumulation of

non-nominal making actuations towards the EOL can be observed as it has been

documented for the sealed EMRs. Likewise, increases of PT, BT, and AT are less

apparent, consider the example of the unsealed EMR DA2-09U presented in Figure

7.14. In particular, this is the case for PT. One finds that the changes of the

CC waveform over the course of the EMR life are comparably smaller than the

ones reported for the sealed EMR, cf. Appendix B.3. In addition, less variance of

the shape of the CV and CI waveforms, i.e. shift and bouncing, can be observed

compared to the sealed waveform characteristics, cf. Appendix B.1. Hence, despite

a deteriorating making actuation, the contact making process remains within the

specified tm,max = 15 ms threshold.
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Figure 7.13: DA2 - Unsealed EMR vcc. The magnified section displays the CV of the last
2 % of the EMR life.

While the sealed EMRs seemed to be predominantly affected by effects appearing

during the making actuation, the unsealed EMRs do not exhibit such behaviour.

Consider instead the voc measurements for the unsealed EMR DA2-09U displayed in

Figure 7.15. These recordings reveal some events of extended contact breaking that

seem to become increasingly frequent towards EOL, cf. Appendix B.4. The changes

of the shape as well as a shift of the CV and CI waveforms signal an increase in

RT, though this behaviour is not as distinct as it has been observed for the sealed

EMRs.

In order to understand the development of stuck-closed failure, the focus resides

on the contact sticking actuations during contact breaking that occur throughout

the EMR life. To illustrate the formation of the stuck-open failure we present the

case of the unsealed EMR DS2-09U displayed in Figure 7.16. The contacts stick

together over the course of 80 actuations (6184190 to 6184270). The changed CC

waveform for this period does not display the typical inductive nick which indicates

the change in coil inductance when the armature closes. As detailed in Chapter 3.2.4,

the contacts have welded together during contact breaking or more likely during

contact making. The strength of the weld is greater than the spring force retracting

the moving contact carrier during the break actuation. However, the repetitive

stress of the making actuations (trying to push the contacts further together) and

the breaking actuations (trying to pull the moving contact carrier back) excites the

weld. The contact bridge eventually ruptures around actuation 6184270, allowing

the contacts to operate nominally. In the end, the EMRs are considered failed

(stuck-closed), whenever the contacts exhibit such a behaviour over a period that is

deemed unacceptable (application dependent).

We may conclude then, that an unsealed EMR similar in design and contact material

as its sealed cognate exhibits less severe damage on the anode contact surface. This
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Figure 7.14: DA2-09U contact making actuations; actuations are averaged over each 1%
bin of the EMR life; normalised BT, (centre) normalised PT, (bottom) normalised AT.

Figure 7.15: DA2 - Unsealed EMR voc. The magnified section displays the CV of the last
2 % of the EMR life.

Figure 7.16: DA2-09U unsealed EMR failed stuck-closed; (top) voc and vcc measurements;
(bottom) CV and CC of the actuations sampled at 150 kHz for 2 ms every 20th making
and breaking actuation.
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(a) Static contact - anode. (b) Moving contact - cathode.

Figure 7.17: DA2-09U: CTS unsealed EMR; (I) photography of the static contact carrier
(anode) after failure; (II),(III) and (IV) cross-sections, the brighter grey area on the contact
rivet can be identified as oxidised silver and the silver contact plating material, while the
darker grey area is the copper contact rivet body.

(a) Static contact - anode. (b) Moving contact - cathode.

Figure 7.18: DA2-09U: Rendering of the CTS. The red circle indicates contact pips.

can be seen using CTS in Figure 7.17-(a) and Figure 7.18-(a). Unlike the sealed

EMRs, the unsealed EMRs did not experience excessive bouncing during contact

making beyond the maximum allowed tm,max. Therefore, it can be argued that the

gross of electrical erosion in unsealed EMRs must have occurred during contact

breaking. Since erosion from electrical arcing does not seem to be as evenly dis-

tributed over the entire contact surface, it is likely that the arc developed a static

anode-fall and cathode-fall region. The distribution of the contact asperities un-

derpins this hypothesis. The predominant loss that led to the formation of crater

structures on the anode appears to be most severe in the bottom section of the

contact’s surface, cf. Figure 7.17-(a)-(IV). Also note, the sputtered contact material

that is distributed around the contact rivet, partially consisting of oxidised contact

plating material and carbons, cf. Appendix B.5. Correspondingly, the cathode’s

surface gained material at the bottom section. Although, the unsealed EMRs ex-

perience comparably less material loss, they also exhibit the typical pip structure

on the cathode. Following this line of evidence, the physical appearance of the an-

ode and the cathode indicates that the material transfer took place predominantly

during the metallic-phase arc rather than during the ambient-phase arc.
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7.2.2 The influence of the operational environment on CR

The presence or absence of oxygen is critical to the occurrence of silver-based elec-

trical contact failure in EMRs as the preceding examination has confirmed. Com-

parative testing of unsealed and sealed EMRs showed that, despite identical contact

construction and material, different deformations may occur. In turn, these different

reactions have a direct impact on CR and its relevance as a prognostics performance

indicator.

To clarify the subject matter at hand, this section examines research relating to

silver-based electrical contacts. By making use of CR measurements from DA2 it

will be shown how fluctuations impact the prognostic value of CR. Furthermore, re-

ferring to Chapter 3.2, the root causes responsible for different degrees of fluctuations

depending on the presence or absence of oxygen are integrated in the argument.

The presence of oxygen affects both the arc in the metallic-phase and the arc in the

gaseous-phase. However, they exhibit different deposition mechanisms which are

relevant in the context of contact oxidation [13].

Metallic-phase arc The relative short metallic-phase arc removes anode contam-

ination films due to electron sputtering which, in turn, leads to a material transfer

from anode to cathode, cf. Chapter 3.2.4.1. In consequence, the cathode surface is

tainted during the metallic-phase arc. In the presence of oxygen the minimum arc

voltage to sustain a metallic-phase arc is lowered (unsealed EMRs) compared to the

minimum arc voltage in a nitrogen atmosphere (sealed EMRs). A reduction of the

minimum arc voltage can be observed even for very small concentrations of oxygen.

Recall that the metallic-phase arc is operating in a high-pressure zone within the

metal-vapour matrix. For this reason, one might expect the type of atmosphere

playing a neglectable role in its effect on the metallic-phase arc. However, if the

required minimum arc voltage is reduced despite sealing, it has to be concluded

that preceding oxidation of the contact surface must already have taken place, e.g.

during storage.

Gaseous-phase arc If the load current is high, the duration of the gaseous-phase

arc lengthens and degradation mechanisms become predominant during this phase.

The direction of material transfer is reversed during the gaseous-phase arc, trans-

porting material from the cathode to the anode, leading to an anode material accu-

mulation. Unlike the metallic-phase arc, the gaseous-phase arc is exposed to higher

concentrations of oxygen within the contact gap whenever the contacts are operated

in ambient air. Such arcing regimes leave visible, dark oxidation films on the anode

surface and the surrounding contact carrier strip forming non-conductive contami-

nation layers, cf. the example of an unsealed EMR in Figure 7.17-(I). In case the
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cathode is subjected to ion-sputtering the cathode’s surface is cleaned. A local re-

duction in thickness of the developed oxide contact films promotes the formation of

metallic clusters on the contact surface [14]. As the silver-oxides are only stable at

lower temperature the majority of silver-oxides stem from silver being oxidised in

the extinguishing gaseous-phase arc.

Due to the reduced minimum arc voltage and contact surface contamination effects

from silver-oxide layers, EMRs that are equipped with silver-based contacts oper-

ating in normal, ambient air are prone to erratic fluctuations of CR. [15] provides

a useful point of reference. It is demonstrated that for load currents beyond 0.2 A

the CR either starts fluctuating after an initially stable phase or from the start

throughout the entire duration of the contact’s life. The rate and amplitude of

these fluctuations increases with the applied electrical load. This can be linked to

the growing fretting rate due to ongoing contact erosion, since arcing becomes the

dominant degradation driver over the plastic deformation encountered at lower load

currents. If arcing is only of short duration, e.g. the metallic-phase arc is predom-

inant, the amplitude of CR fluctuations is generally low. Whenever shorter arcing

changes to extended arcing, an almost instantaneous increase of the amplitude of

CR fluctuations can be observed [16]. In that case, high CR values can be typically

observed after several, long-duration gaseous-phase arcing events (> 1 ms) [16, 17].

Relying on surface roughness measurements, it has been concluded that such an in-

crease and subsequent decrease of CR is attributed to changes in the contact surface.

Non-uniform deposition of transferred material alters the contact morphology and

the effective contact area respectively, chaining the contact spots at each making

and breaking operation. However, as [14, 17] experimentally demonstrate, these CR

fluctuations are dominated by non-conductive oxide film formation on the contact

surface surpassing the effects of contact morphology alterations when the contact

load increases. An analysis of the contact surface reveals build-up of absorbed oxy-

gen contaminating the contact surface; these oxidised spots are being preferable hit

by the arc root [13]. It can be deduced that prominent CR fluctuations are an

indication of contact wear mainly due to electrical erosion. Low CR fluctuations

further suggest that contact contamination by silver-oxides and, thus, the presence

of oxygen plays a subordinate role.

7.2.3 Analysis of DA2 CR and temperature data

In order to illustrate the challenges if solely relying on CR as DI for contact health

monitoring, i.e. for diagnostic and prognostic purposes, consider the CR measure-

ments recorded every 10000th actuations during the conducted EMR life-cycle exper-

iments ((AgSnO2In2O3) plated EMR contact rivets). In Figure 7.19, sealed EMR

contacts are switched, isolated through an enclosure to oxygen from the ambient

air. Initially, the contacts exhibit high CR fluctuations due to the burn-in phase
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where small trace amounts of residue oxygen have already been deposited on the

surface. This has been confirmed by [18], stating that initial oxide deposition can

occur on EMR contacts despite sealing. However, at around 10 % of the EMR’s life

the CR stabilises and increases continuously till the EOL for the majority of the

EMRs without problematic fluctuations 5.

On the other hand, consider the temperature profiles of the sealed EMR contacts

(to be more specific the EMR enclosure temperature). Figure 7.20 depicts the

changes in temperature, whilst the ambient temperature is kept constant at 30 ◦C.

The average operating temperature settles ±50 ◦C. A clear upwards trend in the

last 20 % of the EMR’s life is recognisable. This increases the average operating

temperature from ±50 ◦C up to ±60 ◦C. The heat build-up can be attributed to a

set of interrelated mechanisms going hand in hand in with the continuous increase

in CR, e.g. contact erosion and debris build-up from fretting restrict the current

carrying path. If, through continues erosion of contact material, the contact making

and contact breaking becomes increasingly erratic more heat will be emitted during

switching. In particular, the increased heat build-up towards the EOL may have

a reciprocal effect on the moving contact carrier. A reduction in the stiffness of

the moving contact carrier as it heats up reduces the contact force and contact

velocity during contact breaking. In turn, this further increases AT and, therefore,

accelerates the electrical erosion of the contacts as well as heat emission from arcing

events.

The CR measurements relating to silver-based contacts which have been exposed to

ambient air, i.e. unsealed EMRs, are displayed in Figure 7.21. In view of the above,

the expected significant CR fluctuations of up to 100 mΩ are observed throughout

the entire life of the EMRs, in general exceeding the maximum nominal value of

allowed CR. Such anomalies are indistinguishable from the final rise in CR prior

to the EOL and mask any underlying trend, cf. [19]. These findings further align

with results reported [14, 16, 17, 20]. In this context the operational condition

can be further analysed based on the contact temperature, cf. Figure 7.22. The

tested unsealed EMR contacts settle at an average temperature of around ±55 ◦C,

approximately ±5 ◦C higher than it has been the case for the sealed EMR. The gen-

erally higher operating temperature may indicate that the contacts of the unsealed

EMRs are more contaminated by silver-oxides than the ones of unsealed EMRs and,

therefore, fewer current-carrying paths exists.

5Some CR and temperature measurements of DA2-03S and DA2-05U are not available due to
a software error relating to the Ohmmeter buffer during the experiments.
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Figure 7.19: DA2 - Changes of sealed EMR CR throughout the life compared to the initial
CR.
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Figure 7.20: DA2 - Sealed EMR contact temperature measurements at constant ambient
temperature of 30 ◦C.

Figure 7.21: DA2 - Changes of unsealed EMR CR measurements throughout the life
compared to the initial CR.
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Figure 7.22: DA2 - Unsealed EMR contact temperature measurements at constant ambient
temperature of 30 ◦C.

7.2.4 Implications for the usage of CR

As became clear, the formation of EMR contact failure depends on a multitude of

interwoven factors. The manifestation of the failure gradually increases, whereby a

significant acceleration of the failure regime appears only in the very last several of

hundred actuations. Particularly, in the case of silver-based contacts the presence of

oxygen widely controls the degradation regime. This in turn affects the applicability

of CR as DI, so that CR measurements for unsealed EMRs are basically without

merit, since high amplitude fluctuations will mask any underlying trend. The gross

of the CR fluctuation can be attributed to:

1. a repetitive cycle of deposition of contaminating silver-oxide films on the con-

tact surface, increasing the CR and

2. ion-sputtering cleaning the contacts, thus, reducing CR, cf. [14].

Furthermore, CR fluctuations may occur because contact degradation is accelerated

by the reduction of conducting paths due to shifting oxide contamination patches

as well as the oxide debris deposited on the surface. Mechanical rupture of oxide

films is responsible for a sudden decrease of CR, predominantly observed for the

unsealed EMRs. [15] remarks that oxide film formation is only dominant when

small amounts of carbons are available, i.e. contact-activation does not play a

significant role. However, if larger amounts of carbon are present the oxide layer

will be replaced by a silver carbonate layer. In the case of silver-based EMR contacts

that are not exposed to ambient air it has been shown that even the presence of

small traces of oxygen present on the contact surface can affect the degradation

behaviour initially. Here, oxygen reduces the minimum required arcing voltage and

extends the arc duration while producing highlighted spots for such electrical arcing.

In addition, the presence of contamination, the oxygen concentration in the ambient

environment, the arc-duration, and slower contact velocity promote higher rates of

oxidation and are to be linked to CR fluctuations [21, 22]. Finally, fluctuations of
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CR can also be caused by silicon-vapours dissolved from, e.g. the EMR enclosure

[23].

All things considered, the presence of oxygen alters the degradation behaviour of

silver-based contacts. Hence, CR is unsuitable as DI for silver-based contacts ex-

posed to ambient air, i.e. the case of unsealed EMRs, in a diagnostics or prognostics

context. Sealed EMRs, on the other hand, are not subject to fluctuations beyond

an initial burn-in phase. In this case CR can provide some means of assessing the

contact health. However, it should be noted that the small increase in the mΩ

range makes accurate measurement in practice difficult (and expensive). Recording

the contact temperature may present an alternative. Processing the temperature

measurements form sealed EMRs signals an upward trend, especially in the last 20

percent of the components’ life. Since the temperature is comparatively easier to ob-

tain than CR, its DI value for prognostics of EMR contacts might be an interesting

issue to pursue.

Contrary to what [24] reports, there is no indication that sealed EMRs show longer

contact life in comparison to unsealed EMRs. Despite lower CR observed for sealed

EMRs in DA2, the observed contact life of sealed EMRs has been considerable

shorter compared to unsealed EMRs (cf. Table 6.4 and Table 6.5). Due to the small

sample size, one can only speculate about the reasons at this point. However, the

static anode and cathode fall region of the sealed contacts are likely to be the root

cause for the longer life of the unsealed EMRs. A locally constricted erosion zone

leaves a majority of the contact surface virtually unaffected. Whereas the more

evenly distributed degradation of the sealed EMR contacts, reduces the contact

thickness across the entire surface. This, in turn, leads to earlier impaired contact

making and excessive bouncing shortening the life-cycle.

7.3 EMR prognostics pipeline

This section presents and discusses the performance of the proposed EMRUA DL

pipeline introduced in Chapter 5.2. The performance is evaluated on DA1, cf. Chap-

ter 6.3.4 6.

7.3.1 Derived feature sets

Three data sets of normalised features are considered, namely FT , FS and FT,S in

the case of DA1. The features extracted for FT consist of the mean and variance

of time-based reference DIs over a set of actuations which can be extracted solely

from the CV and CI waveforms. For the making actuation, the AT during making,

6Parts of this chapter have already been published in my journal or conference arti-
cle: L. Kirschbaum, et al., (2022).
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the BT, and the PT are considered. As for the breaking actuation, the RT and AT

during breaking are studied. These features have been defined in Chapter 7.2 - Table

7.3. Since no CC measurements are provided in DA1, the ST is not considered. A

set of statistical features FS, namely the min, max, mean and standard deviation

is aggregated differentiating between making and breaking actuations as detailed

in Chapter 5.2.6.2. As stated before, in DA1 CV and CI waveforms are recorded

respectively at 25 kHz over a duration of 0.04 s which yields 1000 samples per

waveform per actuation. Features are derived for each raw waveform over an interval

of 0.004 s which reduces the representation to 10 samples per waveform per actuation

per feature. Compare Appendix C.1 for FT features; compare Appendix C.2.1 and

C.2.2 for features derived for FS.

7.3.2 Hyperparameters and sequence selection

The model configuration, cf. Table 5.3, in conjunction with the size of the receptive

field r, i.e. the number of elements in the input feature space that relate to the

target RUA sequence (cf. Chapter 5.2.4), affects the model performance. While

increasing the size of the receptive field r, increasing the kernel-size k or the number

of residual blocks R also increases the number of model parameters as can be seen in

the bottom of Figure 7.23-(I). The model performance does not necessarily improve

with an increase in model complexity. In fact, apparent for data set FT , an increase

of stacked residual blocks R beyond 5 leads to performance deterioration increasing

the MAPE respectively. For both, FS and the combined data set FT,S, all tested

configurations exhibit similar results; though, some dependency on the architecture

can be recognised.

Altering the dilation base db to increase the size of the receptive field r without in-

creasing the number of model parameters does not improve performance, cf. Figure

7.23-(II). This might suggest that increasing the receptive field r beyond a certain

threshold only improves performance with a parallel increase of trainable parame-

ters. However, care should be taken to avoid overfitting.

As pointed out in the review of related literature, traditional features such as time-

based reference DIs have been incorporated in the data set FT . The performance

of FT incorporating PT, BT, and AT during contact making as well as RT and AT

during contact breaking is displayed in Figure 7.24. Across all selection strategies,

i.e. GI, LI, and EI the performance varies for the EMRs tested in DA1. However,

the selection strategies EI exhibits less performance variance than the others. Com-

paring LI and EI, the prior one exhibits slightly better RUA estimation performance

for the model LI-k = 7-db = 2-R = 6; model EI-k = 3-db = 2-R = 6 yields similar

results having considerable less trainable parameters due to the smaller kernel-size
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Figure 7.23: (I) Kernel k against Residual-Blocks R with constant dilation-base db = 2
for sequence-selection strategy GI; (II) Dilation-base db against Residual-Blocks R with
constant Kernel k = 3 for sequence-selection strategy GI; performance averaged over all
test samples.

(k = 3 instead of k = 7).

The evaluation of the performance of the statistical data set FS, displayed in Figure

7.25, yields consistent results for the LI and EI sequence selection strategy, simulta-

neously reducing the variance in performance compared to FT . Only FS-GI exhibits

higher levels of variance among all tested configurations compared to FS-LI and

FS-EI.

Combining the data sets FT and FS as a joint feature set FT,S does not generally

improve the model performance. On the contrary, adding FT seems to impair the

overall performance in some instances. This is indicated by an increase in perfor-

mance variance, in particular, for EI, cf. Figure 7.26.

With respect to the results in Figures 7.24, 7.25, and 7.26 examine the RUA esti-

mation performance reported in Table 7.4. The results are averaged over all tested

EMR samples in DA1 for different model configurations. The best performing model

achieves an average MAPE= 12.4 % using the configuration EI-k = 7-db = 2-R = 6

trained on FT,S (87169 trainable parameters). With αsc = 92% the gross of all

predictions reside within the α± confidence zone. The best performing model using

only statistical features FS is of similar configuration with k = 5 instead of k = 7
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Figure 7.24: Performance results on all test samples of selected model configurations - FT

- left: GI, middle: LI, right: EI.

Figure 7.25: Performance results on all test samples of selected model configurations - FS

- left: GI, middle: LI, right: EI.
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Figure 7.26: Performance results on all test samples of selected model configurations -
FT,S - left: GI, middle: LI, right: EI.

EI-k = 5-db = 2-R = 6. This model requires slightly less parameters due to the

reduced size of the input feature-map and kernel size (85889 trainable parameters).

As already demonstrated, in general, EI and LI in combination with FS or FT,S are

superior to GI or FT .

The findings - in terms of the selected feature sets - confirm the challenges of time-

based reference DIs in a prognostics scope that have been previously pointed out in

the literature review. Even the same batch of EMRs produces highly varying time-

based reference DIs, partially due to fluctuations of, e.g. AT, RT, or PT during the

fast contact making and breaking. Hence, such features do not necessarily provide

the best performance nor robust results. The set of statistical features FS yields

somewhat more stable results for all tested EMRs and TCN configurations. Com-

bining FT and FS as a joint feature set FT,S does not lead to a notable improvement.

Considering the sequence-selection strategies - the performance of GI is worse than

LI or EI. This might be attributed to the comparably smaller history coverage of

each sequence point of inputs selected via GI in the TCN. No significant difference in

performance between LI and EI can be recognised suggesting that recent changes in

the degradation might not contribute significantly more to the average degradation

rate and RUA estimation respectively.
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Table 7.4: Average results of the best performing models using sub-sampling strategy S -
EI or LI; sorted ascending according to MAPE; k - kernel; db - dilation base; R - Residual
blocks; r - receptive field; F - data set; validation metrics MAE, MAPE, RMSE, and αsc

with alpha = 0.2.

S k db R r F MAE MAPE RMSE αsc

EI 7 2 6 757 FT,S 144.7 12.4 179.0 0.92
5 2 6 505 FS 140.3 12.4 174.4 0.92
3 2 6 253 FS 147.7 13.0 183.1 0.90
7 2 6 757 FS 154.6 13.1 187.7 0.91
3 2 6 253 FT,S 155.1 13.2 189.80 0.91

LI 5 2 6 505 FT,S 157.2 13.3 190.6 0.89
7 2 6 757 FS 155.0 13.4 190.7 0.88

EI 5 2 6 505 FT,S 162.3 13.7 195.3 0.91
3 2 7 509 FS 161.5 13.8 196.9 0.91

LI 7 2 6 757 FT,S 164.9 13.9 198.3 0.88
3 2 7 509 FS 165.5 14.0 198.5 0.87

6 253 FS 165.4 14.0 198.7 0.88
FT,S 169.3 14.3 203.3 0.87

7 509 FT,S 176.3 14.5 210.6 0.87
5 2 6 505 FS 171.4 14.6 208.3 0.86

EI 3 2 7 509 FT,S 177.2 14.7 210.8 0.91
LI 7 2 6 757 FT 228.7 19.4 272.5 0.67
EI 3 2 7 509 FT 229.9 20.1 273.6 0.73

7 2 6 757 FT 232.6 20.4 276.9 0.69
EI 5 2 6 505 FT 229.4 20.5 275.8 0.71
LI 3 2 7 509 FT 238.7 20.6 285.0 0.68
EI 3 2 6 253 FT 233.8 20.6 278.3 0.72
LI 5 2 6 505 FT 245.9 21.2 289.4 0.64

3 2 6 253 FT 242.3 21.2 287.3 0.62

7.3.3 EMRUA inference

Based on the presented strategy, RUA forecasts can support timely decisions for

maintenance scheduling. The performance of different sequence-selection strategies

and data sets in terms of RUA prediction is illustrated through an example using the

configuration EI-k = 4-db = 2-R = 6. Forecasting at different stages of the EMR’s

life for FT , FS and FT,S is presented in Figure 7.27, 7.28, and 7.29. Again, purely

relying on traditional time-based reference DIs might produce misleading results.

The performance deteriorates closer to the EOL, cf. Figure 7.27. Further results for

other EMRs and sequence selection strategies are presented in Appendix C.3.

A closer look at the number of forward passes N during EMRUA inference reveals

their impact on the estimation of uncertainty. Consider the model EI-k = 7-db = 2-

R = 6 and data set FT,S evaluated on EMR DA1-16S. Figure 7.30 visualises the

inference phase of the EMRUA pipeline which can provide timely RUA estimation

in order to be embedded in a maintenance solution, e.g. PdM. The RUA is esti-

mated at three different at using MCD which provides the distribution of the RUA

estimates. With the EMR approaching its EOL the RUA forecast improves. As

mentioned before, the number of samples N equivalent to the batch size does not
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Figure 7.27: DA2-01U - FT - EI - k = 4-db = 2-R = 6; prediction of RUA at actuation
at = (top) 40000, (centre) 70000 and (bottom) 90000.

Figure 7.28: DA2-01U - FS - EI - k = 4-db = 2-R = 6; prediction of RUA at actuation
at = (top) 40000, (centre) 70000 and (bottom) 90000.
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Figure 7.29: DA2-01U - FT,S - EI - k = 4-db = 2-R = 6; prediction of RUA at actuation
at = (top) 40000, (centre) 70000 and (bottom) 90000.

need to be large to retrieve a sufficient uncertainty representation. For further val-

ues of N = [50, 500, 50000] refer to Appendix C.4 for a comparison. At at = 60000,

i.e 50000 actuations prior to failure, the estimated RUA exhibits wide confidence

intervals as can be seen in Figure 7.30-(top) using N = 5000. The forecast improves

distinctly 25000 actuations later at at = 85000, cf. Figure 7.30-(centre). Lastly, con-

sider at = 106000 in Figure 7.30-(bottom), at lies within the estimated confidence

interval of the RUA. Now, the predicted mean RUA is only 4900 actuations ahead.

The example given underlines the interdependence of the forecast and the associ-

ated uncertainty. Therefore, N is an important hyperparameter to consider for any

subsequent maintenance action; however, for this application case the selection of

N = 5000 appears to be a reasonable choice.

7.3.4 Performance comparison with LSTM

In order to evidence the performance gains through TCN, the proposed DL architec-

ture is compared to a reference LSTM model which has previously been employed

in RUL forecasting proposed by [25]. The results are displayed in Table 7.5. TCN

improves the RUA performance as the feature space increases, i.e. using FS or FT,S,

despite using less parameters than the LSTM.
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Figure 7.30: Exemplary predicting RUA for DA1-16U with N = 5000. The EI sequence
selection strategy and the data set FT,S are used.

Table 7.5: Comparison of the best performing TCN and a reference LSTM architecture
for the LI sub-sampling strategy.

Model Data set Parameters MAE MAPE RMSE
TCN FT 50305 228.7 19.4 272.5
LSTM FT 54601 198.5 16.9 230.9
TCN FS 85889 155.0 13.4 190.7
LSTM FS 165801 223.4 18.8 276.0
TCN FT,S 87169 157.2 13.3 190.6
LSTM FT,S 169801 272.1 21.3 327.1
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7.3.5 Discussion and research prospects

The literature reviewed in Chapter 3.2 and Chapter 4.2 as well as the failure analysis

of DA2 in Chapter 7.2 imply that failure precursors are subject to specific failure

mechanisms and, in turn, responsible for different failure modes. The analysis in

this chapter focused on a particular failure mode, namely stuck-closed failure in

DA1. The results demonstrate that high variance is present among the individual

EMR samples in the data set. Given that sources of uncertainty could be further

reduced through collection of additional data, the proposed configuration of TCN

shows promising results.

A possible direction for future research relates to methods that will improve EMRUA

through alternative ways of feature extraction, extensively discussed in Chapter

5.2.2. To name some possible approaches:

• Fast-Fourier-Transform;

• automated feature extraction through CAE;

• specific techniques to address the challenge of the highly localised information-

holding section of the contact switching waveform that varies in the time

domain, e.g. time series Motifs, cf. [26].

Training individual models for different failure modes might be necessary. In addi-

tion, further investigation of the method’s robustness to changes regarding the vol-

ume and granularity of available training data and the sampling rate is required. Op-

timisation of the hyperparameter selection through, e.g. grid-search or randomised-

search as it has been deployed for the BHA-PCBA in this dissertation should be

considered.

Transfer-learning is another area of interest, bearing the potential to reduce training

time not only among models pertinent to different failure modes but also in respect

to a reduction of the required training data when changing the EMR type, e.g. a dif-

ferent contact material or design. Moreover, the value of alternative measurements

for EMR health estimation could be investigated, e.g. the contact temperature using

an infrared temperature sensor as already shortly alluded to in Chapter 7.2. Sens-

ing such waveforms and extracting meaningful features might improve the model’s

performance, though the practicality and retrofittability of such method is limited.

7.3.6 Computational hardware and software

The LSTM has been implemented using tensorflow (version 2.6.0) [27] and keras

(version 2.6.0) [28]. The TCN has been implemented using tensorflow (version

2.6.0) [27] and keras-tcn (version 3.4.0) [29]. A NVIDIA GeForce GTX 1060 (3GB)

graphic card and CUDA [30] has been used for training. Training was conducted

over a maximum of 1000 epochs, though a EarlyStopping callback has been used
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to stop training if the validation error did not improve over 10 actuations. The

learning rate has been adjusted during training using the LearningRateSchedule

callback. Due to the size of the input data, generators were employed to provide

the data to the model during training. The maximum encountered training time for

either TCN or LSTM did not exceed 24 hours.

Summary

As this chapter has made clear, both, ML and DL have the potential to provide

viable solutions for data-driven maintenance support. It has become evident that

methods must be tailored to their respective background and, most importantly, take

into account the data requirements and the applicability of the prognostic feedback.

The BHA-PCBA framework provides estimates of the susceptibility to failure of

electronics installed in downhole tools. However, limited by the resolution of the

data, it is not possible to isolate the exact location of a fault. Nevertheless, such

an approach supports the maintenance process and enables data-driven decisions

making.

EMRUA as a prognostics method can drive PdM, complementing existing EMR

maintenance decision making paradigms. The method offers additional confidence

in EMR performance evaluation, important within applications where EMRs play a

mission or safety critical role. EMRUA has the capability to provide real-time in-

sights of the individual EMR health with the associated uncertainty estimate, rather

than blindly relying on conventional maintenance measures. To this end, EMRUA

only relies on CV and CC measurements, recordings that are already commonly

collected in many safety critical systems.
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Chapter 8

Conclusion

Recall the proposed research question. From this point of view, I explored and

created methods that, despite reliance on AI, underpin the criticality of custom-

tailoring maintenance strategies for industrial applications. Thus, a thorough un-

derstanding of the relevant degradation is an indispensable prerequisite, be it in

order to develop a suitable life-cycle experiment or to appraise the forecast capa-

bilities of a model. Given the limitations of traditional maintenance strategies, my

thesis evidences how ML and DL pipelines fused into a prognostics concept advance

the state of the art for the given applications. It is illustrated that prognostics

for individual components can yield targeted, highly expressive forecasts, though

this approach may not be feasible in instances where data resolution prevents such

a procedure. Therefore, two distinct data-driven frameworks are proposed. Their

adoption supports current maintenance procedures, facilitates decision making and,

consequently, de-risks active operations.

Reliability, maintenance, diagnostics, and prognostics have been discussed highlight-

ing that industries are actively shifting from classical reliability paradigms towards

data-driven PHM in order to continue to meet stringent operational and safety re-

quirements of increasingly complex industrial systems. It has been argued that

pursuing the digital transformation is crucial, in particular for the oil and gas indus-

try given the prevailing economic situation. Especially in the upstream sector, the

intricate nature of drilling systems and the dynamic operating environment com-

bined with a competitive market and prolonged tool design cycles poses a challenge

to present AMO processes. A more detailed examination of current maintenance ap-

proaches for mission-critical electronic components and assemblies used in drilling

tools has made this problem particularly clear. The inadequacy of the presently

applied methods, illustrated by the high failure rates of electronics, contrasts with

the optimisations that can be achieved through the implementation of data-driven

techniques. Moreover, it has been shown that the potential of diagnostics and prog-

nostics to accelerate future cost savings is readily acknowledged by both the relevant
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research community and industry.

Table 8.1: Methodological comparison of operational needs of the developed BHA-PCBA
and EMRUA frameworks

BHA-PCBA EMRUA
Aim Support the AMO process through

PdM integration by classifying whether
BHA-PCBA circuitry has failed in a
previous operation and, hence, main-
tenance on the PCBAs should be con-
ducted.

EMR-RUA estimation throughout the
component’s life considering the fore-
cast uncertainty.

Level Fleet-level for BHA tools each holding
multiple electrical assemblies within the
sub-modules.

Component-level for an individual elec-
tromechanical componentm i.e. EMR.

Model Supervised classification: RFC, XG-
Boost Classifier

Supervised regression: TCN

Data 1D feature vector with n features hold-
ing summarised operation statistics and
BHA diagnostic information for each
BHA tool; the label corresponds with
an operational class (failure and no-
failure).

2D feature vector comprising processed
MVTD from CV and CI waveforms
sampled for every making and break-
ing actuation; label corresponds to the
RUA.

Train

Predict Predict class probability of BHA-
PCBA failure and no-failure class for
a single BHA tool under consideration
of possible failure costs and fleet relia-
bility levels.

Predict RUA for one EMR at t using
the streamed MVTD for the interval
[0, t] (multiple forward passes in one
batch according to MCD). Determine
the best linear-fit for each predicted
RUA sequence and extrapolate to the
estimated EOL to derive confidence in-
tervals for the RUA estimate.

Chapters 3.1, 4.1, 5.1, 7.1 3.2, 4.2, 5.2, 6, 7.2, 7.3

Following the identification of these research gaps, two tailored data-driven method-

ologies are put forward: (1) estimation of BHA-PCBA failures; (2) forecasting EMR-

RUA. Table 8.1 presents a methodological comparison of both approaches which

highlights the distinct differences in the fleet-level and component-level use case sce-

narios in regard to the predictive targets and, therefore, the maintenance support

capabilities. An ALT experiment design has been proposed and implemented in

order to address the limited availability of EMR life-cycle data. It facilitates the

generation of high resolution run-to-failure data. The proposed EMRUA method
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has been trained and tested using this data. Likewise, encountered failure mecha-

nisms were analysed and the emergence of individual failure modes evaluated. The

remainder of this chapter details the individual contributions and proposes strategies

to further advance them.

8.1 BHA-PCBA maintenance support framework

Following a thorough review of health management strategies for downhole drilling

tools, the electrical assemblies within are identified as one of the major critical

subsystem in the BHA due to the reported high failure rates. Determining fail-

ure precursors and the need for maintenance of individual electrical components

is challenging, time intensive, costly, and often infeasible within circuits holding

many components such as the BHA-PCBAs. In addition, it has been shown that

current maintenance practices are inefficient owing to extreme environmental and

dynamic operating conditions. The applicability of real-time monitoring and, in

consequence, online prognostics is constrained, since data-transfer is limited during

the drilling process. Furthermore, retrofitting sensing capabilities to legacy drilling

tools in order to allow for targeted detection, isolation, and identification of elec-

tronic failures within PCBAs is not attainable because of the restriction imposed by

space and hardware constraints. Moreover, exaggerated by the imposed governmen-

tal data-policies, the locally constrained storage of relevant data has a detrimental

effect on data availability and, therefore, implementability. Despite all those rea-

sons impeding the development of data-driven maintenance support for downhole

tool electronics, this thesis proposes a novel approach.

Indifferent to the failure location or mode, a data-driven ML framework is intro-

duced for BHA-PCBA fleet maintenance optimisation and operational support that

is implemented and ready to be deployed in-field or during AMO. It is based on com-

monly collected, but so far not utilised BHA memory data. To increase robustness

towards outliers and prevent overfitting, in a first instance the data is augmented

by introducing adversarial samples in order to provide additional (simulated) train-

ing data. An analysis of the performance of two classification algorithms, RFC

and XGBoost-Classifier, is conducted. Perturbation values of ϵ = 0.02 or ϵ = 0.05

served as the best augmentation subsets in order to distinguish between the need

for maintenance - (failure) and the availability for a re-run - no-failure with a high

accuracy of 90 %. Furthermore, it has been shown that increasing the class decision

threshold reduces operational costs in high-risk applications which illustrate that

the selection of an algorithm and its parameters should depend upon the distinct

business needs. A tailored solution can be selected based on the need to increase rev-

enue (lower NPT, lower number of failures, higher reliability) or to improve margins

(lower AMO costs).
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8.2 EMR life-cycle data and prognostics pipeline

EMRs are ubiquitous in electrical systems, thus, significant for electronic-rich indus-

trial equipment such as that used in the upstream industry for deep drilling tools.

Here, a data-driven maintenance paradigm has the potential to improve the relia-

bility of systems containing EMRs. To facilitate the development of a prognostics

method common EMR failure modes have been analysed, e.g. high CR, stuck-closed

contacts or stuck-open contacts. To facilitate this analysis, failure mechanisms that

act predominantly on the electrical contacts and lead to EMR fatigue have been

studied, e.g. electrical arcing, contact welding, contact contamination, and fretting.

Current practices for monitoring EMR contact health such as the CR are often con-

strained by the complexity of obtaining these measurements and, more importantly,

by the environment EMRs are operated under. This has been evidenced for silver-

based EMR contacts. In case the contacts are exposed to oxygen, recording CR for

health monitoring purposes is superfluous due to significant fluctuations caused by

the repetitive build-up and destruction of contaminating oxide layers on the contact

surfaces. If the contacts are not exposed to oxygen, the CR, as has been shown, may

hold some value for diagnostics or prognostics. It has been further demonstrated

that assessing EMR reliability solely on the basis of time-based reference DIs is

highly application dependent and limited in its generalisation.

Based on this state-of-the-art analysis, a method is put forward that mitigates the

need for strenuous CR measurements and reduces the dependency on time-based

reference DIs or CR while enabling continuous forecasting of the expected EMR’s

EOL. Although the methodology presents a novel approach which is evaluated for

EMRs, the general concept is not limited to EMRs. The method is aligned to the

challenge and opportunities of high volumes of MVTD. The proposed DL pipeline,

termed EMRUA, utilises the aggregated EMR life-cycle data in order to provide an

accurate RUA estimation, only relying on CV and CI switching waveforms. The use

of this type of measurements is desirable because such condition monitoring data is

already being recorded in many industrial settings where EMRs play a safety critical

role.

TCN has been adopted as autoregressive DL strategy incorporating MCD based

uncertainty quantification as a computationally efficient implementation deployed

during inference. To support online maintenance decision making, the trade-off be-

tween model complexity and model performance has been examined. Therefore,

the effects of specific TCN model hyperparameters (dilation, dilation base, receptive

field, number of residual blocks, kernel-size) on the predictive performance under con-

sideration of the amount of trainable parameters were investigated. Additionally,

three different feature sets (time-based features, statistical features, and a combi-

nation of both) and sub-sampling strategies (GI, LI, EI) have been explored. The
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results indicate that TCN achieves the best performance and the lowest forecasting

error (MAPE = ±12%) using solely statistical features or in combination with time-

based reference DIs and either LI or EI sub-sampling. Furthermore, it was shown

that in some instances classical, time-based reference DIs can adversely affect the

forecasting performance.

In summary, based on the collected EMR life-cycle data, it has been demonstrated

how TCN can be fused into a prognostic method. The proposed approach emphasises

the potential adoption of DL for PdM given high volumes of MVTD. This will aid

future research utilising DL - in particular for EMR - to develop novel, data-driven

maintenance solutions.

8.3 General suggestions for future work

Given the conditional constraints, this work can be extended in several directions

for both case studies. For one, aspects of generalisation, transfer, verification, and

robustness evaluation, as well as the economics of each respective approach are to be

further examined. Foremost, extending the number of considered samples subjected

to different failure modes and a wider spectrum of possible operating parameters

would be beneficial to improve performance. Likewise, considering the means of ex-

plainability on model reasoning and leveraging the concept of, e.g. humble AI could

support building trust in the potential of the proposed methods. Finally, the re-

quirements for the implementation of such forecasts into an automated maintenance

action in the form of PrM remain an open question.
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Experimental design

A.1 ALT-EMR test PCB

The designed test board consists of (a) the attachable PCB (the test EMR is soldered

onto this PCB); (b) the main board with terminals to connect sensors, loads and

power supplies; (c) the DPDT-EMR to switch in the CR measurement circuit; (d)

the current sensor for CI measurements.

Figure A.1: PCB designed to test facilitate the EMR life-cycle test.
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A.2 LabVIEW user interface

As displayed, the settings of the DAQ are controlled (a) on the H-PC. The user

can specify whether CR measurements are taken as well as the switching frequency

for the EMR at a 50/50 % duty cycle; (b) the data streamed back from the DAQ

indicating the current operating mode; (c) indication of the number of failed, accu-

mulated switching actuations and the operational state of the EMR; (d) immediate,

safe shutdown of the experiment.

Figure A.2: The user interface for the EMR experiments.
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A.3 H-PC LabVIEW main program

In Figure A.3, (a) the main program is initialised and the connectivity to the DAQ

is established via the network connection and pre-tests of the experimental setup

commences (e.g. initialise the power supplies); (b) the DAQ awaits new commands

which can be entered through the user interface and are aggregated and streamed

to the DAQ; (c) initial CR readings of the test EMR are taken; (d) once complete

a loop which reads back each actuation from the DAQ writes the data to file, and

controls the experiment state; (e) in each loop iteration the state of the buffer is

first checked for available data; (f) if data is available its red and logged to different

files, e.g. .hdf5 ; (g) the failure criteria for stuck-closed, stuck-open, excessive opening

time and closing time, and high CR are checked; (h) if, e.g. contact sticking occurs

it is recorded and checked against a failure threshold, i.e. the maximum number

of allowed failed actuations; (i) every 10000th actuations the CR is measured which

requires to pause the switching of the EMR; (j) CR measurements are taken through

the Ohmmeter and send back directly to the H-PC; (k) if the test EMR has not

failed, the next switching cycle at (d) commences, otherwise an automatic shutdown

command is send to the DAQ.
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Figure A.3: LabVIEW block diagram of the main host program running on the H-PC;
split up in four sections.
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A.4 DAQ LabVIEW EMR switching loop

As displayed in Figure A.4, the following consecutive steps are performed for each

making and breaking actuation. (a) Starting a new execution of the determinis-

tic loop running at MHz clock speed (PXIe8880 internal clock); (b) reading the

switching state of the previous operation (opened or closed) and updating the new

switching state; (c) initialising the data acquisition of CV, CC, and CI; (d) sending

the trigger to switch the EMR under test; (e) in case of DA2 sampling the data at

150 kHz for a 0.02 ms interval; (f) stopping the data acquisition; (g) reading back

reference voltage and current measurements from the power supply’s internal sensors

verifying a successful switching operation; (h) transferring data from the real-time

buffer to (i) enter the queue buffer for being streamed back to the H-PC; (j) verifying

to continue to the next switching operation or to interrupt the switching either due

to a shutdown command received from the H-PC or in order to (k) take a CR and

temperature reading. In latter case, the CR measurement circuit is switched in via

the DPDT-EMR.
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Figure A.4: LabVIEW block diagram of EMR deterministic switching loop running on
the DAQ, opening and closing the test EMR.
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A.5 DA1 actuations till failure

Figure A.5: Actuations till failure of the 16 tested unsealed EMRs contained in data set
DA1 (tested at 60 ◦C) and a switching frequency of 0.25 Hz).

A.6 DA2 actuations till failure

Figure A.6: Actuations till failure of the 14 tested EMRs contained in data set DA2 (10
sealed EMRs and 4unsealed EMRs, tested at 30 ◦C) and a switching frequency of 25 Hz).
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Supplementary EMR failure

analysis results

B.1 DA2 sealed EMR making waveform

The contact making waveform of (left) CV, (centre) CI and (right) CI sub-sampled

from 150 kHz to 5 kHz. The graphs show the changing waveform shape over the

EMR life where as a lighter colour symbolises a new EMR (0 % life) and as it

becomes gradually darker the EMR is approaching EOL (100 % life).

Figure B.1: DA2-03S - making.
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B.2 DA2 sealed EMR breaking waveform

Figure B.2: DA2-03S - breaking.

B.3 DA2 unsealed EMR making waveform

Figure B.3: DA2-09U - making.

B.4 DA2 unsealed EMR breaking waveform

Figure B.4: DA2-09U - breaking.
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B.5 EDX analysis

This EDX analysis compares an unsealed and a sealed EMR operated for 70000

actuations. Clearly recognisable is the silver-oxide splattering which is deposited

on the anode and cathode contact carrier strips, i.e. material dispersed through

electrical erosion.

Figure B.5: EDX analysis.
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Appendix C

Supplementary EMRUA results

C.1 DA1 time-based feature set

Figure C.1: DA1 - Pick-Up Time (PT).

Figure C.2: DA1 - Release Time (RT).

208



Chapter C: Supplementary EMRUA results

Figure C.3: DA1 - Bounce Time (BT).

Figure C.4: DA1 - Arcing Time (AT) during breaking.

Figure C.5: DA1 - Arcing Time (AT) during making.
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C.2 DA1 statistical feature set

C.2.1 Making actuation

Figure C.6: DA1-01S FS extracted from the making actuation, (max, min, mean, std.
dev.).
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C.2.2 Breaking actuation

Figure C.7: DA1-01S FS extracted from the breaking actuation, (max, min, mean, std.
dev.).
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C.3 DA1 inference performance evaluation

C.3.1 DA1-01U

C.3.1.1 LI

Figure C.8: DA1-01U - FT - LI - k = 4-db = 2-R = 6.

Figure C.9: DA1-01U - FS - LI - k = 4-db = 2-R = 6.
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Figure C.10: DA1-01U - FT,S - LI - k = 4-db = 2-R = 6.

C.3.1.2 GI

Figure C.11: DA1-01U - FT - GI - k = 4-db = 2-R = 6.
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Figure C.12: DA1-01U - FS - GI - k = 4-db = 2-R = 6.

Figure C.13: DA1-01U - FT,S - GI - k = 4-db = 2-R = 6.
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C.3.2 DA1-02U

C.3.2.1 EI

Figure C.14: DA1-02U - FT - EI - k = 4-db = 2-R = 6.

Figure C.15: DA1-02U - FS - EI - k = 4-db = 2-R = 6.

215



Chapter C: Supplementary EMRUA results

Figure C.16: DA1-02U - FT,S - EI - k = 4-db = 2-R = 6.

C.3.2.2 LI

Figure C.17: DA1-02U - FT - LI - k = 4-db = 2-R = 6.
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Figure C.18: DA1-02U - FS - LI - k = 4-db = 2-R = 6.

Figure C.19: DA1-02U - FT,S - LI - k = 4-db = 2-R = 6.

217



Chapter C: Supplementary EMRUA results

C.3.2.3 GI

Figure C.20: DA1-02U - FT - GI - k = 4-db = 2-R = 6.

Figure C.21: DA1-02U - FS - GI - k = 4-db = 2-R = 6.
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Figure C.22: DA1-02U - FT,S - GI - k = 4-db = 2-R = 6.

C.3.3 DA1-03U

C.3.3.1 EI

Figure C.23: DA1-03U - FT - EI - k = 4-db = 2-R = 6.
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Figure C.24: DA1-03U - FS - EI - k = 4-db = 2-R = 6.

Figure C.25: DA1-03U - FT,S - EI - k = 4-db = 2-R = 6.
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C.3.3.2 LI

Figure C.26: DA1-03U - FT - LI - k = 4-db = 2-R = 6.

Figure C.27: DA1-03U - FS - LI - k = 4-db = 2-R = 6.
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Figure C.28: DA1-03U - FT,S - LI - k = 4-db = 2-R = 6.

C.3.3.3 GI

Figure C.29: DA1-03U - FT - GI - k = 4-db = 2-R = 6.
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Figure C.30: DA1-03U - FS - GI - k = 4-db = 2-R = 6.

Figure C.31: DA1-03U - FT,S - GI - k = 4-db = 2-R = 6.
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C.3.4 DA1-04U

C.3.4.1 EI

Figure C.32: DA1-04U - FT - EI - k = 4-db = 2-R = 6.

Figure C.33: DA1-04U - FS - EI - k = 4-db = 2-R = 6.
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Figure C.34: DA1-04U - FT,S - EI - k = 4-db = 2-R = 6.

C.3.4.2 LI

Figure C.35: DA1-04U - FT - LI - k = 4-db = 2-R = 6.
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Figure C.36: DA1-04U - FS - LI - k = 4-db = 2-R = 6.

Figure C.37: DA1-04U - FT,S - LI - k = 4-db = 2-R = 6.
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C.3.4.3 GI

Figure C.38: DA1-04U - FT - GI - k = 4-db = 2-R = 6.

Figure C.39: DA1-04U - FS - GI - k = 4-db = 2-R = 6.

227



Chapter C: Supplementary EMRUA results

Figure C.40: DA1-04U - FT,S - GI - k = 4-db = 2-R = 6.

C.3.5 DA1-05U

C.3.5.1 EI

Figure C.41: DA1-05U - FT - EI - k = 4-db = 2-R = 6.
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Figure C.42: DA1-05U - FS - EI - k = 4-db = 2-R = 6.

Figure C.43: DA1-05U - FT,S - EI - k = 4-db = 2-R = 6.
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C.3.5.2 LI

Figure C.44: DA1-05U - FT - LI - k = 4-db = 2-R = 6.

Figure C.45: DA1-05U - FS - LI - k = 4-db = 2-R = 6.
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Figure C.46: DA1-05U - FT,S - LI - k = 4-db = 2-R = 6.

C.3.5.3 GI

Figure C.47: DA1-05U - FT - GI - k = 4-db = 2-R = 6.
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Figure C.48: DA1-05U - FS - GI - k = 4-db = 2-R = 6.

Figure C.49: DA1-05U - FT,S - GI - k = 4-db = 2-R = 6.
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C.3.6 DA1-06U

C.3.6.1 EI

Figure C.50: DA1-06U - FT - EI - k = 4-db = 2-R = 6.

Figure C.51: DA1-06U - FS - EI - k = 4-db = 2-R = 6.
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Figure C.52: DA1-06U - FT,S - EI - k = 4-db = 2-R = 6.

C.3.6.2 LI

Figure C.53: DA1-06U - FT - LI - k = 4-db = 2-R = 6.
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Figure C.54: DA1-06U - FS - LI - k = 4-db = 2-R = 6.

Figure C.55: DA1-06U - FT,S - LI - k = 4-db = 2-R = 6.

235



Chapter C: Supplementary EMRUA results

C.3.6.3 GI

Figure C.56: DA1-06U - FT - GI - k = 4-db = 2-R = 6.

Figure C.57: DA1-06U - FS - GI - k = 4-db = 2-R = 6.
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Figure C.58: DA1-06U - FT,S - GI - k = 4-db = 2-R = 6.

C.4 Batch size effects on uncertainty estimation

Exemplary predicting RUA for DA1-16U. The EI sequence selection strategy and

the data set FT,S are used.
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Figure C.59: DA1-16U - N = 50.

Figure C.60: DA1-16U - N = 500.

Figure C.61: DA1-16U - N = 50000.
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